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Abstract 

Background  To elucidate the genetic and molecular mechanisms underlying psoriasis by employing an integra-
tive multi-omics approach, using summary-data-based Mendelian randomization (SMR) to infer causal relationships 
among DNA methylation, gene expression, and protein levels in relation to psoriasis risk.

Methods  We conducted SMR analyses integrating genome-wide association study (GWAS) summary statistics 
with methylation quantitative trait loci (mQTL), expression quantitative trait loci (eQTL), and protein quantitative trait 
loci (pQTL) data. Publicly available datasets were utilized, including psoriasis GWAS data from the European Molecular 
Biology Laboratory–European Bioinformatics Institute and the UK Biobank. Heterogeneity in dependent instruments 
(HEIDI) test and colocalization analyses were performed to identify shared causal variants, and multi-omics integration 
was employed to construct potential regulatory pathways.

Results  Our analyses identified significant causal associations between DNA methylation, gene expression, protein 
abundance, and psoriasis risk. We discovered two pathways involving the long non-coding RNA RP11-977G19.11 
and apolipoprotein F (APOF). Methylation at sites cg26804944 and cg02705573 was negatively associated with RP11-
977G19.11 expression. Reduced expression of RP11-977G19.11 was linked to increased APOF levels, which were 
positively associated with a higher risk of psoriasis. Methylation at sites cg00172967, cg00294382, and cg24773560 
was positively associated with RP11-977G19.11 expression. Elevated expression of RP11-977G19.11 was associated 
with decreased APOF levels, reducing the risk of psoriasis. Colocalization analysis highlighted APOF as a key protein 
in psoriasis pathogenesis. Validation using skin tissue, EBV-transformed lymphocytes data and inflammation-related 
protein panels confirmed the associations of RP11-977G19.11 and APOF with psoriasis.

Conclusions  Our multi-omics analysis provides preliminary evidence for potential molecular mechanisms in psoriasis 
pathogenesis. Through the integration of GWAS and molecular QTL data, we identify candidate pathways that may 
be relevant to disease biology. While these findings require extensive experimental validation, they offer a framework 
for future investigations into the molecular basis of psoriasis.
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Introduction
Psoriasis is a chronic autoimmune disorder characterized 
by red, scaly plaques on the skin surface, significantly 
impairing patients’ quality of life [1]. Beyond its derma-
tological manifestations, psoriasis has systemic effects, 
including an increased risk of depression, psoriatic 
arthritis, and cardiovascular comorbidities [2]. The global 
prevalence of psoriasis varies, ranging from 0.14% in East 
Asia to 1.99% in Australasia, with higher rates observed 
in Europeans and high-income countries [3]. Despite 
its prevalence and impact, the pathogenesis of psoriasis 
remains incompletely understood, limiting the develop-
ment of effective therapeutic options.

Current evidence highlights the pivotal role of the 
interleukin-23 (IL-23) and interleukin-17 (IL-17) signal-
ing pathways in psoriasis pathogenesis. IL-23 induces 
a distinct macrophage phenotype that contributes to 
inflammatory responses in murine models [4]. IL-17, 
in particular, has been shown to restore the function of 
keratinocytes and may play a protective role in psoriasis 
development under certain conditions [5]. This under-
standing has spurred rapid advancements in biologic 
therapies over the past few decades. Biologics—recom-
binant monoclonal antibodies or receptor fusion pro-
teins—specifically target inflammatory mediators like 
IL-23 and IL-17, offering substantial clinical benefits [6]. 
However, these therapies are not universally effective: dif-
ferent agents show various efficacy, some patients exhibit 
inadequate responses or experience adverse effects [7, 8]. 
Additionally, the high costs of biologics impose signifi-
cant economic burdens on patients and healthcare sys-
tems [9]. Given these limitations, there is a pressing need 
to deepen our understanding of psoriasis pathogenesis to 
identify novel therapeutic targets.

Mendelian randomization (MR) provides a pow-
erful approach to investigate potential causal effects 
between exposures and outcomes by using genetic vari-
ants as instrumental variables (IVs) [10]. Two-sample 
MR enhances this methodology by estimating the effect 
of genetic variants on exposure and outcome in separate 
populations, thereby increasing statistical power and 
reducing bias [10]. This approach minimizes confound-
ing factors and reverse causation inherent in observa-
tional studies [11]. The summary-data-based Mendelian 
randomization (SMR) technique extends traditional MR 
by integrating genome-wide association study (GWAS) 
summary statistics with quantitative trait locus (QTL) 
data, enabling multi-omics analyses [12].

