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ABSTRACT
Music Structure Analysis (MSA) is a Music Information Retrieval task consisting of 
representing a song in a simplified, organized manner by breaking it down into sections 
typically corresponding to “chorus”, “verse”, “solo”, etc. In this work, we extend an 
MSA algorithm called the Correlation Block-Matching (CBM) algorithm introduced 
by (Marmoret et al., 2020, 2022b). The CBM algorithm is a dynamic programming 
algorithm that segments self-similarity matrices, which are a standard description 
used in MSA and in numerous other applications. In this work, self-similarity matrices 
are computed from the feature representation of an audio signal and time is sampled 
at the bar-scale. This study examines three different standard similarity functions for 
the computation of self-similarity matrices. Results show that, in optimal conditions, 
the proposed algorithm achieves a level of performance which is competitive with 
supervised state-of-the-art methods while only requiring knowledge of bar positions. 
In addition, the algorithm is made open-source and is highly customizable.
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1. INTRODUCTION

Citing Paulus et al. (2010), “[...] it is the structure, or the 
relationships between the sound events that create 
musical meaning”. In that sense, researchers in MIR 
developed the Music Structure Analysis (MSA) task, 
which focuses on the retrieval of the structure in a song. 
Music structure is ill-defined, but is generally viewed 
as a hierarchical description, from the level of notes to 
the level of the song itself (McFee et al., 2017; Nieto et 
al., 2020). A tentative definition is that structure is a 
simplified representation of the organization of the song.

In that sense, motifs which arise from the organization 
of notes are a first level of structure. These motifs create 
patterns, progressions and phrases. In general, the highest 
level of structure defines musical sections, corresponding 
to “chorus”, “verse” and “solo”, which is a macroscopic 
description of music (Sargent et al., 2016). Some work 
focuses on estimating structure in its hierarchical 
nature (e.g. McFee and Ellis, 2014a, b; de Berardinis et 
al., 2020; Salamon et al., 2021), but this work focuses 
on a “flat” level of segmentation, i.e. a macroscopic 
level, corresponding to musical sections. Facing the high 
diversity of music, and the many ways structure can be 
designed, we restrict this work to the study of Western 
modern (and in particular Western Popular) music. In 
particular, this work relies on both the RWC Pop (Goto et 
al., 2002) and the SALAMI (Smith et al., 2011) datasets, 
which are open-source and standard datasets in MSA.

MSA is subdivided into two subtasks, not necessarily 
mutually exclusive: the boundary retrieval task and 
the segment labelling task. The boundary retrieval 
task consists in estimating the boundaries between 
different sections, hence partitioning music into several 
non-overlapping segments, covering the entire song. 
The segment labelling task consists in grouping similar 
segments with the same label, typically letters such as 
‘A’, ‘B’, ‘C’, etc. In this article, only the boundary retrieval 
task is considered. A schematic example of musical 
structure is presented in Figure 1.

1.1 RELATED WORK
Algorithms aimed at solving MSA are designed 
according to one or several criteria among the following: 

homogeneity, novelty, repetition and regularity (Nieto 
et al., 2020). The homogeneity criterion assumes that 
a section consists of similar musical elements (notes, 
chords, tonality, timbre, ...). Novelty is the counterpart of 
homogeneity: this criterion considers that boundaries are 
located primarily between consecutive musical elements 
that are highly dissimilar. A high novelty is salient 
between two distinct homogeneous zones (“break” of 
homogeneity), and conversely, homogeneity is evaluated 
within successive dissimilar portions in the song. The 
third criterion, repetition, relies on a global approach to 
the song. The rationale is that a motif (e.g. a melodic 
line) may be time-varying (and thus heterogeneous), but 
can define a segment if it is repeated across the song 
(for example, a chorus). The repetition criterion may also 
be used to partition long segments into smaller repeated 
segments. Finally, the regularity criterion assumes 
that, within a song (and even within a musical genre), 
segments should be of comparable size.

Many MSA algorithms make use of matrices 
representing the similarity and dissimilarity in music, 
sometimes referred to as “self-distance matrices” (Paulus 
et al., 2010), “self-similarity matrices” (Nieto et al., 2020), 
“recurrence matrices” or “pair-wise frame similarities” 
(McFee and Ellis, 2014a). These representations differ 
in their details, but share the same conceptual idea of 
computing some form of similarity (or, conversely, some 
form of distance) between the different frames of music, 
and representing it in a square matrix (its size being the 
number of frames). In this work, we will use the term 
“self-similarity matrix”.

As a particular example, the novelty kernel (Foote, 
2000), which may be some of the earliest work on audio 
MSA, estimates boundaries as points of high dissimilarity 
between the recent past and the near future, by applying 
a square kernel matrix on the diagonal of the self-
similarity matrix. This kernel works ideally when the 
recent past and the near future are homogenous in their 
respective neighborhoods, but very dissimilar with each 
other. In practice, this kernel is convolved with the self-
similarity matrix of the song, centered on the diagonal, 
which gives a “novelty” value for each temporal sample 
of the song, finally post-processed into boundaries with 
a thresholding operation.

Figure 1 A schematic example of musical structure.
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While this technique is rather simple, it is still 
used as a standard segmentation tool in recent work 
(e.g. McCallum, 2019; Wang et al., 2021) focusing on 
improving the boundary retrieval performance by 
enhancing the self-similarity matrix. In particular, both 
of these works belong to the domain of representation 
learning (Bengio et al., 2013), consisting of designing 
machine learning algorithms to learn relevant 
representations instead of focusing on solving a 
particular task. In that context, using prior knowledge, 
both McCallum (2019) and Wang et al. (2021) design 
neural network architectures and optimization 
schemes with the objective to obtain enhanced 
(nonlinear) similarity functions, more prone to highlight 
the structure in the self-similarity matrices.

Notably, McCallum (2019) develops an unsupervised 
learning scheme where the prior knowledge enforced in 
the representation is based on the proximity of samples: 
the closer the frames in the song, the more probable they 
belong to the same segment. In the same spirit, Wang 
et al. (2021) develop a supervised learning scheme: the 
neural network learns representations where segments 
annotated with the same label are close, and segments 
annotated differently are far apart. The rationale for both 
methods is to learn a similarity function which is not only 
representing the feature-wise correspondence of two 
music frames, but can also discover frequent patterns in 
the learning samples.

McFee and Ellis (2014a) propose an algorithm 
based on spectral clustering, aiming at interpreting the 
repetitive patterns in a song as principally connected 
vertices in a graph. The structure is then obtained by 
studying the eigenvectors of the Laplacian of this graph, 
forming cluster classes for segmentation. This technique 
is amongst the best-performing unsupervised techniques 
nowadays, and was improved by recent work by Salamon 
et al. (2021), which replaces or enhances the acoustic 
features on which spectral clustering is applied with 
nonlinear embeddings, learned by means of a neural 
network.

Serrà et al. (2014) develop “Structural Features”, which, 
by design, encode both repetitive and homogeneous 
parts. The rationale of these features is to compute the 
similarity between bags of instances, composed of several 
consecutive frames. In that sense, the similarity encodes 
the repetition of any sequence, which can be stationary 
(homogeneity) or varying (repetition). Boundaries are 
obtained as points of high novelty between consecutive 
structural features.

Finally, Grill and Schlüter (2015) develop a 
Convolutional Neural Network (CNN) which outputs 
estimated boundaries. This CNN is one of the few 
techniques which does not compute a self-similarity 
matrix to later post-process it into boundaries, but it still 
uses self-similarities as input. The network is supervised 
on two-level annotations, on the SALAMI dataset (Smith 

et al., 2011), and, according to the authors, using these 
two levels of annotations is beneficial to the performance.

