
1

ICTNET at Trec 2019 Decision Track

Wanqing Cui12∗, Yan Jiang12∗, Shuchang Tao12∗, Hanzhang Guo12∗

1CAS Key Lab of Network Data Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences, China

2University of Chinese Academy of Sciences, China
∗{cuiwanqing18z, jiangyan18s, taoshuchang18z, guohanzhang18s}@ict.ac.cn

Abstract
In this paper we report on our participation in
the Trec 2019 Decision Track[1] which aims to
provide a venue for research on retrieval meth-
ods that promote better decision making with
search engines and develop new online and of-
fline evaluation methods to predict the deci-
sion making quality induced by search results.
We convert this task into a standard informa-
tion retrieval task and use traditional IR model.
Finally we give a summary for the solution of
our work.

1 Introduction

Search engine results underpin many consequen-
tial decision making tasks. Such as seeking
health advice online, deciding the best treat-
ment/diagnosis/test for a patient. However, when
the search occurs within uncontrolled data col-
lections, such as the web, where information can
be unreliable, generally misleading, too techni-
cal, and can lead to unfounded escalations. In-
formation from search engine results can signif-
icantly influence decisions, and research shows
that increasing the amount of incorrect informa-
tion about a topic presented in a SERP can impel
users to take incorrect decisions.

So this track focus on encouraging participants
to design search techniques that promote correct
information over incorrect information. Given a
data collection and a set of topics, participants
should return relevant and credible information
that will help searchers make correct decisions.
Besides, more than simply define what is relevant,
there are 3 types of results: correct and relevant,
incorrect, and non-relevant. And the goal is to re-
turn relevant and correct information.

2 Model

This track is the retrieval task. Given the topic and
narrative as query, we are supposed to return the

most relevant and credible document. This is es-
sentially a text matching problem. The higher the
matching degree between the query and the docu-
ment, the higher its ranking should be.

2.1 Terrier
Terrier is a highly flexible, efficient, and effec-
tive open source search engine, readily deploy-
able on large-scale collections of documents. Ter-
rier implements state-of-the-art indexing and re-
trieval functionalities, and provides an ideal plat-
form for the rapid development and evaluation of
large-scale retrieval applications.

With the Terrier tool, we can easily create an
index. The first step is to collect documents from
the entire document set, and get a list. We can
enter the command under the project directory:

./bin/trec_setup.sh "path/to/docset"

The second step is index creation. Enter
“./bin/trec terrier.sh -i”, we will get the index
of the document set, but this need a long time.
Finally, we search for the result of topics. Enter
“./bin/trec terrier.sh -r”, and then we will get
the results under the directory“./var/results”.

In the meantime, before the second step, we can
configure the index, such as the selected retrieval
method, which tags in the document we indexed,
and so on. These are achieved by configuring the
file “terrier.properties”, which can be referred
to in its official documents.

2.2 BM25
Our retrieval method uses BM25, which is an al-
gorithm used to evaluate the correlation between
search terms and documents. It is based on the
probability retrieval model. BM25 algorithm ex-
pands the scoring function of binary independent
model by adding document weights and query
weights. This extension is based on probability

2

theory and experimental verification, and is not a
formal model. On the basis of binary independent
model, BM25 model takes into account the weight
of words in query and the weight of words in doc-
uments, fits the formula of synthesizing the above
considerations, and introduces empirical parame-
ters through experiments.

Compared with tf-idf, BM25 makes better use
of the fact that the relationship between word fre-
quency and correlation is non-linear. Its general
formula is as follows:

Score (Q, d) =
i∑
n

WiR (qi, d) (1)

Among them, Q is the query, d is the document,
qi is the word in the query, and Wi is the word
weight. Word weights can actually be calculated
using idf.

2.3 DSSM
Deep Structured Semantic Models (DSSM)[2]
uses a deep neural network to rank a set of doc-
uments for a given query as follows. First, a
non-linear projection is performed to map the
query and the documents to a common seman-
tic space. Then, the relevance of each docu-
ment given the query is calculated as the cosine
similarity between their vectors in that seman-
tic space. The neural network models are dis-
criminatively trained using the clickthrough data
such that the conditional likelihood of the clicked
document given the query is maximized. Fur-
thermore, to deal with large vocabularies, a word
hashing method is used, through which the high-
dimensional term vectors of queries or documents
are projected to low-dimensional letter based n-
gram vectors with little information loss.

The semantic relevance score between a query
Q and a document D is then measured as:

R(Q,D) = cosine(yQ, yD) =
yTQyD

||yQ||||yD||
(2)

Where yQ, yD are the concept vectors of the
query and the document, respectively. They are
the output of DNN.