To date, no studies have comprehensively explored the 
genetic causal associations between quantitative trait 
locus and psoriasis risk using a multi-omics approach. 
Therefore, we employed the SMR technique to investi-
gate the potential associations of DNA methylation, gene 

expression, and protein abundance with psoriasis. By 
integrating multi-omics data, we aim to uncover novel 
insights into the pathogenesis of psoriasis and identify 
potential targets for therapeutic intervention. This multi-
omics approach can provide a more comprehensive 
understanding of disease mechanisms, facilitating the 
discovery of new therapeutic targets and biomarkers.

Materials and methods
Study design
An overview of our analytical framework is presented 
in Fig.  1. Our study integrated three types of molecu-
lar quantitative trait loci (QTL) data: methylation QTL 
(mQTL) from McRae et  al. (n = 1980 Europeans) [13], 
expression QTL (eQTL) from the eQTLGen Consor-
tium (n = 31,684 Europeans) [14], and protein QTL 
(pQTL) from Ferkingstad et  al. (n = 35,559 Icelanders) 
[15]. For instrument selection, we applied criteria includ-
ing p < 5 × 10–8, with top-SNPs selected within ± 2000 kb. 
For psoriasis associations, we utilized two independent 
datasets: a discovery cohort from EMBL-EBI (5,459 cases 
and 324,074 controls) and a replication cohort from UK 
Biobank (5,314 cases and 457,619 controls). For valida-
tion, we leveraged tissue-specific data from the GTEx 
Consortium (V8 release) [16], including both sun-unex-
posed and sun-exposed skin tissue, as well as EBV-trans-
formed lymphocytes. Additional protein-level validation 
was conducted using the UK Biobank Pharma Proteom-
ics Project’s  (UKB-PPP) inflammation panel [17]. All 
datasets utilized in this study were publicly available and 
are detailed in Table 1.

Methylation, expression, and protein quantitative trait loci 
datasets
Specifically, for mQTL analysis, we utilized whole blood 
data from McRae et  al. [13], which included 417,580 
CpG sites genotyped using the Illumina HumanMethyla-
tion450 array. The CpG sites were filtered using a detec-
tion p-value threshold of 0.01 in at least 95% of samples. 
Methylation levels were normalized using both beta and 
M-values, with beta-values used for interpretability and 
M-values for statistical testing. For eQTL analysis, we 
used blood-derived data from eQTLGen Consortium 
[14]. Gene expression levels were quantified using RNA 
sequencing or gene expression arrays, with subsequent 
quality control including removal of technical covariates 
and normalization [14]. Expression data were adjusted 
for known and hidden confounders using principal com-
ponent analysis [14]. Blood pQTL data from Ferkingstad 
et al. [15] measured 4,907 proteins using the SOMAscan 
platform. Raw protein measurements underwent several 
quality control steps including hybridization control nor-
malization, median signal normalization, and calibration 
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Fig. 1  Study design and workflow for our study. This figure outlines the step-by-step process of our study, including instrument selection, 
Mendelian randomization analysis, colocalization, multi-omics integration, and validation. The data sources, selection criteria, and analytical 
methods used at each stage, from initial discovery cohorts to final validation using tissue-specific and proteomic data is included

Table 1  Summary of datasets included in this study

QTL, quantitative trait loci

Description Consortium/First author Participants

mQTL in whole blood McRae et al. 1,980 European individuals

eQTL in whole blood eQTLGen Consortium 31,684 European individuals

Tissue-specific eQTL The Genotype-Tissue Expression project 838 individuals (majority were European)

pQTL in whole blood Ferkingstad et al. 35,559 Icelanders

Inflammatory pQTL UK Biobank Pharma Proteomics Project 54,219 UK Biobank participants

Psoriasis European Molecular Biology Laboratory -European Bioinfor-
matics Institute

5,459 cases and 324,074 controls

Psoriasis UK Biobank study 5,314 cases and 457,619 controls
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to remove batch effects. The protein levels were log-
transformed and standardized to have a mean of zero and 
standard deviation (SD) of one. For tissue-specific valida-
tion, we utilized GTEx V8 data [16] from sun-exposed 
(n = 605) and sun-unexposed (n = 517) skin samples, as 
well as EBV-transformed lymphocytes (n = 147)  . Gene 
expression was quantified using RNA-seq, with reads 
aligned to GRCh38 reference genome using STAR, fol-
lowed by gene-level quantification using RNA-SeQC 
v1.1.9. Expression values were normalized using TMM 
method and transformed to log2 counts per million [16]. 
Additional protein-level validation used UKB-PPP data 
[17], which measured 1,463 proteins using the Olink® 
Explore platform. The protein levels were normalized 
using Olink’s standard pipeline, including normalization 
against extension control, inter-plate control, and adjust-
ment for technical variation [17]. The processing and 
quality control steps for all datasets aligned with estab-
lished protocols in their respective original publications.

