
Management of Uncertainties in Publish/Subscribe System

by

Haifeng Liu

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2009 by Haifeng Liu

Abstract

Management of Uncertainties in Publish/Subscribe System

Haifeng Liu

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2009

In the publish/subscribe paradigm, information providers disseminate publications to

all consumers who have expressed interest by registering subscriptions. This paradigm

has found wide-spread applications, ranging from selective information dissemination to

network management. However, all existing publish/subscribe systems cannot capture

uncertainty inherent to the information in either subscriptions or publications.

In many situations the large number of data sources exhibit various kinds of uncer-

tainties. Examples of imprecision include: exact knowledge to either specify subscriptions

or publications is not available; the match between a subscription and a publication with

uncertain data is approximate; the constraints used to define a match is not only con-

tent based, but also take the semantic information into consideration. All these kinds

of uncertainties have not received much attention in the context of publish/subscribe

systems.

In this thesis, we propose new publish/subscribe models to express uncertainties and

semantics in publications and subscriptions, along with the matching semantics for each

model. We also develop efficient algorithms to perform filtering for our models so that it

can be applied to process the rapidly increasing information on the Internet. A thorough

experimental evaluation is presented to demonstrate that the proposed systems can offer

scalability to large number of subscribers and high publishing rates.

ii

To my parents

iii

Acknowledgements

I am in great debt to many people for the completion of this thesis and the duration

of my PhD journey.

The first person I wish to thank is my supervisor, Professor Hans Arno Jacobsen,

who has led me into the area of computer science and computer engineering and guided

me through the study and research in the past years. He has patiently taught me how

to become a good researcher, by kindly correcting me, constantly encouraging me, and

always being very cooperative. I believe I would continue to benefit from the spirits he

has demonstrated for us in the rest of my life.

I wish to thank my supervisory committee members, Professor John Mylopoulos

and Professor Steve Easterbrook, for their helpful feedback on my research work. I am

greatly thankful to another two defense committee members, Professor Dave Wortman

and Professor Tamer Ozsu from University of Waterloo, for carefully reading my thesis

and giving me insightful comments and suggestions.

I had the privilege of interacting with bright and talented Milenko Petrovic and Vinod

Muthusamy on a number of projects. They have taught me much, and their advice,

feedback, and friendship have made my Ph.D. experience both more educational and more

fun. Deepest thanks to all my dear middleware systems research group folks! Especially

thank to Guoli Li, Hou Shuang, Zhengdao Xu, Milenko Petrovic, Vinod Muthusamy, Bala

Maniymaran, Alex Chuang and Reza Sherafat. I will always remember your strongest

support and warmest care when I really needed them! All our brain-storming discussions,

hardworking days and nights, together with all the laughters and gatherings, will remain

part of my memories.

I owe my gang of friends in Toronto for giving me the most valuable care and help

through these years. Dongning, my first officemate and friend in Canada. From you, I

have learnt to be more tolerant and considerate. Ying and Fei, you are my closest and

most precious friends! I always feel totally free to share all my feelings and troubles with

iv

you, because you are so understanding and wise. We have been together to get through

so many things these years. I will cherish every moment we have spent together, no

matter happiness and sadness, in my whole life. Yi Zhao, your smartness, openness and

broad interests have brought me a lot of fun. Nan, I feel so pleasant to have known you;

your intelligence, perseverance, and athleticism have deeply impressed me, I wish you

have a very bright career path and a happy life! My dearest Hui, You are the source of

my joyness. Your wisdom, generosity, tenderness, optimism and enthusiasm for science,

nature and life have always enlightened my life. You are perfect! From you, I know what

is beauty. Deepest thank for your patience, encouragement, support and love. And I

firmly know that you are the one who are always there for me. I cherish everything you

gave to me and I sincerely wish you all the best!

While in Toronto, I would like to give many many thanks to my friends, Ken Pu, Jin

Chen, Naiqi Weng, Jingrui Zhang, Xuming He, Jiang Zhu, Dongying Li, Yunfeng Lin,

Jin Jin, Jianhong Yu, Chao Li, Grace, Charlton, Xia chen and Samuel for their support

and a great amount of amusement.

Finally but the most importantly, I would like to thank my great family – my beloved

parents, my wonderful husband Xiaofei He, and my lovely sister Haibo Liu, for every-

thing that they have given to me. They have stood by me in everything I have done,

providing unconditional constant and endless support, encouragement and love. They

are an inspiration to me in all that they do.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 5