While many algorithms are devoted to the task of 
boundary retrieval (see for instance literature reviews 
from Paulus et al. (2010) and from Nieto et al. (2020)), 
research is still conducted towards more effective 
estimation algorithms. As presented above, in the past 
decade, research has mainly shifted from unsupervised to 
supervised algorithms, i.e. from low-informed estimation 
algorithms, generally designed with strong hypotheses, 
to algorithms which take advantage of (generally huge) 
annotated databases to learn mappings between the 
musical features and annotated structural elements. 
While this shift has resulted in more effective algorithms, 
it has the disadvantages of requiring large training 
datasets, and reproducing potential bias in relation to the 
annotations, known to be prone to high subjectivity and 
ambiguity (Nieto et al., 2020).

1.2 CONTRIBUTIONS
In order to improve unsupervised algorithms, we propose 
in this article a novel approach based on the Correlation 
“Block-Matching” (CBM) algorithm. This algorithm was 
briefly introduced in previous work (Marmoret et al., 2020, 
2022b) and is worth a more detailed presentation, which 
is one of the objectives of this work. Firstly, in line with the 
findings in (Marmoret et al., 2020, 2022b), we conjecture 
that the bar-scale is the most appropriate temporal 
scale from which to infer structure in Western modern 
music, and we present a framework which inherently 
processes music at this temporal scale. To the best of our 
knowledge, only a few works used such a hypothesis (e.g. 
Wang et al., 2021; Marmoret et al., 2020, 2022b). This 
hypothesis is supported by experiments which compare 
segmentation performance when aligning state-of-the-
art algorithms and the CBM algorithm on either the beat 
or the bar-scale. We show a consistent advantage for the 
bar-scale alignment approach.

The CBM algorithm estimates the musical structure 
based on the principles introduced in the work of Jensen 
(2006), later extended by Sargent et al. (2016). In a 
nutshell, the CBM algorithm is based on the definition 
of a score function (further denoted as u) applied to 
segments, with the overall segmentation of the song 
resulting in the maximum total score of the set of 
segments. This defines an optimization problem, which 
can be solved by dynamic programming.

The novelty of the CBM algorithm lies in its ability to 
extend previous work by incorporating new hypotheses 
regarding the design of the score function u. As a 
consequence, the algorithm is highly customizable and 
can be tailored to specific hypotheses and applications, 
which is a potential area for future research. We also 
present a study of different similarity functions to 
account for the similarity between musical features, 
and notably the Radial Basis function, which, to the best 



170Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

of our knowledge, was never previously used for MSA. 
Finally, we present experimental results which appear 
competitive with the most effective algorithm known to 
date (Grill and Schlüter, 2015).

The CBM algorithm is unsupervised in the sense that 
the segment boundaries are estimated as solutions 
of an optimization problem which does not depend 
explicitly on annotated examples. Nonetheless, in 
order to accurately tune internal hyperparameters, the 
following experiments are carried out by separating data 
between a “train” and a “test” dataset. In addition, we 
acknowledge that we use a learning-based toolbox for 
the bar estimation, but this toolbox is independent from 
our work. In that sense, although we label this algorithm 
as “unsupervised”, it could also arguably be qualified as 
“weakly-” or “semi-” supervised.

This article is organized as follows: Section 2 presents 
in more detail the hypotheses and framework to process 
music in a barwise setting, Section 3 presents the CBM 
algorithm and Section 4 presents an evaluation of the 
CBM algorithm on the boundary retrieval task, along with 
a comparison with state-of-the-art algorithms.

2. BARWISE MUSIC ANALYSIS

In most work in MSA (Nieto et al., 2020), the signal of 
a song is represented as time-sampled features, related 
to some extent to the frequency content of the song’s 
signal. In previous work on MSA, features have been 
either computed with a fixed hop length, typically 
between 0.1s and 1s according to Paulus et al. (2010), or 
(in more recent work), aligned on beats (McCallum, 2019; 
Wang et al., 2021; Salamon et al., 2021). Beat alignment 
is musically-relevant because it aligns the features and 
the estimations with respect to a time segmentation 
consistent with music performance. In this work, we 
hypothesize that the bar-scale is more relevant than the 
beat-scale to study MSA in Western modern music.

Bars seem well suited to express patterns and sections 
in Western modern music. Indeed, in Western musical 
notation, musical note lengths are expressed relatively to 
beats, and beats are combined to form bars. Bars finally 
segment the musical scores (with vertical lines), and 
similarities occur generally across different bars (which is 
particularly visible by the use of repeat bars, or symbols 
as “Dal Segno”, “Da Capo”, etc). In addition, the intuition 
that musical sections are synchronized on downbeats 
is experimentally confirmed by Mauch et al. (2009) 
and Fuentes et al. (2019), where the use of structural 
information improves the estimation of downbeats. 
Experiments supporting this hypothesis are presented in 
Section 2.3.

The direct drawback of barwise alignment is the need 
for a powerful tool to estimate bar boundaries. In this 
work, we use the madmom toolbox (Böck et al., 2016a), 

which uses a neural network to perform bar estimation 
(Böck et al., 2016b). In the 2016 MIREX contest,1 which 
was the last edition of the contest comparing downbeat 
estimation algorithms, this neural network obtained the 
best performance, and can hence be considered as one 
of the state-of-the-art algorithms for the task. Even if 
some algorithms obtained better performance since (e.g. 
Böck and Davies, 2020; Oyama et al., 2021; Hung et al., 
2022), we consider that the madmom toolbox achieves 
a satisfactory level of performance for our intended 
application.

2.1 BARWISE TF MATRIX
In this work, we represent music as barwise 
spectrograms, and more particularly as a Barwise TF 
matrix, following Marmoret et al. (2022b). The Barwise 
TF matrix consists of a matrix of size B × TF, B being the 
number of bars in the song (i.e. a dimension accounting 
for the bar-scale), and TF the vectorization of both time 
(at bar-scale) and feature dimensions (representing 
the frequency to some extent) into a unique Time-
Frequency dimension. The number of time frames per 
bar is fixed to T = 96, as in Marmoret et al. (2022b). 
Following the work of Grill and Schlüter (2015), the signal 
is represented in log mel features, i.e. the logarithm of 
mel coefficients, expressed with F = 80 mel coefficients, 
but any other feature representation could be used 
instead. The rationale for using log mel spectrograms is 
that they lead to high segmentation performance (Grill 
and Schlüter, 2015; Nieto et al., 2020) while constituting 
a compact spectral representation, suited for music 
analysis.

2.2 BARWISE SELF-SIMILARITY MATRIX
As stated in Section 1.1, a common representation in MSA 
is the self-similarity matrix, representing the similarities at 
the scale of the song. An idealized self-similarity matrix, 
extracted from Paulus et al. (2010), is presented in Figure 2. 

Figure 2 An idealized self-similarity matrix, extracted from 
Paulus et al. (2010).
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Similar passages are identified by two typical shapes: 
blocks and stripes. A block is a square (or a rectangle) 
in the self-similarity matrix, representing a zone of high 
inner-similarity, i.e. several consecutive frames which are 
highly similar, hence corresponding to the homogeneity 
criterion. A stripe is a line parallel to the main diagonal 
representing a repetition of the content, i.e. a pattern 
of several frames repeated in the same order, hence 
corresponding to the repetition criterion. As a general 
trend, the segmentation algorithms using self-similarity 
matrices are designed so as to retrieve segments based 
on blocks and stripes.

Given a Barwise TF matrix B TFX   , the self-similarity 
matrix of X is defined as ( ) B BA X    where each coefficient 
(i, j) represents the similarity between vectors , TF

i jX X  . 
Self-similarity matrices are computed from the Barwise 
TF representation of the song, therefore, each coefficient 
in the self-similarity matrix represents the feature-wise 
similarity for a pair of bars.

The similarity between two vectors is subject to a 
similarity function (the dot product for instance), and, 
as a consequence, different self-similarity matrices can 
be constructed. The main diagonal in a self-similarity 
matrix represents the self-similarity of each vector, and 
is in general (and in this work in particular) normalized to 
one. This work studies three different similarity functions, 
namely the Cosine, Autocorrelation and RBF similarity 
functions. The latter two represent novel contributions 
compared to our previous work (Marmoret et al., 2022b).

