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Abstract

Although clinical trials are crucial to the advancement of medical science, many clinical trials fail
because they do not meet recruitment targets. This problem engenders a need for automated systems
that can match patients to ongoing trials. The potential benefits of such systems are twofold: first, they
would allow for the systematic study of new treatments through completed clinical trials and second,
they could improve or even save the lives of patients for whom existing treatments are ineffective. We
participate in the TREC Clinical Trials (CT) Track, for which the aim is to match synthetic 5-10 sentence
patient descriptions with clinical trials from ClinicalTrials.gov, a clinical trials repository that includes all
clinical trials in the United States. Our system uses BM25 and semantic textual similarity (STS) models
to retrieve two thousand candidates from hundreds of thousands of clinical trials. We then proceed
to rerank those trials using neural reranking models with BERT-based encoders and novel attention
mechanisms. In addition to training our models on an existing related corpus [Koopman and Zuccon,
2016], we leverage data from MIMIC-III to generate a larger training corpus. In the end, we found that
our BM25-based ranker utilizing a Lucene index outperformed our neural models, likely due to a lack of
high-quality training data.

1 Introduction

In the TREC 2021 CT-Track, we are tasked with matching free-text patient descriptions consisting of 5-10
sentences with real clinical trials from ClinicalTrials.gov. The problem of clinical trial matching is important
because many clinical trials fail when they do not meet their recruitment targets. An automated system
that matches patients to appropriate clinical trials would help clinicians and patients alike.

Several works have approached the task of matching patients to clinical trials, but most differ from the
TREC 2021 CT-Track in how the data are formatted. COMPOSE [Gao et al., 2020] and DeepEnroll [Zhang
et al., 2020] use deep learning methods to match trials with patient records; their data notably differ from
ours in that the patients are represented with structured electronic health records (EHRs) as opposed to free-
text descriptions. The 2018 n2c2 shared task, “Cohort selection for clinical trials,” used clinical narratives
for 288 patients, but annotated a set of only 13 specific eligibility criteria [Stubbs et al., 2019]. In 2017,
2018, and 2019, the TREC Precision Medicine (PM) Track involved retrieving relevant clinical trials for a set
of patients; however, the topics were limited to cancer patients who were represented with semi-structured
data (disease, variant, and demographics) as opposed to unconstrained free-text descriptions [Roberts et al.,
2017, 2018, 2019].

The setup that is most similar to the TREC 2021 CT-Track comes from Koopman and Zuccon [2016];
in this setup, free-text patient descriptions are matched with a snapshot of trials from ClinicalTrials.gov.
However, in addition to the longer patient descriptions, the authors also obtain ad-hoc queries from medical
professionals, which represent search terms that those professionals would use to find appropriate trials for
each patient. Using a number of baseline models, the authors find that the results using ad-hoc queries
exceed those using longer text descriptions for each model and metric evaluated.

∗Work was performed as an intern at IBM Research.
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Dataset Patient Descriptions Clinical Trials Labeled Pairs

TREC 75 375K 0
SIGIR 60 204K 3870
AutoGT 18K 375K 700K

Table 1: Statistics of three datasets used by our system; the TREC dataset was used for our submitted results
and final evaluation, while the SIGIR and AutoGT datasets were used for training our neural rerankers.

The prior work in this field reveals an opportunity to build better models for linking free-text patient
descriptions to clinical trials without physician intervention.

2 Data

We evaluate our system on the official 2021 TREC CT-Track topics and clinical trials collection; we also
utilize two external datasets. Statistics for the datasets are displayed in Table 1.

TREC The TREC 2021 CT-Track data consists of 75 topics and 375,580 clinical trial XML files from
ClinicalTrials.gov. The topics are 5-10 sentence synthetic patient descriptions, developed by individuals
with medical training. They are intended to mimic an admission note.

The trials are XML files corresponding to current and historical clinical trials in the United States and
elsewhere. Most notably, the trial XML includes an eligibility criteria field. We parse the criteria to separately
extract the inclusion and exclusion criteria, relying on the fact that the criteria typically contains a header
such as “Exclusion Criteria:” which delimits the two sections. We also make use of additional information
provided in the trial XML files for determining the relevance of each trial to the patients, including the
conditions, interventions, MeSH terms, and keywords.

In the evaluation phase, each evaluated topic-trial pair is given one of three labels by experts: “eligible”
(meets all inclusion criteria and doesn’t meet any exclusion criteria), “excludes” (meets all inclusion criteria
but also meets some exclusion criteria), and “not relevant.” Because the TREC collection did not include
any labeled data prior to submission, we rely on two external datasets for training our neural rerankers.