So the posterior probability of a document given
a query from the semantic relevance score between
them is:

p(D+|Q) =
exp(γR(Q,D+))∑
exp(γR(Q,D))

(3)

2.4 CDSSM
CDSSM [3] is an improvement over DSSM. Com-
pared to DSSM, it uses CNN to learn the lower-
dimensional semantic vectors of queries and docu-
ments. By using the convolution-max pooling op-
eration, local contextual information at the word
n-gram level is modeled first. Then, salient lo-
cal features in a word sequence are combined to
form a global feature vector. Finally, the high-
level semantic information of the word sequence
is extracted to form a global vector representation.

2.5 DRMM
Deep relevance matching model (DRMM) [4] em-
ploys a joint deep architecture at the query term
level for relevance matching. It first builds lo-
cal interactions between each pair of terms from a
query and a document based on term embeddings.
For each query term, DRMM maps the variable-
length local interactions into a fixed-length match-
ing histogram. Based on this fixed-length match-
ing histogram, then a feed forward matching net-
work is employed to learn hierarchical matching
patterns and produce a matching score. Finally,
the overall matching score is generated by aggre-
gating the scores from each query term with a
term gating network computing the aggregation
weights. We show how our major model de-
signs, including matching histogram mapping, a
feed forward matching network, and a term gating
network, address the three key factors in relevance
matching for ad-hoc retrieval.

Suppose both query and document are repre-
sented as a set of term vectors denoted by q =

{w(q)
1 , ..., w

(q)
M } and d = {w(d)

1 , ..., w
(d)
N }, the final

relevance score s is:

z
(0)
i = h(w

(q)
i ⊗ d) (4)

z
(l)
i = tanh(W (l)z(l−1)i + b(l)) (5)

s =

M∑
i=1

giz
(L)
i (6)

Where h denotes the mapping function from lo-
cal interactions to matching histogram, z(l)i , l =
0, ..., L denotes the intermediate hidden layers for
the i-th query term, and gi, i = 1, ...,M denotes
the aggregation w eight produced by the term gat-
ing network. W (l) denotes the l-th weight ma-
trix and b(l) denotes the l-th bias term, which are
shared across different query terms.

3

2.6 MatchPyramid
MatchPyramid [5] models text matching as the
problem of image recognition. Firstly, a matching
matrix whose entries represent the similarities be-
tween words is constructed and viewed as an im-
age. Then a convolutional neural network is uti-
lized to capture rich matching patterns in a layer-
by-layer way.

For two texts W and V , first represent the input
of text matching as a matching matrix M , with
each element Mij standing for the basic interac-
tion, i.e. similarity between word wi and vj :

Mij = wi ⊗ vj (7)

In this way, we can view the matching matrix
M as an image, where each entry (i.e. the sim-
ilarity between two words) stands for the corre-
sponding pixel value. And different kinds of ⊗
can be adopted to model the interactions between
two words, leading to different kinds of raw im-
ages.

Then M can be input to CNN to extract differ-
ent levels of feature maps z from different layers.
And a MLP (Multi-Layer Perception) is used to
produce the final matching score:

(s0, s1)T =W2σ(W1z + b1) + b2 (8)

3 Experiments

In this section, we first describe the datasets and
then the methods we used.

3.1 Datasets
ClueWeb12-B13 was utilised for the decision
track. It was created to support research on infor-
mation retrieval and related human language tech-
nologies. The dataset consists of 733,019,372 En-
glish web pages, collected between February 10,
2012 and May 10, 2012. ClueWeb12 is a compan-
ion or successor to the ClueWeb09 web dataset.
Unlike previous tracks, the assessors will be pro-
vided the topic query and narrative. And the topics
will be provided as XML files.

The dataset are shown as the following exam-
ples:

WARC/1.0
WARC-Type: response
WARC-Date: 2012-02-10T21:51:20Z
WARC-TREC-ID: clueweb12-0000tw-00-
00013WARC-Target-URI: http://cheap

costhealth insurance.com/2012/01/2
5/what-is-hiv-aids/
WARC-Payload-Digest: sha1:YZUOJNSU
MFG3JVUKM6LBHMRMMHWLVNQ4
WARC-IP-Address: 100.42.59.15
WARC-Record-ID: <urn:uuid:74edc71e
-a881-4942-81fc-a40db4bf1fb9>
Content-Type: application/http; ms
gtype=response
Content-Length: 71726

