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ABSTRACT
This paper describes the participation of the UvA.ILPS group at the
TREC CAsT 2019 track. We propose a cascade architecture that
consists of (i) a unsupervised initial retrieval step that uses on a
query expansion model that extracts words from the previous turns
that are relevant to the current turn, and (ii) a supervised neural
ranker that is based on BERT. We use transfer learning to pretrain
our neural ranker with a single-turn passage ranking dataset (MS
MARCO) and a multi-turn passage ranking dataset that we induced
from a dataset originally proposed for a different task (QuAC).
Official results show that our best run outperforms the median run
by 25.6% in terms of NDCG@5 and 26.4% in terms of NDCG@1000.

1 INTRODUCTION
Conversational AI has recently received a lot of attention in both the
IR and NLP communities [7]. The TREC Conversational Assistant
track is one of the first steps towards building conversational search
systems. This year’s task is to perform passage ranking over a
large collection in a conversational multi-turn setting, where the
sequence of queries is predefined.

In our participation we focus on designing a ranking system
particularly for this task, and on using transfer learning to transfer
knowledge from different datasets to our task. Our ranking system
follows a cascade architecture that consists of the initial retrieval
step (Section 2.1) and the re-ranking step (Section 2.2). The former
step relies on an unsupervised ranker and a query expansion model,
while the latter relies on a neural supervised ranker. Since our
training dataset is relatively small, we employ transfer learning to
pretrain the supervised ranker (Section 2.3).

2 METHODOLOGY
We follow a cascade architecture, which is standard in document
and passage retrieval especially for large collections [15]. Given a
question at the i-th turn, qi , together with the previous questions
[q1, ...qi−1], in the initial retrieval step, we produce a ranked list of
passages and keep the top-2000. Then, in the reranking step, we
rerank the set of passages obtained by the first step and keep the
top-1000.

2.1 Unsupervised initial retrieval
The goal of the initial retrieval step in our cascade architecture is
to achieve high recall up to a reasonable depth before using a more
sophisticated reranking module. This is especially challenging in

Table 1: Sequence of queries for the topic: “Career choice for
Nursing and Physician’s Assistant”, TREC 2019 CAsT train-
ing data.

Turn Query

1 What is a physician’s assistant?
2 What are the educational requirements required to be-

come one?
3 What does it cost?
. . . . . .
11 What is the fastest way to become a NP?
12 How much longer does it take to become a doctor after

being an NP?

our setting, where queries are sequential and the “interpretation”
of the current turn query depends on queries of the previous turns.
This can be due to phenomena such as the usage of pronouns (see
turn #2 in Table 1) and the omission of contextual information (see
turn #3 in Table 1). Furthermore, low recall in the initial retrieval
step is an important bottleneck for applying neural IR models in
practice [8]. Therefore, before diving into neural IR models, we
focus on building a strong unsupervised model for initial retrieval
for this task.

We use standard query likelihood with dirichlet smoothing and
RM3 relevance feedback as the ranking model [1, 17, 18]. In order
to build a more self-contained representation of the current turn
query, we propose a query expansion model to extract words that
capture relevant information from the previous turns and add them
to the query of the current turn. Our query expansion model builds
on the following two assumptions:

(1) Word centrality: words that are central in the queries up the
current turn capture the main theme of the conversation.

(2) Word recency: words that appear in the most recent turns of
the conversation are more relevant to the current turn.

In order to model word centrality (assumption 1), we first construct
an undirected weighted word graph, where the nodes are the unique
words of the queries up to current turn. We add edges for each pair
of words in the graph and weigh them using the cosine similarity
of their respective word2vec vectors [12]. We drop edges that have
a weight < 0.1. The centrality score c(w) of a wordw is the sum of
the weights of the edges that connect to that word.
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In order to model word recency (assumption 2), we calculate the
recency score ri (w) of a wordw at turn i as follows:

ri (w) =
∑

j ∈T (w )

exp−λ(i−j), (1)

where T (w) are the turns that word w appears and λ is a decay
factor.

The final score s(w) of a wordw at turn i is calculated as a linear
combination of the above scores:

s(w) = α · c(w) + (1 − α) · ri (w), (2)

where α is a parameter that controls the relative importance of word
centrality and recency. We add the top-k scoring words calculated
using Equation (2) to the original query qi .

2.2 Supervised neural reranking
In this step we build a supervised neural ranker to re-rank the set
of passages obtained using the previous step.

In contrast to the initial ranker which only uses the original qi
and the expanded words to form the query, our neural ranker uses
BERT to encode the all queries up to the current turn [q1, ...qi−1,qi ]
alongside with the passage p. We add a dropout layer and a linear
layer la on top of the CLS node in the last layer of the BERT model
to produce a matching score [11].