SIGIR The first external dataset we utilize is the SIGIR data collection from Koopman and Zuccon
[2016]. The dataset includes 60 topics in three different formats: ad-hoc queries (short queries generated
by medical assessors), summaries (average of 22 words), and descriptions (average of 78 words). We use
the descriptions in our work as they most closely mimic the TREC topics. The topics were drawn from
the 2014 TREC Clinical Decision Support Track [Simpson et al., 2014]. The trials are again extracted from
ClinicalTrials.gov, but as they were collected on December 16, 2015, there are fewer trials included than
there are in the TREC collection from April 27, 2021.

We note that the labeling scheme differs from that of the TREC CT-Track. In both cases, there are
some trials labeled as not relevant and some labeled as fully relevant, e.g. “Highly likely to refer this patient
for this clinical trial” or “eligible.” However, Koopman and Zuccon [2016] includes an intermediate label
indicating “Would consider referring this patient to this clinical trial upon further investigation,” while
TREC’s intermediate label indicates that a patient is excluded, as they meet the inclusion criteria but also
some exclusion criteria. In practice, the dataset is so small1 that we combine the eligible and intermediate
labels to create a single positive label.

AutoGT To supplement the small training set, we also create an auto-generated dataset. This dataset
is designed by matching the primary diagnosis of MIMIC-III records (notes) with condition MeSH terms in
the TREC 2021 clinical trial corpus. Specifically, the diagnosis codes in the structured data and priority
codes associated with those diagnosis codes are used to determine the primary diagnosis. To replicate the
format of TREC data, we randomly used the history of present illness (HPI) section for some records and a

14000 judged documents, most of which are judged to be irrelevant
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combination of the HPI and past medical history (PMH) sections for others. Using this strategy, we form
over 700,000 patient description - clinical trial pairs.

3 Methods

3.1 Query Generation

Our query generation module relies on the IBMWatson Annotator for Clinical Data (ACD) service, a medical
domain NLP service featuring a variety of annotation tools that detect, normalize, and code medical and
social findings from unstructured clinical data. Based on the observations we made through experimentation
on SIGIR-2016 corpus, we developed several heuristics to assign weights to the extracted metadata; these
weights along with the text spans serve as weighted ad-hoc queries. Specifically, we used the potential
diagnosis, diagnosis, patient reported conditions, and therapeutic procedures from ACD annotations of
patient descriptions as candidate concepts.

Next, we derived several features specific to each of these concepts such as entity type, inverse document
frequency measured using MIMIC and PubMed, a rare disease boolean derived using a resource from Or-
phadata, and the section in which the concept is mentioned in the description (e.g., PMH, HPI, symptom
probability). As a final step, we normalized and standardized these features and used the sum of the resulting
feature values to determine the importance weight of each candidate concept present in the description.

3.2 Retrieval Modules

3.2.1 Lucene

The first model that we use is based on retrieval from a Lucene index using BM25 [Robertson et al., 1995].
We index the trials using the condition and intervention fields from the clinical trial XML files. Then, we
retrieve the top n trials for each topic, matching the queries we generated for each topic with the trials in
the index. We use query level boosting to boost terms according to the weights extracted from our query
generation module.

3.2.2 STS Ranker

Employing the queries and weights from our query generation module, we use a transformer-based semantic
textual similarity (STS) model to retrieve trials. First, low-dimensional representations are obtained for all
the conditions and interventions present in the trials and the extracted metadata of each topic. Then, we
measure weight normalized pairwise cosine similarity between a topic and the low-dimensional representations
of all trails to rank them.

Specifically, we compute two versions of the STS score, STS1 and STS2. For each patient description, we
use the set P of representations of query terms extracted by our query generation module, and corresponding
weights WP . Similarly, for each trial, we extract a set T of representations of interventions and conditions
and corresponding weights WT . Then, we use the following two equations to compute the STS scores:

STS1 =

|P |∑
i=1

WP
i ·

[
|T |
max
j=1

cosine(Pi, Tj)

]

STS2 =
1

|T |
·
|T |∑
i=1

WT
i ·

[
|P |
max
j=1

cosine(Ti, Pj)

]

3.2.3 Combined Candidates

In order to combine candidates from the Lucene and STS modules, we compute the average rank for each
topic-trial pair using the individual ranks RLucene, RSTS1 and RSTS2 as follows:

Rcombo = 0.5 ∗min(RLucene, n) + 0.25 ∗min(RSTS1, n) + 0.25 ∗min(RSTS2, n)
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where n is the number of total reranked trials we want as output. We return the top n trials according to
the Rcombo score.

