bigIR at TREC 2020:
Simple but Deep Retrieval of Passages and Documents

Fatima Haouari, Marwa Essam, Tamer Elsayed
{200159617,me1709534, telsayed}@qu.edu.qa
Computer Science and Engineering Department, Qatar University

ABSTRACT

In this paper, we present the participation of the bigIR team at
Qatar University in the TREC Deep Learning 2020 track. We par-
ticipated in both document and passage retrieval tasks, and each
of its subtasks, full ranking and reranking. As it is our first partic-
ipation in the track, our primary goal is to experiment with the
latest approaches and pre-trained models for both tasks. We used
Anserini IR toolkit for indexing and retrieval, and experimented
with different techniques for passage expansion and reranking,
which are either BERT-based or sequence-to-sequence based. All
our submitted runs for the passage retrieval task, and most of our
submitted runs for the document retrieval task outperformed TREC
median submission. We observed that BERT reranker performed
slightly better than T5 reranker when expanding passages with
sequence-to-sequence based models. However, T5 achieved better
results than BERT when passages were expanded with DeepCT,
a BERT-based model. Moreover, the results showed that combin-
ing the title and the head segment as document representation for
reranking yielded significant improvement over each separately.

1 INTRODUCTION

Motivated to study the use of deep learning approaches in ad-hoc
search over large-scale datasets, the Text REtrieval Conference
(TREC) organized the deep learning track (TREC-DL) in 2019, with
a follow-up in 2020. The track employs MS MARCO collection,! a
large-scale Question Answering (QA) dataset created from around
half a million questions sampled from Bing’s search query logs.
QA is mainly concerned with developing systems that can provide
answers to questions posted by humans. The dataset contains 3.2M
documents, with around 8.8M passages, and over 1M queries.

The deep learning track has two tasks, document retrieval and
passage retrieval. In both tasks, a set of questions are given, and
the goal is to find answers to these questions from the MS MARCO
dataset. In document retrieval, the task is to retrieve, for each ques-
tion, a list documents that most probably contain the answer to the
given question. While in passage retrieval, the task is to retrieve the
actual passages (from within the documents) that most probably
contain the answer to that question. The same test queries are used
for both the passage retrieval and document retrieval tasks, with
NDCG@10 being used as the official measure for evaluation.

The most successful approaches in TREC-DL 2019 adopted pas-
sage expansion and exploited BERT for reranking [11, 14]. The top
ranked runs for both passage and document retrieval tasks were
by Yan et al. [11]. For the passage retrieval task, they trained an
encoder-decoder model with their proposed “attention over atten-
tion” mechanism to expand the passages. To rerank the retrieved

!http://www.msmarco.org/

passages and documents, they first trained a BERT model from
scratch by modifying the next sentence prediction task. They then
fine-tuned it using the query-passage MS MARCO collection by
employing the point-wise ranking technique. For the document re-
trieval task, they first split the document into passages to overcome
the input size limitation of BERT. For each document, they reranked
the split passages concatenated with the title of documents, and
they considered the maximum relevance score among all passages
as the document score. The second best performing runs were sub-
mitted by Yilmaz et al. [14] who used a pre-trained transformer
model [8] to predict queries given passages, and they expanded
each passage in the collection with the predicted queries. They em-
ployed a BERT-based relevance classifier pre-trained by Nogueira
and Cho [5] for reranking passages and documents. For document
reranking, they split each document into sentences and they used
BERT to rerank those sentences. Finally, to rerank documents, they
used an aggregation of the top 3 sentences scores.

In this paper, we describe our participation for both the passage
and document retrieval tasks in 2020. We adopted a simple approach
that employs document expansion, query expansion, and rerank-
ing models. For document expansion, we adopted BERT-based and
sequence-to-sequence based approaches. For the passage retrieval
task, prior indexing, we expanded each passage in the collection
with a set of queries for which the corresponding passage may con-
tain their answers. We experimented with three different passage
expansion techniques, namely doc2Query [8], doctTTTTTquery [7],
and DeepCT [3]. To further improve the retrieval, we expanded the
queries using RM3 [1]. For reranking, we exploited two different
pre-trained models, namely monoBERT [5] and monoT5 [6]. To
alleviate the input length limitation of the reranking models, we
tried different short document representation for the document
retrieval task.

The rest of the paper is organized as follows: In Section 2, we
detail our participation for the passage retrieval task, including a
description of the submitted runs and an analysis of the results. Sim-
ilarly, in Section 3, we present our participation for the document
retrieval task. Finally, we conclude in Section 4.