Psoriasis outcome datasets
Summary-level data for psoriasis were obtained from 
studies by the European Molecular Biology Laboratory–
European Bioinformatics Institute (EMBL-EBI) and the 
UK Biobank. The EMBL-EBI (GCST90014456) dataset 
included 329,533 individuals of European descent, with 
5,459 psoriasis cases and 324,074 controls [18]. For vali-
dation, we used the data from UK Biobank, which com-
prised 462,933 European individuals (5,314 psoriasis 
cases and 457,619 controls) [19].

Summary data‑based mendelian randomization analysis
We employed summary-data-based Mendelian randomi-
zation (SMR) analysis to investigate potential causal rela-
tionships between molecular traits and psoriasis risk. The 
SMR approach extends traditional Mendelian randomi-
zation by utilizing summary-level data from independent 
GWAS and QTL studies to examine whether the effect of 
a SNP on a trait (psoriasis) is mediated through molecu-
lar features (such as gene expression, DNA methylation, 
or protein levels). The SMR method has been described 
in detail by Zhu et  al. [12]. Briefly, the SMR effect size 
(bxy) was estimated as:

where bzy represents the SNP’s effect on psoriasis from 
GWAS data, and bzx represents the SNP’s effect on 
molecular traits from QTL studies. The corresponding 
test statistic (TSMR) was calculated using z-statistics 
from both GWAS and QTL studies:

bxy = bzy/bzx

TSMR = z2zyz2zx/
(

z2zy+ z2zx
)

where zzy and zzx are the z-statistics from GWAS and 
QTL studies, respectively. To implement this analysis, 
we utilized the SMR software (v1.3.1) [12] with the fol-
lowing criteria: (1) selected top cis-QTLs within ± 2,000 
kb of each gene, (2) required p-value < 5 × 10–8 for QTL 
associations [12], and (3) excluded SNPs with allele fre-
quency differences > 0.2 between datasets. Statistical 
significance was determined using false discovery rate 
(FDR)-corrected p-values (threshold < 0.05) via the Ben-
jamini–Hochberg method.

Distinguishing functional association from linkage
To differentiate between pleiotropy and linkage disequi-
librium, we implemented the heterogeneity in depend-
ent instruments (HEIDI) test. Under the assumption of a 
single causal variant, the SMR effect size (bxy) estimated 
using any SNP in LD with the causal variant should be 
consistent. The HEIDI test statistic evaluates this consist-
ency by comparing the bxy of the top associated cis-QTL 
(bxy(top)) with those of other significant SNPs in the cis-
QTL region (bxy(i)):

where di follows a multivariate normal distribution 
MVN(d,V), with V representing the covariance matrix. 
The HEIDI test statistic (T_HEIDI) is calculated as:

where zd(i) = di/√var(di). We excluded SNPs in perfect 
LD with the top cis-QTL (r2 > 0.9) and those with weak 
associations (p > 1.6 × 10⁻3) to ensure robust testing. A 
p_HEIDI > 0.01 suggests a single causal variant affecting 
both the molecular trait and the outcome through the 
same pathway.

Colocalization analysis
To determine whether association signals from sepa-
rate GWAS at the same locus share a causal variant, we 
performed colocalization analysis using the "coloc" R 
package (v5.2.3) [20–22]. Given the significant role pro-
teins play in disease, we focused on genetic associations 
between psoriasis and corresponding pQTLs. The colo-
calization analysis tests five hypotheses: (H0) no causal 
variants for either protein or psoriasis in the locus; (H1) 
one causal variant for protein only; (H2) one causal vari-
ant for psoriasis only; (H3) two distinct causal variants 
for protein and psoriasis; and (H4) one shared causal var-
iant for both protein and psoriasis. Corresponding pos-
terior probabilities are denoted as PPH0, PPH1, PPH2, 
PPH3, PPH4, respectively. We defined colocalization 

di = bxy(i)− bxy(top)

T_HEIDI = �z2d(i)
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regions as ± 1,000 kb around the locus and considered 
PPH4 > 0.7 (corresponds to a FDR of < 5%) as strong evi-
dence supporting a shared causal relationship [23].

Integration of multi‑omics results
We implemented a systematic approach to integrate 
multi-omics data. Our analytical framework was guided 
by the central dogma of molecular biology, where genetic 
variants influence phenotypes through sequential molec-
ular changes from DNA methylation to gene expression 
to protein levels. First, we applied SMR analysis with 
HEIDI tests at each molecular level, requiring both SMR 
FDR-adjusted p-value < 0.05 and HEIDI p-value > 0.01 to 
identify significant associations while excluding potential 
linkage effects. Since proteins represent the functional 
endpoints of gene regulation, we prioritized our analysis 
by first identifying proteins showing robust causal asso-
ciations with psoriasis. We then traced back through the 
molecular cascade to identify consistent signals at gene 
expression and DNA methylation levels.

