TREC 2019 Precision Medicine - Medical University of Graz

Pilar Lépez—l.'Jbedaﬂ José Antonio Vera-Ramos?, Pablo Lopez-Garcia

2,3%

'"Computer Science Department, CEATIC, Universidad de Jaén (Espaiia)
2Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz (Austria)
3CBmed GmbH (Austria)

*Corresponding author: pablo.lopez@medunigraz.at

ABSTRACT

In this paper we report on our participation
in the TREC 2019 Precision Medicine track
(team name: imi_mug). We submitted 5 fully
automatic runs to the biomedical articles
subtask, two of them with treatments. Our
system was based on Elasticsearch,
templates, and parameter grid search query
generation, building heavily on our previous
participation and the reference standards
from 2017 and 2018. Our results are close
to the mean for the biomedical articles
subtask.

INTRODUCTION

The goal of the TREC Precision Medicine
track is to improve search for clinicians
treating cancer patients. As in previous
editions, the challenge was divided into two
subtasks that consisted of retrieving (1)
biomedical articles relevant for treatment
(from PubMed) and (2) clinical trials relevant
for enrollment (from ClinicalTrials.gov). This
year, 40 cases describing potential
patients, termed topics, were provided as
input and contained three features or
dimensions: disease, gene, and
demographic. The goal of retrieving
scientific abstracts was to identify relevant
articles for the treatment, prevention, and
prognosis of the disease under the specific
conditions for a given patient. A new
subtask was introduced this year, where
not only relevant PubMed articles had to be

identified, but also the specific treatments
they mentioned. The description of the
challenge, datasets, relevance judgment
guidelines, etc. are available online’.

SYSTEM OVERVIEW &
GENERAL APPROACH

This year we refined the framework used in
the two past editions and extended it to
participate in the treatment identification
subtask. In particular, (1) we reused our
indexing infrastructure and extended it to
include treatments, (2) we took advantage
of the official reference standards from
2017 and 2018, and (3) we applied our
learnt lessons from past editions. Reports
on our previous participation®* and the
overview papers of past edition of TREC
Precision Medicine are useful to better
understand this paper. This year we did not
participate in the clinical trials subtask, but
participated in the treatment identification
subtask instead.

The overall aim of our system was to
automatically generate Elasticsearch
queries that produced good results using
datasets from previous years for reference
and training.

'http://www.trec-cds.org/2019.html
®https://trec.nist.gov/pubs/trec26/papers/imi_mug-PM.pdf
®https://trec.nist.gov/pubs/trec27/papers/imi_mug-PM.pdf

mailto:pablo.lopez@medunigraz.at
https://trec.nist.gov/pubs/trec26/papers/imi_mug-PM.pdf
https://trec.nist.gov/pubs/trec27/papers/imi_mug-PM.pdf

QUERY TEMPLATES,
EXPERIMENTS & EVALUATION

To find queries that provided good results,
we reused our query templates from 2018.
As a first step we analyzed our results from
last year and reconsidered our strategies,
most of which we kept: (1) exploring must
and should clauses, (2) searching for
disease and gene features in multiple fields
and fine-tuning multi_match type,
tie_breaker and boost parameters, and (3)
adding keywords to improve the search.
Strategies that we did not use include (1)
synonym expansion for diseases and genes
and (2) the use of each patient's
demographics.

Strategies implemented this year were:

1. We kept the separation of the gene field
into three fields but added a new one called
extra_inf with separate information such as:
mutations, amplifications, fusions, etc.
These new strategies did not produce good
results so we decided to use the gene field
without expansion.

2. The use of different query parameters in
Elastic such as: best fields, tie breaker,
boost, etc.

3. Adding treatment-related keywords:
“surgery therapy treatment prognosis
prognostic survival patient resistance
recurrence targets malignancy study
therapeutical outcome”.

4. Indexing treatments separately* using the
extracted treatments provided by TREC.
This allowed us to retrieve treatments
mentioned in a scientific abstract efficiently
by just searching by document id.

For convenience, we reused our
experiments framework from 2018, based

*https://github.com/plopezgarcia/trec-2019-precision-medic
ine/blob/master/python-experiments/treatments_indexing/in
dex_treatments.py

on python and pandas, which is available
as open source in form of Jupyter
Notebooks®. For evaluation, we relied on
our custom modification of the pytrec_eval
python module®.

Our algorithm to find those optimal queries
via experiments was an iterative version of
the one used last year:

1. Pick a query template.

2. Build and perform the associated
Elasticsearch queries.

3. Calculate the aggregated evaluation
measures for all the topics of 2018
using the official reference standard.

4. Check infNDCG, R-precision, and
precision at 10 using the reference
standard from 2018.

5. Save the template and optimized
parameters as an Elasticsearch json
query.

6. Perform the query for this year’s
topics.

7. Append the previously indexed
treatments (in two of the five
submitted runs).

8. Export results in standard trec_eval
format as a run for submission.

SUBMITTED RUNS & RESULTS

We submitted 5 fully automatic runs to the
biomedical articles subtask, where we tried
to capture different strategies and
evaluation measures. Two of these runs
were repeated to include treatments
extracted using MetaMaplLite as provided
by the TREC organization. Our
submissions, the exact steps we took, and
the evaluation results for 2018 topics used

*http://jupyter.org/
®https://github.com/cvangysel/pytrec_eval
"https://github.com/plopezgarcia/trec-2019-precision-medic
ine/blob/master/python-experiments/trec_utils/running.py

https://github.com/plopezgarcia/trec-2019-precision-medicine/blob/master/python-experiments/treatments_indexing/index_treatments.py
https://github.com/plopezgarcia/trec-2019-precision-medicine/blob/master/python-experiments/treatments_indexing/index_treatments.py
https://github.com/plopezgarcia/trec-2019-precision-medicine/blob/master/python-experiments/treatments_indexing/index_treatments.py
http://jupyter.org/
https://github.com/cvangysel/pytrec_eval

for training are available online as Jupyter
Notebooks for the biomedical articles®.

