
University of Glasgow Terrier Team at the
TREC 2019 Deep Learning Track

Ting Su
University of Glasgow, UK
t.su.2@research.gla.ac.uk

Xi Wang
University of Glasgow, UK
x.wang.6@research.gla.ac.uk

Craig Macdonald, Iadh Ounis
University of Glasgow, UK

firstname.lastname@glasgow.ac.uk

ABSTRACT
For TREC 2019, we focus on combining deep learning methods with
traditional information retrieval methods, by using deep learning
scores as an extra feature in the re-ranking process. In particular, we
explore the effectiveness of using deep learning techniques based on
the state-of-the-art BERT contextual languagemodels, as well as tak-
ing into account alternative query reformulations in the re-ranking
process. We submitted three official runs to the document ranking
task: uogTrDNN6LM, uogTrDSS6pLM, and uogTrDSSQE5LM, where all
three runs deploy a deep learning method and the LambdaMART
learning-to-rank method. Our results show that uogTrDNN6LM is
competitive, performing above the TREC median in terms of MAP
and NDCG, yet a simple untrained DFR query expansion run was
more effective.

1 INTRODUCTION
The University of Glasgow Terrier team participated in the TREC
2019 Deep Learning track, in order to improve the integration
between our Terrier.org Information Retrieval (IR) platform [15] and
recent deep learning techniques, and to improve the effectiveness
of Terrier on a large Web corpora and an adhoc ranking task.

In particular, we participated in the document ranking task of
the Deep Learning track, but without using the provided initial
rankings. Instead, we indexed the MSMARCO corpus using Terrier
v5.2, and then used Terrier to perform the initial first-phase retrieval.
We also used Terrier to re-rank the candidate results identified in
the first-phase, using tools such as CEDR [13] for deep semantic
matching and other query expansion techniques (e.g. collection
enrichment and axiomatic query expansion [9]). These results were
combined using a LambdaMART [5] learning-to-rank technique.
In this way, we leveraged our existing Terrier infrastructure, while
enhancing it with the integration of new deep learning techniques.

The structure of the remainder of this paper is structured as
follows: Section 2 discusses our indexing setup; Section 3 describes
our first-phase ranking setup; Section 4 describes the features used
in the second (re-ranking) phase, including deep learning; Section 5
describes our submitted runs; Section 6 highlights our results; Con-
cluding remarks follow in Section 7.

2 INDEXING
We indexed the corpus using Terrier v5.2. Firstly, we chose not
to use the TREC-formatted version of the MSMARCO corpus, but
instead, reformatted the CSV files into TREC files such that the
URL and title are clearly delineated. Next, we used several indexing
configurations:

• Positions: We recorded positional information.

• Fields: We separately recorded the frequencies of terms oc-
curring in different parts of the document. In particular, we
recorded the ‘TITLE’, ‘BODY’ and ‘URL’ fields, following our
past participations in the TREC Web track [18].

• Stemming & Stopwords: We deployed two configurations:
Porter’s stemmer and removing standard stopwords (denoted
SS in our runs); or not applying any treatment - i.e. no stem-
ming, no stopwords removed (denoted NN).

In all cases, we created the standard Terrier indexing configura-
tion to create an inverted index, and a direct index to support query
expansion and other retrieval techniques, as well as recording the
raw text of the URLs, titles and contents of the documents as meta-
data, to allow deep learning upon these textual representations, as
discussed further in Section 4 below.

3 FIRST-PHASE RETRIEVAL
After indexing the corpus with Terrier and the corresponding in-
dexing configurations, we conduct the first-phase retrieval from
the document collection.

First, we apply batch retrieval using Terrier on the queries with
specific configurations matching indexed corpus with the same
retrieval configuration setup. For example, to retrieve documents
with the ‘Stemming & Stopwords’ configured indexing of the given
queries, we need to remove stopwords and apply stemming to the
terms in the queries.