For colocalization analysis, we implemented a PPH4 
threshold > 0.7, following established precedents in 
genomic research. This threshold was chosen based on 
Foley et al.’s demonstration that it corresponds to a FDR 
of < 5% [23], and has been successfully applied in multi-
ple recent genomic studies [24–26]. To define regula-
tory pathways, we required evidence of consistent effects 
across molecular layers. Specifically, a candidate pathway 
needed to meet three criteria:1). The protein showed 
significant causal association with psoriasis (SMR  FDR-
corrected p-value < 0.05, p-HEIDI > 0.01) and strong colo-
calization evidence (PPH4 > 0.7); 2). The corresponding 
gene demonstrated significant expression-level associa-
tion with psoriasis (SMR FDR-corrected p-value < 0.05, 
p-HEIDI > 0.01); 3). At least one CpG site in the gene 
region showed significant methylation-level associa-
tion with psoriasis (SMR FDR-corrected p-value < 0.05, 
p-HEIDI > 0.01). For example, if methylation at a CpG 
site (e.g., cg26804944) showed association with psoriasis 
through mQTL analysis, and we simultaneously observed 
consistent associations at both gene expression (through 
eQTL) and protein levels (through pQTL) for the same 
gene, we considered this as evidence for a potential regu-
latory pathway.

Results
Association between DNA methylation and psoriasis
Our SMR analysis identified 421 CpG sites that have sig-
nificant causal relationships with psoriasis (Fig.  2A&B). 
Alternations in methylation levels at these sites can influ-
ence gene expression and, consequently, disease risk. 
Even CpG sites within the same gene region can have 
differing effects on psoriasis risk. For example, a one SD 

increase in methylation at site cg04182226 was associated 
with a higher risk of psoriasis (OR 1.213; 95% CI 1.164–
1.264), while an increase at cg15398152 was linked to a 
reduced risk (OR 0.995; 95% CI 0.992–0.998) (Table S1). 
Through the replication process, we identified 416 CpG 
sites significantly associated with psoriasis from the UK 
biobank GWAS. (Supplementary Fig.  1A&B; Table  S2). 
We observed a substantial overlap between our discov-
ery and replication sets, with 194 CpG sites consistently 
associated with psoriasis risk in both datasets (Fig.  2C; 
Table S3). To gain deeper insights into the biological sig-
nificance of these 194 shared CpG sites, we conducted a 
trait enrichment analysis using the EWAS Open Platform 
[27] (Fig. 2D). Our findings showed that aging, smoking, 
and Down syndrome had the highest number of associ-
ated DNA methylation sites among these 194 CpG loci. 
We also observed significant enrichment for several 
autoimmune diseases, including primary Sjögren’s syn-
drome, systemic lupus erythematosus, multiple sclerosis, 
rheumatoid arthritis, and psoriasis itself. This overlap 
with other autoimmune conditions suggests shared epi-
genetic mechanisms in their pathogenesis. Additionally, 
our analysis highlighted associations with other relevant 
traits such as preterm birth, obesity, and allergic condi-
tions. We also found links to chromosomal abnormalities 
and various types of cancer, indicating the broad implica-
tions of these epigenetic markers.

Association between gene expression and psoriasis
We examined the causal effects of gene expression on 
psoriasis risk and identified 54 significant associations 
in our initial analysis (Fig.  3A; Table  S4). We observed 
both risk-enhancing and protective effects. For instance, 
increased expression of ISYNA1 was associated with 
a higher risk of psoriasis (OR 1.203; 95% CI 1.094–
1.323). Similar risk-enhancing effects were observed 
for genes such as MRPL9, OAZ3, TDRKH, SLC27A3, 
and  DENND1B  etc. Conversely, elevated expression 
of some genes appeared to reduce psoriasis risk. An 
SD  increase in KLRF1 expression corresponded to a 
12.7% decrease in risk (OR 0.873; 95% CI 0.810–0.941). 
Other genes showing protective associations included 
VAMP3, REL, RP11-977G19.11, CTD-2260A17.1, 
and HSPA4 etc. Furthermore, we conducted a replication 
analysis using an independent cohort, which revealed 
33 psoriasis-associated genes (Fig. 3B, Table S5). Impor-
tantly, we found an overlap of 17 genes between our dis-
covery and validation sets (Fig. 3C).

