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Abstract 

The renal lymphatic system is critical for maintaining kidney homeostasis and regulating the immune response 
inside the kidney. In various kidney pathological situations, the renal lymphatic network experiences lymphangi-
ogenesis, which is defined as the creation of new lymphatic vessels. Kidney lymphangiogenesis controls immunologi-
cal response inside the kidney by controlling lymphatic flow, immune cell trafficking, and immune cell regulation. 
Ongoing study reveals lymphangiogenesis’s different architecture and functions in numerous tissues and organs. New 
research suggests that lymphangiogenesis in kidney disorders may regulate the renal immune response in various 
ways. The flexibility of lymphatic endothelial cells (LECs) improves the kidney’s immunological regulatory function 
of lymphangiogenesis. Furthermore, current research has shown disparate findings regarding its impact on distinct 
renal diseases, resulting in contradictory outcomes even within the same kidney condition. The fundamental causes 
of the various effects of lymphangiogenesis on renal disorders remain unknown. In this thorough review, we explore 
the dual impacts of renal lymphangiogenesis on several kidney pathologies, with a particular emphasis on existing 
empirical data and new developments in understanding its immunological regulatory function in kidney disease. 
An improved understanding of the immunological regulatory function of lymphangiogenesis in kidney diseases 
might help design novel medicines targeting lymphatics to treat kidney pathologies.
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Introduction
The significance of lymphangiogenesis in various dis-
eases has been extensively examined in recent literature. 
These studies have provided significant insights into 
the contrasting effects of lymphangiogenesis on disease 
pathophysiology. Lymphangiogenesis relies on the pro-
liferation, migration, and differentiation of lymphatic 
endothelial cells (LECs). The cellular processes lead to 
the biosynthesis of lymphatic vessels, which transport 
excess fluid and regulate immune responses in the lym-
phatic system [1]. Recent studies utilizing genetic lineage 
tracing and single-cell RNA sequencing have demon-
strated that stem/progenitor cells also play a crucial role 
in lymphangiogenesis [2]. Additionally, M1 macrophages 
have been shown to polarize and transdifferentiate into 
new LECs through activation of the vascular endothelial 
growth factor (VEGF-C)/vascular endothelial growth 
factor receptor 3 (VEGFR3) pathway [3]. Lymphatic 
vessel proliferation comprises healthy lymphangiogen-
esis (during wound healing and corpus luteum develop-
ment) and pathological lymphangiogenesis. The latter is 
caused by pathological situations such as inflammation, 
tumors, and transplant rejection, among others [4–6]. 
Physiological and pathological lymphangiogenesis often 
entail the enlargement and sprouting of preexisting lym-
phatic vessels (LVs) rather than neolymphangiogenesis, 
which is more closely related to lymph node transfer [7]. 
The interaction between lymphangiogenesis and various 
clinical conditions has a complex effect on the organism. 
Advanced imaging and genetic approaches have made it 
possible to investigate specific structures and functions 
within the lymphatic systems in various diseases.

Lymphangiogenesis plays complex immune regulatory 
roles via various mechanisms, differing from the nuanced 
variations of microenvironments in tissues and organs. 
The newly formed lymphatic vessels can either enhance 
or inhibit the immune response [8, 9]. The lymphatic 
system maintains homeostasis and supports immune 
responses throughout various tissues and organs [10]. In 
both health and disease, the lymphatic system also plays 
a crucial role in regulating immune responses by directly 
influencing immune cells and coordinating their move-
ment from tissues to draining lymph nodes (dLNs) [11]. 
The unique characteristics of lymphatic vessels in both 
health and disease demonstrate specificity related to tis-
sue and organ types. The characteristics influence the 
varied outcomes of lymphangiogenesis in different dis-
ease contexts.

Within the kidney, lymphangiogenesis is closely linked 
to kidney tissue inflammation, fibrosis progression, 
and transplant rejection [12]. Evidence unveils that it 
can elicit dual-sided effects in various kidney patholo-
gies [12, 13]. Studies have illuminated that kidney 

lymphangiogenesis exhibits an intricate immune regu-
latory mechanism capable of promoting or alleviating 
immune responses [14], depending on the specific kidney 
pathology under consideration. Emerging evidence sug-
gests that, within kidney diseases, the distinct trafficking 
patterns of diverse immune cells and varying durations of 
different pathological conditions significantly contribute 
to the dual-sided effect of lymphangiogenesis [15, 16].

The kidney lymphatic system selectively transports 
renal interstitial fluid and immune cells. It actively con-
tributes to the maintenance of kidney homeostasis and 
the orchestration of kidney immune response. Notably, 
preexisting lymphatic vessels within the kidney are pre-
dominantly distributed in the renal cortex and rare in the 
medulla. However, neo-synthesized lymphatic vessels 
can proliferate extensively throughout the kidney [17].

Lymphatic migrations of immune cells are regulated by 
Various chemokines, including chemokine (C–C motif ) 
ligand 19 (CCL19), CCL21, and chemokine (C-X-C 
motif ) ligand 12 (CXCL12). Additionally, several inflam-
matory and anti-inflammatory mediators, including 
Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-
α), Interleukin-10 (IL-10), and Transforming Growth 
Factor β (TGF-β), also involves in the regulation of lym-
phatic immune cell migrations [1].