2.2.1 Cosine self-similarity matrix
The Cosine similarity function computes the normalized 
dot product between two vectors, and leads to the Cosine 
self-similarity matrix, denoted as Acos(X). Practically, 
denoting as X  the row-wise l2-normalized version of X 
(i.e. the matrix X where each row has been divided by 
its l2-norm), the Cosine self-similarity matrix is defined as 

cos( )A X XX  , or, elementwise, for 1 ≤ i, j ≤ B:

 
cos

2 2 1

,
( ) .

TF
i j

ij ik jk
i j k

X X
A X X X

X X
 

   


   (1)

2.2.2 Autocorrelation self-similarity matrix
The Autocorrelation similarity function is defined for 2 
bars Xi and Xj as corr( , )  ( )( )i j i jX X X x X x   , denoting as 

TFx   the mean of all bars in the song.
The barwise Autocorrelation similarity function yields 

the Autocorrelation self-similarity matrix Acorr(X) as:

 
corr

2 2

,
( ) .

i j
ij

i j

X x X x
A X

X x X x   

 


 
 (2)

In other words, the Autocorrelation matrix is exactly 
the Cosine self-similarity matrix of the centered matrix 

corr cos. . ( )   , ( )   B BiX x A X A Xe x  1 1  .

2.2.3 RBF self-similarity matrix
Kernel functions are symmetric positive definite or 
semi-definite functions. In machine learning, kernel 
functions are generally used to represent data in a 
high-dimensional space (sometimes infinite), enabling 
a nonlinear processing of data with linear methods (e.g. 
nonlinear classification with Support Vector Machines, 
SVM).

The Radial Basis Function (RBF) kernel is a kernel 
function defined as 2

2RBF( , )  exp( ),i j i jX X X X      
being a user-defined parameter. The RBF can be used as 
a similarity function between two bars Xi and Xj, hence 
defining the RBF self-similarity matrix ARBF(X) as:

 

2

RBF
2 2 2

( ) RBF( , ) exp .ji
ij i j

i j

XX
A X X X

X X
 

   


 
      
 

 (3)

Bars are normalized by their l2 norm in the computation 
of ARBF, in order to limit the impact of variations of power 
between bars. The self-similarity of a bar is equal to e0 =1.

Parameter γ is set relatively to the standard deviation 
of the pairwise Euclidean distances of all bars in the 
original matrix (self-distances excluded), to adapt 
the shape of the exponential function to the relative 
distribution of distances in the song. Hence, denoting as: 

2 2

2
1
21 , 2

std ,we setji

i j

i j

XX
X Xi j B σσ γ

≠
≤ ≤

 
 
 

= − =
   

.

The RBF function may be useful for MSA as the self-
similarity of dissimilar elements fades rapidly due to 
the properties of the exponential function. Hence, the 
RBF similarity function emphasizes similar components 
(i.e. homogeneous zones). The three self-similarities are 
presented in Figure 3, on the Barwise TF of song POP01 
from RWC Pop.

2.3 BARWISE MSA EXPERIMENTS
Section 2 is based on the hypothesis that the bar-
scale is more relevant than other time discretizations 
(in particular the beat-scale) to study MSA in Western 
modern music. To support this hypothesis, we present 
hereafter three experiments studying the differences in 
performance between beat-aligned and barwise-aligned 
estimations.

2.3.1 Aligning the annotations on the downbeats
As a preliminary experiment to study the impact 
of barwise alignment on the segmentation quality, 
we evaluate the loss in performance when aligning 
annotations on downbeats for both the RWC Pop (Goto 
et al., 2002) and SALAMI (Smith et al., 2011) datasets. 
In this experiment, each annotation is aligned with the 
closest estimated downbeat, and the barwise-aligned 
annotations are compared with the initial annotation 
using the standard metrics P0.5s, R0.5s, F0.5s and P3s, R3s, F3s 
(detailed in Section 4.1). Results are presented in Table 
1. The RWC Pop annotations are barely impacted by the 
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barwise alignment, suggesting that annotations are 
precisely located on downbeats. A loss in performance 
with short tolerances is observed on the annotations 
of the SALAMI dataset, either suggesting imprecise 
bar estimations or boundaries not located on the 
downbeats. Still, the levels of performance exhibited 
in Table 1 largely outperform the current state-of-the-
art (≈ 80% vs ≈ 54% for the F0.5s metric, respectively for 
the downbeat-aligned annotations in Table 1 and for 
Grill and Schlüter (2015), whose results are presented 
in Figure 12). In that sense, the loss in performance 
induced by downbeat alignment may be compensated 
if estimations are indeed more precise due to this 
alignment.

2.3.2 Downbeat-alignment for several state-of-
the-art algorithms
A second experiment consists of post-processing the 
boundary estimations of three unsupervised state-of-
the-art algorithms (Foote, 2000; McFee and Ellis, 2014a; 
Serrà et al., 2014), computed with the MSAF toolbox 
(Nieto and Bello, 2016), by aligning each boundary with 
the closest estimated downbeat. As these algorithms 
originally use beat-aligned features (resulting in beat-
aligned estimations), this experiment compares beat-
aligned estimations with downbeat-aligned estimations. 
Segmentation scores are presented in Figure 4 for both 
SALAMI and RWC Pop datasets.

Results show that aligning estimated boundaries on 
downbeats results in a strong increase in performance for 
F0.5s, and to comparable results for F3s, on both datasets. 
Hence, aligned on downbeats, estimations are more 
accurate, but the F3s metric is not significantly impacted 
by this alignment. These results suggest that downbeat-
alignment is beneficial on these datasets.

2.3.3 Focusing on Foote’s algorithm
Finally, a third experiment compares the results obtained 
with different time discretizations for Foote’s algorithm 
(Foote, 2000), implemented in the MSAF toolbox (Nieto 
and Bello, 2016). In particular, this experiment compares 
the results when self-similarities are computed with 
beat-aligned and downbeat-aligned features.

As presented in Section 1.1, Foote’s algorithm 
estimates boundaries as points of high novelty. A novelty 
score is computed at each point of the self-similarity 
matrix by applying a kernel matrix, and this novelty 
score is finally post-processed into boundaries with a 
thresholding operation. In the original implementation, 

Figure 3 Cosine, Autocorrelation and RBF self-similarities for the song POP01 of RWC Pop.

Dataset P0.5s R0.5s F0.5s P3s R3s F3s

SALAMI Annotation 1 82.47% 82.14% 82.30% 99.94% 99.56% 99.74%

Annotation 2 80.97% 80.92% 80.94% 99.92% 99.84% 99.88%

RWC Pop 96.46% 96.21% 96.33% 100% 99.73% 99.86%

Table 1 Standard metrics (see Section 4.1) when aligning the reference annotations on the downbeats (compared to the original 
annotations).

Figure 4 Segmentation results of state-of-the-art algorithms 
on the SALAMI-test and RWC Pop datasets, for beat-aligned 
(original) vs. downbeat-aligned boundaries. The SALAMI-test 
dataset is defined by Ullrich et al. (2014), and introduced in 
Section 4.2.1.
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the Cosine self-similarity is computed on beat-
synchronized features, i.e. one feature per beat. In this 
experiment, beats are estimated with the algorithm of 
Böck et al. (2019), which is one of the state-of-the-art 
algorithms in beat estimation, and is implemented in the 
madmom toolbox.

As in Section 2.3.2, the original results are compared 
with the ones obtained when aligning the estimations 
on downbeats. In addition, we compare the beat-
synchronized results with two new feature processing 
approaches: bar-synchronized features, i.e. one feature 
per bar (instead of one per beat), and the Barwise TF 
matrix,2 introduced in Section 2.2.

