
S.T at TREC 2017: Real-Time Summarization Track

Junjie Xiong Dongdong Xiang Qian Guo Haiguang Chen*

Chhg@shnu.edu.cn

College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, China

Abstract— This paper presents the participation of Shanghai
Normal University to the TREC 2017 Real-Time Summa-
rization (RTS) Track. We adopted three different composed
methods by applying various factors, i.e., count, cosine and
distance to measure relevance between a tweet and a given
topic. By setting static relevance threshold for each run, we
selected the most relevant but non-redundant tweets and then
pushed them to user’s phone in Scenario A. For Scenario B,
we used a similar but much simpler approach. The evaluation
results showed that there was still a long way to go in practice.
Nonetheless, some progress has been made. We submitted
three runs for both scenarios. This paper demonstrates the
implementation details and official evaluation results of our
system.

I. INTRODUCTION

The identification of text relevance is an important field of
study, with social media platforms such as Twitter garnering
the interest of researchers in real-time text processing as well
as in social sciences. Getting the potential information needs
over continuous stream of texts is one of the research topic.
Real-Time Summarization (RTS) is a track at the 2017 Text
Retrieval Conference (TREC) that commit to advance the
system of potential information demands.

The evaluation was conducted from July 29th 00:00:00
UTC to August 5th 23:59:59 UTC. During the evaluation
period, all participants must monitor the Twitter Sample
Stream about predefined "interest profiles" via the Twit-
ter Streaming API. In this track, we hold that users who
have a number of "interest profiles" represent the needs of
prospective information. All the participating systems should
automatically filter the twitter sample stream in order to help
users to keep eyes on the occurrence of a specific event. For
example, a woman is a breast cancer survivor and wants
to keep current with the latest advancements in research for
new treatments for breast cancer. Two types of disseminating
updates in this year’s track:

• Scenario A: push notifications. As long as the system
identifies a relevant tweet of a topic of "interest pro-
files", it will be pushed in real time. At a high level,
relevant tweets pushed to the user should be novel(users
should not receive multiple notifications that say the
same thing), and timely(after the actual event occurs,
the system provides the updates as soon as possible).

• Scenario B: email digest. Alternatively, a user might
want to receive a daily email digest that summarizes
“what happened” that day with respect to the interest

profiles. At a high level, these results should be rele-
vant and novel; timeliness is not particularly important,
provided that the tweets were all posted on the previous
day.

In this paper, we present our real-time summarization
system as a participant in TREC-2017 Real-time Summa-
rization Track. In our system, we used Tweepy to monitor
the Twitter stream. The system identifies the tweet that is
relevant to a topic from the predefined "interest profiles",
taking novelty and timely into account at the same time.
After that, we implemented relevance models with a diverse
static relevance threshold(this threshold was acquired from
our early experiments before the evaluation). Traditionally, a
real-time system should use simple and efficient approaches
that can process data in parallel. But the method is complex.
We use process-intensive queries(one tweet at a time for a
topic) instead of parallel processing, which helps us improve
and simplify our design. Challenge due to the nature of tweet,
it makes short text language processing quite different from
the traditional natural language processing. The basic way
to tackle such a problem is to enrich the very short text by
semantically related terms. By this method, we upgraded the
user’s "interest profiles". Stream rate limit also needs to be
taken into account in practice. After we analyzed the fields
of stream and this year’s rules, two-level filtering and Redis
queue had been integrated into our system to relieve the rate
crisis.

The rest of this paper is organized as follows. The system
design is posted in Section II. Section III describes the ap-
proaches used in our system. The results of our participation
are discussed in Section IV and conclusions are provided in
Section V.

II. SYSTEM DESIGN

In this section, we mainly describe the architecture of our
system, which is shown in figure 1. Actually, we simplified
it to two parts.

