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Abstract 

Background  An increasing number of clinical studies have begun to explore combination strategies with immune 
checkpoint inhibitors, aiming to present new opportunities for overcoming anti-PD-1 treatment resistance in gastric 
cancer. Unfortunately, the exploration of certain immune checkpoint inhibitor combination strategies has yielded 
suboptimal results. Therefore, it is necessary to comprehensively analyze the expression patterns of immune check-
points and identify optimal combination regimens of anti-PD-1 inhibitors with other immune checkpoint inhibitors.

Methods  Leveraging single-cell RNA sequencing (scRNA-seq) and multivariate linear regression interaction models, 
we dissected the immune checkpoint expression characteristics of CD8+ T cells in gastric cancer and the immune 
checkpoint expression pattern (ICEP) mediating anti-PD-1 treatment resistance. Furthermore, we employed transcrip-
tion factor analysis and CellOracle to explore the transcriptional regulatory mechanisms governing CD8+ T cell dif-
ferentiation fates. Finally, we utilized Nichenet and spatial transcriptomic analysis to investigate the spatial expression 
patterns of immune checkpoints.

Results  Interaction analysis indicated that, among the known immune checkpoints, co-expression of NKG2A 
and PD-1 might exert a more profound inhibitory effect on the proliferative capacity of CD8+ T cells. The co-expres-
sion analysis revealed differential co-expression pattern of PD-1 and NKG2A, defined as ICEP1 (CD8+ T cells co-express-
ing PD-1, CTLA-4, TIGIT, LAG-3 or CD38) and ICEP2 (CD8+ T cells solely expressing NKG2A or co-expressing with other 
immune checkpoints), reflecting the co-occurrence pattern of PD-1 and the mutual exclusivity of NKG2A. Further, 
these two ICEP CD8+ T cell subsets represented distinct CD8+ T cell differentiation fates governed by MSC and RUNX3. 
Notably, ICEP2 CD8+ T cells were associated with anti-PD-1 therapy resistance in gastric cancer. This phenomenon 
may be attributed to the recruitment of LGMN+ macrophages mediated by the CXCL16-CXCR6 signaling pathway.

Conclusion  This study unveiled two distinct ICEPs and the mutually exclusivity and co-occurrence characteristics 
of CD8+ T cells in gastric cancer. The ICEP2 CD8+ T cell subset, highly expressed in gastric cancer patients resistant 
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to anti-PD-1 therapy, may be recruited by LGMN+ macrophages through CXCL16-CXCR6 axis. These findings provide 
evidence for NKG2A as a novel immunotherapeutic target in gastric cancer and offer new insights into combination 
strategies for immune checkpoint inhibitors in gastric cancer.
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Graphical Abstract

Introduction
The CheckMate-649 clinical trial solidified the pivotal 
role of anti-PD-1 therapy in the first-line treatment of 
advanced gastric cancer and provided compelling evi-
dence for the application of chemotherapy combined 
with immunotherapy in clinical practice for gastric can-
cer. However, a subset of gastric cancer patients failed to 
achieve optimal responses to anti-PD-1 therapy, poten-
tially due to the involvement of immune checkpoints 
other than PD-1 on T cells, leading to target evasion and 
resistance to single-agent anti-PD-1/PD-L1 therapy [1]. 
Consequently, an increasing number of clinical studies 
have begun exploring “dual immunotherapy” in gastric 
cancer, which involves co-inhibition of multiple immune 

checkpoint targets to address target evasion and resist-
ance. Thus, exploring combination regimens of immune 
checkpoint inhibitors presents new opportunities for 
overcoming anti-PD-1 treatment resistance in gastric 
cancer.

Unfortunately, the exploration of certain immune 
checkpoint inhibitor combination strategies has yielded 
suboptimal results. The NCT03662659 clinical trial 
demonstrated that, compared to the combination of 
anti-PD-1 inhibitor and chemotherapy group, the anti-
LAG-3 inhibitor combined with anti-PD-1 inhibitor and 
chemotherapy showed no significant efficacy advantage 
in patients with metastatic gastric or gastroesophageal 
junction adenocarcinoma and had a higher incidence of 
severe adverse events [2]. This highlights the need for a 
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deeper understanding of the underlying mechanisms 
linking PD-1 and LAG-3 immune checkpoints in gastric 
cancer. Another clinical trial, NCT03033576, revealed 
that in advanced melanoma, the combination of anti-
PD-1 and anti-CTLA-4 inhibitors yielded superior effi-
cacy compared to anti-CTLA-4 inhibitor monotherapy. 
However, there was no statistically significant difference 
in the levels of tumor-infiltrating CD8+ T cells between 
the two treatment groups, which contradicted findings 
from basic research studies [3]. This discrepancy may be 
attributed to the lack of a comprehensive understand-
ing of the intrinsic associations and overall patterns of 
immune checkpoint expression. Concurrently, current 
basic research on immune checkpoint inhibitor combi-
nations has primarily focused on immune checkpoints 
associated with CD8+ T cell exhaustion, such as PD-1, 
LAG-3, CTLA-4, and TIGIT, while the impact of other 
immune checkpoint expressions on CD8+ T cell function 
has received limited attention [4–6]. Therefore, there is 
an urgent need for a more comprehensive understand-
ing of immune checkpoint expression patterns (ICEPs) 
in gastric cancer and in-depth exploration of the intrinsic 
relationships among immune checkpoint expressions.

Single-cell RNA sequencing (scRNA-seq) is a powerful 
tool for analyzing gene expression at the single-cell level, 
enabling the study of the functional impact on CD8+ 
T cells when immune checkpoints are expressed indi-
vidually or simultaneously. In this study, we employed 
scRNA-seq, multivariate linear regression interac-
tion models, and spatial transcriptomic sequencing to 
unveil two distinct ICEPs and mutually exclusive and 
co-occurrence characteristics in gastric cancer CD8+ T 
cells. Notably, the ICEP2 CD8+ T cell subset, defined by 
the core immune checkpoint NKG2A, mediated resist-
ance to anti-PD-1 inhibitor therapy in gastric cancer. 
Furthermore, through scRNA-seq analysis of intercellu-
lar communication, the Cancer Genome Atlas-Stomach 
Adenocarcinoma (TCGA-STAD) cohort, and spatial 
transcriptomic sequencing, we identified an immuno-
suppressive LGMN+ macrophage population in the gas-
tric cancer tumor core that recruited ICEP2 CD8+ T 
cells into the tumor-infiltrating region via the CXCL16-
CXCR6 chemokine axis. Our study provides new evi-
dence for NKG2A as an immunotherapeutic target in 
gastric cancer and offers novel insights into combination 
strategies for immune checkpoint inhibitors in gastric 
cancer.

Material and methods
Acquisition of single‑cell transcriptomic data
The raw sequencing data for the gastric cancer single-cell 
cohorts GSE183904 and OMIX001073 were downloaded 

from the Gene Expression Omnibus (GEO) database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) supported by the 
National Center for Biotechnology Information (NCBI) 
and the Open Archive for Miscellaneous Data (OMIX) 
database (https://​ngdc.​cncb.​ac.​cn/​omix/​relea​seList), 
respectively.

Additionally, to explore the ICEPs mediating anti-
PD-1 treatment resistance in gastric cancer patients, we 
obtained scRNA-seq data from fresh tumor tissues of 17 
gastric cancer patients at Nanfang Hospital (Guangzhou, 
China). All gastric cancer patients signed informed con-
sent forms regarding the use of their clinical information 
and tissue samples. The detailed clinical information of 
the single-cell cohorts is provided in Additional file  4: 
Table S3.

Fresh human tumor tissues were collected and minced 
into small pieces on ice. Subsequently, the tissues were 
digested using the Tissue Dissociation Kits (Miltenyi, 
130,110,201). The procedure involved mixing the tis-
sues with 5 ml enzyme mix (4.7 mL RPMI1640 + 200μL 
enzyme H + 100  μl enzyme R + 25  μl enzyme A) and 
incubating with agitation at 37 ℃ for up to 40  min to 
obtain a single-cell suspension. The collected cells were 
then pelleted, resuspended, and filtered through a 30 μm 
cell strainer to obtain a uniform cell suspension. Samples 
meeting the following criteria were selected for library 
construction: viability > 80%, nucleus cell rate > 70%, and 
clump rate < 20%.

The ChromiumTM Controller and ChromiumTM Sin-
gle Cell 5′ Reagent Version 2 Kit from 10 × Genomics 
were employed to conduct library construction experi-
ments. In brief, GemCode Technology was leveraged to 
encapsulate sorted cells, reagents, and gel beads con-
taining barcoded oligonucleotides into nanoliter-sized 
GEMs. Polyadenylated mRNA from individual cells was 
lysed and subjected to barcoded reverse transcription 
within each GEM. Post-RT GEMs were purified and the 
cDNA amplified. The cDNA was then fragmented and 
repaired on the ends, and an A-tail was added to the 
5′ end. Adaptors were ligated to the fragments which 
underwent double-sided size selection with SPRI. Fol-
lowing sample index PCR, another round of double-sided 
SPRI selection was performed. Real-time quantitative 
PCR with TaqMan probes was used to assess quality and 
quantity of the final library. The ultimate products were 
sequenced on the Xten-PE151 platform from BGIShen-
zhen, China.

