Trusted Platform Module Library

Part 3: Commands

Family “2.0”
Level 00 Revision 01.16

October 30, 2014

Contact: admin@trustedcomputinggroup.org

TCG Published

Copyright © TCG 2006-2014

Part 3: Commands Trusted Platform Module Library

Licenses and Notices

1. Copyright Licenses:

e Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to
reproduce, create derivative works, distribute, display and perform the Source Code and
derivative works thereof, and to grant others the rights granted herein.

e The TCG grants to the user of the other parts of the specification (other than the Source Code)
the rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

2. Source Code Distribution Conditions:

¢ Redistributions of Source Code must retain the above copyright licenses, this list of conditions
and the following disclaimers.

e Redistributions in binary form must reproduce the above copyright licenses, this list of conditions
and the following disclaimers in the documentation and/or other materials provided with the
distribution.

3. Disclaimers:

e THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)
THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.
Contact TCG Administration (admin@trustedcomputinggroup.orq) for information on specification
licensing rights available through TCG membership agreements.

e THIS SPECIFICATION IS PROVIDED "AS 1S" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF
ANY PROPOSAL, SPECIFICATION OR SAMPLE.

e Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in
any way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owner.

Page ii TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

CONTENTS
Yo 0] o PP SUPPPTPPTT 1
2 Terms and DEfINITIONScouuiiiii ittt e e e et e e e e e s e et b e s e e s s ee e s ab s eeeasseesbaaa e seeeserebabaanaas 1
3 Symbols and abbreVviated tEIMS..........uuiiiii e e e e s e s e e e e e e s e ar i r e e e e e e e e nnrrees 1
O [0 v £ o] o [P 1
o R 1 | {(o Yo U Tox £ [o [T 1
o -1 o] (3 D 1<T oo = 1 0] [T 1
4.3 Handle and Parameter DEMAICATIONoiieuuniiiiii e it e e et e e et e e s ea e e e se e sesaaa e ssssassesstasesesanneees 3
4.4 AuthorizationSize and ParameEterSIZEoouu ittt e et e e e e s eeeraa e eaes 3
LI O] 141 4 F= U To I o {0 Tt 1TY Vo [PR 4
L 70 S 121 {0 Lo [1Tox £ o 4
STV 7010 0 [=T o (o Il o [SF= To [T gV Z= 1o F= Lo o IR 4
LTG0 To (ST @ g T=Tod - 4
N = =Y [0 | TSI AN (=T BV £= 11T F= (o o S 5
SR S =13 (o] A (=T= RV 1o £ 4 (o] o (AT 6
SN I A \U (g Lo) (V4= 11 o) g N O g 1=Ted T 7
5.7 Parameter DECIYPLONoii ittt e et e e e st e e e sabb e e e e anbb e e e e abbeeeeabreeeean 8
5.8 Parameter UNMarshaling..........cooiuiiiiiiiiiiiiiiiee ettt e sbr e e bneee e 8
5.9 ComMMAaNd POSE PrOCESSING ...veeeiiiiiiiieiiiite ettt sttt ettt ettt e e s ibe e e s asbe e e e s sabe e e e snbneeesanneeeas 10
B RESPONSE VAIUEBS ... ————— 12
LG 701 R 1= T S SUPPPTPPPT 12
6.2 RESPONSE COUBS ... ——— 12
7 Implementation DEPENAENTccoo i ————— 15
8 Detailed ACtIONS ASSUMPLIONS........cciiiiiiiiiec ettt ettt 16
70 A 191 0 To [0 T3 1o o KU 16
S A S (= o] (o Tod X1 o o P PP OPP PP 16
8.3 POSE PrOCESSING .. .eteeeei ittt ettt e skttt e h bt e e h b bt e e a b et e a e e s aneea s 16
1S B = £ ol U o TP PP PP PP PPPPRPPRPPPPR 17
Lo T8 A 191 0 To [0 T3 1o o KU 17
LS 52 I =V [o1 SRRSO PRRPRR 17
LS TR T I o IV S 7= 1 (V] o JR RSP PRRPRRN 19
9.4 TPM2_SRULAOWN ..ot e e e e et e e e s e et e e e e e e e s e ababaeeeeaeeesantabeeeeaaeaesnnns 26
0 1= T 1T S 30
10 20 A 00 o 18 T (o) 30
10.2 TPM2 S TS .. tiiiii ittt ettt ettt e ettt e e st bt e e e st bt e e e aabb e e e e snbb e e e e anbaeeeean 31
10.3 TPM2_INCremMentalSEIfTESE ...ccoi ittt et e et e e et e e e s beeeeeen 34
10.4 TPM2_GEITESIRESUILceiiiitiiiii ittt st e e e st e e e aabe e e e e anbb e e e e sbbeeeesbeeeeeans 37
11 SESSION COMIMEANGS ..eeneiitee ettt e et ettt e e et et ettt e e e s et e eeeeaa s et e e eses et eeesaase s e s sresataseeesanrereanaeserenans 40
11,1 TPM2_StartAUINSESSIONoeiiiiiiiiiiei ittt sttt e e e st et e e e sbe e e e e snbbeeeesnbaeeeesbbeeeeans 40
11.2 TPM2_POlICYRESIANTeteeiieieie ittt ettt e e e e ettt et e e e e e e s n b b be e e e e e e e e s anbabaeeeaaeeeaanns 45
D2 @ o] [=Tox 00100101 F=T o To < TP PTTP R 48
N R o o O (=T 1 USSP 48
i W Y. b o - Lo [P P PP PPPPTRN 54
Family “2.0” TCG Published Page iii

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

2 T I b o = Vo v =1 = R 58
12,4 TPM2_REAUPUDIICveiiiiiiiiie sttt ettt ettt e st e e e st e e e st e e e e sntaeeeesstbeeeesntaeeeesnsaeaeeans 63
12.5 TPM2_ACHVAIECTEUENTIALcoi ettt e e e e st e e e e e e e s sennbareeeeaeeeeaanns 66
i ST W D Y = LT Yo (=T 4T | PREPRR 70
2 A W Y/ b U 1 1= - S SREPRR 73
12.8 TPM2_ObjJeCtChangEAULN ... e e e e e e e e st r e e e e e e e ssnbnreeeeeeeaeaanns 76
RS I 07 o] o= Vilo] W @e] 431 s 4= 15 [0 PR 80
13,1 TPM2 _DUPICALE ... ceiiieieie ettt e ettt e e e e e s e e e e e e e s et et e e e e e e e s saantabaeeeeeeassanntnteneeaeeaeannns 80
13.2 TPMZ_REWIBP .eetieiiiiititieit ettt ettt e e e e e ettt e e e e et b ettt e e e e e st ere e et e e e e e s srrnreeeeeenenane 84
13.3 TPMZ_IMPOIT ittt e e et e e e e e sttt e e e e et e et e e e e e e e s n e e e e e e e neaae 88
14 ASYMMELIC PHIMITIVES ...ttt e s e bt e s e s e e e anbe e e e e nees 94
I R 1 o o To 18 ox 1 o o SRR PRRPR 94
i W e D Sy AN =l ol Y/ | TR PPPPRRN 94
14.3 TPM2_RSA DECIYPL .uteiieiiiiiieeitiiee ittt e e e sttt e e et te e e s baeeeessbaeeeesnbaeeeesstaeeeeantbeeeeanbbeeeesabbeeeesnsseeeesns 99
144 TPM2_ECDH_KEYGEN ...eiiitiiiieiiiiee ettt ettt e sttt e sttt e sttt e e st e e e s sstaeeesnstaeeesnsbeeeesansseeesnnnneeas 103
145 TPM2_ECDH_ZGEN .. .tiiiiiiiiiie ettt etet e ettt ettt a e sttt e e st e e e s bt e e e s aste e e e s asbaeeesasbeeeesanbbeeesannaeeas 107
14.6 TPM2_ECC _PaAraMeterS ...ccuuuuuiiiiiiiiiiiiiiisiee et ettt ss e e et e et e e e s e e e as s e e et e e e ta bt e e e e e e aesbaaaneeeas 110
147 TPM2_ZGEN_2PRASEeiiiiiiiiie ittt ettt sttt ettt e e st e e sttt e e s enb s e e e s nbaeeesanbbeeesannaeeas 112
15 SYMMELIIC PrIMILIVES . ..eieiiieie ettt e ettt e e e s s st e e e e e s e s st e e e e e e e s sanssbaeeeaaeeesanrnneees 116
T8 R 1o To 11 ox 1 T o I SRS SPUPSEPR 116
15.2 TPM2Z2_ENCIYPIDECIYPL. .. eeeiieiiiiieiieeie ettt e e e e s e e e e e s e s e reaeeneaae 118
TG T I Y =T o SRS PPPPPRRPR 122
15,4 TPM2 _HMAC ..ottt ettt e ettt e e e e e e e ettt et e e e e e sa et e bae et aaeeeaanteteeeeaaeeesanntnseeeneaeseannns 125
16 RanNdOmM NUMDEI GENEIATON..........uieiiiiiee ittt e e e e e e et e e e s e st e e e e e e e e e s e aenbeeeeeaeeeeaannnrnees 129
G A I /2 €= 1 = 1 o [129
G I 1 =V o [132
17 HaSh/HMAC/EVENT SEQUENCESuuuuuuutururuiuiuiutureternretstetnteesrererarererere.—.—.—.———————.—.—.—.—.—..——.—.—.———————.———. 135
A R 1 ¢ (o To 18 ox 1 o o OO PP PPPPUPPUPPTN 135
17.2 TPM2_ HMAGC _STAI .. .eiiiiiiiee ittt e et e e e e e s ettt eeee e e s s st st eeaeaeeeaaanssteeeaaaesssannsnseeeneaessaanns 135
17.3 TPM2_HaShSEQUENCESTANcitiiiiiiiiiii ittt ettt e e e e s nnbn e e e s eaeneeas 139
17.4 TPM2_SeqUENCEUPUALEeoiiiiiiiiie ittt ettt ettt e ettt e e bt et e e s nbn e e e s nnnneeas 142
17.5 TPM2_SeqUeENCECOMPIETE.....ccoiiiiiii ittt ettt e e e e s naeneeas 146
17.6 TPM2_EventSequenCeCOMPIELEc.uiii ittt 150
18 AHESIAtION COMIMANGASottt ettt e e e e e bbbttt e e e e s e bbb e et e e ae e e s e anbbbeeeeeeeeeaannnreees 154
S0 R 1o (o o 18 ox 1o o PP PP P PPPPPUPPUPPTN 154
T I oY D =T 4) Y SRRSO 156
18.3 TPM2_CertifyCrEALIONceiii ittt ettt e e e e e s bbb et e e e e e e e s annbabreeeaaeeeaanns 160
TR I oV D @ 1H o] (Y SRS 164
185 TPM2_GetSeSSIONAUAIDIGESTeiiiiiiiiieitiiie ettt e b e e s eneaeeas 168
18.6 TPM2_GetCommandAUdIIDIGESTcuuiiiiitiiiee ittt e e eeaeeas 172
S A Y = I =SOSR 176
19 EPNEMEIAl EC KEBYS ...ttt ettt e et e e e es bt e e e enbe e e e e enbee e e e nnbeeeeenees 180
0 R 1o To 11 od 1 o o IO OURSE 180
I T I oY D ©o] 1 111 o1 SRS 181
Page iv TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

20 Signing and Signature Verification

21 Command Audit

23 Enhanced Authorization (EA) Commands

24 Hierarchy Commands

Trusted Platform Module Library

19.3 TPM2_EC _EPhemeral.......ccoooiiiiiiiiiiiaiiiiiiieeee et

20.1 TPM2_VerifySIgNatureocoueiieiiiiiee e
20.2 TPM2_SIQN 1itiiiiieeiiee ittt

P22 0 R [011 7o To 11 ol 1o] o [PRSPPI
21.2 TPM2_SetCommandCodeAuditStatusccccccvvereeeiiiciiiieeree e

22 Integrity Collection (PCR)ciiieiiiiiiiieieee et e e st e e e snranee e

27205 N | 11 7o To [1 Tox 1o o AU PP UPRR P
22.2 TPM2_PCR_EXIENAeiiiiiiiiiee ittt
22.3 TPM2_PCR _EVENL ..ottt
224 TPM2_PCR _REAA ...ttt
225 TPM2_PCR_AIOCALEeiiiiiiiiii ettt
22.6 TPM2_PCR_SEetAUtNPOICYccooiiiiiieiiiiiie e
22.7 TPM2_PCR_SetAUtNValUE.......cccoiiiiieiiiiiie e
22.8 TPM2_PCR _RESEL ..eiiiiiiiieiiiiiie ettt sttt e e
229 _TPM_Hash_Startccccoiiiiii
2210 _TPM_Hash _Dataccccooeieiiii e
22,11 _TPM_HAaSh_ENdcoiiiiiiiiiiiii e

P22 25 I [11 70 To [Tox 1o o PSR
23.2 Signed AUthOrization ACHONScuuviieiiiiiie e
23.3 TPM2_POlICYSIGNEAoveiiiiiiiiie et
23.4 TPM2_POlICYSECIEL ..ccceeie e
23.5 TPM2_POlICYTICKELccc oo
23.6 TPM2_POlICYOR ...cciiiiiiiiiiiiie ittt
23.7 TPM2_POlICYPCRoiiiiiiiiiiieiite sttt
23.8 TPM2_PolicyLocalityccocoeiiieiiii e,
23.9 TPM2_POICYNV ..ottt e
23.10 TPM2_PolicyCOUNTEITIMETeiiiiiiiieeiiiiee ettt
23.11 TPM2_PolicyCommandCoOdeeeieiuiriieiiiiiie et
23.12 TPM2_PolicyPhySiCalPreSENCeccciiuuiiiiiiiiiieiiieie e
23.13 TPM2_PolicyCPpHASH........coiiiiiiiiiiiii e
23.14 TPM2_PolicyNameHash.............ccccoeeie i,
23.15 TPM2_PolicyDuplicationSelect............cccccoeeeiiii i,
23.16 TPM2_POliCYAULNONIZEccoc oo,
23.17 TPM2_POlICYAUtNVAIUEoeiiiiiiiiciie e
23.18 TPM2_POliCYPasSSWOId.........ccooeeeiiie e
23.19 TPM2_POliCYGEetDIGEST.....ciiiiiiiieiiiiiee it
23.20 TPM2_POICYNVWIIEENceiiiiiiiieiiiiee e

24.1 TPM2_CreatePriMarycooiueiieiiiiiee ittt
24.2 TPM2_HierarchyCoNntrolc.ccooiiiiiiiiiiiiie e
24.3 TPM2_SetPrimaryPOliCYccccooiiiiiiiiiiiea et
24.4 TPM2_ChangePPS ...ttt
245 TPM2_ChangeEPScooiiiiiiiii e

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page v
October 30, 2014

Part 3: Commands Trusted Platform Module Library

b T I oV 2 1 =T | PSRRI 326
247 TPM2_ClearCoNntrolccooeiiiii i 330
24.8 TPM2_HierarchyChangeAULNooiiiiiiiiie e 333
25 Dictionary AttACK FUNCHONSciiiiiiiie ittt ettt e et e e e st e e e snbb e e e e snbaeeessbbeeeesnbbeeeeans 336
P2 10 R [011 7o 18 ol 1o o [PP PRP 336
25.2 TPM2_DictionaryAttaCKLOCKRESELccciiiiiiiiiiiie e e e s e e e e s aeeeee s 336
25.3 TPM2_DictionaryAttaCKParameterS.ccoiiiiiiriiiiee e e it e e e e s e s e e e e e e s s sabaae e e e e e s s e sanrraeeeeees 339
26 Miscellaneous Management FUNCLHONSiiuuiii ittt e et e e s b e e s sbeeeeeans 342
b2 20 A [11 (o To [Tox 1 o T o TP 342
26.2 TPM2_PP_COMMANAS .. .tttiiiiiieiiiiitiieiit ettt e e e e ettt e e e e e e s s sns et e e e e e e s s annbaseeeeaeesesannbrneeeaeens 342
26.3 TPM2_SEetAIgOMTNMSELcooiiiiiieiiiiii et a e e s e e e 345
A =1 (o U oo = Lo L= TP PP P PP P UPPPRPOPPPPPN 348
b2 A% T | 1 o To [o 1o T o TSP 348
27.2 TPM2_FIeldUPGradeSTarto iiiiiieeie ettt e e e e e st r e e e e e e s e snnbrneeeaeeas 350
27.3 TPM2_FIeldUpPGradeDatac.ooiuririiiieeaiiiiieie ettt e e e e s et e e e e e e s e snnbreeeeaeeas 353
27.4 TPM2_FIrMWArEREAM.ueeiiiiiiiiiiii ittt e e e s et e e e e e e s e st e e e e e e e e e e s annbreeeeeaens 356
P4 B 0] 011> (M 1Y/ =T F=To =T o aT=T o | SO RPPPP PP 359
P2 < 20 R [11 {0 To [1 o 1o o EU TP UTP TR PPOPPPPP 359
28.2 TPM2Z_CONEXISAVE.eutiieiiieeeii ittt ettt e e et e e e s e st et e e et e s r e et e e e s na e e e eee s 359
28.3 TPM2_CONEXILOAMAeeiieiitiiie ittt ettt ettt e et e s ettt e s et e e e anbn e e e enbneeeeneee 364
28.4 TPM2_FIUSNCONIEXEeeiiieiiiiie ettt et e s e e s et e s abb e e e nbee e e e neee 369
28.5 TPM2_EVICICONIIOL...cciiiiiiiiiiiiiiie ittt ettt et e bt s et e e et e e s enbe e e e e eees 372
A B O (o o3 = o o B I8 1= £ PP PRSRR 377
29,1 TPM2_REAUCIOCK .. .cciiutiiiii ittt ettt sttt et e et e e e st e e e st e e s annbe e e e enbeeeeesbeeeesnees 377
202 TPM2_CIOCKSELueieiiiiiie e iieiee ettt e ettt st e e ettt e e e ettt e e e et b e e e ennbe e e e annbeeeesnbeeeeansbaeeeenres 380
29.3 TPM2_CIOCKRAIEAUJUSTcceiiiiiieiiiiiie ittt ettt st e s e e ettt e e s st e e s st e e e ansbeeeeenbeeeeanneaeeeennees 383
30 Capability COMMANTSueiiiiiiiiiiiie ettt e e e e e bbbt e e e e e e e s s bbb e e e e e e e e e aanbbbeeeeaaeaeanans 386
110 15 R [11 7o To [1 Tox 1o T o EUU TP P UUP P PRI 386
30.2 TPM2_GetCapability.........coiiiuuiiiiiiiii ettt 386
30.3 TPMZ_TESIPAIMMS ...ttt ettt e e e s et e e e s e e e e e e s e e ee s 394
3 A o g B Yo 1= 1] (I (o] = o = PP UPPPRPOPPPRP 397
31 A 1 1 o To [o 1o T PSP 397
1 VAV 0 11 ¢ (=] £ T 398
31.3 TPM2_ NV _DEfINESPACE......ccc oo 399
31.4 TPM2_NV_UNAefiNESPACE.......ccco oo 405
315 TPM2_NV_UNdefineSPaceSPeCial.........ccoui it 408
31.6 TPM2_NV_REAUPUDIICciiiiiiiieiiiiee ittt et e e st e e e et e e e s ntee e e e nneaeaeennees 411
3 A I oV 2 NN TV) (= SRR 414
31.8 TPM2Z_NV_INCIEIMENEeiiiiiiiieeie ittt s et e e e e s e e et e e e s e s r e e e e e e s e s nnnbrnreeeeeas 418
31,9 TPM2 NV _EXIENUoivieeeeeeeeeeee et e s e s sttt e ettt et s et eeeseseseseansnanans 422
31.10 TPM2 NV _SEIBILScvvvieeeeeeeeeeeeteeeeetete et eeseseses s s s s s s et et eteseseseseteteseae e seseseseseseseseeeeesnananas 426
31,11 TPM2_ NV _WIBLOCK ... ieeeee ettt s e s s s s eseseseseseseae et ete e sesesesesesesesnensnansnanas 430
31.12 TPM2_NV_GIODAIMIEELOCKcciiiiiiieiiiiiie et 434
3 e T I oV 2 VA L= Vo PSP 437
Page vi TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

31.14 TPM2_NV_REAALOCKeiiittiiiiie ettt ettt ettt ettt ettt et ss e e e sbe e e sbae e s abe e e sabeesabeesbeeesnbeeannneans 440
31.15 TPM2_NV_ChangBAULNooiiiiiii ettt ettt e s be e e snbe e nee e 444
31,16 TPM2_INV _CITIY .eeetiiiiiiei ettt et et e bt e s et e s e s e e e enbe e e e e e 447
Family “2.0” TCG Published Page vii

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

Tables

Table 1 — Command Modifiers and DECOTALION...........cicvvriirieiree et e e 2
LI Lo Lo A ST = T o T - L (o] PSPPSR 3
Table 3 — UNMarshaling EITOIScoiiiiiiiiiiieiie e s et e e e e s s s e e e e e e s s st e e e eee e s s nantaneeaaeaessnnnnnnneeeaeeeaanns 10
Table 4 — Command-Independent RESPONSE COUESceiiiiiiiiiiiiiee ittt e et e e ee e snnneee e 13
Table 5 — TPM2_Startup COMMANT..........ueiiiiiiiiieiiiiee ettt et e e s st e e e e sbe e e e s sbreeessabreeeeans 22
Table 6 — TPM2_STartup RESPONSEccoiuuiiiiiiiiiee ettt ettt et e e st e e e e abe e e e e sbe e e e e abreeesaabreeeeans 22
Table 7 — TPM2_ShutdowWn COMIMEANGuuiiiiiiiiiiiiiieie et e e e e e e s et eeaaesesanbnbneeeaaeeeaanns 27
Table 8 — TPM2_SHhUtdOWN RESPONSE.eiiiiiiiii ittt ettt sttt et e e e st e e e abe e e e e abreeesabreeaeans 27
Table 9 — TPM2_SelfTESt COMMANGuuiiiiiiiiiiiiiiieie e e e e e e s et e e e e e s e s snbnreeeeaaeeeaanns 32
Table 10 — TPM2_SelfTESt RESPONSEcviiiiiiieeie ittt e e e e st e e e e e et s s e e e e e e s s st e e e aaesessntntaeeeaaeeeaanns 32
Table 11 — TPM2_IncrementalSelfTest COMMANGccoeeiiiiiiiiiiriie e e e e e e e e e e 35
Table 12 — TPM2_IncrementalSelfTESt RESPONSEccvevviiiiiiiiieeeeeeee e 35
Table 13 — TPM2_GetTestResult COMMANTcoovvviiiiiiiiiceeee e 38
Table 14 — TPM2_GetTeStRESUIt RESPONSE.......cccveiiieiiiei e 38
Table 15 — TPM2_StartAuthSession ComMmandcoovvviiiiiiiii e 42
Table 16 — TPM2_StartAuthSESSION RESPONSEuviiiiiiiiee ettt e et e e e sbr e e e sbneeeean 42
Table 17 — TPM2_PolicyRestart COMMEANGc.oiiuuiiiiiiiiee ittt e e sbr e e e e sbneeeean 46
Table 18 — TPM2_POlICYRESIAI RESPONSEeeiiiiiiiiiiiiiee ittt ettt e et e e s sbr e e e e sbneeeean 46
Table 19 — TPM2_Create COMMENGueiiiiiiiiei ittt e et e e e st e e e e sabe e e e e sbreeeeabneeeeans 51
Table 20 — TPM2_Create RESPONSEuieii i iiiiee ettt ettt e et e e e st e e e st b e e e e aba e e e e sbbeeeesbbeeeeabreeeeans 51
Table 21 — TPM2_Load COMMEANTccoiiiiiiiiiiiee ittt et e e st e e e sbb e e e e sbbeeeesbreeeeaas 55
Table 22 — TPM2_Load RESPONSE.......ccieiiiiieee e 55
Table 23 — TPM2_LoadExternal Command..............cooviiiiiiiiiiiiiee e 60
Table 24 — TPM2_LoadEXternal RESPONSEccovviiiiiiiiie e 60
Table 25 — TPM2_ReadPublic Command..............cccooiviiiiii e, 64
Table 26 — TPM2_ReadPublic RESPONSEcocoviiiiiiiiie e, 64
Table 27 — TPM2_ActivateCredential CoOmMMANGocuiiiiiiiiii e 67
Table 28 — TPM2_ActivateCredential RESPONSEccoiiiiiiiiiiiiee ettt ee e 67
Table 29 — TPM2_MakeCredential COMMANGcoiiiiiiiiiiiiiee et sbree e 71
Table 30 — TPM2_MakeCredential RESPONSEuuiiiiiiiiieiiiiie ettt ettt e e sbaeeeean 71
Table 31 — TPM2_UNSeal COMMEANGuuiiiiiiiiee ittt ettt e e e st e e e snbb e e e e snbbeeeesnbreeeeans 74
Table 32 — TPM2_UNSEal RESPONSEuviieiiiiiiie ittt ettt e ettt e e e sttt e e e st et e e e snbe e e e e snbbeeeeanbreeeeans 74
Table 33 — TPM2_ObjectChangeAuth COMMEANG.........ccoiiiiiiiiiiiieie e e e e 77
Table 34 — TPM2_ObjectChangeAuth RESPONSEuiiiiiiiiiiiiiie et e e e e e 77
Table 35 — TPM2_Duplicate COMMANGcoiiiiiiiiiiiiieie ettt e et e e e e e e s anbebeeeeaaeeeanns 81
Table 36 — TPM2_DuUpliCAte RESPONSE........ueiiiiiiiiiiitiieieie ettt et e e e e e e s s bbb e e e e e e e e s anbebeeeeaaeaeaanns 81
Table 37 — TPM2_ReWrap COMMEANGuuiiiiiiiiiiiiiiieet ettt e e e e e e beeeeeae e e e e absbaeeeaaeseaanbnbseeeaaeeaaanns 85
Table 38 — TPM2_REWIaP RESPONSEuueiiiiiiieiiiiitiieeet e ettt et e e e e e st e et e e e e e e s e bbbeeeeeaeseaanbnbseeeaaeeeaann 85
Page viii TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

Table 39 — TPM2_Import Command.........cccuveeveeeeiiiiiiieeee e
Table 40 — TPM2_IMpPOort RESPONSEcccvuiiiiiiie et e e e e
Table 41 — Padding Scheme Selectioncccceveeeiiiciiiiieec e
Table 42 — Message Size Limits Based on Padding...........ccccccueeeiiiieeenniiieeens
Table 43 — TPM2_RSA_Encrypt Command............cceeeriimeeeiniiieeeiiieeeesiieeeens
Table 44 — TPM2_RSA_ENCrypt RESPONSEceviiiiiieeiiiiiee ettt
Table 45 — TPM2_RSA_Decrypt CoOmmandcccceeeiiiieeiiiiieee e
Table 46 — TPM2_RSA_DecCrypt RESPONSE.......ccciiiiiieiiiiieeeiieee et e e
Table 47 — TPM2_ECDH_KeyGen Command..........cccueeeveieeiiiiiiiieieeee e
Table 48 — TPM2_ECDH_KeyGen RESPONSEccccvvvveereeeeeiiiiiieeeeeee e e sennnines
Table 49 — TPM2_ECDH_ZGen Commandcccoecuviimeeeeeeiiiiineeeeee e e ssnnenes
Table 50 — TPM2_ECDH_ZGEeN RESPONSE ...eevvveeeieiiiiiiieeeeeeseiiiiveeeeee e e sennnenens
Table 51 — TPM2_ECC_Parameters Command............ccccccvevvvvviieiiieiiieieneneee,
Table 52 — TPM2_ECC_Parameters RESPONSEccccevvvvveviviiiiiiiieieiiieeeeeeee
Table 53 — TPM2_ZGen_2Phase Command...........cccccccevvviviiiiiiiiiiiiiieieeeeeeee
Table 54 — TPM2_ZGen_2Phase RESPONSEcccuveeeiriiieeiiiiiee e iiieeeesiieee e
Table 55 — Symmetric Chaining ProCESScuviiiiiiiiiiiiiiee e
Table 56 — TPM2_EncryptDecrypt Command............cccovuveeeiiiiieeeiiieee e
Table 57 — TPM2_EncryptDecrypt RESPONSEcocvveeeiiiiieeeiiiiee et
Table 58 — TPM2_Hash Commandcc.cooiiiiiiiiiiieeiiieee e
Table 59 — TPM2_Hash RESPONSEccoocuiiiiiiiiiieiiiiiee e
Table 60 — TPM2_HMAC Command............ccccccveveiiiiiiiiiiieieeeeeeeeeeeeeeeeeee
Table 61 — TPM2_HMAC RESPONSEccoeveviieieiiieieieeeeeeeeeeeeeeeeeeeeeeeee e,
Table 62 — TPM2_GetRandom Command...........ccccccveveviviiiiiiiiiiiiceeececeeeeeeee
Table 63 — TPM2_GetRandom RESPONSEcccvvveveviiiiiieieieieeeieeeeeeeeeeee e
Table 64 — TPM2_StirRandom Commandcccccveveveviiiiiiiiiieieceeececeeeeeeee,
Table 65 — TPM2_StirRandom RESPONSE.........ueiiiiiiieeiiiiiee e
Table 66 — Hash Selection MatriXcccceiiiiiiiiiiiiee e
Table 67 — TPM2_HMAC_Start Commandcoooueeeiiiieeeiiiiiee e eiieee e
Table 68 — TPM2_HMAC_Start RESPONSEeeeiiiiieeiiiiiee et
Table 69 — TPM2_HashSequenceStart Command..........cccceeoevcvvvieereeeeeiinnenen,
Table 70 — TPM2_HashSequenceStart RESPONSEccvvveeviiiiviieeieeeesiiiieiees
Table 71 — TPM2_SequenceUpdate Commandcccceeeeeiiiiiiiieneee e,
Table 72 — TPM2_SequenceUpdate ReSpONSe........cc.ueeeveieriiiiiiiiiiieee e
Table 73 — TPM2_SequenceComplete Commandcccccoviiiiiiiiieeennnininnnen.
Table 74 — TPM2_SequenceComplete RESPONSEceevveriiiiiiiiiiieeeeiiiiiieee
Table 75 — TPM2_EventSequenceComplete Commandcccccceveeeeriiiinnenn.
Table 76 — TPM2_EventSequenceComplete RESPONSE.........cccevveeeeeeeeiiiiiinenn.
Table 77 — TPM2_Certify COMMANG.......c..ooeiiiiiiiiiiiiiee e

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page ix
October 30, 2014

Part 3: Commands Trusted Platform Module Library

Table 78 — TPM2_Certify RESPONSEccoiieiiiieiiiee e e e sttt e e e e s st e e e e e s s st e e e e e e s e s snntaaneeeeeesaasnrenneeeees 157
Table 79 — TPM2_CertifyCreation COMMANcuvviiiiieeeiiiiiiiiie e e e e s s sreee e e e e s s s e e e e e e s s ennrneneeeees 161
Table 80 — TPM2_CertifyCreation RESPONSE.......ccciiiuiriiiiie e e i e siietee e e e e s s sstaere e e e e e s s snntraereee e e s e snnrreneeeees 161
Table 81 — TPM2_QUOtE COMMANGooiiiiiiiiiiee et e et e e e e e e s et e e e e e e s s s anbeeeeeeeeesasnnbeeeeeeaens 165
Table 82 — TPM2_QUOLE RESPONSE ...ttt e e e e s ettt e e e e e e s e s sanb b e e e e e e e e s e annbeeeeeeeens 165
Table 83 — TPM2_GetSessionAuditDigest COMMEANGcoouuiiieiiiiiieiiiiie et 169
Table 84 — TPM2_GetSessionAuditDIgeSt RESPONSEciiiuiiiiiiiiiiiieiiiiee ettt 169
Table 85 — TPM2_GetCommandAuditDigest COMMANoooiiiiiiiiiiiiieiiiie e 173
Table 86 — TPM2_GetCommandAuditDIigeSt RESPONSEccuuuiiiiiiiiieiiiiie ettt 173
Table 87 — TPM2_GetTime COMMANouuiiiieeeieiiiriieiee e e s s siirrer e e e e s s ssntere e e e e e e s s snsnrrarreeeeesaansnrenneeeees 177
Table 88 — TPM2_GetTIME RESPONSEuuiiiiiiieeeieiiiriee et e e e s s ssterrereeeessssstraereeeeesasanrraereeeeesaanssrrreeeeees 177
Table 89 — TPM2_Commit COMMEANG..........uuuiiiieeeiiiiieiieeree et s siitrrrereeeesasrrrererereeesasasnrrarreeeeesaansnrsneeeeees 182
Table 90 — TPM2_COMMIt RESPONSEcceeieiiieieieeeeeeeee ettt ettt 182
Table 91 — TPM2_EC_Ephemeral Command............ccccoovviiiiiiiii et 187
Table 92 — TPM2_EC_Ephemeral RESPONSEcccoviiiiiiiiiieeee ettt 187
Table 93 — TPM2_VerifySignature COMMEANG.........c.uuiiiiiiiiiiiiiiie et 190
Table 94 — TPM2_VerifySignature RESPONSEcocuuiiiiiiiiiie ittt re e nanneeas 190
Table 95 — TPM2_SigN COMIMANccciiuiiiiiiiiiii ittt e e tbe e e s rab et e e s abe e e e s anbreeesanneeeas 194
Table 96 — TPM2_SigN RESPONSEoeiiiiiiiieiiiitt ettt ettt ettt et sb bt e e s atbe e e e s tbe e e e s atbe e e e saabreeesanneeeas 194
Table 97 — TPM2_SetCommandCodeAuditStatus Command.............cooviiuiiiiiiieeriniiiiiieee e sesieeee e 199
Table 98 — TPM2_SetCommandCodeAuditStatus RESPONSEcccueeieiiiiiieiiiiiie et 199
Table 99 — TPM2_PCR_Extend Commandcoovviiiiiiiiii e, 204
Table 100 — TPM2_PCR_EXtend RESPONSE.......cccveieiiiiiiieieeeeeee ettt 204
Table 101 — TPM2_PCR_Event Commandcoooviiiiiiiiii e 207
Table 102 — TPM2_PCR_EVENt RESPONSE.......cocieieieiiieieeeeee ettt 207
Table 103 — TPM2_PCR_Read Command.............ccceeveiiiiiiiie ettt 210
Table 104 — TPM2_PCR_REAU RESPONSEuvviiiiiiiiiie ittt sttt sttt ettt ettt e e e e e abreaesnaneeeas 210
Table 105 — TPM2_PCR_AIOCAte COMMEANGciiuiiiiiiiiiiieiiiiie ettt e s sanneeas 213
Table 106 — TPM2_PCR_AIIOCAtE RESPONSEcoiiiiiiieiiiiie ettt ettt ae e sanneeas 213
Table 107 — TPM2_PCR_SetAuthPolicy COMMEANGc.uuiiiiiiiiieiiiii e 216
Table 108 — TPM2_PCR_SetAuthPoliCY RESPONSEcuviiiiiiiiiieiiiiie et 216
Table 109 — TPM2_PCR_SetAuthValue COMMANGc..uiiiiiiiiiiiiiiii e 219
Table 110 — TPM2_PCR_SetAuthValue RESPONSEuceiiiiiiiiiiiiii et 219
Table 111 — TPM2_PCR_Reset CoOmMMaNdccoviviiiiiiiiiie e 222
Table 112 — TPM2_PCR_RESEL RESPONSE.....cciiiiiiiiiitiiii ittt e e e e e s e ee e e e e e e e e snnbeeeeeaeeas 222
Table 113 — TPM2_PolicySigned COMMANGccoiiuiiiiiiiieeeie it e e eeeeae s 238
Table 114 — TPM2_PoliCySigNed RESPONSEcccciiiiiiiiiiiiiia ettt ettt e e e e e e e e e s e annbeeeeaaeeas 238
Table 115 — TPM2_PolicySecret COMMANGcooiiiuiiiiiiiaaaia ittt e e e e e e s eenbeeeeeeeeas 243
Table 116 — TPM2_POlICYSECIet RESPONSE.cuiiiiiiiie ittt ettt ettt et a e s e e s sebeeeesanneeeas 243
Page x TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

Table 117 — TPM2_PolicyTicket Commandcocccvveeiieeeeiiiiiiieee e
Table 118 — TPM2_PolicyTicket RESPONSEcceeevivivviiiiieee et e
Table 119 — TPM2_PolicyOR Commandcccovviiiiiiieeeeeeiiiiiieeee e e sennenes
Table 120 — TPM2_POlICYOR RESPONSE.....ccoiiuiiiiiiiiiee ittt
Table 121 — TPM2_PolicyPCR COmMMANGcccoiiiieeiiiiieee et e e
Table 122 — TPM2_POlICYPCR RESPONSEvvieiiiiiieeeiiieee et
Table 123 — TPM2_PolicyLocality Commandcccovuveeeiiiiieeniiiiee e
Table 124 — TPM2_PolicyLocality RESPONSE.........cccuviveiiiiiieiiiiiee e
Table 125 — TPM2_PolicyNV Command............cccoviuiieeiiiiieeiiiiiee e
Table 126 — TPM2_POliCYNV RESPONSEuviiieieeeiiiiiiiiieeee e sesiiiveee e e e e s
Table 127 — TPM2_PolicyCounterTimer Commandcccoeecvvveeeeeeesiiivnnnnn
Table 128 — TPM2_PolicyCounterTimer RESPONSEccevveeeiiiiviieeeeeeeeiiiieenens
Table 129 — TPM2_PolicyCommandCode Commandccccceevvvevevenennnnn.
Table 130 — TPM2_PolicyCommandCode Response..........ccccccevevvveveievenennnn,
Table 131 — TPM2_PolicyPhysicalPresence Command...............ccccceeveveeenennn.
Table 132 — TPM2_PolicyPhysicalPresence ReSpoNSeccccvveeveeeeeiiivennen
Table 133 — TPM2_PolicyCpHash Command............cccocvveiiiiiiiiiiiiieeeiiieeeee
Table 134 — TPM2_PolicyCpHash RESPONSEceeveiiiiiiiiiiiieeiiiiee e
Table 135 — TPM2_PolicyNameHash Command............cccceevviiiiiiiiieeeeiiiieeeens
Table 136 — TPM2_PolicyNameHash ReSPONSEccoocvveeiiiiiiiiiiiiiieee e
Table 137 — TPM2_PolicyDuplicationSelect Command............ccccccceeeviiiinnneen.
Table 138 — TPM2_PolicyDuplicationSelect Response............ccccccvevevevevenennnn..
Table 139 — TPM2_PolicyAuthorize Commandcccccceveviiiiie
Table 140 — TPM2_PolicyAuthorize ReSpoNSe.........cccccceveveviviviiiiiiiiiieieeeee
Table 141 — TPM2_PolicyAuthValue Command..............cccccceviviiiiiiniiiincnecen,
Table 142 — TPM2_PolicyAuthValue Responseccccccvvveviviiiiicc
Table 143 — TPM2_PolicyPassword Command.........cccccccueeeiiiiieeniiiieeeeniiieeeens
Table 144 — TPM2_PolicyPassword RESPONSEcccovuveeeiiiiiieeniiiiee e
Table 145 — TPM2_PolicyGetDigest Command.............cccueeerriieeeniiieeeeniiieeeens
Table 146 — TPM2_PolicyGetDigest RESPONSEcceviviieeiiiiiieiiiiiee e
Table 147 — TPM2_PolicyNvWritten Command.............ocoeeiiiieiniiieee e
Table 148 — TPM2_PolicyNVWritten RESPONSEeeeviiiieeiiiiiie e
Table 149 — TPM2_CreatePrimary Command..........cccueeeveieriiiiiiiiiieeee e
Table 150 — TPM2_CreatePrimary RESPONSEccccuuveiiieieeiiiiiiiiiee e
Table 151 — TPM2_HierarchyControl Commandcccccoeviiiiiiiiiieie e,
Table 152 — TPM2_HierarchyControl RESPONSEccovieiiiiiiiiiiiieieeeiiiie
Table 153 — TPM2_SetPrimaryPolicy Command...........cccccoeviiiiiiiiiieneeeniiieeen
Table 154 — TPM2_SetPrimaryPolicy RESPONSEueeeviieiiiiiiiiiiiieee e
Table 155 — TPM2_ChangePPS Commandccccceviiiieeiiiiiiee e

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page xi
October 30, 2014

Part 3: Commands Trusted Platform Module Library

Table 156 — TPM2_ChangePPS RESPONSEcciceiiiiiiieieiiiee e i e siieteeee e e e s s sssteeeeeeeeessssastaaeeeeeeesaanssreeneeeeees 321
Table 157 — TPM2_ChangeEPS COMMANGccccooiiiiiiiiiiiie et e e s seee e e e e s s snrreee e e e e e s e nnnaneneeeees 324
Table 158 — TPM2_ChangeEPS RESPONSEcciceiiiiiiiriieiie e e s s sitttee e e e e s s ssiraer e e e e e s s ssntaaeeeeeeeseansnrraneeeees 324
Table 159 — TPM2_Clear COMMANG.........c.uuuiiiiieeeie ittt e e e et e e e e e e s e st e e e e e e e s e snnbeeeeeeeeas 327
Table 160 — TPM2_Clear RESPONSEcc.uuiiieiiiiie ettt ettt ettt ettt st e e s aabe e e e s anne e e e s annreeesaanneeas 327
Table 161 — TPM2_ClearControl COMMEANGcooiiiiiiiiiiiiee ettt e e e st e e e e e e s e snareeeeeeee s 331
Table 162 — TPM2_ClearControl RESPONSEccciiuiiiiiiiiiie ettt enre e 331
Table 163 — TPM2_HierarchyChangeAuth COMMANG...........ccuuiiiiiiiiiiiiiiiee e 334
Table 164 — TPM2_HierarchyChangeAuth RESPONSEcoiiuiiiiiiiiiiieiiiiie ettt 334
Table 165 — TPM2_DictionaryAttackLockReset Command...........cccceeeeiiiiiiiiiiire e 337
Table 166 — TPM2_DictionaryAttackLOCKRESEt RESPONSEcvvviiiieeiiiiiiiiiie e e e srree e 337
Table 167 — TPM2_DictionaryAttackParameters Commandcccceeeviiiiiiiieieeeeissiieeeee e e e e s esnieneeeeee s 340
Table 168 — TPM2_DictionaryAttackParameters RESPONSEccvvvvieiiieiiiiiiieieieieeeeeeete et 340
Table 169 — TPM2_PP_Commands COmMMANd.............ccoeviiiiiiiiiiiiciececeeeeeeeeeee ettt 343
Table 170 — TPM2_PP_Commands RESPONSEcccevviiiiiiiiieieiee ettt 343
Table 171 — TPM2_SetAlgorithmSet COMMANcoiuiiiiiiiiiieiiii e 346
Table 172 — TPM2_SetAlgorithmSet RESPONSE.........uiiiiiiiiieiiiiie ettt e e 346
Table 173 — TPM2_FieldUpgradeStart COMMEANGcuuiieiiiiiieiiiiiee it 351
Table 174 — TPM2_FieldUpgradeStart RESPONSEcocuuiiiiiiiiiieiiiiie ettt 351
Table 175 — TPM2_FieldUpgradeData COMMEANGcuuiiiiiiiiieiiiiie et 354
Table 176 — TPM2_FieldUpgradeData RESPONSEcocuuiiiiiiiiiieiiiiie ettt 354
Table 177 — TPM2_FirmwareRead COmMMaNd..............ccoviiiiiiiiiiiicieeeee ettt 357
Table 178 — TPM2_FirmwareRead RESPONSEccooviiiiiiiiiiee e 357
Table 179 — TPM2_ContextSave COmMMANd.............ccovvviiiiiiiiiiccc e 360
Table 180 — TPM2_ContextSave RESPONSEccvvviiiiiieieeeeeeeee et 360
Table 181 — TPM2_ContextLoad COMMANG............ccoeviiiiiiiiiiee et 365
Table 182 — TPM2_ConteXtLoad RESPONSEcciiiiiiiiiiiiiiee ittt e e e e ab e e e s nanneeas 365
Table 183 — TPM2_FlushContext COMMEANTcocuuiiiiiiiiii et 370
Table 184 — TPM2_FIUSNCONIEXt RESPONSEceiiiiiiiiiiiiiie ettt ettt e e 370
Table 185 — TPM2_EVIctControl COMMAN..........coouuiiiiiiiiiieiiiiie et e e 374
Table 186 — TPM2_EVICtCONIOl RESPONSEeiiiiiiiiieiiiiie ettt ettt ettt e e e e ab e e e s nanneeas 374
Table 187 — TPM2_ReadClock COMMANG..........ciiiiiiiiaiiiiiee ittt e e e e nnneeeas 378
Table 188 — TPM2_ReadClOCK RESPONSEcciiiiiiiiiiiiiiiie ettt et e e e e e e s e nnbeeeeaae s 378
Table 189 — TPM2_ClockSet COMMaNd............ccooiiiiiiiiiii e, 381
Table 190 — TPM2_CIOCKSEt RESPONSEuuuiiiiiaiiiiitiiiee ettt e e e e s e e e e e e s e snnbeeeeaaeeas 381
Table 191 — TPM2_ClockRate Adjust COMMANG...........uuiiiiiaiiiiiiiiie e eeeeae s 384
Table 192 — TPM2_CIoCKRAtEAdJUSE RESPONSEuuiiiiiiiieeeie ettt e e e e e e s eeebeeeeeae s 384
Table 193 — TPM2_GetCapability COMMEANG.......cooiiiiiiiiiiie e 390
Table 194 — TPM2_GetCapability RESPONSEccoiiuiiiiiiiiiiie e 390
Page xii TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

Table 195 — TPM2_TestParms Command...........cooevcurueireeeesiniiniieneeee e e ssneeeees
Table 196 — TPM2_TesStParms RESPONSEcevveeeiriiuvierireeeesieinireereaeeessnsnneens
Table 197 — TPM2_NV_DefineSpace Commandcccccceeeviiiiiniieeeeeeeesccinnnen
Table 198 — TPM2_NV_DefineSpace RESPONSEccovcvveeeiriiiieiiiiiieeeiiieeeens
Table 199 — TPM2_NV_UndefineSpace Commandccocccuvvveereeenniininnnen.
Table 200 — TPM2_NV_UndefineSpace ReSPONSEe........ccceeevviieieiiiiieeeniiiieeeens
Table 201 — TPM2_NV_UndefineSpaceSpecial Command.............ccccceviuveeene
Table 202 — TPM2_NV_UndefineSpaceSpecial Response............ccccceeviieeeene
Table 203 — TPM2_NV_ReadPublic Command.................c.cccccccci,
Table 204 — TPM2_NV_ReadPublic RESPONSEccvvvvveeeeiiiiiiiieeeeee e
Table 205 — TPM2_NV_Write COmMmMaNnd........ccccceeeviiiviieieeee e iiciineee e e e e s
Table 206 — TPM2_NV_WHIite RESPONSEuvviiiieeiiiiiiiiiieeee e sesireee e e e e e s
Table 207 — TPM2_NV_Increment Commandccccccveveveviviiiiiiiiececeeeeeeee,
Table 208 — TPM2_NV_Increment RESPONSE........cccevvvvveieiiiiiiieieieieieieeeeeeeeeee
Table 209 — TPM2_NV_Extend Command............ccccccveveviviiiiiiiiiiceeeeeee,
Table 210 — TPM2_NV_EXtend RESPONSEeevviiiiiieiiiiieee it
Table 211 — TPM2_NV_SetBits COMMaNd.............coceeiriiieeiiiiiie i
Table 212 — TPM2_NV_SetBitS RESPONSEoeiiiiiiiieiiiiiee it
Table 213 — TPM2_NV_WriteLock CommMaNndceeeriiieeiiiiiieeiiieee e
Table 214 — TPM2_NV_WriteLOCK RESPONSE.......civiieeiiiiiieiiiiiee et
Table 215 — TPM2_NV_GlobalWriteLock Command............ccccvvveeveeeiiiiiinnnen.
Table 216 — TPM2_NV_GlobalWriteLock Response............cccccccvvvvviiiiininnnnn..
Table 217 — TPM2_NV_Read Command.............cccccceviviiiiiiiiiiiiiieeeeeee
Table 218 — TPM2_NV_Read ReSPONSE.........cccvvvvviviiiiiiiieee
Table 219 — TPM2_NV_ReadLock Command.............cccccevvviviiiiiiiiiiiiiiiceeeeee
Table 220 — TPM2_NV_ReadLock RESPONSEccoovvvvvvviiiiiiiiiiiieee
Table 221 — TPM2_NV_ChangeAuth Commandccccveeviiiciiiiereeeee e
Table 222 — TPM2_NV_ChangeAuth RESPONSEccoiiuieeiiiiiiiieniiiieeeiiieeees
Table 223 — TPM2_NV_Certify CoOmmand............cccoueeeiiiiieeiiiiiieeiieee e
Table 224 — TPM2_NV_Certify RESPONSEvvvviiiiiiieiiiiiee e

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page xiii
October 30, 2014

Trusted Platform Module Library Part 3: Commands

Trusted Platform Module Library
Part 3: Commands

1 Scope

This TPM 2.0 Part 3 of the Trusted Platform Module Library specification contains the definitions of the
TPM commands. These commands make use of the constants, flags, structures, and union definitions
defined in TPM 2.0 Part 2.

The detailed description of the operation of the commands is written in the C language with extensive
comments. The behavior of the C code in this TPM 2.0 Part 3 is normative but does not fully describe the
behavior of a TPM. The combination of this TPM 2.0 Part 3 and TPM 2.0 Part 4 is sufficient to fully
describe the required behavior of a TPM.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,
firmware update), it is not possible to provide a compliant implementation. In those cases, any
implementation provided by the vendor that meets the general description of the function provided in TPM
2.0 Part 3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this
specification require that a TPM meet any particular level of conformance.