Next, we use three weighting models to calculate the scores of
retrieved documents, rank documents with the obtained scores
and then provide the candidate document set for the second-phase
retrieval. We describe these three weighting models as follows:

• DPH is a divergence from randomness (DFR)-based [22]
hyper-geometric weighting model. The ‘P’ in the DPHmodel
indicates the Popper’s normalization [2]. Moreover, DPH is a
parameter-free model. This means that DPH can provide doc-
ument scores without fine-tuning parameters. In particular,
DPH is the default weighting model of Terrier v5.2.

• BM25 (i.e. Okapi BM25) is a popular weightingmodel and has
been adopted in many studies [12, 17] to address retrieval-
based tasks. Compared to DPH, we note that BM25 can
be trained with fine-tuned parameters. Hence, it provides
corpus-fitted models.

• PL2 is another DFR-based weighting model. According to
Amati [3], the PL2 model can provide good performances
for tasks requiring high early precision.

We also tested the use of query expansion. For each query, we
select the most informative terms from the top-returned documents
to expand the query. In particular, we use three top-returned doc-
uments in the experimental setup. Then, we assign each term in

these documents with a weighting score according to the Bo1 term
weighting model [1]. After that, we use the top 10 terms with the
highest weighting score to expand the query. With these expanded
queries, we also rank the retrieved documents by using the three
weighting models introduced above, thereby providing another
candidate document set.

We partitioned 100 and 1000 queries from the provided 367013
MSMARCO training queries to evaluate the effectiveness of var-
ious combinations of indexing configurations, weighting models
and query expansion. After evaluating the retrieved documents of
different retrieval strategies in terms of MAP, P@5, P@10 and Re-
call@1000, we summarise the three main conclusions in our initial
first-phrase retrieval experiments as follows:

• After applying the stemming and stopwords removal con-
figuration to index documents and format queries, we can
retrieve documents with a higher precision score compared
to other configurations (i.e. (1) without stemming and keep-
ing stopwords, (2) stopwords removed only).

• TheDPHweightingmodel outperforms the other twoweight-
ing models (i.e. BM25 and PL2) by providing higher precision
scores. Moreover, these three weighting models all achieve
similar recall scores, around 90%.

• The query expansion configuration can increase recall, to
provide reliable candidate document sets for the second-
phrase retrieval.

Our experiments found these conclusions to be consistent while
using 100 or 1000 queries sampled from the MSMARCO training
set.

4 SECOND-PHASE RETRIEVAL
In this section, we describe our attempts at improving adhoc re-
ranking performance. In particular, we use two techniques: rewriters,
which allow the calculation of additional query dependent features
on the candidate document set obtained from the first set, where
the query dependent features use alternative query formulations
(Section 4.1); and deep learning techniques for semantic matching
(Section 4.2).

4.1 Rewriters
In the past, Terrier has been flexible to allow arbitrary weighting
models to be expressed as separate features. This is implemented
using the Fat framework [16], which caches the postings matching
the original query terms for documents entering the top K candi-
date set. In doing so, it is said to fatten the result set with posting
information. This means that more query dependent features can
be efficiently calculated for these documents without re-traversing
the inverted index. Figure 1 provides examples of feature definitions
supported by Terrier since version 4.0.

However, a disadvantage of the Fat framework is that the ad-
ditional query dependent features can only be calculated for the
original query terms. Asadi & Lin [4] described an alternative frame-
work, which they called doc vectors, whereby the direct (a.k.a. for-
ward) index data structure is used in the second retrieval phase.
This has the advantage that query dependent features can use query
terms not present in the original query.

SAMPLE #the first pass retrieval score
WMODEL:BM25 #BM25 on the whole document
WMODEL:SingleFieldModel(BM25,0) #BM25 on the title
WMODEL:SingleFieldModel(BM25,1) #BM25 on the body
QI:StaticFeature(OIS,/path/to/inlinks.oos.gz) #inlinks

Figure 1: Examples of standard feature definitions inTerrier.