Acquisition of bulk transcriptomic data
The transcriptomic expression values, patient clinical 
information, and survival data for Stomach Adenocar-
cinoma (STAD) from TCGA were downloaded from the 
UCSC Xena database (https://​xenab​rowser.​net/​datap​

https://www.ncbi.nlm.nih.gov/geo/
https://ngdc.cncb.ac.cn/omix/releaseList
https://xenabrowser.net/datapages/
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ages/). The downloaded mRNA expression values were 
in the format of Transcripts Per Kilobase of exon model 
per Million mapped reads (TPM). All analyses were per-
formed in R (version 4.2.0).

Acquisition of spatial transcriptomic data
Fresh tumor tissue samples were collected from a gas-
tric cancer patient at Nanfang Hospital, embedded, and 
cryosectioned to obtain ten frozen sections. These sec-
tions were placed in enzyme-free tubes for RNA extrac-
tion, with the requirement that the extracted RNA must 
be of high quality, having an RNA Integrity Number 
(RIN) greater than 7. To optimize tissue permeabiliza-
tion conditions, a tissue optimization chip with eight 
capture areas was utilized. The frozen sections were 
mounted onto the corresponding areas of the chip, fol-
lowed by H&E staining and imaging for tissue permea-
bilization. Under the action of tissue permeabilization 
enzymes, the released mRNA from cells was captured by 
probes, forming fluorescently labeled cDNA. The optimal 
permeabilization time was determined based on the flu-
orescence imaging results. Once the optimal permeabili-
zation conditions were established, spatial transcriptomic 
library construction and sequencing could proceed. The 
required spatial gene expression chips contained either 
two or four capture areas, each comprising 4992 spots. 
Each spot contained a unique spatial barcode and mil-
lions of nucleotide primers. After permeabilization, the 
released mRNA from cells hybridized with the barcoded 
primers, followed by cDNA synthesis and library con-
struction. Depending on the tissue type, each barcode 
could correspond to 1–10 cells. Prior to spatial transcrip-
tomic sequencing, the frozen sections were mounted 
onto the capture areas of the gene expression chips and 
subjected to H&E staining and imaging. Tissue permeabi-
lization was performed according to the previously deter-
mined conditions, allowing the released mRNA from 
cells to be captured by the primers on the chip. By add-
ing reverse transcription reagents (RT Master Mix) and 
incubating with the sample, full-length barcoded cDNA 
was generated on the slides. The cDNA was used as a 
template for PCR amplification. After amplification, the 
amplified products underwent quality control, including 
checking the size of the amplified fragments and the yield 
of the amplified products. Qualified amplified products 
were further used for sequencing library construction. 
First, the cDNA was chemically fragmented into approxi-
mately 200–300 bp fragments. Subsequently, fragmenta-
tion, end-repair, and A-tailing were performed, followed 
by cDNA fragment selection. Next, the P7 Adapter was 
ligated, and sample dual-end indexing was introduced 
through PCR amplification. Finally, fragment selection 
was carried out to obtain the cDNA library.

Initial processing and quality control of single‑cell RNA‑seq 
datasets
CellRanger (version 4.0.0), developed by 10 × Genom-
ics, was used to process raw sequencing data, including 
alignment, quantification, simple filtering and quality 
control to generate initial gene expression matrices based 
on the human reference genome GRCh38. The R package 
Seurat (version 4.4.0) was then applied for downstream 
quality control and analysis [7]. High-quality cells were 
retained by filtering for: (i) cells expressing 500–6000 
genes, and (ii) cells with mitochondrial gene UMI counts 
accounting for less than 20% of total UMI counts. (iii) 
Genes expressed in at least 3 cells were also kept. After 
quality control, 65,976 high-quality cells were retained 
for subsequent analysis.

Downstream analysis of single‑cell RNA‑seq datasets
Normalization of counts was performed using the Nor-
malizeData function. The FindVariableFeatures function 
was applied to select the top 2000 most variable genes 
across cells. Dimensionality reduction was achieved 
through PCA after gene normalization via ScaleData. 
Batch effects were corrected across samples using scVI 
[8]. Clustering was performed at a resolution of 0.6 
and visualized through UMAP embedding. Finally, all 
cells were annotated into 8 cell types (epithelial, B cells, 
plasma cells, macrophages, fibroblasts, endothelial cells, 
mast cells, T cells and NK cells) according to cell-specific 
marker genes.

Multivariate linear regression interaction model
To assess the relationship between two immune check-
points and proliferation of CD8+ T cells, we employed 
a multivariate linear regression model [9]. First, a prolif-
eration score was computed for each cell in the scRNA-
seq data based on a gene signature of T cell proliferation 
using Ucell. P and O represent expression levels of the 
two immune checkpoints. The following regression equa-
tion was fitted:

where proliferation is the outcome variable, and d, a, b 
and c are regression coefficients. P and O are the inde-
pendent variables representing expression levels of the 
two checkpoints.

d is the intercept, representing the expected mean pro-
liferation score when both independent variables P and O 
are zero.

a is the regression coefficient for P, indicating the effect 
of a single unit change in P on proliferation when O is 
held constant.

d + a∗ P + b∗ O + c∗O∗ P = proliferation

https://xenabrowser.net/datapages/
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b is the regression coefficient for O, indicating the 
effect of a single unit change in O on proliferation when P 
is held constant.

c is the regression coefficient for the interaction term 
P*O, representing the joint effect of changes in both P 
and O on proliferation.

This model considers the interaction between the inde-
pendent variables via the P*O term. The interaction term 
allows the model to capture non-linear relationships 
where the joint effect of the variables exceeds their indi-
vidual effects.

The interaction test t-value was computed as c/Stad-
Err using ordinary least squares estimation. A negative 
t-value would indicate a synergistic inhibitory effect of 
co-expression levels of the two checkpoints on CD8+ T 
cell proliferation, whereas a non-significant value sug-
gests no interaction effect.

Cell trajectory analysis
Pseudotime analysis was performed using the R pack-
age Monocle3 (version 0.2.0) to infer developmental 
trajectories and temporal information of macrophages 
[10]. We use preprocess_cds for data preprocessing, fol-
lowed by reduce_dimension function to perform UMAP 
dimensionality reduction. Then we use cluster_cells and 
plot_cells functions for unsupervised clustering and 
visualization. Finally, we use the default parameters of 
the learn_graph function to infer cell differentiation 
trajectories.

Single‑cell transcriptomics NicheNet analysis of cell–cell 
communication
NicheNet is a computational approach that leverages 
prior knowledge of ligand-receptor pairs, signaling path-
ways and gene regulatory networks to prioritize ligands 
that may regulate the expression of gene sets of inter-
est [11]. Gene sets were defined as upregulated genes in 
each cell type of interest (non-responders vs respond-
ers). Thresholds of P-value ≤ 0.05 and LogFC ≥ 0.50 
were applied for each cell type of interest. The analysis 
included only ligands expressed in ≥ 5% of cells in at least 
one cell type of interest. This was followed by ligand-
receptor activity analysis between CD8+ T cell subclus-
ters and macrophages.

Transcription factor analysis
SCENIC, an approach based on co-expression and 
motifs, was employed to reconstruct gene regulatory 
networks (GRNs) from single-cell transcriptomics data 
to predict transcription factors and regulatory elements 
activated in different cell types [12]. The “hg38__refseq-
r80__10kb_up_and_down_tss.mc9nr.genes_vs_motifs.

rankings.feather” dataset was used for transcription fac-
tor annotation. Tools like GRNBoost2 (Gradient Boost-
ing) were applied to predict co-expression modules 
between transcription factors and target genes, infer-
ring potential transcription factors in GRN. RcisTarget 
analyzed genes in all co-expression modules to identify 
enriched transcription factor binding sites, construct-
ing transcription factor-target networks (TF-targets net-
works) by filtering modules with transcription factor set 
site enrichment and their targets. Each transcription fac-
tor and its potential direct targets were termed a regu-
lon. AUCell scores were calculated for each regulon to 
determine its activity status in each cell. SCENIC finally 
identified differences in transcription factor and regulon 
activities across cell subclusters.

CellOracle gene perturbation modeling
We employed CellOracle[13] to simulate cell identity shifts 
following transcription factor knockout, computing pseu-
dotime and perturbation scores based on the contextual 
gene regulatory network constructed from our gastric can-
cer scRNA-seq data. CellOracle analysis was performed 
following the official tutorial with default parameters 
(https://​morris-​lab.​github.​io/​CellO​racle.​docum​entat​ion/).

Prediction of immunotherapy response
The Tumor Immune Dysfunction and Exclusion (TIDE) 
score is a web-based tool (http://​tide.​dfci.​harva​rd.​edu/​
login/) [14] used to predict the efficacy of immune 
checkpoint inhibitors. It quantifies the TIDE score for 
each patient by calculating the activity of two mecha-
nisms: immune inhibitory factors and T cell functional 
inactivation.

CIBERSORTx deconvolution of immune cell infiltration 
from transcriptomic data
To computationally analyze the immune infiltration of 
TME cell types in the TCGA-STAD cohort correspond-
ing to our scRNA-seq data of gastric cancer immuno-
therapy response, the online tool CIBERSORTx [15] was 
used. A reference signature matrix was built from the sin-
gle-cell RNA-seq dataset and utilized to infer relative cell 
type proportions in the TCGA-STAD cohort. Pearson 
correlation analysis was performed to evaluate relation-
ships between cell type infiltrations, considering correla-
tions with P-values < 0.05 to be significant. Through these 
steps, the immune infiltration of different cell types in the 
TCGA-STAD cohort was analyzed and described accu-
rately, providing insights into interactions between cell 
populations in the gastric cancer microenvironment.

https://morris-lab.github.io/CellOracle.documentation/
http://tide.dfci.harvard.edu/login/)
http://tide.dfci.harvard.edu/login/)
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Initial processing and quality control of spatial 
transcriptomics datasets
The raw data was processed using the official 
10 × Genomics analysis software Space Ranger (version 
2.0.0) (https://​suppo​rt.​10xge​nomics.​com/​spati​al-​gene-​
expre​ssion/​softw​are/​overv​iew/​welco​me) for filtering, 
alignment, quantification and generation of spot gene 
expression matrices. Seurat R package was used to com-
pute the percentage of mitochondrial genes in each spot 
and spots with percentages exceeding a threshold of 20% 
were filtered.

