
TREC-ToT: Endicott and UNC Notebook Paper
Henry Feild

Computer Science Department

Endicott College

hfeild@endicott.edu

Jaime Arguello

School of Information and Library Science

University of North Carolina at Chapel Hill

jarguello@unc.edu

ABSTRACT
Tip-of-the-tongue (ToT) known-item retrieval involves retrieving

a previously encountered item for which the searcher is unable

to reliably recall an identifier. The TREC 2023 ToT track focused

on an ad-hoc retrieval task in the movie identification domain.

The Endicott and UNC team submitted four runs to the track. Our

baseline run used BM25, while our three experimental runs used a

“boosted” version of BM25 that weighed query-terms differently. All

ToT queries used in the track had sentence-level annotations based

on the topics and language phenomena found in the sentence. Our

three experimental runs weighed query-terms depending on the

sentence-level categories associated with the sentence from which

each query-term originated. One experimental run weighed query-

terms using gold-standard sentence-level categories. The other two

used predicted categories. Across all metrics considered, our three

experimental runs outperformed our baseline run by a statistically

significant margin. Differences between experimental runs were

not statistically significant across metrics. Our results suggest that

sentence-level categories were predicted with sufficient accuracy

to inform the re-weighing of query-terms to improve retrieval

performance.

1 INTRODUCTION
The Endicott and UNC group submitted four runs to the TREC 2023

ToT Track. All runs used Lucene version 9.6.0. Our baseline run

(endicott_unc_baseline) used BM25. Our three experimental runs

leveraged the sentence-level annotations described in Arguello et

al. [1]. These sentence-level annotations describe the topics and

language phenomena associated with each sentence in the query.

For example, some topical categories describe aspects of the movie

referrenced in the sentence (e.g., the plot, a scene, a character, etc.).

Other topical categories describe aspects of the context in which

the movie was seen (e.g., time, location, medium, etc.) Non-topical

categories describe language phenomena present in the sentence.

For example, some non-topical categories describe whether the

sentence mentions uncertainty, draws comparisons, or mentions

the searcher’s emotional response to the movie.

Our three experimental runs aremotivated by the hypothesis that

certain query-terms are more important than others based on the

categories associated with the sentence from which they originated.

For example, perhaps query-terms from sentences about the plot of

the movie are more important for retrieval than query-terms from

sentences about a scene in the movie. After all, the document corpus

consisted of Wikipedia pages, which tend to describe the movie’s

plot and not specific scenes in the movie. Our three experimental

runs leveraged Lucene’s ability to process weighted queries.

Our first experimental run (endicott_unc_boost_oracle) lever-

aged gold-standard sentence-level annotations. Categories were

grouped into an up-boost list and a down-boost list. Query-terms

from sentences associated with at least one category in the up-

boost list were given a weight of 1.0. Conversely, query-terms from

sentences associated with only categories in the down-boost list

were down-boosted by some factor in the range [0, 1].
Our second experimental run (endicott_unc_boost_pred) lever-

aged predicted sentence-level annotations. Sentence-level categories
were predicted using a series of weighted𝑘−nearest neighbor (KNN)
classifiers (one per category). Query-terms were weighted follow-

ing the same approach described above. That is, query-terms from

sentences associated with only categories in the down-boost list

were down-boosted by some factor in the range [0, 1].
Our third experimental run (endicott_unc_boost_conf) also used

predicted sentence-level annotations. Query-terms from sentences

associated with only categories in the down-boost list were given

a weight of 0.0. That is, those query-terms were entirely ignored.

Conversely, query-terms from sentences associatedwith at least one

category in the up-boost list were up-boosted by some factor in the

range [0, 1]. This factor was proportional to the highest prediction

confidence value associated with categories in the up-boost list.

2 PRELIMINARIES
All of the runs we report on were retrieved using Lucene version

9.6.0 over an index that included the text field of each Wikipedia

page in the ToT corpus.We used Lucene’s StandardAnalyzer,1 which
performs case folding and stop-word removal.

All queries were downcased and runs of non-alphanumeric char-

acterswere replacedwith a space.We used Lucene’s BM25Similarity2

scorer with 𝑘 = 0.8 and 𝑏 = 1 based on the parameter sweep results

reported by the TREC ToT organizers during their benchmarking.
3

Three of our four runs rely on query-clause boosting. Lucene boosts

by multiplying document scores for each query-term by the given

boosting factor
4
(see Equation 2). All queries included the topic

title with a boost of 1.0. We did not explicitly specify boosts of 1.0

as that is the default boost value used by Lucene.

