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Abstract

In this paper, we describe our submission to the second Fair Ranking Track at TREC 2020. We leverage the
flexibility of listwise Learning to Rank (LtR) techniques which directly optimize towards a custom evaluation
measure. To do this, we developed an objective function that balances between relevance and fairness.

1 Introduction

In this second year of the track, the Fair Ranking Track1 had two tasks: 1) re-ranking, and 2) retrieval. We
submitted one run for the re-ranking task. The training data consists of 200 queries and 8,879 academic
papers from the Semantic Scholar open research corpus [1]. Each query is associated with a pool of papers
that were judged for relevance. The evaluation data consists of another 200 queries where each query is
associated with an evaluation set of documents, without relevance judgments. For the re-ranking task the
task is to re-rank that evaluation set in a way that minimizes the squared error of the difference between the
group expected exposure of the system and desired group expected exposure specified by the organizers [5].

Our approach relies on using listwise learning to rank algorithms because they can directly optimize an
objective function. We developed an objective function that is a weighted average of relevance and fairness
measures. Then a listwise LtR model is used to optimize that evaluation function, thus jointly optimizing
both relevance and fairness.

2 Processing Pipeline

We created one submission based on a listwise Learning to Rank (LtR) model with a custom objective
function. Our pipeline starts by indexing the training data using an Elasticsearch instance with an LtR
plugin. Then we generate the features for documents and for query-documents pairs that are shown in
Table 1.

Our evaluation measure is computed as the weighted average between a relevance measure and a fairness
measure. The relevance measure is the same as in TREC 2019 [2] which is a generalized version of ERR
with a patience parameter. It is defined as follows.

R =

n∑
i=1

[p(s|di)γi−1
i−1∏
j=1

p(s|dj)] (1)

where p(s|di) is the stopping probability at a document at rank i, γ is the patience parameter, and n is the
number of documents. For the fairness measure, we compute entropy from probability of seeing an author
with class L. It can be defined as follows.

1https://fair-trec.github.io/
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ID Feature Category
1 BM25 score between title and query Q-D
2 BM25 score between abstract and query Q-D
3 BM25 score between venue and query Q-D
4 BM25 score between sources and query Q-D
5 BM25 score between all authors and query Q-D
6 BM25 score between fields of study and query Q-D
7 Min h-index of paper’s authors D
8 Avg h-index of paper’s authors D
9 Max h-index of paper’s authors D

10 Min number of papers of paper’s authors D
11 Avg number of papers of paper’s authors D
12 Max number of papers of paper’s authors D
13 Min i10-index of paper’s authors D
14 Avg i10-index of paper’s authors D
15 Max i10-index of paper’s authors D
16 Min number of citations of paper’s authors D
17 Avg number of citations of paper’s authors D
18 Max number of citations of paper’s authors D
19 Number of in citations to the paper D
20 Number of out citations from the paper D
21 Number of authors with class L D
22 Number of authors with class H D

Table 1: Learning to Rank features. Q=Query, D=Document.

F = −pn/2 log pn/2 − (1− pn/2) log(1− pn/2) (2)

where pk is the percentage of authors with class L that appear by position k. So the fairness is maximized
if the probability is equal to 1/2. Our final objective function to be maximized, Z, is then a weighted average
of the previous two measures, defined as follows:

Z = βR+ (1− β)F (3)

We used the training data to evaluate three ranking algorithms: 1) AdaRank [8], 2) Coordinate Ascent [7],
and 3) ListNet [4]. For our official submission, we selected the Coordinate Ascent model because it had the
best 5-fold cross-validation results on the training data, as shown in Table 2.

LtR Algorithm Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg.
AdaRank 0.536 0.556 0.560 0.596 0.517 0.553
Coordinate Ascent 0.558 0.572 0.570 0.577 0.527 0.561
ListNet 0.400 0.424 0.517 0.519 0.371 0.446

Table 2: Objective function Z on the training data (higher is better).

3 Results

Figure 1 shows the difference between the score per query (difference in expected exposure) of our system
and the median over all submitted runs to the track, with topics sorted in increasing order of that difference.
As can be seen, our system achieves below-median expected exposure on 79 of the 200 queries.
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Figure 1: Sorted per-topic difference between our system’s expected exposure score and median over all
submitted runs (lower is better).

4 Conclusion

In this paper, we describe our submission to the second Fair Ranking Track at TREC 2020. That was our
first hands-on experience with the problem of balancing relevance and fairness. There are two apparent
limitations in our work. First, we based our objective function solely on the percentage of authors with class
L, which is not the same as the group definition chosen by the track organizers (since the organizer’s group
definition is not known a priori). To overcome these limitations, we suggest producing multiple ranked lists
for a given query based on different group definitions (e.g., number of citations, gender, or country of origin).
Each ranked list could then be optimized to balance between relevance and fairness according to a specific
group definition. Some form of system combination (e.g., CombMNZ [6]) might then be used in an effort to
produce a ranked list for each query that is robust to the user’s preferred definition of fairness.

Second, we submitted a static ranking per query without randomizing those results. No such ranked list
can achieve the target expected exposure because two equally relevant documents will not receive the same
exposure. One way to address this would be to use a stochastic version of learning to rank [3], and that is
something we are interested in trying.
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