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T he paper describes the system presented by
the University of L’Aquila in collaboration
with the University of Havana - team named

UNIVAQ - to the TREC 2019 Precision Medicine
Track. The proposed solution, maps any kind of
documents - Scientific Abstract, Clinical trials, and
Topics - into a multi-dimensional common general
representation. Each document is described by
five primitive features. The values of each feature
are extracted from the original documents using
deep learning and machine learning text process-
ing based techniques. To recognize Genes and
Diseases, we have trained our models using the
PubTator annotated corpus. Instead, to derive de-
mographics information, we have trained the em-
ployed deep learning models using the documents
-obtained from the Relevance and Raw judgements
of the past edition of TREC Precision Medicine /
Clinical Decision Support Track 2018- considered
“relevant” or “partially relevant”. The results of the
Track clearly show that applying a system (as our)
made solely by a tagging based approach to the Pre-
cision Medicine task, is not sufficient to achieve the
performances gained by other systems presented
in the TREC Precision Medicine Track 2019.

1 Introduction

The precision medicine track of the 2019 REtrieval
Conference (TREC) addresses the challenge of helps
doctors. The track is oriented to retrieve useful infor-
mation regarding the treatment of several cancer dis-
eases and their patients. Precision Medicine (PM)is the
approach that customizes healthcare by taking into ac-

count the characteristics of each person, such as genes,
environment, and lifestyle. Note that the traditional
approach formulates treatments and prevention strate-
gies by taking into account solely cases that are popular.
The Precision Medicine approach, allows doctors and
researchers to more accurately predict the treatments
that are more effective for a particular group of people
or individuals. However, the vast literature available
in medicine makes it difficult to find quickly the opti-
mal treatment for the considered patient. The NIST
in the TREC Precision Medicine track promotes a chal-
lenge to better understand problems related to this
domain, and technologies that help doctors to retrieve
the medical information, more effectively.
The 2019 TREC Precision Medicine track -as an ex-

tension of the last edition- ask participants to rank a
predefined collection of documents according to a set
of Topics (queries). Two collections of documents are
provided in the PM Track. The first collection is com-
posed by Scientific Abstract, which could be relevant
to identify patient’s treatments, and the second one
contains Clinical Trials, for which the patient may be
eligible.
In this paper, we describe the system proposed by the

University of L’Aquila in collaboration with the Univer-
sity of Havana for the 2019 TREC Precision Medicine
track. The proposed solution is composed of the fol-
lowing steps:

1. first, we map Scientific Abstract, Clinical trials and
Topics into a common general representation;

2. then, each document is scored against the query
using the proposed matching model (based on five
primitive scores);

3. the five scores - for each document - are combined
together to produce a final score;
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4. documents are finally ranked according to their
final score.

The paper is organized as follows. Section 2 de-
scribes the common general representation of docu-
ments and topics. Section 3 presents how it is possible
to transform each type of document into its general
representation. Section 4 shows how to score each doc-
ument against the topic and how to produce the final
ranking. Finally, Section 6 summarise the acquired
knowledge, during the participation to the Precision
Medicine Track.

2 General Representation

In this section, we describe the general representation
used for all documents, i.e. Topics, Clinical Trials and
Scientific Abstracts. The representation is composed
by five distinctive features: genes and diseases, gen-
der and age information, and precision medicine (PM).
As general approach, each features is expressed by a
score that tells how much, the considered value, is
present/discussed in the document.
The first two features of the representation are the

genes and diseases. The genes feature is a g-dimensional
vector, where g corresponds to the size of the vocab-
ulary of genes founded across the whole collection of
documents. Analogously, the diseases feature is a d-
dimensional vector, where d is the size of the diseases’
vocabulary. Each component of those vectors holds the
estimated probability of the given document to discuss
the corresponding term (disease or genes).
Then the vocabulary of genes and diseases is mapped

to a semantic vector space. To do so, first we built a
graph, based on the DisGeNet (Piñero et al., 2019)
dataset. The gene and disease are the nodes of the
graph. And there is an edge between a pair of nodes
if exist an association among them in the DisGeNet1
(the dataset holds directly gene-disease associations).
Then we have decided to use node2vec (Grover and
Leskovec, 2016) to embeds the nodes of a graph into a
64-dimensional space. 2

The third feature of the representation is the gen-
der information.The gender feature is a 2-dimensional
vector. Each component of this vector corresponds to
the estimated probability of the given document to be
related to male and female population.
The fourth feature of the representation is age in-

formation. The age feature is an a-dimensional vector,
where a corresponds to the number of possible age
spans found across the whole collection of documents.
Each age span has the form of ‹ts, te› where ts and te,
respectively stand for starting and ending age. Each

1www.disgenet.org
2The implementation used was freely available at

https://github.com/eliorc/node2vec. For the training phase,
we have generated for each node, 100 random walks of length 30,
and then, we used a window size equal to 7.

component of the vector holds the estimated proba-
bility of the given document to be related with the
corresponding age span.
The last feature is the precision medicine (PM) score.

