
RESEARCH

Barwise Music Structure
Analysis with the
Correlation Block-Matching
Segmentation Algorithm

AXEL MARMORET

JÉRÉMY E. COHEN

FRÉDÉRIC BIMBOT

ABSTRACT
Music Structure Analysis (MSA) is a Music Information Retrieval task consisting of
representing a song in a simplified, organized manner by breaking it down into sections
typically corresponding to “chorus”, “verse”, “solo”, etc. In this work, we extend an
MSA algorithm called the Correlation Block-Matching (CBM) algorithm introduced
by (Marmoret et al., 2020, 2022b). The CBM algorithm is a dynamic programming
algorithm that segments self-similarity matrices, which are a standard description
used in MSA and in numerous other applications. In this work, self-similarity matrices
are computed from the feature representation of an audio signal and time is sampled
at the bar-scale. This study examines three different standard similarity functions for
the computation of self-similarity matrices. Results show that, in optimal conditions,
the proposed algorithm achieves a level of performance which is competitive with
supervised state-of-the-art methods while only requiring knowledge of bar positions.
In addition, the algorithm is made open-source and is highly customizable.

CORRESPONDING AUTHOR:
Axel Marmoret

Univ. Rennes 1, Inria, CNRS,
IRISA, France; IMT Atlantique,
Lab-STICC, Brest, France

axel.marmoret@imt-atlantique.
fr

KEYWORDS:
Music Structure Analysis;
Audio Signals; Barwise Music
Processing; Self-Similarity
Matrix Segmentation

TO CITE THIS ARTICLE:
Marmoret, A., Cohen, J. E., and
Bimbot, F. (2023). Barwise
Music Structure Analysis
with the Correlation Block-
Matching Segmentation
Algorithm. Transactions of
the International Society for
Music Information Retrieval,
6(1), 167–185. DOI: https://doi.
org/10.5334/tismir.167

*Author affiliations can be found in the back matter of this article

mailto:axel.marmoret@imt-atlantique.fr
mailto:axel.marmoret@imt-atlantique.fr
https://doi.org/10.5334/tismir.167
https://doi.org/10.5334/tismir.167
https://orcid.org/0000-0001-6928-7490
https://orcid.org/0000-0001-8319-8566

168Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

1. INTRODUCTION

Citing Paulus et al. (2010), “[...] it is the structure, or the
relationships between the sound events that create
musical meaning”. In that sense, researchers in MIR
developed the Music Structure Analysis (MSA) task,
which focuses on the retrieval of the structure in a song.
Music structure is ill-defined, but is generally viewed
as a hierarchical description, from the level of notes to
the level of the song itself (McFee et al., 2017; Nieto et
al., 2020). A tentative definition is that structure is a
simplified representation of the organization of the song.

In that sense, motifs which arise from the organization
of notes are a first level of structure. These motifs create
patterns, progressions and phrases. In general, the highest
level of structure defines musical sections, corresponding
to “chorus”, “verse” and “solo”, which is a macroscopic
description of music (Sargent et al., 2016). Some work
focuses on estimating structure in its hierarchical
nature (e.g. McFee and Ellis, 2014a, b; de Berardinis et
al., 2020; Salamon et al., 2021), but this work focuses
on a “flat” level of segmentation, i.e. a macroscopic
level, corresponding to musical sections. Facing the high
diversity of music, and the many ways structure can be
designed, we restrict this work to the study of Western
modern (and in particular Western Popular) music. In
particular, this work relies on both the RWC Pop (Goto et
al., 2002) and the SALAMI (Smith et al., 2011) datasets,
which are open-source and standard datasets in MSA.

MSA is subdivided into two subtasks, not necessarily
mutually exclusive: the boundary retrieval task and
the segment labelling task. The boundary retrieval
task consists in estimating the boundaries between
different sections, hence partitioning music into several
non-overlapping segments, covering the entire song.
The segment labelling task consists in grouping similar
segments with the same label, typically letters such as
‘A’, ‘B’, ‘C’, etc. In this article, only the boundary retrieval
task is considered. A schematic example of musical
structure is presented in Figure 1.

1.1 RELATED WORK
Algorithms aimed at solving MSA are designed
according to one or several criteria among the following:

homogeneity, novelty, repetition and regularity (Nieto
et al., 2020). The homogeneity criterion assumes that
a section consists of similar musical elements (notes,
chords, tonality, timbre, ...). Novelty is the counterpart of
homogeneity: this criterion considers that boundaries are
located primarily between consecutive musical elements
that are highly dissimilar. A high novelty is salient
between two distinct homogeneous zones (“break” of
homogeneity), and conversely, homogeneity is evaluated
within successive dissimilar portions in the song. The
third criterion, repetition, relies on a global approach to
the song. The rationale is that a motif (e.g. a melodic
line) may be time-varying (and thus heterogeneous), but
can define a segment if it is repeated across the song
(for example, a chorus). The repetition criterion may also
be used to partition long segments into smaller repeated
segments. Finally, the regularity criterion assumes
that, within a song (and even within a musical genre),
segments should be of comparable size.

Many MSA algorithms make use of matrices
representing the similarity and dissimilarity in music,
sometimes referred to as “self-distance matrices” (Paulus
et al., 2010), “self-similarity matrices” (Nieto et al., 2020),
“recurrence matrices” or “pair-wise frame similarities”
(McFee and Ellis, 2014a). These representations differ
in their details, but share the same conceptual idea of
computing some form of similarity (or, conversely, some
form of distance) between the different frames of music,
and representing it in a square matrix (its size being the
number of frames). In this work, we will use the term
“self-similarity matrix”.

As a particular example, the novelty kernel (Foote,
2000), which may be some of the earliest work on audio
MSA, estimates boundaries as points of high dissimilarity
between the recent past and the near future, by applying
a square kernel matrix on the diagonal of the self-
similarity matrix. This kernel works ideally when the
recent past and the near future are homogenous in their
respective neighborhoods, but very dissimilar with each
other. In practice, this kernel is convolved with the self-
similarity matrix of the song, centered on the diagonal,
which gives a “novelty” value for each temporal sample
of the song, finally post-processed into boundaries with
a thresholding operation.

Figure 1 A schematic example of musical structure.

169Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

While this technique is rather simple, it is still
used as a standard segmentation tool in recent work
(e.g. McCallum, 2019; Wang et al., 2021) focusing on
improving the boundary retrieval performance by
enhancing the self-similarity matrix. In particular, both
of these works belong to the domain of representation
learning (Bengio et al., 2013), consisting of designing
machine learning algorithms to learn relevant
representations instead of focusing on solving a
particular task. In that context, using prior knowledge,
both McCallum (2019) and Wang et al. (2021) design
neural network architectures and optimization
schemes with the objective to obtain enhanced
(nonlinear) similarity functions, more prone to highlight
the structure in the self-similarity matrices.

Notably, McCallum (2019) develops an unsupervised
learning scheme where the prior knowledge enforced in
the representation is based on the proximity of samples:
the closer the frames in the song, the more probable they
belong to the same segment. In the same spirit, Wang
et al. (2021) develop a supervised learning scheme: the
neural network learns representations where segments
annotated with the same label are close, and segments
annotated differently are far apart. The rationale for both
methods is to learn a similarity function which is not only
representing the feature-wise correspondence of two
music frames, but can also discover frequent patterns in
the learning samples.

McFee and Ellis (2014a) propose an algorithm
based on spectral clustering, aiming at interpreting the
repetitive patterns in a song as principally connected
vertices in a graph. The structure is then obtained by
studying the eigenvectors of the Laplacian of this graph,
forming cluster classes for segmentation. This technique
is amongst the best-performing unsupervised techniques
nowadays, and was improved by recent work by Salamon
et al. (2021), which replaces or enhances the acoustic
features on which spectral clustering is applied with
nonlinear embeddings, learned by means of a neural
network.

Serrà et al. (2014) develop “Structural Features”, which,
by design, encode both repetitive and homogeneous
parts. The rationale of these features is to compute the
similarity between bags of instances, composed of several
consecutive frames. In that sense, the similarity encodes
the repetition of any sequence, which can be stationary
(homogeneity) or varying (repetition). Boundaries are
obtained as points of high novelty between consecutive
structural features.

Finally, Grill and Schlüter (2015) develop a
Convolutional Neural Network (CNN) which outputs
estimated boundaries. This CNN is one of the few
techniques which does not compute a self-similarity
matrix to later post-process it into boundaries, but it still
uses self-similarities as input. The network is supervised
on two-level annotations, on the SALAMI dataset (Smith

et al., 2011), and, according to the authors, using these
two levels of annotations is beneficial to the performance.

While many algorithms are devoted to the task of
boundary retrieval (see for instance literature reviews
from Paulus et al. (2010) and from Nieto et al. (2020)),
research is still conducted towards more effective
estimation algorithms. As presented above, in the past
decade, research has mainly shifted from unsupervised to
supervised algorithms, i.e. from low-informed estimation
algorithms, generally designed with strong hypotheses,
to algorithms which take advantage of (generally huge)
annotated databases to learn mappings between the
musical features and annotated structural elements.
While this shift has resulted in more effective algorithms,
it has the disadvantages of requiring large training
datasets, and reproducing potential bias in relation to the
annotations, known to be prone to high subjectivity and
ambiguity (Nieto et al., 2020).