2 Terms and Definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.
4 Notation

4.1 Introduction

For the purposes of this document, the notation given in TPM 2.0 Part 1 applies.

Command and response tables use various decorations to indicate the fields of the command and the
allowed types. These decorations are described in this clause.

4.2 Table Decorations

The symbols and terms in the Notation column of Table 1 are used in the tables for the command
schematics. These values indicate various qualifiers for the parameters or descriptions with which they
are associated.

Family “2.0” TCG Published Page 1
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

Table 1 — Command Modifiers and Decoration

Notation

Meaning

+

A Type decoration — When appended to a value in the Type column of a command, this symbol
indicates that the parameter is allowed to use the “null” value of the data type (see "Conditional
Types" in TPM 2.0 Part 2). The null value is usually TPM_RH_NULL for a handle or
TPM_ALG_NULL for an algorithm selector.

A Name decoration — When this symbol precedes a handle parameter in the “Name” column, it
indicates that an authorization session is required for use of the entity associated with the handle.
If a handle does not have this symbol, then an authorization session is not allowed.

+PP

A Description modifier — This modifier may follow TPM_RH_PLATFORM in the “Description”
column to indicate that Physical Presence is required when platformAuth/platformPolicy is
provided.

+{PP}

A Description modifier — This modifier may follow TPM_RH_PLATFORM to indicate that Physical
Presence may be required when platformAuth/platformPolicy is provided. The commands with this
notation may be in the setList or clearList of TPM2_PP_Commands().

{NV}

A Description modifier — This modifier may follow the commandCode in the “Description” column
to indicate that the command may result in an update of NV memory and be subject to rate
throttling by the TPM. If the command code does not have this notation, then a write to NV
memory does not occur as part of the command actions.

NOTE Any command that uses authorization may cause a write to NV if there is an authorization failure.
A TPM may use the occasion of command execution to update the NV copy of clock.

{F}

A Description modifier — This modifier indicates that the “flushed” attribute will be SET in the
TPMA_CC for the command. The modifier may follow the commandCode in the “Description”
column to indicate that any transient handle context used by the command will be flushed from the
TPM when the command completes. This may be combined with the {NV} modifier but not with the
{E} modifier.

EXAMPLE1 {NVF}

EXAMPLE 2 TPM2_SequenceComplete() will flush the context associated with the sequenceHandle.

{E}

A Description modifier — This modifier indicates that the “extensive” attribute will be SET in the
TPMA_CC for the command. This modifier may follow the commandCode in the “Description”
column to indicate that the command may flush many objects and re-enumeration of the loaded
context likely will be required. This may be combined with the {NV} modifier but not with the {F}
modifier.

EXAMPLE1 {NVE}

EXAMPLE 2 TPM2_Clear() will flush all contexts associated with the Storage hierarchy and the
Endorsement hierarchy.

Auth Index:

A Description modifier — When a handle has a “@” decoration, the “Description” column will
contain an “Auth Index:” entry for the handle. This entry indicates the number of the authorization
session. The authorization sessions associated with handles will occur in the session area in the
order of the handles with the “@” modifier. Sessions used only for encryption/decryption or only for
audit will follow the handles used for authorization.

Page 2

TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

Notation Meaning

Auth Role: A Description modifier — This will be in the “Description” column of a handle with the “@”
decoration. It may have a value of USER, ADMIN or DUP.

If the handle has the Auth Role of USER and the handle is an Object, the type of authorization is
determined by the setting of userWithAuth in the Object's attributes. If the handle is
TPM_RH_OWNER, TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if
userWithAuth is SET. If the handle references an NV Index, then the allowed authorizations are
determined by the settings of the attributes of the NV Index as described in TPM 2.0 Part 2,
"TPMA_NV (NV Index Attributes)."

If the Auth Role is ADMIN and the handle is an Object, the type of authorization is determined by
the setting of adminWithPolicy in the Object's attributes. If the handle is TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if adminWithPolicy is SET.
If the handle is an NV index, operation is as if adminWithPolicy is SET (see 5.6 €)2)).

If the DUP role is selected, authorization may only be with a policy session (DUP role only applies
to Objects).

When either ADMIN or DUP role is selected, a policy command that selects the command being

authorized is required to be part of the policy.

EXAMPLE TPM2_Certify requires the ADMIN role for the first handle (objectHandle). The policy authorization
for objectHandle is required to contain TPM2_PolicyCommandCode(commandCode ==
TPM_CC_Certify). This sets the state of the policy so that it can be used for ADMIN role
authorization in TPM2_Certify().

4.3 Handle and Parameter Demarcation
The demarcations between the header, handle, and parameter parts are indicated by:

Table 2 — Separators

Separator Meaning

wtewcims st the values immediately following are in the handle area

the values immediately following are in the parameter area

4.4 AuthorizationSize and ParameterSize

Authorization sessions are not shown in the command or response schematics. When the tag of a
command or response is TPM_ST _SESSIONS, then a 32-bit value will be present in the
command/response buffer to indicate the size of the authorization field or the parameter field. This value
shall immediately follow the handle area (which may contain no handles). For a command, this value
(authorizationSize) indicates the size of the Authorization Area and shall have a value of 9 or more. For a
response, this value (parameterSize) indicates the size of the parameter area and may have a value of
zero.

If the authorizationSize field is present in the command, parameterSize will be present in the response,
but only if the responseCode is TPM_RC_SUCCESS.

When authorization is required to use the TPM entity associated with a handle, then at least one session
will be present. To indicate this, the command tag Description field contains TPM_ST_SESSIONS.
Addional sessions for audit, encrypt, and decrypt may be present.

When the command tag Description field contains TPM_ST_NO_SESSIONS, then no sessions are
allowed and the authorizationSize field is not present.

When a command allows use of sessions when not required, the command tag Description field will
indicate the types of sessions that may be used with the command.

Family “2.0” TCG Published Page 3
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

5 Command Processing

5.1 Introduction

This clause defines the command validations that are required of any implementation and the response
code returned if the indicated check fails. Unless stated otherwise, the order of the checks is not
normative and different TPM may give different responses when a command has multiple errors.

In the description below, some statements that describe a check may be followed by a response code in
parentheses. This is the normative response code should the indicated check fail. A normative response
code may also be included in the statement.

5.2 Command Header Validation

Before a TPM may begin the actions associated with a command, a set of command format and
consistency checks shall be performed. These checks are listed below and should be performed in the
indicated order.

a) The TPM shall successfully unmarshal a TPMI_ST_COMMAND_TAG and verify that it is either
TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS (TPM_RC_BAD_TAG).

b) The TPM shall successfully unmarshal a UINT32 as the commandSize. If the TPM has an interface
buffer that is loaded by some hardware process, the number of octets in the input buffer for the
command reported by the hardware process shall exactly match the value in commandSize
(TPM_RC_COMMAND_SIZE).

NOTE A TPM may have direct access to system memory and unmarshal directly from that memory.

¢) The TPM shall successfully unmarshal a TPM_CC and verify that the command is implemented
(TPM_RC_COMMAND_CODE).

5.3 Mode Checks

The following mode checks shall be performed in the order listed:

a) If the TPM is in Failure mode, then the commandCode is TPM_CC_GetTestResult or
TPM_CC_GetCapability (TPM_RC_FAILURE) and the command tag is TPM_ST_NO_SESSIONS
(TPM_RC_FAILURE).

NOTE 1 In Failure mode, the TPM has no cryptographic capability and processing of sessions is not
supported.

b) The TPM is in Field Upgrade mode (FUM), the commandCode is TPM_CC_FieldUpgradeData
(TPM_RC_UPGRADE).

c) If the TPM has not been initialized (TPM2_Startup()), then the commandCode is TPM_CC_Startup
(TPM_RC_INITIALIZE).

NOTE 2 The TPM may enter Failure mode during _TPM_Init processing, before TPM2_Startup(). Since
the platform firmware cannot know that the TPM is in Failure mode without accessing it, and
since the first command is required to be TPM2_Startup(), the expected sequence will be that
platform firmware (the CRTM) will issue TPM2_Startup() and receive TPM_RC_FAILURE
indicating that the TPM is in Failure mode.

There may be failures where a TPM cannot record that it received TPM2_Startup(). In those
cases, a TPM in failure mode may process TPM2_GetTestResult(), TPM2_GetCapability(), or
the field upgrade commands. As a side effect, that TPM may process TPM2_GetTestResult(),
TPM2_GetCapability() or the field upgrade commands before TPM2_Startup().

This is a corner case exception to the rule that TPM2_Startup() must be the first command.

Page 4 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

The mode checks may be performed before or after the command header validation.

5.4 Handle Area Validation

After successfully unmarshaling and validating the command header, the TPM shall perform the following
checks on the handles and sessions. These checks may be performed in any order.

NOTE 1

A TPM is required to perform the handle area validation before the authorization checks because an
authorization cannot be performed unless the authorization values and attributes for the referenced
entity are known by the TPM. For them to be known, the referenced entity must be in the TPM and
accessible.

a) The TPM shall successfully unmarshal the number of handles required by the command and validate
that the value of the handle is consistent with the command syntax. If not, the TPM shall return
TPM_RC_VALUE.

b)

NOTE 2 The TPM may unmarshal a handle and validate that it references an entity on the TPM before

unmarshaling a subsequent handle.

NOTE 3 If the submitted command contains fewer handles than required by the syntax of the command,

the TPM may continue to read into the next area and attempt to interpret the data as a handle.

For all handles in the handle area of the command, the TPM will validate that the referenced entity is
present in the TPM.

1

2)

3)

4)

If the handle references a transient object, the handle shall reference a loaded object
(TPM_RC_REFERENCE_HO + N where N is the number of the handle in the command).

NOTE 3 If the hierarchy for a transient object is disabled, then the transient objects will be flushed
so this check will fail.

If the handle references a persistent object, then

i) the hierarchy associated with the object (platform or storage, based on the handle value) is
enabled (TPM_RC_HANDLE);

i) the handle shall reference a persistent object that is currently in TPM non-volatile memory
(TPM_RC_HANDLE);

i) if the handle references a persistent object that is associated with the endorsement hierarchy,
that the endorsement hierarchy is not disabled (TPM_RC_HANDLE); and

NOTE 4 The reference implementation keeps an internal attribute, passed down from a primary
key to its descendents, indicating the object's hierarchy.

iv) if the TPM implementation moves a persistent object to RAM for command processing then
sufficient RAM space is available (TPM_RC_OBJECT_MEMORY).

If the handle references an NV Index, then
i) an Index exists that corresponds to the handle (TPM_RC_HANDLE); and
ii) the hierarchy associated with the existing NV Index is not disabled (TPM_RC_HANDLE).

i) If the command requires write access to the index data then TPMA_NV_WRITELOCKED is
not SET (TPM_RC_LOCKED)

iv) If the command requires read access to the index data then TPMA_NV_READLOCKED is
not SET (TPM_RC_LOCKED)

If the handle references a session, then the session context shall be present in TPM memory
(TPM_RC_REFERENCE_SO + N).

Family “2.0” TCG Published Page 5
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

5)
6)
5.5
a)
b)
c)
1)
2)
d)
1)
2)
3)
4)
Page 6

If the handle references a primary seed for a hierarchy (TPM_RH_ENDORSEMENT,
TPM_RH_OWNER, or TPM_RH_PLATFORM) then the enable for the hierarchy is SET
(TPM_RC_HIERARCHY).

If the handle references a PCR, then the value is within the range of PCR supported by the TPM
(TPM_RC_VALUE)

NOTE 5 In the reference implementation, this TPM_RC_VALUE is returned by the unmarshaling
code for a TPMI_DH_PCR.

Session Area Validation

If the tag is TPM_ST_SESSIONS and the command requires TPM_ST_NO_SESSIONS, the TPM will
return TPM_RC_AUTH_CONTEXT.

If the tag is TPM_ST_NO_SESSIONS and the command requires TPM_ST_SESSIONS, the TPM will
return TPM_RC_AUTH_MISSING.

If the tag is TPM_ST_SESSIONS, the TPM will attempt to unmarshal an authorizationSize and return
TPM_RC_AUTHSIZE if the value is not within an acceptable range.

The minimum value is (sizeof(TPM_HANDLE) + sizeof(UINT16) + sizeof(TPMA_SESSION) +
sizeof(UINT16)).

The maximum value of authorizationSize is equal to commandSize — (sizeof(TPM_ST) +
sizeof(UINT32) + sizeof(TPM_CC) + (N * sizeof(TPM_HANDLE)) + sizeof(UINT32)) where N is
the number of handles associated with the commandCode and may be zero.

NOTE 1 (sizeof(TPM_ST) + sizeof(UINT32) + sizeof(TPM_CQC)) is the size of a command header.
The last UINT32 contains the authorizationSize octets, which are not counted as being in
the authorization session area.

The TPM will unmarshal the authorization sessions and perform the following validations:

If the session handle is not a handle for an HMAC session, a handle for a policy session, or,
TPM_RS_PW then the TPM shall return TPM_RC_HANDLE.

If the session is not loaded, the TPM will return the warning TPM_RC_REFERENCE_SO + N
where N is the number of the session. The first session is session zero, N = 0.

NOTE 2 If the HMAC and policy session contexts use the same memory, the type of the context
must match the type of the handle.

If the maximum allowed number of sessions have been unmarshaled and fewer octets than
indicated in authorizationSize were unmarshaled (that is, authorizationSize is too large), the TPM
shall return TPM_RC_AUTHSIZE.

The consistency of the authorization session attributes is checked.
i) Only one session is allowed for:

(a) session auditing (TPM_RC_ATTRIBUTES) — this session may be used for encrypt or
decrypt but may not be a session that is also used for authorization;

(b) decrypting a command parameter (TPM_RC_ATTRIBUTES) - this may be any of the
authorization sessions, or the audit session, or a session may be added for the single
purpose of decrypting a command parameter, as long as the total number of sessions
does not exceed three; and

(c) encrypting a response parameter (TPM_RC_ATTRIBUTES) — this may be any of the
authorization sessions, or the audit session if present, ora session may be added for the
single purpose of encrypting a response parameter, as long as the total number of
sessions does not exceed three.

TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

5.6

NOTE 3 A session used for decrypting a command parameter may also be used for
encrypting a response parameter.

ii) If a session is not being used for authorization, at least one of decrypt, encrypt, or audit must
be SET. (TPM_RC_ATTRIBUTES).

5) An authorization session is present for each of the handles with the “@” decoration
(TPM_RC_AUTH_MISSING).

Authorization Checks

After unmarshaling and validating the handles and the consistency of the authorization sessions, the
authorizations shall be checked. Authorization checks only apply to handles if the handle in the command
schematic has the “@” decoration.

a) The public and sensitive portions of the object shall be present on the TPM
(TPM_RC_AUTH_UNAVAILABLE).
b) If the associated handle is TPM_RH_PLATFORM, and the command requires confirmation with
physical presence, then physical presence is asserted (TPM_RC_PP).
c) |If the object or NV Index is subject to DA protection, and the authorization is with an HMAC or
password, then the TPM is not in lockout (TPM_RC_LOCKOUT).
NOTE 1 An object is subject to DA protection if its noDA attribute is CLEAR. An NV Index is subject to
DA protection if its TPMA_NV_NO_DA attribute is CLEAR.
NOTE 2 An HMAC or password is required in a policy session when the policy contains
TPM2_PolicyAuthValue() or TPM2_PolicyPassword().
d) If the command requires a handle to have DUP role authorization, then the associated authorization
session is a policy session (TPM_RC_POLICY_FAIL).
e) If the command requires a handle to have ADMIN role authorization:
1) If the entity being authorized is an object and its adminWithPolicy attribute is SET, or a hierarchy,
then the authorization session is a policy session (TPM_RC_POLICY_FAIL).
NOTE 3 If adminWithPolicy is CLEAR, then any type of authorization session is allowed.
2) If the entity being authorized is an NV Index, then the associated authorization session is a policy
session.
NOTE 4 The only commands that are currently defined that require use of ADMIN role authorization
are commands that operate on objects and NV Indices.
f) If the command requires a handle to have USER role authorization:
1) If the entity being authorized is an object and its userWithAuth attribute is CLEAR, then the
associated authorization session is a policy session (TPM_RC_POLICY_FAIL).
NOTE 5 There is no check for a hierarchy, because a hierarchy operates as if userWithAuth is SET.
2) If the entity being authorized is an NV Index;
i) if the authorization session is a policy session;
(a) the TPMA_NV_POLICYWRITE attribute of the NV Index is SET if the command modifies
the NV Index data (TPM_RC_AUTH_UNAVAILABLE);
Family “2.0” TCG Published Page 7

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

(b) the TPMA_NV_POLICYREAD attribute of the NV Index is SET if the command reads the
NV Index data (TPM_RC_AUTH_UNAVAILABLE);

ii) if the authorization is an HMAC session or a password;

(a) the TPMA_NV_AUTHWRITE attribute of the NV Index is SET if the command modifies
the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_AUTHREAD attribute of the NV Index is SET if the command reads the
NV Index data (TPM_RC_AUTH_UNAVAILABLE).

g) If the authorization is provided by a policy session, then:

1) if policySession—timeOut has been set, the session shall not have expired
(TPM_RC_EXPIRED);

2) if policySession—cpHash has been set, it shall match the cpHash of the command
(TPM_RC_POLICY_FAIL);

3) if policySession—commandCode has been set, then commandCode of the command shall match
(TPM_RC_POLICY_CC);

4) policySession—policyDigest shall match the authPolicy associated with the handle
(TPM_RC_POLICY_FAIL);

5) if policySession—pcrUpdateCounter has been set, then it shall match the value of
pcrUpdateCounter (TPM_RC_PCR_CHANGED);

6) if policySession->commandLocality has been set, it shall match the locality of the command
(TPM_RC_LOCALITY), and

h) if the authorization uses an HMAC, then the HMAC is properly constructed using the authValue
associated with the handle and/or the session secret (TPM_RC_AUTH_FAIL or
TPM_RC_BAD_AUTH).

NOTE 6 A policy session may require proof of knowledge of the authValue of the object being
authorized.

i) if the authorization uses a password, then the password matches the authValue associated with the
handle (TPM_RC_AUTH_FAIL or TPM_RC_BAD_AUTH).

If the TPM returns an error other than TPM_RC_AUTH_FAIL then the TPM shall not alter any TPM state.
If the TPM return TPM_RC_AUTH_FAIL, then the TPM shall not alter any TPM state other than
lockoutCount.

NOTE 7 The TPM may decrease failedTries regardless of any other processing performed by the TPM. That
is, the TPM may exit Lockout mode, regardless of the return code.

5.7 Parameter Decryption
If an authorization session has the TPMA_SESSION.decrypt attribute SET, and the command does not
allow a command parameter to be encrypted, then the TPM will return TPM_RC_ATTRIBUTES.

Otherwise, the TPM will decrypt the parameter using the values associated with the session before
parsing parameters.

5.8 Parameter Unmarshaling

5.8.1 Introduction

The detailed actions for each command assume that the input parameters of the command have been
unmarshaled into a command-specific structure with the structure defined by the command schematic.

Page 8 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

Additionally, a response-specific output structure is assumed which will receive the values produced by
the detailed actions.

NOTE An implementation is not required to process parameters in this manner or to separate the
parameter parsing from the command actions. This method was chosen for the specification so that
the normative behavior described by the detailed actions would be clear and unencumbered.

Unmarshaling is the process of processing the parameters in the input buffer and preparing the
parameters for use by the command-specific action code. No data movement need take place but it is
required that the TPM validate that the parameters meet the requirements of the expected data type as
defined in TPM 2.0 Part 2.

5.8.2 Unmarshaling Errors

When an error is encountered while unmarshaling a command parameter, an error response code is
returned and no command processing occurs. A table defining a data type may have response codes
embedded in the table to indicate the error returned when the input value does not match the parameters
of the table.

NOTE In the reference implementation, a parameter number is added to the response code so that the
offending parameter can be isolated. This is optional.

In many cases, the table contains no specific response code value and the return code will be determined
as defined in Table 3.

Family “2.0” TCG Published Page 9
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

Table 3 — Unmarshaling Errors

Response Code Meaning

TPM_RC_ASYMMETRIC a parameter that should be an asymmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_BAD_TAG a parameter that should be a command tag selection has a value that is not
supported by the TPM

TPM_RC_COMMAND_CODE | a parameter that should be a command code does not have a value that is
supported by the TPM

TPM_RC_HASH a parameter that should be a hash algorithm selection does not have a value that
is supported by the TPM

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_KDF a parameter that should be a key derivation scheme (KDF) selection does not
have a value that is supported by the TPM

TPM_RC_KEY_SIZE a parameter that is a key size has a value that is not supported by the TPM

TPM_RC_MODE a parameter that should be a symmetric encryption mode selection does not have
a value that is supported by the TPM

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SCHEME a parameter that should be signing or encryption scheme selection does not have
a value that is supported by the TPM

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_SYMMETRIC a parameter that should be a symmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_TAG a parameter that should be a structure tag has a value that is not supported by
the TPM

TPM_RC_TYPE The type parameter of a TPMT_PUBLIC or TPMT_SENSITIVE has a value that is

not supported by the TPM

TPM_RC_VALUE a parameter does not have one of its allowed values

In some commands, a parameter may not be used because of various options of that command.
However, the unmarshaling code is required to validate that all parameters have values that are allowed
by the TPM 2.0 Part 2 definition of the parameter type even if that parameter is not used in the command
actions.

5.9 Command Post Processing

When the code that implements the detailed actions of the command completes, it returns a response
code. If that code is not TPM_RC_SUCCESS, the post processing code will not update any session or
audit data and will return a 10-octet response packet.

If the command completes successfully, the tag of the command determines if any authorization sessions
will be in the response. If so, the TPM will encrypt the first parameter of the response if indicated by the
authorization attributes. The TPM will then generate a new nonce value for each session and, if
appropriate, generate an HMAC.

If authorization HMAC computations are performed on the response, the HMAC keys used in the
response will be the same as the HMAC keys used in processing the HMAC in the command.

Page 10 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

NOTE 1 This primarily affects authorizations associated with a first write to an NV Index using a bound
session. The computation of the HMAC in the response is performed as if the Name of the Index did
not change as a consequence of the command actions. The session binding to the NV Index will not
persist to any subsequent command.

NOTE 2 The authorization attributes were validated during the session area validation to ensure that only
one session was used for parameter encryption of the response and that the command allowed
encryption in the response.

NOTE 3 No session nonce value is used for a password authorization but the session data is present.

Additionally, if the command is being audited by Command Audit, the audit digest is updated with the
cpHash of the command and rpHash of the response.

Family “2.0” TCG Published Page 11
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

6 Response Values

6.1 Tag

When a command completes successfully, the tag parameter in the response shall have the same value
as the tag parameter in the command (TPM_ST_SESSIONS or TPM_RC_NO_SESSIONS). When a
command fails (the responseCode is not TPM_RC_SUCCESS), then the tag parameter in the response
shall be TPM_ST_NO_SESSIONS.

A special case exists when the command tag parameter is not an allowed value (TPM_ST_SESSIONS or
TPM_ST_NO_SESSIONS). For this case, it is assumed that the system software is attempting to send a
command formatted for a TPM 1.2 but the TPM is not capable of executing TPM 1.2 commands. So that
the TPM 1.2 compatible software will have a recognizable response, the TPM sets tag to
TPM_ST_RSP_COMMAND, responseSize to 00 00 00 0A;s and responseCode to TPM_RC_BAD_TAG.
This is the same response as the TPM 1.2 fatal error for TPM_BADTAG.

6.2 Response Codes

The normal response for any command is TPM_RC_SUCCESS. Any other value indicates that the
command did not complete and the state of the TPM is unchanged. An exception to this general rule is
that the logic associated with dictionary attack protection is allowed to be modified when an authorization
failure occurs.

Commands have response codes that are specific to that command, and those response codes are
enumerated in the detailed actions of each command. The codes associated with the unmarshaling of
parameters are documented Table 3. Another set of response code values are not command specific and
indicate a problem that is not specific to the command. That is, if the indicated problem is remedied, the
same command could be resubmitted and may complete normally.

The response codes that are not command specific are listed and described in Table 4.

The reference code for the command actions may have code that generates specific response codes
associated with a specific check but the listing of responses may not have that response code listed.

Page 12 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

Part 3: Commands

Table 4 — Command-Independent Response Codes

Response Code

Meaning

TPM_RC_CANCELED

This response code may be returned by a TPM that supports command cancel.
When the TPM receives an indication that the current command should be
cancelled, the TPM may complete the command or return this code. If this code
is returned, then the TPM state is not changed and the same command may be
retried.

TPM_RC_CONTEXT_GAP

This response code can be returned for commands that manage session
contexts. It indicates that the gap between the lowest numbered active session
and the highest numbered session is at the limits of the session tracking logic.
The remedy is to load the session context with the lowest number so that its
tracking number can be updated.

TPM_RC_LOCKOUT

This response indicates that authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in DA lockout mode. The remedy
is to wait or to exeucte TPM2_DictionaryAttackLockoutReset().

TPM_RC_MEMORY

A TPM may use a common pool of memory for objects, sessions, and other
purposes. When the TPM does not have enough memory available to perform
the actions of the command, it may return TPM_RC_MEMORY. This indicates
that the TPM resource manager may flush either sessions or objects in order to
make memory available for the command execution. A TPM may choose to
return TPM_RC_OBJECT_MEMORY or TPM_RC_SESSION_MEMORY if it
needs contexts of a particular type to be flushed.

TPM_RC_NV_RATE

This response code indicates that the TPM is rate-limiting writes to the NV
memory in order to prevent wearout. This response is possible for any command
that explicity writes to NV or commands that incidentally use NV such as a
command that uses authorization session that may need to update the dictionary
attack logic.

TPM_RC_NV_UNAVAILABLE

This response code is similar to TPM_RC_NV_RATE but indicates that access to
NV memory is currently not available and the command is not allowed to proceed
until it is. This would occur in a system where the NV memory used by the TPM
is not exclusive to the TPM and is a shared system resource.

TPM_RC_OBJECT_HANDLES

This response code indicates that the TPM has exhausted its handle space and
no new objects can be loaded unless the TPM is rebooted. This does not occur in
the reference implementation because of the way that object handles are
allocated. However, other implementations are allowed to assign each object a
unique handle each time the object is loaded. A TPM using this implementation
would be able to load 2** objects before the object space is exhausted.

TPM_RC_OBJECT_MEMORY

This response code can be returned by any command that causes the TPM to
need an object 'slot'. The most common case where this might be returned is
when an object is loaded (TPM2_Load, TPM2_CreatePrimary(), or
TPM2_ContextLoad()). However, the TPM implementation is allowed to use
object slots for other reasons. In the reference implementation, the TPM copies a
referenced persistent object into RAM for the duration of the commannd. If all the
slots are previously occupied, the TPM may return this value. A TPM is allowed
to use object slots for other purposes and return this value. The remedy when
this response is returned is for the TPM resource manager to flush a transient
object.

TPM_RC_REFERENCE_Hx

This response code indicates that a handle in the handle area of the command is
not associated with a loaded object. The value of 'X' is in the range 0 to 6 with a
value of 0 indicating the 1* handle and 6 representing the ™. Upper values are
provided for future use. The TPM resource manager needs to find the correct
object and load it. It may then adjust the handle and retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a corrupted

database.

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 13
October 30, 2014

Part 3: Commands

Trusted Platform Module Library

Response Code

Meaning

TPM_RC_REFERENCE_Sx

This response code indicates that a handle in the session area of the command
is not associated with a loaded session. The value of 'X' is in the range 0 to 6 with
a value of 0 indicating the 1% session handle and 6 representing the 7", Upper
values are provided for future use. The TPM resource manager needs to find the
correct session and load it. It may then retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

TPM_RC_RETRY

the TPM was not able to start the command

TPM_RC_SESSION_HANDLES

This response code indicates that the TPM does not have a handle to assign to a
new session. This respose is only returned by TPM2_StartAuthSession(). It is
listed here because the command is not in error and the TPM resource manager
can remedy the situation by flushing a session (TPM2_FlushContext().

TPM_RC_SESSION_MEMORY

This response code can be returned by any command that causes the TPM to
need a session 'slot'. The most common case where this might be returned is
when a session is loaded (TPM2_StartAuthSession() or TPM2_ContextLoad()).
However, the TPM implementation is allowed to use object slots for other
purposes. The remedy when this response is returned is for the TPM resource
manager to flush a transient object.

TPM_RC_SUCCESS

Normal completion for any command. If the responseCode is
TPM_RC_SUCCESS, then the rest of the response has the format indicated in
the response schematic. Otherwise, the response is a 10 octet value indicating
an error.

TPM_RC_TESTING

This response code indicates that the TPM is performing tests and cannot
respond to the request at this time. The command may be retried.

TPM_RC_YIELDED

the TPM has suspended operation on the command; forward progress was made
and the command may be retried.

See TPM 2.0 Part 1, “Multi-tasking.”
NOTE This cannot occur on the reference implementation.

Page 14
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

7 Implementation Dependent

The actions code for each command makes assumptions about the behavior of various sub-systems.
There are many possible implementations of the subsystems that would achieve equivalent results. The
actions code is not written to anticipate all possible implementations of the sub-systems. Therefore, it is
the responsibility of the implementer to ensure that the necessary changes are made to the actions code
when the sub-system behavior changes.

Family “2.0” TCG Published Page 15
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

8 Detailed Actions Assumptions

8.1 Introduction

The C code in the Detailed Actions for each command is written with a set of assumptions about the
processing performed before the action code is called and the processing that will be done after the
action code completes.

8.2 Pre-processing

Before calling the command actions code, the following actions have occurred.

e Verification that the handles in the handle area reference entities that are resident on the TPM.

NOTE If a handle is in the parameter portion of the command, the associated entity does not have to
be loaded, but the handle is required to be the correct type.

e If use of a handle requires authorization, the Password, HMAC, or Policy session associated with
the handle has been verified.

o |f a command parameter was encrypted using parameter encryption, it was decrypted before
being unmarshaled.

¢ If the command uses handles or parameters, the calling stack contains a pointer to a data
structure (in) that holds the unmarshaled values for the handles and command parameters. If
the response has handles or parameters, the calling stack contains a pointer to a data structure
(out) to hold the handles and response parameters generated by the command.

o All parameters of the in structure have been validated and meet the requirements of the
parameter type as defined in TPM 2.0 Part 2.

e Space set aside for the out structure is sufficient to hold the largest out structure that could be
produced by the command

8.3 Post Processing

When the function implementing the command actions completes,

e response parameters that require parameter encryption will be encrypted after the command
actions complete;

e audit and session contexts will be updated if the command response is TPM_RC_SUCCESS;

and
e the command header and command response parameters will be marshaled to the response
buffer.
Page 16 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

9 Start-up

9.1 Introduction

This clause contains the commands used to manage the startup and restart state of a TPM.
9.2 _TPM_Init

9.2.1 General Description

_TPM_Init initializes a TPM.

Initialization actions include testing code required to execute the next expected command. If the TPM is in
FUM, the next expected command is TPM2_FieldUpgradeData(); otherwise, the next expected command
is TPM2_Startup().

NOTE 1 If the TPM performs self-tests after receiving _TPM_Init() and the TPM enters Failure mode before
receiving TPM2_Startup() or TPM2_FieldUpgradeData(), then the TPM may be able to accept
TPM2_GetTestResult() or TPM2_GetCapability().

The means of signaling _TPM_Init shall be defined in the platform-specific specifications that define the
physical interface to the TPM. The platform shall send this indication whenever the platform starts its boot
process and only when the platform starts its boot process.

There shall be no software method of generating this indication that does not also reset the platform and
begin execution of the CRTM.

NOTE 2 In the reference implementation, this signal causes an internal flag (s_initialized) to be CLEAR.
While this flag is CLEAR, the TPM will only accept the next expected command described above.

Family “2.0” TCG Published Page 17
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

WoOoOJoULd WDN R

Part 3: Commands

9.2.2 Detailed Actions

This function is used to process a _TPM_Init() indication.

#include "InternalRoutines.h"
LIB_EXPORT void
_TPM Init(
void
)
// Clear the failure mode flags
g_inFailureMode = FALSE;
g_forceFailureMode = FALSE;

// Initialize the NvEnvironment.
g_nvOk = NvPowerOn() ;

// Initialize crypto engine
CryptInitUnits () ;

// Start clock
TimePowerOn () ;

// Set initialization state
TPMInit();

// Initialize object table
ObjectStartup() ;

// Set g DRTMHandle as unassigned
g_DRTMHandle = TPM RH UNASSIGNED;

// No H-CRTM, yet.
g_DrtmPreStartup = FALSE;

return;

Page 18 TCG Published
October 30, 2014 Copyright © TCG 2006-2014

Trusted Platform Module Library

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

9.3 TPM2_Startup

9.3.1 General Description

TPM2_Startup() is always preceded by _TPM_Init, which is the physical indication that TPM initialization
is necessary because of a system-wide reset. TPM2_Startup() is only valid after _TPM_Init. Additional
TPM2_Startup() commands are not allowed after it has completed successfully. If a TPM requires
TPM2_Startup() and another command is received, or if the TPM receives TPM2_Startup() when it is not
required, the TPM shall return TPM_RC _INITIALIZE.

NOTE 1 See 9.2.1 for other command options for a TPM supporting field upgrade mode.

NOTE 2 _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are not commands and a platform-
specific specification may allow these indications between _TPM_Init and TPM2_Startup().

If in Failure mode, the TPM shall accept TPM2_GetTestResult() and TPM2_GetCapability() even if
TPM2_Startup() is not completed successfully or processed at all.
A platform-specific specification may restrict the localities at which TPM2_Startup() may be received.

A Shutdown/Startup sequence determines the way in which the TPM will operate in response to
TPM2_Startup(). The three sequences are:

1) TPM Reset — This is a Startup(CLEAR) preceded by either Shutdown(CLEAR) or no
TPM2_Shutdown(). On TPM Reset, all variables go back to their default initialization state.

NOTE 3 Only those values that are specified as having a default initialization state are changed by TPM
Reset. Persistent values that have no default initialization state are not changed by this
command. Values such as seeds have no default initialization state and only change due to
specific commands.

2) TPM Restart — This is a Startup(CLEAR) preceded by Shutdown(STATE). This preserves much of the
previous state of the TPM except that PCR and the controls associated with the Platform hierarchy
are all returned to their default initialization state;

3) TPM Resume — This is a Startup(STATE) preceded by Shutdown(STATE). This preserves the
previous state of the TPM including the static Root of Trust for Measurement (S-RTM) PCR and the
platform controls other than the phEnable and phEnableNV.

If a TPM receives Startup(STATE) and that was not preceded by Shutdown(STATE), the TPM shall return
TPM_RC_VALUE.

If, during TPM Restart or TPM Resume, the TPM fails to restore the state saved at the last
Shutdown(STATE), the TPM shall enter Failure Mode and return TPM_RC_FAILURE.

On any TPM2_Startup(),
e phEnable and phEnableNV shall be SET;
e all transient contexts (objects, sessions, and sequences) shall be flushed from TPM memory;
e TPMS_TIME_INFO.time shall be reset to zero; and
o use of lockoutAuth shall be enabled if lockoutRecovery is zero.
Additional actions are performed based on the Shutdown/Startup sequence.

On TPM Reset

Family “2.0” TCG Published Page 19
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

platformAuth and platformPolicy shall be set to the Empty Buffer,

For each NV index with TPMA_NV_WRITE_DEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

For each NV index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be
CLEAR,

tracking data for saved session contexts shall be set to its initial value,
the object context sequence number is reset to zero,

a new context encryption key shall be generated,
TPMS_CLOCK_INFO.restartCount shall be reset to zero,
TPMS_CLOCK_INFO.resetCount shall be incremented,

the PCR Update Counter shall be clear to zero,

shEnable and ehEnable shall be SET, and

PCR in all banks are reset to their default initial conditions as determined by the relevant
platform-specific specification and the H-CRTM state (for exceptions, see TPM 2.0 Part 1, H-
CRTM before TPM2_Startup() and TPM2_Startup without H-CRTM)

NOTE 4 PCR may be initialized any time between _TPM_Init and the end of TPM2_Startup(). PCR that

are preserved by TPM Resume will need to be restored during TPM2_Startup().

NOTE 5 See "Initializing PCR" in TPM 2.0 Part 1 for a description of the default initial conditions for a

PCR.

On TPM Restart

TPMS_CLOCK_INFO.restartCount shall be incremented,
shEnable and ehEnable shall be SET,
platformAuth and platformPolicy shall be set to the Empty Buffer,

For each NV index with TPMA_NV_WRITE_DEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

For each NV index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be
CLEAR, and

PCR in all banks are reset to their default initial conditions.

If an H-CRTM Event Sequence is active, extend the PCR designated by the platform-specific
specification.

On TPM Resume

the H-CRTM startup method is the same for this TPM2_Startup() as for the previous
TPM2_Startup(); (TPM_RC_LOCALITY)

TPMS_CLOCK_INFO.restartCount shall be incremented; and

PCR that are specified in a platform-specific specification to be preserved on TPM Resume are
restored to their saved state and other PCR are set to their initial value as determined by a
platform-specific specification. For constraints, see TPM 2.0 Part 1, H-CRTM before
TPM2_Startup() and TPM2_Startup without H-CRTM.

Other TPM state may change as required to meet the needs of the implementation.

If the startupType is TPM_SU_STATE and the TPM requires TPM_SU_CLEAR, then the TPM shall return
TPM_RC_VALUE.

Page 20 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

NOTE 6 The TPM will require TPM_SU_CLEAR when no shutdown was performed or after
Shutdown(CLEAR).
NOTE 7 If startupType is neither TPM_SU_STATE nor TPM_SU_CLEAR, then the unmarshaling code returns

TPM_RC_VALUE.

Family “2.0” TCG Published Page 21
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

9.3.2 Command and Response

Table 5 — TPM2_Startup Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Startup {NV}

TPM_SU startupType TPM_SU_CLEAR or TPM_SU_STATE

Table 6 — TPM2_Startup Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Page 22 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

9.3.3 Detailed Actions

#include "InternalRoutines.h"
#include "Startup fp.h"
#ifdef TPM CC_Startup // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY a Startup(STATE) does not have the same H-CRTM state as the
previous Startup() or the locality of the startup is not 0 pr 3

TPM_RC_NV_UNINITIALIZED the saved state cannot be recovered and a Startup(CLEAR) is

requried.
TPM_RC_VALUE start up type is not compatible with previous shutdown sequence
TPM RC
TPM2_Startup(
Startup In *in // IN: input parameter list
)
{
STARTUP_TYPE startup;
TPM RC result;
BOOL prevDrtmPreStartup;
BOOL prevStartuploc3;
BYTE locality = _plat LocalityGet();

// In the PC Client specification, only locality 0 and 3 are allowed
if (locality '= 0 && locality != 3)
return TPM_BC_LOCALITY;
// Indicate that the locality was 3 unless there was an H-CRTM
if (g_DrtmPreStartup)
locality = 0;
g_StartupLocality3 = (locality == 3);

// The command needs NV update. Check if NV is available.
// A TPM RC_NV_UNAVAILABLE or TPM RC_NV_RATE error may be returned at
// this point
result = NvIsAvailable() ;
if (result !'= TPM RC_SUCCESS)
return result;

// Input Validation

// Read orderly shutdown states from previous power cycle
NvReadReserved (NV_ORDERLY, &g prevOrderlyState) ;

// See if the orderly state indicates that state was saved

if((g_prevOrderlyState & ~(PRE_STARTUP FLAG | STARTUP LOCALITY 3))
== TPM_SU_STATE)

{
// If so, extrat the saved flags (HACK)
prevDrtmPreStartup = (g_prevOrderlyState & PRE STARTUP FLAG) != 0;
prevStartuploc3 = (g _prevOrderlyState & STARTUP LOCALITY 3) != O0;
g_prevOrderlyState = TPM SU_ STATE;

}

else

{
prevDrtmPreStartup = 0;
prevStartuploc3 = 0;

}

// if this startup is a TPM Resume, then the H-CRTM states have to match.

if (in->startupType = TPM_SU_STATE)

Family “2.0” TCG Published Page 23
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

51 {
52 if (g_DrtmPreStartup != prevDrtmPreStartup)
53 return TPM RC VALUE + RC_Startup startupType;
54 if(g_ StartupLocal:LtyB != prevStartupLoc3)
55 return TPM RC LOCALITY;
56 }
57
58 // if the previous power cycle was shut down with no StateSave command, or
59 // with StateSave command for CLEAR, or the part of NV used for TPM SU STATE
60 // cannot be recovered, then this cycle can not startup up with STATE
61 if (in->startupType == TPM SU_STATE)
62 {
63 if(g_prevOrderlyState == SHUTDOWN_NONE
64 Il g prevOrderlyState == TPM SU CLEAR)
65 return TPM RC VALUE + RC_Startup startupType;
66
67 if (g_nvOk == FALSE)
68 return TPM RC_NV_UNINITIALIZED;
69 }
70
71 // Internal Date Update
72
73 // Translate the TPM2 ShutDown and TPM2_ Startup sequence into the startup
74 // types. Will only be a SU RESTART if the NV is OK
75 if(in->startupType == TPM SU CLEAR
76 && g prevOrderlyState == TPM SU_STATE
77 && g _nvOk == TRUE)
78 {
79 startup = SU RESTART;
80 // Read state reset data
81 NvReadReserved (NV_STATE RESET, &gr);
82 }
83 // In this check, we don't need to look at g nvOk because that was checked
84 // above
85 else if (in->startupType == TPM SU STATE && g prevOrderlyState == TPM SU STATE)
86 {
87 // Read state clear and state reset data
88 NvReadReserved (NV_STATE CLEAR, é&gc);
89 NvReadReserved (NV_ STATE RESET, &gr);
90 startup = SU RESUME;
91 }
92 else
93 {
94 startup = SU RESET;
95 }
96
97 // Read persistent data from NV
98 NvReadPersistent() ;
929
100 // Crypto Startup
101 CryptUtilStartup (startup) ;
102
103 // Read the platform unique value that is used as VENDOR PERMANENT auth value
104 g_platformUniqueDetails.t.size = (UINT16)_plat GetUnique(1l,
105 sizeof (g_platformUniqueDetails.t.buffer),
106 g_platformUniqueDetails.t.buffer);
107
108 // Start up subsystems
109 // Start counters and timers
110 TimeStartup (startup) ;
111
112 // Start dictionary attack subsystem
113 DAStartup (startup) ;
114
115 // Enable hierarchies
116 HierarchyStartup (startup) ;
Page 24 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

Trusted Platform Module Library

}

// Restore/Initialize PCR
PCRStartup (startup, locality);

// Restore/Initialize command audit information
CommandAuditStartup (startup) ;

// Object context variables

if (startup == SU_RESET)

{
// Reset object context ID to 0
gr.objectContextID = 0;
// Reset clearCount to 0
gr.clearCount= 0;

}

// Initialize session table
SessionStartup (startup) ;

// Initialize index/evict data. This function clear read/write locks
// in NV index
NvEntityStartup (startup) ;

// Initialize the orderly shut down flag for this cycle to SHUTDOWN NONE.

gp.orderlyState = SHUTDOWN NONE;
NvWriteReserved (NV_ORDERLY, &gp.orderlyState);

// Update TPM internal states if command succeeded.
// Record a TPM2 Startup command has been received.

TPMRegisterStartup() ;

// The H-CRTM state no longer matters
g_DrtmPreStartup = FALSE;

return TPM RC_SUCCESS;

#endif // CC_startup

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page 25
October 30, 2014

Part 3: Commands Trusted Platform Module Library

9.4 TPM2_Shutdown

9.4.1 General Description
This command is used to prepare the TPM for a power cycle. The shutdownType parameter indicates
how the subsequent TPM2_Startup() will be processed.

For a shutdownType of any type, the volatile portion of Clock is saved to NV memory and the orderly
shutdown indication is SET. NV with the TPMA_NV_ORDERY attribute will be updated.

For a shutdownType of TPM_SU_STATE, the following additional items are saved:
e tracking information for saved session contexts;
e the session context counter;
e PCR that are designated as being preserved by TPM2_Shutdown(TPM_SU_STATE);
e the PCR Update Counter;

o flags associated with supporting the TPMA_NV_WRITESTCLEAR and
TPMA_NV_READSTCLEAR attributes; and

e the command audit digest and count.
The following items shall not be saved and will not be in TPM memory after the next TPM2_Startup:
e TPM-memory-resident session contexts;
e TPM-memory-resident transient objects; or
e TPM-memory-resident hash contexts created by TPM2_HashSequenceStart().
Some values may be either derived from other values or saved to NV memory.

This command saves TPM state but does not change the state other than the internal indication that the
context has been saved. The TPM shall continue to accept commands. If a subsequent command
changes TPM state saved by this command, then the effect of this command is nullified. The TPM MAY
nullify this command for any subsequent command rather than check whether the command changed
state saved by this command. If this command is nullified. and if no TPM2_Shutdown() occurs before the
next TPM2_Startup(), then the next TPM2_Startup() shall be TPM2_Startup(CLEAR).

Page 26 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

9.4.2 Command and Response

Table 7 — TPM2_Shutdown Command

Part 3: Commands

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_Shutdown {NV}

P,

TPM_SU shutdownType TPM_SU_CLEAR or TPM_SU_STATE
Table 8 — TPM2_Shutdown Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Family “2.0” TCG Published Page 27

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

Part 3: Commands Trusted Platform Module Library

9.4.3 Detailed Actions

1 #include "InternalRoutines.h"
#include "Shutdown fp.h"
3 #ifdef TPM CC_Shutdown // Conditional expansion of this file

N

Error Returns Meaning
TPM_RC_TYPE if PCR bank has been re-configured, a CLEAR StateSave() is
required
4 TPMRC
5 TPM2_Shutdown (
6 Shutdown_In *in // IN: input parameter list
7)
8 {
9 TPM RC result;
10
11 // The command needs NV update. Check if NV is available.
12 // A TPM RC NV_UNAVAILABLE or TPM RC NV _RATE error may be returned at
13 // this point
14 result = NvIsAvailable() ;
15 if (result != TPM RC SUCCESS) return result;
16
17 // Input Validation
18
19 // If PCR bank has been reconfigured, a CLEAR state save is required
20 if (g_pcrReConfig && in->shutdownType == TPM SU_STATE)
21 return TPM RC TYPE + RC_Shutdown_shutdownType;
22
23 // Internal Data Update
24
25 // PCR private date state save
26 PCRStateSave (in->shutdownType) ;
27
28 // Get DRBG state
29 CryptDrbgGetPutState (GET_STATE) ;
30
31 // Save all orderly data
32 NviWriteReserved (NV_ORDERLY DATA, &go);
33
34 // Save RAM backed NV index data
35 NvStateSave () ;
36
37 if (in->shutdownType == TPM SU_STATE)
38 {
39 // Save STATE RESET and STATE CLEAR data
40 NvWriteReserved (NV_STATE CLEAR, &gcC);
41 NviWWriteReserved (NV_STATE RESET, &gr);
42 }
43 else if(in->shutdownType == TPM_SU CLEAR)
44 {
45 // Save STATE RESET data
46 NviWriteReserved (NV_STATE RESET, &gr);
47 }
48
49 // Write orderly shut down state
50 if (in->shutdownType == TPM SU_CLEAR)
51 gp.orderlyState = TPM SU CLEAR;
52 else if (in->shutdownType == TPM SU_STATE)
53 {
54 gp.orderlyState = TPM SU STATE;
55 // Hack for the H-CRTM and Startup locality settings
Page 28 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

56
57
58
59

61
62
63
64
65

67
68
69
70
71
72
73
74
75

Trusted Platform Module Library Part 3: Commands

if (g_DrtmPreStartup)

gp.orderlyState |= PRE STARTUP_ FLAG;

else if (g_StartupLocality3)

}

else

gp.orderlyState |= STARTUP LOCALITY 3;

PAssert (FALSE) ;

NviWriteReserved (NV_ORDERLY, &gp.orderlyState);

// If
// if
// of

// gp.

// an
// an

PRE STARTUP FLAG was SET, then it will stay set in gp.orderlyState even
the TPM isn't actually shut down. This is OK because all other checks
gp.orderlyState are to see if it is SHUTDOWN NONE. So, having
orderlyState set to another value that is also not SHUTDOWN NONE, is not
issue. This must be the case, otherwise, it would be impossible to add
additional shutdown type without major changes to the code.

return TPM_BC_SUCCESS;

}
#endif //

CC_sShutdown

Family “2.0” TCG Published Page 29
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

10 Testing

10.1 Introduction

Compliance to standards for hardware security modules may require that the TPM test its functions
before the results that depend on those functions may be returned. The TPM may perform operations
using testable functions before those functions have been tested as long as the TPM returns no value
that depends on the correctness of the testable function.

EXAMPLE TPM2_PCR_Event() may be executed before the hash algorithms have been tested. However, until
the hash algorithms have been tested, the contents of a PCR may not be used in any command if
that command may result in a value being returned to the TPM user. This means that
TPM2_PCR_Read() or TPM2_PolicyPCR() could not complete until the hashes have been checked
but other TPM2_PCR_Event() commands may be executed even though the operation uses previous
PCR values.

If a command is received that requires return of a value that depends on untested functions, the TPM
shall test the required functions before completing the command.

Once the TPM has received TPM2_SelfTest() and before completion of all tests, the TPM is required to
return TPM_RC_TESTING for any command that uses a function that requires a test.

If a self-test fails at any time, the TPM will enter Failure mode. While in Failure mode, the TPM will return
TPM_RC_FAILURE for any command other than TPM2_GetTestResult() and TPM2_GetCapability(). The
TPM will remain in Failure mode until the next _TPM_Init.