1.3 Contributions . 7

1.4 Organization . 9

2 Related Work 11

2.1 Publish/Subscribe Systems . 11

2.1.1 Publish/Subscribe Research Prototypes 11

2.1.2 Filtering of Semi-Structured Data 14

2.1.3 Indexing and Routing . 15

2.1.4 Industrial Standards . 17

2.1.5 Continuous Queries . 18

2.2 Uncertain and Imprecision Information Management 19

3 Background 22

3.1 Overview of Publish/Subscribe System 22

3.2 Theories of Uncertainties . 24

3.2.1 Fuzzy Set Theory . 25

3.2.2 Possibility Theory . 27

3.2.3 Markov Model . 28

vi

4 Modeling Uncertainties in Content-Based Publish/Subscribe Systems 30

4.1 Architecture of Distributed Content-based Routing 31

4.1.1 Publish/Subscribe Router . 31

4.1.2 Publish/Subscribe Broker Network 33

4.1.3 Approximate Content-based Routing 34

4.2 Approximate Publish/Subscribe System Model 35

4.2.1 Language and Data Model . 35

4.2.2 Approximate Routing Computations 38

4.3 Data Structures and Algorithms . 45

4.3.1 Data Structures . 45

4.3.2 Approximate Matching Algorithms 47

4.3.3 Approximate Covering Algorithm 53

4.3.4 Approximate Merging Algorithm 56

4.3.5 Intersecting-based Routing . 58

4.4 Parameterizations Selection for Approximate Pub/Sub Model 59

4.5 Experiments . 62

4.5.1 Experiment Setup . 62

4.5.2 Model Parameterizations Mining 62

4.5.3 Evaluation of Approximate Matching on a Single Router 65

4.5.4 Evaluation of Approximate Routing on a Network 75

4.6 A-ToPSS System Implementation . 83

4.6.1 System Architecture . 84

4.6.2 Web Interface . 86

4.6.3 Control and Monitoring Experiments 89

5 Fast Filtering of Graph-Based Metadata on Computing Cluster 93

5.1 Architecture of the Graph-Based Metadata Matching Engine 95

5.1.1 Subscription Partitioning . 96

vii

5.1.2 Pipelined Filtering . 98

5.2 Graph-Based Publish/Subscribe Model 98

5.2.1 Language and Data Model . 98

5.3 Data Structures and Algorithms . 104

5.3.1 Data Structures . 106

5.3.2 Filtering Algorithm on a Single Node 108

5.3.3 Indexing Algorithms for a Cluster 116

5.3.4 Index Maintenance . 126

5.3.5 Pipelined Filtering Algorithm . 128

5.4 Eexperiments . 129

5.4.1 Experiment Setup . 130

5.4.2 Filtering Performance on a Single Node 131

5.4.3 Indexing Performance . 135

5.4.4 Filtering Performance on a Cluster 142

5.5 G-ToPSS System Implementation . 146

5.5.1 Web Application . 146

5.5.2 System Architecture . 147

6 Probabilistic Publish/Subscribe System 152

6.1 System Model . 153

6.1.1 Publication Data Model . 153

6.1.2 Subscription Language . 154

6.1.3 The Matching and Prediction Problems 156

6.2 Subscription Processing . 158

6.2.1 Contiguous Sequence Operators 160

6.2.2 Non-contiguous Sequence Operators 162

6.2.3 General Sequence Operators . 164

6.2.4 Combining Boolean/Sequence Operators 165

viii

6.2.5 Merging Multiple Graphs . 167

6.3 Event Processing . 168

6.3.1 Matching Algorithm . 168

6.3.2 Prediction Algorithm . 175

6.4 Experiments . 178

6.4.1 Matching Performance . 180

6.4.2 Prediction Performance . 184

7 Conclusions and Future Work 189

7.1 Conclusions . 189

7.2 Future Work . 191

Bibliography 193

ix

List of Tables

4.1 Data Classification and Dataset Size . 63

4.2 A-ToPSS Workload parameters . 67

4.3 Comparison of number of matches for various types of subscriptions with

approximate publications and number of matches for various types of pub-

lications with approximate subscriptions. 73

4.4 Workload parameters for experiments on a network 76

5.1 The workload parameters in experiments 130

6.1 Event stream of login history . 154

6.2 Composite subscription operators . 155

6.3 FSM Construction Cases . 160

6.4 Time condition @(si, sj) for example subscription cs = s1; ((s2; s3)∧(s4, s5)); s6; (s7∨

s8). 173

6.5 Ptopss Workload parameters . 179

x

List of Figures

3.1 Publish/Subscribe Paradigm . 23

3.2 The membership function representing “post-modern paintings”. 25

4.1 Hierarchical broker architecture . 33

4.2 Cases of possibility and necessity measure 41

4.3 Degree of match defined as ratio of overlap 42

4.4 µ1 covers µ2, p1 covers p2 iff θΠ1
≤ θΠ2

and θN1
≤ θN2

. 42

4.5 How to merge overlapped subscriptions 44

4.6 Data structures . 46

4.7 Examples of match and no-match between µ and π 49

4.8 Examples of ordered predicates p1 < p2 < p3 < p4 50

4.9 partition the list into k clusters . 61

4.10 Two Bedroom Price Distribution . 63

4.11 The function representing the cheap rent for two-bedrooms apartment . . 64

4.12 The function representing the medium rent for two-bedrooms apartment 64

4.13 The function representing the expensive rent for two-bedrooms apartment 65

4.14 Definition of different subscription and publication types 66

4.15 Matching Time . 68

4.16 Predicate Matching Time . 69

4.17 Loading Time . 69

4.18 Memory Used . 70

xi

4.19 List-based Matching Time . 70

4.20 List-based Memory Used . 71

4.21 The trade off between precision and space 72

4.22 F-measure on aggregations . 75

4.23 Routing Table Size vs. #subscriptions 77

4.24 Matching time vs. #subscriptions . 77

4.25 Routing table size vs. subscription covering ratio 78

4.26 Matching time vs. subscription covering ratio 79

4.27 Insertion time vs. #subscriptions . 80

4.28 Insertion time vs. subscription covering ratio 80

4.29 routing table size vs. merge percentage 81

4.30 false positive vs. merge percentage . 81

4.31 Effects of choices to aggregate matching thresholds 83

4.32 Overall Architecture of Publish/Subscribe System 84

4.33 Demonstration Setup of Approximate Toronto Publish/Subscribe System

(A-ToPSS). 85

4.34 A–ToPSS implementation design . 87

4.35 The power user’s interface for defining approximate subscriptions. 89

4.36 The control panel . 90

4.37 The monitoring panel . 92

5.1 Publish/Subscribe Cluster . 96

5.2 RDF triple graph . 99

5.3 G-ToPSS Publication Example . 100

5.4 Subscription S1 . 102

5.5 Subscription S2 . 102

5.6 Example taxonomy . 104

5.7 Matrix GM contains both S1 and S2 . 105

xii

5.8 Data Structure . 106

5.9 Binding table join . 110

5.10 G-ToPSS Data Structure . 112

5.11 Example of Subscription Containment 119

5.12 Example of Subscription Containment Tree 119

5.13 Computing containment relation . 122

5.14 Merger of Subscriptions . 126

5.15 Deleting Subscriptions . 127

5.16 Memory vs. #subscriptions . 132

5.17 Matching time vs. #subscriptions . 132

5.18 Memory vs. subscription overlap . 133

5.19 Matching time vs. subscription size . 134

5.20 Matching time vs. matching ratio . 135

5.21 G-ToPSS vs. OPS . 136

5.22 OPS vs. naive . 137

5.23 index lookup time vs. #subscriptions . 138

5.24 GToPSS vs. Optimization . 138

5.25 server index size vs. #subscriptions . 139

5.26 Matching time vs. #matches . 139

5.27 routing table size vs. overlapping ratio 140

5.28 index size vs. merge percentage . 140

5.29 false positive vs. merge percentage . 141

5.30 Insertion time vs. #subscriptions . 141

5.31 Merging time vs. merge percentage . 142

5.32 Number of Subscriptions per node vs.cluster size 143

5.33 Indexing time vs.overlapping ratio . 144

5.34 System throughput vs.cluster size for containment indexing 144

xiii

5.35 Throughput vs. cluster size for merging indexing 145

5.36 CMS-ToPSS system architecture . 148

5.37 RSS feed example . 148

5.38 Subscription example . 149

5.39 CMS-ToPSS User API . 151

6.1 System Architecture . 159

6.2 FSM for F, F, S, S . 161

6.3 FSM for F, F, F@(tN3
− tN1

< d), S . 162

6.4 FSM for s1; s2; · · · ; sk . 163

6.5 FSM for F ; S1; F ; S2@(tS2
− tS1

< T) . 163

6.6 FSM for F, F1, S; F, S; F2@(tF2
− tF1

< T), S 165

6.7 General composite subscription . 166

6.8 Merging Multiple State Machines . 168

6.9 Data structure for subscription cs = s1; s2@(ts2
− ts1

< 3); s3@(ts3
− ts1

<

6)@(ts3
− ts2

> 3) . 170

6.10 Global Time Condition Table Example 174

6.11 Sample event stream . 180

6.12 #States vs. #subscriptions . 181

6.13 Matching time vs. #subscriptions . 181

6.14 Matching time vs. #operators . 182

6.15 Merging degree vs. sub length . 183

6.16 #States vs. pool size . 183

6.17 #Transitions vs. pool size . 184

6.18 Precision vs. #partial matches . 185

6.19 Comparing prediction results for different workload 186

6.20 Evaluation on real data, compared with a model with full knowledge . . . 188

xiv

Chapter 1

Introduction

With the proliferation of pervasive computing devices, the integration of network access

technologies, the amount of information on the Internet is continuously increasing. This

fuels the urge of users to stay informed about changes to the content. In general, users

want to be updated about daily news headlines of interest to them, be notified when

there is a reply in a discussion they participate in, or their favorite web personality has

updated her blog etcetera. As the amount of information on the Web increases rapidly,

efficient and timely dissemination of information has been seen as a key to distributing

information to assist end-users.

Today most information dissemination services use a pull-based architecture where

users actively pull information from a web site to find what they need. This pull-based

architecture is not efficient in the sense that it not only consumes unnecessary resources,

but also makes it difficult to ensure timely delivery of updates.

Also, the large amount of information providers offering content is driving the need

for an information dissemination model that offers its users highly pertinent information

in a demand-driven manner.

This can be supported extremely well through the publish/subscribe paradigm [33],

which provides the loosely coupled form of interaction required in such large scale set-

1

Chapter 1. Introduction 2

tings. The publish/subscribe system anonymously interconnects information providers

with information consumers in a distributed environment. The publish/subscribe system

performs the matching and filtering task and ensures the timely delivery of publications

to all interested subscribers.

The strength of this interaction style lies in the full decoupling in time, space and syn-

chronization between publishers and subscribers. In the following sections, we describe

applications and problems that could benefit from publish/subscribe systems, but require

support from the publish/subscribe system that go beyond their current capabilities.

1.1 Motivation

Publish/subscribe has been well studied and many systems have been developed support-

ing this paradigm. Existing research prototypes, include, among others, Gryphon [10],

LeSubscribe [34], and ToPSS [7, 56, 71, 15, 87]; industrial strength systems include var-

ious implementations of JMS [43, 65], the CORBA Notification Service [67], TIBCO’s

Tib/Rendezvoud product [89] and Web Services Notification [1].

All publish/subscribe systems developed to date are based on the crisp matching

semantics, which means that neither subscribers nor publishers can express uncertain

or partial information and a match between a subscription stored in the system and an

event submitted to the system is either true or false – that is, a subscription matches or

does not match. However, in many situations the large number of data sources exhibit

various kinds of imperfection. In these cases, uncertainty about the state of the world

has to be cast into the crisp data model that defines absolute limits. Moreover, for a

user of the publish/subscribe system, it may be simpler to describe the state of the world

with imperfect concepts – we say, in an approximate manner.

Examples of imperfect information include: exact knowledge to either specify sub-

scriptions or publications is not available; the match between a subscription and a pub-

Chapter 1. Introduction 3

lication with uncertain data is approximate; the constraints used to define a match is

not only content based, but also take the semantic information into consideration. The

management of these kinds of imperfect information have received little attention in the

scope of publish/subscribe research in the past. Next, we illustrate the problem for above

imperfection with a number of concrete application scenarios and use cases.

First, in a selective information dissemination context, for instance, users may want

to submit subscriptions about a book whose constraints on price is “cheap”. On the other

hand, information providers may not have exact information for all items published. In

a second-hand market, a seller may not know the exact age of a antique vase so that she

can just describe it as an “old” vase. Temperature and humidity information collected by

sensors are often not fully precise, but only correct within a certain error interval around

the value measured. It would be better to publish imprecise information, rather than a

wrong exact value, if such publish/subscribe capabilities were possible.

Also, uncertainty exists for location-based information dissemination services. due

to the movement of the mobile user and transmission delay, approximate location would

be more appropriate rather than assessing the precise location of each user. To date

location-based enabling technology, for instance, does not allow to continuously and

accurately track a user’s location. The user location is in many current location-based

models assumed to be provided by the user herself. Otherwise, if location information is

gathered through GPS, it is only accurate to a certain degree and can only be collected

so and so often (e.g., it takes several seconds to get the first location quote.)

For these reasons, we think, it is of great advantage to provide a publish/subscribe

data model and an approximate matching scheme that allows the expression and pro-

cessing of uncertainty for both subscriptions and publications.

Secondly, most current publish/subscribe systems are based on content matching

mechanism and do not consider the structure or the semantics of the data. In systems

such as Elvin [86], LeSubscribe [34], PADRES [38] and ToPSS [56, 71, 87, 15, 51] and

Chapter 1. Introduction 4

CREAM [21], the publication and subscription model is based on attribute value pairs.

There is no structure and semantic information associated at all. Systems as described

in [17, 28, 29] can process XML publications and XPath subscriptions. However, these

approaches are based on a tree index structure to support filtering of XML documents

over XPath queries. These approaches do not support the filtering of graph-structured

data, which is more general than tree-structured data.

Graph-based data is used in many emerging semantic web applications (e.g., blogs and

wiki updates.) For example, RDF (Resource Description Framework) is used to represent

information and to exchange knowledge on the web [76]. A RDF document is represented

as a directed labeled graph. Use of RDF also makes it possible to use ontologies built on

top of RDF using languages such as RDFS [80] and OWL [50] to process syntactically

different, but semantically-equivalent information. Existing work as in Racer [42] is a

publish/subscribe system based on a description logics inference engine and can be used

for RDF/OWL filtering. Racer does not scale well, the matching time for Racer is on

the order of 10s of seconds, even for very simple subscriptions (e.g. retrieve(book)).

A prime application for filtering RDF documents is RSS (RDF Site Summary) [85],

a RDF-based language for expressing content changes on the web, which has grown con-

siderably in popularity. RSS is so versatile that any kind of content changes can be

described (e.g., web site modifications, wiki updates, history of a source code from a

versioning software (e.g., CVS)). In current RSS delivery systems, multiple RSS aggre-

gators continuously poll numerous RSS feed sites [77], which results in that websites

hosting popular RSS feeds can be significantly overloaded with useless network traffic.

The publish/subscribe system offers a solution to avoid the inherent polling-based design

and provides scalability, as more users publish and expect to stay current with changes

submitted by others.

Considering both expressiveness and scalability, it would be better if a publish/subscribe

system model is developed to support large-volume graph-based content distribution from

Chapter 1. Introduction 5

diverse sources and allows the use of ontologies to specify class taxonomy as semantic

information about the data.

Thirdly, in all the current publish/subscribe systems, the matching result is reported

only after evaluating the whole subscription pattern, especially in the domain of the

complex event processing (CEP). Li et al. [55] develop a distributed middleware platform

that allows the user to subscribe to data published in both the future and the past.

The matching result, which is either true or false, will not be reported until all the

subscribed data has been seen. However, predicting the future matching result with

a probability, given the current partial match is a novel and useful feature in complex

event processing. Many commercial applications of CEP including algorithmic trading,

credit card fraud detection, intrusion detection, business activity monitoring, and security

monitoring could benefit from this feature. Take intrusion detection as an example, if

a series of suspicious activities is indicative of a potential intrusion, the system could

responds by resetting the connection or by re-configuring the firewall to block network

traffic from the suspected malicious source. There is no publish/subscribe model that

can predict the occurrence of complex events associated with a probability based on a

partial match (i.e., a partially observed state.)

1.2 Problem Statement

In summary, we are concerned with three types of imperfect information in a pub-

lish/subscribe system. One type is semantic imperfect information and the other two

are content imperfection. In general, we call all the above imperfection exhibited in a

publish/susbcribe system as uncertainties. This thesis aims to effectively manage these

three kinds of uncertainties in publish/subscribe systems. Next, we define the three types

of imperfect information in detail.

The semantic imperfection refers to the matching semantics in a publish/subscribe

Chapter 1. Introduction 6

system. The components in a publish/subscribe system, especially in a distributed en-

vironment, are a priori decoupled, anonymous, and do not necessarily “speak” the same

language. However, different language may refer to the same entity or have the same

meaning in the real world. For example, an “icde paper” won’t match a “publication”

in a traditional content-based publish/subscribe system, but a match will be detected

in a semantic publish/subscribe system. This problem can be solved by a semantic

publish/subscribe system, which based the matching on semantics, not syntax of the

language.

For the content imperfection, we concern two major types of imperfect information

as defined in [83]: imprecision and uncertainty. Imprecision is related to the content

of the statement. Publications and subscriptions are statements about events and users’

interests. The expressions may be incomplete, ambiguous, or not well-defined, but involve

the content of the statements. Thus, we refer to this type of imperfection in publications

and subscriptions as imprecision.

Another type of imperfection exists in the matching between publications and sub-

scriptions, which we refer to as uncertainty 1. Uncertainty concerns the state of knowl-

edge about the relationship between the world and the statement about the world. All

publish/subscribe systems developed to date are based on the assumption that a match

between a subscription and a publication is either true or false. However, it is difficult to

decide whether a publication matches a subscription involving imprecision in the publi-

cation and the subscription. We call the imperfection inherent to the matching problem

uncertainty.