1.2 CONTRIBUTIONS
In order to improve unsupervised algorithms, we propose
in this article a novel approach based on the Correlation
“Block-Matching” (CBM) algorithm. This algorithm was
briefly introduced in previous work (Marmoret et al., 2020,
2022b) and is worth a more detailed presentation, which
is one of the objectives of this work. Firstly, in line with the
findings in (Marmoret et al., 2020, 2022b), we conjecture
that the bar-scale is the most appropriate temporal
scale from which to infer structure in Western modern
music, and we present a framework which inherently
processes music at this temporal scale. To the best of our
knowledge, only a few works used such a hypothesis (e.g.
Wang et al., 2021; Marmoret et al., 2020, 2022b). This
hypothesis is supported by experiments which compare
segmentation performance when aligning state-of-the-
art algorithms and the CBM algorithm on either the beat
or the bar-scale. We show a consistent advantage for the
bar-scale alignment approach.

The CBM algorithm estimates the musical structure
based on the principles introduced in the work of Jensen
(2006), later extended by Sargent et al. (2016). In a
nutshell, the CBM algorithm is based on the definition
of a score function (further denoted as u) applied to
segments, with the overall segmentation of the song
resulting in the maximum total score of the set of
segments. This defines an optimization problem, which
can be solved by dynamic programming.

The novelty of the CBM algorithm lies in its ability to
extend previous work by incorporating new hypotheses
regarding the design of the score function u. As a
consequence, the algorithm is highly customizable and
can be tailored to specific hypotheses and applications,
which is a potential area for future research. We also
present a study of different similarity functions to
account for the similarity between musical features,
and notably the Radial Basis function, which, to the best

170Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

of our knowledge, was never previously used for MSA.
Finally, we present experimental results which appear
competitive with the most effective algorithm known to
date (Grill and Schlüter, 2015).

The CBM algorithm is unsupervised in the sense that
the segment boundaries are estimated as solutions
of an optimization problem which does not depend
explicitly on annotated examples. Nonetheless, in
order to accurately tune internal hyperparameters, the
following experiments are carried out by separating data
between a “train” and a “test” dataset. In addition, we
acknowledge that we use a learning-based toolbox for
the bar estimation, but this toolbox is independent from
our work. In that sense, although we label this algorithm
as “unsupervised”, it could also arguably be qualified as
“weakly-” or “semi-” supervised.

This article is organized as follows: Section 2 presents
in more detail the hypotheses and framework to process
music in a barwise setting, Section 3 presents the CBM
algorithm and Section 4 presents an evaluation of the
CBM algorithm on the boundary retrieval task, along with
a comparison with state-of-the-art algorithms.

2. BARWISE MUSIC ANALYSIS

In most work in MSA (Nieto et al., 2020), the signal of
a song is represented as time-sampled features, related
to some extent to the frequency content of the song’s
signal. In previous work on MSA, features have been
either computed with a fixed hop length, typically
between 0.1s and 1s according to Paulus et al. (2010), or
(in more recent work), aligned on beats (McCallum, 2019;
Wang et al., 2021; Salamon et al., 2021). Beat alignment
is musically-relevant because it aligns the features and
the estimations with respect to a time segmentation
consistent with music performance. In this work, we
hypothesize that the bar-scale is more relevant than the
beat-scale to study MSA in Western modern music.

Bars seem well suited to express patterns and sections
in Western modern music. Indeed, in Western musical
notation, musical note lengths are expressed relatively to
beats, and beats are combined to form bars. Bars finally
segment the musical scores (with vertical lines), and
similarities occur generally across different bars (which is
particularly visible by the use of repeat bars, or symbols
as “Dal Segno”, “Da Capo”, etc). In addition, the intuition
that musical sections are synchronized on downbeats
is experimentally confirmed by Mauch et al. (2009)
and Fuentes et al. (2019), where the use of structural
information improves the estimation of downbeats.
Experiments supporting this hypothesis are presented in
Section 2.3.

The direct drawback of barwise alignment is the need
for a powerful tool to estimate bar boundaries. In this
work, we use the madmom toolbox (Böck et al., 2016a),

which uses a neural network to perform bar estimation
(Böck et al., 2016b). In the 2016 MIREX contest,1 which
was the last edition of the contest comparing downbeat
estimation algorithms, this neural network obtained the
best performance, and can hence be considered as one
of the state-of-the-art algorithms for the task. Even if
some algorithms obtained better performance since (e.g.
Böck and Davies, 2020; Oyama et al., 2021; Hung et al.,
2022), we consider that the madmom toolbox achieves
a satisfactory level of performance for our intended
application.

2.1 BARWISE TF MATRIX
In this work, we represent music as barwise
spectrograms, and more particularly as a Barwise TF
matrix, following Marmoret et al. (2022b). The Barwise
TF matrix consists of a matrix of size B × TF, B being the
number of bars in the song (i.e. a dimension accounting
for the bar-scale), and TF the vectorization of both time
(at bar-scale) and feature dimensions (representing
the frequency to some extent) into a unique Time-
Frequency dimension. The number of time frames per
bar is fixed to T = 96, as in Marmoret et al. (2022b).
Following the work of Grill and Schlüter (2015), the signal
is represented in log mel features, i.e. the logarithm of
mel coefficients, expressed with F = 80 mel coefficients,
but any other feature representation could be used
instead. The rationale for using log mel spectrograms is
that they lead to high segmentation performance (Grill
and Schlüter, 2015; Nieto et al., 2020) while constituting
a compact spectral representation, suited for music
analysis.

2.2 BARWISE SELF-SIMILARITY MATRIX
As stated in Section 1.1, a common representation in MSA
is the self-similarity matrix, representing the similarities at
the scale of the song. An idealized self-similarity matrix,
extracted from Paulus et al. (2010), is presented in Figure 2.

Figure 2 An idealized self-similarity matrix, extracted from
Paulus et al. (2010).

171Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

Similar passages are identified by two typical shapes:
blocks and stripes. A block is a square (or a rectangle)
in the self-similarity matrix, representing a zone of high
inner-similarity, i.e. several consecutive frames which are
highly similar, hence corresponding to the homogeneity
criterion. A stripe is a line parallel to the main diagonal
representing a repetition of the content, i.e. a pattern
of several frames repeated in the same order, hence
corresponding to the repetition criterion. As a general
trend, the segmentation algorithms using self-similarity
matrices are designed so as to retrieve segments based
on blocks and stripes.

Given a Barwise TF matrix B TFX , the self-similarity
matrix of X is defined as () B BA X where each coefficient
(i, j) represents the similarity between vectors , TF

i jX X .
Self-similarity matrices are computed from the Barwise
TF representation of the song, therefore, each coefficient
in the self-similarity matrix represents the feature-wise
similarity for a pair of bars.

The similarity between two vectors is subject to a
similarity function (the dot product for instance), and,
as a consequence, different self-similarity matrices can
be constructed. The main diagonal in a self-similarity
matrix represents the self-similarity of each vector, and
is in general (and in this work in particular) normalized to
one. This work studies three different similarity functions,
namely the Cosine, Autocorrelation and RBF similarity
functions. The latter two represent novel contributions
compared to our previous work (Marmoret et al., 2022b).

2.2.1 Cosine self-similarity matrix
The Cosine similarity function computes the normalized
dot product between two vectors, and leads to the Cosine
self-similarity matrix, denoted as Acos(X). Practically,
denoting as X the row-wise l2-normalized version of X
(i.e. the matrix X where each row has been divided by
its l2-norm), the Cosine self-similarity matrix is defined as

cos()A X XX , or, elementwise, for 1 ≤ i, j ≤ B:

cos

2 2 1

,
() .

TF
i j

ij ik jk
i j k

X X
A X X X

X X

 (1)

2.2.2 Autocorrelation self-similarity matrix
The Autocorrelation similarity function is defined for 2
bars Xi and Xj as corr(,) ()()i j i jX X X x X x , denoting as

TFx the mean of all bars in the song.
The barwise Autocorrelation similarity function yields

the Autocorrelation self-similarity matrix Acorr(X) as:

corr

2 2

,
() .

i j
ij

i j

X x X x
A X

X x X x

 (2)

In other words, the Autocorrelation matrix is exactly
the Cosine self-similarity matrix of the centered matrix

corr cos. . () , () B BiX x A X A Xe x 1 1 .

2.2.3 RBF self-similarity matrix
Kernel functions are symmetric positive definite or
semi-definite functions. In machine learning, kernel
functions are generally used to represent data in a
high-dimensional space (sometimes infinite), enabling
a nonlinear processing of data with linear methods (e.g.
nonlinear classification with Support Vector Machines,
SVM).

The Radial Basis Function (RBF) kernel is a kernel
function defined as 2

2RBF(,) exp(),i j i jX X X X
being a user-defined parameter. The RBF can be used as
a similarity function between two bars Xi and Xj, hence
defining the RBF self-similarity matrix ARBF(X) as:

2

RBF
2 2 2

() RBF(,) exp .ji
ij i j

i j

XX
A X X X

X X

 (3)

Bars are normalized by their l2 norm in the computation
of ARBF, in order to limit the impact of variations of power
between bars. The self-similarity of a bar is equal to e0 =1.