3 ALGORITHMS
3.1 Overview
Our group submitted four runs to the TREC 2023 ToT track. Our

baseline run (endicott_unc_baseline) used BM25. Our three ex-

perimental runs used a “boosted” version of BM25 that weighs

query-terms differently. Query-terms were assigned weights based

1
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/analysis/standard/

StandardAnalyzer.html

2
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/search/similarities/

BM25Similarity.html

3
https://github.com/TREC-ToT/bench/

4
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/search/

package-summary.html#package.description

https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/analysis/standard/StandardAnalyzer.html
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/analysis/standard/StandardAnalyzer.html
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://github.com/TREC-ToT/bench/
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/search/package-summary.html##package.description
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/search/package-summary.html##package.description

on the sentence-level categories associated with the sentence from

which the query-term originated. One of our three experimen-

tal runs (endicott_unc_boost_oracle) used gold-standard sentence-

level categories. Our other two experimental runs used predicted
sentence-level categories. As described in Section 3.2, sentence-level

categories were predicted using a weighted 𝑘-nearest neighbor ap-

proach. One of our experimental runs (endicott_unc_boost_pred)

used predicted categories in a binary fashion. The other experi-

mental run (endicott_unc_boost_conf) used predicted categories

by also considering the classifier’s confidence value.

3.2 Predicting Sentence-Level Annotations
All train, development, and test queries used in the TREC 2023 ToT

Track included sentence-level annotations based on the qualitative

analysis reported in Arguello et al. [1]. Sentences were classified

along 39 categories based on the topics and language phenomena

found in the sentence. Appendix A describes these sentence-level

categories. Categories 1-24 belong to the general category “movie”

(i.e., the sentence describes something about the movie itself) and

categories 25-31 belong to the general category “context” (i.e., the

sentence describes something about the context in which the movie

was seen). Categories were designed to be non-mutually exclu-

sive. That is, a sentence can be associated with zero, one, or more

than one category. Our three experimental runs leveraged sentence-

level categories. One run (i.e., endicott_unc_boost_oracle) lever-

aged ground-truth categories and the other two runs leveraged

predicted categories. In this section, we describe how sentences

were classified into categories.

Sentences were classified into categories using 39 independent,

binary classifiers (one per category). For each category, we used

a weighted 𝑘-nearest neighbor (KNN) approach. Sentence were

represented using embeddings provided by the Open AI API
5
and

semantic similarity between sentences was measured using cosine

similarity.

For a given sentenceStest and category C, our goal was to output
a confidence value in the range [-1,+1]. Values closer to +1 indicate

greater confidence that C applies to Stest and values closer to -1 in-

dicate greater confidence that C does not apply to Stest. Confidence

values were generated using the following formula:

∑︁
S𝑖 ∈KNN(Stest)

CAT(S𝑖 , C) ×
SIM(Stest,S𝑖)∑

S𝑗 ∈KNN(Stest) SIM(Stest,S𝑗)
, (1)

where KNN(Stest) denotes the 𝑘-nearest neighbors for sentence
Stest in the training data, CAT(S, C) indicates whether sentence
S belongs to category C (i.e., -1 or +1), and SIM(Stest,S) denotes
the cosine similarity between Stest and S.

Sentences in the test set were classified by combining all sen-

tences in the training and development sets as a single training

set. For each category, we tuned parameter 𝑘 using 10-fold cross-

validation and optimized for F1 classification performance.

We were curious about classification performance across cate-

gories. To this end, we conducted experiments by classifying all

sentences in the development set using sentences in the training

5
https://platform.openai.com/docs/guides/embeddings/

set. For each category, we tuned parameter 𝑘 using 10-fold cross-

validation and optimized for F1 classification performance. Table 1

shows performance in terms of precision, recall, and F1. The sec-

ond and third columns show the frequency of each category in

sentences from the training and development set, respectively. As

expected, performance was higher for categories that are topical

and common.