To illustrate the difference between imprecision and uncertainty, consider these two

examples: (1) Charles is a tall guy, and I am sure of it. (2) Charles is six feet tall, but I

am not sure of it. The height of Charles is imprecise in the former case, but it is certain.

1The uncertainties used in the title is more general. In this paragraph, uncertainty has a specific
meaning and is a sub-class of the general one.

Chapter 1. Introduction 7

In the latter statement, the height is precise but uncertain.

The goal of this thesis is to design publish/subscribe systems supporting applications

that involve representing, processing and filtering the above three types of imperfect

information at internet scale.

The challenges to support imperfect information and semantics at that scale raises

several challenging questions. First, we need a publish/subscribe model to express imper-

fect information and semantic in publications and subscriptions. Second, a corresponding

approximate matching and semantic matching definition is required for the new model.

Third, we need efficient algorithms to perform filtering and prediction for the model

so that it can be applied to process the rapidly increasing information on the Inter-

net. Finally, the approach needs to be scalable to large numbers of subscribers and high

publishing rates.

To address the above problem, this thesis extends subscription and publication lan-

guages to incorporate the expression of imprecision and semantic at the language level,

develops a matching mechanism to support the processing of the extended language in

publish/subscribe systems, and develops a prediction mechanism to report future matches

with a certain probability.

1.3 Contributions

To address these challenges, we have developed publish/subscribe system models and

implementations that enable the representation, filtering, delivery, and processing of

uncertain data.

The main contributions of this thesis are:

1. The definition of a highly flexible publish/subscribe system model supporting the

expression of uncertainties in the subscription language model and the publica-

tion data model. This model supports all combinations of approximate and crisp

Chapter 1. Introduction 8

subscriptions and publications and is fully implemented. The model allows for fine-

grained adjustment to express different users’ subjective perception of the concepts

represented and allows to tune the matching relations [57, 59, 60].

2. The expression of imprecision in subscriptions and publications raises questions re-

garding the matching and routing of approximate subscriptions and approximate

publications. This thesis articulates the approximate publish/subscribe content-

based routing problems and develops algorithms for matching, covering (contain-

ment) and merging. The algorithms developed present an implementation of the

key routing computations that make up a publish/subscribe content-based router

supporting processing imprecise data.

3. We develop density estimation algorithm to learn the possibility distribution for

set membership functions used in the approximate publish/subscribe model.

4. An original publish/subscribe system model is developed to support large-volume

graph-based content distribution from diverse sources. The model also allows the

use of an ontology to specify class taxonomy as semantic information about the

data [73, 61].

5. We develop a pipelined filtering algorithm for processing graph-based data and

queries on a compute cluster. We also develop two indexing algorithms that com-

plement pipelined filtering by effectively partitioning subscriptions into disjoint

sets in order to reduce filtering time at each cluster node. Containment partitions

subscriptions based on semantic similarity, while merging partitions subscriptions

based on run-time access frequency.

6. A thorough experimental evaluation is presented for each model to demonstrate

the filtering performance of our algorithms and validate that the proposed systems

offers scalability with the increase in the number of users while maintaining an

Chapter 1. Introduction 9

efficient filtering rate.

7. A demonstration simulating a real world application is implemented for each sys-

tem. It integrates a web server through which users can submit their information

including subscriptions and publications to the system and a filtering engine run-

ning in the background to support the matching and notification [56, 58, 72].

8. A novel model is proposed to support expressive time operators and future matching

prediction for complex event processing. This model represents each composite sub-

scription as a finite state machine (also a Markov model) and maintains a Markov

probability distribution based on historical data. An efficient matching algorithm

and predicting algorithm is developed on top of this model to offer the ability to

report the future matches with a probability based on the current match status.

1.4 Organization

The thesis is organized as follows.

In Chapter 2, we survey other research related to this thesis. We discuss pub-

lish/subscribe systems, filtering graph-based data, content-based routing and imperfect

data management.

The necessary background material this thesis is based on, namely possibility theory,

fuzzy set theory and Markov chains are introduced in Chapter 3.

Chapter 4 proposes a new publish/subscribe model and a corresponding distributed

content-based publish/subscribe architecture. The model is based on possibility theory

and fuzzy set theory to process uncertainties for both subscriptions and publications. We

also develop matching, covering (containment) and merging algorithms for this model.

The algorithms developed present an implementation of the key routing computations

that make up a publish/subscribe content-based router supporting processing of imprecise

data.

Chapter 1. Introduction 10

Chapter 5 proposes a publish/subscribe system model to support large-volume graph-

based content distribution from diverse sources. Especially, the model allows the use of

an ontology to specify a class taxonomy as semantic information about the data so as

to enable semantic matching. We also develop a pipelined filtering algorithm, along

with two indexing algorithms for processing graph-based data and queries on a compute

cluster.

Chapter 6 proposes a model based on finite state machines to support expressive time

operators for complex event processing. For this model, we proposes a data structure

and matching algorithm to efficiently evaluating a large number of complex event pat-

terns. Furthermore, along with the matching procedure, a Markov model is maintained

in conjunction with the finite state machines to offer the ability to predict the occurrence

of complex events associated with a probability based on a partial match.

Finally, conclusions and future work are presented in Chapter 7.

Chapter 2

Related Work

In this chapter, we will review the significant related work from the aspects of pub-

lish/subscribe systems, content-based routing and uncertain data management.

2.1 Publish/Subscribe Systems

2.1.1 Publish/Subscribe Research Prototypes

Much work has been devoted to developing publish/subscribe systems and event notifica-

tion services such as ELVIN [86], Gryphon [3], LeSubscribe [34], READY Salamander [88]

and SIENA [16]. These systems are different in the subscription language and publication

data model they offer and algorithms performing the matching task.

LeSubscribe [34] aims at publish/subscribe support for web-based applications. It

focuses on the algorithmic efficiency in supporting millions of subscriptions and high

event processing rates. The language and data model are based on an LDAP-like semi-

structured data model for expressing subscriptions and publications. In this system, a

subscription is a conjunction of predicates each of which is a triplet (attribute, operator,

value). Supported relational operators include <,≤, 6=,≥, >. This system supports both

push and pull based information dissemination. The matching engine of LeSubscribe

11

Chapter 2. Related Work 12

falls within the class of two-step matching algorithms - a predicate matching step and

a subscription evaluation step. In the first step, all predicates are matched against the

publication; then subscriptions are evaluated in the second step based on the set of

matched predicates.

Instead of two-step matching algorithms, Gryphon [3] uses a tree-based data struc-

ture to index subscriptions which leads to another category of matching algorithms. In

Gryphon, all subscriptions are preprocessed into a tree where each non-leaf node is a

test for one attribute and the edges derived from that node represent different results.

During matching, the incoming publication goes down through the branch it matches

until arriving at the leaf nodes containing the matched subscriptions. Another approach

using a tree-based algorithm is Binary Decision Diagrams (BDDs) [23]. In this model,

each subscription is a boolean function represented by a BDD. This approach is distin-

guished in two aspects: one is that it can support any boolean formula; the other is that

overlapping subscription expressions are operated only once if the variable ordering was

chosen properly.

Elvin [86] is a content-based notification/messaging service that targets application

integration environments and monitoring of distributed systems. ELVIN supports a

more expressive subscription language which is created as strings. Subscriptions contain

powerful string processing functions and operators on built-in data types covering integer,

string and boolean relations. In addition to the traditional comparison operators like <,≤

, =, 6=, >,≥, Elvin also supports operations such as matching extended regular expressions

with strings.

READY [88], a research project project led by the AT&T research lab, is an imple-

mentation of the CORBA Notification Service. The specific features of READY, which

are not offered by existing commercial products, include: information consumer specifi-

cations that can be matched over both single and compound event pattern; and quality

of service (QoS) that is managed by providing ordering properties for event delivery.

Chapter 2. Related Work 13

Rete [53] is an efficient pattern matching algorithm for implementing production rule

systems. A Rete-based expert system builds a network of nodes, where each node (except

the root) corresponds to a pattern occurring in the left-hand-side (the condition part) of

a rule. The path from the root node to a leaf node defines a complete rule left-hand-side.

Each node has a memory of facts which satisfy that pattern. This structure is essentially

a generalized trie. As new facts are asserted or modified, they propagate along the

network, causing nodes to be annotated when that fact matches that pattern. When a

fact or combination of facts causes all of the patterns for a given rule to be satisfied, a

leaf node is reached and the corresponding rule is triggered.

There are two common properties to all current systems. First is the crisp matching

semantic – neither subscriptions nor publications can express uncertain information and

a match is either established or not. A gradual match, that is expressed as a confidence, a

degree of match, or a probability, does not exist in any previously studied model. Second,

in all the current publish/subscribe systems, the matching result is reported only after

evaluating the whole subscription pattern. There is no publish/subscribe model that can

predict the occurrence of a future matched pattern associated with a probability based

on a partial match (i.e., a partially observed state.)

The Middleware System Research Group at the University of Toronto is working on

a so-called Toronto Publish/Subscribe System Family, including Approximate Matching-

based ToPSS [59], Semantic Matching-based ToPSS [71], Location-aware ToPSS [15],

Peer-to-Peer Networks Supporting ToPSS [87], Mobility Supporting ToPSS [14], XML/XPath

Matching-based ToPSS [46], Ad Hoc Networks Supporting ToPSS [74] and Federated

Publish/Subscribe (PADRES [38, 54, 55]). They are publish/subscribe systems working

in different scenarios.

Chapter 2. Related Work 14

2.1.2 Filtering of Semi-Structured Data

The publish/subscribe matching problem has been investigated extensively. Attribute

value pairs are used by the above models to represent publications, while conjunctions of

predicates with standard relational operators are used to represent subscriptions. Tree-

based XML is used by [5, 28, 47] as the data model and XPATH as the query language.

XTrie [18] proposes an index structure that supports filtering of XML documents

based on many XPath expressions. The approach is extensible supporting patterns in-

cluding constraint predicates. Gupta et al. [41] show how to process XML stream over

XPath queries including predicates. All these approaches aim at filtering XML documents

which is tree-based data and do not support the filtering of general graph-structured data

such as RSS documents, which is the main motivation of our work.

More specifically, there are several challenges for graph-structured data that cannot

be addressed by the above approaches. First, a cycle may exist in a graph or one node

has multiple parents, which cannot be solved by XML filter. Second, there is no concept

of root in a graph, thus there is no start point when applying XML filter. Third, the edge

between two nodes contains semantics meaning except the role of connecting. Fourth,

our approach also support ontology evaluation in addition to the structure and predicate

matching. In all, the techniques for XML document filtering is not applicable to graph-

structured data.

Our matching algorithm is designed to tackle the above challenges of graph-structured

data filtering. If applied to filtering tree-structured data,1 it incurs additional cost com-

pared to other XPath matching algorithms such as [5, 28].

RSS is emerging as the main streaming technology on the Internet, and consequently,

we developed a schema operations for efficient filtering of RSS [73]. Prior to this, we

1A tree is essentially a graph. Therefore, our algorithms could be applied to the filtering of XML
against XPath. However, the filter language supported by our algorithm does not include the descendant
operator, which is supported in XPath.

Chapter 2. Related Work 15

developed S-ToPSS [71] that extends the traditional predicate-based data model with

capabilities to process syntactically different, but semantically-equivalent information.