Parameter γ is set relatively to the standard deviation
of the pairwise Euclidean distances of all bars in the
original matrix (self-distances excluded), to adapt
the shape of the exponential function to the relative
distribution of distances in the song. Hence, denoting as:

2 2

2
1
21 , 2

std ,we setji

i j

i j

XX
X Xi j B σσ γ

≠
≤ ≤

= − =

.

The RBF function may be useful for MSA as the self-
similarity of dissimilar elements fades rapidly due to
the properties of the exponential function. Hence, the
RBF similarity function emphasizes similar components
(i.e. homogeneous zones). The three self-similarities are
presented in Figure 3, on the Barwise TF of song POP01
from RWC Pop.

2.3 BARWISE MSA EXPERIMENTS
Section 2 is based on the hypothesis that the bar-
scale is more relevant than other time discretizations
(in particular the beat-scale) to study MSA in Western
modern music. To support this hypothesis, we present
hereafter three experiments studying the differences in
performance between beat-aligned and barwise-aligned
estimations.

2.3.1 Aligning the annotations on the downbeats
As a preliminary experiment to study the impact
of barwise alignment on the segmentation quality,
we evaluate the loss in performance when aligning
annotations on downbeats for both the RWC Pop (Goto
et al., 2002) and SALAMI (Smith et al., 2011) datasets.
In this experiment, each annotation is aligned with the
closest estimated downbeat, and the barwise-aligned
annotations are compared with the initial annotation
using the standard metrics P0.5s, R0.5s, F0.5s and P3s, R3s, F3s
(detailed in Section 4.1). Results are presented in Table
1. The RWC Pop annotations are barely impacted by the

172Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

barwise alignment, suggesting that annotations are
precisely located on downbeats. A loss in performance
with short tolerances is observed on the annotations
of the SALAMI dataset, either suggesting imprecise
bar estimations or boundaries not located on the
downbeats. Still, the levels of performance exhibited
in Table 1 largely outperform the current state-of-the-
art (≈ 80% vs ≈ 54% for the F0.5s metric, respectively for
the downbeat-aligned annotations in Table 1 and for
Grill and Schlüter (2015), whose results are presented
in Figure 12). In that sense, the loss in performance
induced by downbeat alignment may be compensated
if estimations are indeed more precise due to this
alignment.

2.3.2 Downbeat-alignment for several state-of-
the-art algorithms
A second experiment consists of post-processing the
boundary estimations of three unsupervised state-of-
the-art algorithms (Foote, 2000; McFee and Ellis, 2014a;
Serrà et al., 2014), computed with the MSAF toolbox
(Nieto and Bello, 2016), by aligning each boundary with
the closest estimated downbeat. As these algorithms
originally use beat-aligned features (resulting in beat-
aligned estimations), this experiment compares beat-
aligned estimations with downbeat-aligned estimations.
Segmentation scores are presented in Figure 4 for both
SALAMI and RWC Pop datasets.

Results show that aligning estimated boundaries on
downbeats results in a strong increase in performance for
F0.5s, and to comparable results for F3s, on both datasets.
Hence, aligned on downbeats, estimations are more
accurate, but the F3s metric is not significantly impacted
by this alignment. These results suggest that downbeat-
alignment is beneficial on these datasets.

2.3.3 Focusing on Foote’s algorithm
Finally, a third experiment compares the results obtained
with different time discretizations for Foote’s algorithm
(Foote, 2000), implemented in the MSAF toolbox (Nieto
and Bello, 2016). In particular, this experiment compares
the results when self-similarities are computed with
beat-aligned and downbeat-aligned features.

As presented in Section 1.1, Foote’s algorithm
estimates boundaries as points of high novelty. A novelty
score is computed at each point of the self-similarity
matrix by applying a kernel matrix, and this novelty
score is finally post-processed into boundaries with a
thresholding operation. In the original implementation,

Figure 3 Cosine, Autocorrelation and RBF self-similarities for the song POP01 of RWC Pop.

Dataset P0.5s R0.5s F0.5s P3s R3s F3s

SALAMI Annotation 1 82.47% 82.14% 82.30% 99.94% 99.56% 99.74%

Annotation 2 80.97% 80.92% 80.94% 99.92% 99.84% 99.88%

RWC Pop 96.46% 96.21% 96.33% 100% 99.73% 99.86%

Table 1 Standard metrics (see Section 4.1) when aligning the reference annotations on the downbeats (compared to the original
annotations).

Figure 4 Segmentation results of state-of-the-art algorithms
on the SALAMI-test and RWC Pop datasets, for beat-aligned
(original) vs. downbeat-aligned boundaries. The SALAMI-test
dataset is defined by Ullrich et al. (2014), and introduced in
Section 4.2.1.

173Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

the Cosine self-similarity is computed on beat-
synchronized features, i.e. one feature per beat. In this
experiment, beats are estimated with the algorithm of
Böck et al. (2019), which is one of the state-of-the-art
algorithms in beat estimation, and is implemented in the
madmom toolbox.

As in Section 2.3.2, the original results are compared
with the ones obtained when aligning the estimations
on downbeats. In addition, we compare the beat-
synchronized results with two new feature processing
approaches: bar-synchronized features, i.e. one feature
per bar (instead of one per beat), and the Barwise TF
matrix,2 introduced in Section 2.2.

The kernel is of size 66 for the beat-synchronized
features (as originally set in MSAF), and is of size 16 for both
the bar-synchronized features and the Barwise TF matrix.
Results are presented in Tables 2 and 3, respectively for
the SALAMI-test and the RWC Pop dataset. In order
to fairly compare the algorithms, we also fitted two
hyperpameters of the original MSAF implementation for
the bar-scale, namely the size of median filtering applied
to the input spectrogram and the standard deviation in
the Gaussian filter applied to the novelty curve. These
parameters were fitted in a train/test fashion, as detailed
in Section 4.2.1.

Both Tables 2 and 3 conclude in the same direction:
the best performance for the F0.5s and F3s metrics is
obtained with the Barwise TF matrix. Similarly to Section
2.3.2, aligning beat-aligned estimations to downbeats
in post-processing increases the performance for the
F0.5s metric, indicating more precise estimations. It is
worthwile noting that, using bar-synchronized instead of
beat-synchronized features increases the performance
on the SALAMI dataset, while it decreases it on the RWC
Pop dataset.

However, the Barwise TF matrix representation
appears to be beneficial for MSA on both datasets.

In future experiments, we denote as “Foote-TF” the
condition where Foote’s algorithm is applied to the
Barwise-TF matrix, whose results are shown in Tables 2
and 3.

3. CORRELATION “BLOCK-MATCHING”
ALGORITHM

With a self-similarity matrix as input, the Correlation “Block-
Matching” segmentation algorithm (CBM) estimates
boundaries by means of dynamic programming. This
algorithm is detailed in this section, along with a study of
important parameter settings which were not discussed
in the previous work (Marmoret et al., 2020, 2022b), such
as the block weighting kernels and the penalty functions.
The CBM algorithm estimates boundaries based on
the homogeneity/novelty and regularity criteria. The
principles of dynamic programming are presented first,
followed by the definition of a score function u applied
on segments.

3.1 DYNAMIC PROGRAMMING FOR BOUNDARY
RETRIEVAL
3.1.1 Boundary retrieval problem
Given a music piece (song) sampled in time as N time
steps, the subtask of boundary retrieval can be defined as
finding a segmentation (set of boundaries) Z representing
the start of each segment, i.e. { } 1, , 1, ,iZ N i E E
representing the number of boundaries estimated
in this song. The set of admissible segmentations is
denoted as Θ, i.e. Z ∈ Θ. Each segment Si is composed
of the time steps between two consecutive boundaries,
i.e. 1} |{ 1 ,i i iS l N l . The second bound is
exclusive as it represents the start of the next segment
Si+1. By definition, E boundaries define E-1 segments.
Boundary ζi is called the antecedent of boundary ζi+1.

Time synchronization P0.5s R0.5s F0.5s P3s R3s F3s

Beat-synchronized Original 26.98% 34.58% 29.21% 50.10% 63.30% 54.02%

Re-aligned on downbeats 31.05% 39.15% 33.33% 50.08% 62.95% 53.78%

Bar-synchronized 37.68% 36.36% 35.97% 58.06% 56.11% 55.57%

Barwise TF Matrix 39.22% 42.66% 39.67% 59.60% 64.82% 60.36%

Table 2 Different time synchronizations for the Foote (2000) algorithm on the SALAMI-test dataset. The SALAMI-test dataset is
defined by Ullrich et al. (2014), and introduced in Section 4.2.1.

Time synchronization P0.5s R0.5s F0.5s P3s R3s F3s

Beat-synchronized Original 31.86% 24.38% 27.29% 67.21% 51.92% 57.95%

Re-aligned on downbeats 42.30% 32.82% 36.52% 66.67% 51.44% 57.44%

Bar-synchronized 43.53% 26.32% 32.46% 69.25% 42.22% 51.97%

Barwise TF Matrix 53.09% 37.19% 43.30% 79.35% 56.03% 65.04%

Table 3 Different time synchronizations for the Foote (2000) algorithm on the RWC Pop dataset.

174Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

3.1.2 Barwise boundary retrieval problem
In the proposed barwise paradigm, the song is discretized
into B bars using N = B + 1 bar boundaries. Hence, the
first boundary is the start of the song, i.e. ζ1 = 1, the last
boundary is the end of the last bar in the song,3 i.e. ζE = B
+ 1, and each boundary is located on a bar, i.e. ∀i, ζi ∈ ⟦1,
B + 1⟧. Each segment Si is composed of the bar indices
between two consecutive boundaries.

As a consequence, there exists4 1()E
B different sets of

boundaries composed of exactly E boundaries, and, more
generally, at most

1
1

0

1() 2
B

B
K

k

B

 segmentations for each
song. Hence, the segmentation problem admits a finite
number of solutions, which can theoretically be solved
in a combinatorial way. In practice though, evaluating
all possible segmentations leads to an algorithm of
exponential complexity (2)B , considered intractable in
practice.

3.1.3 Dynamic programming
The boundary retrieval problem can be approached as an
optimization problem (Jensen, 2006; Sargent et al., 2016).
In particular, by associating a score u(S) to each potential
segment S, the optimal segmentation Z* is the segmentation
maximizing5 the sum of all its segment scores:

Z

1

1
1

Z

, 1

()

* argmax

arg ax m

E

ii
i

Z

u Z

u

 (4)

by extending notation u for a set of segments.
The problem can be solved using a dynamic

programming algorithm (Bellman, 1952; Cormen et
al., 2009, Chap. 15), the principle of which is to solve a
combinatorial optimization problem by dividing it into
several independent subproblems. The independent
subproblems are formulated in a recursive manner,
and their solutions can be stitched together to form a
solution to the original problem. Notice that in the current
formulation of the segmentation problem, defined
in Equation 4, each potential segment is evaluated
independently, via its score, and is never compared
with the others. In other terms, repetitions of the same
section are not considered, while they could inform on
the overall structure, typically considering the repetition
criterion. Thus, the segmentation problem defined in
Equation 4 is a relaxation of the general segmentation
problem. This relaxation is considered because it allows
to use principles of dynamic programming, by evaluating
the score of all segments as independent subproblems.
In particular, this relaxed problem is said to exhibit
“optimal substructure” (Cormen et al., 2009).

3.1.4 Longest-path on a directed acyclic graph
Following the formulation of Jensen (2006), the
segmentation problem can be reframed into the problem
of finding the longest path on a Directed Acyclic Graph

(DAG). The rationale of the solution algorithm is that
the optimal segmentation up to any given bar bk can
be found exactly by recursively evaluating the optimal
segmentations up to each antecedent of bk, i.e. (without
any constraint) all bars bl < bk, and the score of the
segments bl, bk – 1. Formally, denoting as [1:]*

kb
Z the

optimal segmentation up to bar bk, the CBM algorithm
consists of:

1. Lookup for [1:]*{) }(,
l kb lu Z b b , i.e. the optimal

segmentation up to each antecedent, which is stored
in an array when first computed,

2. Computing { }1(), ,k kl lb bu b b , i.e. the
segmentation score between bars bl and bk,

3. Finding the best antecedent of bk, denoted as 1*
kb

 ,
with the following equation:

 1 [1:]** argmax , 1 .

k l
l

kb b l
b

u b bu Z

 (5)

Finally, at the last iteration, the algorithm computes the
best antecedent for B + 1, i.e. the last downbeat of the
song. Then, recursively, the algorithm is able to backtrack
the best antecedent of this antecedent, and so on and
so forth back to the first bar of the song, thus providing
the optimal segmentation. A graph visualization for a
4-bar example is presented in Figure 5. Pseudo-code for
the CBM algorithm, assuming that the score function u is
given, is detailed in the appendix (Algorithm 1).

In the end, for any bar bk, the optimal segmentation
up to bk can be computed in (1)kb operations, i.e.
parsing each antecedent only once. Hence, the solution
algorithm boils down to (1)

2()B B evaluations, which
corresponds to a polynomial complexity. In practice,
we even limit the size of admissible segments to be at
most 32 bars (set empirically), which further reduces the
complexity.

3.2 SCORE FUNCTION
Finally, the segmentation problem boils down to the
definition of the score function 1(), 1i iu for a
segment. In the CBM algorithm and following (Sargent
et al., 2016), the score of each segment is defined as
a mixed score function, presented in Equation 6 as the
balanced sum of two terms:

 1 1 1, 1 , 1 .K
i i i ii i

u u p (6)

The first term, 1(), 1K
i iu , is based on the

homogeneity criterion, and is presented in Section 3.2.1;
the second one, 1()i ip , is based on the regularity
criterion, and is presented in Section 3.2.2. Parameter λ is
a balancing parameter.

3.2.1 Block weighting kernels
The first term uK of the score function in Equation 6
is obtained from the self-similarity values within a

175Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

segment. Practically, given a self-similarity matrix A(X),
the score uK(Si) of segment 1 , 1 i i iS (of size n =
ζi+1 – ζi) is computed by evaluating the self-similarity
values restricted to Si, i.e.

1[: 1]() ()
i i iSA X A X . It can be

understood as cropping the self-similarity A(X) on this
particular segment, around the diagonal.

The CBM algorithm aims at favoring the homogeneity
of estimated segments, i.e. favoring sections composed
of similar elements. Thus, the score function uK is defined
so as to measure the inner similarity of a segment. In
practice, this is obtained through weighting local self-
similarity values, by using a (fixed) weighting kernel
matrix K, such as:

1 1

:

1
.

i i

K n n

n n

S klkl
k

S

l

u

A X A X K
n

 (7)

The kernel is called a “weighting kernel”. A first
observation is that the weighting kernel needs to adapt
to the size of the segment. A very simple kernel is a
kernel matrix full of ones, i.e. = n×nK 1 , resulting in a score
function equal to the sum of every element in the self-
similarity matrix, normalized by the size of the segment.
The normalization by the size of the segment is meant to
turn the squared dependence of the size of the segment
in the number of self-similarity values (n2) into a linear
dependence. A linear dependence is desired as it ensures
a length-n segment contributes similarly to the sum of
segment scores as n segments of length 1.

The design of the weighting kernel defines how to
transform bar similarities into segment homogeneity,
which is of particular importance for segmentation. The
remainder of this section presents two types of kernels,
namely the “full” kernel and the “band” kernel. We
consider that the main diagonal in the self-similarity
matrix is not informative regarding the overall similarity
in the segment, as its values are normalized to one.
Hence, for every weighting kernel K used in the CBM
algorithm, Kii = 0, ∀i.

Full Kernel The first kernel is called the “full” kernel,
because it corresponds to a kernel full of 1s (except
on the diagonal where it is equal to 0). The full kernel
captures the average value of similarities in this segment,
excluding the self-similarity values. Practically, denoting
as Kf the full kernel:

1 if

0 if
f
ij

i j
K

i j

 (8)

Hence, the score function associated with the full kernel
is equal to:

1 1 1 1,

1 1
()

f

i i

n n n n
K f

i klkl kl
k l k l l k

S SA X Ku A
n

S X
n

 (9)

A full kernel of size 10 is presented in Figure 6.
Band Kernels A second class of kernels, called “band”

kernels, are considered in order to emphasize short-term
similarity. Indeed, in band kernels, the weighting score is
computed on the pairwise similarities of a few bars in the
segment only, depending on their temporal proximity:
only close bars are considered. In practice, this can be
obtained by defining a kernel with entries equal to 0,
except on some upper- and sub-diagonals. The number of
upper- and sub-diagonals is a parameter, corresponding
to the maximal number of bars considered to evaluate
the similarity, i.e. an upper bound on |bi–bj| for a pair of
bars (bi, bj).

Hence, a band kernel is defined according to its
number of bands, denoted as v, defining the v-band
kernel Kvb such that:

1 if 1 | | ,

0 otherwise (or | |).
vb
ij

i j v
K

i j i j v

 (10)

Three band kernels, of size 10, are represented in Figure
7. Section 4 presents experiments which compare
quantitatively the impact of the number of bands on the
segmentation performance.

Figure 5 Example of computing an optimal segmentation with 4 bars.

176Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

3.2.2 Penalty functions
Sargent et al. (2016) extended the score function of
Jensen (2006) to take into account both the homogeneity
and the regularity criteria, resulting in Equation 6. In
practice, this is obtained through defining a regularity
penalty function p(n), corresponding to the second term
in Equation 6, and penalizing segments according to their
size n, to favor particular sizes.

The penalty function is based on prior knowledge, and
aims at enforcing particular sizes of segments, which
are known to be typical in a number of music genres,
notably Pop music. In particular, Figure 8 presents the
distributions of the sizes of segments, in terms of number
of bars, in the annotations of both RWC Pop and SALAMI
datasets. It appears that some sizes of segments are
much more frequent in the annotations. Hence, penalty
functions p can be derived from these distributions.

Two different penalty functions p are studied in this
section, namely the “target-deviation” and “modulo”
functions. In what follows, n denotes the size of the
segment, i.e. n = ζi+1 – ζi.

Target-Deviation Functions The first set of penalty
functions, called “target-deviation” and denoted as
ptd, is defined by Sargent et al. (2016). Target-deviation
functions compute the difference between the size of the
current estimated segment and a target size τ, raised to
the power of a parameter α, i.e. ptd(n) = |n – τ|α where
parameter α takes typical values in {0.5, 1, 2}. The target
size is set by Sargent et al. (2016) to 32, to favor segments
of size 32 beats, in line with their respective evaluations
of most frequent segment sizes. In our barwise context,6
τ = 8, which is the most frequent segment size in both
RWC Pop and SALAMI datasets.