Downstream analysis of spatial transcriptomics datasets
A Seurat spatial object was created from the data using 
CreateSeuratObject and Read10X_Image functions. 
Dimensionality reduction was performed using SCTrans-
form to normalize, detect highly variable features and 
embed the data in SCT analytics. Data was further scaled 
using ScaleData, followed by PCA dimensionality reduc-
tion using RunPCA. Clustering was done at a resolution 
of 0.6 using FindNeighbors and FindClusters.

Cell type annotation of spatial transcriptomics datasets
The Bayesian method Cell2location [16] leverages single-
cell transcriptomics as a reference to perform spatial cell 
type mapping. It involves two key steps. Firstly, charac-
teristic signatures for reference cell types are computed 
using negative binomial regression, allowing integration 
across technologies and batches for improved flexibility 
and accuracy. Secondly, one or more spatial transcrip-
tomics datasets are parsed to determine abundances for 
each location and cell type. This step provides detailed 
spatial distribution insights revealing cell positioning 
and interactions in tissues. Cell2location first uses nega-
tive binomial regression on scRNA-seq annotations to 
infer characteristic cell type signals. Taking the reference 
signals and the spatial transcriptomic dataset as input, 
Cell2location then computes abundances of different cell 
types across spots in the spatial data.

Spatial transcriptomics Cellchat analysis of cell–cell 
communication
The R package CellChat (version 1.6.1) was implemented 
to infer communication between TME subclusters at 

the spatial transcriptomics level [17]. The gene expres-
sion matrix and cell annotations were extracted from 
the Seurat object using GetAssayData. Subsequent 
ligand-receptor inference was based on the CellChatDB. 
Human dataset from the CellChatDB database. Over-
expressed genes for each cell type were identified using 
identifyOverExpressedGenes, and overexpressed inter-
actions using identifyOverExpressedInteractions. The 
ligand-receptor interactions were projected onto the 
protein–protein interaction network using project-
Data. Communication probabilities between cells were 
computed using computeCommunProb to infer a cell 
communication interaction network. This revealed the 
quantity and intensity of interactions between different 
cell types.

Correlation analysis and survival analysis of bulk 
transcriptomic data
RNA-seq data and clinical survival information of TCGA-
STAD were downloaded from the UCSC Xena database. 
Log2 transformation was applied for subsequent analysis. 
Expression values of gene sets of interest were extracted 
from the dataset. Pearson correlation analysis was per-
formed to determine correlations between gene expres-
sions and a significance of P-value < 0.05 was considered. 
To calculate the correlation between immune infiltration 
and patient survival time, the surv_cutpoint function in 
the R survminer package was used to compute the opti-
mal cut-off of immune infiltration levels in TCGA-STAD 
patients based on CIBERSORTx estimates. Patients were 
divided into high and low infiltration groups. Kaplan–
Meier survival curves were fitted using survfit and visual-
ized using ggsurvplot to assess the impact of infiltration 
levels on survival outcomes.

Results
Interaction analysis reveals the differential co‑expression 
effect with PD‑1
CD8+ T cells play a crucial role in anti-tumor immune 
responses. As potent effector cells, CD8+ T cells possess 
the ability to directly kill tumor cells as well as activate 
and regulate other the functions of other immune cells. 
This makes CD8+ T cells an important research subject 
in tumor immunotherapy. To comprehensively delineate 

Fig. 1  Interaction analysis between immune checkpoints on gastric cancer CD8+ T cells. A UMAP plot of CD8+ T cell subsets in gastric cancer 
patients, color-coded by cell type. B Dot plot illustrating the average expression values of known marker genes across different cell types. The size 
and color of the dots represent the average expression levels of the genes. C Proportion of immune checkpoint-positive cells in CD8+ cells gastric 
cancer patients. D Heatmap of k-means clustering for seven immune checkpoints. E Schematic representation of the multivariate linear regression 
interaction equation. F Volcano plot displaying the interaction test t-values for the multivariate linear regression interaction equations involving 
the seven immune checkpoints. G Scatter plot illustrating the relationship between KLRC1, PDCD1, and T cell proliferation

(See figure on next page.)

https://support.10xgenomics.com/spatial-gene-expression/software/overview/welcome
https://support.10xgenomics.com/spatial-gene-expression/software/overview/welcome
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Fig. 1  (See legend on previous page.)
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the intrinsic associations between immune checkpoint 
expressions and the impact of different expression pat-
terns on CD8+ T cell function, we obtained gastric can-
cer single-cell cohorts GSE183904 and OMIX001073 
from the GEO and OMIX databases, respectively. After 
the process described in the Materials and Methods sec-
tion, including quality control for all samples to exclude 
low-quality cells, a total of 207,874 cells were retained. 
Subsequently, we performed batch effect removal and 
dimensionality reduction clustering analysis, and based 
on typical marker genes, we classified them into eight 
major cell types, including epithelial cells (EPITHELIAL, 
highly expressing EPCAM, KRT19, PROM1, ALDH1A1, 
CD24), B lymphocytes (B-CELL, highly expressing CD19, 
MS4A1, CD79A), plasma cells (PLASMA, highly express-
ing IGHG1, MZB1, CD38, TNFRSF17, SDC1), mye-
loid cells (MYELOID, highly expressing CD68, CD163, 
CD14), fibroblasts (FIBROBLAST, highly expressing 
FGF7, MME), endothelial cells (ENDOTHELIAL, highly 
expressing PECAM1, VWF), mast cells (MAST, highly 
expressing KIT), and T lymphocytes and NK cells (LYM-
PHOID & NK, highly expressing CD3D, CD3E, CD8A, 
CD8B, CD4 or highly expressing FGFBP2, FCG3RA, 
CX3CR1) (Additional file 1: Figs. S1A, B).

Next, we extracted a total of 40,381 CD8+ T cell sub-
populations and further divided them into seven CD8+ 
T cell subgroups, including CD8+ naive T cells (CD8+ 
Tn, highly expressing TCF7, LEF1, MAL), CD8+ IL7R+ 
memory T cells (CD8+ IL7R+ Tm, highly express-
ing IL7R, GPR183, ZFP36L2, CXCR4), CD8+ KLRC1+ 
tissue-resident memory T cells (CD8+ KLRC1+ Trm, 
highly expressing KLRC1, KLRD1, ZNF683, ITGAE, 
CXCR6), CD8+ GMZK+ effector T cells (CD8+ GMZK+ 
Teff, highly expressing GZMK, NKG7, GZMA, PDCD1, 
TIGIT), CD8+ GMZH+ effector T cells (CD8+ GMZH+ 
Teff, highly expressing GZMH, GZMA, IFNG, NKG7), 
CD8+ exhausted T cells (CD8+ Tex, highly expressing 
PDCD1, TIGIT, LAG3, CTLA4, TOX, CD38), and Prolif-
erating CD8+ T cells (highly expressing MKI67) (Fig. 1A, 
B).

Furthermore, we collected 16 immune checkpoints 
reported in previous research, including immune 
checkpoint co-inhibitory molecules PD-1 (PDCD1), 
CTLA-4 (CTLA4), LAG-3 (LAG3), TIGIT,  HAVCR2 
(TIM3), NKG2A (KLRC1), and VISTA (VSIR); immune 

checkpoint co-stimulatory molecules TNFRSF18 (GITR), 
TNFRSF4 (OX40), TNFRSF9 (4-1BB), TNFRSF14 
(HVEM), ICOS (CD278), CD27, CD28; and other 
immune-related molecules ENTPD-1 (CD39), CD38. 
By calculating the expression proportions of immune 
checkpoint molecules in T cells, the results showed 
that PDCD1, CTLA4, LAG3, TIGIT, KLRC1, VSIR, and 
CD38 had expression proportions exceeding 10% in T 
cells. Notably, KLRC1 was primarily expressed on CD8+ 
T cells, with a lower expression proportion on CD4+ T 
cells. In contrast, CTLA4 had a higher expression pro-
portion on CD4+ T cells (Fig. 1C, Additional file 1: Fig. 
S1C). To explore the expression of immune checkpoints 
in CD8+ T cells, we performed k-means clustering based 
on the expression values of the seven immune check-
points in CD8+ T cells, resulting in 50 subgroups with 
co-expression of immune checkpoints, suggesting the 
existence of co-expression phenomena in CD8+ T cells 
(Fig. 1D).

Immune checkpoints exhibit a widespread phenome-
non of co-expression, while some checkpoints tend to be 
mutually exclusive, inducing T cell dysfunction through 
shared or distinct mechanisms. Whether the impact on T 
cell function is consistent when different immune check-
points co-express remains to be investigated. Therefore, 
we utilized a multivariate linear regression interaction 
equation to analyze the relationship between the co-
expression of two immune checkpoints and CD8+ T cell 
function. First, based on the cell cycle and DNA replica-
tion gene set (Additional file 2: Table S1), we quantified 
the proliferation function of each CD8+ T cell using the R 
package Ucell. Subsequently, we quantified the relation-
ship between CD8+ T cell proliferative function and the 
expression of two immune checkpoints by calculating the 
interaction test t-value (Coef/StadErr). If the t-value is 
negative, it indicates that the co-expression levels of the 
two immune checkpoints have a synergistic inhibitory 
effect on CD8+ T cell proliferative function; otherwise, 
there is no synergistic inhibitory effect (the interaction 
equation P-value indicates the statistical significance 
of the t-value) (Fig.  1E). The results showed that only 
KLRC1 with PDCD1, and VSIR with KLRC1 had nega-
tive t-values, while the t-values between PDCD1, CTLA4, 
TIGIT, LAG3, and CD38 were all positive (Fig.  1F, G, 
Additional file 3: Table S2).