To be specific, recent findings have uncovered that 
lymphatic vessels can suppress the expansion of  CD8+ 
T cells [18, 19]. The interaction between Mac-1 on DCs 
and ICAM-1 on LECs mediates the adhesive interac-
tions between DCs and LECs, thereby inhibiting the abil-
ity of DCs to induce T cell proliferation [20]. Moreover, 
chemokine receptor chemokine (C–C motif ) receptor 
7 (CCR7) expressed on DCs and its CCL21 produced 
by LEC are the main molecules involved in DC migra-
tion [21]. At the same time, reducing DCs is beneficial 
for slowing the progression of inflammation [22]. The 
reasons and mechanisms underlying this remarkable 
discrepancy in diverse kidney diseases require further 
investigation.

LECs and their immune regulatory role
LECs are crucial in immune responses during inflam-
mation, tumour, and other pathological conditions. Dif-
ferent subsets of LECs, including peripheral capillary 
LECs and lymph node LECs, have distinct functions. The 
primary functions of peripheral capillary LECs include 
fluid drainage, leucocyte transport, and participation in 
lipid metabolism. They also actively regulate the endo-
cytosis of antigens, mediating by clathrin and caveolin. 
Interestingly, capillary LECs exhibit phenotypic adapta-
tions in varying microenvironments [23]. Therefore, they 
can dynamically orchestrate the trafficking and activities 
of various immune cells. Among the intricate process 
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of immune cell trafficking, lymphatic vessel endothelial 
receptor-1 (LYVE-1) makes the first adhesive contact 
between migrating immune cells and lymphatic endothe-
lium, initiating the entry and trafficking of immune cells 
within afferent lymphatic vessels [24]. Moreover, capil-
lary LECs secrete various chemokines to drive immune 
cell intravasation through a complicated process of 
actomyosin-mediated immune motility and β2 integ-
rin activation during inflammatory status [24]. Among 
these cytokines, CCL21 is one of the most important 
and well-studied regulators. By binding to heparan sul-
fate within the extracellular matrix, CCL21 generates a 
hypotactic concentration gradient to promote the migra-
tion of diverse leucocytes, such as DCs, neutrophils, and 
monocytes, through interacting with CCR7 expressed on 
these immune cells [25–27]. Furthermore, accumulating 
data suggests numerous cytokines and chemokine/recep-
tor combinations are involved in lymphatic migration. 
Immunosuppressive substances like IL-10 and TGF-β 
may prevent immune cells from migrating through the 
lymphatic system [28–30]. LN LECs exert varied func-
tions after transporting molecules and cells to dLNs. 
These cells are pivotal contributors to immune surveil-
lance in both health and disease. LN LECs and spe-
cifically distributed rapidly classify molecules [31–35]. 
These two types of LECs subtly regulate innate and adap-
tive immune responses [21, 22, 36–41].

Cytokines and chemokines involved in lymphangiogenesis
Lymphangiogenesis is predominantly regulated by 
VEGF-C and VEGF-D, both of which directly bind with 
VEGFR-3 and the co-receptor neuropilin 2 (NRP2), 
expressed on the surface of LECs, subsequently induc-
ing lymphangiogenesis [42]. Recent studies have revealed 
that several types of macrophages can promote lym-
phangiogenesis by secreting VEGF-C in various patho-
logical conditions, including kidney damage and cardiac 
injury [43–47]. Cortical and medullary kidney tubules 
can secrete VEGF-C and VEGF-D within the kidney [48]. 
Studies suggest that VEGF-C has an essential role in the 
development of lymphangiogenesis, but its impact on 
the maintenance of lymphatic vessels might be limited 
[49]. Conversely, unlike VEGF-C, VEGF-D dominates 
the maintenance of lymphangiogenesis, which indicates 
a modulatory function of VEGF-D in its developmental 
stage [49]. Furthermore, TGF-β and connective tissue 
growth factor (CTGF) also contribute to the induction 
of lymphangiogenesis in kidney diseases, particularly in 
kidney inflammation and fibrosis [50]. Additionally, angi-
opoietins (Angs) are involved in the lymphangiogenesis 
mechanism. In fact, the Ang2/Tie/PI3K signaling path-
way plays a crucial role in lymphangiogenesis; blocking 
this pathway leads to a decrease in VEGFR3 and inhibits 

lymphatic vessel formation [51]. Similarly, the transcrip-
tion factors FOXC1 and FOXC2, which are part of the 
Forkhead box (FOX) family, positively regulate lym-
phangiogenesis. Studies have shown that FOXC1 and 
FOXC2 are essential for regulating the Ras/ERK signal-
ing pathway during lymphangiogenesis, and the loss of 
FOXC1 and FOXC2 promotes excessive activation of 
ERK, leading to abnormal lymphangiogenesis [52].

The immune regulatory functions of lymphangiogenesis 
in kidney diseases
Acute kidney injury
In many AKI animal models and AKI patient biop-
sies, VEGF-C and VEGF-D expression increased, as did 
robust lymphangiogenesis. Following kidney damage, 
inflammatory mediators such as Interferon-gamma (IFN-
γ), TNF-α, and TGF-β promote lymphangiogenesis via 
several mechanisms [48, 53–56]. Functional neo-lym-
phatic vessels can manifest the same role as preexisting 
renal lymphatic vessels, promoting inflammation resolu-
tion through drainage of retained fluid, clearance of cel-
lular debris, removal of pro-inflammatory cytokines and 
cells, and mobilizing immune cells [11, 48]. Macrophages 
are highly adaptable to transfer into various distinct 
phenotypes within the local microenvironment. Among 
these macrophages, M1 macrophages are predominantly 
infiltrated during the AKI process, primarily promot-
ing inflammation response and inducing kidney injury 
[57]. They enhance the synthesis of new lymphatic ves-
sels in renal inflammation and fibrosis microenvironment 
due to elevated expression levels of VEGF-C induced by 
TGF-β [49]. Recent evidence has demonstrated that M1 
macrophages can directly contribute to the synthesis of 
new lymphatic vessels through transdifferentiating into 
LECs [3, 58]. Increased levels of VEGF-C directly sup-
press macrophage autophagy, which prompts M1 mac-
rophage polarization into LECs [3].