This penalty function is adapted to enforce one size
in particular, and tends to disadvantage all the others.
Hence, this function is adapted to datasets where one
size is predominant, which seems true for RWC Pop with
MIREX 10 annotations (more than half of the segments
in the annotation are of size 8 bars), but not so definite
for the SALAMI dataset, where the segment sizes are

more balanced between 4, 8, 12 and 16, as presented in
Figure 8. In particular, segments of size 16 are strongly
penalized (|8–16|α = 8α).

Modulo function The second set of penalty functions,
called “modulo functions”, is designed to favor particular
segment sizes, directly based on prior knowledge. In
this study, we only present the “modulo 8” function
pm8(n) based on both RWC Pop and SALAMI annotations.
Indeed, in both datasets, most segments are of size 8,
and the remaining segments are generally of size 4, 12
or 16. Finally, outside of these sizes, even segments are
more frequent than segments of odd sizes. Hence, the
modulo 8 function models this distribution, as:

8

0 if 8

1
else, if 0 mod4

4()
1

else, if 0 mod2
2
1 otherwise

m

n

n
p n

n

 (11)

Penalty values for the different cases were set quite
intuitively, and would benefit from further investigation.

In order to mitigate both the weighting score function
uK and the penalty function p, we implemented an
additional normalization step based on the weighted
values obtained in each song, resulting in the score
function defined in Equation 12.

 8
max1 1 1, 1 , 1 ,K K

i i i ii i
u u u p (12)

In Equation 12, 8
max
Ku is the maximal weighting value

obtained by sliding a kernel of size 8 on this self-similarity
matrix, i.e. the highest score among all possible segments

Figure 6 Full kernel of size 10.

Figure 7 Band kernels, of size 10.

Figure 8 Distribution of segment sizes in terms of number of
bars, in the annotations.

177Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

of size 8. This size of 8 for the kernel is chosen as the most
frequent segment size in terms of number of bars in both
RWC Pop and SALAMI datasets, as presented in Figure 8.
Parameter λ is a constant parameter, which is fitted as
detailed in Section 4.

Finally, in the CBM algorithm, the score of each
segment is defined as in Equation 12. The first term,
uK(ζi, ζi+1 – 1), is a weighting score, measuring the self
similarity of the segment. The second term, p(ζi+1 – ζi),
penalizes or favors the segment depending on its size.
Both these scores are subject to design choices, which
are studied and compared in the subsequent section.

4. EXPERIMENTS

4.1 EVALUATION METRICS
The quality of the estimation obtained with the CBM
algorithm is evaluated with the Hit-Rate metrics, comparing
a set of estimated boundaries with a set of annotations
by intersecting them with respect to a tolerance t (Ong
and Herrera, 2005; Turnbull et al., 2007). In practice,
given two sets of boundaries Ze and Za (respectively
the sets of estimated and annotated boundaries), an
estimated boundary e e

i Z is considered correct if it is
close enough to an annotated boundary a a

j Z (“close
enough” meaning that the gap is no larger than the
tolerance t), i.e. if a a

j Z such that
e a
i j t . Each

estimated boundary can be coupled with a maximum
of one annotated boundary, and vice versa. The set of
correct boundaries subject to the tolerance t, denoted as
Ct, contains at most as many elements as the annotations
or the estimations, i.e. 0 | min()| | |,| |e a

tC Z Z . In case of
perfect concordance between Ze and Za, Ct = Ze = Za. In
practice, the concordance of Ct with Ze and Za is evaluated
by the precision Pt, recall Rt and F-measure Ft:

•	 | |

| |
t
e

C
t Z
P , i.e. the proportion of accurately estimated
boundaries among the total number of estimated
boundaries.

•	 | |

| |
t
a

C
t Z

R , i.e. the proportion of accurately estimated
boundaries among the total number of annotated
boundaries.

•	 2 t t

t t

P R
t P RF is the harmonic mean of both

aforementioned measures. The harmonic mean is
less sensitive to large values than the arithmetic
(standard) mean, and is conversely more strongly
penalized by low values. Hence, a high F-measure
requires both a high recall and a high precision.

These metrics are computed using the mir_eval toolbox
(Raffel et al., 2014).

4.1.1 Tolerances in absolute time
In the boundary retrieval subtask, conventions for the
tolerance values are 0.5s (Turnbull et al., 2007) and 3s

(Ong and Herrera, 2005). The 3-second tolerance, citing
Ong and Herrera (2005), is justified as being equal to
“approximately 1 bar for a song of quadruple meter [NB:
4 beats per bar, e.g. 4

4
 metric] with 80 bpm in tempo”,

while the 0.5 second tolerance is within the order of
magnitude corresponding to the beat. In this work, we
use both tolerance values to compare our algorithm with
the standard algorithms, leading to 6 metrics P0.5s, R0.5s,
F0.5s and P3s, R3s, F3s.

4.1.2 Barwise-aligned tolerances
In this work, estimated boundaries are located on downbeat
estimates, as explained and motivated in Section 2. In that
sense, rather than evaluating the estimates in absolute
time, we align each annotation with the closest estimated
downbeat, leading to barwise-aligned annotations. This
allows us to introduce additional metrics: P0bar, R0bar, F0bar
and P1bar, R1bar, F1bar. The first three metrics (e.g. F0bar) consider
that the tolerance is set to 0 bars, i.e. expecting estimates
and annotations to fall precisely on the same downbeat,
and the latter three metrics (e.g. F1bar) set the tolerance to
exactly one bar between estimates and annotations. In
particular, these metrics will be used to compare different
settings of our algorithm.

4.2 PARAMETRIZATION OF THE ALGORITHM
The CBM algorithm is evaluated on the boundary retrieval
task on the entire RWC Pop dataset (Goto et al., 2002),
and on the test subset of SALAMI (Smith et al., 2011),
defined by Ullrich et al. (2014). The three similarity
functions defined in Section 2.2 are used to compute the
self-similarity matrices, namely Cosine, Autocorrelation
and RBF. The CBM algorithm itself is subject to the choice
of kernel, and particularly to the number of bands when
using a band kernel. In addition, the score function
depends on the design of the penalty function. Rather
than studying all of these parameters at the same
time, experiments focus on each aspect independently.
In particular, the experiments aim at answering the
following three questions:

- Which similarity function is the most suitable for
boundary retrieval in our context?

- Which weighting kernel is the most suitable for
boundary retrieval in our context?

- Which penalty function is the most suitable for
boundary retrieval in our context?

Each question is addressed sequentially, and the
conclusion of each question serves as the basis to study
the next ones.

4.2.1 Train/test datasets
These questions are addressed by comparing several
parameters in a train/test fashion: a subset of the
SALAMI dataset, called “SALAMI-train”, is used to

178Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

evaluate several parameters, and the best one in this
subset is evaluated on the remainder of the SALAMI
dataset, called “SALAMI-test”, and on the entire RWC Pop
dataset. The division between SALAMI-train and SALAMI-
test is defined by Ullrich et al. (2014), based on the MIREX
evaluation dataset. The details are available online,7 and
are uploaded along with experimental Notebooks on the
open-source dataset.8 The SALAMI-train dataset contains
849 songs, and the SALAMI-test dataset contains 485
songs.9 The entire RWC Pop dataset contains 100 songs,
resulting in a total of 585 songs for testing.

4.2.2 Self-similarity matrices
Firstly, we study the impact of the design of the similarity
function on the performance of the CBM algorithm. To
do so, we use the CBM algorithm with the full kernel, as
it does not need the fitting of the number of bands, and
we do not use a penalty function. The boundary retrieval
performance is presented in Table 4 for the train dataset.

The RBF self-similarity is the best-performing self-
similarity in terms of F-measure (with both tolerances),
hence suggesting a better boundary estimation on
average than the other similarity functions. The results
obtained with the RBF similarity function on the test
datasets are presented in Table 5.

The precision/recall trade-offs depend on the self-
similarity matrices, and deserve to be studied to give
further information on the quality of the estimated
segmentations. The Cosine self-similarity exhibits a
higher precision than recall on average, which suggests an
under-segmentation, i.e. estimating too few boundaries.
Conversely, the Autocorrelation self-similarity results
in a higher recall than precision, suggesting over-
segmentation. The RBF self-similarity performance is
more balanced between both metrics.

These conclusions can be confirmed by studying the
distribution of the sizes of the estimated segments, as
presented in Figure 9 on the SALAMI-train dataset. These
distributions must be compared with the distribution of
segment sizes in the annotations, presented in Figure 8.

The distribution of segment sizes with the RBF self-
similarity is visually the closest one to the distribution of

annotations, which we confirm numerically by studying
the Kullback-Leibler (KL) divergences between the
distribution of the sizes of the estimated segments and of
the annotated ones. The KL-divergences are respectively
equal to 2.25, 0.85 and 0.35 for the Cosine, Autocorrelation
and RBF similarity functions. Again, this suggests that the
RBF similarity function is the most suitable.