3.3 Baseline
Our baseline run (endicott_unc_baseline) used BM25 and included

the topic title and all sentences following the processing described

in Section 2. Specifically, we used the implementation of BM25

provided with Lucene 9.6.0. Our experimental runs (Sections 3.4-

3.6) used a “boosted” version of BM25 in which query-terms were

weighted differently depending on the categories associated with

the sentence from where the query-term originated. This boosted

version of BM25 scores documents according to:

BM25(𝑄, 𝐷) =
𝑛∑︁
𝑖=1

B(𝑞𝑖) · IDF(𝑞𝑖) ·
𝑓 (𝑞𝑖 , 𝐷) · (𝑘1 + 1)

𝑓 (𝑞𝑖 , 𝐷) + 𝑘1 ·
(
1 − 𝑏 + 𝑏 · |𝐷 |

𝑎𝑣𝑔𝑑𝑙

) ,
where

IDF(𝑞𝑖) = ln

(
𝑁 − 𝑛(𝑞𝑖) + 0.5

𝑛(𝑞𝑖) + 0.5
+ 1

)
.

The multiplier B(𝑞𝑖) denotes the amount of boosting associated

with query-term 𝑞𝑖 . Our baseline run always set B(𝑞𝑖) = 1.

3.4 Boosting with Oracle Annotations
For our first experimental run (endicott_unc_boost_oracle), we used

the gold-standard, oracle sentence-level categories to determine

how to boost the terms from each sentence in the final query along

with the topic title. Given an up-boost list of categories, terms from

sentences associated with at least one category in the up-boost list

were given the default boost of 1.0 and terms from other sentences

were down-boosted. To determine the up-boost list of categories and

the down-boost value, we performed a two-dimensional parameter

sweep.

As a first pass, we considered down-boost values between 0.0

and 1.0 in increments of 0.1. For each down-boost value, we used a

simple greedy approach to select which categories to include in the

up-boost list. First, we considered the NDCG@1000 performance

of each category in isolation (i.e., it was the only category in the

up-boost list for that run). Then, we considered three additional

runs where the up-boost list consisted of the top-two, top-three,

and top-four best-performing individual categories. On the union

of the training and development data, we found that a down-boost

value of 0.0 had the best performance. Therefore, we narrowed

our sweep to consider down-boost values between 0.0 and 0.1 in

increments of 0.01. On this sweep, we found that 0.0 was still the

best performing down-boost value.

Across all down-boost values, we found NDCG@1000 perfor-

mance to be highest when including only one or two categories

in the up-boost list. Ultimately, by optimizing for NDCG@1000

performance on the union of the training and development set, our

https://platform.openai.com/docs/guides/embeddings/

Table 1: Classification performance across sentence-level categories.

training set freq. dev set freq. precision recall F1

movie 944 896 0.934 0.984 0.959

character 594 560 0.865 0.918 0.891

social 125 115 0.808 0.878 0.842

temporal 112 102 0.768 0.843 0.804

scene 502 407 0.719 0.887 0.794

category 307 297 0.772 0.798 0.785

context 129 126 0.775 0.794 0.784

production_visual 50 58 0.760 0.655 0.704

origin_language 43 35 0.628 0.771 0.692

hedging 294 389 0.752 0.568 0.647

physical_medium 29 51 0.828 0.471 0.600

object 255 299 0.639 0.545 0.588

location_type 126 199 0.675 0.427 0.523

release_date 34 68 0.765 0.382 0.510

genre_traditional_tone 25 54 0.680 0.315 0.430

search 16 19 0.375 0.316 0.343

genre_audience 8 5 0.250 0.400 0.308

location_specific 11 23 0.455 0.217 0.294

music_compare 4 3 0.250 0.333 0.286

plot 44 133 0.545 0.180 0.271

opinion 17 19 0.235 0.211 0.222

production_audio 6 3 0.167 0.333 0.222

origin_movie 3 23 0.667 0.087 0.154

timeframe_singular 6 10 0.167 0.100 0.125

comparison_relative 35 27 0.086 0.111 0.097

situational_witness 16 6 0.063 0.167 0.091

emotion 0 3 0.000 0.000 0.000

music_specific 0 1 0.000 0.000 0.000

person_fictional 2 8 0.000 0.000 0.000

negation 1 15 0.000 0.000 0.000

person_real 2 16 0.000 0.000 0.000

production_camera_angle 9 11 0.000 0.000 0.000

origin_actor 4 5 0.000 0.000 0.000

quote 7 26 0.000 0.000 0.000

timeframe_plural 1 7 0.000 0.000 0.000

physical_user_location 0 5 0.000 0.000 0.000

situational_count 0 1 0.000 0.000 0.000

cross_media 5 12 0.000 0.000 0.000

situational_evidence 0 2 0.000 0.000 0.000

endicott_unc_boost_oracle run used an up-boost value of 1.0, a

down-boost value of 0.0, and an up-boost list that included two

categories: character and scene. As in all our other runs, every query
included the topic title with a default up-boost value of 1.0.