We combine the BERT matching score and the score obtained by
the initial retrieval step (for which we perform min-max normal-
ization per query [17]) to produce the final matching score using
an output linear layer lb with a tanh activation function.

We train the neural ranker using pairwise ranking loss [16].
During training we sample as many negatives as positives per
query.

2.3 Transfer learning
The biggest challenge in using the neural ranker described above
is that the training dataset provided is very small. The TREC 2019
CAsT training dataset consists of only 30 topics (269 queries in
total), and not all topics have relevant passages for all turns. To
address this challenge, we use transfer learning [10, 14]. We pretrain
our models in the following ways:

2.3.1 Language model pretraining. We initialize the BERT parame-
ters using a pretrained model that is trained on a large open domain
corpus with a language modeling objective [3].

2.3.2 Single-turn passage ranking pretraining. We use a subset of
the MS MARCO passage ranking dataset [13] to pretrain the BERT
parameters and the la layer on single-turn questions.

2.3.3 Multi-turn passage ranking pretraining. Since there is no
available large-scale dataset for multi-turn passage ranking, we
adjust an existing dataset for this task. We use the QuAC dataset
that was originally proposed for interactive question answering,
where the relevant answers exist in a single Wikipedia section. We
detail how we adjust this dataset for multi-turn passage ranking in
Section 3.1.3. Using this dataset, we pretrain the BERT parameters,
and the la and lb layers.

Finally, we fine-tune the whole model on a subset of the training
topics of the TREC CAsT training dataset.

Table 2: Excerpt from an example dialog taken from the
QuAC training data. The paragraph originates from the sec-
tion “History” of the Wikipedia article on “Saosin”. We de-
note the answer spans of each query turn in the paragraph
with a superscript.

Turn Query

1 Who formed Saosin?
2 When was the band founded?
3 What was their first album?
. . . . . .

Wikipedia paragraph: The [original lineup for Saosin, consisting
of Burchell, Shekoski, Kennedy and Green]turn1, was [formed
in the summer of 2003]turn2. On June 17, the band released their
[first commercial production, the EP Translating the Name]turn3.

3 EXPERIMENTAL SETUP
3.1 Datasets
3.1.1 TREC CAsT. The TREC 2019 CAsT dataset consists of 30
training and 50 evaluation topics. Each topic consists of a sequence
of queries. Out of 30 training topics, only 13 had at least one query
with a relevant document. Out of the 50 evaluation topics, only
20 were assessed by expert annotations to an average depth of
eight turns. The passage collection includes three passage corpora:
MS MARCO [13] (Bing), TREC CAR [4] (Wikipedia passages) and
Washington Post (WP) [9] (passages from news articles). Note that
in order to fine-tune our models we kept 5 of the training topics
aside for development and used the remaining 8 for training.

3.1.2 MS MARCO. For single-turn passage ranking (see Section
2.3.2), we used the MS MARCO passage ranking dataset, because it
uses the MS MARCO passage collection, which is a subset of the
passage collection of TREC CAsT. We sampled 100K triplets from
the training set and 200 queries from the development set due to
time restrictions.

3.1.3 QuAC. The QuAC dataset [2] was originally constructed by
asking two crowd workers (a student and a teacher) to perform an
interactive dialog about a specific topic (e.g. history of the Saosin
music band). The student asks questions about the topic, whereas
the teacher answers by providing spans from a Wikipedia text
about that topic. A single QuAC conversation, contains up to 12
queries about a singleWikipedia paragraph with answer spans from
the same paragraph associated with each query. Table 2 shows an
example dialog from the QuAC dataset.

We induce an artificial multi-turn passage ranking dataset from
QuAC as follows. Recall that TREC CAR is one of the passage
collections in TREC CAsT. Since QuAC and TREC CAR both use
Wikipedia as the underlying collection, for each query, we automat-
ically map the passage that contains the answer span to a passage
in TREC CAR and thereby generate a positive query-passage pair
for each query. We obtain the mapping from QuAC passages to
TREC CAR passages by first creating a query that consists of the
answer span and 65 characters left and right of the span to avoid
mismatching. Second, we query the TREC CAR collection, and if
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Table 3: Experimental results on the official evaluation topics.

Run NDCG@5 NDCG@1000 MAP@5 MAP@1000 Recall@1000 MRR
Median 0.2960 0.3840 0.0420 0.1740 - -
ilps-lm-rm3-dt 0.2671 0.4253 0.0406 0.2307 0.6503 0.5309
ilps-bert-feat1 0.3719 0.4857 0.0532 0.2614 0.6808 0.6176
ilps-bert-feat2 0.3534 0.4739 0.0537 0.2576 0.6741 0.6060
ilps-bert-featq 0.3685 0.4801 0.0587 0.2636 0.6735 0.6569
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Figure 1: Ranking performance in terms of NDCG@5 (left) and NDCG@1000 (right) per turn averaged over topics for our runs
and the median.

the top-ranked passage contains the constructed query, we keep
that passage as the positive passage for the query.