Association between protein expression and psoriasis
After applying stringent criteria, we identified five pro-
teins with significant associations with psoriasis in the 
discovery stage: MATN3, ERAP1, APOF, TNFAIP3, and 
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MX1 (Table 2). Higher levels of MATN3 (OR 1.011; 95% 
CI 1.005–1.017), ERAP1 (OR 1.006; 95% CI 1.002–1.009), 
and APOF (OR 1.029; 95% CI 1.016–1.041) were linked 
to an increased risk of psoriasis. In contrast, higher 
levels of TNFAIP3 (OR 0.976; 95% CI 0.966–0.985) 
and MX1 (OR 0.982; 95% CI 0.972–0.992) were asso-
ciated with a decreased risk. Colocalization analysis 
strengthened these findings by highlighting the signifi-
cance of TNFAIP3 (posterior probability PPH4 = 0.97), 

APOF (PPH4 = 0.89), and MX1 (PPH4 = 0.71) (Table  2; 
Table  S6). In the replication cohort, the associations of 
TNFAIP3 (OR 0.992; 95% CI 0.989–0.996; PPH4 = 0.87), 
APOF (OR 1.007; 95% CI 1.004–1.010; PPH4 = 0.87), and 
MX1 (OR 0.997; 95% CI 0.996–0.999; PPH4 = 0.84) were 
confirmed. However, proteins such as FGF2, ERAP1, 
UBLCP1, and PNLIPRP2 did not pass the colocalization 
analysis (Table S7).

Fig. 2  Multi-omics analysis of methylation quantitative trait loci (mQTLs) and their association with psoriasis. A, B Circular plot showing mQTLs 
correlated with psoriasis risk. The outer ring shows individual mQTL sites. Inner rings represent, from outermost to innermost: p-values (p_HEIDI), 
SMR statistics (p_SMR_bxy), and odds ratios (OR). Note the different OR scale between A and B. C Venn diagram showing the overlap of mQTLs 
between the discovery cohort (421 mQTLs) and the validation cohort (416 mQTLs). The intersection reveals 194 mQTLs common to both cohorts, 
demonstrating robust replication. D. Enrichment analysis of the 194 validated mQTLs. The y-axis lists significantly enriched biological processes, 
traits, or pathways. The x-axis shows the enrichment p-value. The size of dots represents the number of genes involved in each process (count), 
while the color indicates the significance level (adjusted p-value). Key enriched terms include aging, smoking, and various autoimmune 
and inflammatory conditions
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Multi‑omics evidence
We conducted a multi-layered analysis to explore the 
relationships between DNA methylation, gene expres-
sion, and protein levels in the context of psoriasis risk. 
This approach involved two stages of analysis: mQTLs 
and eQTLs (Table S8), and second, between eQTLs and 
pQTLs (Table  S9). This multi-omics approach high-
lighted APOF as a central factor in the pathogenesis of 
psoriasis (Fig. 4).

Our analysis suggests that methylation at specific 
CpG sites influences the expression of RP11-977G19.11, 
which in turn affects APOF protein levels and modu-
lates psoriasis risk. Specifically, at the first level, we found 
that methylation at the cg26804944 site was associated 
with reduced expression of the gene RP11-977G19.11 
(OR 0.753; 95% CI 0.657–0.863) (Table  S8). The second 
level of analysis revealed that lower expression of RP11-
977G19.11 was linked to higher levels of APOF protein 
(OR 0.240; 95% CI 0.145–0.398) (Table  S9). Previous 

Fig. 3  Expression quantitative trait loci (eQTLs) associated with psoriasis risk and their replication. A Circular plot depicting eQTLs associated 
with psoriasis risk in the discovery cohort. The outer ring shows individual gene names. Inner rings represent, from outermost to innermost: 
p-values (p_HEIDI), SMR statistics (p_SMR_bxy), and odds ratios (OR). B Circular plot showing eQTLs associated with psoriasis risk in the replication 
cohort. The layout is identical to A. Note the different OR scale compared to A. C Venn diagram-style representation of overlapped eQTL 
between discovery and replication cohorts. The discovery cohort identified 54 eQTLs, while the replication cohort identified 33 eQTLs. The Venn 
diagram shows 17 eQTLs that were successfully replicated in both cohorts

Table 2  Summary data-level Mendelian randomization analysis for association between protein abundance and psoriasis in discovery 
cohort

CI, confidence interval. FDR, false dicovery rate. HEIDI, heterogeneity in dependent instruments. SNP, single nucleotide polymorphsim. OR odds ratio. PPH4, posterior 
probabilities of H4
* Only presented the association with FDR-corrected p-value < 0.05 and p-HEIDI test > 0.01

Gene topSNP b_SMR OR (95% CI) nsnp_HEIDI p_SMR p_HEIDI FDR-corrected p-value PPH4

MATN3 rs2670634 0.0112137 1.011 (1.005,1.017) 20 0.000215503 0.383171 0.019803546 0.038481532