Page 30 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

10.2 TPM2_SelfTest

10.2.1 General Description

This command causes the TPM to perform a test of its capabilities. If the fullTest is YES, the TPM will test
all functions. If fullTest = NO, the TPM will only test those functions that have not previously been tested.
If any tests are required, the TPM shall either

a) return TPM_RC_TESTING and begin self-test of the required functions, or

NOTE 1 If fullTest is NO, and all functions have been tested, the TPM shall return TPM_RC_SUCCESS.

b) perform the tests and return the test result when complete.

If the TPM uses option a), the TPM shall return TPM_RC_TESTING for any command that requires use
of a testable function, even if the functions required for completion of the command have already been
tested.

NOTE 2 This command may cause the TPM to continue processing after it has returned the response. So
that software can be notified of the completion of the testing, the interface may include controls that
would allow the TPM to generate an interrupt when the “background” processing is complete. This
would be in addition to the interrupt that may be available for signaling normal command completion.
It is not necessary that there be two interrupts, but the interface should provide a way to indicate the
nature of the interrupt (normal command or deferred command).

Family “2.0” TCG Published Page 31
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

10.2.2 Command and Response

Table 9 — TPM2_SelfTest Command

Type Name Description

TPM_ST_SESSIONS if an audit session is present;

TPMI_ST_COMMAND_TAG tag otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SelfTest {NV}
aero0— ——— |

YES if full test to be performed

TPMI_YES_NO full Test _ . .
NO if only test of untested functions required

Table 10 — TPM2_SelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Page 32 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library

10.2.3 Detailed Actions

Part 3: Commands

#include "InternalRoutines.h"

#include "SelfTest fp.h"

#ifdef TPM CC_SelfTest // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_CANCELED

the command was canceled (some incremental process may have
been made)

TPM_RC_TESTING

self test in process

TPM_RC

TPM2_ SelfTest(
SelfTest In *in
)

{
// Command Output

// IN: input parameter list

// Call self test function in crypt module
return CryptSelfTest (in->fullTest) ;

}
#endif // CC_SelfTest

Family “2.0”
Level 00 Revision 01.16

TCG Published Page 33
Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

10.3 TPM2_ IncrementalSelfTest

10.3.1 General Description

This command causes the TPM to perform a test of the selected algorithms.

NOTE 1 The toTest list indicates the algorithms that software would like the TPM to test in anticipation of
future use. This allows tests to be done so that a future commands will not be delayed due to
testing.

The implementation may treat algorithms on the toTest list as either 'test each completely' or 'test
this combination.'

EXAMPLE If the toTest list includes AES and CTR mode, it may be interpreted as a request to test only AES in
CTR mode. Alternatively, it may be interpreted as a request to test AES in all modes and CTR mode
for all symmetric algorithms.

If toTest contains an algorithm that has already been tested, it will not be tested again.

NOTE 2 The only way to force retesting of an algorithm is with TPM2_SelfTest(fullTest = YES).

The TPM will return in toDoList a list of algorithms that are yet to be tested. This list is not the list of
algorithms that are scheduled to be tested but the algorithms/functions that have not been tested. Only
the algorithms on the toTest list are scheduled to be tested by this command.

NOTE 3 An algorithm remains on the toDoList while any part of it remains untested.

EXAMPLE A symmetric algorithm remains untested until it is tested with all its modes.

Making toTest an empty list allows the determination of the algorithms that remain untested without
triggering any testing.

If toTest is not an empty list, the TPM shall return TPM_RC_SUCCESS for this command and then return
TPM_RC _TESTING for any subsequent command (including TPM2_IncrementalSelfTest()) until the
requested testing is complete.

NOTE 4 If toDoList is empty, then no additional tests are required and TPM_RC_TESTING will not be
returned in subsequent commands and no additional delay will occur in a command due to testing.

NOTE 5 If none of the algorithms listed in toTest is in the toDoList, then no tests will be performed.

NOTE 6 The TPM cannot return TPM_RC_TESTING for this command, even when testing is not complete,
because response parameters can only returned with the TPM_RC_SUCCESS return code.

If all the parameters in this command are valid, the TPM returns TPM_RC_SUCCESS and the toDoList
(which may be empty).

NOTE 7 An implementation may perform all requested tests before returning TPM_RC_SUCCESS, or it may
return TPM_RC_SUCCESS for this command and then return TPM_RC_TESTING for all
subsequence commands (including TPM2_IncrementatSelfTest()) until the requested tests are
complete.

Page 34 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

10.3.2 Command and Response

Part 3: Commands

Table 11 — TPM2_IncrementalSelfTest Command

Type Name Description
TPM_ST_SESSIONS if an audit session is present;

TPMI_ST_COMMAND_TAG tag otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_IncrementalSelfTest {NV}
P e ————————————————————
TPML_ALG toTest list of algorithms that should be tested

Table 12 — TPM2_IncrementalSelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPML_ALG toDoList list of algorithms that need testing

Family “2.0” TCG Published Page 35

Level 00 Revision 01.16

Copyright © TCG 2006-2014 October 30, 2014

N

Part 3: Commands Trusted Platform Module Library

10.3.3 Detailed Actions

#include "InternalRoutines.h"
#include "IncrementalSelfTest fp.h"
#ifdef TPM CC_IncrementalSelfTest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CANCELED the command was canceled (some tests may have completed)

TPM_RC_VALUE an algorithm in the toTest list is not implemented

TPM RC

TPM2 IncrementalSelfTest(
IncrementalSelfTest In *in, // IN: input parameter list
IncrementalSelfTest Out *out // OUT: output parameter list
)

{
TPM RC result;

// Command Output

// Call incremental self test function in crypt module. If this function
// returns TPM RC VALUE, it means that an algorithm on the 'toTest' list is
// not implemented.
result = CryptIncrementalSelfTest (&in->toTest, &out->toDoList) ;
if (result == TPM RC VALUE)
return TPM RCS_VALUE + RC_IncrementalSelfTest toTest;
return result;

}
#endif // CC_IncrementalSelfTest

Page 36 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

10.4 TPM2_GetTestResult

10.4.1 General Description

This command returns manufacturer-specific information regarding the results of a self-test and an
indication of the test status.

If TPM2_SelfTest() has not been executed and a testable function has not been tested, testResult will be
TPM_RC_NEEDS_TEST. If TPM2_SelfTest() has been received and the tests are not complete,
testResult will be TPM_RC_TESTING. If testing of all functions is complete without functional failures,
testResult will be TPM_RC_SUCCESS. If any test failed, testResult will be TPM_RC_FAILURE.

This command will operate when the TPM is in Failure mode so that software can determine the test
status of the TPM and so that diagnostic information can be obtained for use in failure analysis. If the
TPM is in Failure mode, then tag is required to be TPM_ST _NO_SESSIONS or the TPM shall return
TPM_RC_FAILURE.

Family “2.0” TCG Published Page 37
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

10.4.2 Command and Response

Table 13 — TPM2_GetTestResult Command

Type Name Description

TPM_ST_SESSIONS if an audit session is present;

TPMI_ST_COMMAND_TAG | tag otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTestResult

Table 14 — TPM2_GetTestResult Response

Type Name Description
TPMI_ST_COMMAND_TAG tag see clause 6
UINT32 responseSize

TPM_RC responseCode

|
test result data

TPM2B_MAX_BUFFER outData . . .
- - contains manufacturer-specific information
TPM_RC testResult
Page 38 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

10.4.3 Detailed Actions

#include "InternalRoutines.h"
#include "GetTestResult fp.h"
#ifdef TPM CC_GetTestResult // Conditional expansion of this file

In the reference implementation, this function is only reachable if the TPM is not in failure mode meaning
that all tests that have been run have completed successfully. There is not test data and the test result is
TPM_RC_SUCCESS.

TPM_RC

TPM2 GetTestResult(
GetTestResult Out *out // OUT: output parameter list
)

{
// Command Output

// Call incremental self test function in crypt module
out->testResult = CryptGetTestResult (&out->outData) ;

return TPM_BC_SUCCESS;

}
#endif // CC_GetTestResult

Family “2.0” TCG Published Page 39
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

11 Session Commands

11.1 TPMZ2_StartAuthSession

11.1.1 General Description

This command is used to start an authorization session using alternative methods of establishing the
session key (sessionKey). The session key is then used to derive values used for authorization and for
encrypting parameters.

This command allows injection of a secret into the TPM using either asymmetric or symmetric encryption.
The type of tpmKey determines how the value in encryptedSalt is encrypted. The decrypted secret value
is used to compute the sessionKey.

NOTE 1 If tpmKey Is TPM_RH_NULL, then encryptedSalt is required to be an Empty Buffer.

The label value of “SECRET” (see “Terms and Definitions” in TPM 2.0 Part 1) is used in the recovery of
the secret value.

The TPM generates the sessionKey from the recovered secret value.

No authorization is required for tpmKey or bind.

NOTE 2 The justification for using tpmKey without providing authorization is that the result of using the key is
not available to the caller, except indirectly through the sessionKey. This does not represent a point
of attack on the value of the key. If the caller attempts to use the session without knowing the
sessionKey value, it is an authorization failure that will trigger the dictionary attack logic.

The entity referenced with the bind parameter contributes an authorization value to the sessionKey
generation process.

If both tpmKey and bind are TPM_ALG_NULL, then sessionKey is set to the Empty Buffer. If tpmKey is
not TPM_ALG_NULL, then encryptedSalt is used in the computation of sessionKey. If bind is not
TPM_ALG_NULL, the authValue of bind is used in the sessionKey computation.

If symmetric specifies a block cipher, then TPM_ALG_CFB is the only allowed value for the mode field in
the symmetric parameter (TPM_RC_MODE).

This command starts an authorization session and returns the session handle along with an initial
nonceTPM in the response.

If the TPM does not have a free slot for an authorization session, it shall return
TPM_RC_SESSION_HANDLES.

If the TPM implements a “gap” scheme for assigning contextlD values, then the TPM shall return
TPM_RC_CONTEXT_GAP if creating the session would prevent recycling of old saved contexts (See
“Context Management” in TPM 2.0 Part 1).

If tomKey is not TPM_ALG_NULL then encryptedSalt shall be a TPM2B_ENCRYPTED_SECRET of the
proper type for tpmKey. The TPM shall return TPM_RC_HANDLE if the sensitive portion of tpmKey is not
loaded. The TPM shall return TPM_RC_VALUE if:

a) tpmKey references an RSA key and
1) encryptedSalt does not contain a value that is the size of the public modulus of tpmKey,
2) encryptedSalt has a value that is greater than the public modulus of tpmKey,
3) encryptedSalt is not a properly encoded OAEP value, or

4) the decrypted salt value is larger than the size of the digest produced by the nameAlg of tpmKey;
or

Page 40 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

b) tpmKey references an ECC key and encryptedSalt
1) does not contain a TPMS_ECC_POINT or

2) is not a point on the curve of tpmKey;

NOTE 3 When ECC is used, the point multiply process produces a value (Z) that is used in a KDF to
produce the final secret value. The size of the secret value is an input parameter to the KDF
and the result will be set to be the size of the digest produced by the nameAlg of tpmKey.

c) tpmKey references a symmetric block cipher or a keyedHash object and encryptedSalt contains a
value that is larger than the size of the digest produced by the nameAlg of tpmKey.

If bind references a transient object, then the TPM shall return TPM_RC_HANDLE if the sensitive portion
of the object is not loaded.

For all session types, this command will cause initialization of the sessionKey and may establish binding
between the session and an object (the bind object). If sessionType is TPM_SE POLICY or
TPM_SE_TRIAL, the additional session initialization is:

e set policySession—policyDigest to a Zero Digest (the digest size for policySession—policyDigest
is the size of the digest produced by authHash);

e authorization may be given at any locality;

e authorization may apply to any command code;

e authorization may apply to any command parameters or handles;
e the authorization has no time limit;

¢ an authValue is not needed when the authorization is used,;

e the session is not bound;

e the session is not an audit session; and

e the time at which the policy session was created is recorded.

Additionally, if sessionType is TPM_SE_TRIAL, the session will not be usable for authorization but can be
used to compute the authPolicy for an object.

NOTE 4 Although this command changes the session allocation information in the TPM, it does not invalidate
a saved context. That is, TPM2_Shutdown() is not required after this command in order to re-
establish the orderly state of the TPM. This is because the created context will occupy an available
slot in the TPM and sessions in the TPM do not survive any TPM2_Startup(). However, if a created
session is context saved, the orderly state does change.

The TPM shall return TPM_RC_SIZE if nonceCaller is less than 16 octets or is greater than the size of
the digest produced by authHash.

Family “2.0” TCG Published Page 41
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

11.1.2 Command and Response

Trusted Platform Module Library

Table 15 — TPM2_StartAuthSession Command

Type Name Description
TPM_ST_SESSIONS if an audit, decrypt, or encrypt
TPMI_ST_COMMAND_TAG tag session is present; otherwise,

TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_StartAuthSession
handle of a loaded decrypt key used to encrypt salt
TPMI_DH_OBJECT+ tpmKey may be TPM_RH_NULL
Auth Index: None
entity providing the authValue
TPMI_DH_ENTITY+ bind may be TPM_RH_NULL

- — — — — —— — — |

Auth Index: None

initial nonceCaller, sets nonce size for the session

TPM2B_NONCE nonceCaller
- shall be at least 16 octets
value encrypted according to the type of tpmKey
TPM2B_ENCRYPTED_SECRET | encryptedSalt If tomKey is TPM_RH_NULL, this shall be the Empty

Buffer.

TPM_SE

sessionType

indicates the type of the session; simple HMAC or policy
(including a trial policy)

the algorithm and key size for parameter encryption

TPMT_SYM_DEF+ symmetric

may select TPM_ALG_NULL

hash algorithm to use for the session
TPMI_ALG_HASH authHash Shall be a hash algorithm supported by the TPM and

not TPM_ALG_NULL

Table 16 — TPM2_StartAuthSession Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

TPMI_SH_AUTH_SESSION

TPM2B_NONCE

sessionHandle

nonceTPM

handle for the newly created session

the initial nonce from the TPM, used in the computation
of the sessionKey

Page 42
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

N

Trusted Platform Module Library

11.1.3 Detailed Actions

#include "InternalRoutines.h"
#include "StartAuthSession fp.h"
#ifdef TPM CC_StartAuthSession // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_ATTRIBUTES

tpmKey does not reference a decrypt key

TPM_RC_CONTEXT_GAP

the difference between the most recently created active context and
the oldest active context is at the limits of the TPM

TPM_RC_HANDLE

input decrypt key handle only has public portion loaded

TPM_RC_MODE

symmetric specifies a block cipher but the mode is not
TPM_ALG_CFB.

TPM_RC_SESSION_HANDLES

no session handle is available

TPM_RC_SESSION_MEMORY

no more slots for loading a session

TPM_RC_SIZE

nonce less than 16 octets or greater than the size of the digest
produced by authHash

TPM_RC_VALUE

secret size does not match decrypt key type; or the recovered secret
is larger than the digest size of the nameAlg of tpmKey; or, for an
RSA decrypt key, if encryptedSecret is greater than the public
exponent of tpmKey.

TPM RC

TPM2_StartAuthSession (
StartAuthSession_In
StartAuthSession Out
)

TPM_RC
OBJECT
SESSION
TPM2B_DATA

// Input Validation

*in, // IN: input parameter buffer
*out // OUT: output parameter buffer

result = TPM RC_SUCCESS;

*tpmKey ; // TPM key for decrypt salt
*session; // session internal data
salt;

// Check input nonce size. IT should be at least 16 bytes but not larger
// than the digest size of session hash.
if(in->nonceCaller.t.size < 16
|| in->nonceCaller.t.size > CryptGetHashDigestSize (in->authHash))
return TPM RC_SIZE + RC_StartAuthSession nonceCaller;

// If an decrypt key is passed in, check its validation
if (in->tpmKey '= TPM RH NULL)

{

// secret size cannot be 0
if (in—>encryptedSalt.t.size = 0)
return TPM RC VALUE + RC_StartAuthSession encryptedSalt;

// Get pointer to loaded decrypt key
tpmKey = ObjectGet (in->tpmKey) ;

// Decrypting salt requires accessing the private portion of a key.
// Therefore, tmpKey can not be a key with only public portion loaded
if (tpmKey->attributes.publicOnly)

return TPM RC HANDLE + RC StartAuthSession_tpmKey;

// HMAC session input handle check.

Family “2.0”
Level 00 Revision 01.16

TCG Published

Part 3: Commands

Page 43

Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

39 // tpmKey should be a decryption key

40 if (tpmKey->publicArea.objectAttributes.decrypt !'= SET)

41 return TPM RC ATTRIBUTES + RC_StartAuthSession_ tpmKey;

42

43 // Secret Decryption. A TPM RC VALUE, TPM RC KEY or Unmarshal errors
44 // may be returned at this point

45 result = CryptSecretDecrypt (in->tpmKey, &in->nonceCaller, "SECRET",
46 &in->encryptedSalt, &salt);

47 if (result !'= TPM RC_SUCCESS)

48 return TPM RC VALUE + RC_StartAuthSession encryptedSalt;

49

50 }

51 else

52 {

53 // secret size must be 0

54 if (in->encryptedSalt.t.size !'= 0)

55 return TPM RC VALUE + RC_StartAuthSession encryptedSalt;

56 salt.t.size = 0;

57 }

58 // If the bind handle references a transient object, make sure that the
59 // sensitive area is loaded so that the authValue can be accessed.

60 if(HandleGetType (in->bind) == TPM _HT TRANSIENT

61 && ObjectGet (in->bind)->attributes.publicOnly == SET)

62 return TPM RC HANDLE + RC_StartAuthSession bind;

63

64 // If 'symmetric' is a symmetric block cipher (not TPM ALG NULL or TPM ALG XOR)
65 // then the mode must be CFB.

66 if(in->symmetric.algorithm !'= TPM ALG NULL

67 && in->symmetric.algorithm != TPM ALG XOR

68 && in->symmetric.mode.sym !'= TPM ALG CFB)

69 return TPM RC MODE + RC_StartAuthSession_ symmetric;

70

71 // Internal Data Update

72

73 // Create internal session structure. TPM RC _CONTEXT GAP, TPM RC NO_HANDLES
74 // or TPM RC SESSION MEMORY errors may be returned returned at this point.
75 //

76 // The detailed actions for creating the session context are not shown here
77 // as the details are implementation dependent

78 // SessionCreate sets the output handle

79 result = SessionCreate (in->sessionType, in->authHash,

80 &in->nonceCaller, &in->symmetric,

81 in->bind, &salt, &out->sessionHandle) ;

82

83 if (result !'= TPM RC_SUCCESS)

84 return result;

85

86 // Command Output

87

88 // Get session pointer

89 session = SessionGet (out->sessionHandle) ;

90

91 // Copy nonceTPM

92 out->nonceTPM = session->nonceTPM;

93

94 return TPM RC_SUCCESS;

95 }

96 #endif // CC_StartAuthSession

Page 44 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

11.2 TPM2_PolicyRestart

11.2.1 General Description

This command allows a policy authorization session to be returned to its initial state. This command is
used after the TPM returns TPM_RC_PCR_CHANGED. That response code indicates that a policy will
fail because the PCR have changed after TPM2_PolicyPCR() was executed. Restarting the session
allows the authorizations to be replayed because the session restarts with the same nonceTPM. If the
PCR are valid for the policy, the policy may then succeed.

This command does not reset the policy ID or the policy start time.

Family “2.0” TCG Published Page 45
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

11.2.2 Command and Response

Table 17 — TPM2_PolicyRestart Command

Type Name Description

TPM_ST_SESSIONS if an audit session is present;

TPMI_ST_COMMAND_TAG tag otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_PolicyRestart
TPMI_SH_POLICY sessionHandle the handle for the policy session

Table 18 — TPM2_PolicyRestart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Page 46 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

WoOoOJoUld WN R

Trusted Platform Module Library

11.2.3 Detailed Actions

#include "InternalRoutines.h"

#include "PolicyRestart fp.h"

#ifdef TPM CC_PolicyRestart // Conditional expansion of this file
TPM_RC

TPM2 PolicyRestart(

PolicyRestart In *in
)

// IN: input parameter list

SESSION *session;
BOOL wasTrialSession;

// Internal Data Update

}

session = SessionGet (in->sessionHandle) ;
wasTrialSession = session->attributes.isTrialPolicy == SET;

// Initialize policy session
SessionResetPolicyData (session) ;

session->attributes.isTrialPolicy = wasTrialSession;

return TPM RC_SUCCESS;

#endif // CC_PolicyRestart

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page 47
October 30, 2014

Part 3: Commands Trusted Platform Module Library

12 Object Commands
12.1 TPM2_Create

12.1.1 General Description

This command is used to create an object that can be loaded into a TPM using TPM2_Load(). If the
command completes successfully, the TPM will create the new object and return the object’s creation
data (creationData), its public area (outPublic), and its encrypted sensitive area (outPrivate). Preservation
of the returned data is the responsibility of the caller. The object will need to be loaded (TPM2_Load())
before it may be used.

TPM2B_PUBLIC template (inPublic) contains all of the fields necessary to define the properties of the
new object. The setting for these fields is defined in “Public Area Template” in TPM 2.0 Part 1 and
“TPMA_OBJECT” in TPM 2.0 Part 2.

The parentHandle parameter shall reference a loaded decryption key that has both the public and
sensitive area loaded.

When defining the object, the caller provides a template structure for the object in a TPM2B_PUBLIC
structure (inPublic), an initial value for the object’s authValue (inSensitive.userAuth), and, if the object is a
symmetric object, an optional initial data value (inSensitive.data). The TPM shall validate the consistency
of inPublic.attributes according to the Creation rules in “TPMA_OBJECT” in TPM 2.0 Part 2.

The inSensitive parameter may be encrypted using parameter encryption.

The methods in this clause are used by both TPM2_Create() and TPM2_CreatePrimary(). When a value
is indicated as being TPM-generated, the value is filled in by bits from the RNG if the command is
TPM2_Create() and with values from KDFa() if the command is TPM2_CreatePrimary(). The parameters
of each creation value are specified in TPM 2.0 Part 1.

The sensitiveDataOrigin attribute of inPublic shall be SET if inSensitive.data is an Empty Buffer and
CLEAR if inSensitive.data is not an Empty Buffer or the TPM shall return TPM_RC_ATTRIBUTES.

The TPM will create new data for the sensitive area and compute a TPMT_PUBLIC.unique from the
sensitive area based on the object type:

a) For a symmetric key:

1) If inSensitive.sensitive.data is the Empty Buffer, a TPM-generated key value is placed in the new
object's TPMT_SENSITIVE.sensitive.sym. The size of the key will be determined by
inPublic.publicArea.parameters.

2) If inSensitive.sensitive.data is not the Empty Buffer, the TPM will validate that the size of
inSensitive.data is no larger than the key size indicated in the inPublic template (TPM_RC_SIZE)
and copy the inSensitive.data to TPMT_SENSITIVE.sensitive.sym of the new object.

3) A TPM-generated obfuscation value is placed in TPMT_SENSITIVE.sensitive.seedValue. The
size of the obfuscation value is the size of the digest produced by the nameAlg in inPublic. This
value prevents the public unique value from leaking information about the sensitive area.

4) The TPMT_PUBLIC.unique.sym value for the new object is then generated, as shown in equation
(1) below, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the nameAlg
of the object.

unique ‘= Hnameag(sensitive.seedValue.buffer || sensitive.any.buffer) 1)
b) If the Object is an asymmetric key:
1) If inSensitive.sensitive.data is not the Empty Buffer, then the TPM shall return TPM_RC_VALUE.

Page 48 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

2) A TPM-generated private key value is created with the size determined by the parameters of
inPublic.publicArea.parameters.

3) If the key is a Storage Key, a TPM-generated TPMT_SENSITIVE.seedValue value is created;
otherwise, TPMT_SENSITIVE.seedValue.size is set to zero.

NOTE 1 An Object that is not a storage key has no child Objects to encrypt, so it does not need a
symmetric key.

4) The public unigue value is computed from the private key according to the methods of the key
type.

5) If the key is an ECC key and the scheme required by the curvelD is not the same as scheme in
the public area of the template, then the TPM shall return TPM_RC_SCHEME.

6) If the key is an ECC key and the KDF required by the curvelD is not the same as kdf in the pubic
area of the template, then the TPM shall return TPM_RC_KDF.

NOTE 2 There is currently no command in which the caller may specify the KDF to be used with an
ECC decryption key. Since there is no use for this capability, the reference implementation
requires that the kdf in the template be set to TPM_ALG_NULL or TPM_RC_KDF is
returned.

c) If the Object is a keyedHash object:

1) If inSensitive.sensitive.data is an Empty Buffer, and neither sign nor decrypt is SET in
inPublic.attributes, the TPM shall return TPM_RC_ATTRIBUTES. This would be a data object
with no data.

2) If inSensitive.sensitive.data is not an Empty Buffer, the TPM will copy the
inSensitive.sensitive.data to TPMT_SENSITIVE.sensitive,bits of the new object.

NOTE 3 The size of inSensitive.sensitive.data is limited to be no larger than the largest value of
TPMT_SENSITIVE.sensitive.bits by MAX_SYM_DATA.

3) If inSensitive.sensitive.data is an Empty Buffer, a TPM-generated key value that is the size of the
digest produced by the nameAlg in inPublic is placed in TPMT_SENSITIVE.sensitive.bits.

4) A TPM-generated obfuscation value that is the size of the digest produced by the nameAlg of
inPublic is placed in TPMT_SENSITIVE.seedValue.

5) The TPMT_PUBLIC.unique.keyedHash value for the new object is then generated, as shown in
equation (1) above, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the
nameAlg of the object.

For TPM2_Load(), the TPM will apply normal symmetric protections to the created TPMT_SENSITIVE to
create outPublic.

NOTE 4 The encryption key is derived from the symmetric seed in the sensitive area of the parent.

In addition to outPublic and outPrivate, the TPM will build a TPMS_CREATION_DATA structure for the
object. TPMS_CREATION_DATA.outsidelnfo is set to outsidelnfo. This structure is returned in
creationData. Additionally, the digest of this structure is returned in creationHash, and, finally, a
TPMT_TK_CREATION is created so that the association between the creation data and the object may
be validated by TPM2_CertifyCreation().

If the object being created is a Storage Key and inPublic.objectAttributes.fixedParent is SET, then the
algorithms and parameters of inPublic are required to match those of the parent. The algorithms that must
match are inPublic.type, inPublic.nameAlg, and inPublic.parameters. If inPublic.type does not match, the
TPM shall return TPM_RC_TYPE. If inPublic.nameAlg does not match, the TPM shall return
TPM_RC_HASH. If inPublic.parameters does not match, the TPM shall return TPM_RC_ASSYMETRIC.
The TPM shall not differentiate between mismatches of the components of inPublic.parameters.

Family “2.0” TCG Published Page 49
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

EXAMPLE If the inPublic.parameters.ecc.symmetric.algorithm does not match the parent, the TPM shall return
TPM_RC_ ASYMMETRIC rather than TPM_RC_SYMMETRIC.

Page 50 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

12.1.2 Command and Response

Part 3: Commands

Table 19 — TPM2_Create Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_Create

TPMI_DH_OBJECT

@parentHandle

P,

handle of parent for new object
Auth Index: 1
Auth Role: USER

TPM2B_SENSITIVE_CREATE |inSensitive the sensitive data
TPM2B_PUBLIC inPublic the public template
data that will be included in the creation data for this
TPM2B_DATA outsidelnfo object to provide permanent, verifiable linkage between
this object and some object owner data
TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 20 — TPM2_Create Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

- — — — — —— — — |

TPM2B_PRIVATE outPrivate the private portion of the object

TPM2B_PUBLIC outPublic the public portion of the created object
TPM2B_CREATION_DATA creationData contains a TPMS_CREATION_DATA
TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION

creationTicket

ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 51
October 30, 2014

S Wb

Part 3: Commands

12.1.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"

#include "Object spt fp.h"

#include "Create fp.h"

#ifdef TPM CC Create // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_ASYMMETRIC

non-duplicable storage key and its parent have different public
parameters

TPM_RC_ATTRIBUTES

sensitiveDataOrigin is CLEAR when 'sensitive.data’ is an Empty
Buffer, or is SET when 'sensitive.data’ is not empty; fixedTPM,
fixedParent, or encryptedDuplication attributes are inconsistent
between themselves or with those of the parent object; inconsistent
restricted, decrypt and sign attributes; attempt to inject sensitive data
for an asymmetric key; attempt to create a symmetric cipher key that
is not a decryption key

TPM_RC_HASH

non-duplicable storage key and its parent have different name
algorithm

TPM_RC_KDF

incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY

invalid key size values in an asymmetric key public area

TPM_RC_KEY_SIZE

key size in public area for symmetric key differs from the size in the
sensitive creation area; may also be returned if the TPM does not
allow the key size to be used for a Storage Key

TPM_RC_RANGE

the exponent value of an RSA key is not supported.

TPM_RC_SCHEME

inconsistent attributes decrypt, sign, restricted and key's scheme ID;
or hash algorithm is inconsistent with the scheme ID for keyed hash
object

TPM_RC_SIZE

size of public auth policy or sensitive auth value does not match
digest size of the name algorithm sensitive data size for the keyed
hash object is larger than is allowed for the scheme

TPM_RC_SYMMETRIC

a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE

unknown object type; non-duplicable storage key and its parent have
different types; parentHandle does not reference a restricted
decryption key in the storage hierarchy with both public and sensitive
portion loaded

TPM_RC_VALUE

exponent is not prime or could not find a prime using the provided
parameters for an RSA key; unsupported name algorithm for an ECC
key

TPM_RC_OBJECT_MEMORY

there is no free slot for the object. This implementation does not
return this error.

TPM_RC

TPM2 Create(
Create In *in,
Create Out *out
)

{
TPM RC
TEMT_SENSITIVE
TPM2B_NAME

Page 52

October 30, 2014

// IN: input parameter list
// OUT: output parameter list

result = TPM RC_SUCCESS;
sensitive;
name;

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Trusted Platform Module Library Part 3: Commands

// Input Validation

OBJECT *parentObject;
parentObject = ObjectGet (in->parentHandle) ;

// Does parent have the proper attributes?
if ('AreAttributesForParent (parentObject))
return TPM RC_TYPE + RC Create_parentHandle;

// The sensitiveDataOrigin attribute must be consistent with the setting of
// the size of the data object in inSensitive.
if((in->inPublic. t.publicArea.objectAttributes.sensitiveDataOrigin == SET)
= (in->inSensitive.t.sensitive.data.t.size = 0))
// Mismatch between the object attributes and the parameter.
return TPM RC_ATTRIBUTES + RC_Create inSensitive;

// Check attributes in input public area. TPM RC ASYMMETRIC, TPM RC ATTRIBUTES,
// TPM RC HASH, TPM RC KDF, TPM RC SCHEME, TPM RC SIZE, TPM RC_SYMMETRIC,
// or TPM RC TYPE error may be returned at this point.
result = PublicAttributesValidation (FALSE, in->parentHandle,
&in->inPublic. t.publicArea) ;
if (result !'= TPM RC SUCCESS)
return RcSafeAddToResult (result, RC_Create_ inPublic) ;

// Validate the sensitive area values
if (MemoryRemoveTrailingZeros (&in->inSensitive.t.sensitive.userAuth)
> CryptGetHashDigestSize (in->inPublic. t.publicArea.namelZlg))
return TPM RC SIZE + RC Create inSensitive;

// Command Output

}

// Create object crypto data
result = CryptCreateObject (in->parentHandle, &in->inPublic.t.publicArea,
&in->inSensitive.t.sensitive, &sensitive);
if (result != TPM RC_SUCCESS)
return result;

// Fill in creation data

FillInCreationData (in->parentHandle, in->inPublic.t.publicArea.namellg,
&in->creationPCR, &in->outsideInfo,
sout->creationData, &out->creationHash) ;

// Copy public area from input to output
out->outPublic. t.publicArea = in->inPublic.t.publicArea;

// Compute name from public area
ObjectComputeName (& (out->outPublic. t.publicArea), &name);

// Compute creation ticket
TicketComputeCreation (EntityGetHierarchy (in->parentHandle), &name,
&out->creationHash, &out->creationTicket) ;

// Prepare output private data from sensitive

SensitiveToPrivate (&sensitive, &name, in->parentHandle,
out->outPublic. t.publicArea.nameAlqg,
sout->outPrivate) ;

return TPM RC SUCCESS;

#endif // CC_Create

Family “2.0” TCG Published Page 53
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

12.2 TPM2_Load

12.2.1 General Description

This command is used to load objects into the TPM. This command is used when both a TPM2B_PUBLIC
and TPM2B_PRIVATE are to be loaded. If only a TPM2B_PUBLIC is to be loaded, the
TPM2_LoadExternal command is used.

NOTE 1 Loading an object is not the same as restoring a saved object context.

The objects TPMA_OBJECT attributes will be checked according to the rules defined in
“TPMA_OBJECT” in TPM 2.0 Part 2 of this specification.

Objects loaded using this command will have a Name. The Name is the concatenation of nameAlg and
the digest of the public area using the nameAlg.

NOTE 2 nameAlg is a parameter in the public area of the inPublic structure.

If inPrivate.size is zero, the load will fail.

After inPrivate.buffer is decrypted using the symmetric key of the parent, the integrity value shall be
checked before the sensitive area is used, or unmarshaled.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by fuzzing the
data and looking at the differences in the response codes.

The command returns a handle for the loaded object and the Name that the TPM computed for
inPublic.public (that is, the digest of the TPMT_PUBLIC structure in inPublic).

NOTE 4 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithms specified in the nameAlg of the object.

NOTE 5 The returned handle is associated with the object until the object is flushed (TPM2_FlushContext) or
until the next TPM2_Startup.

For all objects, the size of the key in the sensitive area shall be consistent with the key size indicated in
the public area or the TPM shall return TPM_RC_KEY_SIZE.

Before use, a loaded object shall be checked to validate that the public and sensitive portions are
properly linked, cryptographically. Use of an object includes use in any policy command. If the parts of the
object are not properly linked, the TPM shall return TPM_RC_BINDING.

EXAMPLE 1 For a symmetric object, the unique value in the public area shall be the digest of the sensitive key
and the obfuscation value.

EXAMPLE 2 For a two-prime RSA key, the remainder when dividing the public modulus by the private key shall
be zero and it shall be possible to form a private exponent from the two prime factors of the public
modulus.

EXAMPLE 3 For an ECC key, the public point shall be f(x) where x is the private key.

Page 54 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

12.2.2 Command and Response

Table 21 — TPM2_Load Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Load
TPM handle of parent key; shall not be a reserved
handle

TPMI_DH_OBJECT @parentHandle Auth Index: 1.

Auth Role: USER
= |

TPM2B_PRIVATE inPrivate the private portion of the object
TPM2B_PUBLIC inPublic the public portion of the object

Table 22 — TPM2_Load Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
TPM HANDLE objectHandle ha_ndle of type TPM_HT_TRANSIENT for the loaded
- object
TPM2B_NAME name Name of the loaded object
Family “2.0” TCG Published Page 55

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands

12.2.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"

#include "Load fp.h"

#ifdef TPM CC Load // Conditional expansion of this file

#include "Bbj;ét_spt_fp.h"

Error Returns

Meaning

TPM_RC_ASYMMETRIC

storage key with different asymmetric type than parent

TPM_RC_ATTRIBUTES

inPulblic attributes are not allowed with selected parent

TPM_RC_BINDING

inPrivate and inPublic are not cryptographically bound

TPM_RC_HASH

incorrect hash selection for signing key

TPM_RC_INTEGRITY

HMAC on inPrivate was not valid

TPM_RC_KDF

KDF selection not allowed

TPM_RC_KEY

the size of the object's unique field is not consistent with the indicated

size in the object's parameters

TPM_RC_OBJECT_MEMORY

no available object slot

TPM_RC_SCHEME

the signing scheme is not valid for the key

TPM_RC_SENSITIVE

the inPrivate did not unmarshal correctly

TPM_RC_SIZE

inPrivate missing, or authPolicy size for inPublic or is not valid

TPM_RC_SYMMETRIC

symmetric algorithm not provided when required

TPM_RC_TYPE

parentHandle is not a storage key, or the object to load is a storage
key but its parameters do not match the parameters of the parent.

TPM_RC_VALUE

decryption failure

TPM RC

TPM2_ Load(
Load In *in,
Load Out *out
)

{
TPM RC

TPMT_SENSITIVE
TPMI_RH_HIERARCHY
OBJECT

BOOL

// Input Validation

// IN: input parameter list
// OUT: output parameter list

result = TPM RC_SUCCESS;
sensitive;

hierarchy;

*parentObject = NULL;
skipChecks = FALSE;

if (in->inPrivate.t.size == 0)
return TPM RC SIZE + RC_Load inPrivate;

parentObject = ObjectGet (in->parentHandle) ;
// Is the object that is being used as the parent actually a parent.
if ('AreAttributesForParent (parentObject))

return TPM RC_TYPE + RC_Load parentHandle;

// If the parent is fixedTPM, then the attributes of the object
// are either "correct by construction" or were validated

// when the object was imported. If they pass the integrity

// check, then the values are valid

if (parentObject->publicArea.objectAttributes. fixedTPM)

skipChecks = TRUE;

else

Page 56
October 30, 2014

TCG Published

Family “2.0”

Copyright © TCG 2006-2014 Level 00 Revision 01.16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Trusted Platform Module Library Part 3: Commands

// 1If parent doesn't have fixedTPM SET, then this can't have

// fixedTPM SET.

if (in->inPublic.t.publicArea.objectAttributes. fixedTPM == SET)
return TPM RC ATTRIBUTES + RC_Load inPublic;

// Perform self check on input public area. A TPM RC SIZE, TPM RC_SCHEME,
// TPM RC VALUE, TPM RC SYMMETRIC, TPM RC TYPE, TPM RC HASH,
// TPM RC_ASYMMETRIC, TPM RC ATTRIBUTES or TPM RC KDF error may be returned
// at this point
result = PublicAttributesValidation (TRUE, in->parentHandle,
&in->inPublic.t.publicArea) ;
if (result != TPM RC_SUCCESS)
return RcSafeAddToResult(result, RC_Load inPublic);
}

// Compute the name of object
ObjectComputeName (&in->inPublic.t.publicArea, &out->name) ;

// Retrieve sensitive data. PrivateToSensitive() may return TPM RC INTEGRITY or

// TPM RC_SENSITIVE

// errors may be returned at this point

result = PrivateToSensitive (&in->inPrivate, &out->name, in->parentHandle,
in->inPublic. t.publicArea.nameAlg,
&sensitive) ;

if (result !'= TPM RC_SUCCESS)

return RcSafeAddToResult (result, RC Load inPrivate);

// Internal Data Update

// Get hierarchy of parent
hierarchy = ObjectGetHierarchy (in->parentHandle) ;

// Create internal object. A lot of different errors may be returned by this

// loading operation as it will do several validations, including the public

// binding check

result = Objectload (hierarchy, &in->inPublic.t.publicArea, &sensitive,
&out->name, in->parentHandle, skipChecks,
&out->objectHandle) ;

if (result !'= TPM RC_SUCCESS)
return result;

return TPM RC_SUCCESS;

}
#endif // CC_Load

Family “2.0” TCG Published Page 57
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

12.3 TPM2_LoadExternal

12.3.1 General Description

This command is used to load an object that is not a Protected Object into the TPM. The command allows
loading of a public area or both a public and sensitive area.

NOTE 1 Typical use for loading a public area is to allow the TPM to validate an asymmetric signature.
Typical use for loading both a public and sensitive area is to allow the TPM to be used as a crypto
accelerator.

Load of a public external object area allows the object be associated with a hierarchy so that the correct
algorithms may be used when creating tickets. The hierarchy parameter provides this association. If the
public and sensitive portions of the object are loaded, hierarchy is required to be TPM_RH_NULL.

NOTE 2 If both the public and private portions of an object are loaded, the object is not allowed to appear to
be part of a hierarchy.

The objects TPMA OBJECT attributes will be checked according to the rules defined in
“TPMA_OBJECT” in TPM 2.0 Part 2. In particular, fixedTPM, fixedParent, and restricted shall be CLEAR
if inPrivate is not the Empty Buffer.

NOTE 3 The duplication status of a public key needs to be able to be the same as the full key which may be
resident on a different TPM. If both the public and private parts of the key are loaded, then it is not
possible for the key to be either fixedTPM or fixedParent, since, its private area would not be
available in the clear to load.

Objects loaded using this command will have a Name. The Name is the nameAlg of the object
concatenated with the digest of the public area using the nameAlg. The Qualified Name for the object will
be the same as its Name. The TPM will validate that the authPolicy is either the size of the digest
produced by nameAlg or the Empty Buffer.

NOTE 4 If nameAlg is TPM_ALG_NULL, then the Name is the Empty Buffer. When the authorization value for
an object with no Name is computed, no Name value is included in the HMAC. To ensure that these
unnamed entities are not substituted, they should have an authValue that is statistically unique.

NOTE 5 The digest size for TPM_ALG_NULL is zero.

If the nameAlg is TPM_ALG_NULL, the TPM shall not verify the cryptographic binding between the public
and sensitive areas, but the TPM will validate that the size of the key in the sensitive area is consistent
with the size indicated in the public area. If it is not, the TPM shall return TPM_RC_KEY_SIZE.

NOTE 6 For an ECC object, the TPM will verify that the public key is on the curve of the key before the public
area is used.

If nameAlg is not TPM_ALG_NULL, then the same consistency checks between inPublic and inPrivate
are made as for TPM2_Load().

NOTE 7 Consistency checks are necessary because an object with a Name needs to have the public and
sensitive portions cryptographically bound so that an attacker cannot mix pubic and sensitive areas.

The command returns a handle for the loaded object and the Name that the TPM computed for
inPublic.public (that is, the TPMT_PUBLIC structure in inPublic).

NOTE 8 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithm specified in the nameAlg of the object.

Page 58 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

The hierarchy parameter associates the external object with a hierarchy. External objects are flushed
when their associated hierarchy is disabled. If hierarchy is TPM_RH_NULL, the object is part of no
hierarchy, and there is no implicit flush.

If hierarchy is TPM_RH_NULL or nameAlg is TPM_ALG_NULL, a ticket produced using the object shall
be a NULL Ticket.

EXAMPLE If a key is loaded with hierarchy set to TPM_RH_NULL, then TPM2_VerifySignature() will produce a
NULL Ticket of the required type.

External objects are Temporary Objects. The saved external object contexts shall be invalidated at the
next TPM Reset.

Family “2.0” TCG Published Page 59
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

12.3.2 Command and Response

Trusted Platform Module Library

Table 23 — TPM2_LoadExternal Command

Type Name Description
TPM_ST_SESSIONS if an audit, encrypt, or derypt
TPMI_ST_COMMAND_TAG tag session is present; otherwise,

TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

= |

TPM_CC_LoadExternal

TPM2B_SENSITIVE inPrivate the sensitive portion of the object (optional)
TPM2B_PUBLIC+ inPublic the public portion of the object
TPMI_RH_HIERARCHY+ hierarchy hierarchy with which the object area is associated

Table 24 — TPM2_LoadExternal Response

TPM2B_NAME

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle handle of type TPM_HT_TRANSIENT for the loaded

- — — — — —— — — |

name

object

name of the loaded object

Page 60
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

12.3.3 Detailed Actions

Part 3: Commands

#include "InternalRoutines.h"

#include "LoadExternal fp.h"

#ifdef TPM CC LoadExternal // Conditional expansion of this file

#include "Bbj;ét_spt_fp.h"

Error Returns

Meaning

TPM_RC_ATTRIBUTES

‘fixedParent" and fixedTPM must be CLEAR on on an external key if
both public and sensitive portions are loaded

TPM_RC_BINDING

the inPublic and inPrivate structures are not cryptographically bound.

TPM_RC_HASH

incorrect hash selection for signing key

TPM_RC_HIERARCHY

hierarchy is turned off, or only NULL hierarchy is allowed when
loading public and private parts of an object

TPM_RC_KDF

incorrect KDF selection for decrypting keyedHash object

TPM_RC_KEY

the size of the object's unique field is not consistent with the indicated
size in the object's parameters

TPM_RC_OBJECT_MEMORY

if there is no free slot for an object

TPM_RC_SCHEME

the signing scheme is not valid for the key

TPM_RC_SIZE

authPolicy is not zero and is not the size of a digest produced by the
object's nameAlg TPM_RH_NULL hierarchy

TPM_RC_SYMMETRIC

symmetric algorithm not provided when required

TPM_RC_TYPE

inPublic and inPrivate are not the same type

TPM RC

TPM2 LoadExternal (
LoadExternal In *in,
LoadExternal Out *out
)

// IN: input parameter list
// OUT: output parameter list

TPM RC result;
TPMT SENSITIVE *sensitive;
BOOL skipChecks;

// Input Validation

// If the target hierarchy is turned off, the object can not be loaded.
if ('HierarchyIsEnabled (in->hierarchy))
return TPM RC_HIERARCHY + RC_LoadExternal_hierarchy;

// the size of authPolicy is either 0 or the digest size of nameAlg
if (in->inPublic.t.publicArea.authPolicy.t.size !'= 0
&& in->inPublic.t.publicArea.authPolicy.t.size !=
CryptGetHashDigestSize (in->inPublic. t.publicArea.nameAlq))

return TPM RC_SIZE +

// For loading an object

RC LoadExternal_ inPublic;

with both public and sensitive

if (in->inPrivate.t.size !'= 0)

{

// BAn external object can only be loaded at TPM RH NULL hierarchy
if (in->hierarchy !'= TPM RH NULL)

return TPM RC HIERARCHY + RC_LoadExternal hierarchy;
// BAn external object with a sensitive area must have fixedTPM == CLEAR
// fixedParent == CLEAR, and must have restrict CLEAR so that it does not
// appear to be a key that was created by this TPM.

Family “2.0”
Level 00 Revision 01.16

TCG Published

Page 61

Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

36 if(in->inPublic. t.publicArea.objectAttributes.fixedTPM != CLEAR
37 || in->inPublic.t.publicArea.objectAttributes.fixedParent != CLEAR
38 || in->inPublic.t.publicArea.objectAttributes.restricted != CLEAR
39)

40 return TPM RC ATTRIBUTES + RC_LoadExternal inPublic;

41 }

42

43 // Validate the scheme parameters

44 result = SchemeChecks (TRUE, TPM RH NULL, &in->inPublic.t.publicArea);

45 if (result !'= TPM RC_SUCCESS)

46 return RcSafeAddToResult(result, RC_LoadExternal inPublic);

47

48 // Internal Data Update

49 // Need the name to compute the qualified name

50 ObjectComputeName (&in->inPublic.t.publicArea, &out->name) ;

51 skipChecks = (in->inPublic.t.publicArea.nameAlg == TPM ALG NULL) ;

52

53 // If a sensitive area was provided, load it

54 if (in->inPrivate.t.size !'= 0)

55 sensitive = &in->inPrivate.t.sensitiveArea;

56 else

57 sensitive = NULL;

58

59 // Create external object. A TPM RC BINDING, TPM RC KEY, TPM RC OBJECT MEMORY
60 // or TPM RC TYPE error may be returned by ObjectLoad()

61 result = Objectload (in->hierarchy, &in->inPublic.t.publicArea,

62 sensitive, &out->name, TPM RH NULL, skipChecks,

63 &out->objectHandle) ;

64 return result;

65 }

66 #endif // CC_LoadExternal

Page 62 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

12.4 TPM2_ReadPublic

12.4.1 General Description

This command allows access to the public area of a loaded object.

Use of the objectHandle does not require authorization.

NOTE Since the caller is not likely to know the public area of the object associated with objectHandle, it
would not be possible to include the Name associated with objectHandle in the cpHash computation.

If objectHandle references a sequence object, the TPM shall return TPM_RC_SEQUENCE.

Family “2.0” TCG Published Page 63
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

12.4.2 Command and Response

Trusted Platform Module Library

Table 25 — TPM2_ReadPublic Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_ReadPublic

TPMI_DH_OBJECT

objectHandle

Table 26 — TPM2_ReadPublic Response

TPM handle of an object
Auth Index: None

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

|

TPM2B_PUBLIC outPublic structure containing the public area of an object
TPM2B_NAME name name of the object

TPM2B_NAME qualifiedName the Qualified Name of the object

Page 64 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

N

Trusted Platform Module Library

12.4.3 Detailed Actions

#include "InternalRoutines.h"
#include "ReadPublic fp.h"
#ifdef TPM CC_ReadPublic // Conditional expansion of this file

Part 3: Commands

Error Returns Meaning
TPM_RC_SEQUENCE can not read the public area of a sequence object
TPM _RC
TPM2 ReadPublic(
ReadPublic_In *in, // IN: input parameter list
ReadPublic Out *out // OUT: output parameter list
)
{
OBJECT *object;

// Input Validation

// Get loaded object pointer
object = ObjectGet (in->objectHandle) ;

// Can not read public area of a sequence object
if (ObjectIsSequence (ocbject))
return TPM RC_SEQUENCE;

// Command Output

}

// Compute size of public area in canonical form

out->outPublic.t.size = TPMT PUBLIC Marshal (&object->publicArea, NULL, NULL);

// Copy public area to output
out->outPublic. t.publicArea = object->publicArea;

// Copy name to output

out->name.t.size = ObjectGetName (in->objectHandle, &out->name.t.name) ;

// Copy qualified name to output
ObjectGetQualifiedName (in->objectHandle, &out->qualifiedName) ;

return TPM_RC_SUCCESS;

#endif // CC_ReadPublic

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Page 65
October 30, 2014

Part 3: Commands Trusted Platform Module Library

12.5 TPM2_ActivateCredential

12.5.1 General Description
This command enables the association of a credential with an object in a way that ensures that the TPM
has validated the parameters of the credentialed object.