The kernel is of size 66 for the beat-synchronized 
features (as originally set in MSAF), and is of size 16 for both 
the bar-synchronized features and the Barwise TF matrix. 
Results are presented in Tables 2 and 3, respectively for 
the SALAMI-test and the RWC Pop dataset. In order 
to fairly compare the algorithms, we also fitted two 
hyperpameters of the original MSAF implementation for 
the bar-scale, namely the size of median filtering applied 
to the input spectrogram and the standard deviation in 
the Gaussian filter applied to the novelty curve. These 
parameters were fitted in a train/test fashion, as detailed 
in Section 4.2.1.

Both Tables 2 and 3 conclude in the same direction: 
the best performance for the F0.5s and F3s metrics is 
obtained with the Barwise TF matrix. Similarly to Section 
2.3.2, aligning beat-aligned estimations to downbeats 
in post-processing increases the performance for the 
F0.5s metric, indicating more precise estimations. It is 
worthwile noting that, using bar-synchronized instead of 
beat-synchronized features increases the performance 
on the SALAMI dataset, while it decreases it on the RWC 
Pop dataset.

However, the Barwise TF matrix representation 
appears to be beneficial for MSA on both datasets. 

In future experiments, we denote as “Foote-TF” the 
condition where Foote’s algorithm is applied to the 
Barwise-TF matrix, whose results are shown in Tables 2 
and 3.

3. CORRELATION “BLOCK-MATCHING” 
ALGORITHM

With a self-similarity matrix as input, the Correlation “Block-
Matching” segmentation algorithm (CBM) estimates 
boundaries by means of dynamic programming. This 
algorithm is detailed in this section, along with a study of 
important parameter settings which were not discussed 
in the previous work (Marmoret et al., 2020, 2022b), such 
as the block weighting kernels and the penalty functions. 
The CBM algorithm estimates boundaries based on 
the homogeneity/novelty and regularity criteria. The 
principles of dynamic programming are presented first, 
followed by the definition of a score function u applied 
on segments.

3.1 DYNAMIC PROGRAMMING FOR BOUNDARY 
RETRIEVAL
3.1.1 Boundary retrieval problem
Given a music piece (song) sampled in time as N time 
steps, the subtask of boundary retrieval can be defined as 
finding a segmentation (set of boundaries) Z representing 
the start of each segment, i.e. { }  1, , 1, ,iZ N i E E       
representing the number of boundaries estimated 
in this song. The set of admissible segmentations is 
denoted as Θ, i.e. Z ∈ Θ. Each segment Si is composed 
of the time steps between two consecutive boundaries, 
i.e. 1} |{  1   ,i i iS l N l        . The second bound is 
exclusive as it represents the start of the next segment 
Si+1. By definition, E boundaries define E-1 segments. 
Boundary ζi is called the antecedent of boundary ζi+1.

Time synchronization P0.5s R0.5s F0.5s P3s R3s F3s

Beat-synchronized Original 26.98% 34.58% 29.21% 50.10% 63.30% 54.02%

Re-aligned on downbeats 31.05% 39.15% 33.33% 50.08% 62.95% 53.78%

Bar-synchronized 37.68% 36.36% 35.97% 58.06% 56.11% 55.57%

Barwise TF Matrix 39.22% 42.66% 39.67% 59.60% 64.82% 60.36%

Table 2 Different time synchronizations for the Foote (2000) algorithm on the SALAMI-test dataset. The SALAMI-test dataset is 
defined by Ullrich et al. (2014), and introduced in Section 4.2.1.

Time synchronization P0.5s R0.5s F0.5s P3s R3s F3s

Beat-synchronized Original 31.86% 24.38% 27.29% 67.21% 51.92% 57.95%

Re-aligned on downbeats 42.30% 32.82% 36.52% 66.67% 51.44% 57.44%

Bar-synchronized  43.53% 26.32% 32.46% 69.25% 42.22% 51.97%

Barwise TF Matrix 53.09% 37.19% 43.30% 79.35% 56.03% 65.04%

Table 3 Different time synchronizations for the Foote (2000) algorithm on the RWC Pop dataset.



174Marmoret et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.167

3.1.2 Barwise boundary retrieval problem
In the proposed barwise paradigm, the song is discretized 
into B bars using N = B + 1 bar boundaries. Hence, the 
first boundary is the start of the song, i.e. ζ1 = 1, the last 
boundary is the end of the last bar in the song,3 i.e. ζE = B 
+ 1, and each boundary is located on a bar, i.e. ∀i, ζi ∈ ⟦1, 
B + 1⟧. Each segment Si is composed of the bar indices 
between two consecutive boundaries.

As a consequence, there exists4 1( )E
B   different sets of 

boundaries composed of exactly E boundaries, and, more 
generally, at most 

1
1

0

1( ) 2
B

B
K

k

B






   segmentations for each 
song. Hence, the segmentation problem admits a finite 
number of solutions, which can theoretically be solved 
in a combinatorial way. In practice though, evaluating 
all possible segmentations leads to an algorithm of 
exponential complexity (2 )B , considered intractable in 
practice.

3.1.3 Dynamic programming
The boundary retrieval problem can be approached as an 
optimization problem (Jensen, 2006; Sargent et al., 2016). 
In particular, by associating a score u(S) to each potential 
segment S, the optimal segmentation Z* is the segmentation 
maximizing5 the sum of all its segment scores:
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by extending notation u for a set of segments.
The problem can be solved using a dynamic 

programming algorithm (Bellman, 1952; Cormen et 
al., 2009, Chap. 15), the principle of which is to solve a 
combinatorial optimization problem by dividing it into 
several independent subproblems. The independent 
subproblems are formulated in a recursive manner, 
and their solutions can be stitched together to form a 
solution to the original problem. Notice that in the current 
formulation of the segmentation problem, defined 
in Equation 4, each potential segment is evaluated 
independently, via its score, and is never compared 
with the others. In other terms, repetitions of the same 
section are not considered, while they could inform on 
the overall structure, typically considering the repetition 
criterion. Thus, the segmentation problem defined in 
Equation 4 is a relaxation of the general segmentation 
problem. This relaxation is considered because it allows 
to use principles of dynamic programming, by evaluating 
the score of all segments as independent subproblems. 
In particular, this relaxed problem is said to exhibit 
“optimal substructure” (Cormen et al., 2009).

3.1.4 Longest-path on a directed acyclic graph
Following the formulation of Jensen (2006), the 
segmentation problem can be reframed into the problem 
of finding the longest path on a Directed Acyclic Graph 

(DAG). The rationale of the solution algorithm is that 
the optimal segmentation up to any given bar bk can 
be found exactly by recursively evaluating the optimal 
segmentations up to each antecedent of bk, i.e. (without 
any constraint) all bars bl < bk, and the score of the 
segments bl, bk – 1. Formally, denoting as [1: ]*

kb
Z  the 

optimal segmentation up to bar bk, the CBM algorithm 
consists of:

1. Lookup for [1: ]*{ ) }( ,
l kb lu Z b b  , i.e. the optimal 

segmentation up to each antecedent, which is stored 
in an array when first computed,

2. Computing { }1( ), ,k kl lb bu b b    , i.e. the 
segmentation score between bars bl and bk,

3. Finding the best antecedent of bk, denoted as 1*
kb

  , 
with the following equation:

 
   1 [1: ]** argmax , 1 .

k l
l

kb b l
b

u b bu Z  
    
   (5)

Finally, at the last iteration, the algorithm computes the 
best antecedent for B + 1, i.e. the last downbeat of the 
song. Then, recursively, the algorithm is able to backtrack 
the best antecedent of this antecedent, and so on and 
so forth back to the first bar of the song, thus providing 
the optimal segmentation. A graph visualization for a 
4-bar example is presented in Figure 5. Pseudo-code for 
the CBM algorithm, assuming that the score function u is 
given, is detailed in the appendix (Algorithm 1).

In the end, for any bar bk, the optimal segmentation 
up to bk can be computed in ( 1)kb   operations, i.e. 
parsing each antecedent only once. Hence, the solution 
algorithm boils down to ( 1)

2( )B B  evaluations, which 
corresponds to a polynomial complexity. In practice, 
we even limit the size of admissible segments to be at 
most 32 bars (set empirically), which further reduces the 
complexity.