A. Offline Module

This part contains three components: (1)external resource
(2)interest profile (3) upgrading model. We utilize the ex-
ternal resources to obtain semantically related terms and
incorporate with primary "interest profiles" to generate an
upgraded "interest profiles".

Fig. 1: System Framework

B. Online Module

This part contains six components: (1)tweet stream (2)two-
level filter (3)Redis queue (4)relevance filter (5)redundancy
filter (6)ranking. We monitored and processed the tweet
stream continuously, then used two-level filter model to
obtain more potential relevant tweets. Considering that the
stream has rate limitation, we employed Redis queue. As
soon as the relevance filter finds a tweet relevant, it will
immediately push the tweet to redundancy filter model and
ranking model to make decisions.

III. APPROACH

Query Expansion
The length of tweets is strictly enforced, so they bring

less information directly. Traditionally, query expansion is
the most frequently used to advance retrieval hit ratio. In
our approaches, we only feed "title" to make an expansion
and then get three types of updates during this period. What
constitutes an interest profile can be seen from Table I.

TABLE I: Interest profile

Interest profile
topid title description narrative
RTS48 Panera Bread What are

people
ordering
at Panera
Bread?

The user
wishes to
track what
people order
at Panera
Bread.

After making the expansion above we removed stopword
by using Spacy and calculated the TF-IDF score based on
"The Signal Media One-Million News Articles Dataset"[1]
for every term, then top25, top20 and top10 terms were
returned respectively. The expansion method are as follows.

• Bing News Search API: The first technique applies
Bing New API and TF-IDF to get back the top50
related sentences(also called snippet) and top25 terms
successively. We then take it as the query expansion
document set bingt.

• Twitter Search API: This technique is similar to the pre-
vious. The difference is that we use Twitter Search API
and TF-IDF to obtain top20 terms as query expansion
document set twittert.

• Interest Profiles: We simply mix "title","narrative" and
"description" up together and take it as query expansion
document set interestt.

After that we got three types of expan-
sion document sets for every topic, namely,
(bings,bingw,bingt), (twitters,twitterw,twittert) and
(interests,interestw,interestt). Subscript s denotes
sentence, w denotes word after removing stopword and t
denotes top score word after doing TF-IDF.

Two-level data filter
1) First-level filter: As a rule, non-English tweet is

marked as irrelevant. So we discarded the non-English
tweet according to the Twitter’s language detection
field ’lang’. If α/β < 0.8, we also discard it. Here
α denotes the length of ASCII characters, β denotes
the length of this tweet. As soon as the retweet’s
identification is fetched, it will immediately replace it
by original tweet. Then we discard the tweet if the
character length is less than 30. A tweet that survives
from the first-level filter will be passed to Redis queue.

2) Second-level filter: At this stage, we fetched data
from Redis queue. In consideration of relevancy and
efficiency, we applied keyword filtering to filter out
the obviously irrelevant tweet and pornographic tweet.
We chose keywords from each topic of interest pro-
files based on dropped stopword’s document sets and
pornographic list made manually. If a tweet doesn’t
match any one of these, then it would be discarded.

Redis FIFO Queue
As we all know Redis is an in-memory database open-

source software project implementing a networked, in-
memory key-value store with optional durability, "FIFO" is
an acronym which most commonly stands for "first in, first

out". We implemented a Redis with FIFO queue to cache
stream data.

Data Processing
Once we got a tweet that survives from two-level filtering,

we immediately applied regular expressions to search for
and replace the insignificant characters or url only keeping
English words.

Redundancy Filter and Push Strategy
For Scenario A, we found that

most of the redundant tweets are not
rephrased but simply copies of the
original tweet. This means the effi-
ciency and accuracy can be improved
with adopted normal similarity algo-
rithm. Hence we used the Jaccard in-
dex to measure the similarity between finite sample sets.
Venn diagram is shown on the right. Our similarity algorithm
is defined as the size of the intersection divided by the
size of the union of the two tweets. Similarity(A,B) =
intersection(A,B)/union(A,B). This method is conve-
nient for real-time application because it requires less com-
putation overhead. As for Scenario B, we used the same
redundancy measurement with Scenario A.