The following is an example of the Lucene query generated for

Topic 162. Only three sentences were associated with categories in

the up-boost list (i.e., character and scene) and were thus included

in the final query (see Table 2). Giving a sentence a boost value of

1.0 is equivalent to not specifying a boost value at all. Thus, the

query simply includes the topic title and three up-boost sentences

without any up-boost values specified. All other sentences were

excluded.

Topic 162 Lucene query: a group of teens kids maybe did

some kind of experiment and brought these tv characters
to life a group of teens kids maybe did some kind of
experiment and brought these tv characters to life and
then were killed by them it was an old movie like 80s
if not before i can only remember two of the characters
they brought to life one was a purple monster thing and
the other was like some sort of doctor i remember this
one scene when one of the kids were killed because one
of the characters made him laugh to death

scene character
Sentence Gold Gold Conf Pred class Scaled conf
“a group of teens(kids maybe) did some kind of experiment and brought T T -0.22333 0 0

these tv characters to life and then were killed by them

it was an old movie like 80s if not before.”

“i saw it a while back.” F F -0.86156 0 0

“i can only remember two of the characters they brought to life, one was a” T T 0.44558 1 0.45558

purple monster thing and the other was like some sort of doctor.”

“i remember this one scene when one of the kids were killed because one” T T 0.11019 1 0.12019

of the characters made him laugh to death.”

“the film was a gore kind of film to.” F F -0.75090 0 0

“it was a terrible movie but one of those random ones youd find on ion or F F -0.83503 0 0

scifi or spike tv on an off day lol.”

“please help me figure it out” F F -0.84598 0 0

Table 2: The gold-standard annotation (Gold), prediction confidence (Conf), binary prediction classification (Pred class), and
scaled prediction confidence (Scaled conf) for each sentence in Topic 162 titled “a group of teens(kids maybe) did some kind of
experiment and brought these tv characters to life” from the test set for the scene and character categories (scene was only used
in the oracle run, so we’ve left out the prediction-based columns). A threshold of 0 was used in calculating the classification
and scaled confidence for the character category.

3.5 Boosting with Predicted Annotations
Our second experimental run (endicott_unc_boost_pred) is very

similar to our endicott_unc_boost_oracle run. However, our en-

dicott_unc_boost_pred run used predicted (versus gold-standard)

sentence-level categories. Sentence-level categories were predicted

as described in Section 3.2. For each category, we used a weighted

𝑘-nearest neighbor (KNN) classifier to output confidence values

in the range [−1, +1]. Turning these confidence values into binary

predictions requires setting a threshold (e.g., 0.0). Rather than using

a default threshold of 0.0, we used category-specific thresholds by

optimizing for F1 classification performance on sentences in the

union of the training and development set. For example, Table 2

shows the prediction confidence value of each sentence in Topic

162 with respect to the character category and the corresponding

binary classification decision.

Once the predicted categories were established, we used the

same procedure described in Section 3.4 to determine which cate-

gories to include in the up-boost list and to determine the down-

boost value. Our two-dimensional parameter sweep found very

similar results. Ultimately, by optimizing for NDCG@1000 per-

formance on the union of the training and development set, our

endicott_unc_boost_pred run used an up-boost value of 1.0, a down-

boost value of 0.0, and an up-boost list that only included the char-
acter category. Similar to our endicott_unc_boost_oracle run, we

found that excluding sentences without a category in the up-boost

list performed better than down-boosting them by some value

greater than 0.0. As in all our other runs, every query included the

topic title with a default up-boost value of 1.0.

The following is an example of the Lucene query generated for

Topic 162. As shown in Table 2, the first sentence belongs to the

character category. However, the prediction confidence value was

not above the predefined threshold. Therefore, while this sentence

was included in our endicott_unc_boost_oracle run, it was excluded

in our endicott_unc_boost_pred run.