If both the public and private portions of activateHandle and keyHandle are not loaded, then the TPM
shall return TPM_RC_AUTH_UNAVAILABLE.

If keyHandle is not a Storage Key, then the TPM shall return TPM_RC_TYPE.
Authorization for activateHandle requires the ADMIN role.

The key associated with keyHandle is used to recover a seed from secret, which is the encrypted seed.
The Name of the object associated with activateHandle and the recovered seed are used in a KDF to
recover the symmetric key. The recovered seed (but not the Name) is used in a KDF to recover the
HMAC key.

The HMAC is used to validate that the credentialBlob is associated with activateHandle and that the data
in credentialBlob has not been modified. The linkage to the object associated with activateHandle is
achieved by including the Name in the HMAC calculation.

If the integrity checks succeed, credentialBlob is decrypted and returned as certinfo.

Page 66 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

12.5.2 Command and Response

Table 27 — TPM2_ActivateCredential Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_ActivateCredential

handle of the object associated with certificate in
credentialBlob

TPMI_DH_OBJECT @activateHandle Auth Index: 1.
Auth Role: ADMIN
loaded key used to decrypt the TPMS_SENSITIVE in
credentialBlob

TPMI_DH_OBJECT @keyHandle

Auth Index: 2
Auth Role: USER

|

TPM2B_ID_OBJECT credentialBlob the credential

keyHandle algorithm-dependent encrypted seed that

TPM2B_ENCRYPTED_SECRET |[secret protects credentialBlob

Table 28 — TPM2_ActivateCredential Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

, ————————————————————————————
the decrypted certificate information

TPM2B_DIGEST certinfo the data should be no larger than the size of the digest
of the nameAlg associated with keyHandle

Family “2.0” TCG Published Page 67
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands Trusted Platform Module Library

12.5.3 Detailed Actions

#include "InternalRoutines.h"

#include "ActivateCredential fp.h"

#ifdef TPM CC_ActivateCredential // Conditional expansion of this file
#include "Object spt fp.h"

Error Returns Meaning
TPM_RC_ATTRIBUTES keyHandle does not reference a decryption key
TPM_RC_ECC_POINT secret is invalid (when keyHandle is an ECC key)
TPM_RC_INSUFFICIENT secret is invalid (when keyHandle is an ECC key)
TPM_RC_INTEGRITY credentialBlob fails integrity test
TPM_RC_NO_RESULT secret is invalid (when keyHandle is an ECC key)
TPM_RC_SIZE secret size is invalid or the credentialBlob does not unmarshal
correctly
TPM_RC_TYPE keyHandle does not reference an asymmetric key.
TPM_RC_VALUE secret is invalid (when keyHandle is an RSA key)
TPM_RC
TPM2 ActivateCredential (
ActivateCredential In *in, // IN: input parameter list
ActivateCredential Out *out // OUT: output parameter list
)
{
TPM RC result = TPM RC_SUCCESS;
OBJECT *object; // decrypt key
OBJECT *activateObject;// key associated with
// credential
TPM2B DATA data; // credential data

// Input Validation

// Get decrypt key pointer
object = ObjectGet (in->keyHandle) ;

// Get certificated object pointer
activateObject = ObjectGet (in->activateHandle) ;

// input decrypt key must be an asymmetric, restricted decryption key
if(!CryptIsAsymAlgorithm(object->publicArea. type)

| | object->publicArea.objectAttributes.decrypt == CLEAR

|| object->publicArea.objectAttributes.restricted == CLEAR)

return TPM RC_TYPE + RC_ActivateCredential keyHandle;

// Command output

// Decrypt input credential data via asymmetric decryption. A
// TPM RC VALUE, TPM RC KEY or unmarshal errors may be returned at this
// point
result = CryptSecretDecrypt (in->keyHandle, NULL,
"IDENTITY", &in->secret, &data);

if (result != TPM RC_SUCCESS)
{

if (result == TPM RC _KEY)

return TPM_RC_FAILURE;
return RcSafeAddToResult (result, RC ActivateCredential_secret) ;

}

Page 68 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

44
45
46
47
48
49
50
51
52
53
54
55
56
57

Trusted Platform Module Library

// Retrieve secret data. A TPM RC_INTEGRITY error or unmarshal
// errors may be returned at this point
result = CredentialToSecret (&in->credentialBlob,
&activateObject->name,
(TPM2B_SEED *) &data,
in->keyHandle,
&out->certInfo) ;
if (result !'= TPM RC_SUCCESS)
return RcSafeAddToResult (result,RC_ActivateCredential credentialBlob)

return TPM RC SUCCESS;

}
#endif // CC_ActivateCredential

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

’

Page 69
October 30, 2014

Part 3: Commands Trusted Platform Module Library

12.6 TPM2_MakeCredential

12.6.1 General Description
This command allows the TPM to perform the actions required of a Certificate Authority (CA) in creating a
TPM2B_ID_OBJECT containing an activation credential.

The TPM will produce a TPM_ID_OBJECT according to the methods in “Credential Protection” in TPM
2.0 Part 1.

The loaded public area referenced by handle is required to be the public area of a Storage key,
otherwise, the credential cannot be properly sealed.

This command does not use any TPM secrets nor does it require authorization. It is a convenience
function, using the TPM to perform cryptographic calculations that could be done externally.

Page 70 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

12.6.2 Command and Response

Table 29 — TPM2_MakeCredential Command

Type Name Description

TPM_ST_SESSIONS if an audit, encrypt, or decrypt
TPMI_ST_COMMAND_TAG tag session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MakeCredential

loaded public area, used to encrypt the sensitive area
TPMI_DH_OBJECT handle containing the credential key

Auth Index: None
== |

TPM2B_DIGEST credential the credential information

TPM2B_NAME objectName Name of the object to which the credential applies

Table 30 — TPM2_MakeCredential Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
,— ——_—— ===
TPM2B_ID_OBJECT credentialBlob the credential

handle algorithm-dependent data that wraps the key

TPM2B_ENCRYPTED_SECRET| secret that encrypts credentialBlob

Family “2.0” TCG Published Page 71
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands

12.6.3 Detailed Actions

#include "InternalRoutines.h"

Trusted Platform Module Library

#include "MakeCredential fp.h"

#ifdef TPM CC MakeCredential
#include "Object spt fp.h"

// Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY handle referenced an ECC key that has a unique field that is not a
point on the curve of the key

TPM_RC_SIZE credential is larger than the digest size of Name algorithm of handle

TPM_RC_TYPE

handle does not reference an asymmetric decryption key

TPM RC

TPM2 MakeCredential (
MakeCredential In *in,
MakeCredential Out *out
)

// IN: input parameter list
// OUT: output parameter list

TPM RC result = TPM RC_SUCCESS;
OBJECT *object;
TPMZB_DATA data;

// Input Validation

// Get object pointer

object = ObjectGet (in->handle) ;

// input key must be an asymmetric, restricted decryption key
// NOTE: Needs to be restricted to have a symmetric value.
if(!CryptIsAsymAlgorithm(object->publicArea. type)

|| object->publicArea.

|| object->publicArea.
)

return TPM RC TYPE +

objectAttributes.decrypt == CLEAR
objectAttributes.restricted = CLEAR

RC MakeCredential handle;

// The credential information may not be larger than the digest size used for
// the Name of the key associated with handle.

if (in->credential.t.size
return TPM RC_SIZE +

// Command Output

> CryptGetHashDigestSize (object->publicArea.nameAlg))
RC MakeCredential credential;

// Make encrypt key and its associated secret structure.

// Even though CrypeSecretEncrypt() may return

out->secret.t.size = sizeof (out->secret.t.secret) ;

result = CryptSecretEncrypt (in->handle, "IDENTITY", &data, &out->secret);
if (result != TPM RC_SUCCESS)

return result;

// Prepare output credential data from secret
SecretToCredential (&in->credential, &in->objectName, (TPM2B SEED *) &data,
in->handle, &out->credentialBlob) ;

return TPM RC SUCCESS;

}
#endif // CC MakeCredential

Page 72
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

12.7 TPM2_Unseal

12.7.1 General Description

This command returns the data in a loaded Sealed Data Obiject.

NOTE A random, TPM-generated, Sealed Data Object may be created by the TPM with TPM2_Create() or
TPM2_CreatePrimary() using the template for a Sealed Data Object.

The returned value may be encrypted using authorization session encryption.

If either restricted, decrypt, or sign is SET in the attributes of itemHandle, then the TPM shall return
TPM_RC_ATTRIBUTES. If the type of itemHandle is not TPM_ALG_KEYEDHASH, then the TPM shall
return TPM_RC_TYPE.

Family “2.0” TCG Published Page 73
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

12.7.2 Command and Response

Table 31 — TPM2_Unseal Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_Unseal

handle of a loaded data object
TPMI_DH_OBJECT @itemHandle Auth Index: 1
Auth Role: USER

Table 32 — TPM2_Unseal Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

= |
unsealed data

TPM2B_SENSITIVE_DATA outData
- - Size of outData is limited to be no more than 128 octets.

Page 74 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library

12.7.3 Detailed Actions

#include "InternalRoutines.h"

#include "Unseal fp.h"

#ifdef TPM CC Unseal // Conditional expansion of this file

Part 3: Commands

Error Returns

Meaning

TPM_RC_ATTRIBUTES

itemHandle has wrong attributes

TPM_RC_TYPE

itemHandle is not a KEYEDHASH data object

TPM RC

TPM2 Unseal (
Unseal In *in,
Unseal Out *out
)

{
OBJECT

// Input Validation

*object;

// Get pointer to loaded object
object = ObjectGet (in->itemHandle) ;

// Input handle must be a data object
if (object->publicArea.type !'= TPM ALG KEYEDHASH)
return TPM RC TYPE + RC Unseal_ itemHandle;
if(object->publicArea.objectAttributes.decrypt = SET
| | object->publicArea.objectAttributes.sign = SET
| | object->publicArea.objectAttributes.restricted = SET)
return TPM RC ATTRIBUTES + RC Unseal_ itemHandle;

// Command Output

// Copy data

MemoryCopy2B (&out->outData.b, &object->sensitive.sensitive.bits.b,

sizeof (out->outData.t.buffer)) ;

return TPM RC_SUCCESS;

}
#endif // CC Unseal

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 75
October 30, 2014

Part 3: Commands Trusted Platform Module Library

12.8 TPM2_ObjectChangeAuth

12.8.1 General Description

This command is used to change the authorization secret for a TPM-resident object.

If successful, a new private area for the TPM-resident object associated with objectHandle is returned,
which includes the new authorization value.

This command does not change the authorization of the TPM-resident object on which it operates.
Therefore, the old authValue (of the TPM-resident object) is used when generating the response HMAC
key if required.

NOTE 1 The returned outPrivate will need to be loaded before the new authorization will apply.

NOTE 2 The TPM-resident object may be persistent and changing the authorization value of the persistent
object could prevent other users from accessing the object. This is why this command does not
change the TPM-resident object.

EXAMPLE If a persistent key is being used as a Storage Root Key and the authorization of the key is a well-
known value so that the key can be used generally, then changing the authorization value in the
persistent key would deny access to other users.

This command may not be used to change the authorization value for an NV Index or a Primary Object.

NOTE 3 If an NV Index is to have a new authorization, it is done with TPM2_NV_ChangeAuth().
NOTE 4 If a Primary Object is to have a new authorization, it needs to be recreated (TPM2_CreatePrimary()).
Page 76 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

12.8.2 Command and Response

Table 33 — TPM2_ObjectChangeAuth Command

Part 3: Commands

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_ObjectChangeAuth

TPMI_DH_OBJECT

@objectHandle

handle of the object
Auth Index: 1
Auth Role: ADMIN

TPMI_DH_OBJECT

parentHandle

handle of the parent
Auth Index: None

TPM2B_AUTH newAuth new authorization value
Table 34 — TPM2_ObjectChangeAuth Response
Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
TPM2B_PRIVATE outPrivate private area containing the new authorization value

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 77
October 30, 2014

S Wb

Part 3: Commands

12.8.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"
#include "ObjectChangeAuth fp.h"
#ifdef TPM CC ObjectChangeAuth // Conditional expansion of this file

#include "abjgét_spt_fp.h"

Error Returns

Meaning

TPM_RC_SIZE

newAuth is larger than the size of the digest of the Name algorithm of
objectHandle

TPM_RC_TYPE

the key referenced by parentHandle is not the parent of the object
referenced by objectHandle; or objectHandle is a sequence object.

TPM RC

TPM2_ ObjectChangeAuth (
ObjectChangeAuth In
ObjectChangeAuth Out
)

TPMT_SENSITIVE
OBJECT
TPM2B_NAME
TPM2B_NAME

// Input Validation

// Get object pointer

object = ObjectGet (in-

*in, // IN: input parameter list
*out // OUT: output parameter list
sensitive;

*object;

objectQON, QONCompare;
parentQN;

>objectHandle) ;

// Can not change auth on sequence object
if (ObjectIsSequence (ocbject))
return TPM RC_TYPE + RC_ObjectChangeAuth objectHandle;

// Make sure that the

auth value is consistent with the namelAlg

if (MemoryRemoveTrailingZeros (&in->newAuth)
> CryptGetHashDigestSize (object->publicArea.nameAlq))
return TPM RC SIZE + RC_ObjectChangeAuth newAuth;

// Check parent for object
// parent handle must be the parent of object handle. 1In this
// implementation we verify this by checking the QN of object. Other

// implementation may

choose different method to verify this attribute.

ObjectGetQualifiedName (in->parentHandle, &parentQN) ;
ObjectComputeQualifiedName (&parentQN, object->publicArea.nameAlg,

&object->name, &QNCompare) ;

ObjectGetQualifiedName (in->objectHandle, &objectQN) ;
if ('Memory2BEqual (&objectQN.b, &QONCompare.b))
return TPM RC_TYPE + RC_ObjectChangeAuth parentHandle;

// Command Output

// Copy internal sensitive area
sensitive = object->sensitive;

// Copy authValue
sensitive.authValue =

in->newAuth;

// Prepare output private data from sensitive
SensitiveToPrivate (&sensitive, &object->name, in->parentHandle,
object->publicArea.namelAlg,

Page 78
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

53
54
55
56
57

Trusted Platform Module Library

sout->outPrivate) ;

return TPM RC SUCCESS;

}
#endif // CC_ObjectChangeAuth

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Part 3: Commands

Page 79
October 30, 2014

Part 3: Commands Trusted Platform Module Library

13 Duplication Commands
13.1 TPMZ2_Duplicate

13.1.1 General Description

This command duplicates a loaded object so that it may be used in a different hierarchy. The new parent
key for the duplicate may be on the same or different TPM or TPM_RH_NULL. Only the public area of
newParentHandle is required to be loaded.

NOTE 1 Since the new parent may only be extant on a different TPM, it is likely that the new parent’s
sensitive area could not be loaded in the TPM from which objectHandle is being duplicated.

If encryptedDuplication is SET in the object being duplicated, then the TPM shall return
TPM_RC_SYMMETRIC if symmetricAlg is TPM_RH_NULL or TPM_RC_HIERARCHY if
newParentHandle is TPM_RH_NULL.

The authorization for this command shall be with a policy session.

If fixedParent of objectHandle—attributes is SET, the TPM shall return TPM_RC_ATTRIBUTES. If
objectHandle—nameAlg is TPM_ALG_NULL, the TPM shall return TPM_RC_TYPE.

The policySession—commandCode parameter in the policy session is required to be TPM_CC_Duplicate
to indicate that authorization for duplication has been provided. This indicates that the policy that is being
used is a policy that is for duplication, and not a policy that would approve another use. That is, authority
to use an object does not grant authority to duplicate the object.

The policy is likely to include cpHash in order to restrict where duplication can occur. If
TPM2_PolicyCpHash() has been executed as part of the policy, the policySession—cpHash is compared
to the cpHash of the command.

If TPM2_PolicyDuplicationSelect() has been executed as part of the policy, the
policySession—nameHash is compared to

Hpoiigay(objectHandle—Name || newParentHandle—Name) (2)

If the compared hashes are not the same, then the TPM shall return TPM_RC_POLICY_FAIL.

NOTE 2 It is allowed that policySesion—nameHash and policySession—cpHash share the same memory
space.
NOTE 3 A duplication policy is not required to have either TPM2_PolicyDuplicationSelect() or

TPM2_PolicyCpHash() as part of the policy. If neither is present, then the duplication policy may be
satisfied with a policy that only contains TPM2_PolicyCommandCode(code = TPM_CC_Duplicate).

The TPM shall follow the process of encryption defined in the “Duplication” subclause of “Protected
Storage Hierarchy” in TPM 2.0 Part 1.

Page 80 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

13.1.2 Command and Response

Part 3: Commands

Table 35 — TPM2_Duplicate Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS

UINT32

commandSize

TPM_CC commandCode TPM_CC_Duplicate
loaded object to duplicate
TPMI_DH_OBJECT @objectHandle Auth Index: 1

Auth Role: DUP

TPMI_DH_OBJECT+

TPM2B_DATA

newParentHandle

P,

encryptionKeyln

shall reference the public area of an asymmetric key
Auth Index: None

optional symmetric encryption key

The size for this key is set to zero when the TPM is to
generate the key. This parameter may be encrypted.

TPMT_SYM_DEF_OBJECT+

symmetricAlg

definition for the symmetric algorithm to be used for the
inner wrapper

may be TPM_ALG_NULL if no inner wrapper is applied

Table 36 — TPM2_D

uplicate Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

- — — — — —— — — |

If the caller provided an encryption key or if
symmetricAlg was TPM_ALG_NULL, then this will be

TPM2B_DATA encryptionKeyOut the Empty Buffer; otherwise, it shall contain the TPM-
generated, symmetric encryption key for the inner
wrapper.

TPM2B_PRIVATE duplicate private area that may be encrypted by encryptionKeyIn;
and may be doubly encrypted

TPM2B_ENCRYPTED_SECRET|outSymSeed seed protected by the asymmetric algorithms of new

parent (NP)

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 81
October 30, 2014

S Wb

Part 3: Commands

13.1.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"

#include "Duplicate fp.h"

#ifdef TPM CC Duplicate // Conditional expansion of this file

#include "Bbj;ét_spt_fp.h"

Error Returns

Meaning

TPM_RC_ATTRIBUTES

key to duplicate has fixedParent SET

TPM_RC_HIERARCHY

encryptedDuplication is SET and newParentHandle specifies Null
Hierarchy

TPM_RC_KEY newParentHandle references invalid ECC key (public point not on the
curve)
TPM_RC_SIZE input encryption key size does not match the size specified in

symmetric algorithm

TPM_RC_SYMMETRIC

encryptedDuplication is SET but no symmetric algorithm is provided

TPM_RC_TYPE

newParentHandle is neither a storage key nor TPM_RH_NULL; or
the object has a NULL nameAlg

TPM RC

TPM2 Duplicate (
Duplicate In *in,
Duplicate Out *out
)

TPM RC
TPMT_SENSITIVE

UINT16

OBJECT
TPM2B DATA

// Input Validation

// IN: input parameter list
// OUT: output parameter list

result = TPM RC_SUCCESS;
sensitive;
innerKeySize = 0; // encrypt key size for inner wrap

*object;
data;

// Get duplicate object pointer
object = ObjectGet (in->objectHandle) ;

// duplicate key must have fixParent bit CLEAR.
if (object->publicArea.objectAttributes. fixedParent == SET)
return TPM RC ATTRIBUTES + RC Duplicate objectHandle;

// Do not duplicate object with NULL nameAlg
if (object->publicArea.nameAlg == TPM ALG NULL)
return TPM RC TYPE + RC Duplicate objectHandle;

// new parent key must be a storage object or TPM RH NULL
if (in->newParentHandle !'= TPM RH NULL
&& 'ObjectIsStorage (in->newParentHandle))
return TPM RC_TYPE + RC Duplicate newParentHandle;

// If the duplicates object has encryptedDuplication SET, then there must be
// an inner wrapper and the new parent may not be TPM RH NULL
if (object->publicArea.objectAttributes.encryptedDuplication = SET)

{

if (in->symmetricAlg.algorithm == TPM ALG NULL)
return TPM RC_SYMMETRIC + RC Duplicate symmetricAlg;
if (in->newParentHandle == TPM RH NULL)

Page 82 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

44 return TPM RC HIERARCHY + RC Duplicate newParentHandle;

45 }

46

47 if (in->symmetricAlg.algorithm == TPM ALG NULL)

48 {

49 // if algorithm is TPM ALG NULL, input key size must be 0

50 if (in->encryptionKeyIn.t.size != 0)

51 return TPM RC SIZE + RC Duplicate encryptionKeyIn;

52 }

53 else

54 {

55 // Get inner wrap key size

56 innerKeySize = in->symmetricAlg.keyBits.sym;

57

58 // If provided the input symmetric key must match the size of the algorithm
59 if (in->encryptionKeyIn.t.size != 0

60 && in->encryptionKeyIn.t.size != (innerKeySize + 7) / 8)
61 return TPM RC_SIZE + RC_Duplicate_encryptionKeyIn;

62 }

63

64 // Command Output

65

66 if (in->newParentHandle != TPM RH NULL)

67 {

68

69 // Make encrypt key and its associated secret structure. A TPM RC_KEY
70 // error may be returned at this point

71 out->outSymSeed. t.size = sizeof (out->outSymSeed.t.secret) ;

72 result = CryptSecretEncrypt (in->newParentHandle,

73 "DUPLICATE", &data, &out->outSymSeed);
74 pAssert (result != TPM RC VALUE) ;

75 if (result '= TPM RC_SUCCESS)

76 return result;

77 }

78 else

79 {

80 // Do not apply outer wrapper

81 data.t.size = 0;

82 out->outSymSeed.t.size = 0;

83 }

84

85 // Copy sensitive area

86 sensitive = object->sensitive;

87

88 // Prepare output private data from sensitive

89 SensitiveToDuplicate (&sensitive, &object->name, in->newParentHandle,
90 object->publicArea.nameAlg, (TPM2B SEED *) &data,
91 &in->symmetricAlg, &in->encryptionKeylIn,

92 &out->duplicate) ;

93

94 out->encryptionKeyOut = in->encryptionKeylIn;

95

926 return TPM RC_SUCCESS;

97 }

98 #endif // CC Duplicate

Family “2.0” TCG Published Page 83
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

13.2 TPM2_Rewrap

13.2.1 General Description

This command allows the TPM to serve in the role as a Duplication Authority. If proper authorization for
use of the oldParent is provided, then an HMAC key and a symmetric key are recovered from inSymSeed
and used to integrity check and decrypt inDuplicate. A new protection seed value is generated according
to the methods appropriate for newParent and the blob is re-encrypted and a new integrity value is
computed. The re-encrypted blob is returned in outDuplicate and the symmetric key returned in
outSymKey.

In the rewrap process, L is “DUPLICATE” (see “Terms and Definitions” in TPM 2.0 Part 1).

If inSymSeed has a zero length, then oldParent is required to be TPM_RH_NULL and no decryption of
inDuplicate takes place.

If newParent is TPM_RH_NULL, then no encryption is performed on outDuplicate. outSymSeed will have
a zero length. See TPM 2.0 Part 2 encryptedDuplication.

Page 84 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

13.2.2 Command and Response

Table 37 — TPM2_Rewrap Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_Rewrap

parent of object
TPMI_DH_OBJECT+ @oldParent Auth Index: 1
Auth Role: User

new parent of the object
Auth Index: None
aero0— ——— |

. . an object encrypted using symmetric key derived from
TPM2B_PRIVATE inDuplicate inSymSeed

TPMI_DH_OBJECT+ newParent

TPM2B_NAME name the Name of the object being rewrapped

seed for symmetric key

TPM2B_ENCRYPTED_SECRET|inSymSeed needs oldParent private key to recover the seed and
generate the symmetric key

Table 38 — TPM2_Rewrap Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

- —— — - |

TPM2B_PRIVATE outDuplicate an object encrypted using symmetric key derived from
outSymSeed

seed for a symmetric key protected by newParent

TPM2B_ENCRYPTED_SECRET | outSymSeed -
asymmetric key

Family “2.0” TCG Published Page 85
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands Trusted Platform Module Library

13.2.3 Detailed Actions

#include "InternalRoutines.h"

#include "Rewrap fp.h"

#ifdef TPM CC Rewrap // Conditional expansion of this file
#include "Object spt fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES newParent is not a decryption key

TPM_RC_HANDLE oldParent does not consistent with inSymSeed

TPM_RC_INTEGRITY the integrity check of inDuplicate failed

TPM_RC_KEY for an ECC key, the public key is not on the curve of the curve ID

TPM_RC_KEY_SIZE the decrypted input symmetric key size does not matches the
symmetric algorithm key size of oldParent

TPM_RC_TYPE oldParent is not a storage key, or 'newParent is not a storage key

TPM_RC_VALUE for an 'oldParent; RSA key, the data to be decrypted is greater than

the public exponent

Unmarshal errors errors during unmarshaling the input encrypted buffer to a ECC public
key, or unmarshal the private buffer to sensitive

TPM RC
TPM2_Rewrap (

Rewrap In *in, // IN: input parameter list

Rewrap Out *out // OUT: output parameter list

)
{

TPM _RC result = TPM RC_SUCCESS;

OBJECT *oldParent;

TPM2B DATA data; // symmetric key

UINT16 hashSize = 0;

TPM2B_PRIVATE privateBlob; // A temporary private blob

// to transit between old
// and new wrappers

// Input Validation

if ((in->inSymSeed.t.size == 0 && in->oldParent != TPM RH NULL)
Il (in->inSymSeed.t.size != 0 && in->oldParent == TPM RH NULL))
return TPM RC HANDLE + RC Rewrap oldParent;

if (in->oldParent != TPM RH NULL)
{
// Get old parent pointer
oldParent = ObjectGet (in->oldParent) ;

// old parent key must be a storage object
if (!'ObjectIsStorage (in->oldParent))
return TPM RC TYPE + RC_Rewrap oldParent;

// Decrypt input secret data via asymmetric decryption. A
// TPM RC VALUE, TPM RC KEY or unmarshal errors may be returned at this
// point
result = CryptSecretDecrypt (in->oldParent, NULL,
"DUPLICATE", &in->inSymSeed, &data);
if (result != TPM RC_SUCCESS)
return TPM RC VALUE + RC Rewrap inSymSeed;

Page 86 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

Trusted Platform Module Library Part 3: Commands

// Unwrap Outer
result = UnwrapOuter (in->oldParent, &in->name,
oldParent->publicArea.nameAlg, (TPM2B_SEED *) &data,
FALSE,
in->inDuplicate.t.size, in->inDuplicate.t.buffer) ;
if (result != TPM RC SUCCESS)
return RcSafeAddToResult (result, RC Rewrap inDuplicate) ;

// Copy unwrapped data to temporary variable, remove the integrity field
hashSize = sizeof (UINT16) +
CryptGetHashDigestSize (oldParent->publicArea.nameAlqg) ;
privateBlob.t.size = in->inDuplicate.t.size - hashSize;
MemoryCopy (privateBlob. t.buffer, in->inDuplicate.t.buffer + hashSize,
privateBlob.t.size, sizeof (privateBlob.t.buffer));
}
else
{
// No outer wrap from input blob. Direct copy.
privateBlob = in->inDuplicate;
}

if (in->newParent != TPM RH NULL)

{
OBJECT *newParent;
newParent = ObjectGet (in->newParent) ;

// New parent must be a storage object
if ('ObjectIsStorage (in->newParent))
return TPM RC TYPE + RC_Rewrap newParent;

// Make new encrypt key and its associated secret structure. A
// TPM RC VALUE error may be returned at this point if RSA algorithm is
// enabled in TPM
out->outSymSeed. t.size = sizeof (out->outSymSeed.t.secret) ;
result = CryptSecretEncrypt (in->newParent,
"DUPLICATE", &data, &out->outSymSeed) ;
if (result != TPM RC_SUCCESS) return result;

// Command output
// Copy temporary variable to output, reserve the space for integrity
hashSize = sizeof (UINT16) +
CryptGetHashDigestSize (newParent->publicArea.nameAlg) ;
out->outDuplicate.t.size = privateBlob.t.size;
MemoryCopy (out->outDuplicate. t.buffer + hashSize, privateBlob.t.buffer,
privateBlob.t.size, sizeof (out->outDuplicate.t.buffer));

// Produce outer wrapper for output

out->outDuplicate.t.size = ProduceOuterWrap (in->newParent, &in->name,
newParent->publicArea.nameAlg,
(TPM2B_SEED *) &data,
FALSE,
out->outDuplicate.t.size,
out->outDuplicate. t.buffer) ;

}

else // New parent is a null key so there is no seed

{
out->outSymSeed.t.size = 0;

// Copy privateBlob directly
out->outDuplicate = privateBlob;
}

return TPM RC SUCCESS;

}
#endif // CC_Rewrap

Family “2.0” TCG Published Page 87
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

13.3 TPM2_Import

13.3.1General Description

This command allows an object to be encrypted using the symmetric encryption values of a Storage Key.
After encryption, the object may be loaded and used in the new hierarchy. The imported object (duplicate)
may be singly encrypted, multiply encrypted, or unencrypted.

If fixedTPM or fixedParent is SET in objectPublic, the TPM shall return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in the object referenced by parentHandle, then encryptedDuplication shall
be SET in objectPublic (TPM_RC_ATTRIBUTES).

If encryptedDuplication is SET in objectPublic, then inSymSeed and encryptionKey shall not be Empty
buffers (TPM_RC_ATTRIBUTES). Recovery of the sensitive data of the object occurs in the TPM in a
multi--step process in the following order:

a) IfinSymSeed has a non-zero size:

1) The asymmetric parameters and private key of parentHandle are used to recover the seed used
in the creation of the HMAC key and encryption keys used to protect the duplication blob.

NOTE 1 When recovering the seed from inSymSeed, L is “DUPLICATE”.

2) The integrity value in duplicate.buffer.integrityOuter is used to verify the integrity of the inner data
blob, which is the remainder of duplicate.buffer (TPM_RC_INTEGRITY).

NOTE 2 The inner data blob will contain a TPMT_SENSITIVE and may contain a TPM2B_DIGEST
for the innerintegrity.

3) The symmetric key recovered in 1) (2)is used to decrypt the inner data blob.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by
fuzzing the data and looking at the differences in the response codes.

b) If encryptionKey is not an Empty Buffer:
1) Use encryptionKey to decrypt the inner blob.

2) Use the TPM2B_DIGEST at the start of the inner blob to verify the integrity of the inner blob
(TPM_RC_INTEGRITY).

¢) Unmarshal the sensitive area

NOTE 4 It is not necessary to validate that the sensitive area data is cryptographically bound to the public
area other than that the Name of the public area is included in the HMAC. However, if the binding is
not validated by this command, the binding must be checked each time the object is loaded. For an
object that is imported under a parent with fixedTPM SET, binding need only be checked at import. If
the parent has fixedTPM CLEAR, then the binding needs to be checked each time the object is
loaded, or before the TPM performs an operation for which the binding affects the outcome of the
operation (for example, TPM2_PolicySigned() or TPM2_Certify()).

Similarly, if the new parent's fixedTPM is set, the encryptedDuplication state need only be checked
at import.

If the new parent is not fixedTPM, then that object will be loadable on any TPM (including SW
versions) on which the new parent exists. This means that, each time an object is loaded under a
parent that is not fixedTPM, it is necessary to validate all of the properties of that object. If the
parent is fixedTPM, then the new private blob is integrity protected by the TPM that “owns” the
parent. So, it is sufficient to validate the object’s properties (attribute and public-private binding) on
import and not again.

After integrity checks and decryption, the TPM will create a new symmetrically encrypted private area
using the encryption key of the parent.

Page 88 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

NOTE 5 The symmetric re-encryption is the normal integrity generation and symmetric encryption applied to
a child object.

Family “2.0” TCG Published Page 89
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

13.3.2 Command and Response

Table 39 — TPM2_

Trusted Platform Module Library

Import Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_Import

TPMI_DH_OBJECT

TPM2B_DATA

@parentHandle

P,

encryptionKey

the handle of the new parent for the object
Auth Index: 1
Auth Role: USER

the optional symmetric encryption key used as the inner
wrapper for duplicate

If symmetricAlg is TPM_ALG_NULL, then this
parameter shall be the Empty Buffer.

TPM2B_PUBLIC

objectPublic

the public area of the object to be imported

This is provided so that the integrity value for duplicate
and the object attributes can be checked.

NOTE Even if the integrity value of the object is not
checked on input, the object Name is required to

create the integrity value for the imported object.

TPM2B_PRIVATE

duplicate

the symmetrically encrypted duplicate object that may
contain an inner symmetric wrapper

TPM2B_ENCRYPTED_SECRET

inSymSeed

symmetric key used to encrypt duplicate

inSymSeed is encrypted/encoded using the algorithms
of newParent.

TPMT_SYM_DEF_OBJECT+

symmetricAlg

definition for the symmetric algorithm to use for the inner
wrapper

If this algorithm is TPM_ALG_NULL, no inner wrapper is
present and encryptionKey shall be the Empty Buffer.

Table 40 — TPM2

_Import Response

TPM2B_PRIVATE

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

- — — — — —— — — |

outPrivate

the sensitive area encrypted with the symmetric key of

parentHandle

Page 90
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

13.3.3 Detailed Actions

#include "InternalRoutines.h"
#include "Import fp.h"

Part 3: Commands

#ifdef TPM CC Import // Conditional expansion of this file

#include "abjgct_spt_fp .h"

Error Returns

Meaning

TPM_RC_ASYMMETRIC

non-duplicable storage key represented by objectPublic and its
parent referenced by parentHandle have different public parameters

TPM_RC_ATTRIBUTES

attributes FixedTPM and fixedParent of objectPublic are not both
CLEAR; or inSymSeed is nonempty and parentHandle does not
reference a decryption key; or objectPublic and parentHandle have
incompatible or inconsistent attributes; or encrytpedDuplication is
SET in objectPublic but the inner or outer wrapper is missing.

NOTE: if the TPM provides parameter values, the parameter number will indicate symmetricKey (missing

inner wrapper) or i

nSymSeed (missing outer wrapper).

TPM_RC_BINDING

duplicate and objectPublic are not cryptographically
bound

TPM_RC_ECC_POINT

inSymSeed is nonempty and ECC point in inSymSeed is not on the
curve

TPM_RC_HASH

non-duplicable storage key represented by objectPublic and its
parent referenced by parentHandle have different name algorithm

TPM_RC_INSUFFICIENT

inSymSeed is nonempty and failed to retrieve ECC point from the
secret; or unmarshaling sensitive value from duplicate failed the
result of inSymSeed decryption

TPM_RC_INTEGRITY

duplicate integrity is broken

TPM_RC_KDF objectPublic representing decrypting keyed hash object specifies
invalid KDF
TPM_RC_KEY inconsistent parameters of objectPublic; or inSymSeed is nonempty

and parentHandle does not reference a key of supported type; or
invalid key size in objectPublic representing an asymmetric key

TPM_RC_NO_RESULT

inSymSeed is nonempty and multiplication resulted in ECC point at
infinity

TPM_RC_OBJECT_MEMORY

no available object slot

TPM_RC_SCHEME

inconsistent attributes decrypt, sign, restricted and key's scheme ID
in objectPublic; or hash algorithm is inconsistent with the scheme 1D
for keyed hash object

TPM_RC_SIZE

authPolicy size does not match digest size of the name algorithm in
objectPublic; or symmetricAlg and encryptionKey have different
sizes; or inSymSeed is nonempty and it size is not consistent with the
type of parentHandle; or unmarshaling sensitive value from duplicate
failed

TPM_RC_SYMMETRIC

objectPublic is either a storage key with no symmetric algorithm or a
non-storage key with symmetric algorithm different from
TPM_ALG_NULL

TPM_RC_TYPE

unsupported type of objectPublic; or non-duplicable storage key
represented by objectPublic and its parent referenced by
parentHandle are of different types; or parentHandle is not a storage
key; or only the public portion of parentHandle is loaded; or

Family “2.0”
Level 00 Revision 01.16

TCG Published

Page 91

Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

objectPublic and duplicate are of different types

TPM_RC_VALUE nonempty inSymSeed and its numeric value is greater than the
modulus of the key referenced by parentHandle or inSymSeed is
larger than the size of the digest produced by the name algorithm of
the symmetric key referenced by parentHandle

TEM RC
TPM2_ Tmport (
Import In *in, // IN: input parameter list
Import Out *out // OUT: output parameter list
)
{
TPM RC result = TPM RC_SUCCESS;
OBJECT *parentObject;
TPM2B_DATA data; // symmetric key
TPMT_SENSITIVE sensitive;
TPM2B_NAME name;
UINT16 innerKeySize = 0; // encrypt key size for inner

// wrapper
// Input Validation

// FixedTPM and fixedParent must be CLEAR

if(in->objectPublic. t.publicArea.objectAttributes. fixedTPM == SET
|| in->objectPublic.t.publicArea.objectAttributes.fixedParent == SET)
return TPM RC ATTRIBUTES + RC_Import objectPublic;

// Get parent pointer
parentObject = ObjectGet (in->parentHandle) ;

if ('AreAttributesForParent (parentObject))
return TPM RC TYPE + RC_Import parentHandle;

if (in->symmetricAlg.algorithm != TPM ALG NULL)
{
// Get inner wrap key size
innerKeySize = in->symmetricAlg.keyBits.sym;
// Input symmetric key must match the size of algorithm.
if (in->encryptionKey.t.size != (innerKeySize + 7) / 8)
return TPM RC SIZE + RC_Import encryptionKey;

else

// If input symmetric algorithm is NULL, input symmetric key size must

// be 0 as well

if (in->encryptionKey.t.size != 0)
return TPM RCS SIZE + RC_Import encryptionKey;

// If encryptedDuplication is SET, then the object must have an inner

// wrapper

if (in->objectPublic.t.publicArea.objectAttributes.encryptedDuplication)
return TPM RCS ATTRIBUTES + RC_Import encryptionKey;

}

// See if there is an outer wrapper

if (in->inSymSeed.t.size != 0)

{
// Decrypt input secret data via asymmetric decryption. TPM RC ATTRIBUTES,
// TPM RC_ECC_POINT, TPM RC_INSUFFICIENT, TPM RC KEY, TPM RC NO RESULT,
// TPM RC_SIZE, TPM RC VALUE may be returned at this point
result = CryptSecretDecrypt (in->parentHandle, NULL, "DUPLICATE",

&in->inSymSeed, &data);

pAssert(result !'= TPM RC BINDING) ;

Page 92 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85

87
88
89
920
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Trusted Platform Module Library

if (result != TPM RC_SUCCESS)
return RcSafeAddToResult (result, RC_Import inSymSeed) ;
}
else
{
// If encrytpedDuplication is set, then the object must have an outer
// wrapper
if (in->objectPublic.t.publicArea.objectAttributes.encryptedDuplication)
return TPM RCS ATTRIBUTES + RC_Import inSymSeed;
data.t.size = 0;
}

// Compute name of object
ObjectComputeName (& (in->objectPublic.t.publicArea) , &name) ;

// Retrieve sensitive from private.

// TPM RC_INSUFFICIENT, TPM RC_INTEGRITY, TPM RC_SIZE may be returned here.

result = DupllcateToSen51t1ve(&1n >duplicate, &name, in->parentHandle,
in->objectPublic. t.publicArea.nameAlqg,
(TPM2B_SEED *) &data, &in->symmetricAlg,
&in->encryptionKey, &sensitive);

if (result != TPM RC_SUCCESS)

return RcSafeAddToResult (result, RC Import duplicate);

// If the parent of this object has fixedTPM SET, then fully validate this
// object so that validation can be skipped when it is loaded
if (parentObject->publicArea.objectAttributes. fixedTPM == SET)

{
TPM_HANDLE objectHandle;

// Perform self check on input public area. A TPM RC SIZE, TPM RC_SCHEME,
// TPM] RC VALUE, TPM] RC SYMMETRIC, TPM] RC TYPE, TPM] RC HASH,
// TPM RC ASYMMETRIC TPM l RC ATTRIBUTES or TPM RC] KDF error may be returned
// at this point
result = PublicAttributesValidation (TRUE, in->parentHandle,
&in->objectPublic. t.publicArea) ;

if (result != TPM RC_SUCCESS)

return RcSafeAddToResult (result, RC_Import objectPublic);

// Create internal object. A TPM RC KEY SIZE, TPM RC KEY or
// TPM RC_OBJECT MEMORY error may be returned at this point
result = ObjectLoad(TPM RH NULL, &in->objectPublic.t.publicArea,
&sen51t1ve NULL, in->parentHandle, FALSE,
&objectHandle) ;
if (result !'= TPM RC_SUCCESS)
return result;

// Don't need the object, just needed the checks to be performed so
// flush the object
ObjectFlush (objectHandle) ;

}

// Command output

// Prepare output private data from sensitive

SensitiveToPrivate (&sensitive, &name, in->parentHandle,
in->objectPublic. t.publicArea.nameAlqg,
sout->outPrivate) ;

return TPM RC SUCCESS;

#endif // CC Import

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

Page 93

Part 3: Commands Trusted Platform Module Library

14 Asymmetric Primitives

14.1 Introduction

The commands in this clause provide low-level primitives for access to the asymmetric algorithms
implemented in the TPM. Many of these commands are only allowed if the asymmetric key is an
unrestricted key.

14.2 TPM2_RSA_Encrypt

14.2.1 General Description

This command performs RSA encryption using the indicated padding scheme according to IETF RFC
3447. If the scheme of keyHandle is TPM_ALG_NULL, then the caller may use inScheme to specify the
padding scheme. If scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be
TPM_ALG_NULL or be the same as scheme (TPM_RC_SCHEME).

The key referenced by keyHandle is required to be an RSA key (TPM_RC_KEY) with the decrypt attribute
SET (TPM_RC_ATTRIBUTES).

NOTE Requiring that the decrypt attribute be set allows the TPM to ensure that the scheme selection is
done with the presumption that the scheme of the key is a decryption scheme selection. It is
understood that this command will operate on a key with only the public part loaded so the caller
may modify any key in any desired way. So, this constraint only serves to simplify the TPM logic.

The three types of allowed padding are:

1) TPM_ALG_OAEP - Data is OAEP padded as described in 7.1 of IETF RFC 3447 (PKCS#1).
The only supported mask generation is MGF1.

2) TPM_ALG_RSAES — Data is padded as described in 7.2 of IETF RFC 3447 (PKCS#1).

3) TPM_ALG_NULL - Data is not padded by the TPM and the TPM will treat message as an
unsigned integer and perform a modular exponentiation of message using the public
exponent of the key referenced by keyHandle. This scheme is only used if both the scheme
in the key referenced by keyHandle is TPM_ALG_NULL, and the inScheme parameter of the
command is TPM_ALG_NULL. The input value cannot be larger than the public modulus of
the key referenced by keyHandle.

Table 41 — Padding Scheme Selection

keyHandle—scheme inScheme padding scheme used
TPM_ALG_NULL none
TPM_ALG_NULL TPM_ALG_RSAES RSAES
TPM_ALG_OAEP OAEP
TPM_ALG_NULL RSAES
TPM_ALG_RSAES TPM_ALG_RSAES RSAES
TPM_ALG_OAEP error (TPM_RC_SCHEME)
TPM_ALG_NULL OAEP
TPM_ALG_OAEP TPM_ALG_RSAES error (TPM_RC_SCHEME)
TPM_AGL_OAEP OAEP

After padding, the data is RSAEP encrypted according to 5.1.1 of IETF RFC 3447 (PKCS#1).

Page 94 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

NOTE 1 It is required that decrypt be SET so that the commands that load a key can validate that the
scheme is consistent rather than have that deferred until the key is used.

NOTE 2 If it is desired to use a key that had restricted SET, the caller may CLEAR restricted and load the
public part of the key and use that unrestricted version of the key for encryption.

If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

NOTE 3 Because only the public portion of the key needs to be loaded for this command, the caller can
manipulate the attributes of the key in any way desired. As a result, the TPM shall not check the
consistency of the attributes. The only property checking is that the key is an RSA key and that the
padding scheme is supported.

The message parameter is limited in size by the padding scheme according to the following table:

Table 42 — Message Size Limits Based on Padding

Maximum Message Length

Scheme (mLen) in Octets Comments

TPM_ALG_OAEP mLen <k - 2hLen — 2

TPM_ALG_RSAES mLen<k—11

TPM_ALG_NULL mLen < k The numeric value of the message must be
less than the numeric value of the public
modulus (n).

NOTES

1) k= the number of byes in the public modulus

2) hLen := the number of octets in the digest produced by the hash algorithm used in the process

The label parameter is optional. If provided (label.size !'= 0) then the TPM shall return TPM_RC_VALUE if
the last octet in label is not zero. If a zero octet occurs before label.buffer[label.size-1], the TPM shall
truncate the label at that point. The terminating octet of zero is included in the label used in the padding
scheme.

NOTE 4 If the scheme does not use a label, the TPM will still verify that label is properly formatted if label is
present.

The function returns padded and encrypted value outData.

The message parameter in the command may be encrypted using parameter encryption.

NOTE 5 Only the public area of keyHandle is required to be loaded. A public key may be loaded with any
desired scheme. If the scheme is to be changed, a different public area must be loaded.

Family “2.0” TCG Published Page 95
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

14.2.2 Command and Response

Trusted Platform Module Library

Table 43 — TPM2_RSA_Encrypt Command

Type Name Description
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
TPMI_ST_COMMAND_TAG tag session is present; otherwise,

TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_RSA_Encrypt

reference to public portion of RSA key to use for
TPMI_DH_OBJECT keyHandle encryption

Auth Index: None

s s—sm—m——— ===

message to be encrypted

NOTE 1 The data type was chosen because it limits the
TPM2B_PUBLIC_KEY_RSA message overall size of the input to no greater than the size

of the largest RSA public key. This may be larger
than allowed for keyHandle.
. the padding scheme to use if scheme associated with

TPMT_RSA_DECRYPT+ inScheme keyHandle is TPM_ALG_NULL

optional label L to be associated with the message
TPM2B_DATA label Size of the buffer is zero if no label is present

NOTE 2 See description of label above.

Table 44 — TPM2_RSA_Encrypt Response
Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
,— ——_—— ===

TPM2B_PUBLIC_KEY_RSA outData encrypted output

Page 96
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

S Wb

Trusted Platform Module Library Part 3: Commands

14.2.3 Detailed Actions

#include "InternalRoutines.h
#include "RSA Encrypt fp.h"
#ifdef TPM CC_RSA Encrypt /
#ifdef TPM ALG RSA

/ Conditional expansion of this file

Error Returns

Meaning

TPM_RC_ATTRIBUTES

decrypt attribute is not SET in key referenced by keyHandle

TPM_RC_KEY

keyHandle does not reference an RSA key

TPM_RC_SCHEME

incorrect input scheme, or the chosen scheme is not a valid RSA
decrypt scheme

TPM_RC_VALUE

the numeric value of message is greater than the public modulus of
the key referenced by keyHandle, or label is not a null-terminated
string

TPM RC

TPM2 RSA Encrypt (
EEA;ﬁﬁcrypt_In *in,
RSA Encrypt Out *out
)

TPM_RC

OBJECT
TPMT_RSA_DECRYPT
char

// Input Validation

// IN: input parameter list
// OUT: output parameter list

result;
*rsaKey;
*scheme;
*label = NULL;

rsaKey = ObjectGet (in->keyHandle) ;

// selected key must be

an RSA key

if (rsaKey->publicArea.type !'= TPM ALG RSA)
return TPM RC_KEY + RC_RSA Encrypt keyHandle;

// selected key must have the decryption attribute

if (rsaKey->publicArea.ob

jectAttributes.decrypt != SET)

return TPM RC_ATTRIBUTES + RC_RSA Encrypt keyHandle;

// Is there a label?
if (in->label.t.size > 0)
{
// label is present,
if (in->label. t.buffe

so make sure that is it NULL-terminated
r[in->label.t.size - 1] !'= 0)

return TPM RC VALUE + RC_RSA Encrypt label;

}

// Command Output

label = (char *)in->label.t.buffer;

// Select a scheme for encryption

scheme = CryptSelectRSAS
if (scheme == NULL)
return TPM RC_SCHEME

cheme (in->keyHandle, &in->inScheme) ;

+ RC_RSA Encrypt inScheme;

// Encryption. TPM RC VALUE, or TPM RC SCHEME errors my be returned buy

// CryptEncyptRSA. Note:
// not have the decrypt
out->outData.t.size = si

It can also return TPM RC ATTRIBUTES if the key does
attribute but that was checked above.
zeof (out->outData. t.buffer) ;

result = CryptEncryptRSA(&out->outData.t.size, out->outData.t.buffer, rsaKey,

Family “2.0”
Level 00 Revision 01.16

TCG Published Page 97
Copyright © TCG 2006-2014 October 30, 2014

49
50
51
52
53
54

Part 3: Commands

return result;

}
#endif
#endif // CC_RSA Encrypt

Page 98
October 30, 2014

Trusted Platform Module Library

scheme, in->message.t.size, in->message.t.buffer,

label) ;

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

14.3 TPM2_RSA_Decrypt

14.3.1 General Description

This command performs RSA decryption using the indicated padding scheme according to IETF RFC
3447 ((PKCS#1).

The scheme selection for this command is the same as for TPM2_RSA_Encrypt() and is shown in Table
41.

The key referenced by keyHandle shall be an RSA key (TPM_RC_KEY) with restricted CLEAR and
decrypt SET (TPM_RC_ATTRIBUTES).

This command uses the private key of keyHandle for this operation and authorization is required.