ERAP1 rs30185 0.00550688 1.006 (1.002,1.009) 20 0.000436539 0.05006876 0.033138996 0.00031427

TNFAIP3 rs5029939 -0.0246981 0.976 (0.966,0.985) 19 1.51487E-06 0.2021788 0.000264496 0.965285122

APOF rs2020854 0.0284272 1.029 (1.016,1.041) 20 4.7082E-06 0.04332918 0.000747319 0.893422503

MX1 rs464138 -0.0184196 0.982 (0.972,0.992) 20 0.000579 0.1475849 0.03888207 0.708369724
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studies have associated increased APOF levels with a 
higher risk of psoriasis (OR 1.029; 95% CI 1.016–1.041) 
(Table 2). These findings align with our earlier observa-
tion that methylation at cg26804944 is associated with 

increased psoriasis risk (OR 1.014; 95% CI 1.007-1.020)
(Table S1). We observed similar effects for methylation at 
cg02705573, which was negatively associated with RP11-
977G19.11 expression (OR 0.806; 95% CI 0.728–0.891). 

Fig. 4  Multi-omics Manhattan plots for mQTL, eQTL, and pQTL associations with psoriasis risk in plasma. A Manhattan plot of mQTL associations. 
The x-axis represents chromosomal positions, and the y-axis shows the -log10(p) values. Significant mQTLs are highlighted, with key CpG sites 
labeled (cg00172967, cg26804944, cg02705573, cg00294382, cg24773560). B Manhattan plot of eQTL associations. The plot follows the same 
format as A. The gene RP11-977G19.11 (ENSG00000257303) is highlighted as a significant eQTL. C Manhattan plot of pQTL associations. The plot 
maintains the same structure as A and B. The APOF is identified as a significant pQTL
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Conversely, methylation at three other sites—cg00172967 
(OR 1.155; 95% CI 1.077–1.238), cg00294382 (OR 1.710; 
95% CI 1.342–2.179), and cg24773560 (OR 1.853; 95% CI 
1.389–2.473)—showed positive associations with RP11-
977G19.11 expression. These findings suggest that these 
three CpG sites might have a protective effect against 
psoriasis through their influence on gene expression. This 
integrated analysis provides insights into the potential 
molecular pathway from DNA methylation to protein 
expression in the context of psoriasis risk.

Tissue‑specific and protein‑level analyses
Recognizing the unique characteristics of psoriasis as 
a skin condition affected by environmental factors and 
an autoimmune disease, we conducted analyses using 
tissue-specific data from the GTEx project. We spe-
cifically focused on both sun-exposed, sun-unexposed 
skin and EBV-transformed lymphocytes to account for 
potential differences in gene expression patterns related 
to sun exposure, a factor known to influence psoriasis, 
and inflammation. Our analysis of gene expression in 
sun-unexposed skin (Table  S10) and sun-exposed skin 
(Table  S11) revealed a consistent association between 
RP11-977G19.11 expression and psoriasis risk across 
both tissue types. In sun-unexposed skin, increased 
expression of RP11-977G19.11 was associated with 
a slight increase in psoriasis risk (OR 1.002; 95% CI 
1.001–1.003). A similar, slightly stronger association was 
observed in sun-exposed skin (OR 1.003; 95% CI 1.001–
1.004). Besides, considering that this pathway, especially 
the identified methylation sites were mostly associated 
with inflammatory pathways, we also extracted eQTL 
data in EBV-transformed lymphocytes (Table  S12). The 
positive association between RP11-977G19.11 and pso-
riasis was indicated again (OR 1.002; 95% CI 1.001–
1.003). Together with our eQTL results from whole 
blood (Fig. 3), suggest that the effect of RP11-977G19.11 
expression on psoriasis risk is consistent regardless of 
sun exposure, underscoring its potential importance in 
inflammation mechanism of psoriasis (Fig. 5A).

We also examined inflammation-related protein data 
from the UKB-PPP to validate our findings and explore 
additional associations. This protein-level analysis con-
firmed the positive association between APOF protein 
levels and psoriasis risk (OR 1.006; 95% CI 1.003–1.009) 
(Table  S13, Fig.  5B), corroborating our earlier findings 
(Table  2; Table  S6,  Table  S7). Additionally, we identi-
fied potential associations between psoriasis and several 
other inflammation-related proteins, including FGF2, 
PNLIPRP2, and MFAP4 (Table S13). These proteins may 
offer new insights into psoriasis pathogenesis and repre-
sent potential therapeutic targets.

