
bigIR at TREC 2019:
Graph-based Analysis for News Background Linking

Marwa Essam and Tamer Elsayed
{me1709534,telsayed}@qu.edu.qa

Computer Science and Engineering Department
Qatar University
Doha, Qatar

ABSTRACT
Nowadays, it is very rare to find an online news article that is self-
contained with everything a reader would want to know about the
article’s story. Therefore, it became vital for any article to contain
links to other articles or resources that provide the background and
contextual knowledge required to conceptualize the article’s story.
However, finding useful background and contextual links can be
a challenging problem. In this paper, we address this problem in
the context of the participation of the bigIR team at Qatar Univer-
sity in the news background linking task of the TREC 2019 news
track. Our methods mainly relied on a graph-based analysis of the
query-article’s text to extract its most representative and influential
keywords, and then use these keywords as a search query to retrieve
the article’s background links from a collection of news articles. All
of our submitted runs outperformed the TREC hypothetical run
that achieved a median effectiveness over all queries. Moreover, our
best submitted run was ranked second among 28 runs submitted to
the task, indicating the potential effectiveness of our approach.

1 INTRODUCTION
In the last decade, online news reporting services have played a
vital role in changing the way people receive and share news. Often
though, an author of any news article assumes that readers have
a certain background knowledge on the article’s topic or story.
This is, of course, not the case for many readers. Therefore, to help
readers conceptualize a news article, it is necessary to add links in
each article to other articles or resources that provide the desired
background knowledge [8]. Links in articles are typically added to
point to other articles that are written by the same author, or ones
that are most-frequently viewed by the readers. However, adding
useful background links to articles can be a challenging problem.

Motivated to find solutions to this problem, a news background
linking task was recently introduced as a new challenge in the
news track in TREC 2018 [8]. A number of teams participated in
this challenge in 2018 proposing different methods to solve the
problem. Most of the proposed methods relied mainly on an ad-hoc
search approach to retrieve the background links for query articles.
In this approach, a search query/queries are constructed from an
input article, and these queries are issued against an index created
for the news collection to retrieve the background links for the
input article. Upon the retrieval of an initial set of background
links, some of the earlier proposed methods further adopted other
approaches to extend their initial results or even to diversify the
background links presented to the reader [2–4, 10].

In this paper, we demonstrate the participation of our bigIR team
at Qatar University in the background linking task in TREC 2019.

Our approach relied also on an ad-hoc search approach to find the
required background links; nonetheless, we base the construction
of the search query mainly on a graph-based analysis of the query
article’s text [5]. Precisely, we adopted graph construction and de-
composition methods to extract a set of keywords from the query
article, and used a weighted representation of those keywords as
our search query. Our motivation for using graph decomposition
methods for keyword extraction is that it catches important in-
formation in the text like the order, co-occurrence, and context
relations between the different terms, allowing the most influential
and representative keywords to stand out. We submitted four runs
to this task using four different methods; yet, all our methods relied
on the same graph-based analysis idea.

The rest of this paper is organized as follows. Section 2 describes,
in detail, our proposed approach to solve the problem. Section 3
presents the official runs setup and results as reported back by
TREC. Finally, section 4 concludes the paper and outlines potential
future work.

2 APPROACH
We map the original news background linking problem to the fol-
lowing problem:

Given a collection of news articles D and a query article A, construct
a search query Q to retrieve background articles of A from D.

To construct the search query Q , we extract keywords from the
query article A that best indicates its relevant topics, and concate-
nate these keywords in one query. Specifically, the required key-
words are obtained using a graph-based analysis of the query article
A. Graph-based analysis of text allows to capture the dependency
between different terms. Dependency relations may exist between
terms in a document (e.g., grammatical dependency), and thus can
help quantify the importance of those terms by relative weights.
Consequently, those weights may help in choosing keywords that
better represent the document. Recently, graph representation of
text was explored to deal with term dependency in various Infor-
mation Retrieval (IR) tasks, and was proved effective [6, 7, 9].

In this section, we first present the core architecture of our back-
ground links retrieval system, then we discuss each component in
the system in detail.

2.1 System Design
Figure 1 depicts the high-level architecture of our proposed system.
Initially, all the articles in the news collection are indexed. To index
an article, its metadata is extracted first. This may include the
article’s title, URL, author’s name and publishing date. For now, we



Figure 1: A high level overview of the background links retrieval system

used this metadata to filter out duplicate articles or articles that
represent personal opinions or views. Nonetheless, this metadata
can further be used in the re-ranking process of the retrieved results
to support the diversification and the freshness of the final articles
presented to the reader. Each article then goes to a preprocessing
phase where a token stream is generated and fed to the indexer.