3.2 SCORE FUNCTION
Finally, the segmentation problem boils down to the 
definition of the score function 1( ), 1i iu      for a 
segment. In the CBM algorithm and following (Sargent 
et al., 2016), the score of each segment is defined as 
a mixed score function, presented in Equation 6 as the 
balanced sum of two terms:

       1 1 1, 1 , 1 .K
i i i ii i

u u p            (6)

The first term, 1( ), 1K
i iu      , is based on the 

homogeneity criterion, and is presented in Section 3.2.1; 
the second one, 1( )i ip    , is based on the regularity 
criterion, and is presented in Section 3.2.2. Parameter λ is 
a balancing parameter.

3.2.1 Block weighting kernels
The first term uK of the score function in Equation 6 
is obtained from the self-similarity values within a 
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segment. Practically, given a self-similarity matrix A(X), 
the score uK(Si) of segment 1 ,  1 i i iS      (of size n = 
ζi+1 – ζi) is computed by evaluating the self-similarity 
values restricted to Si, i.e. 

1[ : 1]( )  ( )
i i iSA X A X     . It can be 

understood as cropping the self-similarity A(X) on this 
particular segment, around the diagonal.

The CBM algorithm aims at favoring the homogeneity 
of estimated segments, i.e. favoring sections composed 
of similar elements. Thus, the score function uK is defined 
so as to measure the inner similarity of a segment. In 
practice, this is obtained through weighting local self-
similarity values, by using a (fixed) weighting kernel 
matrix K, such as:
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The kernel is called a “weighting kernel”. A first 
observation is that the weighting kernel needs to adapt 
to the size of the segment. A very simple kernel is a 
kernel matrix full of ones, i.e.  = n×nK 1 , resulting in a score 
function equal to the sum of every element in the self-
similarity matrix, normalized by the size of the segment. 
The normalization by the size of the segment is meant to 
turn the squared dependence of the size of the segment 
in the number of self-similarity values (n2) into a linear 
dependence. A linear dependence is desired as it ensures 
a length-n segment contributes similarly to the sum of 
segment scores as n segments of length 1.

The design of the weighting kernel defines how to 
transform bar similarities into segment homogeneity, 
which is of particular importance for segmentation. The 
remainder of this section presents two types of kernels, 
namely the “full” kernel and the “band” kernel. We 
consider that the main diagonal in the self-similarity 
matrix is not informative regarding the overall similarity 
in the segment, as its values are normalized to one. 
Hence, for every weighting kernel K used in the CBM 
algorithm, Kii = 0, ∀i.

Full Kernel The first kernel is called the “full” kernel, 
because it corresponds to a kernel full of 1s (except 
on the diagonal where it is equal to 0). The full kernel 
captures the average value of similarities in this segment, 
excluding the self-similarity values. Practically, denoting 
as Kf the full kernel:

 

1 if 

0 if 
f
ij

i j
K

i j

  
 (8)

Hence, the score function associated with the full kernel 
is equal to:

   
1 1 1 1,

1 1
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f

i i

n n n n
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S SA X Ku A
n

S X
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    (9)

A full kernel of size 10 is presented in Figure 6.
Band Kernels A second class of kernels, called “band” 

kernels, are considered in order to emphasize short-term 
similarity. Indeed, in band kernels, the weighting score is 
computed on the pairwise similarities of a few bars in the 
segment only, depending on their temporal proximity: 
only close bars are considered. In practice, this can be 
obtained by defining a kernel with entries equal to 0, 
except on some upper- and sub-diagonals. The number of 
upper- and sub-diagonals is a parameter, corresponding 
to the maximal number of bars considered to evaluate 
the similarity, i.e. an upper bound on |bi–bj| for a pair of 
bars (bi, bj).

Hence, a band kernel is defined according to its 
number of bands, denoted as v, defining the v-band 
kernel Kvb such that:

 

1 if 1 | | ,

0 otherwise (  or | | ).
vb
ij

i j v
K

i j i j v

       
 (10)

Three band kernels, of size 10, are represented in Figure 
7. Section 4 presents experiments which compare 
quantitatively the impact of the number of bands on the 
segmentation performance.

Figure 5 Example of computing an optimal segmentation with 4 bars.
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3.2.2 Penalty functions
Sargent et al. (2016) extended the score function of 
Jensen (2006) to take into account both the homogeneity 
and the regularity criteria, resulting in Equation 6. In 
practice, this is obtained through defining a regularity 
penalty function p(n), corresponding to the second term 
in Equation 6, and penalizing segments according to their 
size n, to favor particular sizes.

The penalty function is based on prior knowledge, and 
aims at enforcing particular sizes of segments, which 
are known to be typical in a number of music genres, 
notably Pop music. In particular, Figure 8 presents the 
distributions of the sizes of segments, in terms of number 
of bars, in the annotations of both RWC Pop and SALAMI 
datasets. It appears that some sizes of segments are 
much more frequent in the annotations. Hence, penalty 
functions p can be derived from these distributions.

Two different penalty functions p are studied in this 
section, namely the “target-deviation” and “modulo” 
functions. In what follows, n denotes the size of the 
segment, i.e. n = ζi+1 – ζi.

Target-Deviation Functions The first set of penalty 
functions, called “target-deviation” and denoted as 
ptd, is defined by Sargent et al. (2016). Target-deviation 
functions compute the difference between the size of the 
current estimated segment and a target size τ, raised to 
the power of a parameter α, i.e. ptd(n) = |n – τ|α where 
parameter α takes typical values in {0.5, 1, 2}. The target 
size is set by Sargent et al. (2016) to 32, to favor segments 
of size 32 beats, in line with their respective evaluations 
of most frequent segment sizes. In our barwise context,6 
τ = 8, which is the most frequent segment size in both 
RWC Pop and SALAMI datasets.

This penalty function is adapted to enforce one size 
in particular, and tends to disadvantage all the others. 
Hence, this function is adapted to datasets where one 
size is predominant, which seems true for RWC Pop with 
MIREX 10 annotations (more than half of the segments 
in the annotation are of size 8 bars), but not so definite 
for the SALAMI dataset, where the segment sizes are 

more balanced between 4, 8, 12 and 16, as presented in 
Figure 8. In particular, segments of size 16 are strongly 
penalized (|8–16|α = 8α).

Modulo function The second set of penalty functions, 
called “modulo functions”, is designed to favor particular 
segment sizes, directly based on prior knowledge. In 
this study, we only present the “modulo 8” function 
pm8(n) based on both RWC Pop and SALAMI annotations. 
Indeed, in both datasets, most segments are of size 8, 
and the remaining segments are generally of size 4, 12 
or 16. Finally, outside of these sizes, even segments are 
more frequent than segments of odd sizes. Hence, the 
modulo 8 function models this distribution, as:
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Penalty values for the different cases were set quite 
intuitively, and would benefit from further investigation.

In order to mitigate both the weighting score function 
uK and the penalty function p, we implemented an 
additional normalization step based on the weighted 
values obtained in each song, resulting in the score 
function defined in Equation 12.

       8
max1 1 1, 1 , 1 ,K K

i i i ii i
u u u p            (12)

In Equation 12, 8
max
Ku  is the maximal weighting value 

obtained by sliding a kernel of size 8 on this self-similarity 
matrix, i.e. the highest score among all possible segments 

Figure 6 Full kernel of size 10.

Figure 7 Band kernels, of size 10.

Figure 8 Distribution of segment sizes in terms of number of 
bars, in the annotations.
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of size 8. This size of 8 for the kernel is chosen as the most 
frequent segment size in terms of number of bars in both 
RWC Pop and SALAMI datasets, as presented in Figure 8. 
Parameter λ is a constant parameter, which is fitted as 
detailed in Section 4.