S-ToPSS uses an ontology to be able to deal with syntactically disparate queries and

tuples. The ontology, which can include synonyms, a taxonomy and transformation

rules, was specified using S-ToPSS specific methods. On the other hand, the data model

used in [73] is based on directed graph in general and RDF in particular. Use of RDF

makes it possible to use ontologies built on top of RDF using languages such as RDFS

and OWL. Currently, our query semantics allow type constraints on nodes of a graph,

where the type information is represented as a class hierarchy.

OPS [92] is another set of ontology-based schema operations whose data model is also

based on RDF. OPS uses a very general subgraph isomorphism algorithm to implement

satisfy. However, this approach, as the results show, unnecessarily increases the filtering

complexity because it assumes that any node of the tuple graph can map to any node of

the query graph. We compare the performance to OPS and show that our implementation

of satisfy always outperforms OPS.

Racer [42] is a data model is based on description logics. Because OWL, an ontology

system built using RDF, is based on description logics, Racer can be used for RDF filter-

ing. Racer schema operations do not scale as well as ours (satisfy times are in the order

of 10s of seconds even for very simple queries) primarily because of its expressiveness.

2.1.3 Indexing and Routing

SIENA (Scalable Internet Event Notification Architectures) [16] is prototype of a pub/sub

event-notification service which is based on content-based networking services and focuses

on the routing of subscriptions and publications in a distributed environment. The advan-

tage of this infrastructure is that it maximizes expressiveness in the selection mechanism

without sacrificing scalability in the delivery mechanism. But its subscription language

does not allow ontology support, which limits its use in filtering information of semantic

Chapter 2. Related Work 16

web.

SemCast [69] present a semantic multicast approach that split the incoming data

streams based on the overlapping of its content. In SemCast, three channels are generated

from two overlapping profiles. One contains the content common to both and the other

two are the noise channels that carry content assigned to only one of them. This approach

can eliminate the need for filtering at interior brokers, but it won’t reduce the amount

of messages routed in the network. Compare to our approach, Semcast does not support

imperfect merging which results in a significant decrease of traffic, as we have shown.

Yi-Min Wang et al [93] proposed two approaches for subscription partitioning and

routing, one based on partitioning the event space for equality predicates and the other

based on partitioning the subscription set for range queries. For partitioning the sub-

scription set, similar subscriptions are grouped together using R-tree and assigned to one

machine. Our algorithms are for graph-structured data where the semantics of contain-

ment and similarity is different from range queries. The measurement for similarity is

defined based on not only graph structure but also matching statistics. Moreover, our

partitioning approach is to separate similar subscriptions into different machines rather

than group them together so that the parallel matching can be achieved and the system

throughput is increased.

CREAM [21] is an event-based middleware platform for distributed heterogeneous

event-based applications. Its event dissemination service is based on the publish/subscribe

model. Similar to other publish/subscribe systems, the query and data model in CREAM,

is predicate-based. Unlike our schema operations, which is based on RDF, ontology and

data are represented in a CREAM-specific data model. In addition, we are not aware of

any quantitative evaluations of CREAMs scalability such as the one we present.

Chapter 2. Related Work 17

2.1.4 Industrial Standards

There have been a number of standardization efforts on middleware architectures and

distributed system interfaces to promote interpretability. The Common Object Request

Broker Architecture (CORBA) is a middleware architecture standardized by the Object

Management Group (OMG). The CORBA Event Service [66] and Notification Services

specifications [68] augment the CORBA middleware platform with event-based messag-

ing capabilities. The Java Message Service (JMS) is the standard Java API for message-

oriented middleware proposed by Sun Microsystems to add messaging integration capa-

bilities into the J2EE platform.

The CORBA Event Service [66] specification defines an indirect channel-based event

transport for distributed object frameworks. An event channel decouples event suppliers

and consumers. Suppliers generate events and place them onto a channel. Consumers

obtain events from the channel. Two serious limitations of the Event Service Specification

are that it only supports limited event-filtering capabilities, and cannot be configured to

support different qualities of service. Most Event Service implementations deliver all

events that are sent to a particular channel to all consumers connected to that channel

on a best-effort basis.

A primary goal of the Notification Service [68] is to enhance the Event Service by

introducing the concepts of event filtering and quality of service specifications. Clients

of the Notification Service can subscribe to events by associating filter objects with the

proxies through which the clients communicate with event channels. These filter objects

encapsulate specific constraints on the events to be delivered to the client. Furthermore,

the Notification Service enables each channel, each connection, and each message to be

configured to support the desired quality of service with respect to delivery guarantees,

event aging characteristics, and event priorities.

The Java Messaging Service (JMS) [65] is an API for enterprise messaging created

by Sun Microsystems. JMS is not a messaging system itself. It is an abstraction of the

Chapter 2. Related Work 18

interfaces and classes needed by messaging clients when communicating with messaging

systems. JMS provides both publish/subscribe and point-to-point messaging models.

Under the JMS publish/subscribe model, publishers can send a message to many con-

sumers through a virtual channel called a topic. All messages addressed to a topic are

delivered to all the topic’s subscribers. The message delivery is push-based and no polling

is required. The point-to-point messaging model uses queues to store and forward mes-

sages from suppliers to consumers. A given queue may have multiple receivers, but only

one receiver may consume each message. It is a one-to-one communication model.

2.1.5 Continuous Queries

Continuous queries are issued once and are logically run continuously over a database.

Sometimes they are referred to as queries for future data, because data included in the

result set may not exist at the time when the query was created, but will be created

in the future. Traditional one-time queries, in contrast, run only once to completion

and return a result based on the current data sets. The notion of continuous queries

is similar to subscriptions in publish/ subscribe systems. A publish/subscribe system

will continuously evaluate a subscription against the new incoming publication stream,

until the subscription is removed from the system. Two research projects, Open CQ

[62] and NiagaraCQ [19], support continuous queries for monitoring persistent datasets

spread over a wide-area network. Open CQ uses a query processing algorithm based on

incremental view maintenance. NiagaraCQ addresses scalability in number of queries by

proposing techniques for grouping continuous queries for efficient evaluation. STREAM

(Stanford stream data management [8]) is a research project at Stanford that focuses

on query processing of continuous queries over data streams. It provides a general and

flexible architecture for query processing in the presence of data streams.

Chapter 2. Related Work 19

2.2 Uncertain and Imprecision Information Manage-

ment

A number of techniques, including, probability theory, fuzzy set theory, and a general

similarity metric-based approach have been applied to model uncertainty and imprecision

in query and data. A full exploration would go beyond the scope of this thesis. We discuss

a number of representative examples.

Nowadays, applications of fuzzy logic are found in many fields, including databases

[13, 75, 94, 20], and expert systems [52].

Ronald Fagin uses the operations on fuzzy sets to combine fuzzy information from

multiple systems [35, 36]. In the database, each object has several attributes and a grade

of membership is assigned to each attribute for measurement. To determine the top k

objects that have the highest overall grades, Fagin gives an efficient algorithm (“Fagin

Algorithm”, or FA) [36] to merge several sorted lists based on rating of objects from

different multimedia systems. For some monotone aggregation functions, FA is optimal

with high probability in the worst case. A more elegant and remarkably simple algorithm

(“Threshold Algorithm”. or TA) is proposed in [37] which is proved optimal in a much

stronger sense than FA. The authors show that TA is essentially optimal, not just for some

monotone aggregation functions, but for all of them; and not just in a high-probability

worst-case sense, but over every database. FA requires large buffers whose sizes may grow

unboundedly as the database size grows. Unlike FA, TA allows early stopping, which

yields, in a precise sense, an approximate version of the top k answers.

Another application using the knowledge of fuzzy sets is in [95]. Wolski et al. propose

a fuzzy trigger to incorporate imprecise reasoning in active database. The rules that con-

trol the event-condition action are modelled by fuzzy membership functions. This work

proposes two trigger models. C-fuzzy trigger involves fuzzy inference only in the process

of evaluation of the condition. If actions are also expressed in fuzzy terms and integrated

Chapter 2. Related Work 20

with the condition part, it leads to the CA-fuzzy trigger. [94] introduces a retrieval

language based on fuzzy logic and addresses the problem of retrieving using relevance

feedback, a method that automatically adapts the representation of the underlying fuzzy

set.

With the ever increasing of web documents generation, an efficient information filter-

ing system based on the similarity between the documents and users’ profiles is in great

need. Yan and Molina [98] suggested indexed structure under vector space model and

an algorithm to compute the similarity, which is a distance function of match between

a document and a profile based on the “importance” value of certain attributes. In this

model, a document is identified by a set of terms represented as an multi-dimensional

vector. Each term is assigned a weight as the statistical importance indication. Profiles

appears just like documents consisting a list of terms, each with a weight. The similarity

degree between a document-profile pair is measured by applying a cosine measure which

is a dot time operation if both documents and profiles are normalized by their lengths.

Based on this similarity measurement, several index refinements are devised to improve

I/O and CPU processing time.

Fuhr introduced a probabilistic relational algebra in [39] to represent imprecise at-

tribute values and integrate vague queries in database system. Probabilistic databases

are currently an active area of research. A probabilistic database is an uncertain database

in which the possible worlds have associated probabilities. While there are currently no

commercial probabilistic database systems, several research prototypes exist including

Trio [12], Orion [81], MystiQ [27] and MayBMS [6].

Trio [12] is a new kind of database management system which integrates data, un-

certainty of the data, and data lineage together. Trio is based on an extended relational

model called ULDBs, and it supports a SQL-based query language called TriQL.

The ORION database system (previously known as U-DBMS) [81], developed by the

database group of Purdue University, is a state-of-the-art uncertain database manage-

Chapter 2. Related Work 21

ment system with built-in support for probabilistic data as first class data types. In con-

trast to other uncertain databases, Orion supports both attribute and tuple uncertainty

with arbitrary correlations. This enables the database engine to handle both discrete

and continuous pdfs in a natural and accurate manner. The underlying model is closed

under the basic relational operators and is consistent with Possible Worlds Semantics.

MystiQ [27] is a system that uses a probabilistic data model to find answers in large

numbers of data sources exhibiting various kinds of imprecisions. Moreover, users some-

times want to ask complex, structurally rich queries, using query constructs typically

found in SQL queries: joins, subqueries, existential/universal quantifiers, aggregate and

group-by queries. The goal of MystiQ is to develop efficient query processing techniques

for finding answers in large probabilistic databases.

MayBMS [6] is a state-of-the-art probabilistic database management system that has

been built as an extension of Postgres, an open-source relational database management

system. MayBMS uses probabilistic versions of conditional tables as the representation

system, but in a form engineered for admitting the efficient evaluation and automatic op-

timization of most operations of the language using robust and mature relational database

technology.

Although there is a large amount of related work involving representation and process-

ing of uncertainties in databases and information management systems, none has studied

the use of possibility theory and fuzzy set theory to model uncertainty in the language

and data model of publish/subscribe systems and apply them into content-based routing

for event distribution. This thesis is the first to develop an approximate covering and

merging algorithm using possibility theory and fuzzy set theory to increase the system

scalability and capture the imprecision inherent to many application domains.

Chapter 3

Background

In this chapter, we describe the publish/subscribe interaction model that is central to

dealing with uncertain information. We also gives an overview of key theories used in

our work, including fuzzy set theory [49], possibility theory [31] and markov model [63]

in probability theory, to model and manage the uncertain data. The detailed discussion

can be found in [49, 31, 63].