Lymphangiogenesis adversely affects the AKI process, 
exacerbating renal inflammation [56, 59, 60]. In general, 
AKI-induced lymphangiogenesis can exert a dual-sided 
impact on the kidney. In AKI, kidney lymphangiogen-
esis also acts as an immunological regulator to balance 
immunity and immune pathology despite clearing exces-
sive fluids, noxious stimuli, and inflammatory cells. 
Neo-synthesized lymphatic vessels can either induce or 
suppress the immune response in AKI models, regulat-
ing local and systematic immune systems through diverse 
mechanisms [61]. Firstly, it significantly enhances lym-
phatic flow, actively participating in the early immune 
regulation process after AKI. During AKI’s initiation, 
maintenance, and regression process, abundant immune 
cells, including inflammatory monocyte, neutrophil, lym-
phocyte and natural killer cells, orchestrate the overall 
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immune response [62]. Therefore, lymphangiogenesis can 
mitigate kidney tissue inflammation by properly remov-
ing infiltrated immune cells at the injury site (Tables 1, 2).

Despite lymphatic flow, some immune cells, includ-
ing T cells, B cells, and DCs, can also directly regulate 
LECs-related signal pathways [63, 64], contributing to the 
inflammatory progress. Entry of naïve T cells to afferent 
lymphatics is regulated by the S1P (sphingosine-1-phos-
phate) receptor pathway [65], while memory T cells 
also possess CCR7, which binds with CCL21. Immune 
cells with CCR7 can also be regulated by the CCL21 
gradient expressed by LECs, actively migrating to dLNs 
through afferent lymphatics [66]. Of note, current evi-
dence has demonstrated that enhancing antigen-specific 
T helper cell 1 (Th1 cell) cell migration from tissues to 
dLNs accelerates the resolution of inflammation. In the 
setting of AKI, upgraded infiltration of Th cells (T helper 
cells), particularly T helper cell 17 (Th17 cell), has been 
observed [67]. Th17 cell, which aggravates tissue injury 
by recruiting neutrophils and other inflammatory cells, 
is the most abundant lymphocyte infiltrated at the injury 
site following AKI in mice [68, 69]. Additionally, intesti-
nal flora-derived Th17 cells have been proved to migrate 
to the kidney in kidney disease. They enter peripheral 
blood circulation through lymphatic vessels regulated 
by the S1P-R1 pathway [16]. Subsequently, they return 
to the renal inflammation site through blood circulation, 
further exacerbating the inflammatory response [16]. 
Increased reduction of Th17 cells through kidney lym-
phangiogenesis may significantly mitigate kidney dam-
age, alleviating AKI and the following progression to 
chronic kidney disease (CKD). However, further studies 
are required to demonstrate whether lymphangiogenesis 
can aggravate kidney damage by regulating these Th cells.

Moreover, due to the adaptiveness of LECs, lymphangi-
ogenesis can also directly suppress the local  CD8+ T cells 
during inflammation. This intricate mechanism has been 
well-studied in the setting of skin lymphangiogenesis. 
Lymphatic endothelial cells (LECs) largely express nonhe-
matopoietic programmed death-ligand 1 (PD-L1) to limit 
local  CD8+ T cell effectors to functioning in inflamed skin 
and melanoma [70]. Despite PD-L1-dependent inhibi-
tion of T cell antigen receptor (TCR) signaling, evidence 
supports that PD-L1 can regulate lymphocyte migration 
through endothelial and epithelial barrier tissues [70], 
which indicates that PD-L1 may directly regulate T cell 
transendothelial migration without antigen presenta-
tion mechanism. Similarly, the activated PD-1 signalling 
pathway in the kidney protects the ischemia–reperfu-
sion-induced AKI mouse model [71]. At the beginning 
of inflammation, infiltrated antigen-specific  CD8+ T cells 
produce IFN-γ, which directly induces PD-L1 expres-
sion in adjacent inflammation-induced lymphatic vessels. 

Abundant PD-L1 expressed by LECs limits the further 
accumulation of  CD8+ T cells at the injury site, alleviat-
ing kidney inflammation.

