The development of “biohybrid” drug delivery systems (DDS) based on mesenchymal stem/stromal cell... more The development of “biohybrid” drug delivery systems (DDS) based on mesenchymal stem/stromal cells (MSCs) is an important focus of current biotechnology research, particularly in the areas of oncotheranostics, regenerative medicine, and tissue bioengineering. However, the behavior of MSCs at sites of inflammation and tumor growth is relevant to potential tumor transformation, immunosuppression, the inhibition or stimulation of tumor growth, metastasis, and angiogenesis. Therefore, the concept was formulated to control the lifespan of MSCs for a specific time sufficient for drug delivery to the target tissue by varying the number of internalized microcontainers. The current study addressed the time-dependent in vitro assessment of the viability, migration, and division of human adipose-derived MSCs (hAMSCs) as a function of the dose of internalized polyelectrolyte microcapsules prepared using a layer-by-layer technique. Polystyrene sulfonate (PSS)—poly(allylamine hydrochloride) (PAH)...
A challenging topic in surface engineering is predicting the wetting properties of soft interface... more A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational protocol suitable for predicting wettability with molecular precision is still lacking. In this article, we propose a workflow based on molecular dynamics simulations to predict the wettability of polymer surfaces and test it against the experimental contact angle of several polar and nonpolar liquids, namely water, formamide, toluene, and hexane. The specific case study addressed here focuses on a poly(lactic-co-glycolic acid) (PLGA) flat surface, but the proposed experimental-modeling protocol may have broader fields of application. The structural properties of PLGA slabs have been modeled on the surface roughness determined with microscopy measurements, while the computed surface tensions and contact angles were validated against standardized characterization tests, reaching a discrepancy of less than 3% in the case of water. O...
A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure... more A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.
Herein, we report results of the study of the composite ferroelectric scaffolds based on vinylide... more Herein, we report results of the study of the composite ferroelectric scaffolds based on vinylidene fluoride-tetrafluoroethylene copolymer (VDF-TeFE) and polyvinylpyrrolidone (PVP) produced by electrospinning and their application as a wound-healing material. The physicochemical properties of ferroelectric composite polymer scaffolds depending on the content of PVP (in the range from 0 to 50 wt %) including morphology, composition and crystalline structure were studied. The cytotoxicity of materials and the proliferative activity of cells during their cultivation on the surface of formed scaffolds are reported. It has been found that the optimal PVP content in the VDF-TeFE composite scaffolds is 15 wt%. On a model of a full-thickness contaminated wound in vivo, it was shown that piezoelectric scaffolds based on VDF-TeFE copolymer containing 15 wt% PVP provide better wound healing results in comparison with standard gauze dressings impregnated with a solution of an antibacterial agent.
The electrospray method was used for the first time to prepare polymeric capsules from bioresorba... more The electrospray method was used for the first time to prepare polymeric capsules from bioresorbable dl-lactide and glycolide copolymer loaded with biological molecules from the cell secretome and, in particular, human interferon a-2b (IFN a-2b). The obtained nearly spherical submicron capsules were studied by scanning electron and confocal laser microscopy. The capsules retain the structural integrity and the cytotoxic activity of IFN a-2b towards tumor cells. The electrospray method is distinguished by high adaptability and environmental safety and is suitable for manufacture of a broad range of materials with different composition and morphology promising for the targeted delivery of drugs and biological molecules.
The development of “biohybrid” drug delivery systems (DDS) based on mesenchymal stem/stromal cell... more The development of “biohybrid” drug delivery systems (DDS) based on mesenchymal stem/stromal cells (MSCs) is an important focus of current biotechnology research, particularly in the areas of oncotheranostics, regenerative medicine, and tissue bioengineering. However, the behavior of MSCs at sites of inflammation and tumor growth is relevant to potential tumor transformation, immunosuppression, the inhibition or stimulation of tumor growth, metastasis, and angiogenesis. Therefore, the concept was formulated to control the lifespan of MSCs for a specific time sufficient for drug delivery to the target tissue by varying the number of internalized microcontainers. The current study addressed the time-dependent in vitro assessment of the viability, migration, and division of human adipose-derived MSCs (hAMSCs) as a function of the dose of internalized polyelectrolyte microcapsules prepared using a layer-by-layer technique. Polystyrene sulfonate (PSS)—poly(allylamine hydrochloride) (PAH)...
A challenging topic in surface engineering is predicting the wetting properties of soft interface... more A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational protocol suitable for predicting wettability with molecular precision is still lacking. In this article, we propose a workflow based on molecular dynamics simulations to predict the wettability of polymer surfaces and test it against the experimental contact angle of several polar and nonpolar liquids, namely water, formamide, toluene, and hexane. The specific case study addressed here focuses on a poly(lactic-co-glycolic acid) (PLGA) flat surface, but the proposed experimental-modeling protocol may have broader fields of application. The structural properties of PLGA slabs have been modeled on the surface roughness determined with microscopy measurements, while the computed surface tensions and contact angles were validated against standardized characterization tests, reaching a discrepancy of less than 3% in the case of water. O...
A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure... more A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.
Herein, we report results of the study of the composite ferroelectric scaffolds based on vinylide... more Herein, we report results of the study of the composite ferroelectric scaffolds based on vinylidene fluoride-tetrafluoroethylene copolymer (VDF-TeFE) and polyvinylpyrrolidone (PVP) produced by electrospinning and their application as a wound-healing material. The physicochemical properties of ferroelectric composite polymer scaffolds depending on the content of PVP (in the range from 0 to 50 wt %) including morphology, composition and crystalline structure were studied. The cytotoxicity of materials and the proliferative activity of cells during their cultivation on the surface of formed scaffolds are reported. It has been found that the optimal PVP content in the VDF-TeFE composite scaffolds is 15 wt%. On a model of a full-thickness contaminated wound in vivo, it was shown that piezoelectric scaffolds based on VDF-TeFE copolymer containing 15 wt% PVP provide better wound healing results in comparison with standard gauze dressings impregnated with a solution of an antibacterial agent.
The electrospray method was used for the first time to prepare polymeric capsules from bioresorba... more The electrospray method was used for the first time to prepare polymeric capsules from bioresorbable dl-lactide and glycolide copolymer loaded with biological molecules from the cell secretome and, in particular, human interferon a-2b (IFN a-2b). The obtained nearly spherical submicron capsules were studied by scanning electron and confocal laser microscopy. The capsules retain the structural integrity and the cytotoxic activity of IFN a-2b towards tumor cells. The electrospray method is distinguished by high adaptability and environmental safety and is suitable for manufacture of a broad range of materials with different composition and morphology promising for the targeted delivery of drugs and biological molecules.
Uploads
Papers by Valeriya Kudryavtseva