WMODEL$original:SingleFieldModel(DPH,0)
#DPH on title, original query

WMODEL$original:SingleFieldModel(DPH,1)
#DPH on body, original query

WMODEL$qeBo1:DPH
#DPH on Bo1 expanded query from top documents

WMODEL$ce:DPH
#DPH on Bo1 expanded query from top Wikipedia documents

WMODEL$ax:DPH
#DPH on axiomatic QE terms

WMODEL$prox:org.terrier.matching.models.dependence.pBiL
#pBiL on MRF proximity terms

Figure 2: Examples of feature definitions for groups of query
terms obtained from rewriters. Query term tags are denoted
by $ after the feature type.

We implemented the doc vectors approach using Terrier, and in
particular, build on it to express different rewritten forms of the
query as separate features for learning-to-rank. The actions that
create different query rewrites are called rewriters - we deployed
several rewriters:

• Bo1 QE: Divergence from Randomness query expansion us-
ing the Bo1 term weighting model [1] on the top-ranked
documents in the first-phase candidate set.

• Collection enrichment (CE): DFR Bo1 Divergence from Ran-
domness query expansion on the top-ranked documents
from Wikipedia [14].

• Axiomatic query expansion (axqe) [9, 23].
• Markov Random Fields proximity [19, 21].

In deploying these rewriters, we are able to re-score the doc-
uments in the first-phase candidate set using different forms of
expanded queries. Each rewriter is a different feature. Different
weighting models can be expressed as features on the query terms
obtained for each rewriter. Figure 2 provides examples of query
dependent features defined on groups of query terms obtained from
different rewriters - the $ symbol denotes the tag of the query terms
forming a given group of terms obtained from a given rewriter.

4.2 Deep Learning
Our use of deep learning techniques initially focused on using
MatchZoo [11]1, including adapting it to use different negative
sampling strategies.

However, for various reasons, including both overall effective-
ness and support for the state-of-the-art BERT language models [8],
we changed strategy and opted for using the CEDR toolkit [13]2

1 https://github.com/NTMC-Community/MatchZoo
2 https://github.com/Georgetown-IR-Lab/cedr

2

https://github.com/NTMC-Community/MatchZoo
https://github.com/Georgetown-IR-Lab/cedr

Table 1: Feature used in different runs. Note that feature #1 also scores the expanded terms in the case of the SSQE run.

Feature Set Features Feature description
1 SAMPLE DPH DPH score between entire document and query
2 WMODEL SingleFieldModel(DPH,0) DPH score between doc title and query
3 WMODEL SingleFieldModel(DPH,1) DPH score between doc URL and query
4 WMODEL $qeBo1:DPH Bo1 Query Expansion: DPH score
5 WMODEL $prox:pBiL DFR proximity
6 WMODEL $ax:DPH Axiomatic QE: DPH score
7 WMODEL $ce:DPH Collection Enrichment QE: DPH score
8 DSM CEDR-PACRR CEDR-PACRR on the document level
9 DSM passage-level CEDR-PACRR maximum CEDR-PACRR score across all passages

instead. We extended and integrated CEDR into Terrier as follows:
We implemented a DocumentScoreModifier in Terrier that allows
to obtain the scores of the top-ranked documents from CEDR. In
particular, it collects the contents of the documents from the Terrier
index, sends these and the query over a HTTP REST-ful connec-
tion to a Python-based server serving the CEDR models, which
then returns the computed scores of the documents to Terrier. Our
extension of Terrier is avaiable from Github3.

CEDR provides two rankingmodels: a BERTmodel, and a PACCR
model based on the BERT model. In order to train the CEDR model,
we first fine-tune the pre-trained BERT model, which is then used
within the CEDR model. For both BERT and PACCR models, we
introduced early stopping, which terminates training if there was
no validation improvement for 20 iterations.

Additionally, to enhance the effectiveness, and inspired by the
recent work of Dai & Callan [7], we adapt CEDR to apply passaging
to long documents. In particular, by breaking up long documents
into shorter passages, effective models are more easily learned.
Following Dai & Callan, we break documents into passages of
150 tokens, with a stride of 75 between passages, which are pre-
pended with the title of the document. To obtain the final score of
a document, we take the max of the scores of the passages within
the document. Our adaptation of CEDR is available from Github4.