The TPM will perform a modular exponentiation of ciphertext using the private exponent associated with
keyHandle (this is described in IETF RFC 3447 (PKCS#1), clause 5.1.2). It will then validate the padding
according to the selected scheme. If the padding checks fail, TPM_RC_VALUE is returned. Otherwise,
the data is returned with the padding removed. If no padding is used, the returned value is an unsigned
integer value that is the result of the modular exponentiation of cipherText using the private exponent of
keyHandle. The returned value may include leading octets zeros so that it is the same size as the public
modulus. For the other padding schemes, the returned value will be smaller than the public modulus but
will contain all the data remaining after padding is removed and this may include leading zeros if the
original encrypted value contained leading zeros.

If a label is used in the padding process of the scheme during encryption, the label parameter is required
to be present in the decryption process and label is required to be the same in both cases. If label is not
the same, the decrypt operation is very likely to fail ((TPM_RC_VALUE). If label is present (label.size !=
0), it shall be a NULL-terminated string or the TPM will return TPM_RC_VALUE.

NOTE 1 The size of label includes the terminating null.

The message parameter in the response may be encrypted using parameter encryption.
If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

If the scheme does not require a label, the value in label is not used but the size of the label field is
checked for consistency with the indicated data type (TPM2B_DATA). That is, the field may not be larger
than allowed for a TPM2B_DATA.

Family “2.0” TCG Published Page 99
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

14.3.2 Command and Response

Trusted Platform Module Library

Table 45 — TPM2_RSA_Decrypt Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS

UINT32

commandSize

TPM_CC commandCode TPM_CC_RSA_Decrypt
RSA key to use for decryption
TPMI_DH_OBJECT @keyHandle Auth Index: 1
Auth Role: USER
aero0— ——— |
cipher text to be decrypted
TPM2B_PUBLIC_KEY_RSA cipherText NOTE An encrypted RSA data block is the size of the
public modulus.
. the padding scheme to use if scheme associated with
TPMT_RSA _DECRYPT+ inScheme keyHandle is TPM_ALG_NULL
TPM2B DATA label Iabfe! whose association with the message is to be
- verified
Table 46 — TPM2_RSA_Decrypt Response
Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
., s ——— ===
TPM2B_PUBLIC_KEY_RSA message decrypted output

Page 100
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

14.3.3 Detailed Actions

Part 3: Commands

#include "InternalRoutines.h"

#include "RSA Decrypt fp.h"

#ifdef TPM CC_RSA Decrypt // Conditional expansion of this file

#ifdef TPM ALG RSA

Error Returns

Meaning

TPM_RC_BINDING

The public an private parts of the key are not properly bound

TPM_RC_KEY

keyHandle does not reference an unrestricted decrypt key

TPM_RC_SCHEME

incorrect input scheme, or the chosen scheme is not a valid RSA
decrypt scheme

TPM_RC_SIZE

cipherText is not the size of the modulus of key referenced by
keyHandle

TPM_RC_VALUE

label is not a null terminated string or the value of cipherText is
greater that the modulus of keyHandle

TPM RC

TPM2_RSA Decrypt (
RSA Decrypt In *in,
RSA Decrypt Out *out
)

TPM RC

OBJECT
TPMT RSA DECRYPT
char

// Input Validation

// IN: input parameter list
// OUT: output parameter list

result;
*rsaKey;
*scheme;
*label = NULL;

rsaKey = ObjectGet (in->keyHandle) ;

// The selected key must

be an RSA key

if (rsaKey->publicArea.type '= TPM ALG RSA)
return TPM RC_KEY + RC_RSA Decrypt keyHandle;

// The selected key must

if(rsaKey->publicArea.
| | rsaKey->publicArea.

be an unrestricted decryption key
objectAttributes.restricted == SET
objectAttributes.decrypt = CLEAR)

return TPM RC ATTRIBUTES + RC_RSA Decrypt keyHandle;

// NOTE: Proper operation of this command requires that the sensitive area

// of the key is loaded.

This is assured because authorization is required

// to use the sensitive area of the key. In order to check the authorization,
// the sensitive area has to be loaded, even if authorization is with policy.

// If label is present, make sure that it is a NULL-terminated string

if (in->label.t.size > 0)
{

// Present, so make sure that it is NULL-terminated
if (in->label. t.buffer[in->label.t.size - 1] !'= 0)

return TPM RC VALUE + RC_RSA Decrypt label;
label = (char *)in->label.t.buffer;

}

// Command Output

// Select a scheme for decrypt.
scheme = CryptSelectRSAScheme (in->keyHandle, &in->inScheme) ;

Family “2.0”
Level 00 Revision 01.16

TCG Published Page 101
Copyright © TCG 2006-2014 October 30, 2014

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Part 3: Commands Trusted Platform Module Library

if (scheme == NULL)
return TPM RC_SCHEME + RC _RSA Decrypt inScheme;

// Decryption. TPM RC VALUE, TPM RC SIZE, and TPM RC KEY error may be
// returned by CryptDecryptRSA.
// NOTE: CryptDecryptRSA can also return TPM_RC_ATTRIBUTES or TPM_RC_BINDING
// when the key is not a decryption key but that was checked above.
out->message.t.size = sizeof (out->message.t.buffer) ;
result = CryptDecryptRSA (&out->message.t.size, out->message.t.buffer, rsaKey,
scheme, in->cipherText.t.size,
in->cipherText. t.buffer,
label) ;

return result;

}
#endif
#endif // CC_RSA Decrypt

Page 102 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

14.4 TPM2_ECDH_KeyGen

14.4.1 General Description

This command uses the TPM to generate an ephemeral key pair (d., Q. where Q. := [d.]G). It uses the
private ephemeral key and a loaded public key (Qs) to compute the shared secret value (P := [hd.]Qs).
keyHandle shall refer to a loaded ECC key. The sensitive portion of this key need not be loaded.

The curve parameters of the loaded ECC key are used to generate the ephemeral key.

NOTE 1 This function is the equivalent of encrypting data to another object’s public key. The seed value is
used in a KDF to generate a symmetric key and that key is used to encrypt the data. Once the data
is encrypted and the symmetric key discarded, only the object with the private portion of the
keyHandle will be able to decrypt it.

The zPoint in the response may be encrypted using parameter encryption.

Family “2.0” TCG Published Page 103
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

14.4.2 Command and Response

Table 47 — TPM2_ECDH_KeyGen Command

Type Name Description

TPM_ST_SESSIONS if an audit or encrypt session is

TPMI_ST_COMMAND_TAG tag present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_ECDH_KeyGen

Handle of a loaded ECC key public area.
TPMI_DH_OBJECT keyHandle

Auth Index: None

Table 48 — TPM2_ECDH_KeyGen Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
P ————————
TPM2B_ECC_POINT zPoint results of P:= h[de] Qs
TPM2B_ECC_POINT pubPoint generated ephemeral public point (Qe)
Page 104 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

14.4.3 Detailed Actions

#include "InternalRoutines.h"
#include "ECDH KeyGen fp.h"

Part 3: Commands

#ifdef TPM CC_ECDH KeyGen // Conditional expansion of this file

#ifdef TPM ALG ECC

Error Returns Meaning
TPM_RC_KEY keyHandle does not reference a non-restricted decryption ECC key
TPM RC
TPM2_ECDH_KeyGen (
ECDH_KeyGen In *in, // IN: input parameter list
ECDH_KeyGen Out *out // OUT: output parameter list
)
{
OBJECT *eccKey;
TPM2B_ECC_PARAMETER sensitive;
TPM RC result;

// Input Validation

eccKey = ObjectGet (in->keyHandle) ;

// Input key must be a non-restricted, decrypt ECC key

if(eccKey->publicArea.
return TPM RCS KEY +

type '= TPM ALG ECC)
RC_ECDH KeyGen keyHandle;

if(eccKey->publicArea.objectAttributes.restricted == SET
|1 eccKey->publicArea.objectAttributes.decrypt !'= SET

)

return TPM RC KEY + RC _ECDH KeyGen keyHandle;

// Command Output
do

{

// Create ephemeral ECC key
CryptNewEccKey (eccKey->publicArea.parameters.eccDetail.curvelD,
&out->pubPoint. t.point, &sensitive);

out->pubPoint.t.size

// Compute Z

= TPMS_ECC_POINT Marshal (&out->pubPoint.t.point,
NULL, NULL);

result = CryptEccPointMultiply (&out->zPoint.t.point,

eccKey->publicArea.parameters.eccDetail.curvelD,
&sensitive, &eccKey->publicArea.unique.ecc) ;

// The point in the key is not on the curve. Indicate that the key is bad.
if (result == TPM RC ECC_POINT)

return TPM RC KEY + RC_ECDH KeyGen keyHandle;
// The other possible error is TPM RC NO RESULT indicating that the

// multiplication resulted in the point at infinity, so get a new
// random key and start over (hardly ever happens) .

}

while (result == TPM RC_NO_RESULT) ;

if (result = TPM_RC_SUCCESS)
// Marshal the values to generate the point.

out->zPoint.t.size =

return result;

Family “2.0”
Level 00 Revision 01.16

TPMS_ECC_POINT Marshal (&out->zPoint.t.point,
NULL, NULL);

TCG Published Page 105
Copyright © TCG 2006-2014 October 30, 2014

57
58
59

Part 3: Commands

}
#endif
#endif // CC_ECDH KeyGen

Page 106
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Trusted Platform Module Library

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

14.5 TPM2_ECDH_ZGen

14.5.1 General Description

This command uses the TPM to recover the Z value from a public point (Q5) and a private key (ds). It will
perform the multiplication of the provided inPoint (Qs) with the private key (ds) and return the coordinates
of the resultant point (Z = (xz, yz) == [hds]Qs; where h is the cofactor of the curve).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY) with the restricted attribute CLEAR and the
decrypt attribute SET (TPM_RC_ATTRIBUTES).

The scheme of the key referenced by keyHandle is required to be either TPM_ALG_ECDH or
TPM_ALG_NULL (TPM_RC_SCHEME).

inPoint is required to be on the curve of the key referenced by keyHandle (TPM_RC_ECC_POINT).

The parameters of the key referenced by keyHandle are used to perform the point multiplication.

Family “2.0” TCG Published Page 107
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

14.5.2 Command and Response

Trusted Platform Module Library

Table 49 — TPM2_ECDH_ZGen Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_ECDH_ZGen
handle of a loaded ECC key
TPMI_DH_OBJECT @keyHandle Auth Index: 1
Auth Role: USER
TPM2B_ECC_POINT inPoint a public key

Table 50 — TPM2_ECDH_ZGen Response

TPM2B_ECC_POINT

outPoint

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

., s ——— ===
X and Y coordinates of the product of the multiplication

Z = (xz,yz) = [hds]Qs

Page 108
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”

Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

14.5

#inc
#inc

.3 Detailed Actions

lude "InternalRoutines.h"
lude "ECDH ZGen fp.h"

#ifdef TPM CC_ECDH ZGen // Conditional expansion of this file
#ifdef TPM ALG ECC

Part 3: Commands

Error Returns Meaning
TPM_RC_ATTRIBUTES key referenced by keyA is restricted or not a decrypt key
TPM_RC_KEY key referenced by keyA is not an ECC key
TPM_RC_NO_RESULT multiplying inPoint resulted in a point at infinity
TPM_RC_SCHEME the scheme of the key referenced by keyA is not TPM_ALG_NULL,
TPM_ALG_ECDH,

TPM RC
TPM2 ECDH_ZGen (

ECDH_ZGen_In *in, // IN: input parameter list

ECDH_ZGen Out *out // OUT: output parameter list

)
{

TPM RC result;

OBJECT *eccKey;
// Input Validation

// C

eccKey = ObjectGet (in->keyHandle) ;

// Input key must be a non-restricted, decrypt ECC key
if(eccKey->publicArea.type != TPM ALG_ECC)
return TPM RCS KEY + RC_ECDH ZGen keyHandle;

if(eccKey->publicArea.objectAttributes.restricted == SET
|1 eccKey->publicArea.objectAttributes.decrypt != SET

)
return TPM RC_KEY + RC_ECDH_ZGen_ keyHandle;

// Make sure the scheme allows this use

if(eccKey->publicArea.parameters.eccDetail.scheme.scheme != TPM ALG ECDH
&& eccKey->publicArea.parameters.eccDetail.scheme.scheme != TPM ALG NULL)
return TPM RC SCHEME + RC ECDH ZGen keyHandle;

ommand Output

// Compute Z. TPM RC_ECC_POINT or TPM RC NO RESULT may be returned here.

result = CryptEccPointMultiply (&out->outPoint. t.point,
eccKey->publicArea.parameters.eccDetail.curvelD,
&eccKey->sensitive.sensitive.ecc,
&in->inPoint. t.point) ;

if (result !'= TPM RC_SUCCESS)
return RcSafeAddToResult (result, RC_ECDH ZGen_inPoint);

out->outPoint.t.size = TPMS_ECC_POINT Marshal (&out->outPoint.t.point,

NULL, NULL);
return TPM RC SUCCESS;
}
#endif
#endif // CC_ECDH ZGen
Family “2.0” TCG Published

Page 109

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

14.6 TPM2_ECC_Parameters

14.6.1 General Description

This command returns the parameters of an ECC curve identified by its TCG-assigned curvelD.

14.6.2Command and Response

Table 51 — TPM2_ECC_Parameters Command

Type Name Description

TPM_ST_SESSIONS if an audit session is
TPMI_ST_COMMAND_TAG tag present; otherwise, TPM_ST_NO_SESSIONS
UINT32 commandSize
TPM_CC commandCode TPM_CC_ECC_Parameters
TPMI_ECC_CURVE curvelD parameter set selector

Table 52 — TPM2_ECC_Parameters Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_ALGORITHM_DETAIL_ECC |parameters ECC parameters for the selected curve

Page 110 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

14.6.3 Detailed Actions

#include "InternalRoutines.h"

#include "ECC Parameters fp.h"

#ifdef TPM CC_ECC_Parameters
#ifdef TPM ALG ECC

// Conditional expansion of this file

Part 3: Commands

Error Returns

Meaning

TPM_RC_VALUE

Unsupported ECC curve ID

TPM RC

TPM2_ ECC_Parameters (
ECC_Parameters_ In *in,
ECC_Parameters Out *out
)

{
// Command Output

// IN: input parameter list
// OUT: output parameter list

// Get ECC curve parameters
if (CryptEccGetParameters (in->curvelID, &out->parameters))
return TPM RC_SUCCESS;

else

return TPM RC_VALUE + RC_ECC_ Parameters_curvelD;

}
#endif
#endif // CC_ECC_Parameters

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 111
October 30, 2014

Part 3: Commands Trusted Platform Module Library

14.7 TPM2_ZGen_2Phase

14.7.1 General Description

This command supports two-phase key exchange protocols. The command is used in combination with
TPM2_EC_Ephemeral(). TPM2_EC_Ephemeral() generates an ephemeral key and returns the public
point of that ephemeral key along with a numeric value that allows the TPM to regenerate the associated
private key.

The input parameters for this command are a static public key (inQsU), an ephemeral key (inQeU) from
party B, and the commitCounter returned by TPM2_EC_Ephemeral(). The TPM uses the counter value to
regenerate the ephemeral private key (d.v) and the associated public key (Qev). keyA provides the static
ephemeral elements dsy and Qsy. This provides the two pairs of ephemeral and static keys that are
required for the schemes supported by this command.

The TPM will compute Z or Zs and Z. according to the selected scheme. If the scheme is not a two-phase
key exchange scheme or if the scheme is not supported, the TPM will return TPM_RC_SCHEME.

Itis an error if inQsB or inQeB are not on the curve of keyA (TPM_RC_ECC_POINT).

The two-phase key schemes that were assigned an algorithm ID as of the time of the publication of this
specification are TPM_ALG_ECDH, TPM_ALG_ECMQV, and TPM_ALG_SM2.

If this command is supported, then support for TPM_ALG_ECDH is required. Support for
TPM_ALG_ECMQV or TPM_ALG_SM2 is optional.

NOTE 1 If SM2 is supported and this command is supported, then the implementation is required to support
the key exchange protocol of SM2, part 3.

For TPM_ALG_ECDH outZ1 will be Zs and outZ2 will Ze as defined in 6.1.1.2 of SP800-56A.

NOTE 2 An unrestricted decryption key using ECDH may be used in either TPM2_ECDH_ZGen() or
TPM2_ZGen_2Phase as the computation done with the private part of keyA is the same in both
cases.

For TPM_ALG_ECMQV or TPM_ALG_SM2 outZ1 will be Z and outZ2 will be an Empty Point.

NOTE 3 An Empty Point has two Empty Buffers as coordinates meaning the minimum size value for outZ2
will be four.

If the input scheme is TPM_ALG_ECDH, then outZ1 will be Zs and outZ2 will be Z.. For schemes like
MQV (including SM2), outZ1 will contain the computed value and outZ2 will be an Empty Point.

NOTE The Z values returned by the TPM are a full point and not just an x-coordinate.

If a computation of either Z produces the point at infinity, then the corresponding Z value will be an Empty
Point.

Page 112 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

14.7.2 Command and Response

Table 53 — TPM2_ZGen_2Phase Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_ ZGen_2Phase

handle of an unrestricted decryption key ECC
The private key referenced by this handle is used as ds4
Auth Index: 1

Auth Role: USER
== |

TPMI_DH_OBJECT @keyA

TPM2B_ECC_POINT inQsB other party’s static public key (Qsz= (X5 Ys5))
TPM2B_ECC_POINT inQeB other party's ephemeral public key (Qes= (X5 Ye5))
TPMI_ECC_KEY_EXCHANGE [inScheme the key exchange scheme

UINT16 counter value returned by TPM2_EC_Ephemeral()

Table 54 — TPM2_ZGen_2Phase Response

Type Name Description
TPM_ST tag

UINT32 responseSize

TPM_RC responseCode

s se— ===
TPM2B_ECC_POINT outz1 X and Y coordinates of the computed value (scheme

dependent)
TPM2B ECC POINT outz2 X and Y coordinates of the second computed value
- - (scheme dependent)
Family “2.0” TCG Published Page 113

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

N

Part 3: Commands Trusted Platform Module Library

14.7.3 Detailed Actions

#include "InternalRoutines.h"
#include "ZGen 2Phase fp.h"
#ifdef TPM CC_2Gen 2Phase // Conditional expansion of this file

This command uses the TPM to recover one or two Z values in a two phase key exchange protocol

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by keyA is restricted or not a decrypt key

TPM_RC_ECC_POINT inQsB or inQeB is not on the curve of the key reference by keyA

TPM_RC_KEY key referenced by keyA is not an ECC key

TPM_RC_SCHEME the scheme of the key referenced by keyA is not TPM_ALG_NULL,
TPM_ALG_ECDH, TPM_ALG_ECMQV or TPM_ALG_SM2

TEM_RC
TPM2_ZGen_2Phase (
ZGen 2Phase In *in, // IN: input parameter list
ZGen_2Phase Out *out // OUT: output parameter list
)
{
TPM RC result;
OBJECT *eccKey;
TPM2B_ECC_PARAMETER r;
TPM ALG ID scheme;

// Input Validation
eccKey = ObjectGet (in->key3) ;

// keyA must be an ECC key
if (eccKey->publicArea.type !'= TPM ALG ECC)
return TPM RC KEY + RC_ZGen 2Phase keyA;

// keyA must not be restricted and must be a decrypt key
if(eccKey->publicArea.objectAttributes.restricted == SET
| | eccKey->publicArea.objectAttributes.decrypt !'= SET

)
return TPM RC_ATTRIBUTES + RC_ZGen_?Phase_keyA;

// if the scheme of keyA is TPM ALG NULL, then use the input scheme; otherwise
// the input scheme must be the same as the scheme of keyA
scheme = eccKey->publicArea.parameters.asymDetail.scheme.scheme;
if (scheme !'= TPM ALG NULL)
{

if (scheme '= in->inScheme)

return TPM RC SCHEME + RC_ZGen_ZPhase_inScheme;

}
else

scheme = in->inScheme;
if (scheme == TPM ALG NULL)

return TPM RC SCHEME + RC ZGen_ 2Phase_inScheme;

// Input points must be on the curve of keyA
if ('CryptEccIsPointOnCurve (eccKey->publicArea.parameters.eccDetail.curvelD,
&in->inQsB. t.point))
return TPM RC_ECC_POINT + RC_ZGen 2Phase inQsB;

if (!CryptEccIsPointOnCurve (eccKey->publicArea.parameters.eccDetail.curvelD,
&in->inQeB. t.point))

Page 114 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

67
68
69
70
71
72
73
74

Trusted Platform Module Library

return TPM RC_ECC_POINT + RC_ZGen 2Phase_inQeB;

if (!CryptGenerateR (&r, &in->counter,
eccKey->publicArea.parameters.eccDetail.curvelD,
NULL))
return TPM RC VALUE + RC_ZGen 2Phase counter;

// Command Output

result = CryptEcc2PhaseKeyExchange (&out->outZl.t.point,
&out->outZ2.t.point,

Part 3: Commands

eccKey->publicArea.parameters.eccDetail.curvelD,

scheme,
&eccKey->sensitive.sensitive.ecc,
&r,
&in->inQsB.t.point,
&in->inQeB. t.point) ;
if (result == TPM RC_SCHEME)
return TPM RC_SCHEME + RC ZGen 2Phase inScheme;

if (result == TPM RC_SUCCESS)
CryptEndCommit (in->counter) ;

return result;

}
#endif

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Page 115
October 30, 2014

Part 3: Commands Trusted Platform Module Library

15 Symmetric Primitives

15.1 Introduction

The commands in this clause provide low-level primitives for access to the symmetric algorithms
implemented in the TPM that operate on blocks of data. These include symmetric encryption and
decryption as well as hash and HMAC. All of the commands in this group are stateless. That is, they have
no persistent state that is retained in the TPM when the command is complete.

For hashing, HMAC, and Events that require large blocks of data with retained state, the sequence
commands are provided (see clause 1).

Some of the symmetric encryption/decryption modes use an IV. When an IV is used, it may be an
initiation value or a chained value from a previous stage. The chaining for each mode is:

Page 116 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

Table 55 — Symmetric Chaining Process

Mode

Chaining process

TPM_ALG_CTR

The TPM will increment the entire IV provided by the caller. The next count value will be
returned to the caller as ivOut. This can be the input value to the next encrypt or decrypt
operation.

ivin is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivin is not correct, the TPM shall return TPM_RC_SIZE.

EXAMPLE 1 AES requires that ivin be 128 bits (16 octets).
ivOut will be the size of a cipher block and not the size of the last encrypted block.
NOTE ivOut will be the value of the counter after the last block is encrypted.

EXAMPLE 2 If ivin were 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0046 and four data blocks
were encrypted, ivOut will have a value of
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 044s.

All the bits of the IV are incremented as if it were an unsigned integer.

TPM_ALG_OFB

In Output Feedback (OFB), the output of the pseudo-random function (the block encryption
algorithm) is XORed with a plaintext block to produce a ciphertext block. ivOut will be the
value that was XORed with the last plaintext block. That value can be used as the ivin for a
next buffer.

ivin is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivin is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_CBC

For Cipher Block Chaining (CBC), a block of ciphertext is XORed with the next plaintext
block and that block is encrypted. The encrypted block is then input to the encryption of the
next block. The last ciphertext block then is used as an IV for the next buffer.

Even though the last ciphertext block is evident in the encrypted data, it is also returned in
ivOut.

ivin is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivin is not correct, the TPM shall return TPM_RC_SIZE.

inData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

TPM_ALG_CFB

Similar to CBC in that the last ciphertext block is an input to the encryption of the next block.
ivOut will be the value that was XORed with the last plaintext block. That value can be used
as the ivin for a next buffer.

ivin is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivin is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_ECB

Electronic Codebook (ECB) has no chaining. Each block of plaintext is encrypted using the
key. ECB does not support chaining and ivin shall be the Empty Buffer. ivOut will be the
Empty Buffer.

inData is required to be an even multiple of the block encrypted by the selected algorithm

and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

Family “2.0”

TCG Published Page 117

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

15.2 TPM2_EncryptDecrypt

15.2.1 General Description

This command performs symmetric encryption or decryption.
keyHandle shall reference a symmetric cipher object (TPM_RC_KEY).

For a restricted key, mode shall be either the same as the mode of the key, or TPM_ALG_NULL
(TPM_RC_VALUE). For an unrestricted key, mode may be the same or different from the mode of the key
but both shall not be TPM_ALG_NULL (TPM_RC_VALUE). If different, mode overrides the mode of the
key.

If the TPM allows this command to be canceled before completion, then the TPM may produce
incremental results and return TPM_RC_SUCCESS rather than TPM_RC_CANCELED. In such case,
outData may be less than inData.

Page 118 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

15.2.2 Command and Response

Table 56 — TPM2_EncryptDecrypt Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt

the symmetric key used for the operation
TPMI_DH_OBJECT @keyHandle Auth Index: 1

Auth Role: USER
= |

TPMI YES NO decrvot if YES, then the operation is decryption; if NO, the
- - yp operation is encryption

symmetric mode

TPMI_ALG_SYM_MODE+ mode For a restricted key, this field shall match the default
mode of the key or be TPM_ALG_NULL.

TPM2B_IV ivin an initial value as required by the algorithm

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

Table 57 — TPM2_EncryptDecrypt Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
., s ——— ===
TPM2B_MAX_BUFFER outData encrypted or decrypted output
TPM2B_IV ivOut chaining value to use for IV in next round
Family “2.0” TCG Published Page 119

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

N

Part 3: Commands

15.2.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"
#include "EncryptDecrypt fp.h"
#ifdef TPM CC_EncryptDecrypt // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_KEY is not a symmetric decryption key with both public and private
portions loaded
TPM_RC_SIZE Ivin size is incompatible with the block cipher mode; or inData size is

not an even multiple of the block size for CBC or ECB mode

TPM_RC_VALUE

keyHandle is restricted and the argument mode does not match the

key's mode
TEM_RC
TPM2_EncryptDecrypt (
EncryptDecrypt In *in, // IN: input parameter list
EncryptDecrypt Out *out // OUT: output parameter list
)
{
OBJECT *symKey ;
UINT16 keySize;
UINT16 blockSize;
BYTE *key;
TPM AIG ID alg;

// Input Validation

symKey = ObjectGet (in->keyHandle) ;

// The input key should be a symmetric decrypt key.
if(symKey->publicArea.type !'= TPM ALG SYMCIPHER
|| symKey->attributes.publicOnly == SET)
return TPM RC KEY + RC EncryptDecrypt keyHandle;

// If the input mode is TPM ALG NULL, use the key's mode

if(in->mode == TPM

ALG NULL)

in->mode = symKEy—>5ﬁblicArea.parameters.symDetail.sym.mode.sym;

// If the key is restricted, the input symmetric mode should match the key's

// symmetric mode

if(symKey->publicArea.objectAttributes.restricted = SET
&& symKey->publicArea.parameters.symDetail.sym.mode.sym != in->mode)
return TPM RC VALUE + RC_EncryptDecrypt mode;

// If the mode is null, then we have a problem.
// Note: Construction of a TPMT_SYM DEF does not allow the 'mode' to be
// TPM ALG NULL so setting in->mode to the mode of the key should have

// producea a valid

mode. However, this is suspenders.

if (in->mode == TPM ALG_NULL)
return TPM RC VALUE + RC_EncryptDecrypt mode;

// The input iv for

ECB mode should be null. All the other modes should

// have an iv size same as encryption block size

keySize = symKey->publicArea.parameters.symDetail.sym.keyBits.sym;
alg = symKey->publicArea.parameters.symDetail.sym.algorithm;
blockSize = CryptGetSymmetricBlockSize (alg, keySize) ;
if((in->mode = TPM ALG ECB && in->ivIn.t.size != 0)
|| (in->mode !'= TPM ALG ECB && in->ivIn.t.size != blockSize))
return TPM RC_SIZE + RC_EncryptDecrypt ivIn;

Page 120
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92

Trusted Platform Module Library Part 3: Commands

// The input data size of CBC mode or ECB mode must be an even multiple of
// the symmetric algorithm's block size
if((in->mode == TPM ALG CBC || in->mode == TPM ALG ECB)

&& (in->inData.t.size % blockSize) !'= 0)

return TPM RC SIZE + RC_EncryptDecrypt inData;

// Copy IV

// Note: This is copied here so that the calls to the encrypt/decrypt functions
// will modify the output buffer, not the input buffer

out->ivOut = in->ivIn;

// Command Output

}

key = symKey->sensitive.sensitive.sym.t.buffer;
// For symmetric encryption, the cipher data size is the same as plain data
// size.
out->outData.t.size = in->inData.t.size;
if (in->decrypt == YES)
{
// Decrypt data to output
CryptSymmetricDecrypt (out->outData. t.buffer,
alg,
keySize, in->mode, key,
& (out->ivOut) ,
in->inData.t.size,
in->inData.t.buffer) ;
}
else
{
// Encrypt data to output
CryptSymmetricEncrypt (out->outData. t.buffer,
alg,
keySize,
in->mode, key,
& (out->ivOut) ,
in->inData.t.size,
in->inData.t.buffer) ;
}

return TPM_RC_SUCCESS;

#endif // CC_EncryptDecrypt

Family “2.0” TCG Published Page 121
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

15.3 TPM2_Hash

15.3.1 General Description

This command performs a hash operation on a data buffer and returns the results.

NOTE If the data buffer to be hashed is larger than will fit into the TPM’s input buffer, then the sequence
hash commands will need to be used.

If the results of the hash will be used in a signing operation that uses a restricted signing key, then the
ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then the TPM will return a TPMT_TK_HASHCHECK with the hierarchy set
to TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

Page 122 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

15.3.2 Command and Response

Table 58 — TPM2_Hash Command

Type Name Description

TPM_ST_SESSIONS if an audit, decrypt, or encrypt
TPMI_ST_COMMAND_TAG tag session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_Hash
s s—sm—m——— ===
TPM2B_MAX_BUFFER data data to be hashed
algorithm for the hash being computed — shall not be
TPMI_ALG_HASH hashAlg TPM_ALG_NULL
TPMI_RH_HIERARCHY+ hierarchy hierarchy to use for the ticket (TPM_RH_NULL allowed)

Table 59 — TPM2_Hash Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
,— ——_—— ===
TPM2B_DIGEST outHash results

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPMT_TK_HASHCHECK validation TPM_GENERATED_VALUE

will be a NULL ticket if the digest may not be signed
with a restricted key

Family “2.0” TCG Published Page 123
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

WoOoOJoUld WN R

Part 3: Commands Trusted Platform Module Library

15.3.3 Detailed Actions

#include "InternalRoutines.h"

#include "Hash fp.h"

#ifdef TPM CC_Hash // Conditional expansion of this file
TEM_RC

TPM2 Hash(
Hash In *in, // IN: input parameter list
Hash Out *out // OUT: output parameter list
)

{
HASH STATE hashState;

// Command Output

// Output hash
// Start hash stack

out->outHash.t.size = CryptStartHash (in->hashAlg, &hashState);
// Adding hash data

CryptUpdateDigest2B (&hashState, &in->data.b);
// Complete hash

CryptCompleteHash2B (&¢hashState, &out->outHash.b);

// Output ticket
out->validation.tag = TPM ST HASHCHECK;
out->validation.hierarchy = in->hierarchy;

if (in->hierarchy == TPM RH NULL)
{
// Ticket is not required
out->validation.hierarchy = TPM RH NULL;
out->validation.digest.t.size = 0;
}
else if(in->data.t.size >= sizeof (TPM_GENERATED)
&& !'TicketIsSafe (&in->data.b))
{
// Ticket is not safe
out->validation.hierarchy = TPM RH NULL;
out->validation.digest.t.size = 0;
}
else
{
// Compute ticket
TicketComputeHashCheck (in->hierarchy, in->hashAlg,
&out->outHash, &out->validation) ;
}

return TPM RC_SUCCESS;

}
#endif // CC_Hash

Page 124 TCG Published
October 30, 2014 Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

15.4 TPM2_HMAC

15.4.1 General Description

This command performs an HMAC on the supplied data using the indicated hash algorithm.
The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return
TPM_RC_ATTRIBUTES. If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return
TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall return
TPM_RC_ATTRIBUTES.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg
parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).
If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not
TPM_ALG_NULL (TPM_RC_VALUE). (See hash selection matrix in Table 66.)

NOTE A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and the hash algorithm must be specified.

Family “2.0” TCG Published Page 125
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

15.4.2 Command and Response

Trusted Platform Module Library

Table 60 — TPM2_HMAC Command

TPM2B_MAX_BUFFER

buffer

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC
handle for the symmetric signing key providing the
HMAC key

TPMI_DH_OBJECT @handle Auth Index: 1

Auth Role: USER

P,

HMAC data

TPMI_ALG_HASH+

hashAlg

algorithm to use for HMAC

Table 61 — TPM2_

HMAC Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST OoutHMAC the returned HMAC in a sized buffer

Page 126
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

N

Trusted Platform Module Library

15.4.3 Detailed Actions

Part 3: Commands

#include "InternalRoutines.h"

#include "HMAC fp.h"

#ifdef TPM CC_HMAC // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_ATTRIBUTES

key referenced by handle is not a signing key or is a restricted key

TPM_RC_TYPE

key referenced by handle is not an HMAC key

TPM_RC_VALUE

hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

TPM RC

TPM2 HMAC(
HMAC In *in,
HMAC Out *out
)

HMAC_STATE
OBJECT
TPMI_ALG HASH
TPMT_PUBLIC

// Input Validation

// IN: input parameter list
// OUT: output parameter list

hmacState;
*hmacObject;

hashAlg;
*publicArea;

// Get HMAC key object and public area pointers
hmacObject = ObjectGet (in->handle) ;
publicArea = &hmacObject->publicArea;

// Make sure that the key is an HMAC key
if (publicArea->type != TPM ALG KEYEDHASH)
return TPM RCS_TYPE + RC_HMAC handle;

// and that it is unrestricted
if (publicArea->objectAttributes.restricted == SET)
return TPM RCS_ATTRIBUTES + RC_HMAC handle;

// and that it is a signing key
if (publicArea->objectAttributes.sign != SET)
return TPM RCS KEY + RC_HMAC handle;

// See if the key has a default

if (publicArea->parameters.keyedHashDetail.scheme.scheme =— TPM ALG NULL)
// it doesn't so use the input value
hashAlg = in->hashAlg;

else

{

// key has a default so use it

hashAlg

= publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;
// and verify that the input was either the TPM ALG NULL or the default
if (in->hashAlg != TPM ALG NULL && in->hashAlg !'= hashAlg)

hashAlg = TPM ALG NULL;

}

// if we ended up without a hash algorith then return an error
if (hashAlg == TPM ALG NULL)
return TPM RCS VALUE + RC _HMAC hashAlg;

// Command Output

Family “2.0”
Level 00 Revision 01.16

TCG Published Page 127
Copyright © TCG 2006-2014 October 30, 2014

52
53
54
55
56
57
58
59
60
61
62
63
64

Part 3: Commands

// Start HMAC stack

out->outHMAC.t.size = CryptStartHMAC2B (hash2lg,
&hmacObject->sensitive.sensitive.bits.b,

// Adding HMAC data

&hmacState) ;

CryptUpdateDigest2B (&hmacState, &in->buffer.b);

// Complete HMAC

CryptCompleteHMAC2B (&hmacState, &out->outHMAC.Db) ;

return TPM RC _SUCCESS;

}
#endif // CC_HMAC

Page 128
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Trusted Platform Module Library

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

16 Random Number Generator
16.1 TPM2_GetRandom

16.1.1 General Description

This command returns the next bytesRequested octets from the random number generator (RNG).

NOTE 1 It is recommended that a TPM implement the RNG in a manner that would allow it to return RNG
octets such that, as long as the value of bytesRequested is not greater than the maximum digest

size, the frequency of bytesRequested being more than the number of octets available is an
infrequent occurrence.

If bytesRequested is more than will fit into a TPM2B_DIGEST on the TPM, no error is returned but the
TPM will only return as much data as will fit into a TPM2B_DIGEST buffer for the TPM.

NOTE 2 TPM2B_DIGEST is large enough to hold the largest digest that may be produced by the TPM.
Because that digest size changes according to the implemented hashes, the maximum amount of
data returned by this command is TPM implementation-dependent.

Family “2.0” TCG Published Page 129
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

16.1.2 Command and Response

Trusted Platform Module Library

Table 62 — TPM2_GetRandom Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_GetRandom

P,

UINT16 bytesRequested number of octets to return
Table 63 — TPM2_GetRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST randomBytes the random octets

Page 130
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

WoOoOJoUld WN R

Trusted Platform Module Library

16.1.3 Detailed Actions

#include "InternalRoutines.h"

#include "GetRandom fp.h"

#ifdef TPM CC_GetRandom // Conditional expansion of this file

TEM RC

TPM2_ GetRandom (
GetRandom In *in, // IN: input parameter list
GetRandom Out *out // OUT: output parameter list
)

{
// Command Output

// if the requested bytes exceed the output buffer size, generates the
// maximum bytes that the output buffer allows
if (in->bytesRequested > sizeof (TPMU_HA))
out->randomBytes.t.size = sizeof (TPMU_HA) ;
else
out->randomBytes.t.size = in->bytesRequested;

CryptGenerateRandom (out->randomBytes.t.size, out->randomBytes.t.buffer) ;
return TPM_BC_SUCCESS;

}
#endif // CC_GetRandom

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page 131
October 30, 2014

Part 3: Commands Trusted Platform Module Library

16.2 TPM2_StirRandom

16.2.1 General Description

This command is used to add "additional information” to the RNG state.

NOTE The "additional information” is as defined in SP800-90A.

The inData parameter may not be larger than 128 octets.

Page 132 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

16.2.2 Command and Response

Table 64 — TPM2_StirRandom Command

Type Name Description

TPM_ST_SESSIONS if an audit or decrypt session is

TPMI_ST_COMMAND_TAG tag present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_StirRandom {NV}

aeao0 ————_ ————— |
TPM2B_SENSITIVE_DATA inData additional information

Table 65 — TPM2_StirRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Family “2.0” TCG Published Page 133

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

WoOoOJoUld WN R

Part 3: Commands

16.2.3 Detailed Actions

#include "InternalRoutines.h"
#include "StirRandom fp.h"
#ifdef TPM CC_StirRandom // Conditional expansion of this file
TEM RC
TPM2_StirRandom(
StirRandom In *in // IN: input parameter list
)

{
// Internal Data Update

CryptStirRandom(in->inData.t.size, in->inData.t.buffer) ;

return TPM_RC_SUCCESS ;

}
#endif // CC_StirRandom

Page 134 TCG Published
October 30, 2014 Copyright © TCG 2006-2014

Trusted Platform Module Library

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

17 Hash/HMAC/Event Sequences

17.1 Introduction

All of the commands in this group are to support sequences for which an intermediate state must be
maintained. For a description of sequences, see “Hash, HMAC, and Event Sequences” in TPM 2.0 Part 1.

17.2 TPM2_HMAC_Start

17.2.1 General Description

This command starts an HMAC sequence. The TPM will create and initialize an HMAC sequence
structure, assign a handle to the sequence, and set the authValue of the sequence object to the value in
auth.

NOTE The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return
TPM_RC_ATTRIBUTES. If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return
TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall return
TPM_RC_ATTRIBUTES.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg
parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).
If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not
TPM_ALG_NULL (TPM_RC_VALUE).

Table 66 — Hash Selection Matrix

handle—restricted | handle—scheme

(key's restricted (hash algorithm

attribute) from key's scheme) | hashAlg hash used

CLEAR (unrestricted) | TPM_ALG_NULL® TPM_ALG_NULL error™ (TPM_RC_VALUE)

CLEAR TPM_ALG_NULL valid hash hashAlg

CLEAR valid hash TPM_ALG_NULL or same as handle—scheme
handle—scheme

SET (restricted) don't care don't care TPM_RC_ATTRIBUTES

NOTES:

1) A hash algorithm is required for the HMAC.

Family “2.0” TCG Published Page 135
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

Trusted Platform Module Library

17.2.2 Command and Response

Table 67 — TPM2_HMAC_Start Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC_Start

TPMI_DH_OBJECT

TPM2B_AUTH

P,

handle of an HMAC key
@handle Auth Index: 1
Auth Role: USER

auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+

hashAlg the hash algorithm to use for the HMAC

Table 68 — TPM2_HMAC_Start Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Page 136 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

49

Trusted Platform Module Library Part 3: Commands

17.2.3 Detailed Actions

#include "InternalRoutines.h"
#include "HMAC Start fp.h"
#ifdef TPM CC_HMAC Start // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is not a signing key or is restricted

TPM_RC_OBJECT_MEMORY no space to create an internal object

TPM_RC_KEY key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

TPM RC

TPM2_HMAC Start(
HMAC Start In *in, // IN: input parameter list
HMAC Start Out *out // OUT: output parameter list
)

{
OBJECT *hmacObject;
TPMT PUBLIC *publicArea;
TPM ALG_ID hashAlg;

// Input Validation

// Get HMAC key object and public area pointers
hmacObject = ObjectGet (in->handle) ;
publicArea = &hmacObject->publicArea;

// Make sure that the key is an HMAC key
if (publicArea->type != TPM ALG KEYEDHASH)
return TPM RCS_TYPE + RC_HMAC Start handle;

// and that it is unrestricted
if (publicArea->objectAttributes.restricted = SET)
return TPM RCS ATTRIBUTES + RC_HMAC Start handle;

// and that it is a signing key
if (publicArea->objectAttributes.sign != SET)
return TPM RCS KEY + RC_HMAC Start handle;

// See if the key has a default
if (publicArea->parameters.keyedHashDetail.scheme.scheme =— TPM ALG NULL)
// it doesn't so use the input value
hashAlg = in->hashAlg;
else
{
// key has a default so use it
hashAlg
= publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;
// and verify that the input was either the TPM ALG NULL or the default
if (in->hashAlg != TPM ALG NULL && in->hashAlg !'= hashAlg)
hashAlg = TPM ALG NULL;
}
// if we ended up without a hash algorith then return an error
if (hashAlg == TPM ALG NULL)
return TPM RCS VALUE + RC _HMAC Start hashAlg;

// Internal Data Update

Family “2.0” TCG Published Page 137
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

51
52
53
54
55
56
57
58

Part 3: Commands

Trusted Platform Module Library

// Create a HMAC sequence object. A TPM RC OBJECT MEMORY error may be

// returned at this point

return ObjectCreateHMACSequence (hashAlg,

}
#endif // CC_HMAC Start

Page 138
October 30, 2014

in->handle,
&in->auth,
&out->sequenceHandle) ;

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

17.3 TPM2_HashSequenceStart

17.3.1 General Description

This command starts a hash or an Event Sequence. If hashAlg is an implemented hash, then a hash
sequence is started. If hashAlg is TPM_ALG_NULL, then an Event Sequence is started. If hashAlg is
neither an implemented algorithm nor TPM_ALG_NULL, then the TPM shall return TPM_RC_HASH.

Depending on hashAlg, the TPM will create and initialize a Hash Sequence context or an Event
Sequence context. Additionally, it will assign a handle to the context and set the authValue of the context
to the value in auth. A sequence context for an Event (hashAlg = TPM_ALG_NULL) contains a hash
context for each of the PCR banks implemented on the TPM.

Family “2.0” TCG Published Page 139
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

17.3.2 Command and Response

Trusted Platform Module Library

Table 69 — TPM2_HashSequenceStart Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

TPM2B_AUTH

commandCode

auth

TPM_CC_HashSequenceStart

P,

authorization value for subsequent use of the sequence

TPMI_ALG_HASH+

hashAlg

the hash algorithm to use for the hash sequence
An Event Sequence starts if this is TPM_ALG_NULL.

Table 70 — TPM2_HashSequenceStart Response

TPMI_DH_OBJECT

sequenceHandle

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

a handle to reference the sequence

Page 140
October 30, 2014

TCG Published

Copyright © TCG 2006-2014

Family “2.0”

Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

17.3.3 Detailed Actions

#include "InternalRoutines.h"
#include "HashSequenceStart fp.h"
#ifdef TPM CC_HashSequenceStart // Conditional expansion of this file

Error Returns Meaning

TPM_RC_OBJECT_MEMORY no space to create an internal object

TPM_RC

TPM2 HashSequenceStart(
HashSequenceStart In *in, // IN: input parameter list
HashSequenceStart Out *out // OUT: output parameter list

)

{
// Internal Data Update

if (in->hashAlg = TPM ALG NULL)
// Start a event sequence. A TPM RC_OBJECT MEMORY error may be
// returned at this point
return ObjectCreateEventSequence (&in->auth, &out->sequenceHandle) ;

// Start a hash sequence. A TPM RC OBJECT MEMORY error may be
// returned at this point

return ObjectCreateHashSequence (in->hashAlg, &in->auth, &out->sequenceHandle) ;

}
#endif // CC_HashSequenceStart

Family “2.0” TCG Published

Page 141

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

17.4 TPM2_SequenceUpdate

17.4.1 General Description

This command is used to add data to a hash or HMAC sequence. The amount of data in buffer may be
any size up to the limits of the TPM.

NOTE 1 In all TPM, a buffer size of 1,024 octets is allowed.

Proper authorization for the sequence object associated with sequenceHandle is required. If an
authorization or audit of this command requires computation of a cpHash and an rpHash, the Name
associated with sequenceHandle will be the Empty Buffer.

If the command does not return TPM_RC_SUCCESS, the state of the sequence is unmaodified.

If the sequence is intended to produce a digest that will be signed by a restricted signing key, then the
first block of data shall contain sizeof(TPM_GENERATED) octets and the first octets shall not be
TPM_GENERATED_VALUE.

NOTE 2 This requirement allows the TPM to validate that the first block is safe to sign without having to
accumulate octets over multiple calls.

Page 142 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

17.4.2 Command and Response

Table 71 — TPM2_SequenceUpdate Command

Part 3: Commands

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceUpdate

TPMI_DH_OBJECT

TPM2B_MAX_BUFFER

@sequenceHandle

buffer

handle for the sequence object
Auth Index: 1
Auth Role: USER

data to be added to hash

Table 72 — TPM2_SequenceUpdate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Family “2.0” TCG Published Page 143

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

N

Part 3: Commands

17.4.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"
#include "SequenceUpdate fp.h"
#ifdef TPM CC_SequenceUpdate // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_MODE

sequenceHandle does not reference a hash or HMAC sequence
object

TPM _RC

TPM2_SequenceUpdate (
SequenceUpdate In *in
)

OBJECT

// Input Validation

// IN: input parameter list

*object;

// Get sequence object pointer
object = ObjectGet (in->sequenceHandle) ;

// Check that referenced object is a sequence object.
if (!ObjectIsSequence (object))
return TPM RC_MODE + RC_SequenceUpdate sequenceHandle;

// Internal Data Update

if (object->attributes.eventSeq == SET)

{

// Update event sequence object

UINT32 i;

HASH OBJECT *hashObject = (HASH OBJECT *)object;
for(i = 0; i < HASH COUNT; i++)

{

// Update sequence object
CryptUpdateDigest2B (&hashObject->state.hashState[i], &in->buffer.b);

}

else

{

HASH OBJECT *hashObject = (HASH OBJECT *)object;

// Update hash/HMAC

sequence object

if (hashObject->attributes.hashSeq == SET)

{

// Is this the first block of the sequence
if (hashObject->attributes.firstBlock = CLEAR)

{

// 1If so, indicate that first block was received
hashObject->attributes.firstBlock = SET;

// Check the first block to see if the first block can contain
// the TPM GENERATED VALUE. If it does, it is not safe for

// a ticket.

if (TicketIsSafe (&in->buffer.b))
hashObject->attributes. ticketSafe = SET;

}

// Update sequence object hash/HMAC stack
CryptUpdateDigest2B (&hashObject->state.hashState[0], &in->buffer.b);

}

Page 144
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

56
57
58
59

61
62
63
64
65

67

Trusted Platform Module Library

else if (object->attributes.hmacSeq == SET)

{
HASH OBJECT *hashObject = (HASH _OBJECT *)object;

// Update sequence object hash/HMAC stack

CryptUpdateDigest2B (&hashObject->state.hmacState, &in->buffer.b);

}

return TPM RC SUCCESS;

}
#endif // CC_SequenceUpdate

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page 145
October 30, 2014

Part 3: Commands Trusted Platform Module Library

17.5 TPM2_SequenceComplete

17.5.1 General Description

This command adds the last part of data, if any, to a hash/HMAC sequence and returns the result.

NOTE 1 This command is not used to complete an Event Sequence. TPM2_EventSequenceComplete() is
used for that purpose.

For a hash sequence, if the results of the hash will be used in a signing operation that uses a restricted
signing key, then the ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then validation will be a TPMT_TK_HASHCHECK with the hierarchy set to
TPM_RH_NULL and digest set to the Empty Buffer.

NOTE 2 Regardless of the contents of the first octets of the hashed message, if the first buffer sent to the
TPM had fewer than sizeof(TPM_GENERATED) octets, then the TPM will operate as if digest is not
safe to sign.

NOTE 3 The ticket is only required for a signing operation that uses a restricted signing key. It is always

returned, but can be ignored if not needed.

If sequenceHandle references an Event Sequence, then the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an
authorization or audit of this command requires computation of a cpHash and an rpHash, the Name
associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

Page 146 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

17.5.2 Command and Response

Table 73 — TPM2_SequenceComplete Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceComplete {F}

authorization for the sequence
TPMI_DH_OBJECT @sequenceHandle Auth Index: 1

Auth Role: USER
= |

TPM2B_MAX_BUFFER buffer data to be added to the hash/HMAC

TPMI_RH_HIERARCHY+ hierarchy hierarchy of the ticket for a hash

Table 74 — TPM2_SequenceComplete Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

ticket indicating that the sequence of octets used to

L compute outDigest did not start with
TPMT_TK_HASHCHECK validation TPM_GENERATED_VALUE

This is a NULL Ticket when the sequence is HMAC.

