
ICT at TREC 2019: Fair Ranking Track

Meng Wang1,2, Haopeng Zhang1,2, Fuhuai Liang1,2, Bin Feng1,2, Di Zhao1,2

1CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China
{wangmeng18g, zhanghaopeng18g,liangfuhuai18g,fengbin18s,zhaodi17s}@ict.ac.cn

Abstract

In this paper, we will introduce our work in the
2019 TREC fair ranking task. In temporal aca-
demic search, more and more people choose to
pay attention to the fairness constraints of rank-
ing. The purpose of this task is to provide fairness
exposure to different groups of authors, where the
definition of group is diverse, such as based on de-
mographics, height, topics, etc. For this reason,
the model we design should consider the fairness
of the ranking results while ensuring the relevance
of the ranking results. We will show how to use
our model to achieve the relevance of query re-
sults, then adjust the overall ranking results ac-
cording to the fairness of documents, and finally
achieve the relevance and fairness of document or-
dering. This paper will introduce the framework
and methods of the fair ranking system, as well as
the experimental results.

1 Introduction

In the Internet age, people turn from the tra-
ditional library search to Internet information
search. Rankings have become one of the dom-
inant forms with which online systems present
results to the user[1]. Traditional sorting is to
rank items in descending order of relevance prob-
ability, because this is a common metric that is
widely used in information retrieval. But when we
rank authors, documents, and opinions, this user-
focused thinking is no longer comprehensive[2].
In today’s ranking system, you need to consider
not only the relevance of the results, but also the
fairness of the results.

To balance this conflicting metric, we try to
use a variety of algorithms to rank documents so
as to satisfy certain fairness concepts while en-

suring relevance. We evaluated the impact of
these two constraints against the evaluation cri-
teria provided[3]. In this article, we will show
how to use our framework to achieve relevance
and fairness in document ordering.

This article is organized as follows: the first
part is the data preprocessing, the second part is
the document relevance ranking, then the ranking
results are adjusted according to fairness, and the
third part is the summary.

2 Data processing

The given data set is a Semantic(S2) open corpus
from the Allen Institute of Artificial Intelli-
gence(http://api.semanticscholar.org/corpus/),
containing 47 1GB data files. Most of the data
contains doc id, DOI, title, Abstract, Authors,
and the data fields of a small part may be empty.
There is also a query-sequence-generator.py file
for generating more than 600 queries. Since
the data set is too large and the data is in json
format, it is in line with the characteristics of
mongodb, so we consider importing the data
into the mongodb database to enhance the query
processing capability of the data. There are
approximately 46,747,044 data after importing
into the database. Finally, the data is indexed by
doc id, because it is often necessary to query the
data according to doc id. We paired each query
with the corresponding document and found that
there were only 4641 pairs of (query, document,
relevance) data. The data format of each training
set is as Figure 1.

Figure 1: The data format of each training set

This is because the number of queries is rel-

1

atively small, so there are only limited training
samples. Despite this, there are still more than
1000 pieces of data in the 4641 training data,
doc content, authors or title is empty. As a result,
the amount of data is less and the training model
will be less effective. The official has also consid-
ered this problem, given a script file that samples
data by distribution, where we sample 100,000
pieces of data from a limited sample for train-
ing according to a given script file. In addition,
the most important thing we need to consider is
the author’s Fairness and Relevance. The official
also gives the correspondence between author and
group, and as illustrated in Figure 2.

Figure 2: The correspondence between author and
group

Because in the end we evaluate, we need to
calculate the Fairness of each author, so we need
to add the author id and gid pair to the evaluation
data. The data format of each evaluation data set
is as Figure 3.

Figure 3: The data format of each evaluation data
set

In general, the data set itself is large, but the
data used for training after pairing is very small,
which is disadvantageous for training the neural
network model. Although the number of training
samples after sampling is increased, it is prone to
insufficient training of the model.

3 Model

To begin with, we use the existing model Conv-
KNRM[4] to sort documents based on their simi-
larity to the query and documents. The brief prin-
ciple of the model is as follows.

