
UNC SILS at TREC 2019 News Track

Jiaming Qu and Yue Wang

School of Information and Library Science
University of North Carolina at Chapel Hill

Chapel Hill, NC
jiaming@ad.unc.edu, wangyue@email.unc.edu

Abstract. This paper describes our participation in the Background
Linking task of TREC 2019 News Track. Our approach has two directions.
After processing the corpus, we use Lucene to index and run the initial
retrieval. Then we leverage the learning-to-rank idea to train a re-ranker
using the 2018 relevance judgement files as ground truth, and the re-
ranker is applied to the initial retrieval results to generate a new ranked
list. Experiment results prove that the re-ranker significantly improves
the retrieval performance (NDCG@5) compared to the initial retrieval
results without the re-ranking step.

1 Introduction

The News Track started in TREC 2018, and it is the second year for this track.
This track consists of two tasks: Background Linking (BL) and Entity Ranking
(ER). The BL task aims to find relevant news from the whole corpus given a
target news, which provides background information or further understanding
for readers. The ER task aims to rank the named entity in the news according
to their importance in the context, which highlights the most significant entities.

The School of Information and Library Science (SILS) at the University
of North Carolina at Chapel Hill (UNC) participated in the BL task in this
year’s News Track. In this paper, we discuss our strategy to tackle the problem.
In section 2, we provide an overview of the dataset and how we process the
text. In section 3, we demonstrate in detail our retrieval strategy, especially the
feature generation to train the re-ranker. In section 4, we report the retrieval
performances evaluated by TREC. In section 5, we summarize our work and
propose potential improvements and directions for future BL tasks or relevant
research.

2 Data Processing

This year’s News Track continues to use the Washington Post corpus as in 2018,
which consists of more than 590,000 news articles published by The Washington
Post. Even though TREC provides a version without duplication, we still notice
that there remain some duplicate articles in the corpus. However, we do not remove

2 J. Qu and Y. Wang

duplicate articles as the first step of pre-processing, as recognizing duplicates
for all articles in the corpus will involve significant computation. Since the main
task is news retrieval, we leave news deduplication to the final final ranking step
(Section 3.3).

First of all, we parse the original “JSON-line” format file into separate JSON
files, with each file representing a piece of news in the corpus. Secondly, for each
JSON file, we parse the file by extracting four fields which are ID, title, contents,
and category, and discard other information. Note that the publishing date is no
longer useful, as is officially stated in last year’s overview [1] that we are assuming
the user is reading the news now, irrespective of when the news was published.

When parsing the news content which is a list of paragraphs, in last year’s
News Track, Lu and Fang [2] propose treating each paragraph separately to
generate keywords for retrieval. However, we simply concatenate each paragraph
and treat the merged text as news content. When processing news titles and
contents, we remove HTML tags, punctuation and stop words. During processing,
we also remove news with types of “Opinion”, “Letters to the Editor”, or “The
Post’s View”, for they are identified as irrelevant to the task [1], which finally
leaves 571,963 news in the corpus.

Since the BL task aims to find relevant news given a target one, we assume
that relevance judgement should be not only on the text level, but also on the
context level. We do not take the Deep Learning approach to learn the contexts
in this task, instead we simply assume that two news are more likely to be
contextually relevant if they share more named entities in common. Therefore,
before cleaning the text as mentioned above, we use Spacy [3], which is a free
open-source library to do the Named Entity Recognition (NER) task to recognize
entities from the news titles and contents. We discard eight kinds of entities which
are “LANGUAGE”, “DATE”, “TIME”, “PERCENT”, “MONEY”, “QUANTITY”,
“ORDINAL” and “CARDINAL”, as we identify these entities, e.g., “May 1st”, “250
million US dollars”, “154” are not helpful to represent the context. We kept the
rest kinds of entities, such as “ORG”, “PERSON”, “EVENT”, and etc1.

To sum up, we parse the Washington Post corpus by dividing it into separate
JSON files, extracting four useful fields, then recognizing named entities from
titles and contents with Spacy, finally cleaning the text and removing irrelevant
ones.

3 Methodology

In this section, we provide detailed demonstration of our approach and intuitions
behind, as is shown in Figure 1. In general, we use Apache Lucene2, which is an
open-source, high-performance and publicly-available searching engine toolkit
in Java to index the corpus and run the initial searching which retrieves 1,000
documents per query. Then we generate features for each query, document pairs,
and leverage the 2018 BL task relevance judgements to train a re-ranker. Finally
1 https://spacy.io/api/annotation
2 http://lucene.apache.org/

UNC SILS at TREC 2019 News Track 3

for the 2019 topics, we initially retrieve 1,000 documents for each query and
re-rank the result using the trained re-ranker.