(See figure on next page.)
Fig. 2  Mutual exclusivity and co-occurrence pattern of immune checkpoints in gastric cancer. A Schematic of patient grouping information. B 
Bar chart illustrating the percentages of gastric cancer patients with individual immune checkpoint expression, co-expression of two immune 
checkpoints (ICs), co-expression of three immune checkpoints, and co-expression of four immune checkpoints. C Upset plot illustrating patterns 
of co-occurrence of immune checkpoints. D UMAP plot of CD8+ T cell subpopulations in gastric cancer patients, color-coded by cell type. E 
Heatmap displaying the distribution of ICEPs in cell subpopulations, estimated based on the ratio of observed cell counts to expected cell counts 
(Ro/e) calculated using a chi-square test
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Therefore, these results suggest that the co-expression 
of the immune checkpoints NKG2A and PD-1 on CD8+ 
T cells may maximally inhibit the proliferative function 
of CD8+ T cells. This provides new insights for combina-
tion therapy regimens with anti-PD-1 inhibitors in gas-
tric cancer.

Co‑expression analysis demonstrates the mutual 
exclusivity and co‑occurrence pattern of immune 
checkpoints
PD-1 and NKG2A exert reciprocal inhibitory effects on 
CD8+ T cells, suggesting potential inhibition of T cell 
function through distinct mechanisms. Next, we aim 
to investigate whether PD-1 and NKG2A co-express or 
exhibit different expression patterns at the cellular sub-
set level. We first obtained fresh tumor tissue scRNA-
seq from 17 gastric cancer patients, including samples 
from different stages of anti-PD-1 treatment and differ-
ent best overall responses (BOR). Among these, samples 
from 8 patients were collected after anti-PD-1 treatment, 
divided into two efficacy groups: post-treatment non-
responders (Post-NR, including post-treatment stable 
disease (Post-SD)/post-treatment progressive disease 
(Post-PD), n = 5) and post-treatment responders (Post-
R, including post-treatment partial response (Post-PR), 
n = 3). For the remaining 9 patients, samples were col-
lected through biopsy before anti-PD-1 treatment, and 
efficacy information was collected after treatment, simi-
larly divided into two efficacy groups: pre-treatment 
non-responders (Pre-NR, including pre-treatment sta-
ble disease (Pre-SD)/ pre-treatment progressive disease 
(Pre-PD), n = 6) and pre-treatment responders (Pre-
R, including pre-treatment partial response (Pre-PR), 
n = 3) (Fig.  2A, Additional file  4: Table  S3). After the 
process described in the Materials and Methods sec-
tion, a total of 65,979 cells were retained. Subsequently, 
batch effect removal and dimensionality reduction clus-
tering analysis were performed, and the cells were clas-
sified into 8 major cell types, including 24,273 epithelial 
cells (EPITHELIAL), 1822 B lymphocytes (B-CELL), 
5581 plasma cells (PLASMA), 9894 myeloid cells (MYE-
LOID), 4,816 fibroblasts (FIBROBLAST), 2923 endothe-
lial cells (ENDOTHELIAL), 1340 mast cells (MAST), 
and 15,327 T lymphocytes and NK cells (LYMPHOID & 

NK) (Additional file  5: Fig. S2A, B, C, Additional file  6: 
Table S4).

Similarly, after extracting T cells and CD8+ T cells and 
calculating the expression proportions of immune check-
points, we found that PDCD1, CTLA4, LAG3, TIGIT, 
KLRC1, VSIR, and CD38 had expression proportions 
exceeding 10% in T cells. Consistent with the external 
cohort results, KLRC1 was mainly expressed on CD8+ T 
cells, and CTLA4 had a higher expression proportion on 
CD4+ T cells (Additional file 5: Fig. S2D). Subsequently, 
when comparing the proportions of each immune 
checkpoint expressed alone or co-expressed with other 
immune checkpoints, we found that PDCD1, CTLA4, 
TIGIT, LAG3, and CD38 exhibited a certain proportion 
of co-expression with three immune checkpoints, and 
PDCD1, CTLA4, TIGIT, and LAG3 even showed co-
expression with four immune checkpoints. In contrast, 
compared to other immune checkpoints, KLRC1 had the 
highest proportion of single expression, reaching 40%. 
Furthermore, the proportion of KLRC1 co-expressed 
with three immune checkpoints was the lowest, and 
there was no co-expression with four immune check-
points (Fig. 2B-C).

To delineate the co-expression characteristics of 
immune checkpoints in CD8+ T cells, we performed 
k-means clustering based on the expression values of the 
seven immune checkpoints in CD8+ T cells, resulting 
in 50 subgroups. Using a threshold of 1, we named the 
immune checkpoint expression features of the 50 sub-
groups, ultimately obtaining 34 ICEPs (Additional file 3: 
Fig. S2E). To further understand the CD8+ T cell state 
represented by the ICEPs, we divided CD8+ T cells into 
6 subgroups, including CD8+ naive T cells (CD8+ Tn), 
CD8+ IL7R+ memory T cells (CD8+ IL7R+ Tm), CD8+ 
KLRC1+ tissue-resident memory T cells (CD8+ KLRC1+ 
Trm), CD8+ GMZK+ effector T cells (CD8+ GMZK+ 
Teff), CD8+ GMZH+ effector T cells (CD8+ GMZH+ 
Teff), and CD8+ exhausted T cells (CD8+ Tex) (Fig. 2D, 
Additional file 6: Table S4). By quantifying the subgroup 
preferences for each ICEP, we found that the subgroups 
co-expressing PDCD1, CTLA4, TIGIT, LAG3, and CD38 
were mainly enriched in CD8+ Tex, followed by CD8+ 
GMZK+ Teff and CD8+ GMZH+ Teff. In contrast, the 
subgroups expressing KLRC1 alone or co-expressing with 

Fig. 3  Fate determination and transcriptional regulation mechanisms of gastric cancer CD8+ T cells differentiation. A Monocle3 analysis identifying 
the differentiation trajectory of CD8+ T cells, with colors corresponding to pseudotime. B Along the pseudotime axis, density distribution plot 
of CD8+ T cells subpopulations by position. C Dynamic visualization of immune checkpoint expression along the pseudotime analysis axis. D 
Scatter plot illustrating the transcriptional regulatory network of (left) CD8+ Tex subpopulation and (right) CD8+ KLRC1+ Trm subpopulation. E Box 
plot showing the expression of transcription factors MSC and RUNX3. F CellOracle simulation depicting the cell fate vector plot after (left) MSC 
and (right) RUNX3 knockout; *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001; ****P-value < 0.0001

(See figure on next page.)
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other immune checkpoints were most highly enriched 
in CD8+ KLRC1+ Trm, followed by CD8+ IL7R+ Tm 
(Fig. 2E).

In summary, our findings indicated that PD-1, CTLA-
4, TIGIT, LAG-3, and CD38 showed a co-occurrence 
pattern in CD8+ T cells, possibly associated with their 
shared characterization of CD8+ T cell exhaustion. 
Interestingly, NKG2A demonstrated a distinct mutual 
exclusive expression pattern compared to other immune 
checkpoints, showing a preference for either singular 
expression or co-expression with another immune check-
point. Based on these immune checkpoint expression 
characteristics, we divided CD8+ T cells into two groups: 
one group co-expressing PD-1, CTLA-4, TIGIT, LAG-
3, or CD38 associated with exhausted T cells, which we 
named immune checkpoint expression pattern (ICEP) 
1 CD8+ T cells, and the other group expressing NKG2A 
alone or co-expressing with other immune checkpoints, 
which we named ICEP2 CD8+ T cells.

Immune checkpoint co‑expression patterns are associated 
with distinct differentiation fates of CD8+ T cells
We inferred the potential differentiation trajectory of 
CD8+ T cells using Monocle3. The results showed that 
CD8+ Tn cells were at the starting point of the CD8+ T 
cell differentiation trajectory, subsequently branching 
into two paths. Branch 1 progressed from CD8+ Tn to 
CD8+ GMZK+ Teff, CD8+ GMZH+ Teff, and finally to 
CD8+ Tex. Branch 2 followed the path from CD8+ Tn 
to CD8+ IL7R+ Tm, CD8+ KLRC1+ Trm, and ultimately 
to CD8+ Tex (Fig.  3A, B). Additionally, we found that 
the expression of PDCD1, CTLA4, and TIGIT initially 
decreased during the differentiation from CD8+ Tn to 
CD8+ KLRC1+ Trm, but reached a peak during the dif-
ferentiation towards CD8+ Tex. In contrast, CD38 and 
LAG3 exhibited increased expression during the differ-
entiation from CD8+ Tn to CD8+ GMZK+ Teff and CD8+ 
GMZH+ Teff, followed by a decrease in expression in 
CD8+ KLRC1+ Trm, and a subsequent re-elevation dur-
ing the differentiation towards CD8+ Tex. Conversely, 
KLRC1 expression gradually increased during the dif-
ferentiation from CD8+ Tn to CD8+ KLRC1+ Trm but 

decreased during the differentiation towards CD8+ 
Tex. VSIR exhibited a relatively stable expression pat-
tern throughout the CD8+ T cell differentiation process 
(Fig. 3C). Therefore, we hypothesized that CD8+ T cells 
in gastric cancer patients undergo two distinct differen-
tiation fates, with CD8+ T cells on branch 1 overlapping 
with ICEP1 CD8+ T cells, and CD8+ T cells on branch 
2 overlapping with ICEP2 CD8+ T cells, suggesting that 
the two ICEPs may represent two distinct differentiation 
fates of CD8+ T cells.