Having all articles in the collection indexed, we proceed to pro-
cess query articles. For each query article, a co-occurrence graph is
constructed from the article’s title and body concatenated together.
The article’s graph is then decomposed into subgraphs that help
assign weights to the terms, and the keyword set of the required
query text Q is extracted accordingly. Q is finally used to retrieve
the required background links from the collection index.

2.2 Graph Construction
After preprocessing the query article A into a stream of terms, we
construct a co-occurrence graphG for the article. The underlying as-
sumption of creating such graph is that terms co-occurring within a
relatively small window of text have some kind of semantic related-
ness regardless of their roles in a sentence, and that this relationship
influences the importance of each single term within the article.
Each node in G represents a single (unigram) term, and each edge
connects two terms that co-occur (within a sliding window) at least
once in the article. Edges are weighted by the co-occurrence fre-
quency of the term pair. Figure 2 shows the graph constructed for
an example short article. We opted to construct an undirected graph
as recommended in [5], since using directed graphs was not proved
to achieve significant impact on keyword extraction.

2.3 Graph Decomposition
After constructing the graph, weights of nodes (representing terms)
can be computed using different measures. In this work, we select
keywords based on graph decomposition methods [9]. The idea
behind those methods is to decompose the co-occurrence graph into
a hierarchy of nested subgraphs using graph degeneracy methods.
Each subgraph contains a cohesive subset of nodes from the initial
graph. Going down this hierarchy of subgraphs reveals nodes that
are placed at the core of the initial graph. This is based on the
assumption that keywords in an article’s graph are not necessarily
the ones with high number of connections or high frequency, but

Figure 2: A graph constructed for an example article: “Online
newspaper is the online version of a newspaper, either as a
standalone publication or as the online version of a printed
periodical”, with a sliding window of size 2.

Figure 3: Graph decomposition: (a) the main graph. (b) the 3-
core decomposition. (c) the 3-truss decomposition. Note that
the node * is removed in the truss decomposition because its
connecting edge is not part of a triangle.

the ones that are at the core of the graph and can reach many other
nodes (spreaders).

There are several ways to decompose a graph into subgraphs for
keyword extraction. In this work, we adopt two methods: k-core [5]
and k-truss [9] graph decomposition. k-core decomposition relies

2



on peeling away weakly connected nodes to gradually get some
understanding of the core of the graph. The k-core of a graph is
the maximal subgraph such that every node has a degree at least
k , where the degree of a node is the sum of the weights on its
connecting edges. k-truss decomposition is an extension to k-core
decomposition, in which edges are pruned first if they are weak,
and then nodes with no more connecting edges are peeled off. k-
truss basically prunes an edge from the k-1 subgraph if it is not
supported by at least k-2 other edges that form triangles with that
edge. Figure 3 shows an example of both decomposition methods.

In the decomposition process, both the k-core and the k-truss
methods continue increasing k and prune nodes to create more
cohesive subgraphs until they reach k-max, which is the deepest
level they can reach in decomposition (after which the resulting
subgraph becomes empty). A core/truss number of a node is then
defined as the maximum core/truss number at which this node
exists.

2.4 Keyword Extraction
Assuming that the graph was decomposed into cores/trusses, we
assign a score to each node that is equal to the sum of the core/truss
numbers of its neighbors in the the 0-core/0-truss graph. This scor-
ing is based on the assumption that nodes in the same core/truss
are as good as spreaders in the graph [1]. If a score is assigned in-
stead based only on the node’s own core/truss number, then many
nodes will end up having the same weight. After assigning scores
to nodes, keywords then can be selected using different methods. In
this work, we first set the number of keywords N to be selected to
P% of the number of nodes in the article’s full graph. To account for
short articles, we test if N is less than a predefined minimummin.
If yes, it is set tomin. Next, we sort the nodes given their core/truss
scores and select the query keywords as the top N terms having
the highest scores. A term with a weight equal to the N th node is
also selected.

2.5 Retrieving Background Articles
The set of selected keywords constructs the search query Q , where
each keyword is weighted/boosted by its score. We issue this query
against the collection index to retrieve a potential set of background
articles. Finally, duplicate articles from the results (that have the
same author, title and publishing date but different identifier) are
removed, and the top 100 links found are reported.