The Washington
Post Corpus

Text
Processing

Named Entity
Recognition

Lucene
2018

Queries

Feature
Generation

2018 Relevance
Judgements

Processing

Training Testing

Ind
ex
ing

Initial Retrieval
Results

Re-ranker

2019
Queries

Initial Retrieval
Results

Feature
Generation

2019 Retrieval
Results

Fig. 1. General Framework

3.1 Indexing

For each news article, four fields are extracted as mentioned above, which are
title, content, ID and category. For titles and contents, we use the standard
analyzer built in Lucene to analyze and stem the text. We do not process ID but
simply treat it as identifiers, and the category field is not used at this step but
at re-ranking instead.

4 J. Qu and Y. Wang

3.2 Initial Retrieval

One problem during the initial retrieval is how to generate the query. Instead
of throwing in the whole content as an extremely long query, we extract top-K
keywords with the highest TF-IDF weights as query terms. We then tune the
parameter K using the 2018 data and find K=80 gives the highest NDCG@5
score. When run the search in Lucene, we use the OR operator between all the
terms, and use the SHOULD operator for both the title and content field.

3.3 Re-ranking

To re-rank the initial retrieval results, we train a re-ranker based on the 2018
relevance judgements. This is a ranking problem because each query, document
pair will have a relevance score to be sorted. We transform this ranking problem
to a multi-class classification problem [4], and calculate the score of each query-
document pair (q, d) as:

score(q, d) =
∑

r∈{0,2,4,8,16}

wr · pθ(y = r|q, d) (1)

where y is predicted relevance grade using a multiclass classifier pθ(·|q, d). The
idea is that we treat relevance grades r = 16, 8, 4, 2, 0 as class labels without
order, instead of its original representing relevance order. wr are weights for each
relevance grade r in the scoring function; higher weights should be assigned to
higher relevance grade. Here we set w0 = 0, w2 = 1, w4 = 2, w8 = 3, w16 = 4.
The formula shows that we sum up the product of a weight of a relevance grade
and the probability of that relevance grade. Afterwards, we train an one-vs-all
Logistic Regression classifier to do the multi-class classification.

We generate five features to train the classifier, which are similarity of title,
similarity of content, similarity of the first 100 words, similarity of mentions,
similarity of category. Below are detailed demonstration of these features.

similarity of title We construct a corpus of all the news titles, then vectorize
each instance into TF-IDF vectors and measure similarity of title by the Cosine
similarity between two vectors.

similarity of content We construct a corpus of all the news contents, then
vectorize ach instance into TF-IDF vectors and measure similarity of content by
the Cosine similarity between two vectors.

similarity of the first 100 words We construct a corpus of all the news’
first 100 words, then vectorize ach instance into TF-IDF vectors and measure
similarity of the first 100 words by the Cosine similarity between two vectors.
The reason of using the first 100 words is that we assume the introduction part
of a news has covered the main idea or main entities in the content.

similarity of mentions As is mentioned in Section 2, for each news we use
Spacy to extract meaningful entities. Then for each pair of news, we measure
similarity of mentions by the Jaccard similarity between two entity sets.

UNC SILS at TREC 2019 News Track 5

similarity of category In the original JSON-line file, some news have a
sub-field in its content which indicates the category it belongs to, e.g., “Europe”,
“Technology”, “Sports”, “Movies” and etc. There are 179 categories in total, but
some news do not have such a sub-filed. To obtain a probability distribution of
categories as well as to fill missing categories for each news, we generate text
features from news contents, and use the basic bag-of-words model with unigrams
to train a multi-class classifier, by which we predict the probability distribution
of categories for each news. We measure the similarity of category between two
news articles d1, d2 by the total variation of the two predicted news category
distributions:

δ(d1, d2) =
1

2
·
∑
c∈C
|pφ(c|d1)− pφ(c|d2)| (2)

where C is the set of all news categories; pφ(c|d) is the predicted probability of
article d having category c; φ is the parameter of the multiclass classifier. The
formula shows that we sum up the absolute value of element-wise differences, and
divide the sum by 2. One nice property of this metric is that it is bounded in [0, 1],
which is on the same scale as the cosine similarity and Jaccard similarity. Note
that since it actually measures the distance, thus the higher the total variation is,
the lower the similarity, which is in contrast of the cosine and Jaccard similarity.