Documents provided in the Track can be classified into
one of the following categories:

Human PM: The abstract/trial (1) relates to humans,
(2) involves some form of cancer, (3) focuses on
treatment, prevention, or prognosis of cancer, and
(4) relates in some way to at least one of the genes
in the topic.

Animal PM: Identical to Human PM requirements (2)-
(4), except for animal research.

Not PM: Everything else. An example includes “basic
science” that focuses on understanding underlying
genomic principles (e.g., pathways), but provides
no evidence for treatment.

We decide to consider relevant for the Track only Hu-
man PM and Animal PM. The PM feature of the gen-
eral representation holds a scalar value that represents
the estimated probability of the given document to be
related to precision medicine, either Human PM or
Animal PM.
Table 1 summarise the features of the general rep-

resentation. The presented representation of table 1
corresponds to a sample Topic as described in Section 3.

Table 1: General representation of a sample Topic

----------------------------------------
<topic number-"1">
<disease>melanoma</disease>
<gene>BRAF (V600E)</gene>
<demographic>64-year-old male</dem>

</topic>
----------------------------------------

Feature Value

Diseases ds0 . . . melanoma . . . dsd
pds(di) 0 . . . 1 . . . 0

Genes g0 . . . BRAF V600E . . . gg
pg(di) 0 . . . 1 1 . . . 0

Gender male female
pg(di) 1 0

Age a0 . . . ‹64-64 years› . . . aa
pa(di) 0 . . . 1 . . . 0

PM Human/Animal PM
ppm(di) 1

3 Document Tagging

In this section, we describe how each type of document
is transformed into the general representation; i.e. we
explain how we extract each feature from every docu-
ment. In some cases, the features are explicitly stated
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in the document and a simple set of extraction rules are
sufficient to get them. In other cases, the features must
be inferred from the document using text processing
techniques that we will explain later on.
The Topics documents (queries) explicitly state all

the features. Therefore, the features extracting process
is straight forward for them. On the other hand, the
Clinical Trials and Scientific Abstracts documents do
not explicitly state all the features. Consequently, we
decided to use a set of text processing techniques to
extract the features needed. The procedures used to
extract information, from Clinical Trials and Scientific
Abstracts, are similar but not identical. Genes and
Diseases information is extracted using the same model
but applied on different textual fields. Demographics
information is handled in an entirely different manner
between the different types of documents.
The following subsections describe in the details

how these features are extracted from each type of
document.

3.1 Genes and Diseases

In this subsection, we describe how we have extracted
the genes and diseases features from the different types
of documents - Topics, Clinical Trials and Scientific
Abstracts.
Diseases and genes information, for the Topics doc-

uments, as previously stated, can be easily extracted.
The disease is explicitly available through the field
<disease>DISEASE</disease>. The corresponding
value in the diseases feature vector , of the extracted
disease, is then set to 1 . Diseases might contain
multiple words. Then, for each possible non-empty
sub-selection of words, the corresponding value in
feature vector is set to a number v ∈ [0, 1] that is
proportional to the number of words. The gene and
its variant is available in the Topic with the format
<gene>GENE (VARIANT)</gene>. 3 In the same way,
the values that belong to genes and its variants are set
to 1 in the genes feature vector.
The other types of documents provided in the Track

do not explicitly state genes and diseases. But genes
and diseases can be extracted from the text fields - e.g.
title, and abstract.
For Scientific Abstracts documents, genes and

diseases are extracted from the title and the
abstract fields. In the case of Clinical Tri-
als, the annotations are derived from the text
parts title and eligibility-criteria. The
eligibility-criteria is a textual field divided into
two sub-parts: Inclusion Criteria and Exclusion Criteria.
Since the primary intention of the retrieving trials is to
address relevant Clinical Trials for which the patients
are eligible, we decide to extract diseases and genes
solely from the Inclusion Criteria sub-part.