Note that, in a QuAC dialogue, the first turn query is often not
self-contained because it may depend on the Wikipedia article’s
title and section title. To address this, we substitute pronouns (he,
she, her, him, it, they, them) and determiners (his, hers, its, theirs) in
the first turn query with the Wikipedia page title. Also, we exclude
dialog queries with a CANNOTANSWER label. In sum, we created
additional 30,510 queries out of a total of 83,568 from the QuAC
dataset; 21,168 queries were used for training and 9,342 queries for
validation.

It is important to note that pretraining with this dataset can be
limiting since its relevant passages originate from the TREC CAR
collection only. Another limitation that might cause discrepancy is
that a question in the QuAC dialogue may depend on not only the
previous questions as in CAsT but also on the previous answers in
the dialog, which is not the case for TREC CAsT. we plan to address
these limitations in future work.

3.2 Runs
We submitted the following automatic runs:

* ilps-lm-rm3-dt: Uses the initial retrieval model only (Sec-
tion 2.1).

* ilps-bert-feat1: Uses the full cascade architecture (Sec-
tions 2.1 and 2.2). We apply language modeling pretraining
(Section 2.3.1), followed by and single-turn passage ranking

pretraining (Section 2.3.2). Fine-tuning is done using the
TREC CAsT dataset.

* ilps-bert-feat2: Same as ilps-bert-feat1 with differ-
ent hyperparameters.

* ilps-bert-featq: Same as ilps-bert-feat1 with the dif-
ference that multi-turn passage ranking pretraining (Sec-
tion 2.3.3) is applied after single-turn passage ranking pre-
training and before fine-tuning.

For pretraining on both single-turn and multi-turn passage rank-
ing, and for fine-tuning on CAsT, we use early stopping on the
corresponding validation set based on the MRR score.

3.3 Implementation
We index the collections and perform initial retrieval using the
Python Anserini implementation [5]. We build on the implemen-
tation of BERT for ranking (VanillaBERT) in PyTorch provided
by MacAvaney et al. [11]. For text tokenization we use the BERT
tokenizer from the python library pytorch-pretrained-bert 0.6.2 [6].

3.4 Parameter configuration
Initial ranker. For QL with Dirichlet smoothing we set µ = 2500.

For RM3, we use 10 feedback documents and 10 terms, and set the
original query weight to 0.8. For the query expansion model, we
set k = 10, α = 0.2 and λ = 0.1 based on preliminary experiments.

Supervised neural ranker. The BERT weights were initialized by
importing the weights from the bert-base-uncased model released
by Hugging Face [6]. We use a learning rate of 3e−6 and dropout
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probability of 0.2 on the la and lb layers. We keep the BERT weights
fixed for the first 3 epochs and use a batch size of 2.

4 RESULTS
Overall performance. Table 3 lists the results of our four runs on

the official evaluation set. First, we observe that the three runs that
use the full cascade architecture (ilps-bert-feat*) outperform
the median run by a large margin on all metrics. ilps-bert-feat1
performs best in terms of NDCG and Recall while ilps-bert-featq
performs best in terms of MAP and MRR. ilps-bert-featq’s per-
formance indicates that pretraining using an artificially induced
multi-turn passage retrieval dataset is beneficial. Its MRR score
(0.6569) indicates that, on average, it ranks a relevant passage at
the first or the second position of the ranking. Furthermore, we
observe that ilps-lm-rm3-dt, which only uses our recall-oriented
initial retrieval step, outperforms the median run at lower cutoffs.
Also, all of the four runs achieve relatively high recall@1000 (about
two thirds of the relevant passages are retrieved).

Performance per turn. Figure 1 shows the performance of our
runs and the median per turn averaged over topics in terms of
NDCG@5 and NDCG@1000. For both metrics, We observe that
the performance of our ilps-bert-feat* runs are relatively ro-
bust across different turns. As expected, we observe a gradual
decrease in performance towards later turns (except in turns 2
and 7, for which further investigation is needed). For NDCG@5
(left), we observe that the three ilps-bert-feat* runs outperform
ilps-lm-rm3-dt and the median run up to turn 8. Note that for
turns after turn 8 we only average over a small subset of the topics,
hence the average might be less representative. We do not observe
large differences in performance among the ilps-bert-feat* runs.
For NDCG@1000 (right), we observe similar patternswithNDCG@5.
Also, the recall-oriented ilps-lm-rm3-dt run outperforms the me-
dian run by a large margin in all turns except the second.

5 CONCLUSION
We presented our participation in the TREC 2019 CAsT track. Of-
ficial results show that our best runs achieve competitive perfor-
mance and outperform the median run by a large margin.
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