2 PASSAGE RETRIEVAL TASK

In this Section, we present our approach and experimental results
for the passage retrieval task. We present our general approach in
Section 2.1. We discuss the preliminary experiments we performed
before our official runs configurations selection in Section 2.2, then
we present our official submitted runs for both the full ranking and
reranking subtasks in Section 2.3. Finally, we discuss the results of
our official runs in Section 2.4.

http://www.msmarco.org/

i

Query . . Reranked Top
Expansion H IReitvEl H REEliig 1000 Passages
1

— 5
FEESERE]—{ Indexing Expanded | :
Expansion

Passage

Collection Index

Figure 1: Proposed approach for the passage retrieval task.
The process within the dotted rectangle is only done for the
full ranking subtask.

2.1 Approach

The passage retrieval task has two subtasks: full ranking and rerank-
ing. For the full ranking subtask, we adopted a two-way expansion
approach. We first expanded each passage in the collection with
queries for which this passage most probably contains their an-
swers. For that, we used a pre-trained passage expansion model.
The expanded passages are then indexed. We further used query
expansion to expand each query with a set of keywords to further
improve the retrieval. The expanded queries are used to retrieve an
initial candidate set of passages for each given query. Finally, the
candidate set is reranked using a pre-trained reranker model. For
the passage reranking subtask, we reranked the top 1000 passages
given by TREC organizers. Figure 1 illustrates the approach.

We based all our experiments on passage and query expansion
which were showed to improve retrieval performance in the TREC-
DL 2019 [2].

For passage expansion, we adopted three models that were pre-
trained with the MS MARCO passage collection:

e doc2query [8]: This model is a sequence-to-sequence trans-
former model [10]. Given a passage, the model is pre-trained
to predict the top k queries using the top-k sampling tech-
nique proposed by Fan et al. [4]. A maximumn of 400 pas-
sage tokens and 100 query tokens were used to train the
model. For our experiments, we expanded each passage
with queries? generated by doc2query. Each passage was
appended with 10 queries, as recommended by Nogueira
et al. [8].

e docTTTTTquery [7]: This model takes advantage of T5 [9],
a sequence-to-sequence tansformer model, and it is pre-
trained to generate queries given a passage. The model was
trained with a maximum input and output of 512 and 64
tokens respectively. In our work, we expanded each passage
with queries® generated by docTTTTTquery model. We ap-
pended the top 40 sampling as recommended by Nogueira
et al. [7] to each passage.

e DeepCT [3]: This is a BERT-based expansion method to iden-
tify passage terms that are likely to appear in relevant queries.
Given a query and a passage, the model was pre-trained to
estimate a weight for each term in the passage. The trained
model can be used to estimate the term weights for any pas-
sage without the need of queries. For our experiments, we
used the expanded passages? provided by DeepCT.

Zhttps://github.com/nyu-dl/dl4ir-doc2query
3https://github.com/castorini/docTTTT Tquery
4https://github.com/AdeDZY/DeepCT

For query expansion, we used RM3 approach implemented by
Anserini [12, 13].

For reranking the retrieved candidate passages, we used two
existing pre-trained reranker models, available at pygaggle®, that
were both trained with the MS MARCO passage collection. The
first is monoBERT [5], a BERT-based relevance classifier model
for query-passage pairs. The second is monoT5 [6], a T5 model
fine-tuned to produce the words "false" or "true" based on whether
the passage is relevant or not to the query. Both reranker models
were trained with a maximum of 512 input tokens, i.e., the total
tokens of both the query and passage given to the model are not
more than 512 tokens.

We note that, in the reranking step, we opted to use original
(unexpanded) passages and queries as they exhibited better perfor-
mance in our preliminary experiments over the expanded ones.

2.2 Pre-TREC Experiments

Before TREC submission, we experimented with the combination
of each passage expansion technique and each reranker model men-
tioned in Subsection 2.1. For retrieval, we used BM25, implemented
by Anserini, with the parameters set as recommended by Yilmaz
et al. [14] to k1=0.82 and b=0.68. An exception is the retrieval from
the index of DeepCT-based expanded passages; we set the BM25
parameters to k1=18 and b=0.7, as recommended by Dai and Callan
[3].

For evaluation purposes, we used TREC-DL 2019 queries in our
pre-TREC experiments [2]. In Table 1, we present the results of the
full ranking subtask. We observe that when expanding the passages
with the sequence-to-sequence based models, namely doc2query
or docTTTTTquery, BERT reranker performed slightly better than
T5 reranker in terms of NDCG@10. However, T5 outperformed
BERT reranker, when passages were expanded with DeepCT [3], a
BERT-based model.