3.1 Overview of Publish/Subscribe System

A new data processing paradigm – publish/subscribe – is becoming increasingly popular

for information dissemination applications. Example applications range from selective

information dissemination, online shopping, online auctioning [70] to location-based ser-

vices [15, 97] and sensor networks [90], to just name a few.

Publish/subscribe systems anonymously interconnect information providers with in-

formation consumers in a distributed environment. Information providers publish infor-

mation in the form of publications (or events) and information consumers subscribe their

interests in the form of subscriptions. The publish/subscribe system matches events with

subscriptions and ensures the timely notification of subscribers upon event occurrence.

Figure 3.1 shows the paradigm of publish/subscribe systems.

22

Chapter 3. Background 23

Matching
Filtering

notification engine

Subscribers Publishers

notifications

matched subscriptions

subscriptions publications

Figure 3.1: Publish/Subscribe Paradigm

Events are published in the form of publications and users’ interests are subscribed in

the form of subscriptions. A publication describes the attributes of a real word artifact.

A subscription defines a user’s interest through a list of predicates, where each predicate

is a constraint on an attribute domain. The matching problem is to filter all satisfied

subscriptions whose constraints are matched by an incoming publication.

Publications in the publish/subscribe system can be seen as data items (e.g., tu-

ples, columns, or tables) in a relational database model and subscriptions closely resem-

ble database queries. Therefore, publish/subscribe systems solve a problem inverse to

database query processing.

The different ways of specifying the events of interest have led to several subscrip-

tion schemes. Based on different subscription schemes, publish/subscribe system can be

classified as topic-based, content-based and type-based. The earliest publish/subscribe

scheme is based on the notion of topics or subjects, and is implemented by many indus-

trial strength solutions (e.g., [4, 25, 82, 89]). The content-based (or property-based [79])

publish/subscribe variant improves on topics by introducing a subscription scheme based

on the actual content of the considered events. In other terms, events are not classified

according to some pre-defined external criterion (e.g., topic name), but according to the

properties of the events themselves. Such properties can be internal attributes of data

structures carrying events, as in Gryphon [10], Siena [16], Elvin [86], and Jedi [26], or

Chapter 3. Background 24

meta-data associated to events, as in the Java Messaging Service [44]. Replacing the

namebased topic classification model by a scheme that filters events according to their

type [32] leads to type-based publish/subscribe.

Publish/subscribe is a messaging paradigm and an information management method-

ology, and is applicable in many application domains. Selective information dissemi-

nation is the class of distributed applications that distributes information according to

some restrictions or conditions. A more general form of data subscription is exempli-

fied by the emerging peer-to-peer file sharing and publishing systems, such as Napster.,

Gnutella, Mojo Notion, Free Haven [30], and Freenet [22]. These systems are forms of

publish/subscribe systems, where the broker component is physically distributed. There

are many other applications to which the publish/subscribe paradigm is applicable, such

as workflow management [26], intraenterprise process automation, supply chain manage-

ment, enterprise application integration [11], and network monitoring.

3.2 Theories of Uncertainties

A key question in our work is how to express and process uncertainty in publish/subscribe

systems. A simple method to express uncertainty about an imprecisely known value is

to define it as an interval. For example, the interval [50, 150] would be reasonable to

represent the age of a piece of “post-modern” painting in an online auction. In a crisp

system, it needs two predicates to represent this interval: (age ≥ 50) and (age ≤ 150).

Moreover, this method imposes a sharp boundary to differentiate members belonging to

the set of post-modern paintings from non-members. A painting which was created 49

years ago may satisfy the subscriber, but it won’t be delivered to the subscriber since

it is out of the domain of the interval [50,150]. To overcome this limitation, fuzzy set

theory [49] and possibility theory [31] have been developed. The publish/subscribe model

we are introducing is based on these theories to model uncertainty in publications and

Chapter 3. Background 25

subscriptions.

3.2.1 Fuzzy Set Theory

Sharp boundaries that differentiate between objects belonging to a set versus objects not

belonging to a set can be eliminated by introducing degrees of membership. This is the

approach taken by fuzzy set theory.

Definition: A fuzzy set M̃ on a universal set U is a set that specifies for each element x

of U a degree of membership to the fuzzy set M̃ . It is defined by a membership function

(a.k.a. characteristic function),

µM̃ : U → [0, 1]

that specifies for each x ∈ U its degree of membership µM(x) to the fuzzy set M̃ .�

The membership function is a generalization of the characteristic function in classic

set theory. It allows to express gradual set membership. For example, we can define

a possible membership function for the fuzzy set of “post-modern paintings”as shown

in Figure 3.2, where the domain ranges over the possible ages in the given application

context. We use membership functions to represent predicates in subscriptions that

constraint uncertain and vague concepts, such as “price is cheap” “age is old”, and

“location is close to”.

µ

1

0.67

medieval

700 1000450

(x)

1450 age

Figure 3.2: The membership function representing “post-modern paintings”.

Chapter 3. Background 26

There are many possible function representations to express gradual set membership.

Here, we use a parametric representation as suggested by many authors [31, 49]. The

membership function of a fuzzy set M̃ can be described with a pair of functions, defined

on <+ → [0, 1], denoted by L and R, such that L (and also R) is monotonically increasing

(and monotonically decreasing) and is upper semi-continuous (u.s.c). This function pair

and four parameters (m,m,α, β) ∈ <2 ∪ {+∞,−∞} define the membership function of

a fuzzy set M̃ as follows:

µM(u) =























L(u) ∀u ∈ [m − α,m]

1 ∀u ∈ [m,m]

R(u) ∀u ∈ [m,m + β]

A fuzzy set is characterized by its membership function, so without ambiguity we

can say M̃ is defined by µM(u) = (m,m,α, β)LR(u). This representation can be used

to model a wide range of different gradual set membership relations (e.g., bell-shaped,

trapezoidal, triangular etc.)

Definition: [m,m] is the core of fuzzy set M̃ , denoted by µ̇M . m and m are referred

to the lower and upper model values of M̃ , respectively. The support of a fuzzy set M̃ ,

denoted by S(µM), is the domain of values where µM(u) > 0. If M̃ is of bounded support,

then S(µM)=[m− α,m + β]. α and β are called the left-hand spread and the right-hand

spread.�

There are many advantages of this representation. First, it eliminates the sharp

boundaries inherent to a crisp or interval-based representation. Second, it is a very

general representation and it is straight forward to implement. Third, this formalization

is very expressive. Finally, it is easily extended to represent crisp sets defined through

crisp constraints. In this case the membership function degenerates to the characteristic

function as follows:

µp≥v(x) =











1 if x ∈ [v,∞)

0 if x 6∈ [v,∞)

Chapter 3. Background 27

Operations involving two or more fuzzy sets are generally defined by a mapping T

that aggregates the membership functions as follows:

µop(A1,...,An)(x) = T (µA1
(x), ..., µAn

(x))

Intersection, union, and other set operations are defined in this manner. The operator

T is referred to as a triangular norm (T-norm). T-norms that model set intersection

must satisfy the following axioms (a generalization from classical set theory): T (0, 0) =

0, T (a, 1) = T (1, a) = a (boundary condition), T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d

(monotonicity), T (a, b) = T (b, a) (commutativity), and T (a, T (b, c)) = T (T (a, b), c) (as-

sociativity).1 Set union is defined and motivated in a similar manner. Operators that

define set union are denoted as S-norms. Different S-norms and T-norms are used in

the literature to represent set union and set intersection. A popular choice is to use

maximum as union and minimum as intersection.

3.2.2 Possibility Theory

Possibility theory formally defines measures, which reflect users’ subjective uncertainty of

a given state of the world [31]. The measures express the confidence in the possibility that

x is A. Possibility measures are based on possibility distributions, πA(x), that quantify

these conditions.

A possibility measure that has values for each element in the universe of discourse

can be interpreted by the membership function of a fuzzy set. For example, the antique

shop has an art piece, where the age is described as post-modern:

πage−of−art−piece(x) = µpost−modern(x).

1The first axiom imposes the correct generalization to crisp sets. The second axiom implies that a
decrease in the membership values in A or B cannot produce an increase in the membership value in A
intersection B. The third axiom indicates that the operator is indifferent to the order of the fuzzy sets
to be combined. Finally, the fourth axiom allows us to take the intersection of any number of sets in
any order of pairwise groupings.

Chapter 3. Background 28

We use two measures, referred to as possibility measure(Π) and necessity measure(N)

to express the plausibility and necessity associated with each attribute in a publication.

A possibility measure quantifies information about the plausibility of occurrence of the

state represented by the attribute. If it is completely possible to be true then possibility

is Π(A) = 1, if it is impossible then the possibility is Π(A) = 0; intermediate numbers

between [0,1] are also admissible. A necessity measure is introduced to complement the

information available about the state described by the attribute. It is associated with

the degree with which the occurrence of A is certain. If an event A is sure to happen

without any doubt, then necessity N(A) = 1.

The relationship between possibility and necessity satisfies2:

N(A) = 1 − Π(A)

∀A, Π(A) ≥ N(A).

3.2.3 Markov Model

In mathematics, a Markov chain, named after Andrey Markov, is a stochastic process

with the Markov property. Having the Markov property means that, given the present

state, future states are independent of the past states. In other words, the description

of the present state fully captures all the information that could influence the future

evolution of the process. Future states will be reached through a probabilistic process

instead of a deterministic one.

At each step the system may change its state from the current state to another state,

or remain in the same state, according to a certain probability distribution. The changes

of state are called transitions, and the probabilities associated with various state-changes

2A possibility distribution is similar to a probability distribution. However, the difference between
both is that there is no restriction that the sum of all possibilities on the whole universe must be equal to
1. Another difference is that probability distributions must be defined on disjoint subsets, but possibility
distribution can be defined on distinct (as long as not equal) subsets. Thus, a possibility is a more general
notion than a probability. [31]

Chapter 3. Background 29

are called transition probabilities.

Definition:A Markov chain is a sequence of random variables X1, X2, X3, . . . with the

Markov property, namely that, given the present state, the future and past states are

independent. Formally,

Pr(Xn+1 = x|Xn = xn, . . . , X1 = x1) = Pr(Xn+1 = x|Xn = xn).

The possible values of Xi form a countable set S called the state space of the chain.

Markov chains are often described by a directed graph, where the edges are labeled

by the probabilities of going from one state to the other states.

A finite state machine can be used as a representation of a Markov chain. Assuming

a sequence of independent and identically distributed input signals (for example, symbols

from a binary alphabet chosen by coin tosses), if the machine is in state y at time n, then

the probability that it moves to state x at time n + 1 depends only on the current state.

In our work, we will make use the following properties to calculate the match proba-

bility between a publication and a subscription.

Definition:Define the probability of going from state i to state j in n time steps as

p
(n)
ij = Pr(Xn = j | X0 = i)

and the single-step transition as

pij = Pr(X1 = j | X0 = i).

The n-step transition satisfies the Chapman-Kolmogorov equation, that for any k

such that 0 < k < n,

p
(n)
ij =

∑

r∈S

p
(k)
ir p

(n−k)
rj .