Finally, in the CBM algorithm, the score of each 
segment is defined as in Equation 12. The first term, 
uK(ζi, ζi+1 – 1), is a weighting score, measuring the self 
similarity of the segment. The second term, p(ζi+1 – ζi), 
penalizes or favors the segment depending on its size. 
Both these scores are subject to design choices, which 
are studied and compared in the subsequent section.

4. EXPERIMENTS

4.1 EVALUATION METRICS
The quality of the estimation obtained with the CBM 
algorithm is evaluated with the Hit-Rate metrics, comparing 
a set of estimated boundaries with a set of annotations 
by intersecting them with respect to a tolerance t (Ong 
and Herrera, 2005; Turnbull et al., 2007). In practice, 
given two sets of boundaries Ze and Za (respectively 
the sets of estimated and annotated boundaries), an 
estimated boundary e e

i Z   is considered correct if it is 
close enough to an annotated boundary a a

j Z   (“close 
enough” meaning that the gap is no larger than the 
tolerance t), i.e. if a a

j Z   such that 
e a
i j t   . Each 

estimated boundary can be coupled with a maximum 
of one annotated boundary, and vice versa. The set of 
correct boundaries subject to the tolerance t, denoted as 
Ct, contains at most as many elements as the annotations 
or the estimations, i.e. 0 | min( )| | |,| |e a

tC Z Z  . In case of 
perfect concordance between Ze and Za, Ct = Ze = Za. In 
practice, the concordance of Ct with Ze and Za is evaluated 
by the precision Pt, recall Rt and F-measure Ft:

•	 | |

| |
t
e

C
t Z
P  , i.e. the proportion of accurately estimated 
boundaries among the total number of estimated 
boundaries.

•	 | |

| |
t
a

C
t Z

R  , i.e. the proportion of accurately estimated 
boundaries among the total number of annotated 
boundaries.

•	 2 t t

t t

P R
t P RF   is the harmonic mean of both 

aforementioned measures. The harmonic mean is 
less sensitive to large values than the arithmetic 
(standard) mean, and is conversely more strongly 
penalized by low values. Hence, a high F-measure 
requires both a high recall and a high precision.

These metrics are computed using the mir_eval toolbox 
(Raffel et al., 2014).

4.1.1 Tolerances in absolute time
In the boundary retrieval subtask, conventions for the 
tolerance values are 0.5s (Turnbull et al., 2007) and 3s 

(Ong and Herrera, 2005). The 3-second tolerance, citing 
Ong and Herrera (2005), is justified as being equal to 
“approximately 1 bar for a song of quadruple meter [NB: 
4 beats per bar, e.g. 4

4
 metric] with 80 bpm in tempo”, 

while the 0.5 second tolerance is within the order of 
magnitude corresponding to the beat. In this work, we 
use both tolerance values to compare our algorithm with 
the standard algorithms, leading to 6 metrics P0.5s, R0.5s, 
F0.5s and P3s, R3s, F3s.

4.1.2 Barwise-aligned tolerances
In this work, estimated boundaries are located on downbeat 
estimates, as explained and motivated in Section 2. In that 
sense, rather than evaluating the estimates in absolute 
time, we align each annotation with the closest estimated 
downbeat, leading to barwise-aligned annotations. This 
allows us to introduce additional metrics: P0bar, R0bar, F0bar 
and P1bar, R1bar, F1bar. The first three metrics (e.g. F0bar) consider 
that the tolerance is set to 0 bars, i.e. expecting estimates 
and annotations to fall precisely on the same downbeat, 
and the latter three metrics (e.g. F1bar) set the tolerance to 
exactly one bar between estimates and annotations. In 
particular, these metrics will be used to compare different 
settings of our algorithm.

4.2 PARAMETRIZATION OF THE ALGORITHM
The CBM algorithm is evaluated on the boundary retrieval 
task on the entire RWC Pop dataset (Goto et al., 2002), 
and on the test subset of SALAMI (Smith et al., 2011), 
defined by Ullrich et al. (2014). The three similarity 
functions defined in Section 2.2 are used to compute the 
self-similarity matrices, namely Cosine, Autocorrelation 
and RBF. The CBM algorithm itself is subject to the choice 
of kernel, and particularly to the number of bands when 
using a band kernel. In addition, the score function 
depends on the design of the penalty function. Rather 
than studying all of these parameters at the same 
time, experiments focus on each aspect independently. 
In particular, the experiments aim at answering the 
following three questions:

- Which similarity function is the most suitable for 
boundary retrieval in our context?

- Which weighting kernel is the most suitable for 
boundary retrieval in our context?

- Which penalty function is the most suitable for 
boundary retrieval in our context?

Each question is addressed sequentially, and the 
conclusion of each question serves as the basis to study 
the next ones.

4.2.1 Train/test datasets
These questions are addressed by comparing several 
parameters in a train/test fashion: a subset of the 
SALAMI dataset, called “SALAMI-train”, is used to 
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evaluate several parameters, and the best one in this 
subset is evaluated on the remainder of the SALAMI 
dataset, called “SALAMI-test”, and on the entire RWC Pop 
dataset. The division between SALAMI-train and SALAMI-
test is defined by Ullrich et al. (2014), based on the MIREX 
evaluation dataset. The details are available online,7 and 
are uploaded along with experimental Notebooks on the 
open-source dataset.8 The SALAMI-train dataset contains 
849 songs, and the SALAMI-test dataset contains 485 
songs.9 The entire RWC Pop dataset contains 100 songs, 
resulting in a total of 585 songs for testing.

4.2.2 Self-similarity matrices 
Firstly, we study the impact of the design of the similarity 
function on the performance of the CBM algorithm. To 
do so, we use the CBM algorithm with the full kernel, as 
it does not need the fitting of the number of bands, and 
we do not use a penalty function. The boundary retrieval 
performance is presented in Table 4 for the train dataset.

The RBF self-similarity is the best-performing self-
similarity in terms of F-measure (with both tolerances), 
hence suggesting a better boundary estimation on 
average than the other similarity functions. The results 
obtained with the RBF similarity function on the test 
datasets are presented in Table 5.

The precision/recall trade-offs depend on the self-
similarity matrices, and deserve to be studied to give 
further information on the quality of the estimated 
segmentations. The Cosine self-similarity exhibits a 
higher precision than recall on average, which suggests an 
under-segmentation, i.e. estimating too few boundaries. 
Conversely, the Autocorrelation self-similarity results 
in a higher recall than precision, suggesting over-
segmentation. The RBF self-similarity performance is 
more balanced between both metrics.

These conclusions can be confirmed by studying the 
distribution of the sizes of the estimated segments, as 
presented in Figure 9 on the SALAMI-train dataset. These 
distributions must be compared with the distribution of 
segment sizes in the annotations, presented in Figure 8.

The distribution of segment sizes with the RBF self-
similarity is visually the closest one to the distribution of 

annotations, which we confirm numerically by studying 
the Kullback-Leibler (KL) divergences between the 
distribution of the sizes of the estimated segments and of 
the annotated ones. The KL-divergences are respectively 
equal to 2.25, 0.85 and 0.35 for the Cosine, Autocorrelation 
and RBF similarity functions. Again, this suggests that the 
RBF similarity function is the most suitable.

Self-similarity P0bar R0bar F0bar P1bar R1bar F1bar

Cosine 50.83% 30.82% 36.77% 62.80% 37.72% 45.19%

Autocorrelation 32.59% 64.69% 41.30% 42.10% 83.73% 53.41%

RBF 50.27% 45.38% 45.84% 64.79% 58.81% 59.30%

Table 4 Boundary retrieval performance with the different self-similarities on the train dataset (Full kernel, no penalty function).

Dataset P0bar R0bar F0bar P1bar R1bar F1bar

SALAMI – test 48.52% 48.65% 46.68% 62.76% 63.09% 60.51%

RWC Pop 60.72% 53.61% 56.01% 77.68% 67.62% 71.09%

Table 5 Boundary retrieval performance with the RBF self-similarity, on both test datasets (Full kernel, no penalty function).