Passage Reranker | R@1000 | NDCG@10
Expansion

doczauer BERT 0.7803 0.7266
query TS5 0.7803 0.7257
BERT 0.8542 0.7476
docTTTTTquery TS5 0.8542 0.7391
BERT 0.7946 0.7392
DeepCT T5 0.7946 0.7404

Table 1: Performance of document expansion and reranking
models in Pre-TREC experiments for full passage ranking.

2.3 Submitted Runs

Based on our Pre-TREC experimental results, we selected the top
3 performing methods, highlighted in bold in Table 1, in terms of
both NDCG@10 and Recall@1000, as our official runs submitted to
the full ranking subtask:
o bigIR-T5-BERT-F: Using docTTTTTquery model for pas-
sage expansion, RM3 for query expansion, BM25 for retrieval,
and monoBERT model for reranking.

Shttps://github.com/castorini/pygaggle

https://github.com/nyu-dl/dl4ir-doc2query
https://github.com/castorini/docTTTTTquery
https://github.com/castorini/pygaggle

o bigIR-T5xp-T5-F: Using docTTTTTquery model for pas-
sage expansion, RM3 for query expansion, BM25 for retrieval,
and monoT5 model for reranking.

o bigIR-DCT-T5-F: Using DeepCT model for passage expan-
sion, RM3 for query expansion, BM25 for retrieval, and
monoT5 model for reranking.

For the reranking subtask, we submitted two runs, one of each
reranker model discussed in Section 2.1.

o bigIR-BERT-R: Using monoBERT for reranking.
e bigIR-T5-R: Using monoT5 for reranking.

2.4 Official TREC Results

The official results of our submitted runs for the passage retrieval
task are presented in Table 2. We compare the performance of our
runs against TREC-DL 2020 median which represents the mean of
median per-topic scores.

As shown in Table 2, all our runs for both subtasks scored above
the median. For the full ranking subtask, we observe that using
DeepCT, the BERT-based approach for passage expansion, achieved
better performance than using docTTTTTquery, the T5-based ap-
proach, achieving NDCG@10 of 0.7173 and 0.7034 respectively. The
results also show that for full ranking runs that exploited the pas-
sages expanded with docTTTTTquery, the T5 reranker could not
beat the BERT reranker.

| Subtask | Run | NDCG@10 |
| | TREC2020-Median [0.681 |
bigIR-T5-BERT-F 0.7073
Full Ranking | bigIR-DCT-T5-F 0.7173
bigIR-T5xp-T5-F 0.7034
Reranlkin bigIR-BERT-R 0.7201
eranxing bigIR-T5-R 0.7138

Table 2: NDCG @ 10 scores of the submitted passage retrieval
runs compared to TREC-DL 2020 median score.

3 DOCUMENT RETRIEVAL TASK

In this Section, we present our approach and experimental results
for the document retrieval task. We present our general approach in
Section 3.1. We present our official submitted runs for both the full
ranking and reranking subtasks in Section 3.2. Finally, we discuss
the results of our official runs in Section 3.3.

Query q Representing a Reranked Top
[Expansion IREiteeeL Documents IREEINITE 100 Documents

Figure 2: Proposed approach for document retrieval task.

Document
Index

3.1 Approach

Similar to the passage retrieval task, we used Anserini for indexing
the document collection, and its BM25 implementation and RM3
query expansion for retrieving the initial set of candidate relevant
documents for the full ranking subtask. For both full ranking and
reranking subtasks, we adopted the monoT5 reranker model to
rerank the candidate documents for better retrieval quality. Since
the input sequence to monoT5 is limited in size (maximum 512
tokens), we experimented with three different representations of the
document as input sequence to the model: title of the document, the
head segment of the document (the leading 384 terms specifically,
as recommended by Yan et al. [11]), and the concatenation of both.
Figure 2 illustrates our approach.

3.2 Submitted Runs

We submitted three runs for the full ranking subtask. In all of
our submitted runs, we set Anserini to use the BM25 retrieval
model with RM3 query expansion, where k1 and b were set to 0.82
and 0.68 respectively. For reranking the initial candidate set, we
used different document representations for each submitted run as
follows:

o bigIR-DT-T5-F: Using the title to represent each candidate
document.

o bigIR-DH-T5-F: Using the head segment to represent each
candidate document.

¢ bigIR-DTH-T5-F: Using the concatenation of both title and
head segment to represent each candidate document.

We also submitted three runs to the reranking subtask as follows.

o bigIR-DT-T5-R: Using the title to represent each given doc-
ument.