3 EXPERIMENTAL EVALUATION
3.1 Dataset Preprocessing and Indexing
We used version 2 of the Washington Post news test collection re-
leased for the news track by TREC1 in 2018. To index the collection,
we used Lucene2 ver. 8.0. During our indexing process, we excluded
articles that are “Opinions”, “Letters to the Editor”, or “The Post’s
View” as they were declared by TREC to be non-relevant. The arti-
cles in this version were provided as JSON objects in a single file.
For each article, we extracted the metadata (title, author, publishing
date, and URL) and indexed them as separate string fields in Lucene.

1https://trec.nist.gov/data/wapost/
2http://lucene.apache.org/

For the article’s body, we first concatenated the HTML text contents
from the JSON object (marked by a “sanitized_html” type). We then
used JSOUP library3 to extract the raw text from the HTML text.
Afterwards, we lower-cased the text and removed stop words and
all non-alphabetical characters. The final preprocessed text was
indexed as a text field in Lucene along with the article’s metadata.

For the query articles, we first extracted its title and body, con-
catenated both in one string, then we preprocessed it the same
way like the other indexed articles. For retrieving background links,
we used Lucene’s default ranking model (a variation of the Vector
Space Model), and we submitted the first 100 background articles
retrieved (after removing duplicates).

3.2 Evaluation Measures
To evaluate the effectiveness of the proposed solutions to the back-
ground linking problem, nDCG@5 was used as a primary metric
by TREC. The gain value for each retrieved background article
was calculated as 2r where r indicates how much background and
context knowledge the retrieved background article provides to the
query article. The gain value r ranges from 0 (the article provides
little or no useful background information) to 4 (the article must
appear in the sidebar otherwise critical context is missing).

As participants were asked to submit up to 100 background
links for each query article, other metrics than nDCG@5 were also
reported back by TREC for each submitted run (e.g., precision at
different levels).

3.3 Official Runs
We experimented with the two graph decomposition methods ex-
plained in the previous section in solving the background linking
problem. For each method, we tuned a number of parameters using
the TREC 2018 queries and relevant judgments. The parameters we
tuned were:

• The sliding window size used when creating the article’s
graph.

• The keyword selection parameters, which are the percentage
of terms to be selected P and the minimum numbermin of
keywords to be selected for short articles.

• The title words boost factor. After the analysis of the article
and the selection of keywords to construct the query, key-
words that are part of the article’s title are given a boost factor
that is multiplied by their weight before issuing the query
to Lucene. This is driven by our belief that authors carefully
select title words to mostly reflect the message/story of the
article.

As stated in the guidelines for this task last year and also this
year, the user is assumed to read the query article in the present
time. This allows articles published at any time to be candidate
background articles to the query article. Nonetheless, during our
tuning and testing phase using the TREC 2018 set of query articles
and relevant judgements, we always found that excluding articles
that were published after the query article (denoted as forward
links) from the results exhibits better performance. Therefore, for
each of the graph decomposition methods we used for analyzing

3https://jsoup.org/

3



the query article, we submitted two runs for TREC 2019: one that
does not include forward links, and another that does. The runs we
submitted were as follows:

• QU _KCore : In this run, we used k-core as our graph decom-
position method with a window size set to 4, the percentage
of terms P set to 20% ,min for short articles set to 70, and a
title boost set to 1.7. In this run, we excluded forward links
from the results.

• QU _KCore_F : In this run, we used the same settings as in
QU _KCore , but we included forward links in the results.

• QU _KTruss : In this run, we usedk-truss as our graph decom-
position method with a window size set to 6, the percentage
of terms P set to 20%, andmin for short articles set to 70. We
also excluded forward links from the results.

• QU _KTruss_F : In this run, we used the same settings as in
QU _KTruss , but we included forward links in the results.

3.4 Experimental Results
Table 1 shows the nDCG@5 values achieved by our methods. In
general, all our runs outperform the TREC median for this task
with our best run, (QU _KCore), ranked second among 28 total
submitted runs. This supports, to a great extent, the effectiveness
of using graph-based text analysis in solving the news background
linking problem. We also notice that using the k-core method for
the article’s graph analysis and decomposition produced a higher
nDCG@5 score compared to k-truss.