3The previous format, due to some syntax error, is not always
consistent, so a set of hand-crafted rules were taken into account to
produce the list of genes.

Two deep learning models were employed to ex-
tracts information about diseases and genes from the
plain text. Both models share the same architecture
but are trained on different tasks. The proposed ar-
chitecture has been previously successfully applied in
the literature to extract entities from plain text (Piad-
Morffis et al., 2019; Mederos-Alvarado et al., 2019).
We used an annotated corpus provided by PubTator
as a training set (Wei, Kao, and Lu, 2013). Hereafter,
we depict the used architecture and we will provide
details of the training phase.

3.1.1 Model Architecture

The models used to extracts diseases and genes want
to solve a sequence labelling problem. Given a se-
quence of words, the model predicts the best label to
be assigned to each word. Genes and diseases can be
multi-word so the models use a labelling system that al-
lows to performs this encoding in one iteration. Labels
used by our system are the follows: [B]egin to denote
the beginning of an annotation; [M]iddle to denote
the continuation of an annotation; [E]nd to denote the
end of an annotation; [W]ord to report a single word
annotation; and [O]ther to indicate that is not possible
to annotate the considered word.
Figure 1 summarise the architecture of the proposed

model and shows an example of its application on a
single sentence. The model is made of five stacked
layers connected in a sequential manner. The first layer
- used as look-up table (A) - transform the characters of
each word into an embedding vector. Then, a Bi-LSTM
layer (Hochreiter and Schmidhuber, 1997) process the
sequence of embedded characters in order to produce
a single representation of the whole word (B). The
sequence of the words - sentence - is then, processed by
another Bi-LSTM layer, that produces the local sentence
representation (C). Finally, a fully-connected layer (D)
with softmax activation, predicts the most probable
label (BMEWO) that can be assigned to each word.
The sequence of labels(BMEWO) built by each model,

is then used to identify the named genes or the list of
diseases, present in each document.

3.1.2 Training Details for Gene and Diseases

In order to train the presented model we used an an-
notated corpus provided by PubTator. The corpus is
composed by a collection of 28 581 465 articles from
PubMed (contains title and abstract). For each arti-
cle, a list of annotated entities, and their span in the
text, is given. Entities belongs to one of the follow-
ing classes: Gene, Chemical, Disease, Species and
Mutation. For our purpose, only the Disease, and the
Gene entities were used to train each model.
Since there is a frequent overlap between gene and

disease in the PubTator corpus, we decide to train two
individually models instead of just a single one. Fur-
thermore, since genes and diseases do not share the
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Figure 1: Sample architecture of the gene and disease extrac-
tion models.

same morphology, it makes sense to think that the fea-
tures that are relevant for detecting one class might
not necessarily be the same for detecting the other
class. The intuition is that, two individual models
might achieve better performances. Note that even
if, the gene-gene and disease-disease overlapping are
not handled by our models, there are few occurrences
of this issue in the corpus.
For replicability purpose, we will give some addi-

tional details of the adopted architecture. The maxi-
mum length of each word is set to 15 characters. Words
with less than 15 chars are padded to the right. Words
with more than 15 chars are truncated.

A k-fold cross-validation was performed using k = 5
on both models (gene and disease). We used 10 000
randomly sampled documents in the training phase.
The gene extraction model achieve a mean accuracy
of 97.93% with a standard deviation of 0.08%. The
disease extraction model achieve a mean accuracy of
96.17% with standard deviation of 0.04%.

3.2 Demographics

In this section, we will give details about the extraction
of the demographics.
For Topics, the gender and the age can be extracted

directly from the original document. The gender and
age are directly available in the field <demographic>
AGE-year-old GENDER </demographic>. The corre-
sponding value of the gender discovered in the doc-
ument is the set, in the 2-dimensional gender, to 1.
Similarly, the value of the corresponding age span dis-

covered in the document is set to 1.
For the Clinical Trials documents, the demograph-

ics are already available in the following fields:
eligibility: (1) gender, (2) minimum_age, and
(3) maximum_age. As before, the corresponding gender
value of the 2-dimensional vector is set to 1.
According to the ‹minimum_age, maximum_age›

the corresponding age span is enabled using the 1 value.
Note that, minimum and maximum age is not always
reported in the documents using the year value, but
also days or months values were used, then, it was
necessary to use a standardization process in order to
have a common representation.
Instead, Scientific Abstracts do not explicitly state

their demographics information. Therefore, to deduce
them, a deep learning models were employed to clas-
sify the document into a fixed set of demographic
classes. Especially, two models were trained to esti-
mate the gender (male, female), and four others to
estimate the age span (infant, adult, etc.). To simplify
the demographic information, we have chosen to use a
set of 6 age classes identified in Proteccion social: Ciclo
de Vida. Table 2 summarise the adopted ages span for
each class.