Topic 162 Lucene query: a group of teens kids maybe did

some kind of experiment and brought these tv characters
to life i can only remember two of the characters they
brought to life one was a purple monster thing and the
other was like some sort of doctor i remember this one
scene when one of the kids were killed because one of
the characters made him laugh to death

3.6 Weighted Boosting with Predicted
Annotations

The run file that we submitted for our final experimental run (en-

dicott_unc_boost_conf) was incorrect. It was actually the same as

the run file that we submitted for our baseline run (endicott_unc_-

baseline). In this section, we describe what this run should have

been. In Section 4, we report on results for the correct version of

our endicott_unc_boost_conf run.

This experimental runwas similar to the previous with onemajor

difference. As in the previous approach, sentences without a cate-

gory in the up-boost list were assigned a down-boost value of 0.0

(i.e., were effectively removed from the query). However, sentences

with a predicted category in the up-boost list were not assigned an

up-boost value of 1.0. Instead, the up-boost value was proportional

to the prediction confidence value for the most confident up-boost

category.

The approach proceeded as follows. First, sentences were as-

signed to categories in a weighted fashion. Let KNN(S,C) denote
the confidence value that sentence S belongs to category C (Equa-

tion 1). Additionally, let TC denote the category-specific threshold

used in our endicott_unc_boost_pred approach to make binary

classification decisions with respect to C. If KNN(S,C) < TC , then
sentence S was assigned a weight of 0.0 with respect to category

C. Otherwise, the weighted membership between S and C was set

according to:

KNN(S,C) − TC
1.0 − TC

+ 0.01 (2)

This is a form of min-max scaling. It measures the extent to

which KNN(S,C) exceeds TC .
Finally, sentences with a predicted category in the up-boost list

were up-boosted as follows. If a sentence had one predicted category

in the up-boost list, this sentence was up-boosted according to its

weighted membership to that category. Conversely, if a sentence

had multiple predicted categories in the up-boost list, this sentence

was up-boosted according to the maximum weighted membership

across those categories. The 0.01 in Equation 2 was included to

prevent assigning sentences with memberships at the margin (i.e.,

KNN(S,C) = TC) an up-boost of 0.0.

As with our two previous approaches, we used the same greedy

approach to select which categories to include in the up-boost list.

As with the previous run, including only the character category in

the up-boost list resulted in the best performance on the combined

training and development set. As in all our other runs, every query

included the topic title with a default up-boost value of 1.0.

The following is an example of the Lucene query generated for

Topic 162. As shown in Table 2, based on the prediction confidence

value with respect to the character category, the third sentence is

up-boosted by 0.45558, which is less than half the up-boost value

using oracle categories or binary predictions. The fourth sentence

has an even lower up-boost value of 0.12019.

Topic 162 Lucene query: a group of teens kids maybe did

some kind of experiment and brought these tv characters
to life (i can only remember two of the characters
they brought to life one was a purple monster thing
and the other was like some sort of doctor) ˆ 0.45558
(i remember this one scene when one of the kids were
killed because one of the characters made him laugh to
death) ˆ 0.12018999999999999

4 RESULTS
Table 3 shows results from our four runs in terms of NDCG@10,

NDCG@1000, mean reciprocal rank (MRR), and recall@1000. We

used a two-tailed Fischer’s randomization test [2] to test for statisti-

cally significant differences between all pairs of runs across metrics.

Across all metrics, our three experimental runs outperformed our

baseline run (BM25) by a statistically significant margin. All differ-

ences between our three experimental runs were not statistically

significant.

Our results show four main trends. First, by comparing between

our three experimental runs (i.e., endicott_unc_boost_oracle, en-

dicott_unc_boost_pred, and endicott_unc_boost_conf) with our

baseline run (i.e., endicott_unc_baseline), we can see that ignor-

ing query-terms from sentences associated with specific categories

improves retrieval performance for ToT queries. Second, this im-

provement is more pronounced for metrics that focus on the top

results. This can be seen by comparing the percent improvement

over our baseline approach across metrics. Percent improvement

was higher for NDCG@10 (i.e., 36-45%) than NDCG@1000 (i.e.,

29-34%). Similarly, percent improvement was higher for MRR (i.e.,

37-44%) than recall@1000 (i.e., 16-25%). Third, our KNN classifier

Table 3: Results for our four runs. Percentage values corre-
spond to percent improvement over our baseline run (BM25).
Symbol ▲ denotes statistically significant improvements of
our baseline run (BM25). No other differences between runs
were statistically significant across metrics.