We can also notice from Table 1, as expected, that the runs that
excluded forward links produced better results using both graph
decomposition methods. Nonetheless, as mentioned before, other
metrics than nDCG@5 were also measured. In our analysis of the
precision scores that our methods achieved at different cutoffs, we
found that, as shown in Figure 4, including the forward links to the
results set generally yielded retrieval of more relevant articles. This
measure of performance, however, ignores how much useful is the
retrieved background article to the query article.

Run nDCG@5 Rank
TREC’19-Median 0.5295 -
TREC’19-Best 0.6064 1st

QU _KCore 0.5918 2nd

QU _KTruss 0.5807 3rd

QU _KCore_F 0.5723 7th

QU _KTruss_F 0.5689 9th

Table 1: nDCG@5 scores for the submitted runs compared
to TREC’19 median and best runs.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we described the approach we adopted to tackle the
problem of news background linking as part of our participation in
TREC 2019 news track. Our solution relied basically on extracting
representative keywords from the news query article, and using
them to find the article’s background links. We used a graph-based
analysis of articles for keyword extraction, and varied the methods
used for constructing the graph and analyzing it. The official results

Figure 4: The precision scores obtained for all the submitted
runs at different numbers of retrieved documents.

reported by TREC showed that our proposed approach, in different
settings, outperformed the TREC median for this task. Moreover,
our best submitted run was ranked second among 28 total submit-
ted runs to the task, indicating the potential effectiveness of our
approach. Our future work includes conducting more deep exper-
iments to confirm the effectiveness of adopting graph-based text
analysis in solving the news background linking problem. We will
also investigate the idea of expanding the extracted keywords using
other methods such as word embedding similarities.

ACKNOWLEDGMENTS
This work was made possible by NPRP grant# NPRP 11S-1204-
170060 from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the responsi-
bility of the authors.

REFERENCES
[1] Joonhyun Bae and Sangwook Kim. 2014. Identifying and ranking influential

spreaders in complex networks by neighborhood coreness. Physica A: Statistical
Mechanics and its Applications 395 (2014), 549–559.

[2] Agra Bimantara, Michelle Blau, Kevin Engelhardt, Johannes Gerwert, Tobias
Gottschalk, Philipp Lukosz, Shenna Piri, Nima Saken Shaft, and Klaus Berberich.
2018. htw saar @ TREC 2018 News Track. (2018).

[3] Pilar Lopez-Ubeda, Manuel Carlos Diaz-Galiano, Maria Teresa Martin Valdivia,
and L. Alfonso Urena-Lopez. 2018. Using clustering to filter results of an Infor-
mation Retrieval system. (2018).

[4] Kuang Lua and Hui Fang. 2018. Paragraph as Lead - Finding Background Docu-
ments for News Articles. (2018).

[5] François Rousseau and Michalis Vazirgiannis. 2015. Main core retention on
graph-of-words for single-document keyword extraction. In European Conference
on Information Retrieval. Springer, 382–393.

[6] Guokan Shang, Wensi Ding, Zekun Zhang, Antoine Jean-Pierre Tixier, Polykar-
pos Meladianos, Michalis Vazirgiannis, and Jean-Pierre Lorré. 2018. Unsupervised
Abstractive Meeting Summarization with Multi-Sentence Compression and Bud-
geted Submodular Maximization. arXiv preprint arXiv:1805.05271 (2018).

[7] Konstantinos Skianis, Fragkiskos Malliaros, and Michalis Vazirgiannis. 2018.
Fusing document, collection and label graph-based representations with word
embeddings for text classification. In NAACL-HLT Workshop on Graph-Based
Natural Language Processing (TextGraphs).

[8] Ian Soboroff, Shudong Huang, and Donna Harman. 2018. TREC 2018 News Track
Overview. (2018).

[9] Antoine Tixier, Fragkiskos Malliaros, and Michalis Vazirgiannis. 2016. A graph
degeneracy-based approach to keyword extraction. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing. 1860–1870.

[10] Peilin Yang and Jimmy Lin. 2018. Anserini at TREC 2018: CENTRE, Common
Core, and News Tracks. (2018).

4


	Abstract
	1 Introduction
	2 Approach
	2.1 System Design
	2.2 Graph Construction
	2.3 Graph Decomposition
	2.4 Keyword Extraction
	2.5 Retrieving Background Articles

	3 Experimental Evaluation
	3.1 Dataset Preprocessing and Indexing
	3.2 Evaluation Measures
	3.3 Official Runs
	3.4 Experimental Results

	4 Conclusions and Future Work
	References