In terms of setup, we trained all CEDRmodels using 1000 queries
(from the MSMARCO training set), ranked to depth 1000, and for
validation, we used 200 queries ranked to depth 50. In particular,
reducing the rank depth of the validation set significantly reduced
the speed of training iterations.

4.3 Learning-to-Rank: Combination of
Features

We used the LambdaMART [5] learning-to-rank technique to com-
bine the features described above.We use the Jforests LambdaMART
implementation [10]5. We also tried the Tensorflow TF Ranking
package, but at the time of our TREC campaign, the released version
did not allow for the prediction of scores using a learned model6.
Thus, we report unsubmitted runs using TF Ranking in the next
sections. Furthermore, we also report effectiveness using a sim-
ple linear combination of feature values, with weights optimised

3 https://github.com/terrierteam/terrier-nrr 4 https://github.com/cmacdonald/cedr
5 https://github.com/yasserg/jforests. 6 This has now been fixed - see
https://github.com/tensorflow/ranking/issues/104.

Table 2: Feature used for each run

Run Features used Re-ranking method
Submitted runs

uogTrDNN6LM 1,2,5,6,7,8 LambdaMART
uogTrDSS6pLM 1,2,3,5,8 LambdaMART
uogTrDSSQE5LM 1,2,3,5,8 LambdaMART

Unsubmitted runs
uogTrDNN - -
uogTrDSS - -
uogTrDSSQE - -
uogTrDNN6AFS 1,2,5,6,7,8 Automatic feature selection
uogTrDSS6pAFS 1,2,3,5,8,9 Automatic feature selection
uogTrDSSQE5AFS 1,2,3,5,8 Automatic feature selection
uogTrDNN6TFR 1,2,5,6,7,8 Tensorflow Ranking
uogTrDSS6pTFR 1,2,3,5,8,9 Tensorflow Ranking
uogTrDSSQE5TFR 1,2,3,5,8 Tensorflow Ranking

to maximise MAP using Simulated Annealing, called Automatic
Feature Selection (AFS) [20].

All our learning-to-rank runswere trained on 1000 queries drawn
from the MSMARCO training set, with learning validation (e.g.
setting number of iterations) using a further 200 queries.

5 SUBMITTED AND UNSUBMITTED RUNS
Table 1 lists the names and descriptions of all the features we used
in our experiments, for the re-ranking process. Table 2 lists the
detailed features we used in each of our runs.

5.1 Submitted Runs
We submitted the following runs to the document ranking task of
the TREC 2019 Deep Learning track:

• uogTrDNN6LM: In this run, we use the index without prior
stemming and stopword removal, denoted NN. We use the
DPH model to rank documents, and deploy CEDR-PACRR
on the document level to obtain a document’s deep learning
representation score. We use 8 features in our re-ranking
process, as shown in Table 2. The final ranking of docu-
ments used a LambdaMART learned model. This method is
submitted as our main test run.

• uogTrDSS6pLM: In this run, we use the stemmed and stop-
words removed index (SS). We deploy DPH in the first pass

3

https://github.com/terrierteam/terrier-nrr
https://github.com/cmacdonald/cedr
https://github.com/yasserg/jforests
https://github.com/tensorflow/ranking/issues/104

of ranking. In addition to the document level CEDR-PACRR
score, we further obtain the maximum CEDR-PACRR scores
for each paragraph in the document, as one of the deep learn-
ing representation for each document. We use 6 features in
our reranking process, as shown in Table 2. The final ranking
of documents also used a LambdaMART learned model.

• uogTrDSSQE5LM: The difference between this run and the
uogTrDSS6pLM run, is that we additionally deploy QE dur-
ing the first pass ranking. Furthermore, similarly to the
uogTrDNN6LM run, we use the document-level CEDR-PACRR
scores only for each document, as the deep learning represen-
tation for each document. Similar to the previous two runs,
the final ranking of documents also uses a LambdaMART
learned model.