Chapter 4

Uncertainties in Content-Based

Publish/Subscribe System

In the publish/subscribe paradigm, exact knowledge of either specific subscriptions or

publications is not always available. In this chapter, we propose a new publish/subscribe

model A-ToPSS in a distributed content-based architecture. The A-ToPSS model is based

on possibility theory and fuzzy set theory to process uncertainties for both subscriptions

and publications. We also develop algorithms for matching, covering (containment) and

merging. The algorithms developed present an implementation of the key routing com-

putations that make up a publish/subscribe content-based router supporting processing

imprecise data.

In this chapter, Section 4.1 describes the architecture of an approximate content-

based router and reviews content-based routing. The approximate publish/subscribe

data model is presented in Section 4.2. Section 4.3 develops the data structure and the

algorithms underlying our matching, covering, merging and intersecting operations. A

learning technique is proposed in Section 4.4 to tune the membership function and the

possibility distribution for approximate subscriptions and publications. Section 4.5 and

4.6 presents the experimental evaluation and a demonstration of a real world application.

30

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System31

4.1 Architecture of Distributed Content-based Rout-

ing

4.1.1 Publish/Subscribe Router

A generic publish/subscribe router performs the following three operations: (1) Forward-

ing of advertisements, (2) Forwarding of subscriptions, and (3) Forwarding of publica-

tions. The details of the three operations are highly dependent on the expressiveness

of the subscription and publication representation languages. However, the language-

dependant features can be factored into four high-level operations: matching, covering,

merging and inserting. In the following sections, we discuss these operations in more

detail, while in this section we just describe their use in a content-based router.

Forwarding of Advertisements

Advertisements are used by publishers to announce the set of publications they are going

to publish. Consequently, advertisements create routing paths for subscriptions from

subscribers to publishers, whereas subscriptions build routing paths for publications from

publishers to subscribers. Usually, both subscriptions and advertisements have the same

formal representation. The following are the steps performed by the publish/subscribe

router upon receiving an advertisement: (1) For the advertisement received, check if there

are covering advertisements in the advertisement table. If there are, then we do not need

to forward the advertisement. (2) If there is no covering advertisement, insert incoming

advertisement in the advertisement table, and forward the advertisement to all neighbors.

(3) Check if there are intersecting subscriptions in the subscription table. If there are,

forward the intersecting subscriptions to the neighbor from which the advertisement was

received.

When using advertisements, upon receiving a subscription, each broker forwards it

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System32

only to the neighbors that previously sent advertisements that intersect with the sub-

scription. Thus, the subscriptions are forwarded only to the brokers that have potentially

interesting publishers.

Forwarding Subscriptions

Subscription processing is similar to advertisement processing. Given two subscriptions

s1 and s2, s1 covers s2 if and only if all the publications that match s2 also match s1. In

other words, if we denote with E1 and E2 the set of publications that match subscription

s1 and s2, respectively, then E2 ⊆ E1.

Informally, when a broker B receives a subscription s, it will send it to its neighbors if

and only if it has not previously sent them another subscription s′, that covers s. Broker

B will receive all publications that match s, since it receives all publications that match

s′ and the publications that match s are a subset of the publications that match s′. The

goal of subscription covering is to quench subscription propagation, thereby reducing

network traffic and trimming the size of subscription (i.e. routing) tables.

The processing of the subscriptions at the pub/sub router proceeds as follows: (1) For

each incoming subscription, check if there are covering subscriptions in the subscription

table. If there are, then we do not need to forward the subscription. (2) If there is no

covering subscription, insert incoming subscription in the subscription table. (3) If the

routing table size reaches a limit, do merging. (4) Check if there are intersecting adver-

tisements in the advertisement table. If there are, forward the subscription (or merged

subscriptions) to those neighbors from which we received the matching advertisements.

Forwarding Publications

Finally, publications are processed as follows. For each incoming publication, check if

there are matching subscriptions in the subscription table. If there are, forward the pub-

lication to all the neighbors from which each of the matching subscriptions was received.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System33

4.1.2 Publish/Subscribe Broker Network

For content-based routing, publish/subscribe brokers are organized into a content-based

routing network (see Figure 4.1). In the network, one of the most important problems

is the routing of a publication to interested subscribers based on the content of the

publication and the interests of subscribers expressed in subscriptions. There are a

number of routing protocols proposed in the literature [16, 26, 9].

B

B

B

B B

 subscription

publication

Publisher

Subscriber
Publisher

Subscriber

Figure 4.1: Hierarchical broker architecture

The protocols are based on building routing path between publishers and subscribers.

Routing path are built through either flooding advertisements or subscriptions. Adver-

tisements are messages used by publishers to announce the kind of information pub-

lished. Advertisements follow the same representation as subscriptions and define the

set of publications that are going to be published by a publisher. Advertisements are

flooded throughout the routing network and are stored with each broker. Advertisements

form a distributed advertisement tree. When a subscriber receives an advertisement, it

sends subscriptions along the reverse path of the advertisement tree, if the subscription

and advertisement match. These subscriptions are stored in the routing table of each

broker along the subscription path, and result in a distributed subscription-multicast

tree. Finally, publications are propagated along the reverse subscription routing path

(i.e. the subscription-multicast tree rooted at the publisher) and delivered to interested

subscribers. This scheme also works, if no advertisements are available, in which case

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System34

subscriptions are flooded throughout the network, against which publications are routed.

Each publish/subscribe broker processes and routes subscription messages indepen-

dently. Often advertisements and subscriptions from different sources are in logical re-

lationships, overlap, or are even identical. These relationships can be exploited to de-

rive optimization for routing computations to reduce the routing table size, improve the

matching performance at each node, and save network bandwidth.

4.1.3 Approximate Content-based Routing

In an approximate publish/subscribe system, uncertainties will be expressed and pro-

cessed using fuzzy set and possibility distribution. As we mentioned above, the content-

based routing in a distributed network involves the exploration on relationships among

subscriptions and publications. The expression of uncertainty in subscriptions and pub-

lications raises questions regarding the matching and routing of crisp/approximate sub-

scriptions with crisp/approximate publications. This chapter articulates the approximate

publish/subscribe content-based routing problems and develops algorithms for matching,

covering (containment) and merging. The algorithms developed present an implemen-

tation of the key routing computations that make up a publish/subscribe content-based

router supporting processing imprecise data. In this chapter, we not only propose a

model to express uncertainties in publish/subscribe system, but also describe a method

for combining fuzzy concepts of all kinds to enable routing computations in an approxi-

mate publish/subscribe system.

4.2 Approximate Publish/Subscribe System Model

Our objective is to model uncertainties in subscriptions and publications, and to define

semantics for the computation in approximate content-based routing with approximate

subscriptions and publications.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System35

4.2.1 Language and Data Model

Publication data model

Publications describe real world artifacts or describe states of interest through a set of

attribute value pairs. In our model we account for the fact that for certain attributes

precisely defined values may not be available or cannot be defined. In these cases we use a

possibility distribution, as defined in Chapter 2, to represent the attributes’ approximate

values. These latter attributes are also referred to as approximate attributes, whereas

attributes with exactly defined values are referred to as crisp attributes. However, our

model integrates both kinds of attributes and does not distinguish between them. In

the attribute value pair, “(A, π(x))”, A is the attribute and π is the “value” – crisp

or approximate. The possibility distribution, π, expresses that it is possible that the

attribute, A, has the value, x, and quantifies this with a possibility degree, π(x). The

possibility distribution is defined by a fuzzy set that yields the possibility degree for the

value x, as defined by the underlying fuzzy set’s membership function. Crisp attributes,

“(A, x0),” are formalized analogously; π degenerates to a function that yields 1 for input

x0 and 0, otherwise. For short, we describe the attribute value pair, “(A, π(x))”, simply

as πA(x). A publication is thus defined as a vector of attribute value pairs:

p = (πA1
(x), πA2

(x), · · · , πAn
(x))

For example, an apartment that is advertised for rent as ((size, 60m2), (rent, cheap)) can

be represented by a vector of attribute values as P = ((size, π60), (rent, πcheap)) where

π60(x) =











1 if x = 60;

0 if x > 60 or x < 60

πcheap(x) =























1 if x ≤ 1200;

1 − x−1200
300

if 1200 ≤ x ≤ 1500;

0 if x > 1500

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System36

Subscription language model

A subscription defines user’s interests through a Boolean function over a number of crisp

and approximate predicates. In the following we just refer to predicates, unless their

approximate character is especially underlined. Each predicate expresses a constraint

over a domain of values and is defined through a fuzzy set. In a predicate “(A, µA(x))”,

A is the attribute name and µA(x) is a membership function which defines a fuzzy set.

The fuzzy set represents a fuzzy constraint over all possible values the attribute can take

on. The predicate is evaluated by applying the membership function of the fuzzy set

to the attribute’s value in the publication. The resulting value constitutes the degree of

match of the predicate. Note, this may be any value in the interval [0, 1]. Thus, the

truth value (i.e., the degree of match) of each predicate is uniquely defined by µA(x).

Crisp predicates can be defined in the same manner. In the crisp case, however, the

membership function degenerates to the characteristic function over the set of values

defined by the predicate (i.e., it yields 1 for all set members and 0 otherwise.)

Predicate matching degrees are aggregated in a subscription relation to yield a final

degree of match for each subscription. We use R to represent the relation of the Boolean

function over predicates defining a subscription. R represents conjunction, disjunction

or any other Boolean operation connecting individual predicates. If we describe the

predicate, “(A, µA(x))”, simply as µA(x), a subscription, s, is formalized as follows:

s(x1, · · · , xm) = R(µA1
(x1), · · · , µAm

(xm)).

Here, the subscription, s, consists of m predicates and R defines the Boolean function

relating all predicates in s. For example, s may be in conjunctive form: or disjunctive

form, or any other form. R employs standard fuzzy set operators (cf. Chapter 3.2) to

define the subscription relation. No limitation is imposed by the form of s. That is s may

be any Boolean function, not necessarily in a normal form. Mathematically, R constitutes

a function in the hyperspace defined over the Cartesian product of the domains of xis.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System37

For a given input vector (x1, · · · , xm) in this hyperspace, R yields the truth value of s for

this input.

As a concrete example, let us define a subscription for a student who is looking for an

apartment with 3 constraints specifies as (size is medium), (price is no more than $450)

and (age is not very old). These constraints can be represented by three membership

functions as follows:

µ≤450(x) =











1 if x ≤ 450;

0 if x > 450;

µmedium(x) =



















































0 if x ≤ 40;

x−40
10

if 40 < x < 50;

1 if 50 ≤ x ≤ 70;

1 − x−70
10

if 70 < x < 80;

0 if x ≥ 80;

µold(x) =























0 if x ≤ 40;

x−40
40

if 40 < x < 80;

1 if x ≥ 80;

Formally the subscription is represented by:

s(x1, x2, x3) = µmedium(x1) ∧ µ≤$450(x2) ∧ (1 − µ2
old(x3))

where ∧ is used to model a conjunct. To demonstrate some features of fuzzy set theory,

we use the negation of the membership function to define the qualifier “not” and the

qualifier “very” through the squaring (i.e., damping) the fuzzy set’s membership function.

4.2.2 Approximate Routing Computations

Approximate Matching

In the crisp publish/subscribe model, a subscription, either matches a publication, or does

not match it. However, in the approximate model each subscription is assigned a degree

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System38

of match, depending on which, individual subscription can match a given publication

more or less.

We define a match between a subscription and a publication as a measure of the

possibility and necessity with which the publication satisfies the constraints expressed

by a subscription. We use the pair (ΠAi
, NAi

) to denote the evaluation of this measure.