In the context of AKI, lymphatic migration of immune 
cells affects local immunity bidirectionally. Current evi-
dence has demonstrated that lymphangiogenesis can also 
be detrimental to AKI [11, 72]. This detrimental impact 
closely correlates with positive immune feedback (Fig. 1) 
that enhances immune cells’ constant migration and 
activation at the injury site. During kidney inflamma-
tion, the increased level of CCL21 that is overexpressed 
by preexisting LECs, along with other chemokine and 
integrin pathways, promotes kidney dLNs and spleen 
to recruit more  CCR7+ immune cells through affer-
ent lymphatic vessels [73, 74]. The significantly elevated 
recruitment leads to systemic expansion of lymphocytes 
[56]. Within kidney dLNs,  CCR7+ DCs present antigens 
of injury sites to  CD8+ T cells, promoting T cell prolif-
eration in dLNs. After which, the activated  CD8+ T cells 
return to injury tissue via blood circulation, releasing 
inflammatory cytokines including IFN-γ, TNF, TGF-β, 
and TonEBP (transcription factor tonicity-responsive 
enhancer-binding protein), and therefore aggravating the 
inflammatory infiltration and injury in the kidney. Also, 
it released inflammatory cytokines, further prompting 
kidney lymphangiogenesis and lymphatic, immune cell 
migration. This positive feedback between kidney dLNs 
and the injury tissue regulates the immune response in 
AKI. Both disrupting this loop (whether by removal of 
renal dLNs or inhibiting DCs recruitment and inhibiting 
kidney lymphangiogenesis can facilitate the progression 
of kidney injury [56, 59]. Besides DCs migration, T cell 
migration also plays an essential role in AKI. As regula-
tory T cells (Treg cells) reduce renal injury by inhibiting 
inflammation and facilitating tissue repair during AKI, 
obstructing the migration of Treg cells to dLNs reduces 
inflammation [75]. Therefore, lymphangiogenesis, which 
greatly promotes Treg cell migration from the injury site, 
can enhance the inflammation response, subsequently 
exacerbating tissue injury in AKI. Despite T cells, lym-
phangiogenesis can promote B cells egressing to dLNs 
[1], which may also contribute to the integral immune 
regulation impact of lymphangiogenesis in AKI.

To date, the integral effect of kidney lymphangiogenesis 
on AKI remains controversial. Despite protective or det-
rimental impacts, the argument that kidney lymphangio-
genesis only acts as a passive response to AKI also exists. 
In an adriamycin-induced mouse model, it was proved 
that inhibited lymphangiogenesis did not affect renal 
inflammation and fibrosis progression [76]. Dynamic 
immune regulation mechanisms reacting to the differ-
ent microenvironments of diverse AKI models and the 
duration of AKI may explain the contradictory outcomes 
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of kidney lymphangiogenesis in AKI. Although these 
immune regulation mechanisms are widely triggered in 
a large number of diseases, evidence has suggested that 
lymphangiogenesis triggered by different stimuli dif-
fers in its immune regulation impacts to some extent. 
For instance, B cells-driven dLNs lymphangiogenesis 
significantly contributes to immune cell migration [77], 
while tumor-induced dLNs lymphangiogenesis mainly 
enhances lymph flow and metastasis [78, 79]. None-
theless, currently, few studies focus on the complex 

mechanisms and the balance between opposite outcomes 
beneath AKI-induced lymphangiogenesis. Though lym-
phangiogenesis is found in different AKI models, it mani-
fests divergent impacts on different models, including 
ischemia–reperfusion injury-induced, unilateral ureteral 
obstruction-induced and several toxin-induced models. 
However, its specific mechanisms are still unknown [80]. 
Given the varied pathogeneses underlying these models, 
future investigations need to elucidate lymphangiogen-
esis’s distinct roles in these AKI models.

Fig. 1 Immune regulation roles of lymphangiogenesis in inflammation settings. a. During kidney inflammation, lymphangiogenesis is significantly 
induced, and LECs overexpress chemokine CCL21, which promotes recruitment of  CCR7+ immune cells to kidney dLNs through lymphatic 
vessels. Increased migration of  CCR7+ dendritic cells with antigen presented promotes antigen-specific  CD8+ T cell proliferation and homing 
to inflammation site. These infiltrated  CD8+ T cells released inflammatory cytokines including interferon γ (IFN-γ), tumor necrosis factor-α (TNF), 
transforming growth factor β (TGF-β) and transcription factor of tonicity-responsive enhancer-binding protein (TonEBP). These cytokines promotes 
macrophages and proximal tubular epithelial cells to express several factors including VEGF-C and VEGF-D that eventually further prompt 
kidney lymphangiogenesis. b. Constant inflammation microenvironment results in abnormally-structured lymphangiogenesis, which aggravates 
inflammation response in kidney. c. Immune regulation role of lymphangiogenesis functions differently in multiple pathological conditions, 
resulting in diverse immune microenvironments. In kidney fibrosis, reductions of B cells, Treg cells, IFN-γ-producing  CD8+ T cells and  CD11c+CD8+ 
T cells are shown. And in acute kidney injury, accumulations of Treg cells (Th17 cells) and local  CD8+ T cells are inhibited. Of note, despite actively 
regulating immune cell migrations, during inflammation, infiltrated  CD8+ T cells released IFN-γ, inducing PD-L1 expression by LECs, further 
inhibiting local  CD8+ T cell effector function, reducing accumulation of local  CD8+ T cell and alleviating kidney damage and progression of kidney 
fibrosis. Lymphangiogenesis significantly aids to this mechanism through enhanced immune cell trafficking. d. Lymphangiogenesis promote 
clearance of cellular debris, pro-inflammatory cytokines. In AKI, it significantly reduce the level of TGF-β to suppress the inflammatory response 
in kidney
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Additionally, since UUO can directly cause great uri-
nary retention, which might confound the factors that 
trigger the initiation and maintenance of lymphangiogen-
esis, it might not be the ideal AKI model to study these 
intricate mechanisms involved in kidney lymphangiogen-
esis [48].