¢ bigIR-DH-T5-R: Using the head segment to represent each
given document.

¢ bigIR-DTH-T5-R: Using the concatenation of both title and
head segment to represent each candidate document.

3.3 Official TREC Results

Table 3 shows the performance results that our runs achieved. We
notice that using only the title of the candidate documents, along
with the query, as input to the reranker model did not perform
well. In fact, it falls well below the TREC-DL 2020 median in both
subtasks. This suggests an inadequate context for reranking, and
can be explained by the fact that titles of documents do not usually
contain sufficient information on the document content. The re-
sults also show that using the head segment of the document only
performed slightly better than the median. However, using both
the title and the head segment yielded a significant improvement
in performance over the median.

While we opted to experiment with very simple representation
of documents in our submitted runs, due to time limitation, there
are several other ways of representing documents that we plan to
study in the future.

4 CONCLUSION

In this paper, we present our bigIR group’s first participation in the
passage and document retrieval tasks at the TREC deep learning

| Subtask | Run | NDCG@10 |
| | TREC2020-Median [0.5733 |

bigIR-DT-T5-F 0.539

Full Ranking bigIR-DH-T5-F 0.5734
bigIR-DTH-F 0.5907

bigIR-DT-T5-R 0.5455

Reranking bigIR-DH-T5-R 0.5846
bigIR-DTH-T5-R 0.6031

Table 3: NDCG@10 scores of the submitted document re-
trieval runs compared to TREC-DL 2020 median score.

track 2020. We focused on simple ideas this year, such as document
and query expansion. We explored different pre-trained models for
passage/document expansion and reranking, including doc2Query,
docTTTTTquery, DeepCT, monoBERT and monoT5. We conducted
a preliminary study on TREC-DL 2019 data, based on which we
selected the configuration of our submitted runs. All of our submit-
ted runs for passage ranking and most of the submitted runs for
document ranking outperformed the TREC median for the different
subtasks. The results demonstrate two messages. First, monoBERT
performed slightly better than monoT5 when passages were ex-
panded with sequence-to-sequence based models; however, it could
not beat monoT5 when passages were expanded using a BERT-
based model. Second, using both the title and the head segment of
the document at the reranking step for the document retrieval task
significantly improved the results compared to each separately.

ACKNOWLEDGMENTS

This work was made possible by NPRP grant# NPRP 11S-1204-
170060 from the Qatar National Research Fund (a member of Qatar
Foundation). The work of Fatima Haouari was supported by GSRA
grant# GSRA6-1-0611-19074 from the Qatar National Research Fund.
The statements made herein are solely the responsibility of the
authors.

REFERENCES

[1] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah Larkey,
Xiaoyan Li, Mark D Smucker, and Courtney Wade. 2004. UMass at TREC 2004:
Novelty and HARD. Computer Science Department Faculty Publication Series
(2004), 189.

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820 (2020).

[3] Zhuyun Dai and Jamie Callan. 2019. Context-aware sentence/passage term
importance estimation for first stage retrieval. arXiv preprint arXiv:1910.10687
(2019).

[4] Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story
generation. arXiv preprint arXiv:1805.04833 (2018).

[5] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[6] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2020. Document ranking with a
pretrained sequence-to-sequence model. arXiv preprint arXiv:2003.06713 (2020).

[7] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query to
docTTTTTquery. Online preprint (2019).

[8] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. arXiv preprint arXiv:1904.08375 (2019).

[9] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research 21, 140 (2020), 1-67.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.

[11] Ming Yan, Chenliang Li, Chen Wu, Bin Bi, Wei Wang, Jiangnan Xia, and Luo Si.

2019. IDST at TREC 2019 Deep Learning Track: Deep Cascade Ranking with

Generation-based Document Expansion and Pre-trained Language Modeling.. In

TREC.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of

Lucene for information retrieval research. In Proceedings of the 40th International

ACM SIGIR Conference on Research and Development in Information Retrieval.

1253-1256.

[13] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible ranking

baselines using Lucene. Journal of Data and Information Quality (FDIQ) 10, 4

(2018), 1-20.

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, and Jimmy Lin. 2019. H2oloo at trec

2019: Combining sentence and document evidence in the deep learning track. In

Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC 2019).

[12

[14

	Abstract
	1 Introduction
	2 Passage Retrieval Task
	2.1 Approach
	2.2 Pre-TREC Experiments
	2.3 Submitted Runs
	2.4 Official TREC Results

	3 Document Retrieval Task
	3.1 Approach
	3.2 Submitted Runs
	3.3 Official TREC Results

	4 conclusion
	References