Self-similarity P0bar R0bar F0bar P1bar R1bar F1bar

Cosine 50.83% 30.82% 36.77% 62.80% 37.72% 45.19%

Autocorrelation 32.59% 64.69% 41.30% 42.10% 83.73% 53.41%

RBF 50.27% 45.38% 45.84% 64.79% 58.81% 59.30%

Table 4 Boundary retrieval performance with the different self-similarities on the train dataset (Full kernel, no penalty function).

Dataset P0bar R0bar F0bar P1bar R1bar F1bar

SALAMI – test 48.52% 48.65% 46.68% 62.76% 63.09% 60.51%

RWC Pop 60.72% 53.61% 56.01% 77.68% 67.62% 71.09%

Table 5 Boundary retrieval performance with the RBF self-similarity, on both test datasets (Full kernel, no penalty function).

Figure 9 Distribution of segment sizes, with the full kernel,
according to the self-similarity matrix. Results on the SALAMI-
train dataset.

179Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

4.2.3 Block weighting kernels
Secondly, an important parameter in the CBM algorithm is
the design of the kernel. We thus compare the full kernel
with band kernels, the number of bands varying from 1
to 16. Results on the SALAMI-train dataset, computed
on the RBF self-similarity matrices, and focusing on the
F-measures, are presented in Figure 10. The 7-band
kernel stands out as the best-performing kernel, even if
performance is close to the 15-band kernel.

The differences in performance between the different
kernels may be explained by Figure 11, which presents
the distribution of segment sizes according to the
number of bands. The 7-band kernel leads to a majority
of estimated segments of size 8 (more than 50%, twice as
much as in the annotations), which is the most common
segment size in the annotation, while the 15-band kernel
mostly computes segments of size 16, and the full kernel
is well distributed across the different segment sizes. The

Figure 10 Boundary retrieval performance (F-measures only) according to the full and band kernels (with different numbers of bands).
Results on the train dataset with RBF self-similarity matrices.

Figure 11 Distribution of estimated segment sizes, according to different kernels, on the train dataset.

180Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

annotations are mostly composed of segments of size
8, then 4, 12 and 16. Hence, while the 7-band kernel
does not accurately represent the annotations, it obtains
better boundary retrieval performance than the other
ones, indicating that this latter distribution is beneficial
to the boundary estimation overall.

As an additional conclusion, the number of bands in
the kernel largely influences the distribution of segment
sizes, in particular the most frequent segment size. As a
general trend, it seems that a kernel with v bands favors
segments of size v + 1. We assume that this behavior
stems from the fact that, for a v-band kernel and a large
segment of size n > v, the number of elements equal to 0
is large, but the normalization remains adapted to kernels
with n2 values. We found in practice that this effect could
be dampened by normalizing the score associated with
each kernel by the number of nonzero values plus the
number of elements in the diagonal instead of the size
of the kernel, as (Shiu et al., 2006) did, but this resulted
in all kernels performing similarly to the full kernel, hence
performing worse than the 7-band one.

Finally, as the 7-band kernel is the best-performing
one, we fixed this kernel for both test datasets. Results
obtained with this kernel are presented in Table 6.

4.2.4 Penalty functions
Finally, the last experiments focus on the penalty
functions. In this set of experiments, we compare the

target deviation functions, with α ∈ {0.5, 1, 2}, with the
modulo 8 function. The CBM algorithm is parametrized
with the 7-band kernel, and is applied on the RBF self-
similarity matrices. The parameter λ, balancing the
penalty function, takes values between 1

100 and 2
10 , with

a step of 1
100 . This parameter is fitted on the SALAMI-train

dataset. Results are presented in Table 7.
The modulo 8 function appears to slightly improve

boundary retrieval performance for the metrics with a
tolerance of 0 bar, indicating a more accurate estimation,
but results with a tolerance of 1 bar are not strongly
impacted by the choice of the penalty function. Results
are close between the different penalty functions, except
for the target deviation with a large α, which results in
worse performance than the other conditions.

Overall, it seems that the modulo 8 function is the
most suitable penalty function to estimate segments
accurately. Hence, we use this penalty function for the
test results, presented in Table 8, with parameter λ =
0.04, as optimized on the SALAMI-train dataset.

4.2.5 Experimental conclusions
In light of these results, we finally sum up the situation
regarding the choice of settings for the CBM algorithm.

1. In our context, the RBF self-similarity matrix is the
most suitable self-similarity matrix for boundary
retrieval.

Dataset P0bar R0bar F0bar P1bar R1bar F1bar

SALAMI – test 37.24% 59.80% 44.33% 50.38% 80.52% 59.88%

RWC Pop 59.41% 68.19% 62.82% 75.53% 86.56% 79.81%

Table 6 Boundary retrieval performance with the 7-band kernel, on both test datasets (RBF self-similarity, no penalty function).

Penalty function Best λ P0bar R0bar F0bar P1bar R1bar F1bar

Without penalty – 40.26% 57.38% 45.81% 54.26% 77.67% 61.81%

Target deviation

1
2 0.01 40.38% 57.36% 45.88% 54.37% 77.57% 61.84%

 α = 1 0.01 40.45% 56.98% 45.81% 54.61% 77.20% 61.89%

 α = 2 0.01 39.75% 54.32% 44.43% 54.93% 75.31% 61.46%

Modulo 8 0.04 41.04% 58.34% 46.63% 54.25% 77.44% 61.72%

Table 7 Boundary retrieval performance depending on the penalty function, for the SALAMI-train dataset, with the RBF self-similarity
and the 7-band kernel.

Dataset P0bar R0bar F0bar P1bar R1bar F1bar

SALAMI – test 38.36% 60.96% 45.44% 50.76% 80.51% 60.09%

RWC Pop 62.11% 70.05% 65.17% 77.35% 86.95% 81.02%

Table 8 Boundary retrieval performance with the modulo 8 penalty function (λ = 0.04), on both test datasets (RBF self-similarity,
7-band kernel).

181Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

2. In our context, the 7-band kernel is the most suitable
kernel for boundary retrieval.

3. In our context, the modulo 8 penalty function is the
most suitable penalty function for boundary retrieval.

4.2.6 Metrics with tolerance in absolute time
As mentioned in Section 4.1, standard metrics for
boundary retrieval performance consider the tolerance
in absolute time (e.g. F0.5s and F3s metrics), while we
opted for boundary-aligned metrics in our experiments.
Hence, Table 9 compares the boundary retrieval
performance obtained when the tolerance is defined
relatively to the bars and in absolute time, which allows
to compare with state-of-the-art algorithms. Boundary
retrieval performance is almost equivalent on the RWC
Pop dataset, and slightly altered for the metrics with
short tolerances on the SALAMI dataset (F0bar and F0.5s).
These discrepancies may be explained by the less precise
downbeat alignment of annotations in the SALAMI
dataset, presented in Table 1. Overall though, results
remain similar, which tends to confirm the hypothesis
of Ong and Herrera (2005) that a tolerance of 3 seconds
corresponds approximately to a tolerance of 1 bar.

4.3 COMPARISON WITH STATE-OF-THE-ART
ALGORITHMS
We compare the boundary retrieval performance
obtained by the Foote-TF (introduced in Section 2.3.3)
and the CBM algorithms with state-of-the-art algorithms.
The performance of the CBM algorithm is obtained using
the hyperparameters learned in Section 4.2.

This work considers seven different algorithms as
state-of-the-art, categorized as either unsupervised or
supervised algorithms, i.e. algorithms that either estimate
boundaries without the use of training examples or
analyze annotated examples before making predictions:
four unsupervised algorithms (Foote, 2000; McFee and
Ellis, 2014a; Serrà et al., 2014; McCallum, 2019) and three
supervised algorithms (Grill and Schlüter, 2015; Wang
et al., 2021; Salamon et al., 2021). We additionally use
previous work on the CBM algorithm (Marmoret et al.,
2022b) as a baseline.

All state-of-the-art algorithms use beat-aligned
features, except Grill and Schlüter (2015), who use a fixed
hop length and Wang et al. (2021), who use downbeat-
aligned features. Results for Foote (2000); McFee and
Ellis, (2014a); Serrà et al. (2014) are computed with the
MSAF toolbox (Nieto and Bello, 2016), and realigned on
downbeats in post-processing. Results for the CNN (Grill
and Schlüter, 2015) are extracted from the 2015 MIREX
contest. Results for McCallum (2019); Wang et al. (2021);
Salamon et al. (2021) are copied from the respective
articles.

Figures 12 and 13 compare the results obtained
with the CBM and the Foote-TF algorithms with

Dataset F0bar F0.5s F1bar F3s

SALAMI-test 45.44% 42.00% 60.09% 60.61%

RWC Pop 65.17% 64.44% 81.02% 80.64%

Table 9 Boundary retrieval performance, comparing the
F-measures with tolerance expressed barwise and in absolute
time.

Figure 12 Boundary retrieval performance of the CBM algorithm on the SALAMI dataset, compared to state-of-the-art algorithms.
Hatched bars correspond to supervised algorithms. The star * represents algorithms where the evaluation subset is not exactly the
same as ours, thus preventing accurate comparison.

Figure 13 Boundary retrieval performance of the CBM algorithm on the RWC Pop dataset, compared to state-of-the-art algorithms.
Hatched bars correspond to supervised algorithms.

182Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

those of the state-of-the-art algorithms.10 In this
comparison, the CBM algorithm globally outperforms
the other unsupervised segmentation methods, most
of the supervised algorithms, and is competitive
for the metric F3s with the global (supervised) state-
of-the-art (Grill and Schlüter, 2015). These results
are promising and show the potential of the CBM
algorithm, which is performing well despite its relative
simplicity. Additionally, results of the CBM algorithm
are on par with those of Foote-TF on the SALAMI
dataset, showcasing interest for the Barwise TF
representation.11

4.4 CBM: BAR-SCALE VS. BEAT-SCALE
In order to distinguish the impact of barwise-alignment
and of the CBM algorithm itself on the segmentation
results, we compare results obtained on the Barwise
TF matrix, presented above, with results obtained on
the “Beatwise TF matrix”, i.e. the equivalent of the
Barwise TF matrix at the beat-scale. Following the
intuition that most bars in Western modern music are
composed of 4 beats per bar, the Beatwise TF matrix
is sampled with T = 24 samples per beat, i.e. 96

4 . Beats
are estimated with the algorithm of Böck et al. (2019),
implemented in the madmom toolbox, as in Section 2.3.
For fairer comparison, the results at both beatwise and
barwise scales are computed without penalty function.
Corresponding results are presented in Tables 10 and
11.

Results confirm that barwise-alignment is beneficial
for the performance of the CBM algorithm, especially on
the RWC Pop dataset, but the CBM algorithm with beat-
aligned features obtains similar or better performance
than the unsupervised state-of-the-art algorithms
(Foote, 2000; McFee and Ellis, 2014a; Serrà et al., 2014;
McCallum, 2019), and is competitive with the supervised
algorithm of Wang et al. (2021) on both datasets for the
metric F3s.

5. CONCLUSIONS

This article presented the CBM algorithm for performing
Music Structure Analysis on audio signals, where
boundaries between musical sections are computed by
maximizing the homogeneity of each segment composing
the segmentation, using dynamic programming under a
penalty function. Moreover, barwise processing of music
is shown to increase segmentation performance, using
the Barwise TF matrix. This work has also investigated
several metrics to represent similarities between pairs
of bars in a song. While the CBM algorithm has room for
improvement, it achieves a level of performance which
is competitive to the state-of-the-art, and therefore
appears as a meaningful approach to investigate a
variety of music representations without needing large
collections of training data.

The design of the kernel clearly impacts boundary
retrieval performance. Hence, future work could focus
on studying alternative types of kernels. The kernel
values could depend on the particular song or dataset
considered, or follow particular statistical distributions.
Of particular interest could be the learning of such
kernels instead of an (empirical) definition. These latter
comments are also valid for the penalty functions, whose
values were set quite empirically, and which would benefit
from deeper investigation. The number of bands in the
weighting kernels seems to enforce particular segment
sizes. This effect can be mitigated with normalization,
or, conversely, further exploited, for instance by using
different kernels concurrently, each one accounting for a
different level of structure, hence studying segmentation
hierarchically.

Weighting kernels presented in this article focus on the
homogeneity of each segment, but other kernels could be
considered in order to account for repetition in the song.
In fact, the proposed framework is highly customizable
with respect to weighting kernels, and could be adapted

SALAMI P0.5s R0.5s F0.5s P3s R3s F3s

Beatwise (cosine, 63-band kernel) 35.90% 41.61% 37.36% 55.75% 64.52% 58.03%

Barwise (RBF, 7-band kernel) 34.49% 54.56% 41.04% 50.70% 80.78% 60.51%

Table 10 CBM algorithm, performed on Barwise TF matrix vs. Beatwise TF matrix, on the SALAMI-test dataset. For fairer comparison,
results at both scales are computed without penalty function.

RWC Pop P0.5s R0.5s F0.5s P3s R3s F3s

Beatwise (cosine, 63-band kernel) 46.22% 44.38% 44.57% 72.54% 68.85% 69.51%

Barwise (RBF, 7-band kernel) 59.09% 67.13% 62.28% 75.17% 85.90% 79.47%

Table 11 CBM algorithm, performed on Barwise TF matrix vs. Beatwise TF matrix, on RWC Pop. For fairer comparison, results at both
scales are computed without penalty function.

183Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

to the expected shape of segments. In particular, we
expect that bridging this work with previous work (Foote,
2000) could further enhance performance.

6. REPRODUCIBILITY

All the code used in this article is contained in the
open-source toolbox (Marmoret et al., 2022a), along
with experimental Notebooks used to compute the
experimental results.8

A ALGORITHM, IN DETAILS

The detailed algorithm, in pseudo-code, is presented
hereafter.

Practically, the advantage of the algorithm is to be able
to store in memory both the optimal antecedent for
each bar and the scores of the optimal segmentation
up to each bar when they are computed for the first
time, respectively denoted as the arrays A* and U in
Algorithm 1.

NOTES

1 www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_
Results.

2 In this experiment, the Barwise TF matrix is computed on the
same features as in the implementation of the algorithm of
Foote (2000) in MSAF (i.e. chroma features).

3 As the song contains B bars, B + 1 represents the end of the last
bar, i.e. the last downbeat of the song.

4 As each set of boundaries must contain the first and last
downbeats of the song, at most 2B–1 sets of boundaries can be
obtained.

5 In details, both Jensen (2006) and Sargent et al. (2016)
introduced the optimal segmentation as the minimum of a
cost function, when it is rather defined here as a maximum.
It actually depends on the way of conceiving the score
function u, and, in particular, by defining a cost function equal
to the inverse of the score function u, both problems are
equivalent.

6 Note that 8 bars containing 4 beats each leads to 32 beats. 4
beats per bar is a frequent value for Western Pop music.

7 jan-schlueter.de/pubs/2014_ismir/.

8 https://gitlab.imt-atlantique.fr/a23marmo/autosimilarity_
segmentation/-/tree/TISMIR.

9 There is a slight difference in the number of songs in the dataset
due to some songs being missing in our version of the SALAMI
dataset.

10 A careful reader will notice that results of Foote (2000) in Figures
12 and 13 are not exactly the same as those obtained in Tables
2 and 3. We explain these discrepancies by the use of different
beatwise estimation algorithms: the madmom toolbox for
Figures 12 and 13, and the original implementation in the MSAF
toolbox for Tables 2 and 3.

11 We recall here that the Barwise TF matrix of the Foote-
TF algorithm uses the parameters of Foote (2000), i.e.
Chromagrams and Cosine self-similarity matrix. Still,
Foote’s algorithm implementation in Nieto and Bello (2016)
also uses pre-processing steps which benefit the algorithm,
and could benefit the CBM algorithm too. Studying these
types of bridges between both algorithms is left to future
work.

FUNDING INFORMATION

This work is partly supported by ANR JCJC project LoRAiA
(ANR-20-CE23-0010).

COMPETING INTERESTS

AM has worked with both Simon Leglaive and Nancy
Bertin as part of this work.
JC is partly funded by ANR JCJC project LoRAiA ANR-20-
CE23-0010.
FB is a member of the ISCA Advisory Council
(IAC), and Editor-in-Chief of the Journal "Speech
Communication".

Algorithm 1 CBM algorithm, computing the optimal
segmentation given a score function u().

Input: Bars {bk ∈ ⟦1, B⟧}, score function u
Output: Optimal segmentation Z* = {ζi}

https://www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_Results
https://www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_Results
https://jan-schlueter.de/pubs/2014_ismir/
https://gitlab.imt-atlantique.fr/a23marmo/autosimilarity_segmentation/-/tree/TISMIR
https://gitlab.imt-atlantique.fr/a23marmo/autosimilarity_segmentation/-/tree/TISMIR

184Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

AUTHOR AFFILIATIONS

Axel Marmoret orcid.org/0000-0001-6928-7490
Univ. Rennes 1, Inria, CNRS, IRISA, France;
IMT Atlantique, Lab-STICC, Brest, France

Jérémy E. Cohen orcid.org/0000-0001-8319-8566
CREATIS, Univ Lyon, CNRS, France

Frédéric Bimbot
Univ. Rennes 1, Inria, CNRS, IRISA, France

REFERENCES

Bellman, R. (1952). On the theory of dynamic programming.

Proceedings of the National Academy of Sciences,

38(8):716–719. DOI: https://doi.org/10.1073/

pnas.38.8.716

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation

learning: A review and new perspectives. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(8):1798–

1828. DOI: https://doi.org/10.1109/TPAMI.2013.50

Böck, S. and Davies, M. E. (2020). Deconstruct, analyse,

reconstruct: How to improve tempo, beat, and downbeat

estimation. In International Society for Music Information

Retrieval Conference (ISMIR), pages 574–582.

Böck, S., Davies, M. E., and Knees, P. (2019). Multitask learning

of tempo and beat: Learning one to improve the other.

In International Society for Music Information Retrieval

Conference (ISMIR), pages 486–493.

Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., and Widmer,

G. (2016a). Madmom: A new Python audio and music

signal processing library. In Proceedings of the 24th ACM

International Conference on Multimedia, pages 1174–1178.