Family “2.0” TCG Published Page 147
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands Trusted Platform Module Library

17.5.3 Detailed Actions

#include "InternalRoutines.h"

#include "SequenceComplete fp.h"

#ifdef TPM CC_SequenceComplete // Conditional expansion of this file
#include <Platform.h>

Error Returns Meaning
TPM_RC_TYPE sequenceHandle does not reference a hash or HMAC sequence
object
TPM RC
TPM2 SequenceComplete (
§équenceComplete_In *in, // IN: input parameter list
SequenceComplete Out *out // OUT: output parameter list
)
{
OBJECT *object;

// Input validation

// Get hash object pointer
object = ObjectGet (in->sequenceHandle) ;

// input handle must be a hash or HMAC sequence object.
if(object->attributes.hashSeq == CLEAR
&& object->attributes.hmacSeq == CLEAR)
return TPM RC MODE + RC_SequenceComplete sequenceHandle;

// Command Output

if (object->attributes.hashSeq == SET) // sequence object for hash

{
// Update last piece of data
HASH OBJECT *hashObject = (HASH OBJECT *)object;

// Get the hash algorithm before the algorithm is lost in CryptCompleteHash
TPM ALG_ID hashAlg = hashObject->state.hashState[0].state.hashAlg;

CryptUpdateDigest2B (&hashObject->state.hashState[0], &in->buffer.b);

// Complete hash
out->result.t.size
= CryptGetHashDigestSize (
CryptGetContextAlg (&§hashObject->state.hashState[0])) ;

CryptCompleteHash2B (&hashObject->state.hashState[0], &out->result.b);

// Check if the first block of the sequence has been received
if (hashObject->attributes.firstBlock == CLEAR)
{
// If not, then this is the first block so see if it is 'safe'
// to sign.
if (TicketIsSafe (&in->buffer.b))
hashObject->attributes. ticketSafe = SET;

}

// Output ticket

out->validation.tag = TPM ST HASHCHECK;

out->validation.hierarchy = in->hierarchy;

if (in->hierarchy == TPM RH NULL)
Page 148 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

56
57
58
59

61
62
63
64
65

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Trusted Platform Module Library

// Ticket is not required
out->validation.digest.t.size = 0;

}

else if (object->attributes.ticketSafe == CLEAR)

{
// Ticket is not safe to generate
out->validation.hierarchy = TPM RH NULL;
out->validation.digest.t.size = 0;

}

else

{
// Compute ticket
TicketComputeHashCheck (out->validation.hierarchy, hashAlg,

&out->result, &out->validation);

else
HASH OBJECT *hashObject = (HASH OBJECT *)object;

// Update last piece of data
CryptUpdateDigest2B (&hashObject->state.hmacState, &in->buffer.b);
// Complete hash/HMAC
out->result.t.size =
CryptGetHashDigestSize (
CryptGetContextAlg (&hashObject->state.hmacState.hashState)) ;
CryptCompleteHMAC2B (& (hashObject->state.hmacState) , &out->result.b);

// No ticket is generated for HMAC sequence
out->validation.tag = TPM ST HASHCHECK;
out->validation.hierarchy = TPM RH NULL;
out->validation.digest.t.size = 0;

}

// Internal Data Update

// mark sequence object as evict so it will be flushed on the way out
object->attributes.evict = SET;

return TPM_RC_SUCCESS;

}
#endif // CC_SequenceComplete

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page 149
October 30, 2014

Part 3: Commands Trusted Platform Module Library

17.6 TPM2_EventSequenceComplete

17.6.1 General Description

This command adds the last part of data, if any, to an Event Sequence and returns the result in a digest
list. If pcrHandle references a PCR and not TPM_RH_NULL, then the returned digest list is processed in
the same manner as the digest list input parameter to TPM2_PCR_Extend() with the pcrHandle in each
bank extended with the associated digest value.

If sequenceHandle references a hash or HMAC sequence, the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an
authorization or audit of this command requires computation of a cpHash and an rpHash, the Name
associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

Page 150 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

17.6.2 Command and Response

Table 75 — TPM2_EventSequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EventSequenceComplete {NV F}

PCR to be extended with the Event data
TPMI_DH_PCR+ @ pcrHandle Auth Index: 1
Auth Role: USER

authorization for the sequence
TPMI_DH_OBJECT @sequenceHandle Auth Index: 2
Auth Role: USER

- — — — — —— — — |

TPM2B_MAX_BUFFER buffer data to be added to the Event

Table 76 — TPM2_EventSequenceComplete Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
s se— ===
TPML_DIGEST_VALUES results list of digests computed for the PCR
Family “2.0” TCG Published Page 151

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

N

Part 3: Commands Trusted Platform Module Library

17.6.3 Detailed Actions

#include "InternalRoutines.h"
#include "EventSequenceComplete fp.h"
#ifdef TPM CC_EventSequenceComplete // Conditional expansion of this file

Error Returns Meaning
TPM_RC_LOCALITY PCR extension is not allowed at the current locality
TPM_RC_MODE input handle is not a valid event sequence object
TPM RC
TPM2_ EventSequenceComplete (
EventSequenceComplete In *in, // IN: input parameter list
EventSequenceComplete Out *out // OUT: output parameter list
)
{
TPM RC result;
HASH OBJECT *hashObject;
UINT32 i;
TPM ALG ID hashAlg;

// Input validation

// get the event sequence object pointer
hashObject = (HASH OBJECT *)ObjectGet (in->sequenceHandle) ;

// input handle must reference an event sequence object
if (hashObject->attributes.eventSeq != SET)
return TPM RC_MODE + RC_EventSequenceComplete sequenceHandle;

// see if a PCR extend is requested in call
if (in->pcrHandle != TPM RH NULL)
{
// see if extend of the PCR is allowed at the locality of the command,
if ('PCRIsExtendAllowed (in->pcrHandle))
return TPM_BC_LOCALITY;
// if an extend is going to take place, then check to see if there has
// been an orderly shutdown. If so, and the selected PCR is one of the
// state saved PCR, then the orderly state has to change. The orderly state
// does not change for PCR that are not preserved.
// NOTE: This doesn't just check for Shutdown (STATE) because the orderly
// state will have to change if this is a state-saved PCR regardless
// of the current state. This is because a subsequent Shutdown (STATE) will
// check to see if there was an orderly shutdown and not do anything if
// there was. So, this must indicate that a future Shutdown (STATE) has
// something to do.
if (gp.orderlyState != SHUTDOWN NONE && PCRIsStateSaved (in->pcrHandle))
{
result = NvIsAvailable() ;
if (result != TPM RC SUCCESS) return result;
g_clearOrderly = TRUE;

}

// Command Output
out->results.count = 0;
for(i = 0; i < HASH COUNT; i++)

{
hashAlg = CryptGetHashAlgByIndex (i) ;

Page 152 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Trusted Platform Module Library Part 3: Commands

// Update last piece of data
CryptUpdateDigest2B (&hashObject->state.hashState[i], &in->buffer.b);
// Complete hash
out->results.digests[out->results.count] .hashAlg = hashAlg;
CryptCompleteHash (&§hashObject->state.hashState[i],
CryptGetHashDigestSize (hashAlg),
(BYTE *) &out->results.digests[out->results.count] .digest) ;

// Extend PCR
if (in->pcrHandle !'= TPM RH NULL)
PCRExtend (in->pcrHandle, hashAlg,
CryptGetHashDigestSize (hashalg) ,
(BYTE *) &out->results.digests[out->results.count].digest) ;
out->results.count++;

}
// Internal Data Update

// mark sequence object as evict so it will be flushed on the way out
hashObject->attributes.evict = SET;

return TPM_RC_SUCCESS;

}
#endif // CC_EventSequenceComplete

Family “2.0” TCG Published Page 153
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

18 Attestation Commands

18.1 Introduction

The attestation commands cause the TPM to sign an internally generated data structure. The contents of
the data structure vary according to the command.

All signing commands include a parameter (typically inScheme) for the caller to specify a scheme to be
used for the signing operation. This scheme will be applied only if the scheme of the key is
TPM_ALG_NULL or the key handle is TPM_RH_NULL. If the scheme for signHandle is not
TPM_ALG_NULL, then inScheme.scheme shall be TPM_ALG_NULL or the same as scheme in the
public area of the key. If the scheme for signHandle is TPM_ALG_NULL or the key handle is
TPM_RH_NULL, then inScheme will be used for the signing operation and may not be TPM_ALG_NULL.
The TPM shall return TPM_RC_SCHEME to indicate that the scheme is not appropriate.

For a signing key that is not restricted, the caller may specify the scheme to be used as long as the
scheme is compatible with the family of the key (for example, TPM_ALG_RSAPSS cannot be selected for
an ECC key). If the caller sets scheme to TPM_ALG_NULL, then the default scheme of the key is used.
For a restricted signing key, the key's scheme cannot be TPM_ALG_NULL and cannot be overridden.

If the handle for the signing key (signHandle) is TPM_RH_NULL, then all of the actions of the command
are performed and the attestation block is “signed” with the NULL Signature.

NOTE 1 This mechanism is provided so that additional commands are not required to access the data that
might be in an attestation structure.

NOTE 2 When signHandle is TPM_RH_NULL, scheme is still required to be a valid signing scheme (may be
TPM_ALG_NULL), but the scheme will have no effect on the format of the signature. It will always
be the NULL Signature.

TPM2_NV_Certify() is an attestation command that is documented in 1. The remaining attestation
commands are collected in the remainder of this clause.

Each of the attestation structures contains a TPMS_CLOCK_INFO structure and a firmware version
number. These values may be considered privacy-sensitive, because they would aid in the correlation of
attestations by different keys. To provide improved privacy, the resetCount, restartCount, and
firmwareVersion numbers are obfuscated when the signing key is not in the Endorsement or Platform
hierarchies.

The obfuscation value is computed by:
obfuscation = KDFa(signHandle—nameAlg, shProof, “OBFUSCATE”, signHandle—QN, 0, 128) (3)

Of the returned 128 bits, 64 bits are added to the versionNumber field of the attestation structure; 32 bits
are added to the clockInfo.resetCount and 32 bits are added to the clockInfo.restartCount. The order in
which the bits are added is implementation-dependent.

NOTE 3 The obfuscation value for each signing key will be unique to that key in a specific location. That is,
each version of a duplicated signing key will have a different obfuscation value.

When the signing key is TPM_RH_NULL, the data structure is produced but not signed; and the values in
the signed data structure are obfuscated. When computing the obfuscation value for TPM_RH_NULL, the
hash used for context integrity is used.

NOTE 4 The QN for TPM_RH_NULL is TPM_RH_NULL.
If the signing scheme of signHandle is an anonymous scheme, then the attestation blocks will not contain
the Qualified Name of the signHandle.

Each of the attestation structures allows the caller to provide some qualifying data (qualifyingData). For
most signing schemes, this value will be placed in the TPMS_ATTEST .extraData parameter that is then

Page 154 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

hashed and signed. However, for some schemes such as ECDAA, the qualifyingData is used in a
different manner (for details, see “ECDAA” in TPM 2.0 Part 1).

Family “2.0” TCG Published Page 155
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

18.2 TPMZ2_Certify

18.2.1 General Description

The purpose of this command is to prove that an object with a specific Name is loaded in the TPM. By
certifying that the object is loaded, the TPM warrants that a public area with a given Name is self-
consistent and associated with a valid sensitive area. If a relying party has a public area that has the
same Name as a Name certified with this command, then the values in that public area are correct.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the
session shall have a policySession—commandCode set to TPM_CC_Certify. This indicates that the
policy that is being used is a policy that is for certification, and not a policy that would approve another
use. That is, authority to use an object does not grant authority to certify the object.

The object may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary(). An object that
only has its public area loaded cannot be certified.

NOTE 2 The restriction occurs because the Name is used to identify the object being certified. If the TPM
has not validated that the public area is associated with a matched sensitive area, then the public
area may not represent a valid object and cannot be certified.

The certification includes the Name and Qualified Name of the certified object as well as the Name and
the Qualified Name of the certifying object.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Page 156 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

18.2.2 Command and Response

Table 77 — TPM2_Certify Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_Certify

handle of the object to be certified
TPMI_DH_OBJECT @objectHandle Auth Index: 1
Auth Role: ADMIN

handle of the key used to sign the attestation structure
TPMI_DH_OBJECT+ @signHandle Auth Index: 2

Auth Role: USER
= |

TPM2B_DATA qualifyingData user provided qualifying data

signing scheme to use if the scheme for signHandle is

TPMT_SIG_SCHEME+ inScheme TPM_ALG_NULL

Table 78 — TPM2_Certify Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
,— ——_—— ===
TPM2B_ATTEST certifylnfo the structure that was signed
. the asymmetric signature over certifylnfo using the key
TPMT_SIGNATURE signature referenced by signHandle
Family “2.0” TCG Published Page 157

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands Trusted Platform Module Library

18.2.3 Detailed Actions

#include "InternalRoutines.h"

#include "Attest spt fp.h"

#include "Certify fp.h"

#ifdef TPM CC Certify // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key
TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the

modulus of signHandle, or the buffer for the result in signature is too
small (for an RSA key); invalid commit status (for an ECC key with a
split scheme).

TPM RC
TPM2 Certify(
Certify In *in, // IN: input parameter list
Certify Out *out // OUT: output parameter list
)
{
TPM RC result;
TPMS_ATTEST certifyInfo;

// Command Output

// Filling in attest information
// Common fields
result = FillInAttestInfo (in->signHandle,
&in->inScheme,
&in->qualifyingData,
&certifyInfo) ;
if (result != TPM RC_SUCCESS)
{
if (result == TPM RC KEY)
return TPM RC KEY + RC Certify signHandle;
else
return RcSafeAddToResult (result, RC Certify inScheme) ;
}
// Certify specific fields
// Attestation type
certifyInfo.type = TPM ST ATTEST CERTIFY;
// Certified object name
certifyInfo.attested.certify.name.t.size =
ObjectGetName (in->objectHandle,
&certifyInfo.attested.certify.name. t.name) ;
// Certified object qualified name
ObjectGetQualifiedName (in->objectHandle,
&certifyInfo.attested.certify.qualifiedName) ;

// Sign attestation structure. A NULL signature will be returned if
// signHandle is TPM RH NULL. A TPM RC NV_UNAVAILABLE, TPM RC NV _RATE,
// TPM RC VALUE, TPM RC SCHEME or TPM RC ATTRIBUTES error may be returned
// by SignAttestInfo()
result = SignAttestInfo (in->signHandle,

&in->inScheme,

&certifylInfo,

&in->qualifyingData,

&out->certifylnfo,

&out->signature) ;

Page 158 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

50
51
52
53
54
55
56
57
58
59

61
62
63
64
65

Trusted Platform Module Library

Part 3: Commands

// TPM RC ATTRIBUTES cannot be returned here as FillInAttestInfo would already

// have returned TPM RC_KEY

pAssert (result '= TPM RC ATTRIBUTES) ;

if (result != TPM RC_SUCCESS)
return result;

// orderly state should be cleared because of the reporting of clock info

// if signing happens

if (in->signHandle '= TPM RH NULL)

g_clearOrderly = TRUE;

return TPM_RC_SUCCESS;

}
#endif // CC Certify

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 159
October 30, 2014

Part 3: Commands Trusted Platform Module Library

18.3 TPM2_CertifyCreation

18.3.1 General Description

This command is used to prove the association between an object and its creation data. The TPM will
validate that the ticket was produced by the TPM and that the ticket validates the association between a
loaded public area and the provided hash of the creation data (creationHash).

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The TPM will create a test ticket using the Name associated with objectHandle and creationHash as:
HMAC(proof, (TPM_ST_CREATION || objectHandle—Name || creationHash)) 4)

This ticket is then compared to creation ticket. If the tickets are not the same, the TPM shall return
TPM_RC_TICKET.

If the ticket is valid, then the TPM will create a TPMS_ATTEST structure and place creationHash of the
command in the creationHash field of the structure. The Name associated with objectHandle will be
included in the attestation data that is then signed using the key associated with signHandle.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

ObjectHandle may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary().

Page 160 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

18.3.2 Command and Response

Table 79 — TPM2_CertifyCreation Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyCreation

handle of the key that will sign the attestation block
TPMI_DH_OBJECT+ @signHandle Auth Index: 1
Auth Role: USER

the object associated with the creation data

Auth Index: None
= |

TPM2B_DATA qualifyingData user-provided qualifying data

TPMI_DH_OBJECT objectHandle

hash of the creation data produced by TPM2_Create()

TPM2B_DIGEST creationHash or TPM2_CreatePrimary()

signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

ticket produced by TPM2_Create() or
TPM2_CreatePrimary()

TPMT_SIG_SCHEME+ inScheme

TPMT_TK_CREATION creationTicket

Table 80 — TPM2_CertifyCreation Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
., s ——— ===
TPM2B_ATTEST certifylnfo the structure that was signed
TPMT_SIGNATURE signature the signature over certifylnfo
Family “2.0” TCG Published Page 161

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

29

Part 3: Commands Trusted Platform Module Library

18.3.3 Detailed Actions

#include "InternalRoutines.h"

#include "Attest spt fp.h"

#include "CertifyCreation fp.h"

#ifdef TPM CC CertifyCreation // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_TICKET creationTicket does not match objectHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the
modulus of signHandle, or the buffer for the result in signature is too
small (for an RSA key); invalid commit status (for an ECC key with a

split scheme).

TPM RC
TPM2 CertifyCreation (
EértifyCreation_In *in, // IN: input parameter list
CertifyCreation Out *out // OUT: output parameter list
)
{
TPM RC result;
TPM2B_NAME name;
TPMT_TK_CREATION ticket;
TPMS_ATTEST certifyInfo;

// Input Validation

// CertifyCreation specific input validation

// Get certified object name

name.t.size = ObjectGetName (in->objectHandle, &name.t.name) ;

// Re-compute ticket

TicketComputeCreation (in->creationTicket.hierarchy, &name,

&in->creationHash, &ticket);

// Compare ticket

if ('Memory2BEqual (&ticket.digest.b, &in->creationTicket.digest.b))
return TPM RC_TICKET + RC CertifyCreation creationTicket;

// Command Output
// Common fields
result = FillInAttestInfo (in->signHandle,
&certifyInfo) ;
if (result != TPM RC_SUCCESS)
{

&in->inScheme, &in->qualifyingData,

if (result == TPM RC KEY)
return TPM RC KEY + RC_CertifyCreation signHandle;
else
return RcSafeAddToResult (result, RC _CertifyCreation_inScheme) ;
}

// CertifyCreation specific fields

// Attestation type

certifyInfo.type = TPM ST ATTEST CREATION;
certifyInfo.attested.creation.objectName = name;

// Copy the creationHash
certifyInfo.attested.creation.creationHash = in->creationHash;

// Sign attestation structure. A NULL signature will be returned if

TCG Published
Copyright © TCG 2006-2014

Page 162
October 30, 2014

Family “2.0”
Level 00 Revision 01.16

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

67
68
69
70
71
72
73

Trusted Platform Module Library Part 3: Commands

// signHandle is TPM RH NULL. A TPM RC NV_UNAVAILABLE, TPM RC_NV_RATE,
// TPM RC VALUE, TPM RC SCHEME or TPM RC ATTRIBUTES error may be returned at
// this point
result = SignAttestInfo (in->signHandle,
&in->inScheme,
&certifyInfo,
&in->qualifyingData,
&out->certifylInfo,
&out->signature) ;

// TPM RC ATTRIBUTES cannot be returned here as FillInAttestInfo would already
// have returned TPM RC KEY
pAssert (result != TPM_BC_ATTRIBUTES);

if (result != TPM RC_SUCCESS)
return result;

// orderly state should be cleared because of the reporting of clock info
// if signing happens
if (in->signHandle '= TPM RH NULL)

g_clearOrderly = TRUE;

return TPM RC_SUCCESS;

}
#endif // CC_CertifyCreation

Family “2.0” TCG Published Page 163
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

18.4 TPM2_Quote

18.4.1 General Description

This command is used to quote PCR values.

NOTE See 18.1 for description of how the signing scheme is selected.

The TPM will hash the list of PCR selected by PCRselect using the hash algorithm associated with
signHandle (this is the hash algorithm of the signing scheme, not the nameAlg of signHandle).

The digest is computed as the hash of the concatenation of all of the digest values of the selected PCR.

The concatenation of PCR is described in TPM 2.0 Part 1, Selecting Multiple PCR.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Page 164 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

18.4.2 Command and Response

Table 81 — TPM2_Quote Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_Quote

handle of key that will perform signature
TPMI_DH_OBJECT+ @signHandle Auth Index: 1

Auth Role: USER
= |

TPM2B_DATA qualifyingData data supplied by the caller

signing scheme to use if the scheme for signHandle is

TPMT_SIG_SCHEME+ inScheme TPM_ALG_NULL

TPML_PCR_SELECTION PCRselect PCR set to quote

Table 82 — TPM2_Quote Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
,— ——_—— ===
TPM2B_ATTEST quoted the quoted information
TPMT_SIGNATURE signature the signature over quoted
Family “2.0” TCG Published Page 165

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands Trusted Platform Module Library

18.4.3 Detailed Actions

#include "InternalRoutines.h"

#include "Attest spt fp.h"

#include "Quote fp.h"

#ifdef TPM CC Quote // Conditional expansion of this file

Error Returns Meaning
TPM_RC_KEY signHandle does not reference a signing key;
TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is

valid sign scheme

not compatible with default scheme, or the chosen scheme is not a

TEM_RC

TPM2 Quote(
Quote In *in, // IN: input parameter list
Quote Out *out // OUT: output parameter list
)

TPM RC result;
TPMI_ALG HASH hashAlg;
TPMS_ATTEST quoted;

// Command Output

// Filling in attest information
// Common fields
// FillInAttestInfo may return TPM RC SCHEME or TPM RC KEY
result = FillInAttestInfo (in->signHandle,
&in->inScheme,
&in->qualifyingData,
"ed) ;
if (result !'= TPM RC_SUCCESS)
{
if (result == TPM RC KEY)
return TPM RC_KEY + RC Quote signHandle;
else
return RcSafeAddToResult(result, RC_Quote inScheme);
}

// Quote specific fields
// Attestation type
quoted.type = TPM ST ATTEST QUOTE;

// Get hash algorithm in sign scheme. This hash algorithm is used to
// compute PCR digest. If there is no algorithm, then the PCR cannot

// be digested and this command returns TPM RC SCHEME
hashAlg = in->inScheme.details.any.hashAlg;

if (hashAlg == TPM ALG_NULL)
return TPM RC_SCHEME + RC _Quote_ inScheme;

// Compute PCR digest

PCRComputeCurrentDigest (hashAlg,
&in->PCRselect,
"ed.attested.quote.pcrDigest) ;

// Copy PCR select. "PCRselect" is modified in PCRComputeCurrentDigest

// function
quoted.attested.quote.pcrSelect = in->PCRselect;

Page 166 TCG Published
October 30, 2014 Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Trusted Platform Module Library Part 3: Commands

}

// Sign attestation structure. A NULL signature will be returned if
// signHandle is TPM RH NULL. TPM RC VALUE, TPM RC_SCHEME or TPM RC ATTRIBUTES
// error may be returned by SignAttestInfo.
// NOTE: TPM RC ATTRIBUTES means that the key is not a signing key but that
// was checked above and TPM RC KEY was returned. TPM RC VALUE means that the
// value to sign is too large but that means that the digest is too big and
// that can't happen.
result = SignAttestInfo (in->signHandle,

&in->inScheme,

"ed,

&in->qualifyingData,

&out->quoted,

&out->signature) ;
if (result !'= TPM RC_SUCCESS)

return result;

// orderly state should be cleared because of the reporting of clock info
// if signing happens
if (in->signHandle '= TPM RH NULL)

g_clearOrderly = TRUE;

return TPM_BC_SUCCESS;

#endif // CC_Quote

Family “2.0” TCG Published Page 167
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

18.5 TPM2_GetSessionAuditDigest

18.5.1 General Description

This command returns a digital signature of the audit session digest.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

If sessionHandle is not an audit session, the TPM shall return TPM_RC_TYPE.

NOTE 2 A session does not become an audit session until the successful completion of the command in
which the session is first used as an audit session.

This command requires authorization from the privacy administrator of the TPM (expressed with
Endorsement Authorization) as well as authorization to use the key associated with signHandle.

If this command is audited, then the audit digest that is signed will not include the digest of this command
because the audit digest is only updated when the command completes successfully.

This command does not cause the audit session to be closed and does not reset the digest value.

NOTE 3 If sessionHandle is used as an audit session for this command, the command is audited in the same
manner as any other command.

NOTE 4 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Page 168 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

18.5.2 Command and Response

Table 83 — TPM2_GetSessionAuditDigest Command

Part 3: Commands

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_GetSessionAuditDigest

TPMI_RH_ENDORSEMENT

@privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1
Auth Role: USER

TPMI_DH_OBJECT+

@signHandle

handle of the signing key
Auth Index: 2
Auth Role: USER

TPMI_SH_HMAC

TPM2B_DATA

sessionHandle

qualifyingData

handle of the audit session
Auth Index: None

- — — — — — — — |

user-provided qualifying data — may be zero-length

TPMT_SIG_SCHEME+

inScheme

TPM_ALG_NULL

signing scheme to use if the scheme for signHandle is

TPM2B_ATTEST

auditinfo

Table 84 — TPM2_GetSessionAuditDigest Response
Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode

- — — — — —— — — |

the audit information that was signed

TPMT_SIGNATURE

signature

the signature over auditinfo

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 169
October 30, 2014

S Wb

Part 3: Commands

18.5.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"

#include "Attest spt fp.h"

#include "GetSessionAuditDigest fp.h"
#ifdef TPM CC GetSessionAuditDigest // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_KEY

key referenced by signHandle is not a signing key

TPM_RC_SCHEME

inScheme is incompatible with signHandle type; or both scheme and
key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_TYPE

sessionHandle does not reference an audit session

TPM_RC_VALUE

digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

TPM RC

TPM2_GetSessionAuditDigest(

GetSessionAuditDigest In *in, // IN: input parameter list
GetSessionAuditDigest Out *out // OUT: output parameter list
)

{
TPM RC result;
SESSION *session;
TPMS_ATTEST auditInfo;

// Input Validation

// SessionAuditDigest specific input validation

// Get session pointer

session = SessionGet (in->sessionHandle) ;

// session must be an audit session
if (session->attributes.isAudit == CLEAR)
return TPM RC TYPE + RC_GetSessionAuditDigest sessionHandle;

// Command Output

// Filling in attest information

// Common fields

result = FillInAttestInfo (in->signHandle,

&in->inScheme,
&in->qualifyingData,
&auditInfo) ;

if (result != TPM RC_SUCCESS)

{

if (result == TPM RC _KEY)
return TPM RC KEY + RC_GetSessionAuditDigest signHandle;

else

return RcSafeAddToResult (result, RC _GetSessionAuditDigest inScheme) ;

}

// SessionAuditDigest specific fields

// Attestation type

auditInfo.type = TPM ST ATTEST SESSION AUDIT;

// Copy digest

auditInfo.attested.sessionAudit. sessionDigest = session->u2.auditDigest;

Page 170
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Trusted Platform Module Library Part 3: Commands

// Exclusive audit session

if (g_exclusiveAuditSession == in->sessionHandle)
auditInfo.attested.sessionAudit.exclusiveSession

else
auditInfo.attested.sessionAudit.exclusiveSession = FALSE;

TRUE;

// Sign attestation structure. A NULL signature will be returned if
// signHandle is TPM RH NULL. A TPM RC_NV_UNAVAILABLE, TPM RC_NV_RATE,
// TPM_BC_VALUE, TPM_RC_SCHEME or TPM_BC_ATTRIBUTES error may be returned at
// this point
result = SignAttestInfo (in->signHandle,

&in->inScheme,

&auditInfo,

&in->qualifyingData,

&out->auditInfo,

&out->signature) ;
if (result !'= TPM RC_SUCCESS)

return result;

// orderly state should be cleared because of the reporting of clock info
// if signing happens
if (in->signHandle '= TPM RH NULL)

g_clearOrderly = TRUE;

return TPM_BC_SUCCESS;

}
#endif // CC_GetSessionAuditDigest

Family “2.0” TCG Published Page 171
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

18.6 TPM2_GetCommandAuditDigest

18.6.1 General Description

This command returns the current value of the command audit digest, a digest of the commands being
audited, and the audit hash algorithm. These values are placed in an attestation structure and signed with
the key referenced by signHandle.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

When this command completes successfully, and signHandle is not TPM_RH_NULL, the audit digest is
cleared. If signHandle is TPM_RH_NULL, signature is the Empty Buffer and the audit digest is not
cleared.

NOTE 2 The way that the TPM tracks that the digest is clear is vendor-dependent. The reference
implementation resets the size of the digest to zero.

If this command is being audited, then the signed digest produced by the command will not include the
command. At the end of this command, the audit digest will be extended with cpHash and the rpHash of
the command which would change the command audit digest signed by the next invocation of this
command.

This command requires authorization from the privacy administrator of the TPM (expressed with
Endorsement Authorization) as well as authorization to use the key associated with signHandle.

Page 172 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

18.6.2 Command and Response

Table 85 — TPM2_GetCommandAuditDigest Command

Part 3: Commands

Type

Name Description

TPMI_ST_COMMAND_TAG

tag TPM_ST_SESSIONS

UINT32

commandSize

TPM_CC

commandCode TPM_CC_GetCommandAuditDigest {NV}

TPMI_RH_ENDORSEMENT

@privacyHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1
Auth Role: USER

TPMI_DH_OBJECT+

TPM2B_DATA

the handle of the signing key
@signHandle Auth Index: 2

Auth Role: USER
= |

qualifyingData other data to associate with this audit digest

TPMT_SIG_SCHEME+

inScheme

signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 86 — TPM2_GetCommandAuditDigest Response

TPM2B_ATTEST

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

|
auditinfo the auditinfo that was signed

TPMT_SIGNATURE

signature the signature over auditinfo

Family “2.0”
Level 00 Revision 01.16

TCG Published

Copyright © TCG 2006-2014

Page 173
October 30, 2014

S Wb

Part 3: Commands Trusted Platform Module Library

18.6.3 Detailed Actions

#include "InternalRoutines.h"

#include "Attest spt fp.h"

#include "GetCommandAuditDigest fp.h"

#ifdef TPM CC GetCommandAuditDigest // Conditional expansion of this file

Error Returns Meaning
TPM_RC_KEY key referenced by signHandle is not a signing key
TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and

key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

TPM _RC
TPM2 GetCommandAuditDigest (
EétCommandAuditDigest_In *in, // IN: input parameter list
GetCommandAuditDigest Out *out // OUT: output parameter list
)
{
TPM RC result;
TPMS_ATTEST auditInfo;

// Command Output

// Filling in attest information
// Common fields
result = FillInAttestInfo (in->signHandle,
&in->inScheme,
&in->qualifyingData,
&auditInfo) ;
if (result !'= TPM RC_SUCCESS)
{
if (result == TPM RC KEY)
return TPM RC KEY + RC GetCommandAuditDigest signHandle;
else
return RcSafeAddToResult(result, RC_GetCommandAuditDigest inScheme) ;
}

// CommandAuditDigest specific fields
// Attestation type
auditInfo.type = TPM ST ATTEST COMMAND AUDIT;

// Copy audit hash algorithm
auditInfo.attested.commandAudit.digestAlg = gp.auditHashAlg;

// Copy counter value
auditInfo.attested.commandAudit.auditCounter = gp.auditCounter;

// Copy command audit log
auditInfo.attested.commandAudit.auditDigest = gr.commandAuditDigest;
CommandAuditGetDigest (&auditInfo.attested.commandAudit.commandDigest) ;

// Sign attestation structure. A NULL signature will be returned if

// signHandle is TPM RH NULL. A TPM RC NV UNAVAILABLE, TPM RC NV _RATE,

// TPM RC VALUE, TPM RC SCHEME or TPM RC ATTRIBUTES error may be returned at
// this point

Page 174 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Trusted Platform Module Library

result = SignAttestInfo (in->signHandle,
&in->inScheme,
&auditInfo,
&in->qualifyingData,
&out->auditInfo,
&out->signature) ;

if (result != TPM RC_SUCCESS)
return result;

// Internal Data Update

if (in->signHandle '= TPM RH NULL)

{
// Reset log
gr.commandAuditDigest.t.size = 0;

// orderly state should be cleared because of the update in
// commandAuditDigest, as well as the reporting of clock info
g_clearOrderly = TRUE;

}

return TPM RC_SUCCESS;

}
#endif // CC_GetCommandAuditDigest

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page 175
October 30, 2014

Part 3: Commands Trusted Platform Module Library

18.7 TPM2_GetTime

18.7.1 General Description

This command returns the current values of Time and Clock.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The values of Clock, resetCount and restartCount appear in two places in timelnfo: once in
TPMS_ATTEST.clockinfo and again in TPMS_ATTEST.attested.time.clockinfo. The firmware version
number also appears in two places (TPMS_ATTEST.firmwareVersion and
TPMS_ATTEST . attested.time.firmwareVersion). If signHandle is in the endorsement or platform
hierarchies, both copies of the data will be the same. However, if signHandle is in the storage hierarchy or
is TPM_RH_NULL, the values in TPMS_ATTEST.clockinfo and TPMS_ATTEST.firmwareVersion are
obfuscated but the values in TPMS_ATTEST .attested.time are not.

NOTE 2 The purpose of this duplication is to allow an entity who is trusted by the privacy Administrator to
correlate the obfuscated values with the clear-text values. This command requires Endorsement
Authorization.

NOTE 3 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Page 176 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

18.7.2 Command and Response

Table 87 — TPM2_GetTime Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_GetTime

TPMI_RH_ENDORSEMENT

@privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1
Auth Role: USER

TPMI_DH_OBJECT+

TPM2B_DATA

@signHandle

- — — — — —— — — |

qualifyingData

the keyHandle identifier of a loaded key that can
perform digital signatures

Auth Index: 2
Auth Role: USER

data to tick stamp

TPMT_SIG_SCHEME+

inScheme

signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 88 — TPM2_GetTime Response

TPM2B_ATTEST

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

- — — — — —— — — |

timelnfo

standard TPM-generated attestation block

TPMT_SIGNATURE

signature

the signature over timelnfo

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 177
October 30, 2014

S Wb

Part 3: Commands Trusted Platform Module Library

18.7.3 Detailed Actions

#include "InternalRoutines.h"

#include "Attest spt fp.h"

#include "GetTime fp.h"

#ifdef TPM CC GetTime // Conditional expansion of this file

Error Returns Meaning
TPM_RC_KEY key referenced by signHandle is not a signing key
TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and

key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

TPM RC
TPM2 GetTime (
EétTime_In *in, // IN: input parameter list
GetTime Out *out // OUT: output parameter list
)

TPM RC result;
TPMS_ATTEST timeInfo;

// Command Output

// Filling in attest information
// Common fields
result = FillInAttestInfo (in->signHandle,
&in->inScheme,
&in->qualifyingData,
&timeInfo) ;
if (result !'= TPM RC_SUCCESS)
{
if (result == TPM RC KEY)
return TPM RC KEY + RC GetTime signHandle;
else
return RcSafeAddToResult(result, RC_GetTime inScheme) ;
}

// GetClock specific fields
// Attestation type
timeInfo.type = TPM ST ATTEST TIME;

// current clock in plain text
timeInfo.attested.time.time.time = g _time;
TimeFillInfo (&timeInfo.attested. time.time.clockInfo) ;

// Firmware version in plain text
timeInfo.attested. time. firmwareVersion

= ((UINT64) gp.firmwareVl) << 32;
timeInfo.attested. time.firmwareVersion += gp.firmwareVv2;

// Sign attestation structure. A NULL signature will be returned if

// signHandle is TPM RH NULL. A TPM RC_NV_UNAVAILABLE, TPM RC_NV_RATE,

// TPM RC VALUE, TPM RC SCHEME or TPM RC ATTRIBUTES error may be returned at
// this point

result = SignAttestInfo (in->signHandle,

Page 178 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Trusted Platform Module Library

&in->inScheme,
&timeInfo,
&in->qualifyingData,
&out->timeInfo,
&out->signature) ;

if (result != TPM RC_SUCCESS)
return result;

Part 3: Commands

// orderly state should be cleared because of the reporting of clock info

// if signing happens

if (in->signHandle '= TPM RH NULL)

g_clearOrderly = TRUE;

return TPM RC _SUCCESS;

}
#endif // CC_GetTime

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 179
October 30, 2014

Part 3: Commands Trusted Platform Module Library

19 Ephemeral EC Keys

19.1 Introduction

The TPM generates keys that have different lifetimes. TPM keys in a hierarchy can be persistent for as
long as the seed of the hierarchy is unchanged and these keys may be used multiple times. Other TPM-
generated keys are only useful for a single operation. Some of these single-use keys are used in the
command in which they are created. Examples of this use are TPM2_Duplicate() where an ephemeral
key is created for a single pass key exchange with another TPM. However, there are other cases, such
as anonymous attestation, where the protocol requires two passes where the public part of the ephemeral
key is used outside of the TPM before the final command "consumes" the ephemeral key.

For these uses, TPM2_Commit() or TPM2_EC_Ephemeral() may be used to have the TPM create an
ephemeral EC key and return the public part of the key for external use. Then in a subsequent command,
the caller provides a reference to the ephemeral key so that the TPM can retrieve or recreate the
associated private key.

When an ephemeral EC key is created, it is assigned a number and that number is returned to the caller
as the identifier for the key. This number is not a handle. A handle is assigned to a key that may be
context saved but these ephemeral EC keys may not be saved and do not have a full key context. When
a subsequent command uses the ephemeral key, the caller provides the number of the ephemeral key.
The TPM uses that number to either look up or recompute the associated private key. After the key is
used, the TPM records the fact that the key has been used so that it cannot be used again.

As mentioned, the TPM can keep each assigned private ephemeral key in memory until it is used.
However, this could consume a large amount of memory. To limit the memory size, the TPM is allowed to
restrict the number of pending private keys — keys that have been allocated but not used.

NOTE The minimum number of ephemeral keys is determined by a platform specific specification

To further reduce the memory requirements for the ephemeral private keys, the TPM is allowed to use
pseudo-random values for the ephemeral keys. Instead of keeping the full value of the key in memory, the
TPM can use a counter as input to a KDF. Incrementing the counter will cause the TPM to generate a
new pseudo-random value.

Using the counter to generate pseudo-random private ephemeral keys greatly simplifies tracking of key
usage. When a counter value is used to create a key, a bit in an array may be set to indicate that the key
use is pending. When the ephemeral key is consumed, the bit is cleared. This prevents the key from
being used more than once.

Since the TPM is allowed to restrict the number of pending ephemeral keys, the array size can be limited.
For example, a 128 bit array would allow 128 keys to be "pending".

The management of the array is described in greater detail in the Split Operations clause in Annex C of
TPM 2.0 Part 1.

Page 180 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

19.2 TPM2_Commit

19.2.1 General Description

TPM2_Commit() performs the first part of an ECC anonymous signing operation. The TPM will perform
the point multiplications on the provided points and return intermediate signing values. The signHandle
parameter shall refer to an ECC key with the sign attribute (TPM_RC_ATTRIBUTES) and the signing
scheme must be anonymous (TPM_RC_SCHEME). Currently, TPM_ALG_ECDAA is the only defined
anonymous scheme.

NOTE This command cannot be used with a sign+decrypt key because that type of key is required to have
a scheme of TPM_ALG_NULL.

For this command, p1, s2 and y2 are optional parameters. If s2 is an Empty Buffer, then the TPM shall
return TPM_RC_SIZE if y2 is not an Empty Buffer.

The algorithm is specified in the TPM 2.0 Part 1 Annex for ECC, TPM2_Commit().

Family “2.0” TCG Published Page 181
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

19.2.2 Command and Response

Trusted Platform Module Library

Table 89 — TPM2_Commit Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Commit
handle of the key that will be used in the signing
operation

TPMI_DH_OBJECT @signHandle

|

Auth Index: 1
Auth Role: USER

TPM2B_ECC_POINT P1 a point (M) on the curve used by signHandle
TPM2B_SENSITIVE_DATA s2 octet array used to derive x-coordinate of a base point
TPM2B_ECC_PARAMETER y2 y coordinate of the point associated with s2

Table 90 — TPM2_Commit Response

Type Name Description
TPM_ST tag see 6
UINT32 responseSize

TPM_RC responseCode

|

TPM2B_ECC_POINT K ECC point K := [dJ](x2, y2)

TPM2B_ECC_POINT L ECC point L := [r](x2, y2)

TPM2B_ECC_POINT E ECC point E = [r]P1

UINT16 counter least-significant 16 bits of commitCount

Page 182 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

19.2.3 Detailed Actions

#include "InternalRoutines.h"

#include "Commit fp.h"

#ifdef TPM CC Commit // Conditional expansion of this file

#ifdef TPM ALG ECC

Part 3: Commands

Error Returns

Meaning

TPM_RC_ATTRIBUTES

keyHandle references a restricted key that is not a signing key

TPM_RC_ECC_POINT

either P1 or the point derived from s2 is not on the curve of
keyHandle

TPM_RC_HASH

invalid name algorithm in keyHandle

TPM_RC_KEY

keyHandle does not reference an ECC key

TPM_RC_SCHEME

the scheme of keyHandle is not an anonymous scheme

TPM_RC_NO_RESULT

K, L or E was a point at infinity; or failed to generate r value

TPM_RC_SIZE s2 is empty but y2 is not or s2 provided but y2 is not
TPM RC
TPM2 Commit (
Ebmmit_;n *in, // IN: input parameter list
Commit Out *out // OUT: output parameter list
)
{
OBJECT *eccKey;
TPMS_ECC_POINT P2;
TPMS_ECC_POINT *pP2 = NULL;
TPMS_ECC_POINT *pPl = NULL;
TPM2B_ECC_PARAMETER r;
TPM2B *p;
TPM RC result;
TPMS_ECC_PARMS *parms;

// Input Validation

eccKey = ObjectGet (in->signHandle) ;
parms = & eccKey->publicArea.parameters.eccDetail;

// Input key must be an ECC key
if (eccKey->publicArea.type '= TPM ALG ECC)
return TPM RC KEY + RC Commit signHandle;

// This command may only be used with a sign-only key using an anonymous

// scheme.

// NOTE: a sign + decrypt key has no scheme so it will not be an anonymous one
// and an unrestricted sign key might no have a signing scheme but it can't

// be use in Commit ()

if (!CryptIsSchemeAnonymous (parms->scheme. scheme))
return TPM RC _SCHEME + RC Commit signHandle;

// Make sure that both parts of P2 are present if either is present

if ((in->s2.t.size == 0)

'= (in->y2.t.size == 0))

return TPM RC_SIZE + RC_Commit y2;

// Get prime modulus for the curve. This is needed later but getting this now
// allows confirmation that the curve exists
p = (TPM2B *)CryptEccGetParameter('p', parms->curvelD) ;

// if no p, then the curve ID is bad

Family “2.0”
Level 00 Revision 01.16

TCG Published

Page 183

Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

46 // NOTE: This should never occur if the input unmarshaling code is working
47 // correctly
48 pAssert (p !'= NULL) ;
49
50 // Get the random value that will be used in the point multiplications
51 // Note: this does not commit the count.
52 if (!CryptGenerateR (&r, NULL, parms->curvelID, &eccKey->name))
53 return TPM RC_NO RESULT;
54
55 // Set up P2 if s2 and Y2 are provided
56 if(in->s2.t.size '= 0)
57 {
58 pPP2 = &P2;
59
60 // copy y2 for P2
61 MemoryCopy2B (&P2.y.b, &in->y2.b, sizeof (P2.y.t.buffer));
62 // Compute x2 HnameAlg(s2) mod p
63
64 // do the hash operation on s2 with the size of curve 'p'
65 P2.x.t.size = CryptHashBlock (eccKey->publicArea.namelAlg,
66 in->s2.t.size,
67 in->s2.t.buffer,
68 p—>size,
69 P2.x.t.buffer) ;
70
71 // 1If there were error returns in the hash routine, indicate a problem
72 // with the hash in
73 if(P2.x.t.size = 0)
74 return TPM RC HASH + RC_Commit_ signHandle;
75
76 // set p2.x = hash(s2) mod p
77 if (CryptDivide (§P2.x.b, p, NULL, &P2.x.b) '= TPM RC_SUCCESS)
78 return TPM RC NO_RESULT;
79
80 if (!CryptEccIsPointOnCurve (parms->curvelID, pP2))
81 return TPM RC_ECC_POINT + RC Commit s2;
82
83 if (eccKey->attributes.publicOnly == SET)
84 return TPM RC KEY + RC Commit signHandle;
85
86 }
87 // If there is a Pl, make sure that it is on the curve
88 // NOTE: an "empty" point has two UINT16 values which are the size values
89 // for each of the coordinates.
90 if(in->Pl.t.size > 4)
91 {
92 PPl = &in->P1l.t.point;
93 if (!CryptEccIsPointOnCurve (parms->curveID, pPl))
94 return TPM RC_ECC_POINT + RC_Commit P1;
95 }
96
97 // Pass the parameters to CryptCommit.
98 // The work is not done in-line because it does several point multiplies
99 // with the same curve. There is significant optimization by not
100 // having to reload the curve parameters multiple times.
101 result = CryptCommitCompute (&out->K.t.point,
102 &out->L.t.point,
103 sout->E. t.point,
104 parms->curvelD,
105 PP1,
106 PP2,
107 &eccKey->sensitive.sensitive.ecc,
108 &r) ;
109 if (result !'= TPM RC_SUCCESS)
110 return result;
111
Page 184 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

112
113
114
115
116
117
118
119
120
121
122
123

Trusted Platform Module Library Part 3: Commands

out->K.t.size
out->L.t.size
out->E.t.size

TPMS_ECC_POINT_Marshal(&out—>K.t.point, NULL, NULL);
TPMS ECC_POINT Marshal (&out->L.t.point, NULL, NULL);
TPMS_ECC_POINT_Marshal(&out—>E.t.point, NULL, NULL);

// The commit computation was successful so complete the commit by setting
// the bit
out->counter = CryptCommit () ;

return TPM RC _SUCCESS;

}
#endif
#endif // CC_Commit

Family “2.0” TCG Published Page 185
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

19.3 TPM2_EC_Ephemeral

19.3.1 General Description

TPM2_EC_Ephemeral() creates an ephemeral key for use in a two-phase key exchange protocol.

The TPM will use the commit mechanism to assign an ephemeral key r and compute a public point Q :=
[r]G where G is the generator point associated with curvelD.

Page 186 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

19.3.2 Command and Response

Table 91 — TPM2_EC_Ephemeral Command

Type Name Description

TPM_ST_SESSIONS if an audit or encrypt session is

TPMI_ST_COMMAND_TAG tag present; otherwise, TPM_ST_NO_SESSIONS
UINT32 commandSize
TPM_CC commandCode TPM_CC_EC_Ephemeral
s sm—mm—————————— ===
TPMI_ECC_CURVE curvelD The curve for the computed ephemeral point

Table 92 — TPM2_EC_Ephemeral Response

Type Name Description
TPM_ST tag see 6
UINT32 responseSize
TPM_RC responseCode
, ——-—— ===
TPM2B_ECC_POINT Q ephemeral public key Q = [r]G
UINT16 counter least-significant 16 bits of commitCount
Family “2.0” TCG Published Page 187

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands

19.3.3 Detailed Actions

#include "InternalRoutines.h"
#include "EC_Ephemeral fp.h"

Trusted Platform Module Library

#ifdef TPM CC_EC Ephemeral // Conditional expansion of this file

#ifdef TPM ALG ECC

Error Returns

Meaning

none

TPM RC

TPM2_EC_Ephemeral (
EC_Ephemeral In *in,
EC_Ephemeral Out *out
)

TPM2B_ECC_PARAMETER

// IN: input parameter list
// OUT: output parameter list

r;

// Get the random value that will be used in the point multiplications
// Note: this does not commit the count.

if (!CryptGenerateR (&r,
NULL,

in->curvelD,

NULL))

return TPM_BC_NO_BESULT;

CryptEccPointMultiply (&out->Q.t.point, in->curveID, &r, NULL);

// commit the count value
out->counter = CryptCommit () ;

return TPM_RC_SUCCESS;

}
#endif
#endif // CC_EC Ephemeral

Page 188
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”

Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

20 Signing and Signature Verification
20.1 TPM2_VerifySignature

20.1.1 General Description
This command uses loaded keys to validate a signature on a message with the message digest passed
to the TPM.

If the signature check succeeds, then the TPM will produce a TPMT_TK_VERIFIED. Otherwise, the TPM
shall return TPM_RC_SIGNATURE.

NOTE 1 A valid ticket may be used in subsequent commands to provide proof to the TPM that the TPM has
validated the signature over the message using the key referenced by keyHandle.

If keyHandle references an asymmetric key, only the public portion of the key needs to be loaded. If
keyHandle references a symmetric key, both the public and private portions need to be loaded.

NOTE 2 The sensitive area of the symmetric object is required to allow verification of the symmetric
signature (the HMAC).

