Üç boyutlu uzay: Revizyonlar arasındaki fark
[kontrol edilmiş revizyon] | [kontrol edilmiş revizyon] |
+kaynaksız |
Kaynaksız şablonuna tarih eklendi. Kaynak |
||
1. satır: | 1. satır: | ||
{{Kaynaksız|tarih=Mart 2020}} |
|||
{{kaynaksız}} |
|||
{{Diğer anlamı|3D}} |
{{Diğer anlamı|3D}} |
||
[[Dosya:Coord_planes_color.svg|thumb|sağ|250px|Üç boyutlu koordinat düzlemindeki bir noktanın konumu x, y ve z koordinatlarına göre tanımlanabilir.]] |
[[Dosya:Coord_planes_color.svg|thumb|sağ|250px|Üç boyutlu koordinat düzlemindeki bir noktanın konumu x, y ve z koordinatlarına göre tanımlanabilir.]] |
Sayfanın 04.42, 12 Eylül 2020 tarihindeki hâli
Bu madde hiçbir kaynak içermemektedir. (Mart 2020) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin) |
Üç boyutlu uzay (3D); en, boy ve derinlik algılarının hepsinin birden var olduğu ortam. Cisimler; uzunluk, genişlik ve derinliği ile gösterebiliyorsa bu durumda üç boyuttan bahsedilebilir.
Boyut kavramını daha iyi anlayabilmek için tek boyuttan, yani doğrudan başlanılır. Bir doğru üzerindeki herhangi bir noktanın konumunu tek bir sayıyla ifade etmek mümkündür.
İki boyuta örnek ise düzlemdir. Bir masanın üstü (idealde) iki boyutlu bir düzlemdir. Masanın üzerindeki herhangi bir noktayı en ve boy koordinatları olarak iki sayıyla ifade edilir. Bu düzleme dik olarak bir de yükseklik eklendiğinde üç boyut elde edilir. Üç boyuta örnek olarak bir küp verilebilir. Küpün içindeki herhangi bir noktanın konumunu tarif etmek için, belli bir köşe sıfır noktası (orijin) olarak referans alınır ve noktanın konumu x, y, z eksenlerindeki üç sayı ile ifade edilir.
Geometri ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz. |