HTTP/1.1 200 OK
Date: Fri, 10 Feb 2012 21:51:22
Server: Apache/2.2.21 (Unix) mod_s
sl/2.2.21 OpenSSL/0.9.8e-fips-rhel5
mod_auth_passthrough/2.1 mod_bwlimi
ted/1.4 Front Page/5.0.2.2635 mod_
jk/1.2.32
X-Powered-By: PHP/5.2.17
X-Pingback: http://cheapcosthealth
insurance.com/xmlrpc.php
Link: <http://cheapcosthealthinsur

ance.com/?p=711>; rel=shortlink
Connection: close
Content-Type: text/html; charset=
UTF-8
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN" "http:
//www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/199
9/xhtml" dir="ltr" lang="en-US">
<title>What is HIV Aids | Health
and Insurance</title>
...
</html>

3.2 Preprocessing

3.2.1 Some attempts

First, we read data with warcat directly. How-
ever, the web page enters the folder named
after the URL, divided by / after decom-
pression. It is hard to index them with
”ClueWeb12 B13 DocID To URL.txt.bz2”. Be-
cause the file names are often modified when
unzipping. For example, the ”//” is replaced
by”/ index da39a3/ index da39a3”, ”/?” is re-
placed by ”/ index da39a3 ”, ”=http://” is re-
placed by ”=http ”, and so on. What’s worse, the
modification doesn’t happen all the time. Without
the knowledge of decompression coding, we can

4

only change the name by trial and error.
The size of ClueWeb12-B13 is 382GB after

compressed. After uncompressed the size of it
is 1.95TB, with a subset about 50 million pages.
Since the data is extremely large, we try to use
other methods.

3.2.2 Decompressing
We use gunzip[6] command together with
warcio.archiveiterator[7] toolbox instead .

We firstly extract[8] the xxxx.warc.gz file to a
xxxx.warc file. Then we use the following python
code to extract the warc file into an .html file.

from warcio.archiveiterator import
ArchiveIterator
for record in ArchiveIterator
(stream):

filename =record.rec_headers.
get_header('WARC-TREC-ID')
tr = record.content_stream()
text = str(tr.read())

3.2.3 Convert
We need to convert the HTML document we ex-
tracted to XML. Here we use Python to write
scripts for processing. HTML documents can be
read by calling the library BeautifulSoup, but the
data format is confusing and not the text of the
web page. So we call html2text to extract the text
from the previous cluttered string, and the data is
in markdown format. In order to reduce the impact
of hyperlinks on the retrieval results, we use the
following regular expressions to remove the hy-
perlinks:

text = re.sub(r'\(http[\s\S]*?\)',
'', text)

Ultimately, our XML document retains the head
and body content of the original html, which is im-
plemented by calling minidom.

3.3 Processing
In this part, we use Terrier as a search tool. Firstly,
the document is preprocessed, the HTML docu-
ment is converted into the required XML format,
and then the index is established. Finally, we get
the results about the given topics. BM25 is used
as our retrieval method.

4 Conclusion

We also tried other models, such as DRMM,
Match Pyramid. We didn’t adopt them in the

end due to the difficulty of data processing and
the large amount of data. Because of the time to
build the index and process the data, we finally
submitted the retrieval results only on some of the
datasets. In the future, we will try the PageRank
method to take advantage of a large number of web
links in the data. We will also improve the perfor-
mance of the model to better adapt to large-scale
data.

References
[1] TREC group. Trec decision track, 2019. https:

//trec-decision.github.io/.

[2] Po-Sen Huang, Xiaodong He, Jianfeng Gao,
Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search us-
ing clickthrough data. In Proceedings of the 22nd
ACM international conference on Information &
Knowledge Management, pages 2333–2338. ACM,
2013.

[3] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. Learning semantic represen-
tations using convolutional neural networks for web
search. In Proceedings of the 23rd International
Conference on World Wide Web, pages 373–374.
ACM, 2014.

[4] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. A deep relevance matching model for ad-hoc
retrieval. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowl-
edge Management, pages 55–64. ACM, 2016.

[5] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu,
Shengxian Wan, and Xueqi Cheng. Text matching
as image recognition. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

[6] Free Software Foundation. Gnu free codu-
mentation, 2019. https://www.gnu.org/
software/gzip/manual/gzip.html.

[7] Webrecorder. Warcio: Warc (and arc) stream-
ing library, 2017. https://github.com/
webrecorder/warcio.

[8] Python Software Foundation. Warcat, 2019.
https://pypi.org/project/Warcat/.

https://trec-decision.github.io/
https://trec-decision.github.io/
https://www.gnu.org/software/gzip/manual/gzip.html
https://www.gnu.org/software/gzip/manual/gzip.html
https://github.com/webrecorder/warcio
https://github.com/webrecorder/warcio
https://pypi.org/project/Warcat/