They can be summarized as follows:
Biomedical Articles

1. Baseline well-performing query from
2018 with strict multi_match (must)
of disease and gene in title, abstract
and MeSH tags and grid-search
optimized parameters tie_breaker,
type, and boost.

2. Same as (1), but eliminating the
search in MeSH tags field.

3. Same as (2), plus the treatment
identifier codes on each returned
document.

4. Same as (2), plus keywords related
to treatments to the query (should).

5. Same as (4), plus the treatment
identifier codes on each returned
document.

A comprehensive and more illustrative
description of the results and how we
obtained them can be found in the
appendices.

Appendix A summarizes the submitted
runs in a detailed table, and shows the
exact Elasticsearch json queries that
produced our submitted runs.

Appendix B and C show our results of
biomedical articles subtack and freatments
results as graphs and compares them with
the average and best results.

®https://github.com/plopezgarcia/trec-2019-precision-medic
ine/blob/master/python-experiments/abstracts/abstracts_su
bmissions.ipynb

CONCLUSION

In this notebook we reported on our
participation in the TREC 2019 Precision
Medicine track and described our
approach, strategies, results, and lessons
learnt.

As last year, we confirmed that many
promising strategies (like expanding
disease and gene) did not produce the
expected results when evaluated with past
gold standards, so we had to remove them.
Grid search was again useful to fine-tune
complex Elasticsearch query parameters,
such as multi_match type, tie_breaker and
boost, but required considerable
experimentation time.

Our historical results show a steady decline
in performance. From being among the top
teams in 2017, we only got results slightly
above average in 2019. This outcome
suggests that we revisit our strategy, which
might include developing a new one from
scratch and abandon Elastisearch-based
query generation. A partial explanation for
our declining results is that we open
sourced our framework and we were happy
to witness it was used by other teams in
2018 (possibly in 2019 too). This proves the
positive aspects of open source and the
impact of our participation in TREC
Precision Medicine.

Acknowledgments

This work was partially supported by the
Spanish government via the projects
RTI2018-094653-B-C21 (LIVING-LANG)
and TIN2015-65136-C2-1-R (REDES).

APPENDIX A: Submitted Runs (Queries) 2019

Biomedical Articles - Summary

fields abtlsttlreact abﬁsttlfact
meshTag
disease feetlives rI;]:Istt?l]:‘lt((;:
bool must
tie_breaker 0.5
boost 1.5
title
fields abstract title
meshTag abstract
match type multi_rr.1atch multi_mlatch
gene best_fields cross_fields
bool must
tie_breaker 0.5
boost 1
fields) abtlsttlfact
treatment keywords match type - multi_match
bool - should

Biomedical Articles - Queries for Submitted Runs

imi_mug_run_1.json

{
"from":0,
"size":{{output_size}},
"query": {
"bool": {
"must": [
{
"multi_match": {
"query": "{{disease}}",
"fields": [
"title",
"abstract",
"meshTags"
])
"tie_breaker": 0.5,
"type": "best_fields",
"boost": 1.5
}
})
{
"multi_match": {
"query": "{{gene}}",
"fields": [
"title",
"abstract"”,
"meshTags"
])
"tie_breaker": 0.5,
"type": "best_fields",
"boost": 1
}
}
]
}
}
}

{
"from":0,
"size": {{output_size}},
"query": {
"bool": {
"must": [
{
"multi_match": {
"query": "{{disease}}",
"fields": [
"title",
"abstract”
])
"tie_breaker": 0.5,
"type": "best_fields",
"boost": 1.5
}
s
{
"multi_match": {
"query": "{{gene}}",
"fields": [
"title",
"abstract”
]J
"tie_breaker": 0.5,
"type": "best_fields",
"boost": 1
}
}
]
}
}
}

imi_mug_run_3.json

{
"from":0,
"size": {{output_size}},
"query": {
"bool": {
"must": [
{
"multi_match": {
"query": "{{disease}}",
"fields": [
"title",
"abstract”
])
"tie_breaker": 0.5,
"type": "best_fields",
"boost": 1.5
}
s
{
"multi_match": {
"query": "{{gene}}",
"fields": [
"title",
"abstract”
])
"tie_breaker": 0.5,
"type": "cross_fields",
"boost": 1
}
}
])
"should": [
{
"multi_match": {
"query": "surgery therapy treatment prognosis
prognostic survival patient resistance
recurrence targets malignancy study
therapeutical outcome”,
"fields": [
"title",
"abstract”
]
}
}
]
}
}
}

APPENDIX B: Biomedical Articles Results

P@10

B Run == Best == Mean

inNfNDGC

B Run == Best == Mean

1,00
1,00

0,75
0,75
0,50 0,50
0,25 0,25
0,00 0,00

imi_mug1 imi_mug2 imi_mug2_t imi_mug3 imi_mug3_t imi_mug1 imi_mug2 imi_mug2_t imi_mug3 imi_mug3_t
R-Prec
B Run == Best == Mean

0,5
04

imi_mug1 imi_mug2 imi_mug2 t imi_mug3 imi_mug3 t

APPENDIX C: Treatments Results

Treatment results
B imi_mug2_t [imi_mug3_t
0,2500 -

0,2000 -
0,1500 -
0,1000 -

0,0500

0,0000

Top-10 Recall Top-10 F1 Top-25 Recall Top-25 F1