We generate these five features for each query, document pair from the initial
retrieval, and use the ground truth from 2018 as labels to train a multi-class
classifier. We apply the same approach on the 2019 retrieval results, which could
be viewed as a test set. Based on the five features generated, the re-ranker predicts
a probability distribution which is converted to a re-ranking score. We test three
methods using the new (re-ranking) score to re-rank. The first is purely based on
the new score. The second is to normalize the raw score from Lucene and the
re-ranking score separately using the min-max scaler to get a number between 0
and 1, and then add up two scores as a final score. The third is to assign different
weights to the raw and re-ranking scores when adding up, and based on the
ground truth from 2018, we find the optimal weight is 9 for the raw and 1 for
the new. The evaluations of these three methods are shown in Section 4.

Another important contribution of similarity of title, similarity of content,
similarity of the first 100 words is to find duplicate news. As is discussed in
Section 2, there are some duplicate news in the corpus, but it is impossible to
check every pair to find duplicate ones. Thus, at the re-ranking step, we identify
a retrieved news is a duplicate to the target news if any of similarity of title,
similarity of content, similarity of the first 100 words, or similarity of mentions
is 1, as the first row shown in Figure 2. Then we simply give a final score of 0 to
a duplicate news.

The coefficients in the multi-class Logistic Regression are shown in Figure 3. In
general, we could see that similarity of content is the most important feature
for each label, but different labels have a different order of feature importance.
Take two extremes as an example, we can see that content similarity and first 100
words similarity features positively correlate with being perfectly relevant (label

6 J. Qu and Y. Wang

Fig. 2. Feature Table

= 16), while negatively correlate with being non-relevant (label = 0), which makes
sense. However we found that not all learned coefficients are easily interpretable.

Fig. 3. Learned coefficients for different similarity features in the 5 one-vs-all logistic
regression classifiers.

4 Evaluation

We submit 4 runs for the BL task and the evaluation results are summarized in
the table below.

Table 1. Evaluation Results

Run Name NDCG@5

sils_news_run1 0.3482
sils_news_run2 0.5502
sils_news_run3 0.5472
sils_news_run4 0.3805

sils_news_run1 is the baseline which only uses the raw BM25 score from
Lucene to rank the retrieval result.

UNC SILS at TREC 2019 News Track 7

sils_news_run2 only uses the re-ranking score to rank the initial retrieval
result.

sils_news_run3 uses both the raw BM25 score from Lucene and the
re-ranking score by adding up to rank the initial retrieval result.

sils_news_run4 uses both the raw BM25 score from Lucene and the
re-ranking score by adding up with weights to rank the initial retrieval result.

By comparing sils_news_run1 and sils_news_run2 which rank the
retrieval results based on two different scores, we could see that the re-ranking
score reflect the true ranking better than the raw BM25 score.

Also, by comparing sils_news_run2 and sils_news_run3 , we could see
that adding the raw BM25 score to the re-ranking score does not differ much
from only using the re-ranking score.

Finally, by comparing sils_news_run3 and sils_news_run4 , we could
see that adding up two scores with different weights hurt the performance much,
which is to our surprise because these weights improves NDCG@5 on the 2018
validation set.

5 Conclusion

We participate in the 2019 News track and submit 4 runs for the Background
Linking task. Our best run incorporates two steps, which are the initial retrieval
and re-ranking. We use Lucene to run the initial retrieval, and then leverage the
learning-to-rank idea to train a classifier to re-rank the initial retrieval result.
We convert the ranking problem to a classification problem and generate five
features from both text and context. Results show that the learnt re-ranker
improves performance in terms of NDCG@5 compared to the baseline model
without re-ranking.

In future work, we aim to find a better approach to generate the query which
maximize the performance at the initial retrieval, as the re-ranking will not be so
effective if there are few relevant news in the initial retrieval result. Also, we aim
to do feature engineering to generate better both high-level and query-specific
features to improve the classifier. Finally, ablation studies can be performed to
better understand the impact of different features in this task.

References

1. Ian Soboroff, Shudong Huang, and Donna K. Harman. Trec 2018 news track overview.
2019.

2. Kuang Lu and Hui Fang. Paragraph as lead-finding background documents for news
articles. In TREC, 2018.

3. Matthew Honnibal and Mark Johnson. An improved non-monotonic transition system
for dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1373–1378, Lisbon, Portugal, September 2015.
Association for Computational Linguistics.

8 J. Qu and Y. Wang

4. Ping Li, Qiang Wu, and Christopher J Burges. Mcrank: Learning to rank using
multiple classification and gradient boosting. In Advances in neural information
processing systems, pages 897–904, 2008.

	UNC SILS at TREC 2019 News Track