Discussion
Psoriasis is a chronic inflammatory skin disease with 
significant health impacts. While HLA-C*06:02 is an 
established genetic risk locus that has led to success-
ful biologic therapies targeting TNF-α, IL-23, and IL-17 
pathways [28, 29], clinical heterogeneity in genetic pro-
files and treatment responses suggests additional patho-
genic mechanisms remain to be uncovered [30, 31]. 
Recent transcriptome-wide analysis has identified novel 
gene associations, including RP11-977G19.11 [32], high-
lighting the potential for discovering new therapeutic 

Fig. 5  Tissue-specific eQTL and pQTL analysis for psoriasis-associated 
genes and proteins. A Venn diagram showing the overlap of eQTLs 
across different tissue types: sun-exposed skin (10 unique eQTLs, 
dark blue), sun-unexposed skin (5 unique eQTLs, green, with 20 
overlapping with sun-exposed skin), whole blood eQTL in replication 
cohort (12 unique eQTLs, light blue), whole blood eQTL in discovery 
cohort (35 unique eQTLs, pink), and eQTLs from EBV-transformed 
cell (12 unique eQTLs, yellow). Both gene RP11-977G19.11 and gene 
LINC01089 were replicated four times. B Venn diagram illustrating 
the overlap of pQTLs across different datasets: pQTL discovery 
cohort (5 pQTLs, green), pQTL replication cohort (8 pQTLs, blue), 
and inflammation-related pQTL (4 pQTLs, pink). APOF is highlighted 
as the single pQTL common to all three datasets
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targets. However, a comprehensive understanding of 
causal molecular mechanisms through integrated multi-
omics analysis is still lacking.

In this study, we implemented a systematic multi-
omics approach using SMR coupled with HEIDI tests 
and colocalization analysis to investigate causal molecu-
lar mechanisms in psoriasis pathogenesis, following the 
established biological cascade from DNA methylation 
to gene expression to protein levels. Our analysis identi-
fied significant associations with psoriasis across multi-
ple molecular layers, including 643 methylation sites, 112 
genes, and 9 proteins (3 of them passed the colocalization 
analysis). Through this integrative approach, we detected 
two potential regulatory pathways involving RP11-
977G19.11 and APOF.

The first pathway (cg26804944/cg02705573–RP11-
977G19.11–APOF) involves two CpG sites, with 
cg02705573 located in the PAN2 gene previously associ-
ated with environmental exposure responses [33], while 
cg26804944 represents a novel methylation site. Our 
findings suggest that decreased methylation at these sites 
correlates with reduced expression of RP11-977G19.11, 
ultimately leading to increased APOF levels and elevated 
psoriasis risk.

The second pathway (cg00172967/cg00294382/
cg24773560–RP11-977G19.11–APOF) features three 
CpG sites. The CpG sites cg00294382 and cg24773560, 
both associated with IL23A, are particularly notewor-
thy given IL-23’s central role in psoriasis pathogenesis. 
IL-23 drives the differentiation and activation of patho-
genic Th17 cells [34], and the IL-23/IL-17 axis is now a 
well-established therapeutic target with several approved 
biologics [35]. These methylation sites have been previ-
ously implicated in various inflammatory conditions: 
cg00294382 has shown associations with systemic 
inflammation markers including blood C-reactive pro-
tein levels and inflammatory diseases such as Crohn’s 
disease [36–42], while cg24773560 has been linked to 
similar inflammatory conditions [39–41, 43–45]. Addi-
tional associations of these sites with cancer susceptibil-
ity, aging, and metabolic responses suggest their broader 
role in inflammatory regulation [39–41, 43–45]. The con-
vergence of our findings with these previous observations 
strengthens the biological plausibility of these methyla-
tion sites as regulatory elements in psoriasis pathogenesis 
through IL-23 signaling.

Our analysis also revealed causal relationship between 
RP11-977G19.11 (CNPY2-AS1), a long non-coding RNA 
on chromosome 12q13.3, and APOF. APOF, present 
in both HDL and LDL [46], functions as a key regula-
tor of lipid metabolism by inhibiting cholesteryl ester 
transfer protein activity [47]. This association has been 
demonstrated through animal studies, where APOF 

manipulation directly affects cholesterol distribution 
between lipoproteins [48, 49]. Particularly relevant to 
psoriasis pathogenesis is the finding that APOF deletion 
affects STAT2 expression and type I interferon signal-
ing [50]. Given that dysregulated interferon signaling is 
a hallmark of psoriasis [51], this connection suggests a 
potential mechanism linking lipid metabolism to inflam-
matory pathways in psoriasis through APOF-mediated 
regulation.