3.1 Convolutional Kernel-based Neural
Ranking Model

Given input query and document, the embedding
layer maps their words into distributed represen-
tations pre-trained by BERT[5], the convolutional
layer generates n-gram embeddings; the cross-
match layer matches the query n-grams and doc-
ument n-grams of different lengths, and forms the
translation matrices; the kernel pooling layer gen-
erates soft-TF features and the learning-to-rank
(LeToR) layer combines them to the ranking score.
Conv-KNRM can be learned end-to-end.

Conv-KNRM, compared with KNRM, adds n-
gram convolution and increases the level of the
original model. Conv-KNRM can capture more
subtle semantic entities and cross-granularity is
more fine.

3.1.1 N-gram Composing and Cross-
matching

Given a query q and a document d, Conv-KNRM
embeds their words by a word embedding layer,
composes n-grams with a CNN layer, and cross-
matches query n-grams and document n-grams of
variant lengths to the translation matrices.

Word Embedding Layer: First, the word
embedding layer maps each word to an L-
dimensional continuous vector (embedding). A
text sequence of m words t1, ..., tm , and is mod-
eled as an m ∗ L matrix.

Convolutional Layer: Second, the convolu-
tional layer applies convolution filters to compose
n-grams from the text. For each window of h
words, the filter sums up all elements in the h
words’embeddings T(i:i+h) , weighted by the fil-
ter weights w ∈ RhL ,and produces a continuous
score.

We use F different filters and get F scores.
Then we add a bias and apply a nonlinear acti-
vation function, and obtain an F-dimensional em-
bedding for the h-gram. When a convolution fil-
ter slides across the boundary of the text, we use
h− 1 < PAD > symbols for padding.

~ghi = relu
(
W h · Ti:i+h +~bh

)
, i = 1 . . .m (1)

Cross-match Layer: Translation matrix’s el-
ements are the cosine similarity scores between
the corresponding query-document n-gram pairs.

M
hq ,hd
i,j = cos

(
~g
hq
i , ~g

hd
j

)
(2)

3.1.2 Ranking with N-gram Translations

Conv-KNRM uses the kernel-pooling technique
and a learning-to-rank layer to calculate the rank-
ing score using the n-gram translations M.

Kernel Pooling: Kernel-pooling uses K
Gaussian kernels to count the soft matches of
word or n-gram pairs at K different strength
levels. Each kernel summarizes the translation
scores as soft-TF counts in the region dened by its
mean Kk and width δk. As a result, a translation
matrix M is pooled to a K-dimensional soft-TF
feature vector.

Learning to Rank: The learning-to-rank
layer uses linear function to combine the soft-TF
ranking features into a ranking score.

Loss Function: We use standard pairwise
learning-to-rank loss function to train the model.

l =
∑
q

∑
d+,d−∈D+−

q

max(0, 1− f(q, d+)

+ f(q, d−))

(3)

3.2 Adjust for exposure

After sorting Dq according to correlation with
KNRM model, the sorted document πr is ob-
tained. The ranking results at this time only take
into account the relevance of query to document d.
Suppose the result of KNRM model ranking is the
optimal correlation ranking result we can get.

Next, consider the fairness of document sort-
ing.

For the πq and πw in the sort result, swapping
their positions at this point causes the overall sort
result to be less relevant. At the same time, the ex-
posure fairness for authors included in documents
q and w may rise or fall.

The result of swapping document q, w is de-
noted as πs . The correlation change of the overall
ranking result is denoted as ∆uπq,w .Document q
precedes document w.

∆uπq,w =

n∑
i=q

[γi−1
i−1∏
j=1

(1− p(s|πsj))]p(s|πsi)−

n∑
i=q

[γi−1
i−1∏
j=1

(1− p(s|πj))]p(s|πi)

(4)
Swapping documents q and w does not affect

author relevance. But it changes the exposure of
the author.

If the author a ∈ q , then switch the document
q and w positions, and the exposure change for
author a is denoted as ∆eπa .