Technically speaking, the problem comes down to measuring the match between the

predicate, µAi
(xi), and the value, πAi

(xi) for all i and for all x and aggregating the

resulting values in the subscription relation R. This measure is taken by computing the

intersection between µAi
and πAi

.

Definition: The possibility and necessity of a match between µ and π is computed as

Π = sup
x

min(µ(x), π(x))

N = inf
x

max(µ(x), 1 − π(x)).

inf is the “infimum” and sup is the supremum. For finite domains both can be

replaced by the “minimum” and the “maximum” operator, respectively. However, for

infinite domains the more general inf/sup operators are required, which is the reason

for using them in the above equations.

With this matching semantic a much larger number of subscriptions will match than

before, as all matches with degrees greater than 0 are perspective matching candidates.

A large number of slightly matching subscriptions may not be a useful idea, users may be

overwhelmed with notifications about publications that only marginally meet their actual

interests. For these reasons, the approximate matching model introduces a number of

parameters to control the tolerance of a match on a very fine-granular basis. These

parameters are the predicate thresholds θΠ and θN and the subscription thresholds ωΠ

and ωN . With these parameters a publication matches a subscription, if its degrees of

match evaluates to values larger than these thresholds.

The general form of subscriptions and publications is as follows:

sωΠ,ωN (x1, · · · , xm) = R(µ
θΠA1

,θNA1

A1
(x1), · · · , µ

θΠAm
,θNAm

A1
(xm)),

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System39

p = (πA1
(x1), πA2

(x2), · · · , πAn
(xn)).

Definition:: Formally, a publication, p, matches a subscription, s, if and only if:

∀i Πi ≥ θπAi
∧ Ni ≥ θNAi

∧

R(µ
θΠA1

,θNA1

A1
(x1), · · · , µ

θΠAm
,θNAm

A1
(xm)) ≥ ωΠ∧

R(µ
θΠA1

,θNA1

A1
(x1), · · · , µ

θΠAm
,θNAm

A1
(xm)) ≥ ωN . �

Definition: The approximate matching problem can now be stated as follows. Given a

set of subscriptions S and a publication p identify all s ∈ S such that s and p match with

a degree of match greater than the thresholds defined on s.

From the possibility and necessity computation equations, the following properties

can be easily deduced.

Properties:

∀x, Π(x) ≥ N(x) (4.1)

Π = 0 ⇔ S(µ) ∩ S(π) = ∅ (4.2)

Π = 1 ⇔ ∃x ∈ µ̇ ∩ π̇ (4.3)

N = 0 ⇔ ∃x ∈ S(µ) ∩ π̇ (4.4)

N = 1 ⇔ S(π) ⊆ µ̇ (4.5)

These properties are exploited in the algorithm to optimize its performance (cf. Sec-

tion 4.3). The properties relate characteristics about the support and the core of the

possibility distribution and fuzzy set to infer the degree of match with less computation.

These properties are graphically illustrated in Figure 4.2. Figure 4.2(a) and Figure 4.2(d)

illustrate property (4) and (5). Figure 4.2(c) illustrates property (3). Figure 4.2(b) illus-

trates the most general case, where 0 ≤ Π ≤ 1 and 0 ≤ N ≤ 1.

The possibility measure, Π, represents the degree of match and, its dual measure, N ,

represents the degree of no-match (cf. discussion Section 2). From Property 1, above,

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System40

it follows that the possibility, Π, is always greater or equal to the necessity, N . The

subjective interpretation of this is that an optimistic subscriber would count on the

leaner possibility measure, while, a pessimistic subscriber would count on the stricter

necessity measure.

Finally note, that for crisp attributes, “(A, x0)”, the possibility distribution function

π yields 1 for x0 and 0, otherwise. So the intersection of π and µ can only occur at the

point x0, which is the value µ(x0).

π(x)

(x)µ

1

(a) N = 1

π(x)π(x)1− (x)µ

(x)µπ(x)1−)(

(x)µπ(x)

N

1

Π

(b) 0 < N < 1, 1 < Π < 1

(x)π(x)µ

1
Π=1

(c) Π = 1

π(x) (x)µ

π(x)1−
1

(d) N = 0

Figure 4.2: Cases of possibility and necessity measure

Discussion of Alternative Matching Semantic:

Intuitively speaking, the ratio of the area of overlap between π and µ over the whole

area of π may seem like an alternative measure to evaluate the degree of match between

predicates and values. An interpretation of this ratio could be the assessment of how the

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System41

domain of π can satisfy µ. However, this method is not sufficient, as there exist situation

in which subscriptions match only to a small degree, but the degree of match computed

by this method is 1. Consider the example in Figure 4.3. The domain of the fuzzy set

defining the approximate attribute in publication, π, is totally contained inside µ and it

is completely covered by µ. It seems that all the values of the domain of discourse would

satisfy the predicate defined by µ over this domain, thus yielding a degree of match of 1.

However, consider the price $60, its membership in π is 0.1, its membership in µ is 0.5.

price60

µ 1−

0.5

0.1

1

0.3

µ

N

π

Figure 4.3: Degree of match defined as ratio of overlap

It is still possible that the price, the publisher observes is $60, though this possibility is

rated as only 0.1. The subscription matches with this price with a degree of match of

0.5 (as resulting from the application of the membership function at the point 60), but

not with degree 1. Therefore, it is not appropriate to define the matching degree as 1 in

this situation. On the other hand, possibility and necessity measures solve this problem.

It is possible that the value provided by the publication satisfies the subscription, the

possibility degree is 1. But it is not necessarily the case; so according to the formula

above, the necessity degree is only 0.3.

Approximate Covering

The goal of subscription covering is to quench subscription propagation, thereby reducing

network traffic and trimming the size of subscription (i.e. routing) tables.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System42

Given two subscriptions s1 and s2, s1 covers s2 if and only if all the publications

that match s2 also match s1. Based on the A-ToPSS subscription language model, a

cover relation can be defined as follows: for two subscriptions s1 and s2, s1 covers s2,

represented as s1 � s2, iff for each predicate p1i in s1, there is a predicate p2j in s2 covered

by p1i. The predicate cover relation is defined based on the membership functions and

thresholds: p1(A1, µ1, θΠ1
, θN1

) = µ
θΠ1

,θN1

A1
(x) covers p2(A2, µ2, θΠ2

, θN2
) = µ

θΠ2
,θN2

A2
(x) iff

A1 = A2, µ1(µA1
) covers µ2(µA2

) and θΠ1
≤ θΠ2

, θN1
≤ θN2

. µ1 covers µ2 means that

for any value x, the inequality µ1(x) ≥ µ2(x) is established. The condition on thresholds

is to guarantee that the thresholds of the outside function won’t filter out publications

which match the inner function that has lower thresholds. Figure 4.4 shows an example

of cover relation.

1µ
µ2

πΠ2

Π1

Figure 4.4: µ1 covers µ2, p1 covers p2 iff θΠ1
≤ θΠ2

and θN1
≤ θN2

Informally, when a broker B receives a subscription s, the broker will send the sub-

scription s to its neighbors if and only if the broker has not previously sent them another

subscription s′, that covers s. If such s′ exists, the broker won’t send s to its neighbors.

However, it will still receive all publications that match s, since it receives all publications

that match s′ and the publications that match s are a subset of the publications that

match s′.

Covering-based routing results in the reduction of the routing table size without

information loss, so that the performance of the matching algorithm can be improved

and no redundant information is forwarded into the network.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System43

Approximate Merging

The merging technique is used for further minimizing the routing table size and network

traffic overhead. It is an extension of the covering relation. Two subscriptions that are

largely overlapping each other can be merged into a more general subscription and be

forwarded into the network.

Subscriptions that have no cover relation may overlap with each other. These over-

lapping subscriptions can be merged into a new subscription, thus further reduce the size

of the routing table and network traffic. A merged subscription sM merging subscription

s1 and s2 covers both s1 and s2, which is represented as sM � s1 and sM � s2. In other

words, if P (s1) is the publication set matching s1, P (s2) is the publication set match-

ing s2 and P (sM) is the publication set matching sM , sM is a merger of s1 and s2 iff

P (sM) ⊇ P (s1) ∪ P (s2). If any publication that matches sM matches either s1 or s2, sM

is called a perfect merger; otherwise sM is an imperfect merger. Imperfect merger may

introduce false positives, that is, some publications that do not match any of the original

subscriptions will match the imperfect merger and be forwarded into the network, thus

increasing the network traffic overhead.

A subscription is a set of predicates. The merger of subscriptions should be defined

based on merger of predicates. We first look at how to merge predicates. In A-ToPSS,

a predicate is basically a membership function. Thus, the merged predicate should also

be a membership function which defines a larger domain for the values of the constraint.

Figure 4.5 shows an example of two overlapping membership functions and two possible

merger choices. The merger of µ1 and µ2 could be either µm (the function with solid

line) or µ′
m (the one with dashed line) in Figure 4.5(b). µ′

m is a perfect merger since

it does not include any area which is not in original membership functions. But its

representation is complicated and does not satisfy the membership function definition.

To simplify the representation, we take µm, which is a concave function, as the merged

membership function. It may introduce some false positives (when publications located

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System44

in the shaded area), but it is easy to represent and process.

µ21µ

(Π, Ν)

(a) Overlapped subscriptions

µ m

µ m’

(Π, Ν)

(b) Possible merger

Figure 4.5: How to merge overlapped subscriptions

Each predicate is also assigned a pair of matching thresholds to filter out slightly

matching subscriptions. Thus the problem of merging predicates involve the policy on

how to choose new matching thresholds for the merged predicates. Possible choices are

taking min, max and average of the original thresholds. Use of min won’t miss any

correct matched publications, but may introduce more false positive. Use of max can

reduce the false positives but some correct matched publications will be missed. average

is a compromise way to balance the effects of these two choices. Also average is a better

aggregation function for the case that two predicates overlapping each other largely, but

have big difference on the thresholds. We leave the freedom of how to assign thresholds for

merged predicates and only use R to represent the aggregation function on thresholds of

two predicates. The effectiveness of different choices for this aggregation will be evaluated

in the experiments.

Formally, the merger of predicates can be defined as: given two predicates p1 =

(A1, µ1, θΠ1
, θN1

) and p2 = (A2, µ2, θΠ2
, θN2

) where A1 = A2 and µ1, µ2 are defined as

follows:

µ1(x) =























L1(x) ∀x ∈ [m1 − α1,m1]

1 ∀x ∈ [m1,m1]

R1(x) ∀x ∈ [m1,m1 + β1]

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System45

µ2(x) =























L2(x) ∀x ∈ [m2 − α2,m2]

1 ∀x ∈ [m2,m2]

R2(x) ∀x ∈ [m2,m2 + β2]

The merged predicate of pm(Am, µm, θΠm
, θNm

) is calculate as Am = A1 = A2, θΠm
=

R(θΠ1
, θΠ2

), θNm
= R(θN1

, θN2
) and

µm(x) =























Lm(x) ∀x ∈ [min(m1 − α1,m2 − α2), min(m1,m2)]

1 ∀x ∈ [min(m1,m2), max(m1,m2)]

Rm(x) ∀x ∈ [max(m1,m2), max(m1 + β1,m2 + β2)]

With the definition of a predicate merger, we define the merger of subscriptions as fol-

lows. Given two subscriptions si = {pi1, pi2, ·, pik, · · · , pim}, sj = {pj1, pj2, · · · , pjk, · · · , pjn}

where the first k predicates of si and sj share the same attributes. The merger of si and

sj is sm, sm = {pm1, pm2, · · · , pmk} where pml is the merger of pil and pjl, l = 1, 2, · · · , k.