Figure 9 Distribution of segment sizes, with the full kernel, 
according to the self-similarity matrix. Results on the SALAMI-
train dataset.
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4.2.3 Block weighting kernels
Secondly, an important parameter in the CBM algorithm is 
the design of the kernel. We thus compare the full kernel 
with band kernels, the number of bands varying from 1 
to 16. Results on the SALAMI-train dataset, computed 
on the RBF self-similarity matrices, and focusing on the 
F-measures, are presented in Figure 10. The 7-band 
kernel stands out as the best-performing kernel, even if 
performance is close to the 15-band kernel.

The differences in performance between the different 
kernels may be explained by Figure 11, which presents 
the distribution of segment sizes according to the 
number of bands. The 7-band kernel leads to a majority 
of estimated segments of size 8 (more than 50%, twice as 
much as in the annotations), which is the most common 
segment size in the annotation, while the 15-band kernel 
mostly computes segments of size 16, and the full kernel 
is well distributed across the different segment sizes. The 

Figure 10 Boundary retrieval performance (F-measures only) according to the full and band kernels (with different numbers of bands). 
Results on the train dataset with RBF self-similarity matrices.

Figure 11 Distribution of estimated segment sizes, according to different kernels, on the train dataset.
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annotations are mostly composed of segments of size 
8, then 4, 12 and 16. Hence, while the 7-band kernel 
does not accurately represent the annotations, it obtains 
better boundary retrieval performance than the other 
ones, indicating that this latter distribution is beneficial 
to the boundary estimation overall.

As an additional conclusion, the number of bands in 
the kernel largely influences the distribution of segment 
sizes, in particular the most frequent segment size. As a 
general trend, it seems that a kernel with v bands favors 
segments of size v + 1. We assume that this behavior 
stems from the fact that, for a v-band kernel and a large 
segment of size n > v, the number of elements equal to 0 
is large, but the normalization remains adapted to kernels 
with n2 values. We found in practice that this effect could 
be dampened by normalizing the score associated with 
each kernel by the number of nonzero values plus the 
number of elements in the diagonal instead of the size 
of the kernel, as (Shiu et al., 2006) did, but this resulted 
in all kernels performing similarly to the full kernel, hence 
performing worse than the 7-band one.

Finally, as the 7-band kernel is the best-performing 
one, we fixed this kernel for both test datasets. Results 
obtained with this kernel are presented in Table 6.

4.2.4 Penalty functions 
Finally, the last experiments focus on the penalty 
functions. In this set of experiments, we compare the 

target deviation functions, with α ∈ {0.5, 1, 2}, with the 
modulo 8 function. The CBM algorithm is parametrized 
with the 7-band kernel, and is applied on the RBF self-
similarity matrices. The parameter λ, balancing the 
penalty function, takes values between 1

100  and 2
10 , with 

a step of 1
100 . This parameter is fitted on the SALAMI-train 

dataset. Results are presented in Table 7.
The modulo 8 function appears to slightly improve 

boundary retrieval performance for the metrics with a 
tolerance of 0 bar, indicating a more accurate estimation, 
but results with a tolerance of 1 bar are not strongly 
impacted by the choice of the penalty function. Results 
are close between the different penalty functions, except 
for the target deviation with a large α, which results in 
worse performance than the other conditions.

Overall, it seems that the modulo 8 function is the 
most suitable penalty function to estimate segments 
accurately. Hence, we use this penalty function for the 
test results, presented in Table 8, with parameter λ = 
0.04, as optimized on the SALAMI-train dataset.

4.2.5 Experimental conclusions
In light of these results, we finally sum up the situation 
regarding the choice of settings for the CBM algorithm.

1. In our context, the RBF self-similarity matrix is the 
most suitable self-similarity matrix for boundary 
retrieval.

Dataset P0bar R0bar F0bar P1bar R1bar F1bar

SALAMI – test 37.24% 59.80% 44.33% 50.38% 80.52% 59.88%

RWC Pop 59.41% 68.19% 62.82% 75.53% 86.56% 79.81%

Table 6 Boundary retrieval performance with the 7-band kernel, on both test datasets (RBF self-similarity, no penalty function).

Penalty function Best λ P0bar R0bar F0bar P1bar R1bar F1bar

Without penalty  – 40.26% 57.38% 45.81% 54.26% 77.67% 61.81%

Target deviation 

1
2  0.01 40.38% 57.36% 45.88% 54.37% 77.57% 61.84%

 α = 1 0.01 40.45% 56.98% 45.81% 54.61% 77.20% 61.89%

 α = 2 0.01 39.75% 54.32% 44.43% 54.93% 75.31% 61.46%

Modulo 8 0.04 41.04% 58.34% 46.63% 54.25% 77.44% 61.72%

Table 7 Boundary retrieval performance depending on the penalty function, for the SALAMI-train dataset, with the RBF self-similarity 
and the 7-band kernel.

Dataset P0bar R0bar F0bar P1bar R1bar F1bar

SALAMI – test 38.36% 60.96% 45.44% 50.76% 80.51% 60.09%

RWC Pop 62.11% 70.05% 65.17% 77.35% 86.95% 81.02%

Table 8 Boundary retrieval performance with the modulo 8 penalty function (λ = 0.04), on both test datasets (RBF self-similarity, 
7-band kernel).
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2. In our context, the 7-band kernel is the most suitable 
kernel for boundary retrieval.

3. In our context, the modulo 8 penalty function is the 
most suitable penalty function for boundary retrieval.

4.2.6 Metrics with tolerance in absolute time
As mentioned in Section 4.1, standard metrics for 
boundary retrieval performance consider the tolerance 
in absolute time (e.g. F0.5s and F3s metrics), while we 
opted for boundary-aligned metrics in our experiments. 
Hence, Table 9 compares the boundary retrieval 
performance obtained when the tolerance is defined 
relatively to the bars and in absolute time, which allows 
to compare with state-of-the-art algorithms. Boundary 
retrieval performance is almost equivalent on the RWC 
Pop dataset, and slightly altered for the metrics with 
short tolerances on the SALAMI dataset (F0bar and F0.5s). 
These discrepancies may be explained by the less precise 
downbeat alignment of annotations in the SALAMI 
dataset, presented in Table 1. Overall though, results 
remain similar, which tends to confirm the hypothesis 
of Ong and Herrera (2005) that a tolerance of 3 seconds 
corresponds approximately to a tolerance of 1 bar.

4.3 COMPARISON WITH STATE-OF-THE-ART 
ALGORITHMS
We compare the boundary retrieval performance 
obtained by the Foote-TF (introduced in Section 2.3.3) 
and the CBM algorithms with state-of-the-art algorithms. 
The performance of the CBM algorithm is obtained using 
the hyperparameters learned in Section 4.2.

This work considers seven different algorithms as 
state-of-the-art, categorized as either unsupervised or 
supervised algorithms, i.e. algorithms that either estimate 
boundaries without the use of training examples or 
analyze annotated examples before making predictions: 
four unsupervised algorithms (Foote, 2000; McFee and 
Ellis, 2014a; Serrà et al., 2014; McCallum, 2019) and three 
supervised algorithms (Grill and Schlüter, 2015; Wang 
et al., 2021; Salamon et al., 2021). We additionally use 
previous work on the CBM algorithm (Marmoret et al., 
2022b) as a baseline.

All state-of-the-art algorithms use beat-aligned 
features, except Grill and Schlüter (2015), who use a fixed 
hop length and Wang et al. (2021), who use downbeat-
aligned features. Results for Foote (2000); McFee and 
Ellis, (2014a); Serrà et al. (2014) are computed with the 
MSAF toolbox (Nieto and Bello, 2016), and realigned on 
downbeats in post-processing. Results for the CNN (Grill 
and Schlüter, 2015) are extracted from the 2015 MIREX 
contest. Results for McCallum (2019); Wang et al. (2021); 
Salamon et al. (2021) are copied from the respective 
articles.