5.2 Unsubmitted Runs
For each of the aforementioned submitted runs, we report the ef-
fectiveness of the first phase retrieval approach for each of the
submitted runs (i.e. NN, SS and SSQE) as unsubmitted runs. We
also report performances using two different learning-to-rank tech-
niques, namely, AFS and Tensorflow Ranking (TF Ranking), using
the same feature sets as the submitted runs. Finally, later in Sec-
tion 6, we also report the effectiveness of the individual feature sets
of the submitted runs.

6 RESULTS & ANALYSIS
Table 3 lists the obtained effectiveness results for our submitted and
unsubmitted runs, as well as the TREC per-topic best and median
scores across all participating systems, in terms of MAP, P@10,
NDCG@10 and NDCG@10007. We also report the effectiveness of
the top 100 results obtained from an Indri QueryLikelihood run, as
provided by the track organisers for the re-ranking task (denoted
TREC provided top 100). All evaluation metrics are calculated using
the official qrels, as judged by NIST assessors. Firstly, on analysing
the table, we note that one of our submitted runs, uogTrDNN6LM
exceeds the median performance for MAP and NDCG; It also out-
performs the TREC provided top 100 for all four measures; Our
other two runs are below the median for the relevant measures
(P@10, MAP & NDCG@1000).

Next, we analyse the performance of our unsubmitted runs. First,
it is apparent that a simple application of Terrier’s standard query
expansion, i.e. uogTrDSSQE, and without any learning (deep or
otherwise), would have outperformed all of our submitted runs
for MAP & P@10. Moreover, on inspection of the track overview
paper [6], we note that it would have outperformed the highest
‘traditional’ submitted run among all participants (srchvrs_run1)
by 7% for NDCG@10 (0.5610 → 0.6007).

Next, we note that while the alternative learning-to-rank tech-
niques, TF Ranking and AFS, could both marginally enhance P@10
on the 50 topics, they could not enhance the highMAP of uogTrDNN-
6LM. In contrast, it is clear that the low effectiveness of uogTrDSS6pLM
and uogTrDSSQE5LM is unexpected, as the same features re-ranked
using AFS or TF Ranking would have resulted in dramatically in-
creased effectiveness.

To analyse further the effectiveness of the various features, Ta-
ble 4 reports the effectiveness of the various features evaluated
7 No TREC Best and Median results were provided for NDCG@10.

Table 3: Performance of submitted and unofficial runs.

MAP P@10 NDCG@10 NDCG@1000
TREC Best 0.5150 0.8800 - 0.7428

TREC Median 0.2989 0.6907 - 0.5394
TREC provided top 100 0.2367 0.5977 0.5147 0.4303

uogTrDNN6LM 0.3158 0.6744 0.6060 0.5771
uogTrDSS6pLM 0.1250 0.5372 0.6333 0.3918
uogTrDSSQE5LM 0.1240 0.5442 0.6381 0.4207

Unsubmitted runs

uogTrDNN 0.2943 0.5837 0.5059 0.5482
uogTrDSS 0.2875 0.6116 0.5462 0.5014
uogTrDSSQE 0.3434 0.6930 0.6007 0.5549

uogTrDNN6AFS 0.2649 0.6512 0.5689 0.5544
uogTrDSS6pAFS 0.2976 0.6953 0.6290 0.5176
uogTrDSSQE5AFS 0.2943 0.5837 0.5058 0.5481
uogTrDNN6TFR 0.2836 0.6605 0.5979 0.5627
uogTrDSS6pTFR 0.2823 0.6953 0.6246 0.5103
uogTrDSSQE5TFR 0.2365 0.6535 0.5934 0.5393

using the TREC official qrels. On analysing the table, we note the fol-
lowing observations: Firstly, the initial rankings obtained fromDPH
are more effective than the other features, across all three settings
(6 out of 9 measurements in Table 4). However, we do observe that
P@10 can be enhanced in two cases by the BERT-based CEDR mod-
els. Between the two CEDR models, we lack a fair comparison, but
we believe that the passage-based CEDR model (feature #9) appears
to be more effective than the document-level model (feature #8) in
comparison to the various first-pass retrieval settings (feature #1).