To delineate the upstream regulatory mechanisms of 
the two ICEPs in CD8+ T cells, we analyzed the tran-
scriptional regulatory factors in different CD8+ T cell 
subgroups using the R package SCENIC. The results 
showed that CD8+ Tex cells were highly enriched for 
transcription factors related to T cell differentiation, such 
as RORC, NR1D1, PPARG, and MSC [18–20] (Fig. 3D). 
Previous studies have found that the transcription fac-
tor MSC can promote the differentiation of regulatory 
T cells (Tregs), which highly express various immune 
checkpoints [21]. Therefore, we hypothesized that MSC 
might also be involved in the regulation of immune 
checkpoint expression. Further analysis of the TCGA-
STAD cohort revealed a positive correlation between 
MSC expression and the expression of PDCD1, TIGIT, 
CD38, and LAG3 (Additional file 7: Fig. S3A). Moreover, 
MSC was relatively highly expressed in the responder 
group (Fig.  3E), and its expression dynamics gradually 
increase from CD8+ Tn to CD8+ Tex during the differ-
entiation process, reaching a peak at CD8+ Tex. (Addi-
tional file  7: Fig. S3B). In contrast, CD8+ KLRC1+ Trm 
cells were highly enriched for RUNX3 (Fig. 3D). Studies 
have reported that RUNX3 deficiency leads to increased 
expression of LAG3, TIM3, and CTLA4. Furthermore, 
RUNX3 has been shown to programmatically control 
the tissue-resident properties of CD8+ T cells in tumors 
[22], consistent with our findings. Further results showed 
a positive correlation between RUNX3 and KLRC1 
expression (Additional file  7: Fig. S3A), and RUNX3 
was relatively highly expressed in the non-responder 
group (Fig. 3E). Its expression dynamics were also simi-
lar to those of KLRC1, gradually increasing during the 

(See figure on next page.)
Fig. 4  CD8+ T cells with mutual exclusivity pattern relates to anti-PD-1 resistance in gastric cancer. A Bar plot showing the intergroup differences 
in ICEPs in CD8+ T cells. B Box plot displaying the intergroup differences in KLRC1 expression in CD8+ T cells. C Subpopulations of spatial 
transcriptomic data. D Spatial localization of tumor cells using Cell2location on the samples, with color intensity representing the infiltration 
abundance. E Division of samples into intratumoral and peritumoral regions based on the tumor cell localization obtained from Cell2location. F 
Box plot showing the expression values and statistical differences of PDCD1, CTLA4, TIGIT, and KLRC1 between the peritumoral and intratumoral 
regions. G Expression values of immune checkpoint markers PDCD1, CTLA4, TIGIT, as well as CD8+ T cell, CD4+ T cell, ICEP2, and ICEP1 in each 
clustered subpopulation. H Subdivision of regions into high-density, medium-density, low-density, and peritumoral areas based on tumor cell 
infiltration levels. I Box plot illustrating the cytotoxicity scores of cells in different regions; *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001; 
****P-value < 0.0001
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differentiation from CD8+ Tn to CD8+ KLRC1+ Trm but 
decreasing during the differentiation towards CD8+ Tex 
(Additional file 7: Fig. S3B).

CellOracle is a machine learning-based transcription 
factor perturbation model that can simulate cell identity 
transitions by combining scRNA-seq data with gene reg-
ulatory networks (GRNs). To validate the transcriptional 
regulatory roles of MSC and RUNX3 in the differentia-
tion of CD8+ T cells, we utilized the human promoter 
GRN provided by CellOracle to predict the global gene 
expression changes in CD8+ T cell subgroups upon 
knockout of MSC and RUNX3, respectively. Accord-
ing to the vector field flow results predicted by CellOra-
cle, the knockout of MSC led to a change in the vector 
direction of CD8+ T cells on branch 1, with most vectors 
pointing towards CD8+ T cells on branch 2, suggesting 
that the differentiation of ICEP1 CD8+ T cells was poten-
tially restricted upon MSC knockout. Conversely, the 
knockout of RUNX3 resulted in a change in the vector 
direction of CD8+ T cells on branch 2, indicating that the 
differentiation of ICEP2 CD8+ T cells might be restricted 
upon RUNX3 knockout (Fig.  3F). These results suggest 
that MSC and RUNX3 may play a role in the differentia-
tion process of CD8+ T cells exhibiting the two ICEPs.

In summary, we discovered that the two ICEPs rep-
resent two distinct differentiation fates of CD8+ T cells. 
ICEP1 CD8+ T cells represent the branch from CD8+ Tn 
to CD8+ GMZK+ Teff, CD8+ GMZH+ Teff, and finally 
to CD8+ Tex. ICEP2 CD8+ T cells represent the branch 
from CD8+ Tn to CD8+ IL7R+ Tm, CD8+ KLRC1+ Trm. 
Furthermore, MSC and RUNX3 may participate in reg-
ulating the differentiation of CD8+ T cells exhibiting 
these two ICEPs, offering new understandings into the 
upstream regulatory mechanisms of immune checkpoint 
expression.

NKG2A mutual exclusivity relates to anti‑PD‑1 resistance 
in gastric cancer
To investigate whether ICEP mediates resistance to 
anti-PD-1 therapy in gastric cancer, we assessed the 
disparity in the proportion of different ICEPs between 
the non-responder and responder groups. The results 

showed that the ICEP with the highest ranked difference 
was the CD8+ T cells with high expression of KLRC1 
alone, while the pattern with the lowest ranked differ-
ence was the CD8+ T cells co-expressing high levels of 
PDCD1, CTLA4, TIGIT, and LAG3 (Fig.  4A). Subse-
quently, when comparing the expression differences of 
the seven immune checkpoints and co-inhibitory mol-
ecules PDCD1, CTLA4, LAG3, TIGIT, KLRC1, VSIR, 
and CD38 before and after anti-PD-1 therapy, as well as 
across different treatment outcomes, we observed that 
regardless of the time point, the expression of PDCD1, 
CTLA4, and TIGIT was significantly higher in T cells 
from the responder group. In contrast, LAG3 expression 
did not differ significantly between the non-responder 
and responder groups, consistent with the finding from 
the NCT03662659 clinical trial that the combination of 
LAG-3 and PD-1 immune checkpoint inhibitors with 
chemotherapy did not significantly improve the efficacy 
in patients with metastatic gastric or gastroesophageal 
junction adenocarcinoma [2]. Notably, KLRC1 expres-
sion was significantly elevated in T cells from the non-
responder group at both time points (Additional file  9: 
Fig. S4A), and this pattern was also observed in CD8+ T 
cells (Fig.  4B). We employed the TIDE score to predict 
the TCGA-STAD cohort and compared the expression 
differences of KLRC1 between the immunotherapy-
responsive and non-responsive groups. The results indi-
cate that KLRC1 is relatively higher expressed in the 
non-responder group, highlighting its clinical relevance 
to the efficacy of gastric cancer immunotherapy  (Addi-
tional file 9: Fig. S4B). Furthermore, we found that CD8+ 
Tex cells were highly enriched in the responder group, 
while CD8+ KLRC1+ Trm cells were highly abundant in 
the non-responder group at both time points (Additional 
file 9: Fig. S4C). These results suggest that ICEP2, char-
acterized by NKG2A, in gastric cancer may contribute to 
the resistance to anti-PD-1 therapy.

High expression of NKG2A alone does not necessarily 
indicate stronger immune suppression. Instead, NKG2A-
expressing NK cells and γδ2 T cells exhibit immune 
hyperreactivity, representing enhanced cytotoxic abil-
ity. When the NKG2A ligand HLA-E is highly expressed 
in tumors and binds to NKG2A on NK cells and γδ2 T 

Fig. 5  Correlation between ICEP2 CD8 + T cell infiltration and LGMN+ macrophage infiltration. A Analysis of correlation between CD8+ T cell 
subpopulations and infiltration of other cell types in the TME in the TCGA-STAD cohort (Pearson correlation coefficient Rs > 0.3 and P-value < 0.05 
considered significant, Pie chart showing correlations with a P-value < 0.05). B UMAP plot annotating myeloid cell subsets in gastric cancer patients. 
C Heatmap displaying the distribution of myeloid cell subpopulations based on the ratio of observed cell counts to expected cell counts (Ro/e) 
calculated using a chi-square test. The top bar plot shows cell composition, and the right bar plot shows the total number of cells in each subsets. D 
Violin plot illustrating the functional characteristic scores of monocyte-macrophage subsets. E Analysis of correlation between CD8+ T cell subsets 
and infiltration of other cell types in the TME in the TCGA-STAD cohort. F Kaplan–Meier curve demonstrating the relationship between LGMN+ 
macrophage infiltration and overall survival (OS) of TCGA-STAD patients

(See figure on next page.)
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cells, their immune hyperreactivity is suppressed [23]. To 
elucidate how ICEP2 CD8+ T cells mediate resistance to 
anti-PD-1 therapy in gastric cancer, we performed spatial 
transcriptomics on the gastric tumor tissue of a patient 
with PD after anti-PD-1 treatment. We first performed 
quality control, normalization, and dimensionality reduc-
tion clustering on the spatial transcriptomics sample 
using the R package Seurat, resulting in the identifica-
tion of 14 cell subgroups (Fig. 4C). We then conducted a 
joint analysis of the single-cell and spatial transcriptom-
ics datasets using the Cell2location algorithm to map the 
identified cell types to their spatial locations within the 
tissue. To understand the spatial expression heterogene-
ity of the immune checkpoints associated with anti-PD-1 
therapy response, we annotated subgroups 1, 8, 4, 9, 11, 
5, 2, and 13 as intratumoral regions based on the spatial 
enrichment of tumor cells, while subgroups 0, 3, 6, 7, 10, 
and 12 were annotated as peritumoral regions (Fig.  4D, 
E). The results showed that the expression of PDCD1 and 
TIGIT did not differ significantly between the intratu-
moral and peritumoral regions. Notably, CTLA4 expres-
sion was higher in the intratumoral region compared to 
the peritumoral region, which may be related to the infil-
tration of CD4+ T cells in subgroup 1 that highly express 
CTLA4 (Fig.  4G). Additionally, we found that KLRC1 
expression was higher in the tumor region (Fig. 4F).