NDCG@10
endicott_unc_baseline 0.0749

endicott_unc_boost_oracle 0.1018 (36%)
▲

endicott_unc_boost_pred 0.1089 (45%)
▲

endicott_unc_boost_conf 0.1033 (38%)
▲

NDCG@1000
endicott_unc_baseline 0.1116

endicott_unc_boost_oracle 0.1439 (29%)
▲

endicott_unc_boost_pred 0.1516 (36%)
▲

endicott_unc_boost_conf 0.1492 (34%)
▲

MRR
endicott_unc_baseline 0.0663

endicott_unc_boost_oracle 0.0907 (37%)
▲

endicott_unc_boost_pred 0.0954 (44%)
▲

endicott_unc_boost_conf 0.0925 (40%)
▲

recall@1000
endicott_unc_baseline 0.3667

endicott_unc_boost_oracle 0.4267 (16%)
▲

endicott_unc_boost_pred 0.4533 (24%)
▲

endicott_unc_boost_conf 0.4600 (25%)
▲

was able to successfully classify sentences in order inform which

query-terms should be ignored in order to improve retrieval perfor-

mance. Across all metrics, retrieval performance using predicted

categories (i.e., endicott_unc_boost_[pred|conf]) was statistically

indistinguishable from the approach that used gold-standard cate-

gories (i.e., endicott_unc_boost_oracle). Finally, there is much room

for improvement. Based on recall@1000, our approaches were able

to rank the correct answer in the top-1000 results for fewer than

half of all test queries.

We were also curious to see whether are runs performed well

for the same or different queries. Table 4 show Pearson correlation

values between pairs of runs across metrics. All correlation values

were high and statistically significant (𝑝 < .05). This trend suggests

that our runs performed well on the same queries.

5 CONCLUSION
We described four submissions to TREC 2023 ToT Track: a base-

line run (endicott_unc_baseline) and three experimental runs that

boosted associatedwith specific categories (endicott_unc_boost_oracle,

endicott_unc_boost_pred, endicott_unc_boost_conf). When incor-

porating sentence-level category annotations, we found a statis-

tically significant increase in all the measures used (NDCG@10,

NDCG@1000, MRR, and recall@1000), with particularly substantial

improvements for NDCG@10, NDCG@1000, and MRR.

Our results suggest that discarding sentences associated with

certain categories removes query-terms that diverge the relevant

Table 4: Pearson correlation value between pairs of runs. All correlation values are statistically significant (𝑝 < .05)

NDCG@10
endicott_unc_baseline endicott_unc_boost_oracle endicott_unc_boost_pred endicott_unc_boost_conf

endicott_unc_baseline 1.00 0.87 0.80 0.79

endicott_unc_boost_oracle 0.87 1.00 0.89 0.88

endicott_unc_boost_pred 0.80 0.89 1.00 0.91

endicott_unc_boost_conf 0.79 0.88 0.91 1.00

NDCG@1000
endicott_unc_baseline endicott_unc_boost_oracle endicott_unc_boost_pred endicott_unc_boost_conf

endicott_unc_baseline 1.00 0.89 0.86 0.84

endicott_unc_boost_oracle 0.89 1.00 0.93 0.92

endicott_unc_boost_pred 0.86 0.93 1.00 0.93

endicott_unc_boost_conf 0.84 0.92 0.93 1.00

MRR
endicott_unc_baseline endicott_unc_boost_oracle endicott_unc_boost_pred endicott_unc_boost_conf

endicott_unc_baseline 1.00 0.87 0.83 0.83

endicott_unc_boost_oracle 0.87 1.00 0.90 0.92

endicott_unc_boost_pred 0.83 0.90 1.00 0.91

endicott_unc_boost_conf 0.83 0.92 0.91 1.00

recall@1000
endicott_unc_baseline endicott_unc_boost_oracle endicott_unc_boost_pred endicott_unc_boost_conf

endicott_unc_baseline 1.00 0.74 0.72 0.63

endicott_unc_boost_oracle 0.74 1.00 0.89 0.77

endicott_unc_boost_pred 0.72 0.89 1.00 0.83

endicott_unc_boost_conf 0.63 0.77 0.83 1.00

document and thus improves precision. Improvements were less

pronounced in terms of recall@1000. This suggests that further

improvements may require introducing additional terms that are

not present in the query. As a future direction, we are consider-

ing combining sentence-level category information with a query

expansion approach.