Family “2.0” TCG Published Page 189
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

20.1.2 Command and Response

Table 93 — TPM2_VerifySignature Command

Type Name Description

TPM_ST_SESSIONS if an audit or encrypt session is

TPMI_ST_COMMAND_TAG tag present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_VerifySignature
handle of public key that will be used in the validation
TPMI_DH_OBJECT keyHandle
Auth Index: None
s s—sm—m——— ===
TPM2B_DIGEST digest digest of the signed message
TPMT_SIGNATURE signature signature to be tested

Table 94 — TPM2_VerifySignature Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

= V! 'ty
TPMT_TK_VERIFIED validation

Page 190 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library

20.1.3 Detailed Actions

#include "InternalRoutines.h"
#include "VerifySignature fp.h"
#ifdef TPM CC VerifySignature // Conditional expansion of this file

Part 3: Commands

Error Returns

Meaning

TPM_RC_ATTRIBUTES

keyHandle does not reference a signing key

TPM_RC_SIGNATURE

signature is not genuine

TPM_RC_SCHEME

CryptVerifySignature()

TPM_RC_HANDLE

the input handle is references an HMAC key but the private portion is

not loaded
TPM_RC
TPM2 VerifySignature (
VerifySignature In *in, // IN: input parameter list
VerifySignature Out *out // OUT: output parameter list
)
{
TPM RC result;
TPM2B_NAME name;
OBJECT *signObject;
TPMI_RH HTERARCHY hierarchy;

// Input Validation

// Get sign object pointer
signObject = ObjectGet (in->keyHandle) ;

// The object to validate the signature must be a signing key.
if (signObject->publicArea.objectAttributes.sign !'= SET)
return TPM RC ATTRIBUTES + RC VerifySignature keyHandle;

// Validate Signature.

TPM RC_SCHEME, TPM RC HANDLE or TPM RC_SIGNATURE

// error may be returned by CryptCVerifySignatrue ()
result = CryptVerifySignature (in->keyHandle, &in->digest, &in->signature) ;
if (result !'= TPM RC_SUCCESS)

return RcSafeAddToResult (result, RC VerifySignature signature) ;

// Command Output

hierarchy = ObjectGetHierarchy (in->keyHandle) ;
if(hierarchy == TPM RH NULL
|| signObject->publicArea.nameAlg == TPM ALG NULL)

{

// produce empty ticket if hierarchy is TPM RH NULL or nameAlg is

// TPM ALG NULL

out->validation.tag = TPM ST VERIFIED;
out->validation.hierarchy = TPM RH NULL;
out->validation.digest.t.size = 0;

}

else

{

// Get object name that verifies the signature
name.t.size = ObjectGetName (in->keyHandle, &name.t.name) ;

// Compute ticket

TicketComputeVerified (hierarchy, &in->digest, &name, &out->validation);

}
return TPM_BC_SUCCESS;

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 191
October 30, 2014

Part 3: Commands Trusted Platform Module Library

51 }
52 #endif // CC_VerifySignature

Page 192 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

20.2 TPM2_Sign

20.2.1 General Description

This command causes the TPM to sign an externally provided hash with the specified symmetric or
asymmetric signing key.

NOTE 1 Symmetric “signing” is done with the TPM HMAC commands.

If keyHandle references a restricted signing key, then validation shall be provided, indicating that the TPM
performed the hash of the data and validation shall indicate that hashed data did not start with
TPM_GENERATED_VALUE.

NOTE 2 If the hashed data did start with TPM_GENERATED_VALUE, then the validation will be a NULL
ticket.

If the scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be the same scheme as
keyHandle or TPM_ALG_NULL.

If the scheme of keyHandle is TPM_ALG_NULL, the TPM will sign using inScheme; otherwise, it will sign
using the scheme of keyHandle.

NOTE 3 When the signing scheme uses a hash algorithm, the algorithm is defined in the qualifying data of
the scheme. This is the same algorithm that is required to be used in producing digest. The size of
digest must match that of the hash algorithm in the scheme.

If inScheme is not a valid signing scheme for the type of keyHandle (or TPM_ALG_NULL), then the TPM
shall return TPM_RC_SCHEME.

If the scheme of keyHandle is an anonymous scheme, then inScheme shall have the same scheme
algorithm as keyHandle and inScheme will contain a counter value that will be used in the signing
process.

If validation is provided, then the hash algorithm used in computing the digest is required to be the hash
algorithm specified in the scheme of keyHandle (TPM_RC_TICKET).

If the validation parameter is not the Empty Buffer, then it will be checked even if the key referenced by
keyHandle is not a restricted signing key.

NOTE 4 If keyHandle is both a sign and decrypt key, keyHandle will have an scheme of TPM_ALG_NULL. If
validation is provided, then it must be a NULL validation ticket or the ticket validation will fail.

Family “2.0” TCG Published Page 193
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

20.2.2 Command and Response

Table 95 — TPM2_Sign Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_Sign

Handle of key that will perform signing
TPMI_DH_OBJECT @keyHandle Auth Index: 1

Auth Role: USER
= |

TPM2B_DIGEST digest digest to be signed

signing scheme to use if the scheme for keyHandle is

TPMT_SIG_SCHEME+ inScheme TPM_ALG_NULL

proof that digest was created by the TPM

TPMT TK HASHCHECK validation If keyHandle is not a restricted signing key, then this
- - may be a NULL Ticket with tag =

TPM_ST_CHECKHASH.

Table 96 — TPM2_Sign Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_SIGNATURE signature the signature

Page 194 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

S Wb

Trusted Platform Module Library Part 3: Commands

20.2.3 Detailed Actions

#include "InternalRoutines.h"

#include "Sign fp.h"

#ifdef TPM CC_Sign // Conditional expansion of this file
#include "Attest spt fp.h"

Error Returns Meaning

TPM_RC_BINDING The public and private portions of the key are not properly bound.
TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is

not compatible with default scheme, or the chosen scheme is not a
valid sign scheme

TPM_RC_TICKET validation is not a valid ticket
TPM_RC_VALUE the value to sign is larger than allowed for the type of keyHandle
TPM RC
TPM2_Sign(
Sign In *in, // IN: input parameter list
Sign Out *out // OUT: output parameter list
)
{
TPM RC result;
TPMT TK HASHCHECK ticket;
OBJECT *signKey;

// Input Validation
// Get sign key pointer
signKey = ObjectGet (in->keyHandle) ;

// pick a scheme for sign. If the input sign scheme is not compatible with
// the default scheme, return an error.
result = CryptSelectSignScheme (in->keyHandle, &in->inScheme) ;
if (result !'= TPM RC_SUCCESS)
{
if (result == TPM RC KEY)
return TPM RC KEY + RC Sign keyHandle;
else
return RcSafeAddToResult(result, RC_Sign_inScheme) ;
}

// 1If validation is provided, or the key is restricted, check the ticket
if(in->validation.digest.t.size != 0
| | signKey->publicArea.objectAttributes.restricted == SET)
{
// Compute and compare ticket
TicketComputeHashCheck (in->validation.hierarchy,
in->inScheme.details.any.hashAlg,
&in->digest, &ticket);

if ('Memory2BEqual (&in->validation.digest.b, &ticket.digest.b))
return TPM RC TICKET + RC Sign validation;

}
else
// If we don't have a ticket, at least verify that the provided 'digest'
// is the size of the scheme hashAlg digest.
// NOTE: this does not guarantee that the 'digest' is actually produced using
// the indicated hash algorithm, but at least it might be.

{

Family “2.0” TCG Published Page 195
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

48
49
50
51
52
53
54
55
56
57
58
59
60

Part 3: Commands

if(in->digest.t.size
'= CryptGetHashDigestSize (in->inScheme.details.any.hash’lg))
return TPM RCS SIZE + RC_Sign digest;

}

// Command Output

// Sign the hash. A TPM RC VALUE or TPM RC SCHEME
// error may be returned at this point
result = CryptSign (in->keyHandle, &in->inScheme, &in->digest, &out->signature) ;

return result;

}
#endif // CC Sign

Page 196
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Trusted Platform Module Library

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

21 Command Audit

21.1 Introduction

If a command has been selected for command audit, the command audit status will be updated when that
command completes successfully. The digest is updated as:

commandAuditDigestiew == Haugiraig(commandAuditDigest,iq || cpHash || roHash) (5)
where
Huditalg hash function using the algorithm of the audit sequence
commandAuditDigest accumulated digest
cpHash the command parameter hash
rpHash the response parameter hash

auditAlg, the hash algorithm, is set using TPM2_SetCommandCodeAuditStatus.

TPM2_Shutdown() cannot be audited but TPM2_Startup() can be audited. If the cpHash of the
TPM2_Startup() is TPM_SU_STATE, that would indicate that a TPM2_Shutdown() had been successfully
executed.

TPM2_SetCommandCodeAuditStatus() is always audited.

If the TPM is in Failure mode, command audit is not functional.

Family “2.0” TCG Published Page 197
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

21.2 TPM2_SetCommandCodeAuditStatus

21.2.1 General Description

This command may be used by the Privacy Administrator or platform to change the audit status of a
command or to set the hash algorithm used for the audit digest, but not both at the same time.

If the auditAlg parameter is a supported hash algorithm and not the same as the current algorithm, then
the TPM will check both setList and clearList are empty (zero length). If so, then the algorithm is changed,
and the audit digest is cleared. If auditAlg is TPM_ALG_NULL or the same as the current algorithm, then
the algorithm and audit digest are unchanged and the setList and clearList will be processed.

NOTE 1 Because the audit digest is cleared, the audit counter will increment the next time that an audited
command is executed.

Use of TPM2_SetCommandCodeAuditStatus() to change the list of audited commands is an audited
event. If TPM_CC_SetCommandCodeAuditStatus is in clearList, the fact that it is in clearList is ignored.

NOTE 2 Use of this command to change the audit hash algorithm is not audited and the digest is reset when
the command completes. The change in the audit hash algorithm is the evidence that this command
was used to change the algorithm.

The commands in setList indicate the commands to be added to the list of audited commands and the
commands in clearList indicate the commands that will no longer be audited. It is not an error if a
command in setList is already audited or is not implemented. It is not an error if a command in clearList is
not currently being audited or is not implemented.

If a command code is in both setList and clearList, then it will not be audited (that is, setList shall be
processed first).

Page 198 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

21.2.2 Command and Response

Table 97 — TPM2_SetCommandCodeAuditStatus Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetCommandCodeAuditStatus {NV}

TPM_RH_OWNER or TPM_RH_PLATFORM-+{PP}
TPMI_RH_PROVISION @auth Auth Index: 1
Auth Role: USER

P,

. hash algorithm for the audit digest; if
TPMI_ALG_HASH+ auditAlg TPM_ALG_NULL, then the hash is not changed

list of commands that will be added to those that will

TPML_CC setList be audited

TPML_CC clearList list of commands that will no longer be audited

Table 98 — TPM2_SetCommandCodeAuditStatus Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
Family “2.0” TCG Published Page 199

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

WoOoOJoUld WN R

Part 3: Commands Trusted Platform Module Library

21.2.3 Detailed Actions

#include "InternalRoutines.h"

#include "SetCommandCodeAuditStatus fp.h"

#ifdef TPM CC_SetCommandCodeAuditStatus // Conditional expansion of this file
TEM_RC

TPM2_SetCommandCodeAuditStatus (

SetCommandCodeAuditStatus_In *in // IN: input parameter list
)
{
TPM RC result;
UINT32 i;
BOOL changed = FALSE;

// The command needs NV update. Check if NV is available.
// A TPM RC_NV_UNAVAILABLE or TPM RC NV _RATE error may be returned at
// this point
result = NvIsAvailable() ;
if (result != TPM RC_SUCCESS)
return result;

// Internal Data Update

// Update hash algorithm
if(in->auditAlg != TPM ALG_NULL
&& in->auditAlg !'= gp.auditHashAlg)
{
// Can't change the algorithm and command list at the same time
if (in->setlist.count !'= 0 || in->clearlist.count !'= 0)
return TPM RC VALUE + RC_SetCommandCodeAuditStatus auditAlg;

// Change the hash algorithm for audit
gp.auditHashAlg = in->auditlAlg;

// Set the digest size to a unique value that indicates that the digest
// algorithm has been changed. The size will be cleared to zero in the
// command audit processing on exit.

gr.commandAuditDigest.t.size = 1;

// Save the change of command audit data (this sets g updateNV so that NV
// will be updated on exit.)
NvWWriteReserved (NV_AUDIT HASH ALG, &gp.auditHashAlg);

} else {

// Process set list
for(i = 0; i < in->setlist.count; i++)

// If change is made in CommandAuditSet, set changed flag
if (CommandAuditSet (in->setList.commandCodes[i]))
changed = TRUE;

// Process clear list
for(i = 0; i < in->clearlist.count; i++)
// If change is made in CommandAuditClear, set changed flag
if (CommandAuditClear (in->clearList.commandCodes[i]))
changed = TRUE;

// if change was made to command list, update NV
if (changed)

// this sets g updateNV so that NV will be updated on exit.
NvWriteReserved (NV_AUDIT COMMANDS, &gp.auditComands) ;

Page 200 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

63
64
65

Trusted Platform Module Library

return TPM RC SUCCESS;

}
#endif // CC_SetCommandCodeAuditStatus

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014

Part 3: Commands

Page 201
October 30, 2014

Part 3: Commands Trusted Platform Module Library

22 Integrity Collection (PCR)

22.1 Introduction

In TPM 1.2, an Event was hashed using SHA-1 and then the 20-octet digest was extended to a PCR
using TPM_Extend(). This specification allows the use of multiple PCR at a given Index, each using a
different hash algorithm. Rather than require that the external software generate multiple hashes of the
Event with each being extended to a different PCR, the Event data may be sent to the TPM for hashing.
This ensures that the resulting digests will properly reflect the algorithms chosen for the PCR even if the
calling software is unable to implement the hash algorithm.

NOTE 1 There is continued support for software hashing of events with TPM2_PCR_Extend().

To support recording of an Event that is larger than the TPM input buffer, the caller may use the
command sequence described in clause 1.

Change to a PCR requires authorization. The authorization may be with either an authorization value or
an authorization policy. The platform-specific specifications determine which PCR may be controlled by
policy. All other PCR are controlled by authorization.

If a PCR may be associated with a policy, then the algorithm ID of that policy determines whether the
policy is to be applied. If the algorithm ID is not TPM_ALG_NULL, then the policy digest associated with
the PCR must match the policySession—policyDigest in a policy session. If the algorithm ID is
TPM_ALG_NULL, then no policy is present and the authorization requires an EmptyAuth.

If a platform-specific specification indicates that PCR are grouped, then all the PCR in the group use the
same authorization policy or authorization value.

PcrUpdateCounter counter will be incremented on the successful completion of any command that
modifies (Extends or resets) a PCR unless the platform-specific specification explicitly excludes the PCR
from being counted.

NOTE 2 If a command causes PCR in multiple banks to change, the PCR Update Counter may be
incremented either once or once for each bank.

A platform-specific specification may designate a set of PCR that are under control of the TCB. These
PCR may not be modified without the proper authorization. Updates of these PCR shall not cause the
PCR Update Counter to increment.

EXAMPLE Updates of the TCB PCR will not cause the PCR update counter to increment because these PCR
are changed at the whim of the TCB and may not represent the trust state of the platform.

Page 202 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

22.2 TPM2_PCR_Extend

22.2.1 General Description

This command is used to cause an update to the indicated PCR. The digests parameter contains one or
more tagged digest values identified by an algorithm ID. For each digest, the PCR associated with
pcrHandle is Extended into the bank identified by the tag (hashAlg).

EXAMPLE A SHA1 digest would be Extended into the SHA1 bank and a SHA256 digest would be Extended into
the SHA256 bank.

For each list entry, the TPM will check to see if pcrNum is implemented for that algorithm. If so, the TPM
shall perform the following operation:

PCR.digestnew [pcrNum][alg] := Hay(PCR.digest.a [pcrNum][alg] || datalalg].buffer)) (6)

where
Hay() hash function using the hash algorithm associated with the PCR
instance
PCR.digest the digest value in a PCR
pcrNum the PCR numeric selector (pcrHandle)
alg the PCR algorithm selector for the digest
datalalg].buffer the bank-specific data to be extended

If no digest value is specified for a bank, then the PCR in that bank is not modified.

NOTE 1 This allows consistent operation of the digests list for all of the Event recording commands.

If a digest is present and the PCR in that bank is not implemented, the digest value is not used.

NOTE 2 If the caller includes digests for algorithms that are not implemented, then the TPM will fail the call
because the unmarshalling of digests will fail. Each of the entries in the list is a TPMT_HA, which is
a hash algorithm followed by a digest. If the algorithm is not implemented, unmarshalling of the
hashAlg will fail and the TPM will return TPM_RC_HASH.

If the TPM unmarshals the hashAlg of a list entry and the unmarshaled value is not a hash algorithm
implemented on the TPM, the TPM shall return TPM_RC_HASH.

The pcrHandle parameter is allowed to reference TPM_RH_NULL. If so, the input parameters are
processed but no action is taken by the TPM. This permits the caller to probe for implemented hash
algorithms as an alternative to TPM2_GetCapability.

NOTE 3 This command allows a list of digests so that PCR in all banks may be updated in a single
command. While the semantics of this command allow multiple extends to a single PCR bank, this is
not the preferred use and the limit on the number of entries in the list make this use somewhat
impractical.

Family “2.0” TCG Published Page 203
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.2.2 Command and Response

Table 99 — TPM2_PCR_Extend Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Extend {NV}

handle of the PCR
TPMI_DH_PCR+ @pcrHandle Auth Handle: 1
Auth Role: USER

TPML_DIGEST_VALUES digests list of tagged digest values to be extended

Table 100 — TPM2_PCR_Extend Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Page 204 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

22.2.3 Detailed Actions

#include "InternalRoutines.h"
#include "PCR Extend fp.h"
#ifdef TPM CC_PCR Extend // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR
referenced by pcrHandle

TPM_RC
TPM2 PCR_Extend(
PCR _Extend In *in // IN: input parameter list
)
{
TPM RC result;
UINT32 i;

// Input Validation

// NOTE: This function assumes that the unmarshaling function for 'digests' will
// have validated that all of the indicated hash algorithms are valid. If the

// hash algorithms are correct, the unmarshaling code will unmarshal a digest

// of the size indicated by the hash algorithm. If the overall size is not

// consistent, the unmarshaling code will run out of input data or have input

// data left over. In either case, it will cause an unmarshaling error and this
// function will not be called.

// For NULL handle, do nothing and return success
if (in->pcrHandle == TPM RH NULL)
return TPM_BC_SUCCESS;

// Check if the extend operation is allowed by the current command locality
if ('PCRIsExtendAllowed (in->pcrHandle))
return TPM RC_LOCALITY;

// If PCR is state saved and we need to update orderlyState, check NV
// availability
if (PCRIsStateSaved (in->pcrHandle) && gp.orderlyState != SHUTDOWN NONE)
{

result = NvIsAvailable() ;

if (result !'= TPM RC_SUCCESS) return result;

g_clearOrderly = TRUE;
}

// Internal Data Update

// Iterate input digest list to extend
for(i = 0; i < in->digests.count; i++)
{
PCRExtend (in->pcrHandle, in->digests.digests[i].hashAlg,
CryptGetHashDigestSize (in->digests.digests[i] .hashAlq),
(BYTE *) &in->digests.digests[i].digest);
}

return TPM RC _SUCCESS;

}
#endif // CC_PCR Extend

Family “2.0” TCG Published Page 205
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.3 TPM2_PCR_Event

22.3.1 General Description

This command is used to cause an update to the indicated PCR.

The data in eventData is hashed using the hash algorithm associated with each bank in which the
indicated PCR has been allocated. After the data is hashed, the digests list is returned. If the pcrHandle
references an implemented PCR and not TPM_ALG_NULL, the digests list is processed as in
TPM2_PCR_Extend().

A TPM shall support an Event.size of zero through 1,024 inclusive (Event.size is an octet count). An
Event.size of zero indicates that there is no data but the indicated operations will still occur,

EXAMPLE 1 If the command implements PCR[2] in a SHA1 bank and a SHA256 bank, then an extend to PCR[2]
will cause eventData to be hashed twice, once with SHA1 and once with SHA256. The SHA1 hash of
eventData will be Extended to PCRJ[2] in the SHA1 bank and the SHA256 hash of eventData will be
Extended to PCR[2] of the SHA256 bank.

On successful command completion, digests will contain the list of tagged digests of eventData that was
computed in preparation for extending the data into the PCR. At the option of the TPM, the list may
contain a digest for each bank, or it may only contain a digest for each bank in which pcrHandle is extant.
If pcrHandle is TPM_RH_NULL, the TPM may return either an empty list or a digest for each bank.

EXAMPLE 2 Assume a TPM that implements a SHAl1 bank and a SHA256 bank and that PCR[22] is only
implemented in the SHA1 bank. If pcrHandle references PCR[22], then digests may contain either a
SHA1 and a SHA256 digest or just a SHAL digest.

Page 206 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

22.3.2 Command and Response

Table 101 — TPM2_PCR_Event Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Event {NV}

Handle of the PCR
TPMI_DH_PCR+ @pcrHandle Auth Handle: 1
Auth Role: USER

TPM2B_EVENT eventData Event data in sized buffer

Table 102 — TPM2_PCR_Event Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode .
., s ——— ===
TPML_DIGEST_VALUES digests

Family “2.0” TCG Published Page 207
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

N

Part 3: Commands Trusted Platform Module Library

22.3.3 Detailed Actions

#include "InternalRoutines.h"
#include "PCR Event fp.h"
#ifdef TPM CC_PCR Event // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR
referenced by pcrHandle

TEM RC
TPM2_PCR_Event (
PCR Event In *in, // IN: input parameter list
PCR Event Out *out // OUT: output parameter list
)
{
TPM RC result;
HASH STATE hashState;
UINT32 i;
UINT16 size;

// Input Validation

// If a PCR extend is required
if (in->pcrHandle != TPM RH NULL)
{
// If the PCR is not allow to extend, return error
if (!'PCRIsExtendAllowed (in->pcrHandle))
return TPM_BC_LOCALITY;

// If PCR is state saved and we need to update orderlyState, check NV
// availability
if (PCRIsStateSaved (in->pcrHandle) && gp.orderlyState != SHUTDOWN NONE)
{

result = NvIsAvailable() ;

if (result != TPM RC_SUCCESS) return result;

g_clearOrderly = TRUE;

}
// Internal Data Update
out->digests.count = HASH COUNT;

// Iterate supported PCR bank algorithms to extend
for(i = 0; i < HASH COUNT; i++)
{
TPM ALG _ID hash = CryptGetHashAlgByIndex (i) ;
out->digests.digests[i] .hashAlg = hash;
size = CryptStartHash (hash, &hashState);
CryptUpdateDigest2B (&hashState, &in->eventData.b) ;
CryptCompleteHash (¢hashState, size,
(BYTE *) &out->digests.digests[i].digest) ;
if (in->pcrHandle !'= TPM RH NULL)
PCRExtend (in->pcrHandle, hash, size,
(BYTE *) &out->digests.digests[i].digest);
}

return TPM RC SUCCESS;

}
#endif // CC_PCR Event

Page 208 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

22.4 TPM2_PCR_Read

22.4.1 General Description

This command returns the values of all PCR specified in pcrSelectionin.

The TPM will process the list of TPMS _PCR_SELECTION in pcrSelectionin in order. Within each
TPMS_PCR_SELECTION, the TPM will process the bits in the pcrSelect array in ascending PCR order
(see TPM 2.0 Part 2 for definition of the PCR order). If a bit is SET, and the indicated PCR is present,
then the TPM will add the digest of the PCR to the list of values to be returned in pcrValues.

The TPM will continue processing bits until all have been processed or until pcrValues would be too large
to fit into the output buffer if additional values were added.

The returned pcrSelectionOut will have a bit SET in its pcrSelect structures for each value present in
pcrValues.

The current value of the PCR Update Counter is returned in pcrUpdateCounter.

The returned list may be empty if none of the selected PCR are implemented.

NOTE If no PCR are returned from a bank, the selector for the bank will be present in pcrSelectionOut.

No authorization is required to read a PCR and any implemented PCR may be read from any locality.

Family “2.0” TCG Published Page 209
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

22.4.2 Command and Response

Trusted Platform Module Library

Table 103 — TPM2_PCR_Read Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

TPML_PCR_SELECTION

commandCode

P,

pcrSelectionin

TPM_CC_PCR_Read

The selection of PCR to read

Table 104 — TPM2_PCR_Read Response

UINT32

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

|

pcrUpdateCounter

the current value of the PCR update counter

TPML_PCR_SELECTION

pcrSelectionOut

the PCR in the returned list

TPML_DIGEST

pcrValues

the contents of the PCR indicated in pcrSelect as
tagged digests

Page 210
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

WoOoOJoUld WN R

Trusted Platform Module Library Part 3: Commands

22.4.3 Detailed Actions

#include "InternalRoutines.h"

#include "PCR Read fp.h"

#ifdef TPM CC_PCR Read // Conditional expansion of this file

TEM RC

TPM2_PCR Read (
PCR Read In *in, // IN: input parameter list
PCR Read Out *out // OUT: output parameter list
)

{
// Command Output

// Call PCR read function. input pcrSelectionIn parameter could be changed
// to reflect the actual PCR being returned

PCRRead (&in->pcrSelectionIn, &out->pcrValues, &out->pcrUpdateCounter) ;
out->pcrSelectionOut = in->pcrSelectionIn;

return TPM_BC_SUCCESS;

}
#endif // CC_PCR Read

Family “2.0” TCG Published

Page 211

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.5 TPM2_PCR_Allocate

22.5.1 General Description

This command is used to set the desired PCR allocation of PCR and algorithms. This command requires
Platform Authorization.

The TPM will evaluate the request and, if sufficient memory is available for the requested allocation, the
TPM will store the allocation request for use during the next TPM2_Startup(TPM_SU_CLEAR) operation.
The PCR allocation in place when this command is executed will be retained until the next
TPM2_Startup(TPM_SU_CLEAR). If this command is received multiple times before a
TPM2_Startup(TPM_SU_CLEAR), each one overwrites the previous stored allocation.

This command will only change the allocations of banks that are listed in pcrAllocation.

EXAMPLE If a TPM supports SHA1 and SHA256, then it maintains an allocation for two banks (one of which could
be empty). If a TPM_PCR_ALLOCATE() only has a selector for the SHA1 bank, then only the allocation
of the SHA1 bank will be changed and the SHA256 bank will remain unchanged. To change the
allocation of a TPM from 24 SHA1 PCR and no SHA256 PCR to 24 SHA256 PCR and no SHA1 PCR, the
pcrAllocation would have to have two selections: one for the empty SHA1 bank and one for the SHA256
bank with 24 PCR.

If a bank is listed more than once, then the last selection in the pcrAllocation list is the one that the TPM
will attempt to allocate.

This command shall not allocate more PCR in any bank than there are PCR attribute definitions. The
PCR attribute definitions indicate how a PCR is to be managed — if it is resettable, the locality for update,
etc. In the response to this command, the TPM returns the maximum number of PCR allowed for any
bank.

When PCR are allocated, if DRTM_PCR is defined, the resulting allocation must have at least one bank
with the D-RTM PCR allocated. If HCRTM_PCR is defined, the resulting allocation must have at least
one bank with the HCRTM_PCR allocated. If not, the TPM returns TPM_RC_PCR.

The TPM may return TPM_RC_SUCCESS even though the request fails. This is to allow the TPM to
return information about the size needed for the requested allocation and the size available. If the
sizeNeeded parameter in the return is less than or equal to the sizeAvailable parameter, then the
allocationSuccess parameter will be YES. Alternatively, if the request fails, The TPM may return
TPM_RC_NO_RESULT

NOTE 1 An example for this type of failure is a TPM that can only support one bank at a time and cannot
support arbitrary distribution of PCR among banks.

After this command, TPM2_Shutdown() is only allowed to have a startupType equal to TPM_SU_CLEAR.

NOTE 2 Even if this command does not cause the PCR allocation to change, the TPM cannot have its state
saved. This is done in order to simplify the implementation. There is no need to optimize this
command as it is not expected to be used more than once in the lifetime of the TPM (it can be used
any number of times but there is no justification for optimization).

Page 212 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

22.5.2 Command and Response

Table 105 — TPM2_PCR_Allocate Command

Part 3: Commands

TPML_PCR_SELECTION

pcrAllocation

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Allocate {NV}
TPM_RH_PLATFORM+{PP}

TPMI_RH_PLATFORM @authHandle Auth Index: 1

Auth Role: USER

the requested allocation

Table 106 — TPM2_PCR_Allocate Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

- — — — — —— — — |

TPMI_YES_NO allocationSuccess YES if the allocation succeeded
UINT32 maxPCR maximum number of PCR that may be in a bank
UINT32 sizeNeeded number of octets required to satisfy the request
UINT32 sizeAvailable Numbgr of octets available. Computed before the
allocation.
Family “2.0” TCG Published Page 213

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.5.3 Detailed Actions

1 #include "InternalRoutines.h"
#include "PCR Allocate fp.h"
3 #ifdef TPM CC_PCR Allocate // Conditional expansion of this file

N

Error Returns Meaning

TPM_RC_PCR the allocation did not have required PCR

TPM_RC_NV_UNAVAILABLE NV is not accessible

TPM_RC_NV_RATE NV is in a rate-limiting mode

4 TPM RC

5 TPM2 PCR Allocate (

6 PCR Allocate In *in, // IN: input parameter list

7 PCR Allocate Out *out // OUT: output parameter list

8)

9 {

10 TPM RC result;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM RC NV_UNAVAILABLE or TPM RC NV _RATE error may be returned at

14 // this point.

15 // Note: These codes are not listed in the return values above because it is
16 // an implementation choice to check in this routine rather than in a common
17 // function that is called before these actions are called. These return values
18 // are described in the Response Code section of Part 3.

19 result = NvIsAvailable() ;
20 if (result !'= TPM RC_SUCCESS)
21 return result;
22
23 // Command Output
24
25 // Call PCR Allocation function.
26 result = PCRAllocate (&in->pcrAllocation, &out->maxPCR,
27 &out->sizeNeeded, &out->sizeAvailable) ;
28 if (result == TPM RC_PCR)
29 return result;

30

31 //

32 out->allocationSuccess = (result == TPM RC_SUCCESS) ;

33

34 // if re-configuration succeeds, set the flag to indicate PCR configuration is
35 // going to be changed in next boot

36 if (out->allocationSuccess == YES)

37 g_pcrReConfig = TRUE;

38

39 return TPM RC SUCCESS;

40 }

41 #endif // CC_PCR Allocate

Page 214 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

22.6 TPM2_PCR_SetAuthPolicy

22.6.1 General Description

This command is used to associate a policy with a PCR or group of PCR. The policy determines the
conditions under which a PCR may be extended or reset.

A policy may only be associated with a PCR that has been defined by a platform-specific specification as
allowing a policy. If the TPM implementation does not allow a policy for pcrNum, the TPM shall return
TPM_RC_VALUE.

A platform-specific specification may group PCR so that they share a common policy. In such case, a
pcrNum that selects any of the PCR in the group will change the policy for all PCR in the group.

The policy setting is persistent and may only be changed by TPM2_PCR_SetAuthPolicy() or by
TPM2_ChangePPS().

Before this command is first executed on a TPM or after TPM2_ChangePPS(), the access control on the
PCR will be set to the default value defined in the platform-specific specification.

NOTE 1 It is expected that the typical default will be with the policy hash set to TPM_ALG_NULL and an
Empty Buffer for the authPolicy value. This will allow an EmptyAuth to be used as the authorization
value.

If the size of the data buffer in authPolicy is not the size of a digest produced by hashAlg, the TPM shall
return TPM_RC_SIZE.

NOTE 2 If hashAlg is TPM_ALG_NULL, then the size is required to be zero.
This command requires platformAuth/platformPolicy.

NOTE 3 If the PCR is in multiple policy sets, the policy will be changed in only one set. The set that is
changed will be implementation dependent.

Family “2.0” TCG Published Page 215
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

22.6.2 Command and Response

Trusted Platform Module Library

Table 107 — TPM2_PCR_SetAuthPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthPolicy {NV}
TPM_RH_PLATFORM+{PP}

TPMI_RH_PLATFORM @authHandle Auth Index: 1

P,

Auth Role: USER

TPM2B_DIGEST authPolicy the desired authPolicy
TPMI_ALG_HASH+ hashAlg the hash algorithm of the policy
TPMI_DH_PCR pcrNum the PCR for which the policy is to be set
Table 108 — TPM2_PCR_SetAuthPolicy Response
Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
Page 216 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

22.6.3 Detailed Actions

#include "InternalRoutines.h"
#include "PCR SetAuthPolicy fp.h"
#ifdef TPM CC_PCR SetAuthPolicy // Conditional expansion of this file

Error Returns Meaning
TPM_RC_SIZE size of authPolicy is not the size of a digest produced by policyDigest
TPM_RC_VALUE PCR referenced by pcrNum is not a member of a PCR policy group
TPM RC
TPM2 PCR_SetAuthPolicy (

PCR_SetAuthPolicy In *in // IN: input parameter list

)
{

UINT32 groupIndex;

TPM RC result;

// The command needs NV update. Check if NV is available.

// A TPM RC NV_UNAVAILABLE or TPM RC NV _RATE error may be returned at
// this point

result = NvIsAvailable();

if (result != TPM RC SUCCESS) return result;

// Input Validation:

// Check the authPolicy consistent with hash algorithm
if (in->authPolicy.t.size !'= CryptGetHashDigestSize (in->hashAlg))
return TPM RC SIZE + RC_PCR SetAuthPolicy authPolicy;

// If PCR does not belong to a policy group, return TPM RC VALUE
if ('PCRBelongsPolicyGroup (in->pcrNum, &groupIndex))
return TPM RC VALUE + RC_PCR SetAuthPolicy pcrNum;

// Internal Data Update

// Set PCR policy
gp.pcrPolicies.hashAlg[groupIndex] = in->hashAlg;
gp.pcrPolicies.policy[groupIndex] = in->authPolicy;

// Save new policy to NV
NviWriteReserved (NV_PCR POLICIES, &gp.pcrPolicies);

return TPM RC_SUCCESS;

}
#endif // CC_PCR SetAuthPolicy

Family “2.0” TCG Published Page 217
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.7 TPM2_PCR_SetAuthValue

22.7.1 General Description

This command changes the authValue of a PCR or group of PCR.

An authValue may only be associated with a PCR that has been defined by a platform-specific
specification as allowing an authorization value. If the TPM implementation does not allow an
authorization for pcrNum, the TPM shall return TPM_RC_VALUE. A platform-specific specification may
group PCR so that they share a common authorization value. In such case, a pcrNum that selects any of
the PCR in the group will change the authValue value for all PCR in the group.

The authorization setting is set to EmptyAuth on each STARTUP(CLEAR) or by TPM2_Clear(). The
authorization setting is preserved by SHUTDOWN(STATE).

Page 218 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

22.7.2 Command and Response

Part 3: Commands

Table 109 — TPM2_PCR_SetAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthValue
handle for a PCR that may have an authorization value
set

TPMI_DH_PCR @pcrHandle Auth Index: 1.
Auth Role: USER

TPM2B_DIGEST auth the desired authorization value

Table 110 — TPM2_PCR_SetAuthValue Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Family “2.0” TCG Published Page 219

Level 00 Revision 01.16

Copyright © TCG 2006-2014 October 30, 2014

N

Part 3: Commands

22.7.3 Detailed Actions

#include "InternalRoutines.h"
#include "PCR SetAuthValue fp.h"
#ifdef TPM CC_PCR SetAuthValue // Conditional expansion of this file

Trusted Platform Module Library

Error Returns Meaning

TPM_RC_VALUE PCR referenced by pcrHandle is not a member of a PCR

authorization group

TPM _RC
TPM2 PCR_SetAuthValue (

PCR_éétAuthValue_In *in // IN: input parameter list
)

UINT32 groupIndex;

TPM RC result;

// Input Validation:

// If PCR does not belong to an auth group, return TPM RC VALUE
if (!PCRBelongsAuthGroup (in->pcrHandle, &groupIndex))
return TPM_BC_VALUE;

// The command may cause the orderlyState to be cleared due to the update of
// state clear data. If this is the case, Check if NV is available.
// A TPM RC NV_UNAVAILABLE or TPM RC NV _RATE error may be returned at
// this point
if (gp.orderlyState != SHUTDOWN NONE)
{
result = NvIsAvailable() ;
if (result != TPM RC_SUCCESS) return result;
g_clearOrderly = TRUE;
}

// Internal Data Update

}

// Set PCR authValue
gc.pcrAuthValues.auth[groupIndex] = in->auth;

return TPM RC_SUCCESS;

#endif // CC_PCR SetAuthValue

Page 220 TCG Published
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Family “2.0”

Trusted Platform Module Library Part 3: Commands

22.8 TPM2_PCR_Reset

22.8.1 General Description

If the attribute of a PCR allows the PCR to be reset and proper authorization is provided, then this
command may be used to set the PCR to zero. The attributes of the PCR may restrict the locality that can
perform the reset operation.

NOTE 1 The definition of TPMI_DH_PCR in TPM 2.0 Part 2 indicates that if pcrHandle is out of the allowed
range for PCR, then the appropriate return value is TPM_RC_VALUE.

If pcrHandle references a PCR that cannot be reset, the TPM shall return TPM_RC_LOCALITY.

NOTE 2 TPM_RC_LOCALITY is returned because the reset attributes are defined on a per-locality basis.

Family “2.0” TCG Published Page 221
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.8.2 Command and Response

Table 111 — TPM2_PCR_Reset Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Reset {NV}

the PCR to reset
TPMI_DH_PCR @pcrHandle Auth Index: 1
Auth Role: USER

Table 112 — TPM2_PCR_Reset Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Page 222 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

22.8.3 Detailed Actions

#include "InternalRoutines.h"
#include "PCR Reset fp.h"
#ifdef TPM CC_PCR Reset // Conditional expansion of this file

Error Returns Meaning
TPM_RC_LOCALITY current command locality is not allowed to reset the PCR referenced
by pcrHandle
TPM RC
TPM2 PCR Reset (
PCR Reset In *in // IN: input parameter list
)
{
TPM RC result;

// Input Validation

// Check if the reset operation is allowed by the current command locality
if ('PCRIsResetAllowed (in->pcrHandle))
return TPM RC_LOCALITY;

// If PCR is state saved and we need to update orderlyState, check NV
// availability
if (PCRIsStateSaved (in->pcrHandle) && gp.orderlyState != SHUTDOWN NONE)
{

result = NvIsAvailable() ;

if (result !'= TPM RC_SUCCESS)

return result;

g_clearOrderly = TRUE;

}

// Internal Data Update

// Reset selected PCR in all banks to 0
PCRSetValue (in->pcrHandle, 0);

// Indicate that the PCR changed so that pcrCounter will be incremented if
// necessary.
PCRChanged (in->pcrHandle) ;

return TPM RC_SUCCESS;

}
#endif // CC_PCR Reset

Family “2.0” TCG Published Page 223
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.9 _TPM_Hash_Start

22.9.1 Description
This indication from the TPM interface indicates the start of an H-CRTM measurement sequence. On
receipt of this indication, the TPM will initialize an H-CRTM Event Sequence context.

If no object memory is available for creation of the sequence context, the TPM will flush the context of an
object so that creation of the sequence context will always succeed.

A platform-specific specification may allow this indication before TPM2_Startup().

NOTE If this indication occurs after TPM2_Startup(), it is the responsibility of software to ensure that an
object context slot is available or to deal with the consequences of having the TPM select an
arbitrary object to be flushed. If this indication occurs before TPM2_Startup() then all context slots
are available.

Page 224 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

WooOoJoUd WDN

Trusted Platform Module Library Part 3: Commands

22.9.2 Detailed Actions

#include "InternalRoutines.h"

This function is called to process a _TPM_Hash_Start() indication.

void
_TPM Hash Start(
void
)
{
TPM RC result;
TPMI_DH OBJECT handle;

// If a DRTM sequence object exists, free it up
if (g DRTMHandle != TPM RH_UNASSIGNED)
{
ObjectFlush (g DRTMHandle) ;
g_DRTMHandle = TPM RH UNASSIGNED;
}

// Create an event sequence object and store the handle in global

// g_DRTMHandle. A TPM RC_OBJECT MEMORY error may be returned at this point

// The null value for the 'auth' parameter will cause the sequence structure to
// be allocated without being set as present. This keeps the sequence from

// being left behind if the sequence is terminated early.

result = ObjectCreateEventSequence (NULL, &g DRTMHandle) ;

// If a free slot was not available, then free up a slot.
if (result !'= TPM RC_SUCCESS)
{
// An implementation does not need to have a fixed relationship between
// slot numbers and handle numbers. To handle the general case, scan for
// a handle that is assigned and free it for the DRTM sequence.
// In the reference implementation, the relationship between handles and
// slots is fixed. So, if the call to ObjectCreateEvenSequence ()
// failed indicating that all slots are occupied, then the first handle we
// are going to check (TRANSIENT FIRST) will be occupied. It will be freed
// so that it can be assigned for use as the DRTM sequence object.
for (handle = TRANSIENT FIRST; handle < TRANSIENT ILAST; handle++)
{
// try to flush the first object
if (ObjectIsPresent (handle))
break;
}
// If the first call to find a slot fails but none of the slots is occupied
// then there's a big problem
pAssert (handle < TRANSIENT LAST);

// Free the slot
ObjectFlush (handle) ;

// Try to create an event sequence object again. This time, we must
// succeed.
result = ObjectCreateEventSequence (NULL, &g DRTMHandle) ;
pAssert (result = TPM RC_SUCCESS) ;
}

return;

Family “2.0” TCG Published Page 225
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.10 TPM_Hash_Data

22.10.1 Description

This indication from the TPM interface indicates arrival of one or more octets of data that are to be
included in the H-CRTM Event Sequence sequence context created by the _TPM_Hash_Start indication.
The context holds data for each hash algorithm for each PCR bank implemented on the TPM.

If no H-CRTM Event Sequence context exists, this indication is discarded and no other action is
performed.

Page 226 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

22.10.2 Detailed Actions

#include "InternalRoutines.h"
#include "Platform.h"
#include "PCR fp.h"

This function is called to process a _TPM_Hash_Data() indication.

void

_TPM Hash Data(
UINT32 dataSize, // IN: size of data to be extend
BYTE *data // IN: data buffer

)

UINT32 i;
HASH OBJECT *hashObject;
TPMI_DH PCR pcrHandle = TPMIsStarted()

? PCR_FIRST + DRTM PCR : PCR FIRST + HCRIM PCR;

// If there is no DRTM sequence object, then _TPM Hash Start
// was not called so this function returns without doing
// anything.
if (g DRTMHandle == TPM_RH UNASSIGNED)
return;

hashObject = (HASH OBJECT *)ObjectGet (g _DRTIMHandle) ;
pAssert (hashObject->attributes.eventSeq) ;

// For each of the implemented hash algorithms, update the digest with the
// data provided.
for(i = 0; i < HASH COUNT; i++)
{
// make sure that the PCR is implemented for this algorithm
if (PcrIsAllocated (pcrHandle,
hashObject->state.hashState[i].state.hashAlqg))
// Update sequence object
CryptUpdateDigest (&§hashObject->state.hashState[i], dataSize, data);
}

return;

Family “2.0” TCG Published Page 227
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

22.11 _TPM_Hash_End

22.11.1 Description

This indication from the TPM interface indicates the end of the H-CRTM measurement. This indication is
discarded and no other action performed if the TPM does not contain an H-CRTM Event Sequence
context.

NOTE 1 An H-CRTM Event Sequence context is created by _TPM_Hash_Start().

If the H-CRTM Event Sequence occurs after TPM2_Startup(), the TPM will set all of the PCR designated
in the platform-specific specifications as resettable by this event to the value indicated in the platform
specific specification, and increment restartCount. The TPM will then Extend the Event Sequence
digest/digests into the designated D-RTM PCR (PCR[17]).

PCR[17][hashAlg] = Hhashaig (initial_value || Hrasnaly (hash_data)) @)
where
hashAlg hash algorithm associated with a bank of PCR
initial_value initialization value specified in the platform-specific specification
(should be 0...0)
hash_data all the octets of data received in _TPM_Hash_Data indications

A _TPM_Hash_End indication that occurs after TPM2_Startup() will increment pcrUpdateCounter unless
a platform-specific specification excludes modifications of PCR[DRTM] from causing an increment.

A platform-specific specification may allow an H-CRTM Event Sequence before TPM2_Startup(). If so,
_TPM_Hash_End will complete the digest, initialize PCR[0] with a digest-size value of 4, and then extend
the H-CRTM Event Sequence data into PCR[O].

PCR][0][hashAlg] == Hnashaig (0...04 || Hrasnaig (hash_data)) (8)

NOTE 2 The entire sequence of _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are required to
complete before TPM2_Startup() or the sequence will have no effect on the TPM.

NOTE 3 PCR[0] does not need to be updated according to (8) until the end of TPM2_Startup().

Page 228 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

WooOoJoUd WDN

59

Trusted Platform Module Library Part 3: Commands

22.11.2 Detailed Actions

#include "InternalRoutines.h"

This function is called to process a _TPM_Hash_End() indication.

void
_TPM Hash End(
void

)

UINT32 i;

TPM2B DIGEST digest;
HASH OBJECT *hashObject;
TPMI_DH PCR pcrHandle;

// If the DRTM handle is not being used, then either TPM Hash Start has not
// been called, _TPM Hash End was previously called, or some other command
// was executed and the sequence was aborted.
if (g_DRTMHandle == TPM RH UNASSIGNED)

return;

// Get DRTM sequence object
hashObject = (HASH OBJECT *)ObjectGet (g DRTIMHandle) ;

// Is this TPM Hash End after Startup or before
if (TPMIsStarted())

{
// After

// Reset the DRTM PCR
PCRResetDynamics () ;

// Extend the DRTM PCR.
pcrHandle = PCR _FIRST + DRIM PCR;

// DRTM sequence increments restartCount
gr.restartCount++;

}

else

{
pcrHandle = PCR FIRST + HCRTM PCR;

}

// Complete hash and extend PCR, or if this is an HCRTM, complete
// the hash, reset the H-CRTM register (PCR[0]) to 0...04, and then
// extend the H-CRTM data
for(i = 0; i < HASH COUNT; i++)
{
TPMI_ALG HASH hash = CryptGetHashAlgByIndex (i) ;
// make sure that the PCR is implemented for this algorithm
if (PcrIsAllocated (pcrHandle,
hashObject->state.hashState[i].state.hashAlqg))
{
// Complete hash
digest.t.size = CryptGetHashDigestSize (hash) ;

CryptCompleteHash2B (&hashObject->state.hashState[i], &digest.Db);
PcrDrtm(pcrHandle, hash, &digest);
}

// Flush sequence object.

Family “2.0” TCG Published Page 229
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

60
61
62
63
64
65
66
67

Part 3: Commands

ObjectFlush (g DRTMHandle) ;
g_DRTMHandle = TPM RH UNASSIGNED;
g_DrtmPreStartup = TRUE;

return;

Page 230 TCG Published
October 30, 2014 Copyright © TCG 2006-2014

Trusted Platform Module Library

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

23 Enhanced Authorization (EA) Commands

23.1 Introduction

The commands in this clause 1 are used for policy evaluation. When successful, each command will
update the policySession—policyDigest in a policy session context in order to establish that the
authorizations required to use an object have been provided. Many of the commands will also modify
other parts of a policy context so that the caller may constrain the scope of the authorization that is
provided.

NOTE 1 Many of the terms used in this clause are described in detail in TPM 2.0 Part 1 and are not redefined
in this clause.

The policySession parameter of the command is the handle of the policy session context to be modified
by the command.

If the policySession parameter indicates a trial policy session, then the policySession—policyDigest will
be updated and the indicated validations are not performed.

NOTE 2 A policy session is set to a trial policy by TPM2_StartAuthSession(sessionType = TPM_SE_TRIAL).

NOTE 3 Unless there is an unmarshaling error in the parameters of the command, these commands will
return TPM_RC_SUCCESS when policySession references a trial session.

NOTE 4 Policy context other than the policySession—policyDigest may be updated for a trial policy but it is
not required.

Family “2.0” TCG Published Page 231
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.2 Signed Authorization Actions

23.2.1 Introduction

The TPM2_PolicySigned, TPM_PolicySecret, and TPM2_PolicyTicket commands use many of the same
functions. This clause consolidates those functions to simplify the document and to ensure uniformity of
the operations.

23.2.2 Policy Parameter Checks

These parameter checks will be performed when indicated in the description of each of the commands:

a) nonceTPM - |If this parameter is not the Empty Buffer, and it does not match
policySession—nonceTPM, then the TPM shall return TPM_RC_VALUE. This parameter is required
to be present if expiration is non-zero (TPM_RC_EXPIRED).

b) expiration — If this parameter is not zero, then its absolute value is compared to the time in seconds
since the policySession—nonceTPM was generated. If more time has passed than indicated in
expiration, the TPM shall return TPM_RC_EXPIRED. If nonceTPM is the Empty buffer, and expiration
is non-zero, then the TPM shall return TPM_RC_EXPIRED.

If policySession—timeout is greater than policySession—startTime plus the absolute value of
expiration, then policySession—timeout is set to policySession—startTime plus the absolute value of
expiration. That is, policySession—timeout can only be changed to a smaller value.

c) timeout — This parameter is compared to the current TPM time. If policySession—timeout is in the
past, then the TPM shall return TPM_RC_EXPIRED.

NOTE 1 The expiration parameter is present in the TPM2_PolicySigned and TPM2_PolicySecret
command and timeout is the analogous parameter in the TPM2_PolicyTicket command.

d) cpHashA — If this parameter is not an Empty Buffer

NOTE 2 CpHashA is the hash of the command to be executed using this policy session in the
authorization. The algorithm used to compute this hash is required to be the algorithm of the
policy session.

1) the TPM shall return TPM_RC_CPHASH if policySession—cpHash is set and the contents of
policySession—cpHash are not the same as cpHashA,; or

NOTE 3 cpHash is the expected cpHash value held in the policy session context.

2) the TPM shall return TPM_RC_SIZE if cpHashA is not the same size as
policySession—policyDigest.