In our system, we only pushed the highly-relevant tweets
to Scenario A, and for Scenario B we pushed both relevant
and highly-relevant tweets. The main difference between the
relevant and highly-relevant is the size of static relevance
threshold.

Ranking Strategy
Relevant score and redundant score add together to give a

ranking strategy in our system. Every tweet has two scores
according to system scheme. The first score comes from rel-
evance filter and shifts over topics. The second score comes
from function redundancy(t1, t2) = (1−r1)r2, where r1 is
Similarity(t1, t2), r2 is a base which determined by early
experiments. After translating the two scores into the same
range before calculation, we add them up and get back the
ranking score.

Run 1: Counting Features
This Run implemented a simple but efficient strategy to

estimate the relevance between an interest profile and a tweet.
Before proceeding to describe this run, we first introduce
quite a few notations. We would like to use tuple (qi,ti) to
denote the i-th tweet and expansion terms, where qi is the
query,ti is the expansion terms. We use function ngram(s,n)
to extract string/sentence’s n-ngram(splitted by space), where
n ∈ 1, 2, 3 if not specified. For example,

ngram(i love you, 2) = [i love, love you]

• qub :The count of ngram(query, 1) ∩
ngram(bingw, 1).

• qbt :The count of ngram(query, 1) ∩
ngram(twitterw, 1).

• qti :The count of ngram(query, 1) ∩
ngram(interestw, 1).

• qub :The count of ngram(query, 2) ∩
ngram(bingw, 2).

• qbt :The count of ngram(query, 2) ∩
ngram(twitterw, 2).

• qti :The count of ngram(query, 2) ∩
ngram(interestw, 2).

• qub :The count of ngram(query, 3) ∩
ngram(bingw, 3).

• qbt :The count of ngram(query, 3) ∩
ngram(twitterw, 3).

• qti :The count of ngram(query, 3) ∩
ngram(interestw, 3).

• qu :The number of ngram(query, 1).
So,the relevance score for a specify topic is

RS =(qub+ qut+ qui+ qbb+ qbt

+ qbi+ qtb+ qtt+ qti+ qu)/10
(1)

The threshold we used in this run is more than 3.6.

Run 2: Similarity Based Features
We extracted various TF-IDF features and the correspond-

ing dimensionality reduction version via SVD. Then we
computed the basic cosine similarity.

• TF-IDF Feature

1) Common Vocabulary. Note that to
ensure the TF-IDF feature vectors of
{bingt, twittert, interestt} are projected into
the same vector space, we first concatenated
{bingt, twittert, interestt}, and then fit a
TF-IDF transformer to obtain the common
vocabulary. We then use this common
vocabulary to generate TF-IDF features for
{bingt, twittert, interestt},respectively.

2) Individual Vocabulary. In this way, we fit TF-
IDF transformer for {bingt, twittert, interestt},
separately, with individual vocabulary.

• SVD Reduced Features

1) Common SVD. We first concatenated the TF-
IDF vectors of {bingt, twittert, interestt} (using
common vocabulary), and fit a SVD transformer
to obtain the common vocabulary. We then use this
common vocabulary to generate SVD features for
{bingt, twittert, interestt}, respectively.

2) Individual SVD. We fit a SVD transformer for
{bingt, twittert, interestt}, separately.

• Cooccurrence Features
In this way, we extracted cooccurrence terms be-
tween query and {bingt, twittert, interestt}, then
count number.

1) query terms and bingt.
2) query terms and twittert
3) query terms and interestt

After that, we use basic cosine to compute relevance.

RS =cos(θ) =
α · β
‖α‖ · ‖β‖

=

∑n
i=1 αi × βi√∑n

i=1(αi)2 ×
√∑n

i=1(βi)
2

(2)

Then we added all of them, and took the average. In
our system, we set the threshold more than 0.52.