Table 2: Ages span of each demographics’ class

Class Age Span

Early Childhood 00 to 5 years
Childhood 06 to 11 years
Adolescence 12 to 18 years
Youth 19 to 26 years
Adulthood 27 to 59 years
Seniors 60 to∞+ years

3.2.1 Model Architecture

Given a sequence of words, the model predict if the doc-
ument matches one of the corresponding gender or age
category. The input text is built from the concatenation
of the title and abstract of each document. Two
embeddings based representations - character level
and word-level - are used as input of the model. For
word-level representation, we have used a pre-trained
Glove (Pennington, Socher, and Manning, 2014) em-
bedding of dimension 100.
Figure 2 summarise the architecture of the demo-

graphic models and shows the application of the model
on a sample text sequence. All models are made of a
two-branch; each branch is composed by a stack of lay-
ers. One branch computes the character level represen-
tation of the words through a embedding lookup table
and a Bi-LSTM layer for character level encoding (A-B).
The other branch computes the word-level representa-
tion of each word through a pre-trained word embed-
ding layer (C). The outputs of the two branches are
concatenated to obtain the final word representation.
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Figure 2: Sample architecture of the demographic and PM
models.

A Bi-LSTM layer process the sequence of word repre-
sentations to compute a single vector that encodes the
whole sentence (D). Another Bi-LSTM layer process
the sequence of sentence representations to compute
a single vector that encodes the whole document (E).
Finally, a fully-connected layer with sigmoid activation
estimates the probability of the given document to
belong to the corresponding demographic class (F).
All layers, except the last one, are shared among the

models and are trained jointly.

3.2.2 Model Training

To train the classifiers presented above, we used the Rel-
evance and the Raw judgements from the past edition
of TREC Precision Medicine / Clinical Decision Support
Track - 2018. To build a training set, we used those
documents evaluated as partially relevant and definitely
relevant in the Relevance judgements. We obtain 5 552
positive examples, and we consider 678 documents
from the Raw judgements, as negative examples. Un-
fortunately, only four over six considered age classes,
were found in the training set. Moreover, to mitigate
the unbalanced nature of the dataset, we employed
a class based weighting scheme in the training phase.
The weighting scheme gives different weights to the
model’s loss according to the cardinality of each class.
The complete statistics for each class (age/gender) -
divided into positive and negative instances - are re-
ported in table 3.
For replicability purpose, we will give also some ad-

ditional details of the adopted architecture. The maxi-

Table 3: Statistics of the training set used for Age and Gender
identification

Age class Total Positives Negatives

Early Childhood 361 304 57
Childhood 0 0 0
Adolescence 286 211 75
Youth 0 0 0
Adulthood 2 529 2 266 263
Seniors 3 054 2 771 283

Total 6 230 5 552 678

Gender Total Positives Negatives

Female 2 601 2 308 293
Male 3 629 3 244 385

Total 6 230 5 552 678

mum number of characters the model allows per word
are 15. Words with less than 15 chars are padded to the
right. Words with more than 15 chars are truncated.
The number of words per sentence is independently
setted up to the highest number of words among all
the sentences of each document. Sentences with fewer
words, are padded to the right.

3.3 Precision Medicine (PM)

In this section, we describe how to compute the PM
score for the different types of documents, i.e. Topics,
Clinical Trials and Scientific Abstracts. All the Topics
demands to retrieve Precision Medicine documents .
Therefore, the PM feature of every Topic is always set
to 1.
In the case of Clinical Trials and Scientific Abstract,

two independent models were trained to predict the
probability of a given document to be relate with the
precision medicine task. Both models use the same
architecture described in Section 3.2.1 and Figure 2.
To train the models we used the Raw judgments for
Scientific Abstracts 2018 and Raw judgments for Clinical
Trials 2018, from the 2018 edition of the Track.