NOTE 4 policySession—policyDigest is the size of the digest produced by the hash algorithm used
to compute policyDigest.

Page 232 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

23.2.3 Policy Digest Update Function (PolicyUpdate())

This is the wupdate process for policySession—policyDigest used by TPM2_PolicySigned(),
TPM2_PolicySecret(), TPM2_PolicyTicket(), and TPM2_PolicyAuthorize(). The function prototype for the
update function is:

PolicyUpdate(commandCode, arg2, arg3) 9)
where
arg2 a TPM2B_NAME
arg3 a TPM2B
These parameters are used to update policySession—policyDigest by
policyDigestiew = Hpolipaig(policyDigesto || commandCode || arg2.name) (10)
followed by
policyDigestiew+1 == Hpolicyag(policyDigestnew || arg3.buffer) (12)
where
Hpolicyaig() the hash algorithm chosen when the policy session was started

NOTE 1 If arg3 is a TPM2B_NAME, then arg3.buffer will actually be an arg3.name.

NOTE 2 The arg2.size and arg3.size fields are not included in the hashes.

NOTE 3 PolicyUpdate() uses two hash operations because arg2 and arg3 are variable-sized and the
concatenation of arg2 and arg3 in a single hash could produce the same digest even though arg2
and arg3 are different. For example, arg2 = 1 2 3 and arg3 = 4 5 6 would produce the same digest
as arg2 = 1 2 and arg3 = 3 4 5 6. Processing of the arguments separately in different Extend
operation insures that the digest produced by PolicyUpdate() will be different if arg2 and arg3 are
different.

Family “2.0” TCG Published Page 233

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.2.4

Policy Context Updates

When a policy command modifies some part of the policy session context other than the
policySession—policyDigest, the following rules apply.

cpHash — this parameter may only be changed if it contains its initialization value (an Empty
String). If cpHash is not the Empty String when a policy command attempts to update it, the TPM
will return an error (TPM_RC_CPHASH) if the current and update values are not the same.

timeOut — this parameter may only be changed to a smaller value. If a command attempts to
update this value with a larger value (longer into the future), the TPM will discard the update
value. This is not an error condition.

commandCode — once set by a policy command, this value may not be changed except by
TPM2_PolicyRestart(). If a policy command tries to change this to a different value, an error is
returned (TPM_RC_POLICY_CC).

pcrUpdateCounter — this parameter is updated by TPM2_PolicyPCR(). This value may only be
set once during a policy. Each time TPM2_PolicyPCR() executes, it checks to see if
policySession—pcrUpdateCounter has its default state, indicating that this is the first
TPM2_PolicyPCR(). If it has its default value, then policySession—pcrUpdateCounter is set to the
current value of pcrUpdateCounter. If policySession—pcrUpdateCounter does not have its default
value and its value is not the same as pcrUpdateCounter, the TPM shall return
TPM_RC_PCR_CHANGED.

NOTE 1 If this parameter and pcrUpdateCounter are not the same, it indicates that PCR have changed

since checked by the previous TPM2_PolicyPCR(). Since they have changed, the previous PCR
validation is no longer valid.

commandLocality — this parameter is the logical AND of all enabled localities. All localities are
enabled for a policy when the policy session is created. TPM2_PolicyLocalities() selectively
disables localities. Once use of a policy for a locality has been disabled, it cannot be enabled
except by TPM2_PolicyRestart().

isPPRequired — once SET, this parameter may only be CLEARed by TPM2_PolicyRestart().

isAuthValueNeeded — once SET, this parameter may only be CLEARed by
TPM2_PolicyPassword() or TPM2_PolicyRestart().

isPasswordNeeded — once SET, this parameter may only be CLEARed by
TPM2_PolicyAuthValue() or TPM2_PolicyRestart(),

NOTE 2 Both TPM2_PolicyAuthValue() and TPM2_PolicyPassword() change policySession—policyDigest in
the same way. The different commands simply indicate to the TPM the format used for the authValue
(HMAC or clear text). Both commands could be in the same policy. The final instance of these
commands determines the format.

Page 234 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

23.2.5 Policy Ticket Creation

If, for TPM2_PolicySigned() or TPM2_PolicySecret(), the caller specified a negative value for expiration,
and the nonceTPM matches policySession->nonceTPM, then the TPM will return a ticket that includes a
value indicating when the authorization expires. If expiration is non-negative, then the TPM will return a
NULL ticket.

The required computation for the digest in the authorization ticket is:

HMAC(proof, Hpoiicpaig(ticketType || timeout || cpHashA || policyRef || authObject—Name)) (12)

where
proof secret associated with the storage primary seed (SPS) of the
TPM
Hyoicyaig hash function using the hash algorithm associated with the policy
session
ticketType either TPM_ST_AUTH_SECRET or TPM_ST_AUTH_SIGNED,
used to indicate type of the ticket
NOTE 1 If the ticket is produced by TPM2_PolicySecret() then ticketType s
TPM_ST_AUTH_SECRET and if produced by TPM2_PolicySigned() then ticketType is
TPM_ST_AUTH_SIGNED.
timeout implementation-specific representation of the expiration time of
the ticket; required to be the implementation equivalent of
policySession—startTime plus the absolute value of expiration
NOTE 2 timeout is not the same as expiration. The expiration value in the aHash is a relative time,
using the creation time of the authorization session (TPM2_StartAuthSession()) as its
reference. The timeout parameter is an absolute time, using TPM Clock as the reference.
cpHashA the command parameter digest for the command being
authorized; computed using the hash algorithm of the policy
session
policyRef the commands that use this function have a policyRef parameter
and the value of that parameter is used here
authObject—-Name Name associated with the authObject parameter
Family “2.0” TCG Published Page 235

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.3 TPM2_PolicySigned

23.3.1 General Description

This command includes a signed authorization in a policy. The command ties the policy to a signing key
by including the Name of the signing key in the policyDigest

If policySession is a trial session, the TPM will not check the signature and will update
policySession—policyDigest as described in 23.2.3 as if a properly signed authorization was received, but
no ticket will be produced.

If policySession is not a trial session, the TPM will validate auth and only perform the update if it is a valid
signature over the fields of the command.

The authorizing entity will sign a digest of the authorization qualifiers: nonceTPM, expiration, cpHashA,
and policyRef. The digest is computed as:

aHash = Haumaig(nonceTPM || expiration || cpHashA || policyRef) (13)
where
Hauthaig() the hash associated with the auth parameter of this command
NOTE 1 Each signature and key combination indicates the scheme and each scheme has an
associated hash.
nonceTPM the nonceTPM parameter from the TPM2_StartAuthSession()
response. If the authorization is not limited to this session, the
size of this value is zero.
NOTE 2 This parameter must be present if expiration is non-zero.
expiration time limit on authorization set by authorizing object. This 32-bit
value is set to zero if the expiration time is not being set.
cpHashA digest of the command parameters for the command being
approved using the hash algorithm of the policy session. Set to
an EmptyAuth if the authorization is not limited to a specific
command.
NOTE 3 This is not the cpHash of this TPM2_PolicySigned() command.
policyRef an opaque value determined by the authorizing entity. Set to the
Empty Buffer if no value is present.
EXAMPLE The computation for an aHash if there are no restrictions is:

aHaSh = HauthAIg(OO 00 00 0016)

which is the hash of an expiration time of zero.
The aHash is signed by the key associated with a key whose handle is authObject. The signature and
signing parameters are combined to create the auth parameter.
The TPM will perform the parameter checks listed in 23.2.2

If the parameter checks succeed, the TPM will construct a test digest (tHash) over the provided
parameters using the same formulation as shown in equation (13) above.

If tHash does not match the digest of the signed aHash, then the authorization fails and the TPM shall
return TPM_RC_POLICY_FAIL and make no change to policySession—policyDigest.

Page 236 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

When all validations have succeeded, policySession—policyDigest is updated by PolicyUpdate() (see
23.2.3).

PolicyUpdate(TPM_CC_PolicySigned, authObject—Name, policyRef) (14)

policySession is updated as described in 23.2.4. The TPM will optionally produce a ticket as described in
23.2.5.

Authorization to use authObiject is not required.

Family “2.0” TCG Published Page 237
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

23.3.2 Command and Response

Table 113 — TPM2_Po

Trusted Platform Module Library

licySigned Command

Type Name Description
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
TPMI_ST_COMMAND_TAG tag session is present; otherwise,

TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_PolicySigned

. handle for a key that will validate the signature
TPMI_DH_OBJECT authObject

Auth Index: None

TPMI_SH_POLICY

policySession

- — — — — —— — — |

handle for the policy session being extended
Auth Index: None

the policy nonce for the session

TPM2B_NONCE nonceTPM)
- This can be the Empty Buffer.
digest of the command parameters to which this
authorization is limited
TPM2B DIGEST cpHashA This is not the cpHash for this command but the cpHash
- for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.
a reference to a policy relating to the authorization —
) may be the Empty Buffer
TPM2B_NONCE policyRef L .
Size is limited to be no larger than the nonce size
supported on the TPM.
time when authorization will expire, measured in
o seconds from the time that nonceTPM was generated
INT32 expiration
If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.
TPMT_SIGNATURE auth signed authorization (not optional)

Table 114 — TPM2_Po

licySigned Response

TPM2B_TIMEOUT

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

- — — — — —— — — |

timeout

implementation-specific time value, used to indicate to
the TPM when the ticket expires

NOTE If policyTicket is a NULL Ticket, then this shall be
the Empty Buffer.

TPMT_TK_AUTH

policyTicket

produced if the command succeeds and expiration in
the command was non-zero; this ticket will use the
TPMT_ST_AUTH_SIGNED structure tag. See 23.2.5

Page 238
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

S Wb

Trusted Platform Module Library

23.3.3 Detailed Actions

#include "InternalRoutines.h"
#include "Policy spt fp.h"

#include "PolicySigned fp.h"
#ifdef TPM CC PolicySigned // Conditional expansion of this file

Part 3: Commands

Error Returns

Meaning

TPM_RC_CPHASH

cpHash was previously set to a different value

TPM_RC_EXPIRED

expiration indicates a time in the past or expiration is non-zero but no
nonceTPM is present

TPM_RC_HANDLE

authObject need to have sensitive portion loaded

TPM_RC_KEY

authObiject is not a signing scheme

TPM_RC_NONCE

nonceTPM is not the nonce associated with the policySession

TPM_RC_SCHEME

the signing scheme of auth is not supported by the TPM

TPM_RC_SIGNATURE

the signature is not genuine

TPM_RC_SIZE

input cpHash has wrong size

TPM_RC_VALUE

input policylD or expiration does not match the internal data in policy
session

TPM RC

TPM2 PolicySigned(
PolicySigned In
PolicySigned Out

)

TPM RC
SESSION
TPM2B_NAME
TPM2B_DIGEST
HASH_STATE
UINT32

UINT64

// Input Validation

*in,
*out

// Set up local pointers

session = SessionGet (in->policySession) ;

// IN: input parameter list
// OUT: output parameter list

result = TPM RC SUCCESS;

*session;

entityName;

authHash;

hashState;

expiration = (in->expiration < 0)
? - (in->expiration)

authTimeout = 0;

: in->expiration;

// the session structure

// Only do input validation if this is not a trial policy session
if (session->attributes.isTrialPolicy == CLEAR)

{

if (expiration !'= 0)
authTimeout = expiration * 1000 + session->startTime;

result = PolicyParameterChecks (session, authTimeout,

&in->cpHashA, &in->nonceTPM,
RC PolicySigned nonceTPM,
RC_PolicySigned cpHasha,
RC_PolicySigned expiration) ;

if (result != TPM RC SUCCESS)
return result;

// Re-compute the digest being signed
/* (See part 3 specification)

Family “2.0”

Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 239

October 30, 2014

Part 3: Commands Trusted Platform Module Library

41 // The digest is computed as:

42 // aHash := hash (nonceTPM | expiration | cpHashA | policyRef)

43 // where:

44 // hash() the hash associated with the signed auth

45 // nonceTPM the nonceTPM value from the TPMZ_StartAuthSession .

46 // response If the authorization is not limited to this

47 // session, the size of this value is zero.

48 // expiration time limit on authorization set by authorizing object.

49 // This 32-bit value is set to zero if the expiration

50 // time is not being set.

51 // cpHashA hash of the command parameters for the command being

52 // approved using the hash algorithm of the PSAP session.

53 // Set to NULLauth if the authorization is not limited

54 // to a specific command.

55 // policyRef hash of an opaque value determined by the authorizing

56 // object. Set to the NULLdigest if no hash is present.

57 */

58 // Start hash

59 authHash.t.size = CryptStartHash (CryptGetSignHashAlg(&in->auth),

60 &hashState) ;

61

62 // add nonceTPM

63 CryptUpdateDigest2B (&hashState, &in->nonceTPM.Db) ;

64

65 // add expiration

66 CryptUpdateDigestInt (&hashState, sizeof (UINT32), (BYTE*) &in->expiration);

67

68 // add cpHasha

69 CryptUpdateDigest2B (&hashState, &in->cpHashA.b) ;

70

71 // add policyRef

72 CryptUpdateDigest2B (&¢hashState, &in->policyRef.b) ;

73

74 // Complete digest

75 CryptCompleteHash2B (&hashState, &authHash.b);

76

77 // Validate Signature. A TPM RC SCHEME, TPM RC HANDLE or TPM RC SIGNATURE

78 // error may be returned at this point

79 result = CryptVerifySignature (in->authObject, &authHash, &in->auth);

80 if (result != TPM RC_SUCCESS)

81 return RcSafeAddToResult (result, RC PolicySigned auth);

82 }

83 // Internal Data Update

84 // Need the Name of the signing entity

85 entityName.t.size = EntityGetName (in->authObject, &entityName.t.name) ;

86

87 // Update policy with input policyRef and name of auth key

88 // These values are updated even if the session is a trial session

89 PolicyContextUpdate (TPM_CC_PolicySigned, &entityName, &in->policyRef,

90 &in->cpHashA, authTimeout, session);

91

92 // Command Output

93

94 // Create ticket and timeout buffer if in->expiration < 0 and this is not

95 // a trial session.

96 // NOTE: PolicyParameterChecks() makes sure that nonceTPM is present

97 // when expiration is non-zero.

98 if(in->expiration < 0

29 && session->attributes.isTrialPolicy == CLEAR

100)

101 {

102 // Generate timeout buffer. The format of output timeout buffer is

103 // TPM-specific.

104 // Note: can't do a direct copy because the output buffer is a byte

105 // array and it may not be aligned to accept a 64-bit value. The method

106 // used has the side-effect of making the returned value a big-endian,
Page 240 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Trusted Platform Module Library Part 3: Commands

// 64-bit value that is byte aligned.
out->timeout.t.size = sizeof (UINT64) ;
UINT64_TO_BYTE ARRAY (authTimeout, out->timeout.t.buffer);

// Compute policy ticket

TicketComputeAuth (TPM_ST AUTH SIGNED, EntityGetHierarchy (in->authObject),
authTimeout, &in->cpHashA, &in->policyRef, &entityName,
&out->policyTicket) ;

else

// Generate a null ticket.
// timeout buffer is null
out->timeout.t.size = 0;

// auth ticket is null
out->policyTicket.tag = TPM ST AUTH SIGNED;
out->policyTicket.hierarchy = TPM RH NULL;
out->policyTicket.digest.t.size = 0;

}

return TPM_RC_SUCCESS;

}
#endif // CC_PolicySigned

Family “2.0” TCG Published Page 241
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.4 TPM2_PolicySecret

23.4.1 General Description

This command includes a secret-based authorization to a policy. The caller proves knowledge of the
secret value using an authorization session using the authValue associated with authHandle. A password
session, an HMAC session, or a policy session containing TPM2_PolicyAuthValue() or
TPM2_PolicyPassword() will satisfy this requirement.

If a policy session is used and use of the authValue of authHandle is not required, the TPM will return
TPM_RC_MODE.

The secret is the authValue of the entity whose handle is authHandle, which may be any TPM entity with
a handle and an associated authValue. This includes the reserved handles (for example, Platform,
Storage, and Endorsement), NV Indexes, and loaded objects.

NOTE 1 The authorization value for a hierarchy cannot be used in this command if the hierarchy is disabled.

If the authorization check fails, then the normal dictionary attack logic is invoked.

If the authorization provided by the authorization session is valid, the command parameters are checked
as described in 23.2.2.

nonceTPM must be present if expiration is non-zero.

When all validations have succeeded, policySession—policyDigest is updated by PolicyUpdate() (see
23.2.3).

PolicyUpdate(TPM_CC_PolicySecret, authObject—Name, policyRef) (15)

policySession is updated as described in 23.2.4. The TPM will optionally produce a ticket as described in
23.2.5.

If the session is a trial session, policySession—policyDigest is updated as if the authorization is valid but
no check is performed.

NOTE 2 If an HMAC is used to convey the authorization, a separate session is needed for the authorization.
Because the HMAC in that authorization will include a nonce that prevents replay of the
authorization, the value of the nonceTPM parameter in this command is limited. It is retained mostly
to provide processing consistency with TPM2_PolicySigned().

Page 242 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

23.4.2 Command and Response

Table 115 — TPM2_PolicySecret Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySecret

handle for an entity providing the authorization
TPMI_DH_ENTITY @authHandle Auth Index: 1
Auth Role: USER

handle for the policy session being extended

Auth Index: None
= |

the policy nonce for the session
This can be the Empty Buffer.

TPMI_SH_POLICY policySession

TPM2B_NONCE nonceTPM

digest of the command parameters to which this
authorization is limited

TPM2B_DIGEST cpHashA This not the cpHash fOI: this (;omnjand but‘ the cpHash

for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

a reference to a policy relating to the authorization —
may be the Empty Buffer

TPM2B_NONCE policyRef L .
Size is limited to be no larger than the nonce size
supported on the TPM.
time when authorization will expire, measured in
L seconds from the time that nonceTPM was generated
INT32 expiration

If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.

Table 116 — TPM2_PolicySecret Response

Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize

TPM_RC responseCode

_
implementation-specific time value used to indicate to
TPM2B_TIMEOUT timeout the TPM when the ticket expires; this ticket will use the
TPMT_ST_AUTH_SECRET structure tag

produced if the command succeeds and expiration in

TPMT_TK_AUTH policyTicket the command was non-zero. See 23.2.5

Family “2.0” TCG Published Page 243
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands

23.4.3 Detailed Actions

Trusted Platform Module Library

#include "InternalRoutines.h"

#include "PolicySecret fp.h"

#ifdef TPM CC_PolicySecret // Conditional expansion of this file
#include "Policy spt fp.h"

Error Returns

Meaning

TPM_RC_CPHASH

cpHash for policy was previously set to a value that is not the same
as cpHashA

TPM_RC_EXPIRED

expiration indicates a time in the past

TPM_RC_NONCE

nonceTPM does not match the nonce associated with policySession

TPM_RC_SIZE

cpHashA is not the size of a digest for the hash associated with
policySession

TPM_RC_VALUE

input policylD or expiration does not match the internal data in policy

session
TPM_RC
TPM2_PolicySecret (
PolicySecret In *in, // IN: input parameter list
PolicySecret Out *out // OUT: output parameter list
)
{
TPM RC result;
SESSION *session;
TPM2B_NAME entityName;
UINT32 expiration = (in->expiration < 0)
? —-(in—>expiration) : in->expiration;
UINT64 authTimeout = 0;

// Input Validation

// Get pointer to the session structure
session = SessionGet (in->policySession) ;

//Only do input validation if this is not a trial policy session
if (session->attributes.isTrialPolicy == CLEAR)

{

if (expiration !'= 0)

authTimeout

= expiration * 1000 + session->startTime;

result = PolicyParameterChecks (session, authTimeout,

&in->cpHashA, &in->nonceTPM,
RC_PolicySecret nonceTPM,
RC_PolicySecret cpHashA,
RC_PolicySecret expiration) ;

if (result !'= TPM_RC_SUCCESS)
return result;

}

// Internal Data Update
// Need the name of
entityName.t.size =

the authorizing entity
EntityGetName (in->authHandle, &entityName.t.name) ;

// Update policy context with input policyRef and name of auth key
// This value is computed even for trial sessions. Possibly update the cpHash
PolicyContextUpdate (TPM_CC_PolicySecret, &entityName, &in->policyRef,

Page 244
October 30, 2014

&in->cpHashA, authTimeout, session);

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

47

48 // Command Output

49

50 // Create ticket and timeout buffer if in->expiration < 0 and this is not
51 // a trial session.

52 // NOTE: PolicyParameterChecks() makes sure that nonceTPM is present

53 // when expiration is non-zero.

54 if(in->expiration < 0

55 && session->attributes.isTrialPolicy == CLEAR

56)

57 {

58 // Generate timeout buffer. The format of output timeout buffer is
59 // TPM-specific.

60 // Note: can't do a direct copy because the output buffer is a byte
61 // array and it may not be aligned to accept a 64-bit value. The method
62 // used has the side-effect of making the returned value a big-endian,
63 // 64-bit value that is byte aligned.

64 out->timeout.t.size = sizeof (UINT64) ;

65 UINT64_TO BYTE ARRAY (authTimeout, out->timeout.t.buffer);

66

67 // Compute policy ticket

68 TicketComputeAuth (TPM_ST AUTH SECRET, EntityGetHierarchy (in->authHandle),
69 authTimeout, &in->cpHashA, &in->policyRef,

70 &entityName, &out->policyTicket) ;

71 }

72 else

73 {

74 // timeout buffer is null

75 out->timeout.t.size = 0;

76

77 // auth ticket is null

78 out->policyTicket.tag = TPM ST AUTH SECRET;

79 out->policyTicket.hierarchy = TPM RH NULL;

80 out->policyTicket.digest.t.size = 0;

81 }

82

83 return TPM RC SUCCESS;

84 }

85 #endif // CC_PolicySecret

Family “2.0” TCG Published Page 245
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.5 TPM2_PolicyTicket

23.5.1 General Description

This command is similar to TPM2_PolicySigned() except that it takes a ticket instead of a signed
authorization. The ticket represents a validated authorization that had an expiration time associated with
it.

The parameters of this command are checked as described in 23.2.2.

If the checks succeed, the TPM uses the timeout, cpHashA, policyRef, and authName to construct a
ticket to compare with the value in ticket. If these tickets match, then the TPM will create a TPM2B_NAME
(objectName) using authName and update the context of policySession by PolicyUpdate() (see 23.2.3).

PolicyUpdate(commandCode, authName, policyRef) (16)

If the structure tag of ticket is TPM_ST_AUTH_SECRET, then commandCode will be
TPM_CC_PolicySecret. If the structure tag of ticket is TPM_ST_AUTH_SIGNED, then commandCode will
be TPM_CC_PolicySligned.

policySession is updated as described in 23.2.4.

Page 246 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library

23.5.2 Command and Response

Part 3: Commands

Table 117 — TPM2_PolicyTicket Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_PolicyTicket

TPMI_SH_POLICY

policySession

= |

handle for the policy session being extended
Auth Index: None

time when authorization will expire

TPM2B_TIMEOUT timeout The contents are TPM specific. This shall be the value
returned when ticket was produced.
digest of the command parameters to which this
authorization is limited
TPM2B_DIGEST cpHashA . L .
- If it is not limited, the parameter will be the Empty
Buffer.
. reference to a qualifier for the policy — may be the
TPM2B_NONCE policyRef Empty Buffer
TPM2B_NAME authName name of the object that provided the authorization
TPMT_TK_AUTH ticket an authorization ticket returned by the TPM in response

to a TPM2_PolicySigned() or TPM2_PolicySecret()

Table 118 — TPM2_PolicyTicket Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Family “2.0” TCG Published Page 247

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

[VO RN S

Part 3: Commands Trusted Platform Module Library

23.5.3 Detailed Actions

#include "InternalRoutines.h"

#include "PolicyTicket fp.h"

#ifdef TPM CC_PolicyTicket // Conditional expansion of this file
#include "Policy spt fp.h"

Error Returns Meaning
TPM_RC_CPHASH policy's cpHash was previously set to a different value
TPM_RC_EXPIRED timeout value in the ticket is in the past and the ticket has expired
TPM_RC_SIZE timeout or cpHash has invalid size for the
TPM_RC_TICKET ticket is not valid
TPM RC
TPM2 PolicyTicket (

PolicyTicket In *in // IN: input parameter list

)
{

TPM RC result;

SESSION *session;

UINT64 timeout;

TPMT TK AUTH ticketToCompare;

TPM CC commandCode = TPM CC_PolicySecret;

// Input Validation

// Get pointer to the session structure
session = SessionGet (in->policySession) ;

// NOTE: A trial policy session is not allowed to use this command.
// A ticket is used in place of a previously given authorization. Since
// a trial policy doesn't actually authenticate, the validated
// ticket is not necessary and, in place of using a ticket, one
// should use the intended authorization for which the ticket
// would be a substitute.
if (session->attributes.isTrialPolicy)
return TPM RCS_ATTRIBUTES + RC_PolicyTicket policySession;

// Restore timeout data. The format of timeout buffer is TPM-specific.
// In this implementation, we simply copy the value of timeout to the
// buffer.
if (in->timeout.t.size !'= sizeof (UINT64))

return TPM RC SIZE + RC_PolicyTicket timeout;
timeout = BYTE ARRAY TO UINT64 (in->timeout.t.buffer) ;

// Do the normal checks on the cpHashA and timeout values
result = PolicyParameterChecks (session, timeout,
&in->cpHashA, NULL,
0,
RC PolicyTicket cpHashA,
RC PolicyTicket timeout);

// no bad nonce return

if (result != TPM_RC_SUCCESS)
return result;

// Validate Ticket

// Re-generate policy ticket by input parameters

TicketComputeAuth (in->ticket.tag, in->ticket.hierarchy, timeout, &in->cpHashA,
&in->policyRef, &in->authName, &ticketToCompare) ;

// Compare generated digest with input ticket digest

Page 248 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74

Trusted Platform Module Library Part 3: Commands

if ('Memory2BEqual (&in->ticket.digest.b, &ticketToCompare.digest.b))
return TPM RC TICKET + RC_PolicyTicket ticket;

// Internal Data Update

// Is this ticket to take the place of a TPM2 PolicySigned() or
// a TPM2 PolicySecret()?
if (in->ticket.tag == TPM ST AUTH SIGNED)
commandCode = TPM CC PolicySigned;
else if (in->ticket.tag == TPM ST AUTH SECRET)
commandCode = TPM CC_PolicySecret;
else
// There could only be two possible tag values. Any other value should
// be caught by the ticket validation process.
pAssert (FALSE) ;

// Update policy context
PolicyContextUpdate (commandCode, &in->authName, &in->policyRef,
&in->cpHashA, timeout, session);

return TPM RC_SUCCESS;

}
#endif // CC_PolicyTicket

Family “2.0” TCG Published Page 249
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.6 TPM2_PolicyOR

23.6.1 General Description

This command allows options in authorizations without requiring that the TPM evaluate all of the options.
If a policy may be satisfied by different sets of conditions, the TPM need only evaluate one set that
satisfies the policy. This command will indicate that one of the required sets of conditions has been
satisfied.

PolicySession—policyDigest is compared against the list of provided values. If the current
policySession—policyDigest does not match any value in the list, the TPM shall return TPM_RC_VALUE.
Otherwise, it will replace policySession—policyDigest with the digest of the concatenation of all of the
digests and return TPM_RC_SUCCESS.

If policySession is a trial session, the TPM will assume that policySession—policyDigest matches one of
the list entries and compute the new value of policyDigest.

The algorithm for computing the new value for policyDigest of policySession is:
a) Concatenate all the digest values in pHashList:

digests := pHashList.digests[1].buffer || ... || pHashList.digests[n].buffer a7

NOTE 1 The TPM will not return an error if the size of an entry is not the same as the size of the digest
of the policy. However, that entry cannot match policyDigest.

b) Reset policyDigest to a Zero Digest.
¢) Extend the command code and the hashes computed in step a) above:

policyDigestiew = Hpolicyaig(policyDigestoa || TPM_CC_PolicyOR || digests) (18)

NOTE 2 The computation in b) and c) above is equivalent to:
policyDigestnew := Hpolicyatg(0...0 || TPM_CC_PolicyOR || digests)

A TPM shall support a list with at least eight tagged digest values.

NOTE 3 If policies are to be portable between TPMs, then they should not use more than eight values.

Page 250 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

23.6.2 Command and Response

Table 119 — TPM2_PolicyOR Command

Type Name Description

TPM_ST_SESSIONS if an audit session is present;

TPMI_ST_COMMAND_TAG tag otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_PolicyOR.

i i handle for the policy session being extended
TPMI_SH_POLICY policySession

Auth Index: None
== |

TPML_DIGEST pHashList the list of hashes to check for a match

Table 120 — TPM2_PolicyOR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Family “2.0” TCG Published Page 251

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

S Wb

Part 3: Commands

Trusted Platform Module Library

23.6.3 Detailed Actions

#include "InternalRoutines.h"
#include "PolicyOR fp.h"

#ifdef TPM CC_PolicyOR

// Conditional expansion of this file

#include "Eblicy_spt_fp.h"

Error Returns

Meaning

TPM_RC_VALUE

no digest in pHashList matched the current value of policyDigest for
policySession

TPM RC
TPM2 PolicyOR(
PolicyOR In *in // IN: input parameter list
)
{
SESSION *session;
UINT32 i;

// Input Validation an

// Get pointer to

d Update

the session structure

session = SessionGet (in->policySession) ;

// Compare and Update Internal Session policy if match

for(i = 0; i < in-
{

if(session-

>pHashList.count; i++)

>attributes.isTrialPolicy == SET

|| (Memory2BEqual (&session->u2.policyDigest.b,

// Found a
HASH_STATE
TPM CC

// Start h
session->u.

// Set pol
MemorySet (

&in->pHashlList.digests[i] .b))

match
hashState;
commandCode = TPM CC_PolicyOR;
ash
2.policyDigest.t.size = CryptStartHash (session->authHashAlg,

&hashsState) ;
icyDigest to 0 string and add it to hash
session->u2.policyDigest.t.buffer, O,
session->u2.policyDigest.t.size);

CryptUpdateDigest2B (&hashState, &session->u2.policyDigest.b);

// add command code
CryptUpdateDigestInt (&éhashState, sizeof (TPM _CC), &commandCode) ;

// Add each of the hashes in the list

for(i = 0;
{
// Ext

i < in->pHashList.count; i++)

end policyDigest

CryptUpdateDigest2B (&hashState, &in->pHashList.digests[i].b);

}
// Complet

e digest

CryptCompleteHash2B (&hashState, &session->u2.policyDigest.b);

return TPM RC SUCCESS;

}
}

// None of the values in the list matched the current policyDigest
return TPM RC VALUE + RC_PolicyOR pHashList;

}

Page 252
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

56 #endif // CC_PolicyOR

Family “2.0” TCG Published Page 253
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.7 TPM2_PolicyPCR

23.7.1 General Description

This command is used to cause conditional gating of a policy based on PCR. This command together
with TPM2_PolicyOR() allows one group of authorizations to occur when PCR are in one state and a
different set of authorizations when the PCR are in a different state. If this command is used for a trial
policySession, policySession—policyDigest will be updated using the values from the command rather
than the values from digest of the TPM PCR.

The TPM will modify the pcrs parameter so that bits that correspond to unimplemented PCR are CLEAR.
If policySession is not a trial policy session, the TPM will use the modified value of pcrs to select PCR
values to hash according to TPM 2.0 Part 1, Selecting Multiple PCR. The hash algorithm of the policy
session is used to compute a digest (digestTPM) of the selected PCR. If pcrDigest does not have a length
of zero, then it is compared to digestTPM; and if the values do not match, the TPM shall return
TPM_RC_VALUE and make no change to policySession—policyDigest. If the values match, or if the
length of pcrDigest is zero, then policySession—policyDigest is extended by:

policyDigestnew == Hpolicyaig(policyDigestou || TPM_CC_PolicyPCR || pcrs || digestTPM) 19

where
pcrs the pcrs parameter with bits corresponding to unimplemented
PCR setto O
digestTPM the digest of the selected PCR using the hash algorithm of the
policy session
NOTE 1 If the caller provides the expected PCR value, the intention is that the policy evaluation stop at that

point if the PCR do not match. If the caller does not provide the expected PCR value, then the
validity of the settings will not be determined until an attempt is made to use the policy for
authorization. If the policy is constructed such that the PCR check comes before user authorization
checks, this early termination would allow software to avoid unnecessary prompts for user input to
satisfy a policy that would fail later due to incorrect PCR values.

After this command completes successfully, the TPM shall return TPM_RC_PCR_CHANGED if the policy
session is used for authorization and the PCR are not known to be correct.

The TPM uses a “generation” number (pcrUpdateCounter) that is incremented each time PCR are
updated (unless the PCR being changed is specified not to cause a change to this counter). The value of
this counter is stored in the policy session context (policySession—pcrUpdateCounter) when this
command is executed. When the policy is used for authorization, the current value of the counter is
compared to the value in the policy session context and the authorization will fail if the values are not the
same.

When this command is executed, policySession—pcrUpdateCounter is checked to see if it has been
previously set (in the reference implementation, it has a value of zero if not previously set). If it has been
set, it will be compared with the current value of pcrUpdateCounter to determine if any PCR changes
have occurred. If the values are different, the TPM shall return TPM_RC_PCR_CHANGED.

NOTE 2 Since the pcrUpdateCounter is updated if any PCR is extended (except those specified not to do
s0), this means that the command will fail even if a PCR not specified in the policy is updated. This
is an optimization for the purposes of conserving internal TPM memory. This would be a rare
occurrence. and, if this should occur, the policy could be reset using the TPM2_PolicyRestart
command and rerun.

If policySession—pcrUpdateCounter has not been set, then it is set to the current value of
pcrUpdateCounter.

Page 254 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

If policySession is a trial policy session, the TPM will not check any PCR and will compute:
policyDigestnew == Hpolicyaig(policyDigestou || TPM_CC_PolicyPCR || pcrs || pcrDigest) (20)

In this computation, pcrs is the input parameter without modification.

NOTE 3 The pcrs parameter is expected to match the configuration of the TPM for which the policy is being
computed which may not be the same as the TPM on which the trial policy is being computed.

NOTE 4 Although no PCR are checked in a trial policy session, pcrDigest is expected to correspond to some
useful PCR values. It is legal, but pointless, to have the TPM aid in calculating a policyDigest
corresponding to PCR values that are not useful in practice.

Family “2.0” TCG Published Page 255
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

23.7.2 Command and Response

Trusted Platform Module Library

Table 121 — TPM2_PolicyPCR Command

Type

Name

Description

TPMI_ST_COMMAND_TAG

tag

TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32

commandSize

TPM_CC

commandCode

TPM_CC_PolicyPCR

TPMI_SH_POLICY

TPM2B_DIGEST

policySession

= |

pcrDigest

handle for the policy session being extended
Auth Index: None

expected digest value of the selected PCR using the
hash algorithm of the session; may be zero length

TPML_PCR_SELECTION

pcrs

the PCR to include in the check digest

Table 122 — TPM2_PolicyPCR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Page 256 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

N

Trusted Platform Module Library Part 3: Commands

23.7.3 Detailed Actions

#include "InternalRoutines.h"
#include "PolicyPCR fp.h"
#ifdef TPM CC_PolicyPCR // Conditional expansion of this file

Error Returns

Meaning

TPM_RC_VALUE

if provided, pcrDigest does not match the current PCR settings

TPM_RC_PCR_CHANGED a previous TPM2_PolicyPCR() set pcrCounter and it has changed

TPM RC

TPM2 PolicyPCR(
PolicyPCR In
)

SESSION
TPM2B_DIGEST
BYTE

UINT32

BYTE

TPM _CC
HASH_STATE

// Input Validation

*in // IN: input parameter list

*session;

pcrDigest;

pcrs[sizeof (TPML_PCR SELECTION)] ;
pcrSize;

*buffer;

commandCode = TPM CC_PolicyPCR;
hashState;

// Get pointer to the session structure
session = SessionGet (in->policySession) ;

// Do validation for non trial session
if (session->attributes.isTrialPolicy == CLEAR)

{

// Make sure that this is not going to invalidate a previous PCR check
if (session->pcrCounter != 0 && session->pcrCounter != gr.pcrCounter)
return TPM RC PCR CHANGED;

// Compute current PCR digest
PCRComputeCurrentDigest (session->authHashAlg, &in->pcrs, &pcrDigest) ;

// If the caller specified the PCR digest and it does not
// match the current PCR settings, return an error..
if (in->pcrDigest.t.size != 0)

{

if ('Memory2BEqual (&in->pcrDigest.b, &pcrDigest.b))

}

else

{

return TPM RC VALUE + RC_PolicyPCR pcrDigest;

// For trial session, just use the input PCR digest
pcrDigest = in->pcrDigest;

}

// Internal Data Update

// Update policy hash
// policyDigestnew = hash(policyDigestold || TPM CC_PolicyPCR

//

// Start hash

|| pcrs || pcrDigest)

CryptStartHash (session->authHashAlg, &hashState) ;

// add old digest
CryptUpdateDigest2B (&hashState, &session->u2.policyDigest.b) ;

Family “2.0”

TCG Published Page 257

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Part 3: Commands

}

// add commandCode
CryptUpdateDigestInt (¢hashState, sizeof (TPM CC), &commandCode) ;

// add PCRS

buffer = pcrs;

pcrSize = TPML PCR SELECTION Marshal (&in->pcrs, &buffer, NULL);
CryptUpdateDigest (¢hashState, pcrSize, pcrs);

// add PCR digest
CryptUpdateDigest2B (&hashState, &pcrDigest.b) ;

// complete the hash and get the results
CryptCompleteHash2B (&hashState, &session->u2.policyDigest.b) ;

// update pcrCounter in session context for non trial session
if (session->attributes.isTrialPolicy == CLEAR)
{

session->pcrCounter = gr.pcrCounter;

}

return TPM_RC_SUCCESS;

#endif // CC_PolicyPCR

Page 258 TCG Published

October 30, 2014 Copyright © TCG 2006-2014

Trusted Platform Module Library

Family “2.0”
Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

23.8 TPM2_PolicyLocality

23.8.1 General Description

This command indicates that the authorization will be limited to a specific locality.

policySession—commandLocality is a parameter kept in the session context. When the policy session is
started, this parameter is initialized to a value that allows the policy to apply to any locality.

If locality has a value greater than 31, then an extended locality is indicated. For an extended locality, the
TPM will validate that policySession—commandLocality has not previously been set or that the current
value of policySession—commandLocality is the same as locality (TPM_RC_RANGE).

When locality is not an extended locality, the TPM will validate that the policySession—commandLocality
is not set to an extended locality value (TPM_RC_RANGE). If not the TPM will disable any locality not
SET in the locality parameter. If the result of disabling localities results in no locality being enabled, the
TPM will return TPM_RC_RANGE.

If no error occurred in the validation of locality, policySession—policyDigest is extended with
policyDigestiew = Hpolicyaig(policyDigesto || TPM_CC_PolicyLocality || locality) (22)

Then policySession—commandLocality is updated to indicate which localities are still allowed after
execution of TPM2_PolicyLocality().

When the policy session is used to authorize a command, the authorization will fail if the locality used for
the command is not one of the enabled localities in policySession—commandLocality.

Family “2.0” TCG Published Page 259
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands Trusted Platform Module Library

23.8.2 Command and Response

Table 123 — TPM2_PolicyLocality Command

Type Name Description

TPM_ST_SESSIONS if an audit session is present;

TPMI_ST_COMMAND_TAG tag otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize
TPM_CC commandCode TPM_CC_PolicyLocality

.) handle for the policy session being extended
TPMI_SH_POLICY policySession

Auth Index: None
== |

TPMA_LOCALITY locality the allowed localities for the policy

Table 124 — TPM2_PolicyLocality Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Page 260 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

N

Trusted Platform Module Library

23.8.3 Detailed Actions

#include "InternalRoutines.h"
#include "Policylocality fp.h"
#ifdef TPM CC_Policylocality // Conditional expansion of this file

Limit a policy to a specific locality

Part 3: Commands

Error Returns Meaning

TPM_RC_RANGE all the locality values selected by locality have been disabled by

previous TPM2_PolicyLocality() calls.

TPM RC

TPM2 PolicyLocality(
PolicyLocality In *in // IN: input parameter list
)

{
SESSION *session;
BYTE marshalBuffer[sizeof (TPMA LOCALITY)];
BYTE prevSetting[sizeof (TPMA_LOCALITY)];
UINT32 marshalSize;
BYTE *buffer;
TPM CC commandCode = TPM CC_PolicyLocality;

HASH STATE hashState;

// Input Validation

// Get pointer to the session structure
session = SessionGet (in->policySession) ;

// Get new locality setting in canonical form
buffer = marshalBuffer;
marshalSize = TPMA LOCALITY Marshal (&in->locality, &buffer, NULL);

// Its an error if the locality parameter is zero
if (marshalBuffer[0] == 0)

return TPM RC RANGE + RC PolicyLocality locality;

// Get existing locality setting in canonical form
buffer = prevSetting;
TPMA LOCALITY Marshal (&session->commandlocality, &buffer, NULL);

// If the locality has previously been set

if(

prevSetting[0] !'= 0
// then the current locality setting and the requested have to be the same
// type (that is, either both normal or both extended
&& ((prevSetting[0] < 32) !'= (marshalBuffer[0] < 32)))
return TPM RC RANGE + RC_PolicyLocality locality;

// See if the input is a regular or extended locality
if (marshalBuffer[0] < 32)

{

// if there was no previous setting, start with all normal localities
// enabled
if (prevSetting[0] == 0)

prevSetting[0] = Ox1F;

// AND the new setting with the previous setting and store it in prevSetting
prevSetting[0] &= marshalBuffer[0];

// The result setting can not be 0
if (prevSetting[0] == 0)

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Page 261

Part 3: Commands Trusted Platform Module Library

54 return TPM RC RANGE + RC_PolicyLocality locality;

55 }

56 else

57 {

58 // for extended locality

59 // if the locality has already been set, then it must match the
60 if (prevSetting[0] !'= 0 && prevSetting[0] !'= marshalBuffer[0])
61 return TPM RC RANGE + RC PolicyLocality locality;

62

63 // Setting is OK

64 prevSetting[0] = marshalBuffer[0];

65

66 }

67

68 // Internal Data Update

69

70 // Update policy hash

71 // policyDigestnew = hash(policyDigestold || TPM CC PolicyLocality || locality)
72 // Start hash

73 CryptStartHash (session->authHashAlg, &hashState) ;

74

75 // add old digest

76 CryptUpdateDigest2B (&hashState, &session->u2.policyDigest.b) ;

77

78 // add commandCode

79 CryptUpdateDigestInt (&éhashState, sizeof (TPM CC), &commandCode) ;
80

81 // add input locality

82 CryptUpdateDigest (¢hashState, marshalSize, marshalBuffer);

83

84 // complete the digest

85 CryptCompleteHash2B (&hashState, &session->u2.policyDigest.b) ;

86

87 // update session locality by unmarshal function. The function must succeed
88 // because both input and existing locality setting have been validated.
89 buffer = prevSetting;

90 TPMA LOCALITY Unmarshal (&session->commandLocality, &buffer,

91 (INT32 *) &marshalSize);

92

93 return TPM RC SUCCESS;

94 }

95 #endif // CC_PolicyLocality

Page 262 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Trusted Platform Module Library Part 3: Commands

23.9 TPM2_PolicyNV

23.9.1 General Description

This command is used to cause conditional gating of a policy based on the contents of an NV Index.

If policySession is a trial policy session, the TPM will update policySession—policyDigest as shown in
equations (22) and (23) below and return TPM_RC_SUCCESS. It will not perform any validation. The
remainder of this general description would apply only if policySession is not a trial policy session.

An authorization session providing authorization to read the NV Index shall be provided.

NOTE If read access is controlled by policy, the policy should include a branch that authorizes a
TPM2_PolicyNV().

If TPMA_NV_WRITTEN is not SET in the NV Index, the TPM shall return TPM_RC_NV_UNINITIALIZED.

The TPM will validate that the size of operandB plus offset is not greater than the size of the NV Index. If
it is, the TPM shall return TPM_RC_SIZE.

operandA begins at offest into the NV index contents and has a size equal to the size of operandB. The
TPM will perform the indicated arithmetic check using operandA and operandB. . If the check fails, the
TPM shall return TPM_RC_POLICY and not change policySession—policyDigest. If the check succeeds,
the TPM will hash the arguments:

args = Hyaicaig(operandB.buffer || offset || operation) (22)
where
Hpolicyaig() hash function using the algorithm of the policy session
operandB the value used for the comparison
offset offset from the start of the NV Index data to start the comparison
operation the operation parameter indicating the comparison being
performed

The value of args and the Name of the NV Index are extended to policySession—policyDigest by

policyDigestnew = Hpolicyaig(policyDigestoia || TPM_CC_PolicyNV || args || nvindex—»Name) (23)

where
Hyolicyaig() hash function using the algorithm of the policy session
args value computed in equation (22)
nvindex—Name the Name of the NV Index

The signed arithmetic operations are performed using twos-compliment.

Magnitude comparisons assume that the octet at offset zero in the referenced NV location and in
operandB contain the most significant octet of the data.

Family “2.0” TCG Published Page 263
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 3: Commands

23.9.2 Command and Response

Trusted Platform Module Library

Table 125 — TPM2_PolicyNV Command

Type Name Description
TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS
UINT32 commandSize
TPM_CC commandCode TPM_CC_PolicyNV

handle indicating the source of the authorization value
TPMI_RH_NV_AUTH @authHandle Auth Index: 1

Auth Role: USER

the NV Index of the area to read
TPMI_RH_NV_INDEX nvindex

Auth Index: None

TPMI_SH_POLICY

policySession

- — — — — —— — — |

handle for the policy session being extended
Auth Index: None

TPM2B_OPERAND operandB the second operand
UINT16 offset the offset in the NV Index for the start of operand A
TPM_EO operation the comparison to make
Table 126 — TPM2_PolicyNV Response
Type Name Description
TPM_ST tag see clause 6
UINT32 responseSize
TPM_RC responseCode
Page 264 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

s WNhPR

Trusted Platform Module Library

23.9.3 Detailed Actions

#include "InternalRoutines.h"

#include "PolicyNV fp.h"

#ifdef TPM CC_PolicyNV // Conditional expansion of this file
#include "Policy spt fp.h"

#include "NV_spt fp.h"

// Include NV support routine for read access check

Part 3: Commands

Error Returns Meaning
TPM_RC_AUTH_TYPE NV index authorization type is not correct
TPM_RC_NV_LOCKED NV index read locked

TPM_RC_NV_UNINITIALIZED the NV index has not been initialized

TPM_RC_POLICY the comparison to the NV contents failed
TPM_RC_SIZE the size of nvindex data starting at offset is less than the size of
operandB
TPM RC
TPM2 PolicyNV (
PolicyNV_In *in // IN: input parameter list
)
{
TPM RC result;
SESSION *session;
NV_INDEX nvIndex;
BYTE nvBuffer [sizeof (in->operandB. t.buffer)];
TPM2B_NAME nvName;
TPM CC commandCode = TPM CC_PolicyNV;
HASH STATE hashState;
TPM2B DIGEST argHash;

// Input Validation

// Get NV index information
NvGetIndexInfo (in->nvIndex, &nvIndex) ;

// Get pointer to the session structure
session = SessionGet (in->policySession) ;

//If this is a trial policy, skip all validations and the operation
if (session->attributes.isTrialPolicy == CLEAR)

{

// NV Read access check. NV index should be allowed for read. A
// TPM RC_AUTH TYPE or TPM RC NV _ILOCKED error may be return at this
// point

result = NvReadAccessChecks (in->authHandle, in->nvIndex) ;

if (result !'= TPM RC_SUCCESS) return result;

// Valid NV data size should not be smaller than input operandB size
if ((nvIndex.publicArea.dataSize - in->offset) < in->operandB.t.size)
return TPM RC SIZE + RC_PolicyNV_operandB;

// Arithmetic Comparison
// Get NV data. The size of NV data equals the input operand B size
NvGetIndexData (in->nvIndex, &nvIndex, in->offset,

in->operandB. t.size, nvBuffer) ;

switch (in->operation)
{

Family “2.0” TCG Published
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Page 265

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Part 3: Commands Trusted Platform Module Library

case TPM EO _EQ:
// compare A = B
if (CryptCompare (in->operandB.t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) != 0)
return TPM RC POLICY;
break;
case TPM EO_NEQ:
// compare A '= B
if (CryptCompare (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) == 0)
return TPM RC POLICY;
break;
case TPM EO_SIGNED GT:
// compare A > B signed
if (CryptCompareSigned (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) <= 0)
return TPM RC POLICY;
break;
case TPM EO UNSIGNED GT:
// compare A > B unsigned
if (CryptCompare (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) <= 0)
return TPM RC_POLICY;
break;
case TPM EO_SIGNED LT:
// compare A < B signed
if (CryptCompareSigned (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) >= 0)
return TPM RC_POLICY;
break;
case TPM EO UNSIGNED LT:
// compare A < B unsigned
if (CryptCompare (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) >= 0)
return TPM RC_POLICY;
break;
case TPM EO_SIGNED GE:
// compare A >= B signed
if (CryptCompareSigned (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) < 0)
return TPM RC POLICY;
break;
case TPM EO UNSIGNED GE:
// compare A >= B unsigned
if (CryptCompare (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) < 0)
return TPM RC POLICY;
break;
case TPM EO_SIGNED LE:
// compare A <= B signed
if (CryptCompareSigned (in->operandB. t.size, nvBuffer,
in->operandB.t.size, in->operandB.t.buffer) > 0)
return TPM RC POLICY;
break;
case TPM EO UNSIGNED LE:
// compare A <= B unsigned
if (CryptCompare (in->operandB. t.size, nvBu