Hemolytic uraemic syndrome (HUS) is a group of dis-
orders including AKI, thrombocytopenia and microan-
giopathic hemolytic anemia [81]. It is a rare but often 
life-threatening syndrome that various infective and non-
infective reasons can induce. Shiga toxin-associated HUS 
is the most common type [82]. In general, all the non-
infective types refer to atypical HUS, which is often asso-
ciated with dysregulation of the complement system [83]. 
The consistent features of all types of HUS manifested 
in the kidney include aberrant immune cell populations 
and remarkable renal inflammation [81, 82, 84]. To date, 
classical treatments are limited to supportive options, 
and few targeted therapies are implemented in the clinic 
except anti-complement therapy. A recent study reported 
that ibrutinib and acalabrutinib (Bruton’s tyrosine kinase 
inhibitors) significantly reduced immune cell invasion 
and ameliorated disease progression [82]. Bruton’s tyros-
ine kinase inhibitor is crucial for innate immune response 
by regulating the recruitment and function of immune 
cells [85]. Therapies focused on promoting the growth 
of lymphatic vessels may be a viable alternative approach 
due to the unique feature of highly increased immune 
cell recruitment in the kidney. In contrast to other AKI 
scenarios, the process of lymphangiogenesis may signifi-
cantly enhance the movement of immune cells, which 
in turn worsens the inflammatory response in the kid-
ney. However, more studies are necessary due to limited 
research, especially on lymphangiogenesis in HUS.

Further studies are urgently needed to provide a clearer 
acknowledge of how newly synthesized lymphatic ves-
sels act as an immune switch, specifically in the setting 
of AKI, which can yield novel insights to alleviate AKI 
through utilizing protective aspect of kidney lymphangi-
ogenesis or avoiding detrimental actions of kidney 
lymphangiogenesis.

General function of lymphangiogenesis in chronic kidney 
disease
DN, IgAN, and LN are significant contributors to the pro-
gression of chronic kidney disease (CKD) and subsequent 
renal fibrosis [36]. CKD is a progressive condition char-
acterized by gradually losing kidney function over time. 
The key pathological features of CKD are renal fibrosis 
and inflammation, which involve the excessive accumula-
tion of extracellular matrix proteins in the kidney, leading 
to scarring and structural damage [40]. In CKD patients, 
diverse types of immune cells are infiltrated, mostly 

including macrophages, T cells, DCs, and mast cells [86]. 
The protective function of lymphangiogenesis is primar-
ily exhibited through the clearance of local inflammatory 
factors and immune cells in the kidney.

Lymphangiogenesis reduces macrophage infiltration 
at the injury site and decreases the level of TGF-β, sub-
sequently relieving intrarenal immune response and 
retarding the fibrosis progression [87]. Unlike AKI, M2 
macrophages are the predominant phenotype within kid-
ney fibrosis, which promotes tissue fibrosis in chronic 
kidney disease and kidney fibrosis [57]. Additionally, 
TGF-β serves as a master regulator during the progres-
sive process of CKD. Physiologically, TGF-β in the kid-
ney is responsible for the maturation of immune cells and 
regulating immune tolerance and response. However, 
overexpression of TGF-β induced by kidney inflamma-
tion disrupts the immune balance and accelerates the 
progression of kidney fibrosis. Additionally, lymphatic 
retention and interstitial fluid accumulation also increase 
expression level of TGF-β [88]. Therefore, clearing exces-
sive fluid through kidney lymphangiogenesis also reduces 
TGF-β, which subsequently activates immune cells, 
including macrophages, reducing the progression of kid-
ney fibrosis.

Besides clearing overexpressed TGF-β and infiltrated 
macrophages, recent studies elucidate lymphangiogen-
esis’s important immune regulation role by removing B 
cells in the kidney to mitigate fibrosis. B cells can affect 
kidney fibrosis through cytokine production and interac-
tions with macrophages, T cells, and fibroblasts. Accu-
mulating evidence demonstrates that depletion of B cells 
exhibits a protective effect towards kidney fibrosis in ani-
mal models. B cell-deficient mice were resistant to UUO-
induced renal interstitial fibrosis [89]. Infiltrating B cells 
in kidney lesions exacerbate fibrosis by secreting vari-
ous chemokines, including CCL2 and chemokine CCL7. 
Evidence demonstrates that enhanced recruitment of B 
cells in renal tissue exacerbates CKD via increasing mac-
rophage infiltration [89], inhibiting T cell differentiation 
and activation [90, 91]. In CKD progress, lymphangi-
ogenesis promotes B cell’s egress to dLNs, decreasing B 
cell accumulation in the kidney. However, whether lym-
phangiogenesis can protect the kidney directly through 
reducing renal B cell accumulation and profibrotic 
chemokines secreted by B cells remains to be established. 
At first, overexpression of CCL21 by newly formed lym-
phatic vessels enhances the recruitment of  CCR7+ DCs 
in dLNs. It eventually systematically promotes antigen-
specific  CD8+ T cells infiltration and kidney inflamma-
tion response, further inducing lymphangiogenesis. This 
chronic and systematic immune response significantly 
aggravates the inflammation and fibrosis progression. 
Suppressing the recruitment of CCR +7 DCs alleviates the 
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infiltration of inflammatory cells infiltration and the pro-
gression of kidney fibrosis [16].

Reducing local immune cells due to lymphangiogen-
esis can also be maleficent in kidney fibrosis, inducing 
CKD. Studies have demonstrated that Treg cells protect 
the kidney against fibrosis progress [92], while Tγδ cells, 
Th17 cells, and  CD4+ T cells present a profibrotic effect 
on the injured site [93, 94]. Therefore, reducing these 
anti-fibrotic immune cells due to kidney lymphangi-
ogenesis can accelerate the progression of kidney fibro-
sis. Contrary to conventional acknowledge, subsets of 
 CD8+ T cells, including IFN-γ-producing  CD8+ T cells 
and  CD11c+CD8+ T cells, also exert an anti-fibrotic and 
renal protective role in the kidney fibrosis setting. IFN-
γ-producing  CD8+ T cells inhibit the differentiation of 
 CD4+ T cells into Th2 cells, subsequently controlling 
kidney inflammation and fibrosis, while  CD11c+CD8+ T 
cells induce fibroblast apoptosis in obstructed kidney dis-
ease. These  CD8+ T cells reduce myofibroblasts accumu-
lation, which is one of the principal pathologies of CKD 
[95, 96].