Additionally, our analysis revealed two additional pro-
teins with potential causal roles in psoriasis pathogenesis. 
TNFAIP3 (A20), a critical negative regulator of inflam-
mation, suppresses NF-κB signaling, with recent evi-
dence showing that its reduced expression in psoriatic 
skin enhances NF-κB activation and promotes disease 
progression [52, 53]. MX1, an interferon-stimulated gene, 
functions in the type I interferon pathway [54, 55], which 
is notably dysregulated in psoriasis. These protein-level 
findings complement our methylation data, particularly 
the IL23A-associated sites (cg00294382 and cg24773560). 
The involvement of these regulatory elements in the 
IL-23/IL-17 axis [34, 35], together with TNFAIP3 and 
MX1’s roles in inflammatory signaling, suggests a coordi-
nated network of epigenetic and inflammatory regulation 
in psoriasis.

We confirmed the RP11-977G19.11-APOF find-
ing using independent eQTL data from skin tissue and 
EBV-transformed lymphocytes, and pQTL data from an 
inflammation panel. The consistency of these associa-
tions across different tissue types and independent data-
sets enhances the reliability of our identified pathways.

Clinical and therapeutic implications
Our multi-omics findings provide potential insights into 
both established and novel therapeutic strategies for pso-
riasis. The identification of APOF as a mediator in pso-
riasis pathogenesis aligns with existing clinical evidence, 
where meta-analyses have demonstrated the efficacy of 
lipid-modulating therapies in reducing PASI  (psoriasis 
area and severity index) scores [56]. The newly identi-
fied RP11-977G19.11-APOF regulatory axis may offer 
additional therapeutic possibilities. This pathway could 
potentially inform the development of more targeted 
approaches to lipid regulation in psoriasis, complement-
ing current broad-spectrum treatments. The validation 
of TNFAIP3 and MX1’s involvement provides molecular 
context for existing therapeutic approaches while sug-
gesting new directions. Current JAK inhibitors effectively 
target the type I interferon pathway [57], where MX1 
plays a crucial role. Our identification of specific meth-
ylation sites regulating these proteins may help explain 
the variable treatment responses observed in clinical 
practice. These findings suggest the potential utility of 



Page 11 of 13Guo et al. Journal of Translational Medicine          (2025) 23:100 	

considering both inflammatory and lipid-related path-
ways in treatment strategies, though further clinical vali-
dation is needed.

Limitations
Our study has several important limitations that should 
be considered when interpreting the results. First, due 
to the limited availability of large-scale GWAS data from 
non-European populations, our analysis was primarily 
confined to European cohorts. While this reflects current 
data availability rather than study design, we acknowl-
edge the importance of validating these findings across 
diverse ethnic groups. Future studies incorporating 
multi-ethnic populations will be crucial as more genomic 
data becomes available from different populations. Sec-
ond, the inherent complexity of biological systems pre-
sents analytical challenges. Our pathway analysis relies 
on QTL-based causal inference and directional consist-
ency across methylation, expression, and protein levels. 
Although this approach offers a systematic framework for 
pathway identification, it may not fully capture the intri-
cate regulatory networks and feedback mechanisms pre-
sent in  vivo. Methylation patterns, in particular, can be 
highly tissue-specific and dynamically influenced by envi-
ronmental factors [58–60]. Third, regarding the protein-
level validation, while both exposure and outcome data 
were derived from the UK Biobank, the potential for sub-
stantial overlap between datasets is limited. The psoriasis 
GWAS from EMBL-EBI includes participants from mul-
tiple European cohorts beyond the UK Biobank, and the 
substantial differences in both case numbers (5,459 pso-
riasis cases in EMBL-EBI vs. 5,314 cases in UK Biobank) 
and control group sizes (324,074 vs. 457,619) indicate 
distinct participant pools. Furthermore, only a small 
portion of EMBL-EBI data originates from UK Biobank, 
minimizing potential overlap with UKB-PPP partici-
pants. Regarding our colocalization analysis threshold, 
we followed established statistical guidelines. Foley et al. 
demonstrated that a PPH4 threshold of > 0.7 corresponds 
to a FDR of < 5% [23], providing statistical rigor to this 
cutoff. This threshold has been widely implemented in 
recent genomic studies [24–26]. While we acknowledge 
that more stringent thresholds might be applied, our cho-
sen threshold tries to strike a balance between sensitivity 
and specificity in identifying genuinely colocalized loci. 
To address these limitations and strengthen our findings, 
we are initiating follow-up studies involving experimental 
validation in relevant tissue samples and diverse patient 
populations. Our current findings, while preliminary, 
provide a well-supported framework for these targeted 
investigations.

Conclusion
Our study investigated the potential causal relationships 
among DNA methylation, gene expression, and protein 
abundance in psoriasis using SMR and colocalization 
analysis. Through replication and validation, we iden-
tified a potential causal pathway involving APOF and 
several significant associations at the multi-omics level. 
These findings enhance our understanding of psoriasis 
pathogenesis and may help identify targets for pharmaco-
logical intervention, potentially leading to more effective 
treatments for this chronic autoimmune disease.
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