To investigate whether the function of ICEP2 CD8+ T 
cells is suppressed by tumor cells, we first defined sub-
group 1 as the intratumoral core region based on the 
degree of tumor cell infiltration. We then extracted the 
CD8+ T cell subgroup based on the marker genes and 
further divided it into high-density, medium-density, 
low-density, and peritumoral regions according to the 
degree of tumor cell infiltration (Fig.  4G, H). Using the 
Ucell algorithm, we calculated the cytotoxicity scores 
for these regions (Additional file 8: Table S5). We found 
that the cytotoxicity score of CD8+ T cells in the high-
density tumor region was the lowest, although not sig-
nificantly different from the medium-density region. 
Interestingly, the cytotoxicity score in the low-density 
tumor region was significantly higher than the high-den-
sity and medium-density regions. This suggests that as 
ICEP2 CD8+ T cells get closer to tumor cells, their func-
tionality may be more strongly suppressed. However, the 

cytotoxicity score in the peritumoral region was lower 
than that in the low-density tumor region (Fig.  4I). We 
speculate that this may be related to the activation of 
CD8+ T cells to a certain extent by tumor cell antigens.

In summary, we observed that CD8+ T cells with 
mutual exclusivity pattern characterized by NKG2A were 
enriched in the core region of the tumor. Hence, ICEP2 
CD8+ T cells might undergo inhibition via NKG2A-
CD94/HLA-E signaling, a pathway that anti-PD-1 ther-
apy fails to reverse, thereby maintaining the functional 
suppression of these CD8+ T cells.

The immune infiltration of ICEP2 CD8+ T cells is associated 
with LGMN+ macrophages
To explore how the TME contributes to shaping the 
mutually exclusive expression patterns of immune check-
points, we used our own scRNA-seq dataset as a training 
set and employed the deconvolution algorithm CIBER-
SORTx to calculate the abundance of TME cell types in 
the TCGA-STAD cohort. To determine the relation-
ships between different cell types, we performed Pear-
son correlation analysis on the infiltration levels of 13 
cell types (Pearson correlation coefficient Rs > 0.3 and 
P-value < 0.05 were considered significant). We observed 
that the infiltration of myeloid cells in the TME exhibited 
the strongest positive correlation with the infiltration of 
CD8+ KLRC1+ Trm cells (Fig. 5A), which may be related 
to the recruitment function of myeloid cells.

We further extracted myeloid cells and reclassified 
them into eight subtypes through re-clustering and 
annotation, including two monocyte clusters, three 
tumor-associated macrophage (TAM) clusters, and three 
dendritic cell (DC) clusters (Fig.  5B, Additional file  6: 
Table  S4). Among the TAM clusters, the LGMN+ mac-
rophages, which had the highest anti-inflammatory gene 
set score, were most enriched in the Pre-NR group, but 
their enrichment levels were similar between the Post-R 
and Post-NR groups. This may be related to the inclu-
sion of two gastric cancer liver metastasis samples in the 
Post-R group. Previous studies have shown that LGMN 
can activate pro-MMP-2 to degrade extracellular matrix 
components and promote tumor invasion and metasta-
sis [24]. Therefore, we speculate that in the gastric can-
cer liver metastasis samples from the Post-R group, the 

(See figure on next page.)
Fig. 6  LGMN+ macrophages recruit ICEP2 CD8+ T cells through CXCL16-CXCR6. A NicheNet predicts the ligand-receptor activities within cells 
and visually displays the differences in interactions between the non-response and response groups to anti-PD-1 treatment. B Spatial 
localization of LGMN+ macrophages using Cell2location on the samples, with color intensity representing the infiltration abundance. C 
Chord diagram displaying the network of CXCL signaling pathways between subpopulations in the spatial transcriptomic atlas. D Scatter plot 
showing the expression correlation between LGMN and CXCL16 in the TCGA-STAD cohort. E Scatter plot illustrating the expression correlation 
between RUNX3 and CXCR6 in the TCGA-STAD cohort



Page 17 of 23Li et al. Journal of Translational Medicine          (2024) 22:718 	

C12

C8

C3

C10

C0

C7

C4

C1

C6 C9

C11

C13

C5

C2

CXCL signaling pathway network

Non_response Response

IL1B+ Mac −−> CD8+ GZMH+ Teff

LGMN+ Mac −−> CD8+ GZMH+ Teff

Monocytes −−> CD8+ GZMH+ Teff

TREM2+ Mac −−> CD8+ GZMH+ Teff

LGMN+ Mac −−> CD8+ GZMK+ Teff

IL1B+ Mac −−> CD8+ IL7R+ Tm

LGMN+ Mac −−> CD8+ IL7R+ Tm

IL1B+ Mac −−> CD8+ KLRC1+ Trm

LGMN+ Mac −−> CD8+ KLRC1+ Trm

Monocytes −−> CD8+ KLRC1+ Trm

IL1B+ Mac −−> CD8+ Tex

LGMN+ Mac −−> CD8+ Tex

Monocytes −−> CD8+ Tex

P0
1

P0
2

P0
3

P0
4

P0
5

P0
6

P0
7

P0
9

P1
1

P1
3

P1
4

P0
8

P1
0

P1
2

P1
5

P1
6

P1
7

ICAM1 − EZR
ICAM1 − ITGAL

ICAM1 − MSN
ICAM1 − SPN

CD209 − ICAM3
ICAM1 − EZR

ICAM1 − ITGAL
ICAM1 − MSN
ICAM1 − SPN

SIRPA − CD69
TYROBP − KLRD1

ST14 − BTN3A1
TYROBP − KLRD1

ICAM1 − EZR

ICAM1 − EZR
ICAM1 − SPN

CD209 − ICAM3
ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

APP − SORL1
CD209 − ICAM3

CXCL16 − CXCR6
HBEGF − CD6
ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

SIGLEC1 − SPN
TFF2 − CXCR4

HBEGF − CD6
ICAM1 − EZR

CD209 − ICAM3
ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

SIRPA − CD69

ADGRE5 − CD55

NR R

up do
w

n

up do
w

n

ICAM1 − EZR
ICAM1 − ITGAL

ICAM1 − MSN
ICAM1 − SPN

CD209 − ICAM3
ICAM1 − EZR

ICAM1 − ITGAL
ICAM1 − MSN
ICAM1 − SPN

SIRPA − CD69
TYROBP − KLRD1

ST14 − BTN3A1
TYROBP − KLRD1

ICAM1 − EZR

ICAM1 − EZR
ICAM1 − SPN

CD209 − ICAM3
ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

APP − SORL1
CD209 − ICAM3

CXCL16 − CXCR6
HBEGF − CD6
ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

SIGLEC1 − SPN
TFF2 − CXCR4

HBEGF − CD6
ICAM1 − EZR

CD209 − ICAM3
ICAM1 − EZR
ICAM1 − MSN
ICAM1 − SPN

SIRPA − CD69

ADGRE5 − CD55

NR R

up do
w

n

up do
w

n

Sufficient presence
of sender & receiver

Sender & Receiver absent

Receiver absent

Sender absent

Sender & Receiver present

−2

0

2

Scaled L−R
pseudobulk exprs product

−2.5

0.0

2.5

Scaled Ligand
Activity in Receiver

0.01

0.02

0.03

0.04

0.05

Ligand
Activity in Receiver

B

A

C

C12

C8

C3

C10C0

C7

C4

C1

C6

C9

C11 C13

C5

C2

LGMN+ Mac

12

14

16

11 12 13 14 15
LGMN

C
XC

L1
6

Rs = 0.49, P = 5.3e−23

2

4

6

8 10 12 14
RUNX3

C
C

R
6

Rs = 0.48, P = 1.4e−21
ED

Fig. 6  (See legend on previous page.)