Figures 12 and 13 compare the results obtained 
with the CBM and the Foote-TF algorithms with 

Dataset F0bar F0.5s F1bar F3s

SALAMI-test 45.44% 42.00% 60.09% 60.61%

RWC Pop 65.17% 64.44% 81.02% 80.64%

Table 9 Boundary retrieval performance, comparing the 
F-measures with tolerance expressed barwise and in absolute 
time.

Figure 12 Boundary retrieval performance of the CBM algorithm on the SALAMI dataset, compared to state-of-the-art algorithms. 
Hatched bars correspond to supervised algorithms. The star * represents algorithms where the evaluation subset is not exactly the 
same as ours, thus preventing accurate comparison.

Figure 13 Boundary retrieval performance of the CBM algorithm on the RWC Pop dataset, compared to state-of-the-art algorithms. 
Hatched bars correspond to supervised algorithms.
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those of the state-of-the-art algorithms.10 In this 
comparison, the CBM algorithm globally outperforms 
the other unsupervised segmentation methods, most 
of the supervised algorithms, and is competitive 
for the metric F3s with the global (supervised) state-
of-the-art (Grill and Schlüter, 2015). These results 
are promising and show the potential of the CBM 
algorithm, which is performing well despite its relative 
simplicity. Additionally, results of the CBM algorithm 
are on par with those of Foote-TF on the SALAMI 
dataset, showcasing interest for the Barwise TF 
representation.11

4.4 CBM: BAR-SCALE VS. BEAT-SCALE
In order to distinguish the impact of barwise-alignment 
and of the CBM algorithm itself on the segmentation 
results, we compare results obtained on the Barwise 
TF matrix, presented above, with results obtained on 
the “Beatwise TF matrix”, i.e. the equivalent of the 
Barwise TF matrix at the beat-scale. Following the 
intuition that most bars in Western modern music are 
composed of 4 beats per bar, the Beatwise TF matrix 
is sampled with T = 24 samples per beat, i.e. 96

4 . Beats 
are estimated with the algorithm of Böck et al. (2019), 
implemented in the madmom toolbox, as in Section 2.3. 
For fairer comparison, the results at both beatwise and 
barwise scales are computed without penalty function. 
Corresponding results are presented in Tables 10 and 
11.

Results confirm that barwise-alignment is beneficial 
for the performance of the CBM algorithm, especially on 
the RWC Pop dataset, but the CBM algorithm with beat-
aligned features obtains similar or better performance 
than the unsupervised state-of-the-art algorithms 
(Foote, 2000; McFee and Ellis, 2014a; Serrà et al., 2014; 
McCallum, 2019), and is competitive with the supervised 
algorithm of Wang et al. (2021) on both datasets for the 
metric F3s.

5. CONCLUSIONS

This article presented the CBM algorithm for performing 
Music Structure Analysis on audio signals, where 
boundaries between musical sections are computed by 
maximizing the homogeneity of each segment composing 
the segmentation, using dynamic programming under a 
penalty function. Moreover, barwise processing of music 
is shown to increase segmentation performance, using 
the Barwise TF matrix. This work has also investigated 
several metrics to represent similarities between pairs 
of bars in a song. While the CBM algorithm has room for 
improvement, it achieves a level of performance which 
is competitive to the state-of-the-art, and therefore 
appears as a meaningful approach to investigate a 
variety of music representations without needing large 
collections of training data.

The design of the kernel clearly impacts boundary 
retrieval performance. Hence, future work could focus 
on studying alternative types of kernels. The kernel 
values could depend on the particular song or dataset 
considered, or follow particular statistical distributions. 
Of particular interest could be the learning of such 
kernels instead of an (empirical) definition. These latter 
comments are also valid for the penalty functions, whose 
values were set quite empirically, and which would benefit 
from deeper investigation. The number of bands in the 
weighting kernels seems to enforce particular segment 
sizes. This effect can be mitigated with normalization, 
or, conversely, further exploited, for instance by using 
different kernels concurrently, each one accounting for a 
different level of structure, hence studying segmentation 
hierarchically.

Weighting kernels presented in this article focus on the 
homogeneity of each segment, but other kernels could be 
considered in order to account for repetition in the song. 
In fact, the proposed framework is highly customizable 
with respect to weighting kernels, and could be adapted 

SALAMI P0.5s R0.5s F0.5s P3s R3s F3s

Beatwise (cosine, 63-band kernel) 35.90% 41.61% 37.36% 55.75% 64.52% 58.03%

Barwise (RBF, 7-band kernel) 34.49% 54.56% 41.04% 50.70% 80.78% 60.51%

Table 10 CBM algorithm, performed on Barwise TF matrix vs. Beatwise TF matrix, on the SALAMI-test dataset. For fairer comparison, 
results at both scales are computed without penalty function.

RWC Pop P0.5s R0.5s F0.5s P3s R3s F3s

Beatwise (cosine, 63-band kernel) 46.22% 44.38% 44.57% 72.54% 68.85% 69.51%

Barwise (RBF, 7-band kernel) 59.09% 67.13% 62.28% 75.17% 85.90% 79.47%

Table 11 CBM algorithm, performed on Barwise TF matrix vs. Beatwise TF matrix, on RWC Pop. For fairer comparison, results at both 
scales are computed without penalty function.
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to the expected shape of segments. In particular, we 
expect that bridging this work with previous work (Foote, 
2000) could further enhance performance.

6. REPRODUCIBILITY

All the code used in this article is contained in the 
open-source toolbox (Marmoret et al., 2022a), along 
with experimental Notebooks used to compute the 
experimental results.8

A ALGORITHM, IN DETAILS

The detailed algorithm, in pseudo-code, is presented 
hereafter.

Practically, the advantage of the algorithm is to be able 
to store in memory both the optimal antecedent for 
each bar and the scores of the optimal segmentation 
up to each bar when they are computed for the first 
time, respectively denoted as the arrays A* and U in 
Algorithm 1.

NOTES

1 www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_
Results.

2 In this experiment, the Barwise TF matrix is computed on the 
same features as in the implementation of the algorithm of 
Foote (2000) in MSAF (i.e. chroma features).

3 As the song contains B bars, B + 1 represents the end of the last 
bar, i.e. the last downbeat of the song.

4 As each set of boundaries must contain the first and last 
downbeats of the song, at most 2B–1 sets of boundaries can be 
obtained.

5 In details, both Jensen (2006) and Sargent et al. (2016) 
introduced the optimal segmentation as the minimum of a 
cost function, when it is rather defined here as a maximum.  
It actually depends on the way of conceiving the score 
function u, and, in particular, by defining a cost function equal 
to the inverse of the score function u, both problems are 
equivalent.

6 Note that 8 bars containing 4 beats each leads to 32 beats. 4 
beats per bar is a frequent value for Western Pop music.

7 jan-schlueter.de/pubs/2014_ismir/.

8 https://gitlab.imt-atlantique.fr/a23marmo/autosimilarity_
segmentation/-/tree/TISMIR.

9 There is a slight difference in the number of songs in the dataset 
due to some songs being missing in our version of the SALAMI 
dataset.

10 A careful reader will notice that results of Foote (2000) in Figures 
12 and 13 are not exactly the same as those obtained in Tables 
2 and 3. We explain these discrepancies by the use of different 
beatwise estimation algorithms: the madmom toolbox for 
Figures 12 and 13, and the original implementation in the MSAF 
toolbox for Tables 2 and 3.

11 We recall here that the Barwise TF matrix of the Foote-
TF algorithm uses the parameters of Foote (2000), i.e. 
Chromagrams and Cosine self-similarity matrix. Still,  
Foote’s algorithm implementation in Nieto and Bello (2016) 
also uses pre-processing steps which benefit the algorithm, 
and could benefit the CBM algorithm too. Studying these 
types of bridges between both algorithms is left to future 
work.
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Algorithm 1 CBM algorithm, computing the optimal 
segmentation given a score function u().

Input: Bars {bk ∈ ⟦1, B⟧}, score function u
Output: Optimal segmentation Z* = {ζi}
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