3.3 Neural Rerankers
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Figure 1: An example of the entities and relations extracted by our CHIA model on criteria from clinical
trials.

To rerank results from our retrieval modules, we introduce a novel neural reranker. First, we extract
entities from the text of the topic as well as the trial using a system trained on the CHIA dataset, a large
annotated corpus of clinical trial eligibility criteria for concept and relation extraction [Kury et al., 2020].
To extract the entities, we used a joint entity and relation extraction model from Wang and Lu [2020]; the
system is trained on trial inclusion and exclusion criteria. An example of this extraction is shown in Figure 1.

We encode the text using a BERT-based model; the text includes the entities extracted by CHIA from the
topic, inclusion criteria, and exclusion criteria. Additionally, we encode keywords from the trial’s interven-
tions, MeSH terms, keywords, and conditions fields.2 For our SIGIR model, we encode using ClinicalBERT
[Alsentzer et al., 2019] and for our AutoGT model we encode using BlueBERT with PubMed abstracts and
MIMIC-III [Peng et al., 2019]. We then extract the embeddings for each span, using a convolutional neural
network with kernel sizes of 1, 2, 3, and 4 to combine representations for spans with multiple tokens.

Next, inspired by Zhang et al. [2020], we use attention mechanisms to compute alignment between spans
in the topics and the criteria, interventions, MeSH terms, keywords, and conditions. These alignments are
computed separately; in a final layer, we combine agreement scores across the various parts of the trial. A
diagram of our reranking module is provided in Figure 2.

As our loss function, we use WARP loss [Weston et al., 2011], which was designed for learning to rank.
We input one positive example and three negative examples to the warp loss function.
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Figure 2: Our reranking architecture. First, patient descriptions and clinical trial descriptions are fed into our
CT-BERT module, which extracts relevant entities using our CHIA relation extraction module and encodes
them using a BERT-based encoder. The resulting representations are fed into the alignment module, which
computes attention scores between the criteria and clinical factors from the patient descriptions.
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Included in Neural Reranker

Lucene STS Reranker Training Data BERT Model Inclusion Exclusion Conditions Interventions MeSH Keywords

IBMLucene !

IBMSTS !

IBMSIGIR ! ! ! SIGIR ClinicalBERT ! ! ! ! ! !

IBMAUTOGT ! ! ! AutoGT BlueBERT ! ! ! !

IBMSIGIRACT ! ! ! SIGIR ClinicalBERT ! ! ! ! ! !

Table 2: Summary of the components that make up our five submitted runs.

System NDCG@10 PREC@10 Reciporical Rank

IBMLucene 0.3174 0.1973 0.3913
IBMSTS 0.2238 0.1480 0.2700
IBMSIGIR 0.1402 0.0893 0.1865
IBMAUTOGT 0.1318 0.0880 0.1350
IBMSIGIRACT N/A 0.0573 0.1326

Table 3: The results of our runs (NDCG@10, PREC@10, Reciporical Rank) across all topics. The best
performance across all metrics is from the IBMLucene system.

4 Results

We submitted five runs for evaluation (see a summary in Table 2). IBMLucene and IBMSTS use the retrieval
methods described in Section 3.2.1 and Section 3.2.2 respectively. We retrieve the top 1000 results per topic
using each method. In IBMSIGIR, we train the neural reranker described in Section 3.3 with the SIGIR data
for training. We choose the best checkpoint based on evaluation on a subset of held out SIGIR data, then
rerank the top 2000 results per topic after combining the Lucene and STS results with the method described
in Section 3.2.3. In IBMAUTOGT, we use the auto-generated data as training data for the reranking system,
then rank the same 2000 trials for each topic. IBMSIGIRACT uses the same model as IBMAUTOGT, but
only includes currently active trials, to mimic a real-world scenario.

Somewhat surprisingly, we found that our simplest system (querying the Lucene index) yielded the best
results across three metrics (NDCG@10, PREC@10, Reciprocal Rank). The full results for these three
metrics are listed in Table 3. The results are consistent across these metrics, with IBMLucene > IBMSTS
> IBMSIGIR > IBMAUTOGT > ABMSIGIRACT. Given the limited labeled training data, our results
showed that we were unable to leverage deep learning systems for this task.
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