REFERENCES
[1] Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Zamani, and

Fernando Diaz. 2021. Tip of the Tongue Known-Item Retrieval: A Case Study in

Movie Identification. In Proceedings of the 2021 Conference on Human Information
Interaction and Retrieval (CHIIR ’21). Association for Computing Machinery, New

York, NY, USA, 5–14. https://doi.org/10.1145/3406522.3446021

[2] Mark D. Smucker, James Allan, and Ben Carterette. 2007. A Comparison of

Statistical Significance Tests for Information Retrieval Evaluation. In Proceedings
of the Sixteenth ACM Conference on Conference on Information and Knowledge
Management (CIKM ’07). Association for Computing Machinery, New York, NY,

USA, 623–632. https://doi.org/10.1145/1321440.1321528

A SENTENCE-LEVEL CATEGORIES
The following list describes the 37 sentence-level categories devel-

oped by Arguello et al. [1].

(1) category: describes the movie’s category (e.g., movie, tv

movie, miniseries, etc.)

(2) character: describes a character in the movie.

(3) genre_audience: describes the movie’s target audience (e.g.,

for kids).

(4) genre_traditional_tone: describes the movie’s genre or tone

(e.g., romantic comedy).

(5) location_specific: describes a specific location in the movie

(e.g., the boy lives with his mom in Arizona).

(6) location_type: describes a type of location in the movie (e.g.,

a European castle).

(7) music_compare: describes the movie’s soundtrack (e.g., lots

of electronic music).

(8) music_specific: describes a song in the movie (e.g., the main

character sings “Looking for the Heart of Saturday Night”).

(9) negation: uses negation to describe aspects of the movie in

negative terms (e.g., not scary, but a bit weird).

(10) object: describes a tangible object in the movie (e.g., they’re

in a car that almost crashes into a beast).

(11) origin_actor: describes the nationality or ethnicity of ac-

tors/actresses in the movie.

(12) origin_language: describes languages spoken in the movie.

(13) origin_movie: describes the movie’s region of origin.

(14) person_fictional: references a fictional character (e.g., the

main character looks like Indiana Jones).

(15) person_real: references a real person (e.g., the main character

looks like Harrison Ford).

(16) plot: describes the movie’s plot.

(17) production_audio: describes characteristics of the audio (e.g.,

badly dubbed).

https://doi.org/10.1145/3406522.3446021
https://doi.org/10.1145/1321440.1321528

(18) production_camera_angle: describes cameramovements (e.g.,

the camera suddenly cuts to the monster under the bed)

(19) production_visual: describes the movie’s visual production

(e.g., black and white).

(20) quote: describes a quote from the movie.

(21) release_date: describes the movie’s release date.

(22) scene: describes a scene from the movie.

(23) timeframe_plural: describes the passage of time in the movie

(e.g., decades later, the house is believed to be haunted).

(24) timeframe_singular: describes a time period in the movie

(e.g., set in the 1920’s).

(25) cross_media: describes exposure to the movie through other

media (e.g., trailer, DVD cover, poster, etc.)

(26) physical_medium: describes the physical medium through

which the movie was seen (e.g., on late-night TV).

(27) physical_user_location: describes the physical location in

which the movie was seen (e.g., I watched it in film class).

(28) situational_count: describes the number of times the movie

was seen (e.g., I watched the series once a week).

(29) situational_evidence: describes evidence used to recall con-

textual information (e.g., I watched it around 2006 because I

watched it alongside Hard Candy).

(30) situational_witness: describes other people who watched

the movie (e.g., with my 6-year old nephew).

(31) temporal: describes when the movie was seen (e.g., I rented

it in the early 2000’s).

(32) prevous_search: the sentence describes previous attempts to

re-find the movie.

(33) opinion: the sentence describes an opinion about some aspect

of the movie.

(34) emotion: the sentence describes an emotional response to

the movie.

(35) hedging: the sentence includes mentions of uncertainty (e.g.,

I think it was released in the early 2000’s).

(36) social: the sentence includes a social nicety (e.g., thanks in

advance!).

(37) comparison_relative: the sentence describes something in

relative terms (e.g., the movie stars someone who looks like

Brad Pitt) versus absolute terms (e.g., the movie stars Brad

Pitt).

	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 Overview
	3.2 Predicting Sentence-Level Annotations
	3.3 Baseline
	3.4 Boosting with Oracle Annotations
	3.5 Boosting with Predicted Annotations
	3.6 Weighted Boosting with Predicted Annotations

	4 Results
	5 Conclusion
	References
	A Sentence-level Categories