Besides, sustained inflammation in the kidney may 
eventually result in the abnormal structure of newly syn-
thesized lymphatic vessels [97], which destructs lym-
phatic vessels’ functions, aggregating the progression of 
kidney inflammation and fibrosis (Fig. 1).

Diabetic kidney disease
Chronic hyperglycemia can lead to progressive diabetic 
kidney disease (DKD), which is the leading cause of end-
stage renal disease (ESKD) in many countries. Excessive 
lipid accumulation in kidney tissue stimulates the expres-
sion of TGF-β and TNF-α, consequently resulting in an 
inflammatory response, eventually leading to severe dia-
betic renal damage [98].

As for the reason of lymphangiogenesis in DKD 
patients, it occurs due to a hyperglycemia-induced pro-
inflammatory environment [99, 100], which creates a 
positive feedback loop between kidney tissue and dLNs, 
leading to an intensified inflammatory response in the 
kidneys [56, 74]. Additionally, the markedly elevated 
expression of VEGF-C in hyperglycemic conditions 
[53], while excessive ROS production from lipotoxicity 
induces apoptotic cell death, damaging the lymphatic 
endothelium and further promoting abnormal lym-
phangiogenesis [101].

In the context of the immune mechanisms of lym-
phangiogenesis in DKD, DC cells and macrophages play 
an indispensable role. Under hyperglycemia, the amount 
of DCs greatly increases, and danger-associated mol-
ecule patterns (DAMPs) interact with pattern recogni-
tion receptors on kidney DCs, activating  CD8+ T cells, 
a feedback loop between kidney lymphangiogenesis and 

immune response. The macrophage population increases 
heavily in the glomeruli and tubulointerstitial within 
human type 2 diabetes. The intrarenal macrophages that 
were recruited primarily underwent polarization towards 
the M1 subset. This polarization resulted in heightened 
expressions of both systemic and renal cytokines, such as 
MCP-1 and TNF-α. Consequently, neo-lymphatic vessels 
developed, leading to the ultimate progression of glomer-
ulosclerosis and tubulointerstitial fibrosis. Studies have 
demonstrated that macrophage infiltration prevention 
alleviates DKD progression [102].

In DKD condition, the newly synthesized lymphatic 
vessels in the kidney are dilated, with characteristics 
of hypertonicity and aberrant functions [97]. Notably, 
abnormal lymphangiogenesis might also partly damage 
preexisting lymphatic vessels’ function [99].

IgA nephropathy
Current studies have suggested that VEGF can manifest 
protective or detriment effects in glomerulonephritis 
[103–105]. These studies mainly focused on the roles of 
VEGF-induced angiogenesis in diverse chronic glomeru-
lonephritis models; nonetheless, only a few studies tar-
geted lymphangiogenesis. A recent study has provided 
evidence of a correlation between kidney lymphangio-
genesis and clinical outcomes of IgA [106]. The increased 
lymphatic vessel density significantly correlates with 
more serious renal function injury and earlier progres-
sion to ESKD [48, 106]. Previous studies proved that the 
density of lymphatic vessels manifested as a promising 
prognostic value to predict the risk of ESKD for IgAN 
patients [106]. Similar to IgAN, a recent study demon-
strated that the increased kidney lymphatic vessel density 
correlated with poor outcomes in crescentic glomerulo-
nephritis [107]. Research has suggested that increased 
immune cell infiltration in crescentic glomerulonephritis 
is highly associated with kidney lymphangiogenesis [107, 
108]. However, whether increased infiltration of immune 
cells induced by lymphangiogenesis plays a crucial part 
in IgAN remains uninvestigated. Emerging evidence has 
unveiled attributions of various immune cells, including 
Th cells, Treg cells, follicular helper T cells, and B cells, 
to the pathology of IgAN [109–114]. Within IgAN, these 
lymphocytes exert abnormal functions, which are signifi-
cantly involved in the pathogenesis of IgAN, aggravating 
kidney inflammation and injury [111, 114, 115].

Dysfunctional newly synthesized lymphatic vessels 
contribute to the maleficent role of lymphangiogenesis 
in IgAN, similar to hyperglycemia-induced kidney dis-
ease. In addition, macrophages contribute to abnormal 
lymphangiogenesis in IgA glomerulonephritis. Emerg-
ing evidence demonstrates that CD137 ligand (CD137L)-
secreted macrophages are present in IgA nephropathy, 
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similar to other chronic kidney inflammatory diseases. 
CD137L interacts with CD137 on lymphatic endothe-
lial cells, inducing lymphatic autophagy and lymphangi-
ogenesis [116]. It may significantly contribute to the 
dysfunctional kidney lymphatic vessels, resulting in 
loss of transportation of inflammatory-associated mol-
ecules and obstruction of lymphatic routes for immune 
cell migration. Eventually, this CD137L-CD137 pathway 
drives fibrogenic responses, resulting in kidney fibrosis.