Finally, we compare and contrast the results in Table 4 with
those results that we obtained before the runs were submitted. In
particular, using an internal “test” set of 200 topics drawn from the
MSMARCO training query set (separated from our internal training
and validation sets), we compare and contrast the effectiveness of
the features in Table 4 (evaluated using the final official evaluation
qrels) with that obtained on the internal test set. The resulting
scatterplots, for MAP and NDCG@10, are shown in Figure 3. In
particular, for MAP, Figure 3a shows that a fairly weak overall
correlation can be observed between effectiveness on our internal
test set (sampled from the MSMARCO training queries) and on
the final official evaluation qrels. For example, the correlation for
the DNN6 setting is only Spearman’s ρ = 0.18, although other
settings exhibit higher correlations. On the other hand, the stronger
correlation observed for NDCG@10 (Figure 3b) suggests that the
CEDR PACRR features are clearly the most effective features for
NDCG@10, on both the training and official qrels. Overall, we
conclude that there are significant differences between the labels
for the MSMARCO training queries and the final official TREC qrels,
which would result in differing conclusions for feature selection
and learning-to-rank for MAP. Indeed, on inspection of the various
relevance assessments, we found that the training queries had very
few relevant documents (1.04 on average) compared to the average
of 153.4 for the official TREC qrels.

7 CONCLUSIONS
Overall, our participation in the TREC Deep Learning track was a
useful activity to increase our understanding about the effective
integration of deep learning techniques into Terrier, as well as how
different query formulations (obtained from rewriters) can be inte-
grated within a learning-to-rank setting. In terms of effectiveness,

4

Table 4: Performance of features within each first phase & feature set setting.

First Phase & Feature set
Feature ↓ NN6 SS6p SSQE5

MAP P@10 NDCG@1000 MAP P@10 NDCG@1000 MAP P@10 NDCG@1000
1 0.2943 0.5837 0.5482 0.2857 0.6116 0.5014 0.3434 0.6930 0.5549
2 0.1915 0.5744 0.4939 0.1944 0.4233 0.4037 0.2076 0.4349 0.4347
3 0.2716 0.5837 0.5358 0.2003 0.4356 0.4239 0.2279 0.4698 0.4639
4 0.2935 0.5837 0.5475 - - - - - -
5 0.2936 0.5860 0.5474 0.2246 0.4977 0.4390 0.2624 0.5791 0.4975
6 0.2739 0.5442 0.5319 - - - - - -
7 0.2935 0.5837 0.5475 - - - - - -
8 0.2478 0.6302 0.5432 - - - 0.3114 0.6814 0.5434
9 - - - 0.2784 0.6605 0.5022 - - -

(a) Scatterplot for MAP

(b) Scatterplot for NDCG@10

Figure 3: Scatterplot showing the performances of the fea-
tures in Table 4, as obtained on from the MSMARCO train-
ing queries (x-axis), and the official TREC qrels (y-axis).

our most effective run uogTrDNN6LM outperformed the TREC me-
dian, but we observed that a simple DFR-based query expansion run
could be more effective. Moreover, some of our learning-to-rank
runs significantly diverged from their expected performances. This
emphasises the difficulty in learning effective models for adhoc
retrieval tasks using training datasets with very few judgements.

ACKNOWLEDGEMENTS
The co-authors acknowledge the assistance of Zaiqiao Meng in
deep learning, as well as insights from Richard McCreadie and Jeff
Dalton in supporting our participation.

REFERENCES
[1] Gianni Amati. 2003. Probabilistic Models for Information Retrieval based on Diver-

gence from Randomness. Ph.D. Dissertation. Department of Computing Science,
University of Glasgow.

[2] Gianni Amati, Giuseppe Amodeo, Marco Bianchi, Carlo Gaibisso, and Giorgio
Gambosi. 2008. FUB, IASI-CNR and University of Tor Vergata at TREC 2008 Blog
Track.. In Proceedings of TREC 2008. 248–254.