Run 3: Distance Features

To be brief, the core task is to determine whether a real-
time tweet is relevant to a topic or not. So we believe this
means that they are relevant if their distance is short else
not. So we use two distance metrics.

Dice distance

Dice_Dis(A,B) =
2|A ∩B|
|A|+ |B|

(3)

Jaccard distance

Jaccard_Dis(A,B) =
|A ∩B|
|A ∪B|

(4)

Here A and B denote two sets or string in our system. For
each distance metric, two types of feature are computed. we
declare that the function Dd(a, b) and Dj(a, b) compute the
distances between a and b.

• Set based distance feature
1)Dd(ngram(query, n), ngram(bingt, n))
2)Dj(ngram(query, n), ngram(bingt, n))
3)Dd(ngram(query, n), ngram(twittert, n))
4)Dj(ngram(query, n), ngram(twittert, n))
5)Dd(ngram(query, n), ngram(interestt, n))
6)Dj(ngram(query, n), ngram(interestt, n))
For example, the set 1 is "hpv vaccine, vaccine effect,
effect concern, concern vaccinate", set 2 is "hpv
vaccine, vaccine concern, concern user, user effect".
So the Dd= 2

8 = 0.25, Dj= 1
7 ≈ 0.14

• String based distance feature
There is a little difference with above, the minimal
calculation unit for set-based feature is list, but for
string-based distance feature is string.

After that we added all of them and took the average. In our
system, we set the threshold more than 0.1.

IV. RESULT

We submitted three runs both for Scenario A and Scenario
B in this year. For Scenario A, TABLE II and TABLE III
show the performance of our system. For Scenario B, TABLE
IV reports the performance of our system.

TABLE II: Median scores of mobile assessment for Scenario A

P(strict) P(lenient) U(strict) U(lenient)
0.3403 0.4174 -805 -456

TABLE III: Median scores of NIST assessment for Scenario A

EG-P EG-1 nCG-P nCG-1
0.2194 0.1951 0.2095 0.1826

TABLE IV: Median scores of NIST assessment for Scenario B

nDCG@10-p nDCG@10-1
0.2194 0.1865

V. CONCLUSION AND FUTURE WORK

This paper demonstrates the implementation details and
official evaluation results of our system. The evaluation
results showed that there was still a long way to go in
practice. Nonetheless, some progress has been made. Many
further experiments are needed in the future, and the works
emphasis should be on how to improve the accuracy and
efficiency.

REFERENCES

[1] Suwaileh R, Hasanain M, Elsayed T. Light-weight, Conservative, yet
Effective: Scalable Real-time Tweet Summarization[C]//TREC. 2016.

[2] Lee K, Qadir A, Datla V V, et al. Assorted Textual Features and
Dynamic Push Strategies for Real-time Tweet Notification[C]//TREC.
2016.

[3] Moulahi B, Jabeur L B, Chellal A, et al. IRIT at TREC Real Time
Summarization 2016[J].

[4] Li S, Hao Z, Han Z, et al. HLJIT at TREC 2016: The Approaches
Based on Document Language Model for Real-Time Summarization
Track[C]//TREC. 2016.

[5] Li H T D L W. PolyU at TREC 2016 Real-Time Summarization[J].
[6] Bei C, Hu P. CCNU at TREC 2016 Real-Time Summarization

Track[C]//TREC. 2016.
[7] Wang K, Yang Z. BJUT at TREC 2016: Real-Time Summarization

Track[C]//TREC. 2016.
[8] Tao K, Abel F, Hauff C, et al. What makes a tweet relevant for a

topic?[C]// MSM. 2012: 49-56.
[9] Lin J, Roegiest A, Tan L, et al. Overview of the TREC 2016 real-

time summarization track[C]//Proceedings of the 25th Text REtrieval
Conference, TREC. 2016, 16.