DOI: https://doi.org/10.1145/2964284.2973795

Böck, S., Krebs, F., and Widmer, G. (2016b). Joint beat and

downbeat tracking with recurrent neural networks. In

International Society for Music Information Retrieval

Conference (ISMIR), pages 255–261.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

(2009). Introduction to Algorithms. MIT press, 3rd edition.

de Berardinis, J., Vamvakaris, M., Cangelosi, A., and Coutinho,

E. (2020). Unveiling the hierarchical structure of music by

multi-resolution community detection. Transactions of

the International Society for Music Information Retrieval,

3(1):82–97. DOI: https://doi.org/10.5334/tismir.41

Foote, J. (2000). Automatic audio segmentation using a

measure of audio novelty. In IEEE International Conference

on Multimedia and Expo, pages 452–455. DOI: https://doi.

org/10.1109/ICME.2000.869637

Fuentes, M., McFee, B., Crayencour, H. C., Essid, S.,

and Bello, J. P. (2019). A music structure informed

downbeat tracking system using skip-chain conditional

random fields and deep learning. In IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 481–485. DOI: https://doi.org/10.1109/

ICASSP.2019.8682870

Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002).

RWC Music Database: Popular, Classical and Jazz

Music Databases. In International Conference on Music

Information Retrieval (ISMIR), pages 287–288.

Grill, T. and Schlüter, J. (2015). Music boundary detection

using neural networks on combined features and two-level

annotations. In International Society for Music Information

Retrieval Conference (ISMIR), pages 531–537. DOI: https://

doi.org/10.1109/EUSIPCO.2015.7362593

Hung, Y.-N., Wang, J.-C., Song, X., Lu, W.-T., and Won,

M. (2022). Modeling beats and downbeats with a

time-frequency transformer. In IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 401–405. DOI: https://doi.org/10.1109/

ICASSP43922.2022.9747048

Jensen, K. (2006). Multiple scale music segmentation using

rhythm, timbre, and harmony. EURASIP Journal on

Advances in Signal Processing, 2007:1–11. DOI: https://doi.

org/10.1155/2007/73205

Marmoret, A., Cohen, J., and Bimbot, F. (2022a). as_seg:

Module for computing and segmenting autosimilarity

matrices. https://gitlab.inria.fr/amarmore/autosimilarity_

segmentation.

Marmoret, A., Cohen, J. E., Bertin, N., and Bimbot, F. (2020).

Uncovering audio patterns in music with nonnegative

Tucker decomposition for structural segmentation. In

International Society for Music Information Retrieval

Conference (ISMIR), pages 788–794.

Marmoret, A., Cohen, J. E., and Bimbot, F. (2022b). Barwise

compression schemes for audio-based music structure

analysis. In 19th Sound and Music Computing Conference

(SMC 2022).

Mauch, M., Noland, K. C., and Dixon, S. (2009). Using musical

structure to enhance automatic chord transcription.

In International Society for Music Information Retrieval

Conference (ISMIR), pages 231–236.

McCallum, M. C. (2019). Unsupervised learning of deep

features for music segmentation. In IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 346–350. DOI: https://doi.org/10.1109/

ICASSP.2019.8683407

McFee, B. and Ellis, D. (2014a). Analyzing song structure with

spectral clustering. In International Society for Music

Information Retrieval Conference (ISMIR), pages 405–410.

McFee, B. and Ellis, D. P. (2014b). Learning to segment

songs with ordinal linear discriminant analysis. In IEEE

International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 5197–5201. DOI: https://doi.

org/10.1109/ICASSP.2014.6854594

McFee, B., Nieto, O., Farbood, M. M., and Bello, J. P. (2017).

Evaluating hierarchical structure in music annotations.

Frontiers in Psychology, 8:1337. DOI: https://doi.

org/10.3389/fpsyg.2017.01337

Nieto, O. and Bello, J. P. (2016). Systematic exploration of

computational music structure research. In International

https://orcid.org/0000-0001-6928-7490
https://orcid.org/0000-0001-6928-7490
https://orcid.org/0000-0001-8319-8566
https://orcid.org/0000-0001-8319-8566
https://doi.org/10.1073/pnas.38.8.716
https://doi.org/10.1073/pnas.38.8.716
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1145/2964284.2973795
https://doi.org/10.5334/tismir.41
https://doi.org/10.1109/ICME.2000.869637
https://doi.org/10.1109/ICME.2000.869637
https://doi.org/10.1109/ICASSP.2019.8682870
https://doi.org/10.1109/ICASSP.2019.8682870
https://doi.org/10.1109/EUSIPCO.2015.7362593
https://doi.org/10.1109/EUSIPCO.2015.7362593
https://doi.org/10.1109/ICASSP43922.2022.9747048
https://doi.org/10.1109/ICASSP43922.2022.9747048
https://doi.org/10.1155/2007/73205
https://doi.org/10.1155/2007/73205
https://gitlab.inria.fr/amarmore/autosimilarity_segmentation
https://gitlab.inria.fr/amarmore/autosimilarity_segmentation
https://doi.org/10.1109/ICASSP.2019.8683407
https://doi.org/10.1109/ICASSP.2019.8683407
https://doi.org/10.1109/ICASSP.2014.6854594
https://doi.org/10.1109/ICASSP.2014.6854594
https://doi.org/10.3389/fpsyg.2017.01337
https://doi.org/10.3389/fpsyg.2017.01337

185Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

TO CITE THIS ARTICLE:
Marmoret, A., Cohen, J. E., and Bimbot, F. (2023). Barwise Music Structure Analysis with the Correlation Block-Matching Segmentation
Algorithm. Transactions of the International Society for Music Information Retrieval, 6(1), 167–185. DOI: https://doi.org/10.5334/
tismir.167

Submitted: 30 March 2023 Accepted: 02 November 2023 Published: 30 November 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Transactions of the International Society for Music Information Retrieval is a peer-reviewed open access journal published by Ubiquity
Press.

Society for Music Information Retrieval Conference (ISMIR),

pages 547–553.

Nieto, O., Mysore, G. J., Wang, C.-I., Smith, J. B., Schluter,

J., Grill, T., and McFee, B. (2020). Audiobased music

structure analysis: Current trends, open challenges, and

applications. Transactions of the International Society

for Music Information Retrieval, 3(1). DOI: https://doi.

org/10.5334/tismir.78

Ong, B. S. and Herrera, P. (2005). Semantic segmentation of

music audio. In Proceedings of the International Computer

Music Conference, page 61.

Oyama, T., Ishizuka, R., and Yoshii, K. (2021). Phaseaware

joint beat and downbeat estimation based on periodicity

of metrical structure. In International Society for Music

Information Retrieval Conference (ISMIR), pages 493–

499.

Paulus, J., Müller, M., and Klapuri, A. (2010). State of the

art report: Audio-based music structure analysis. In

International Society for Music Information Retrieval

Conference (ISMIR), pages 625–636.

Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto,

O., Liang, D., and Ellis, D. P. W. (2014). mir_eval: A

transparent implementation of common MIR metrics.

In International Society for Music Information Retrieval

Conference (ISMIR), pages 367–372.

Salamon, J., Nieto, O., and Bryan, N. J. (2021). Deep

embeddings and section fusion improve music

segmentation. IEEE Signal Processing Letters, 24(3):279–

283. DOI: https://doi.org/10.1109/LSP.2017.2657381

Sargent, G., Bimbot, F., and Vincent, E. (2016). Estimating the

structural segmentation of popular music pieces under

regularity constraints. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 25(2):344–358. DOI:

https://doi.org/10.1109/TASLP.2016.2635031

Serrà, J., Müller, M., Grosche, P., and Arcos, J. L. (2014).

Unsupervised music structure annotation by time

series structure features and segment similarity. IEEE

Transactions on Multimedia, 16(5):1229–1240. DOI: https://

doi.org/10.1109/TMM.2014.2310701

Shiu, Y., Jeong, H., and Kuo, C.-C. J. (2006). Similarity

matrix processing for music structure analysis. In

Proceedings of the 1st ACM Workshop on Audio and Music

Computing Multimedia, pages 69–76. DOI: https://doi.

org/10.1145/1178723.1178734

Smith, J. B., Burgoyne, J. A., Fujinaga, I., De Roure, D., and

Downie, J. S. (2011). Design and creation of a large-scale

database of structural annotations. In International

Society for Music Information Retrieval Conference (ISMIR),

pages 555–560.

Turnbull, D., Lanckriet, G. R., Pampalk, E., and Goto, M. (2007).

A supervised approach for detecting boundaries in music

using difference features and boosting. In International

Conference on Music Information Retrieval (ISMIR), pages

51–54.

Ullrich, K., Schluter, J., and Grill, T. (2014). Boundary

detection in music structure analysis using convolutional

neural networks. In International Society for Music

Information Retrieval Conference (ISMIR), pages 417–

422.

Wang, J.-C., Smith, J. B., Lu, W.-T., and Song, X. (2021).

Supervised metric learning for music structure

features. In International Society for Music

Information Retrieval Conference (ISMIR), pages

730–737.

https://doi.org/10.5334/tismir.167
https://doi.org/10.5334/tismir.167
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5334/tismir.78
https://doi.org/10.5334/tismir.78
https://doi.org/10.1109/LSP.2017.2657381
https://doi.org/10.1109/TASLP.2016.2635031
https://doi.org/10.1109/TMM.2014.2310701
https://doi.org/10.1109/TMM.2014.2310701
https://doi.org/10.1145/1178723.1178734
https://doi.org/10.1145/1178723.1178734