Page 18 of 23Li et al. Journal of Translational Medicine          (2024) 22:718 

infiltration of LGMN+ macrophages was higher, lead-
ing to similar enrichment levels between the Post-R and 
Post-NR groups (Additional file 11: Fig. S5A). Addition-
ally, the IL1B+ macrophages, which highly expressed 
IL1B, VEGFA, CCL20, and had the highest pro-angi-
ogenic gene set score, were most enriched in the Pre-R 
group but had lower enrichment levels in both the Post-
R and Post-NR groups, suggesting that the infiltration of 
this subgroup may be suppressed by anti-PD-1 therapy. 
The TREM2+ macrophages were particularly enriched 
in the Post-R group, while their enrichment levels were 
lower in the Pre-R and Pre-NR groups, indicating that 
the infiltration of this subgroup may be influenced by 
anti-PD-1 therapy. Furthermore, among the identified 
DC subtypes, the cDC1 cells highly expressing CLEC9A 
were highly enriched in the Post-NR group but had rela-
tively lower proportions in the Pre-R and Pre-NR groups. 
Similarly, the cDC2 cells highly expressing CD1C also 
had lower proportions in the Pre-R and Pre-NR groups. 
Mature cDCs highly expressing LAMP3, CD274 (PD-L1), 
and IDO1 were enriched in both the Pre-NR and Post-
NR groups (Fig. 5C).

Using the R package Ucell, we scored the functional 
profiles of macrophage subgroups (Additional file  10: 
Table  S6). The results showed that the LGMN+ mac-
rophages had the highest anti-inflammatory score, indi-
cating their immunosuppressive nature, consistent with 
the findings of Lizhi Pang et al. in glioblastoma [25]. The 
TREM2+ macrophages also had higher anti-inflamma-
tory scores than the IL1B+ macrophages. In contrast, the 
TREM2+ macrophages had the highest pro-inflammatory 
score, followed by the IL1B+ macrophages, while the 
LGMN+ macrophages had the lowest score. Additionally, 
the IL1B+ macrophages exhibited the strongest pro-angi-
ogenic ability (Fig. 5D).

Furthermore, we utilized the R package Monocle3 
to analyze the developmental trajectories, state transi-
tions, and differentiation processes of myeloid cells. By 
performing pseudotime analysis on the myeloid cell 
subgroups, we inferred their potential developmental 
trajectories. The results showed that monocytes were at 
the beginning of the trajectory, followed by the diver-
gence of macrophages into two branches. Branch 1 pro-
ceeded from monocytes to TREM2+ macrophages and 
ultimately to LGMN+ macrophages. Branch 2 went from 
monocytes to IL1B+ macrophages (Additional file 11: Fig. 
S5B, C). Overall, the LGMN+ macrophages exhibited 
the strongest immunosuppressive capability among all 
myeloid cell subgroups, while the TREM2+ macrophages 
may represent an intermediate stage in the differentiation 
from monocytes to LGMN+ macrophages.

To comprehensively analyze the infiltration relation-
ships between the two ICEPs of CD8+ T cells and other 

cell types, we re-clustered and annotated the remain-
ing B cells, plasma cells, fibroblasts, and endothelial cell 
subgroups (Additional file 11: Fig. S5D, Additional file 6: 
Table  S4). We then used CIBERSORTx to evaluate the 
infiltration levels of all cell clusters identified from our 
scRNA-seq data in the TCGA-STAD cohort. Subse-
quently, we performed Pearson correlation analysis on 
the estimated infiltration levels of the cell subgroups in 
TCGA-STAD. The results showed that the infiltration of 
the core subgroup CD8+ KLRC1+ Trm of ICEP2 CD8+ 
T cells was significantly positively correlated with the 
infiltration of LGMN+ macrophages (Pearson correla-
tion coefficient Rs = 0.59), while the infiltration of the 
core subgroup CD8+ Tex of ICEP1 CD8+ T cells did 
not exhibit a correlation with LGMN+ macrophages 
(Fig.  5E). Additionally, we found that the immune infil-
tration of LGMN+ macrophages was associated with 
poor prognosis in TCGA-STAD patients (Fig. 5F), while 
the immune infiltration of CD8+ KLRC1+ Trm cells was 
associated with favorable prognosis (Additional file  11: 
Fig. S5E), further supporting the traits of LGMN+ mac-
rophages and the reactive nature of NKG2A+ CD8+ T 
cells, which undergo functional suppression upon bind-
ing to the HLA-E ligand.

ICEP2 CD8 +T cells may be recruited 
by LGMN+Macrophages via CXCL16‑CXCR6
To further elucidate the reasons behind the correlated 
immune infiltration of LGMN+ macrophages and CD8+ 
KLRC1+ Trm cells, we inferred the communication net-
work between these subgroups in our scRNA-seq data 
using NicheNet. Interestingly, when comparing the 
communication differences between monocyte, mac-
rophage and CD8+ T cell subgroups across treatment 
outcome groups, we found that in the non-responder 
group, there was a stronger specific CXCL16-CXCR6 
signaling pathway between LGMN+ macrophages and 
CD8+ KLRC1+ Trm cells compared to the responder 
group. This may suggest that in anti-PD-1 therapy 
non-responder patients, LGMN+ macrophages recruit 
ICEP2 CD8+ T cells through the enhanced CXCL16-
CXCR6 signaling pathway (Fig. 6A).

We analyzed spatial transcriptomic sections from PD 
patients to validate the spatial relationship and inter-
action between CD8+ KLRC1+ Trm cells and LGMN+ 
macrophages. We found that subgroups 6 highly 
expressed PDCD1, CTLA4, TIGIT, and CD8+ T cell 
marker genes, representing a potential enrichment of 
ICEP1 CD8+ T cells. In contrast, subgroups 9 highly 
expressed KLRC1, KLRD1, and CD8+ T cell genes, rep-
resenting a potential enrichment of ICEP2 CD8+ T cells 
(Fig.  4G). Simultaneously, we observed that LGMN+ 
macrophages were enriched in subgroups 1, which was 
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spatially proximal to the highly infiltrated ICEP2 CD8+ 
T cell subgroups 9 (Fig.  6B). Further analysis using 
Cellchat revealed intercellular communication between 
subgroups 1 as the signaling sender and subgroups 9 
through the CXCL signaling pathway (Fig.  6C). Addi-
tionally, correlation analysis in the TCGA-STAD cohort 
showed a significant positive correlation between 
LGMN and CXCL16 expression (Fig.  6D). Therefore, 
we hypothesize that LGMN+ macrophages may recruit 
ICEP2 CD8+ T cells to the tumor core through the 
CXCL16-CXCR6 signaling pathway. Moreover, cor-
relation analysis in the TCGA-STAD cohort revealed 
a significant positive correlation between RUNX3 and 
CXCR6 expression (Fig.  6E), and previous literature 
has reported that RUNX3 deficiency can significantly 
downregulate the expression of CCR3 and CCR5 from 
the CCR family [22]. Consequently, we speculate that 
RUNX3 not only promotes the differentiation of ICEP2 
CD8+ T cells but also induces the expression of CCR6 
from the CCR family, ultimately enabling the recruit-
ment of ICEP2 CD8+ T cells by LGMN+ macrophages 
to the tumor core.

In conclusion, our findings indicated that LGMN+ 
macrophages might recruit ICEP2 CD8+ T cells to the 
tumor core via the CXCL16-CXCR6 axis, contributing 
to anti-PD-1 resistance in gastric cancer.

Discussion
The combination of immune checkpoint inhibitors pro-
vides a new direction for the treatment of advanced 
gastric cancer patients who are resistant to anti-PD-1 
inhibitors. However, the current lack of comprehensive 
understanding of the expression patterns and intrinsic 
associations of immune checkpoints poses challenges in 
selecting combination regimens for immune checkpoint 
inhibitors. Additionally, previous studies have primarily 
focused on immune checkpoints related to exhausted T 
cells, such as PD-1, CTLA-4, TIGIT, and LAG-3, while 
the impact of other immune checkpoint expressions on 
CD8+ T cell function remains relatively unexplored. In 
this study, based on a comprehensive analysis utilizing 
multiple linear regression interaction equations, scRNA-
seq, TCGA cohorts, and spatial transcriptomics, we 
comprehensively analyzed the intrinsic associations and 
expression characteristics of immune checkpoints in gas-
tric cancer CD8+ T cells and revealed the ICEPs associ-
ated with anti-PD-1 therapy resistance in gastric cancer.

To elucidate the impact of co-expression of two 
immune checkpoints on CD8+ T cell function, we first 
discovered through multiple linear regression interac-
tion equations that the immune checkpoints KLRC1 
and PDCD1 could synergistically inhibit the prolifera-
tive function of CD8+ T cells. Subsequently, through 

co-expression analysis at the single-cell level, we found 
a high proportion of co-expression among the immune 
checkpoints PDCD1, CTLA4, TIGIT, LAG3, and CD38, 
suggesting a co-occurrence expression pattern among 
these immune checkpoints. Notably, KLRC1 exhibited a 
low co-expression proportion with these immune check-
points and was primarily expressed in CD8 +KLRC1+ 
Trm cells, exhibiting tissue-resident expression charac-
teristics, displaying mutual exclusivity with the expres-
sion of PDCD1, CTLA4, TIGIT, LAG3, and CD38. 
Consequently, based on the co-occurrence and mutual 
exclusivity patterns  of immune checkpoint expression, 
CD8+ T cells were classified into two ICEPs: ICEP1 
CD8+ T cells highly expressing the exhaustion-associated 
immune checkpoints PDCD1, CTLA4, TIGIT, LAG3, 
and CD38, and ICEP2 CD8+ T cells highly expressing 
the KLRC1 immune checkpoint. Thus, our study revealed 
two expression patterns of immune checkpoints in CD8+ 
T cells.