4 Document Ranking

In this section, we describe how it is possible to rank
the documents according to the Topic using the in-
troduced General Representation. Once that we have
transformed each document into the general represen-
tation, we need to score the similarity of each docu-
ment to the Topics.
To compute the final similarity score we decide to

use five sub scores (between 0 and 1). This five scores
are then combined into a single scalar value. The fol-
lowing sections describe how to compute each score
and how they are combined together.
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Figure 3: Fussy match between the age range of a document
and the query.

4.1 Gene and Disease Score

The gene and disease similarity is computed as the
cosine similarity between their embedded terms. The
disease score is computed as the average similarity
between the topK most similar pairs of diseases among
those from the document and the query. Analogously,
the gene score is computed using the annotated genes
set instead of the diseases. The parameter K is used
to control the specificity of the score.

4.2 Age Score

The age score between a given document and the query
is computed as follows. The non-zero ‹ts, te› time
spans are recovered from the document and from the
topic general representation. To match the age demo-
graphics, we explored two alternatives: the binary and
the fuzzy match. The binary match assign 1 as the
age score if the query’s age is between the document’s
minimum and maximum age, and 0 otherwise. The
fuzzy match extends the binary score to a linear decay
that starts from 1. Figure 3 illustrates the fuzzy match
between a document’s age range and the query’s one.
Both the binary and fuzzy match are weighted accord-
ing the scalar value associated with each time span in
the document and Topic general representation.

4.3 Gender Score

The gender score between a given document and the
query is computed as the dot product between their
gender feature vectors.

4.4 Precision Medicine Score

The PM score is computed as the product between
their PM feature. Since the query PM feature is always
set to 1 in the PM Task, we take directly only those
documents that have the PM feature setted to 1.

4.5 Ranking

All candidate documents are ranked according to
a single scalar value, i.e. a linear combination
of the gene-score, disease-score, gender-score,

age-score, and PM-score (or a subset of these accord-
ing to the run). To maximize the classification accuracy
of the documents into the relevant/non-relevant, we
had automatically assigned the weights of the linear
combination using logistic regression classifier trained
on the 2018 relevance judgments.
The final score was, therefore, computed by applying

also a sigmoid function to the linear combination of
the features.

5 Run Configuration

Table 4 shows the configuration used in each run. A
total of five runs was tested for Clinical Trials and only
two for Scientific Abstracts.
The first three runs, of the Clinical Trials, use all the

five features. Each run explore different combinations
of the age matching approach, and different values of
K parameter. The remaining two runs, made on the
Clinical Trials, ignore the demographic information,
and one over two ignore as well the PM information.
All the runs on Scientific Abstracts were performed

using the following default configuration parameters:
all features, binary matching, and parameter K = 1.
Due to some processing limitations, only two subsets
of the whole collection of documents were considered.
The default100k and default1m runs worked on a
random sample of 100 000 documents and one million
documents respectively.

6 Conclusion

The presented work summarise the retrieval system
proposed by the University of L’Aquila in collaboration
with the University of Havana for the TREC 2019 Pre-
cision Medicine Track. The track is composed of two
tasks:

• retrieve Scientific Abstracts that contains those
treatments that could be useful for patients;

• find those Clinical Trials for which the patient may
be eligible.

The proposed system - employed on both the tasks of
the PM Track - is it made of the four steps previously
described. Due to some computational issues, which
could not be resolved before the deadline, we were
able to submit only, five runs for the Clinical Trials
related task, and two runs for the Scientific Abstracts
related task. Concerning the clinical trial, our best run
is tk3onlygnds, which uses only diseases and genes
features without considering the Demographics and
the PM information. As stated above for the Scientific
Abstracts related task, we were not able to process the
whole collection, and we applied our method only on
two subsets of respectively 100,000 and 1 million doc-
uments. To summarise, it was not possible for us to
clearly understand how our model performs against
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Table 4: Runs description

RUN FEATURES PARAMS
Name Doc. Diseases Genes PM Gender Age Age Matching K

tk1allbinary trial × × × × × binary 1
tk1allfuzzy trial × × × × × fuzzy 1
tk3allfuzzy trial × × × × × fuzzy 3
tk3nodemogr trial × × × - 3
tk3onlygnds trial × × - 3

default1m abstract × × × × × binary 1
default100k abstract × × × × × binary 1

the other participants of the TREC Precision Medicine
Track. However, considering only the performances
achieved in the Scientific Abstracts related task, we can
note that a system (as our) made solely by a tagging
based approach, is not competitive enough. For the
reasons mentioned above, we plan to extends our ap-
proach by also incorporating classic retrieval models.
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