Lupus nephritis
Lupus nephritis is significantly associated with the pro-
gression of kidney inflammation and fibrosis. Still, only a 
few studies have focused on lymphangiogenesis’s specific 
role in lupus nephritis. Inhibition of lymphangiogenesis 
in a mouse model of lupus nephritis (LN) distinctly alle-
viated the severity of the disease, but the effect of lym-
phangiogenesis was confounded in this model [117]. 
Additionally, a recent study found that kidney lymphang-
iogenesis induced the trafficking of LN-specific Mono/
MΦ to both the entry and exit of the injured lesion [118]. 
The maleficent effect of lymphangiogenesis is probably 
related to the positive feedback between the renal inflam-
mation site and the dLN, as mentioned above. However, 
whether the protective role of lymphangiogenesis can 
alleviate lupus nephritis remains unclear. In line with 
other chronic kidney diseases, lymphangiogenesis may 
mediate kidney injury through the clearance of immune 
and inflammation-related molecules and mediation in 
immune cell trafficking.

Hypertensive nephropathy
Patients and animal models with hypertension manifest a 
substantial increase of activated immune cells in the kid-
ney [14, 119–126]. Infiltration of activated macrophages, 
DCs, B cells, and T cells distinctly aggravates renal injury 
and fibrosis, exacerbating sodium retention and ulteriorly 
elevating blood pressure [64, 127]. In general, the inflam-
matory response in the kidney, which is triggered by 
hypertension, further deteriorates both kidney function 
and hypertension condition [120].

In the setting of HTN, inflammation-associated kid-
ney lymphangiogenesis is significantly induced [14, 119, 
120, 128–130]. Previous studies demonstrated that HTN 
stimuli indirectly promote lymphangiogenesis instead 
of prompting LECs proliferation. HTN stimuli interact 
with various immune cell-secreted factors, sprouting 
lymphatic vessels [131]. Notably, increased extracellular 
ions in the kidney may directly activate macrophages to 
facilitate kidney lymphangiogenesis in hypertensive con-
ditions. The mechanism above was discovered earlier in 
the dermis interstitium. Studies have demonstrated that 
increased osmolarity and extracellular salts within the 

skin directly activate TonEBP in macrophages and DCs, 
further inducing macrophages to express VEGF-C, which 
promotes lymphangiogenesis.

Given the critical role of lymphangiogenesis in fluid 
clearance and the significantly increased kidney lym-
phangiogenesis in HTN models, the interaction between 
the lymphatic system and HTN has drawn much atten-
tion. Furthermore, despite newly synthesized lymphatics’ 
function in modulating renal fluid homeostasis, recent 
evidence supports that lymphangiogenesis can also influ-
ence HTN by regulating the immune response in the kid-
ney. Enhancement of kidney lymphangiogenesis exerts 
a protective effect against hypertension, reducing renal 
immune cell accumulation and alleviating inflamma-
tion [14, 45, 120, 128, 130, 132, 133]. Despite clearance 
of excessive fluid, lymphangiogenesis also elevates drain-
age of infiltrated immune cells and pro-inflammatory 
cytokines secreted by these cells. In several hypertension 
mouse models with kidney-specific overexpression of 
VEGF-D  (KiD−VD+ mouse model), excessively accumu-
lated immune cells, including macrophages in the kidney, 
were all reduced, subsequently preventing hypertension 
[132]. Furthermore, in hypertension conditions, kidney 
lymphangiogenesis also actively regulates the migra-
tion of immune cells, including macrophages, DCs, and 
T cells, via increased secretion of CCL21 and CCR7. An 
angiotensin II-induced hypertension (A2HTN) mouse 
model study has proved that lymphangiogenesis signifi-
cantly reduces the  CD11c+F4/80− monocyte renal popu-
lation [130]. Activated monocytes in the kidney express 
pro-inflammatory cytokines and mediate T-cell activa-
tion and differentiation. Naïve T cells differentiate into 
Th1 or Th17 cells, which secrete pro-inflammatory and 
pro-hypertensive cytokines, causing sodium retention 
and hypertension [134]. Thus, reducing these monocyte 
populations in kidney attributes inhibits excessive inflam-
mation response in the kidney due to hypertension.

However, evidence supports that renal-specific lym-
phangiogenesis cannot fully rescue kidney hypertensive 
condition but can only alleviate systemic blood pressure 
[135]. Additionally, as Treg cells can inhibit inflammation 
response and improve sodium retention within HTN [75, 
136], in line with other kidney diseases, lymphangiogene-
sis-induced removal of Treg cells might aggravate kidney 
inflammation and hypertension conditions.

In the HTN setting, kidney lymphangiogenesis is lim-
ited in renal immune cell trafficking [132]. Additionally, 
due to current evidence, an uneven outcome in the trans-
port level of different immune cell populations by newly 
formed renal lymphatic vessels has been discovered in 
hypertension models. The great involvement of T cells 
and M1 macrophages in hypertensive kidneys possibly 
results in limited transferring of these cells from kidney 
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tissues through kidney lymphangiogenesis, compared 
with other renal immune cell populations.

Interestingly, unlike other kidney diseases, in hyper-
tension condition, kidney lymphangiogenesis can also 
directly regulate immune cell activation through sodium 
transport (Fig.  2). Recent study has revealed that kid-
ney lymphangiogenesis directly suppresses activation 
and accumulation of DCs through reducing  Na+ reten-
tion, consequently relieving hypertension and mitigating 

the progression of HTN [132]. As  Na+ stimulation can 
activate DCs [137], reduction of  Na+ retention through 
enhanced kidney lymphangiogenesis can directly inhibit 
DCs activation.