The expression of PDCD1, CTLA4, TIGIT, LAG3, and 
CD38 represents the exhausted state of CD8+ T cells, 
and our study consistently found that the core subcluster 
of ICEP1 CD8+ T cells was CD8+ Tex. In contrast, the 
core subcluster of ICEP2 CD8+ T cells highly express-
ing KLRC1 was CD8 +KLRC1+ Trm. Through pseu-
dotime analysis with monocle3, we discovered that the 
two ICEPs represent two distinct differentiation fates of 
CD8+ T cells. ICEP1 CD8+ T cells represent the branch 
from CD8+ Tn to CD8+ GMZK+ Teff, CD8+ GMZH+ 
Teff, and finally to CD8+ Tex (branch 1). ICEP2 CD8+ 
T cells represent the branch from CD8+ Tn to CD8+ 
IL7R +Tm, CD8+ KLRC1+ Trm, and finally to CD8+ 
Tex (branch 2). The regulation of different transcription 
factors and epigenetics not only influences T cell dif-
ferentiation, but also affects T cell functional states by 
modulating immune checkpoint expression. Previous 
studies have shown that the deficiency of cBAF can pro-
mote the differentiation of T cells towards the memory 
T cell lineage, thereby improving cancer immunotherapy 
[26]. On the other hand, the transcriptional factor net-
work of IRF4, BATF, NFATc1, NR4A, TOX, and TCF1 
may regulate T cell exhaustion by modulating PD-1 
expression [27–31]. Through transcription factor analy-
sis and CellOracle gene perturbation analysis, we found 
that MSC and RUNX3 may play a role in the differentia-
tion of CD8+ Tex and CD8+ KLRC1+ Trm, respectively. 
Specifically, MSC not only promotes the differentiation 
of CD8+ Tex but also exhibits a positive correlation with 
PDCD1, TIGIT, CD38, and LAG3. Simulated knockdown 
of MSC inhibited the differentiation of ICEP1 CD8+ T 
cells. In contrast, RUNX3 promotes the differentiation 
of CD8+ KLRC1+ Trm and exhibits a positive correla-
tion with KLRC1 expression. Simulated knockdown of 
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RUNX3 may inhibit the differentiation of ICEP2 CD8+ 
T cells. Therefore, we hypothesize that MSC and RUNX3 
may participate in regulating the differentiation of CD8+ 
T cells with two ICEPs, providing new insights into the 
upstream regulatory mechanisms of immune checkpoint 
expression.

The core subcluster of ICEP1 CD8+ T cells is CD8+ 
Tex, which exhibits high infiltration in the responder 
group of anti-PD-1 therapy for gastric cancer. Therefore, 
we speculate that ICEP1 CD8+ T cells are more likely 
to benefit from anti-PD-1 immune checkpoint inhibitor 
treatment. Additionally, the expression of PD-1, CTLA4, 
and TIGIT immune checkpoints was relatively high in T 
cells from both the Pre-R and Post-R groups. Previous 
studies have shown that the CD28 co-stimulatory signal, 
which plays a crucial role in T cell activation, is primar-
ily transduced through binding to CD80/86. CTLA-4, a 
competitive inhibitory receptor for CD28, can also bind 
to CD80/86, exerting an immunosuppressive effect by 
attenuating the CD28 signal. Similarly, another T cell 
co-stimulatory molecule, CD226, transduces activation 
signals by binding to PVR and PVRL2, but TIGIT, its 
inhibitory receptor, can also bind to these two ligands, 
suppressing CD226 signaling through a competitive 
mechanism. Notably, PD-1 can indirectly inhibit the sig-
nal transduction of these two co-stimulatory molecules 
by recruiting and inactivating the intracellular phos-
phatase Shp2, thereby impairing its ability to phospho-
rylate CD28 and CD226 [4]. Therefore, we speculate that 
anti-PD-1 immune checkpoint inhibitors may enhance 
the phosphorylation of CD28 and CD226, increasing 
their competitive ability against CTLA-4 and TIGIT, 
and ultimately reversing the immunosuppressive effects 
of CTLA-4 and TIGIT to a certain extent. Additionally, 
we found that LAG-3, another marker of CD8+ T cell 
exhaustion, exhibited no significant difference between 
the non-responder and responder groups. Consistently, 
the NCT03662659 clinical trial found no significant 
improvement in efficacy when combining LAG-3 and 
PD-1 immune checkpoint inhibitors with chemotherapy 
in patients with metastatic gastric or gastroesophageal 
junction adenocarcinoma [2]. Thus, the application of 
LAG-3 immune checkpoint inhibitors in advanced gas-
tric cancer warrants further exploration.

CD8+ T cells expressing NKG2A possess tissue-resi-
dent characteristics and inherent hyperreactivity. When 
NKG2A forms a heterodimeric complex with CD94 and 
binds to HLA-E on tumor cells, its hyperreactivity is 
suppressed. Our study results showed that the infiltra-
tion of the core subcluster CD8+ KLRC1+ Trm of ICEP2 
CD8+ T cells was associated with favorable prognosis 
in the TCGA-STAD cohort, which may be related to 
their inherent hyperreactivity. Moreover, our single-cell 

analysis of gastric cancer anti-PD-1 treatment cohorts 
revealed higher infiltration levels of ICEP2 CD8+ T cells 
in the Pre-NR and Post-NR groups of patients. Spatial 
transcriptomic results from patients with progressive dis-
ease after anti-PD-1 therapy further demonstrated that, 
compared to ICEP1 CD8+ T cells, ICEP2 CD8+ T cells 
exhibited better infiltration into the intratumoral regions, 
and their cytotoxic ability appeared to weaken as their 
contact with tumor cells increased, reflecting the spatial 
mutual exclusivity between NKG2A and other immune 
checkpoints. Therefore, we hypothesize that the function 
of ICEP2 CD8+ T cells may be suppressed upon binding 
to HLA-E on tumor cells.

Immunotherapy resistance in gastric cancer patients is 
mediated by the interplay of multiple cells in the TME. 
Simultaneously, the TME harbors various immunosup-
pressive cells, such as TAM and Treg cells, which pro-
mote tumor evasion and growth by inhibiting the activity 
of immune cells. Therefore, to explore how the TME 
influences NKG2A, we analyzed cell–cell communication 
and found that, compared to other cells, LGMN+ mac-
rophages exhibited enhanced chemoattractant CXCL16-
CXCR6 signaling with CD8+ KLRC1+ Trm, suggesting a 
stronger recruitment of ICEP2 CD8+ T cells by LGMN+ 
macrophages. Furthermore, at both the bulk transcrip-
tomic and spatial transcriptomic levels, we observed 
an infiltration correlation and spatial co-localization 
between these two cell types, further corroborating that 
LGMN+ macrophages may recruit ICEP2 CD8+ T cells 
into the tumor region via the chemoattractant CXCL16.

Legumain (LGMN) is an enzyme involved in vari-
ous cellular processes that cleaves peptide bonds at the 
C-terminal end of asparaginyl residues. This enzyme 
plays roles in several crucial biological processes, includ-
ing osteoclast formation, antigen processing, renal func-
tion, and brain development [32, 33]. LGMN is widely 
expressed in various cancers, such as breast, colon, lung, 
gastric, lymphoma, melanoma, and brain cancers, and 
its expression correlates with poor prognosis [34–38]. 
Therefore, LGMN is considered a therapeutic target 
for these cancers. In our study, the macrophage func-
tion gene set scoring results indicate that LGMN+ mac-
rophages exhibit strong immunosuppressive properties, 
consistent with previous reports. Additionally, studies 
have shown that LGMN, as a highly expressed protease 
in TAMs, is transcriptionally upregulated by hypoxia-
inducible factor 1-α (HIF1α) in the hypoxic TME of glio-
blastoma. Moreover, LGMN expression is crucial for the 
immunosuppressive polarization of tumor-associated 
macrophages [25]. Our study reveals that LGMN+ mac-
rophages recruit ICEP2 CD8+ T cell infiltration through 
the chemoattractant CXCL16-CXCR6 signaling axis.
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Undeniably, there are several limitations in this study. 
Firstly, the number of single-cell sequencing samples in 
the study is limited, particularly in the anti-PD-1 treat-
ment non-responding and responding groups, which 
are not well-balanced. Thus, a larger cohort is required 
for validation purposes. Secondly, there is a lack of basic 
experimental validation regarding the transcriptional 
regulatory mechanisms underlying the two immune 
checkpoint expression patterns. Further experimental 
studies are necessary to expand the understanding of 
potential biological mechanisms that contribute to the 
observed mutual exclusivity and co-occurrence patterns 
of immune checkpoint expression. Thirdly, although the 
recruitment of ICEP2 CD8+ T cells by LGMN+ mac-
rophages has been identified, the reasons for the highly 
activated nature of this recruitment process in the anti-
PD-1 non-responding group and the underlying molec-
ular mechanisms remain unclear. To shed light on the 
specific mechanisms involved, further exploration and 
molecular biology experiments are necessary.

Conclusion
In conclusion, we identified the mutual  exclusivity and 
co-occurrence patterns of immune checkpoints in gastric 
cancer CD8+ T cells, which classified these cells into two 
immune checkpoint expression modes. The ICEP2 CD8+ 
T cells, centered around NKG2A, are recruited to the 
tumor core by LGMN+ macrophages via the CXCL16-
CXCR6 axis, where they bind to HLA-E on tumor cells, 
leading to their functional suppression. Notably, anti-
PD-1 therapy cannot reverse this state. Our study unveils 
the two distinct characteristics of immune checkpoints in 
gastric cancer CD8+ T cells and provides strong evidence 
for NKG2A as a novel immunotherapeutic target in gas-
tric cancer, offering new insights into combination strate-
gies for immune checkpoint inhibitors in gastric cancer 
treatment.
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