∆eπa =γw−1
w−1∏
j=1

(1− p(s|πsj))−

γq−1
q−1∏
j=1

(1− p(s|πj))

(5)

Based on this, it is possible to calculate the
changes in exposure of all authors after swapping
documents q and w.

Each author belongs to one of |G| groups. Af-
ter calculating the exposure changes of each au-
thor, the exposure changes of group g after ex-
changing documents a and b can be obtained. The
change in group g’s exposure is denoted as ∆εg .

∆εg =
∑
a∈Ag

∆ea (6)

The final fair exposure change can be calcu-
lated based on the change in the exposure of each
group g. In order not to conflict with the symbol
of the guideline, the final fair exposure change is
denoted as ∆f .

∆f =

√∑
g∈G

∆ε2 − 2∆εgRg (7)

Adjust the parameter so that ∆uπq,w and ∆f
are in the same range.

The next step is to determine whether docu-
ment q and document w should be swapped based
on the correlation change ∆uπq,w and fair exposure
changes ∆f . If ∆f is greater than ∆uπq,w , then
document q and document w are exchanged. Ad-
just all the sorting results in this way.

For the sake of time complexity, when decid-
ing whether document q and document w should
be switched, only adjacent documents should be
taken, and the whole sorting result, π , should only
be iterated once.

3.3 Evaluation result

We submitted a ranking result, and the evaluation
results are shown in table 1 and table 2. Validation
sets are used to group authors based on h-index
and level respectively.

Table 1: Evaluation on Groups Based
on H-index Scores

SeqID util unfairness

mean run mean run

0 0.608679 0.549371 0.074779 0.044143

1 0.609166 0.553952 0.076113 0.045979

2 0.609620 0.550504 0.074923 0.046058

3 0.609211 0.547126 0.075145 0.046286

4 0.611033 0.552450 0.075360 0.045370

Table 2: Evaluation on Groups Based
on Level Scores

SeqID util unfairness

mean run mean run

0 0.608679 0.549371 0.041605 0.039809

1 0.609166 0.553952 0.043898 0.051944

2 0.609620 0.550504 0.044432 0.042368

3 0.609211 0.547126 0.042603 0.042178

4 0.611033 0.552450 0.044838 0.037862

As can be seen, after our strategy ranking, the
fairness of the overall results is in the middle level
among all submitted results. In the h-index evalu-
ation results, even close to the best results.

However, the utility is poor, which is caused
by the fact that the ranking based on fairness de-
stroys the relevance of the ranking results.

4 Conclusion

The fairness of sorting in retrieval system is very
important. It is very difficult to consider both rel-
evance and fair exposure in the ranking results.

In this Track, our strategy is to first consider
the relevance of documents and queries, and then
adjust the results according to fair exposure. How-
ever, due to time complexity, we did not iterate the
adjust process many times.

This approach has a high time complexity and
is difficult to practice in systems with short re-
sponse times. We think it is a good method to
consider the fairness and relevance of the ranking
results in the same stage of ranking, and it is also
a direction that our method can be improved.

References

[1] Ashudeep Singh and Thorsten Joachims. Fair-
ness of exposure in rankings. In Proceedings

of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Min-
ing, pages 2219–2228. ACM, 2018.

[2] L Elisa Celis, Damian Straszak, and
Nisheeth K Vishnoi. Ranking with fairness
constraints. arXiv preprint arXiv:1704.06840,
2017.

[3] Ke Yang and Julia Stoyanovich. Measuring
fairness in ranked outputs. In Proceedings
of the 29th International Conference on Sci-
entific and Statistical Database Management,
page 22. ACM, 2017.

[4] Zhuyun Dai, Chenyan Xiong, Jamie Callan,
and Zhiyuan Liu. Convolutional neural net-
works for soft-matching n-grams in ad-hoc
search. In Proceedings of the eleventh ACM
international conference on web search and
data mining, pages 126–134. ACM, 2018.

[5] Jacob Devlin, Ming-Wei Chang, Kenton
Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