Polycystic kidney disease
Unlike the early stage of kidney inflammation, M2 mac-
rophages are predominant macrophages within PKD, 
which can promote tissue repair and are ultimately 

Fig. 2 Distinct mechanisms of lymphangiogenesis in certain kidney disease. a. In kidney hypertensive disease, sodium retention induces 
lymphangiogenesis through a Na +—TonEBP—VEGF-C pathway. Na + directly activates transcription factor of tonicity responsive 
enhancer-binding protein (TonEBP) in macrophages and dendritic cells (DCs) to promote expression of VEGF-C from macrophages, and then 
induces lymphangiogenesis. Sodium retention can directly activate DCs to express cytokines for further antigen-specific T cell accumulation 
and activation. Na + enters dendritic cells, subsequently leading to Ca2 + influx and then activation of protein kinase C, eventually resulting 
in increased expression of reactive oxygen species (ROS). ROS oxidates fatty acids into isolevuglandins (IsoLGs), which activates dendritic cells 
to produce proinflammatory cytokines (IL-1β, IL-6, IL-23) and activate T cells to proliferate and express inflammatory cytokines including TNF, IFN-γ 
and TGF-β. Lymphangiogenesis can reduce sodium retention, therefore inhibits DCs activation and the inflammatory response. b. In diabetic kidney 
disease, excessive cytokines expressed during the chronic inflammation condition create a specific microenvironment, which significantly induces 
abnormally-structured lymphangiogenesis
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profibrotic [138]. Of note, M2 macrophages distinctly 
enhance cyst enlargement in PKD [139]. Studies have 
demonstrated that kidney lymphangiogenesis can 
remodel vessel structure, expand lymphatics to transport 
accumulated fluid in cysts and inhibit cyst progression 
[140]. However, few study concentrates on the transpor-
tation of local immune cells or the immune regulatory 
function of lymphangiogenesis within PKD. In line with 
other kidney diseases, lymphangiogenesis may alleviate 
the progression of PKD by transporting inflammatory 
cells and reducing M2 macrophage infiltration surround-
ing the cysts. However, available evidence has indicated 
a protective role of  CD8+ T cells in the context of PKD 
[141]. Further studies are required to investigate the 
immune regulatory role of kidney lymphangiogenesis 
and its overall impact on PKD.

Kidney transplantation
After kidney transplantation, the mutual interaction 
between the allograft and the recipient’s immune system 
may generate a series of immune responses, resulting in 
transplant rejection. Immune cells are trafficked between 
the kidney allograft and the recipient’s original system 
via blood circulation and newly formed lymphatic vessels 
[142, 143]. Studies with conflicting results have revealed 
that lymphangiogenesis can both serve a protective role 
and a maleficent role in transplant rejection. Kidney allo-
grafts with greater density of kidney lymphatic vessels are 
less likely to generate renal interstitial fibrosis and renal 
tubule atrophy [144]. Likewise, promoting lymphangi-
ogenesis in the kidney allograft significantly alleviates 
transplant rejection and extends the mice recipient’s 
survival time [145]. Vigorous neo-synthesized lymphatic 
vessels transport inflammatory cells, clearing interstitial 
edema and subsequently protecting the kidney allograft 
[145–147]. In line with acute kidney injury, lymphatic 
regulation of immune cells via lymphangiogenesis pro-
tects recipients from transplant rejection. Kidney lym-
phangiogenesis can directly suppress local  CD8+ T cell’s 
immune response in kidney allograft via PD-L1, which 
is secreted by LECs [148]. In contrast to AKI, lymphatic 
migration of Treg cells may suppress allograft rejection 
[149].

Inversely, several studies have suggested that the 
expansion extent of lymphatic vessels positively corre-
lates with the severity of transplant rejection [144, 150, 
151]. In addition, it is demonstrated that inhibiting lym-
phangiogenesis can mitigate the injury of allografts [152], 
while ligation of lymphatic vessels benefits transplant 
rejection. Neo-synthesized lymphatic vessels have an 
abundant accumulation of CD  45+ lymphocytes, mainly 
 MHCII+, ED-1−,  IDO−,  HIS13−, and CD103 antigen-pre-
sent cells. The increase of these antigen-presenting cells 

can exacerbate injury of transplant rejection in kidney 
allografts [153]. Increasing recruitment of antigen-pre-
senting cells in recipient dLNs initiates the alloimmune 
response, leading to inflammatory cell infiltration in the 
kidney allograft and further destruction of the structure 
and function of the allograft [154].

Conclusion
Despite an increased emphasis on the immunological 
regulatory function of lymphangiogenesis in renal disor-
ders, there are still notable gaps in our understanding. A 
substantial body of evidence indicates that kidney lym-
phangiogenesis plays a significant part in immunologi-
cal regulation, with its effects being either beneficial or 
detrimental depending on the specific kidney condition 
under consideration. Recent studies have elucidated sev-
eral immunological functions of lymphatic veins for spe-
cific kidney disorders. Nevertheless, existing research 
predominantly examines renal inflammation, fibrosis, 
and a restricted range of prevalent kidney disorders, such 
as HTN and DKD. Furthermore, these investigations pri-
marily rely on animal models as the primary means of 
study. Moreover, a more comprehensive examination is 
required to elucidate the underlying factors contributing 
to the varied impacts of lymphangiogenesis on distinct 
renal disorders. There is an urgent need for a more exten-
sive comprehension of the immunological regulatory 
processes underlying renal lymphangiogenesis within the 
framework of kidney disease. Examining these complex 
pathways can yield new perspectives in developing thera-
peutic interventions that specifically target the beneficial 
aspects of lymphangiogenesis or reduce its detrimental 
impact on renal disorders.
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