[3] Gianni Amati and C.J. van Rijsbergen. 2002. Probabilistic models of information
retrieval based on measuring the divergence from randomness. ACM Transactions
on Information Systems (TOIS) 20, 4 (2002), 357–389.

[4] Nima Asadi and Jimmy J. Lin. 2013. Document vector representations for feature
extraction in multi-stage document ranking. Inf. Retr. 16, 6 (2013), 747–768.

[5] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report MSR-TR-2010-82.

[6] Nick Craswell, Bhaskar Mitra, Daniel Campos, and Emine Yilmaz. 2020. Overview
of the TREC 2019 Deep Learning Track. In Proceedings of TREC 2019.

[7] Zhuyun Dai and Jamie Callan. 2019. Deeper Text Understanding for IR with
Contextual Neural Language Modeling. In Proceedings of SIGIR. 985–988.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[9] Hui Fang and ChengXiang Zhai. 2006. Semantic Term Matching in Axiomatic
Approaches to Information Retrieval. In Proceedings of SIGIR 2006. 115–122.

[10] Yasser Ganjisaffar, Rich Caruana, and Cristina Lopes. 2011. Bagging Gradient-
Boosted Trees for High Precision, Low Variance Ranking Models. In Proceedings
of SIGIR. 85–94.

[11] Jiafeng Guo, Yixing Fan, Xiang Ji, and Xueqi Cheng. 2019. MatchZoo: A Learning,
Practicing, and Developing System for Neural Text Matching. In Proceedings of
SIGIR. 1297–1300.

[12] Ben He and Iadh Ounis. 2005. Term frequency normalisation tuning for BM25
and DFR models. In Proceedings of ECIR. 200–214.

[13] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proceedings of SIGIR.

[14] Craig Macdonald, Ben He, Vassilis Plachouras, and Iadh Ounis. 2005. University
of Glasgow at TREC 2005: Experiments in Terabyte and Enterprise tracks with
Terrier. In Proceedings of TREC 2005. 181–193.

[15] Craig Macdonald, Richard McCreadie, Rodrygo Santos, and Iadh Ounis. 2012.
From Puppy to Maturity: Experiences in Developing Terrier. In Proceedings of
the SIGIR Workshop on Open Source Information Retrieval.

[16] Craig Macdonald, Rodrygo Santos, Iadh Ounis, and Ben He. 2013. About Learning
Models with Multiple Query Dependent Features. Transactions on Information
Systems (2013).

[17] Craig Macdonald and Nicola Tonellotto. 2017. Upper Bound Approximation for
BlockMaxWand. In Proceedings of SIGIR. 273–276.

[18] Richard McCreadie, Craig Macdonald, Iadh Ounis, Jie Peng, and Rodrygo L. T.
Santos. 2009. University of Glasgow at TREC 2009: Experiments with Terrier. In
Proceedings of TREC 2009. 177–185.

[19] Donald Metzler and W. Bruce Croft. 2005. A Markov random field model for
term dependencies. In Proceedings of SIGIR. 472–479.

[20] Donald A. Metzler. 2007. Automatic feature selection in the markov random field
model for information retrieval. In Proceedings of SIGIR. 253–262.

[21] Jie Peng, Craig Macdonald, Ben He, Vassilis Plachouras, and Iadh Ounis. 2007.
Incorporating term dependency in the DFR framework. In Proceedings of SIGIR.
843–844.

[22] Stephen E Robertson and Steve Walker. 1994. Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval. In Proceedings
of SIGIR. 232–241.

[23] Peilin Yang and Jimmy Lin. 2019. Reproducing and Generalizing Semantic Term
Matching in Axiomatic Information Retrieval. In Proceedings of ECIR. 369–381.

5

	Abstract
	1 Introduction
	2 Indexing
	3 First-Phase Retrieval
	4 Second-Phase Retrieval
	4.1 Rewriters
	4.2 Deep Learning
	4.3 Learning-to-Rank: Combination of Features

	5 Submitted and unsubmitted Runs
	5.1 Submitted Runs
	5.2 Unsubmitted Runs

	6 Results & Analysis
	7 Conclusions
	References