4.3 Data Structures and Algorithms

4.3.1 Data Structures

To exploit the overlap between subscriptions, we use a hash table to index predicates

according to their attribute names, a predicate vector to store the degree of match for

each predicate, a linked list associated with each predicate to record the subscriptions

that contain it (or using an association bit matrix) and a subscription vector to keep

track of the degree of match of each subscription. The overall data structure is depicted

in Figure 4.6.

In Figure 4.6, ai is the attribute name. Each predicate is represented by a pair (pid, µ).

pid is the predicate ID and µ is the membership function to describe user’s constraint

on the attribute ai. µ is represented by a list of parameters (m,m,α, β, Lm, Rm). Lm

and Rm are the indexes into a function family indicating which functions are used for

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System46

ia

m

m

β

L

α

R

Pl µ l mP nP

S1 S3

S2

S2

=

Indexes on attributes

Pr
ed

ic
at

e
V

ec
to

r

. . .

. . .

. . .

Π N

Su
bs

cr
ip

tio
n

V
ec

to
r

. . .
Π N

cover
flag

cover
flag

0.8

2

1

4

0

3

2

1

40.8

0

Figure 4.6: Data structures

left-hand spread and right-hand spread functions. The exact choice of these parameters

depends on the real application. We use one predicate vector to store both thresholds

(θΠ, θN) and the matching degrees (Π, N) . A flag is used to indicate whether the numbers

are thresholds or matching degrees. At first it stores the thresholds θΠ and θN .

Each publication is a set of pairs (attr, π) for different attributes. π is a function

showing the possibility distribution of uncertain value. Similar to µ, π is represented as

(n, n, γ, δ, Ln, Rn).

4.3.2 Approximate Matching Algorithms

The matching algorithm proceeds in two stages. First predicates are matched and, sec-

ond, matching subscriptions are identified. This is a similar break-down as applied in

many crisp matching algorithms.

Predicate evaluation: A publication is a set of pairs of (attr, π) where π =

(n, n, γ, δ, Ln, Rn). The attribute-name, attr, is used as the hash key to locate the corre-

sponding predicate-table. Each predicate is stored only once in the system. Each pred-

icate is in the form (pid, attr, µ, θΠ, θN), where µ = (m,m,α, β, Lm, Rm). The predicate

evaluation computes the possibility and necessity of match for the given input attribute,

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System47

respectively and store them in a vector Vp. After all attributes of the given publication

have been processed the matched degrees (i.e., each possibility and necessity) are used

to derive matched subscriptions. Algorithm predMatch depicts the predicate matching

algorithm.

Algorithm predMatch(e)

1. Vp = 0, SatPreds = ∅

2. for each attribute ai in e

3. locate the corresponding index i in I

4. for each predicate p(ai, µi, θΠi
, θNi

) reached by i

5. Vp[p].Π=sup min(µi, πi)

6. Vp[p].N=inf max(µi, πi)

7. if Vp[p].Π > 0 and Vp[p].Π ≥ θΠi
and Vp[p].N ≥ θNi

8. SatPreds = SatPreds ∪ {p}

9. return SatPreds

Subscription evaluation: Subscriptions may be conjuncts of predicates, disjuncts

of predicates, or normal forms. The algorithm we present for subscription evaluation

works for either conjunctive or disjunctive subscriptions. To also process normal forms

a further stage based on the truth values of subscription terms is required, which we

don’t present here (it is analogous to the subscription evaluation stage.) The algorithm

calculates the degree of match, as expressed by a possibility measure and a necessity

measure for each subscription based on the predicates matching degrees. Here we use

minimum operation for conjunctive predicates. Other choice such as product could also

be used. At the end of evaluation, we will compare the possibility and necessity of each

subscription with user’s thresholds ωΠ and ωN , only return user the subscriptions whose

degrees are larger. Algorithm subMatch depicts the detailed procedure. In the algorithm,

Vp is predicate vector where stores all predicate matching degrees, Vs is the subscription

vector and List is an array of lists that store predicate subscription association;

Algorithm subMatch(V p)

1. Vs = 0, SatS = ∅, Count = 0

2. for each p ∈ V p where Vp[p].Π ≥ p.θΠ and Vp[p].N ≥ p.θN

3. for each s in List[p]

4. if Count[s] = 0

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System48

5. then Vs[s].Π = Vp[p].Π

6. Vs[s].N = Vp[p].N

7. else Vs[s].Π = min(Vs[s].Π, V p[p].Π)

8. Vs[s].N = min(Vs[s].N, Vp[p].N)

9. Count[s] + +

10. for each s

11. if Count[s] = preds per sub[s]

12. then SatS = SatS ∪ {s}

13. return SatS

Improved Predicate Matching Optimization: The previous algorithm evaluates

all predicates related to one attribute that is referenced by a given publication (i.e.,

iterated over each of its attributes). More specifically, at least one comparison between

the two functions µ and π was required for each predicate to determine whether a match

occurred. To minimize the number of comparisons, we improve our algorithm by sorting

the predicates of the same attribute so that the predicate matching algorithm can stop

earlier rather than evaluate all predicates.

In the representation of a predicate membership function µi = (mi,mi, αi, βi), let

mi1 = mi−αi, mi2 = mi, mi3 = mi, mi4 = mi +βi. These are four critical points because

they differentiate the boundaries where the membership degree has value 0 and where has

value 1. Obviously, we have mi1 ≤ mi2 ≤ mi3 ≤ mi4 . Similarly, for an event possibility

distribution function π = (n, n, γ, δ), let n1 = n− γ, n2 = n, n3 = n, n4 = n + δ, and we

have n1 ≤ n2 ≤ n3 ≤ n4.

The location of the mui functions and the π function determines whether a match

occurs or not. Figure 4.7 shows examples of the matched predicates and no-matched

predicates for a fixed publication. Suppose each predicate is represented as a membership

function µi = (mi,mi, αi, βi) and the publication is represented by a possibility distribu-

tion function π = (n, n, γ, δ). A match is established once the predicate “touches” the

publication, i.e., µi and π intersect (e.g., µ2 and µ3 in Figure 4.7). Otherwise there is no

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System49

match. Concretely speaking, the predicate wont match the publication if its right-hand

spread is to the left of the attribute function π (e.g., in Figure 4.7, m14
≤ n1); or the

predicate’s left-hand spread is to the right of π (e.g., µ4 in Figure 4.7, m41
≥ n4).

m
4 n1 n4 m

1

1 2 3 4

No match, ignore

match, evaluate

πµ µ µµ

1 4

Figure 4.7: Examples of match and no-match between µ and π

Based on the above observation, predicates with the same attribute name, are or-

ganized in the order of their µ functions from smallest to largest starting from m1 to

m4. For example, there are two predicates, pi and pj, that are under the same attribute

index. We first compare mi1 and mj1 . The predicate with the smaller m1 value is placed

ahead of the other. If mi1 = mj1 then we compare mi2 with mj2 and take the one with a

lower value and place it ahead of the other. If the second points are equal then the same

comparison is done for the third and forth points. If all the parameters are the same,

then the predicate who enters the system earlier is placed ahead of the other. Figure 4.8

shows an example of four predicates that are ordered according to their locations order.

1p p2 p4p3

Figure 4.8: Examples of ordered predicates p1 < p2 < p3 < p4

For each attribute ai of a publication, we pass the predicates whose membership

functions are to the left of the πi, and only evaluate predicates that intersect with the

attribute. Predicate matching stops as soon as the above rules establish further none-

matches.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System50

In the possibility computation, the improved algorithm first compares n1 (the first

point of π) with the m4 (the last point of function µ) of the predicates through the

ordered predicate list until it reaches the predicate whose µ4 is larger then n1. Before

that, all predicates are to the left of the π (as the left case in Figure 4.7), hence impossible

to match. After m4 > n1 then we check m1. If m1 > n4, then we can stop because from

now on all predicates afterwards are to the right of π, thus impossible to match either (as

the right case in Figure 4.7). We just need to evaluate the predicates whose m4 < n1 and

m1 > n4. Algorithm Improved Possibility Computation shows the detailed possibility

computation.

Algorithm Improved Possibility Computation(sup min(µ, π)

1. j = 1

2. while m1j < n4

3. do while m4j ≤ n1

4. do j++

5. if m3j ≤ n2

6. then find c such that

7. Rm(c−m
β

) = Ln(n−c

γ
)

8. Π = Rm(c−m
β

)

9. else if m2j ≤ n3

10. then Π = 1

11. else find c such that

12. Rm(c−n
δ

) = Ln(m−c

α
)

13. Π = Rm(c−n
δ

)

14. j++

In the necessity evaluation, the algorithm first compares n3 (the third point of function

π) with m4 (the last point of function µ) through the ordered predicate list until it reaches

the predicate whose µ4 is larger than n3. Before that, the complements of predicate

functions µ are always intersected with the core of the π, so the necessity must be 0.

After m4 > n3 we compute the necessity of each predicate until m1 ≤ n2 because from

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System51

now on all necessities afterwards must be 0. Algorithm Improved Necessity Computation

shows the detailed possibility computation.

Algorithm Improved Necessity Computation(inf max(µ, π)

1. j = 1

2. while m1j < n2

3. do while m4j ≤ n3

4. do j++

5. if m2j < n1 and m3j > n4

6. then N=1

7. else find c1 and c2 such that

8. Rm(c1−m
β

) = 1 − Rn(c1−n

δ
)[= N1]

9. Lm(m−c2

α
) = 1 − Ln(n−c2

γ
)[= N2]

10. N = min(N1, N2)

11. j++

Precision-space trade off: The approximate matching scheme trades off the pro-

cessing of uncertain and vague information against precision. This suggest that a degree

of match that is computed for a subscription must not be highly accurate, i.e., accurate

to the n-th digit after the comma, as it is based on uncertainty anyway. We use this as

motivation to experiment with different encodings for the degrees of match in our algo-

rithm. The objective is to save space, while not sacrificing computational accuracy in

our approximate matching model. We use three encodings: Float, one-byte, representing

ten values, and one-byte representing 256 possible values for the degree of match. This

is a straight forward encoding, with more refined schemes deferred to future work. The

effects of different encodings will be evaluated in the experiments chapter.

Complexity Analysis: The space cost includes mainly the following parts: pred-

icate hash table, predicate vector, subscription vector, and the association list for each

predicate.

Space =
∑

(Spacep ∗ Np) + 2Np + 2Ns + Np ∗ Nsp

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System52

Where Spacep is the space for one approximate predicate function µ = [m, m̄, α, β]LR,

Np is the number of predicates, Spacep ∗ Np is the space to store all distinct predicates

in the system, and Ns is the number of subscriptions. Each predicate and subscription

is associated with two measures: possibility and necessity. Their types depend on the

encoding chosen (float or char). The space cost for approximate matching is greater than

crisp matching in which just one bit is used to record whether a predicate is matched

or not matched. Using Nsp
as the average number of subscriptions associated with each

predicate, the space of association lists takes Np ∗ Nsp
. Overall, the space cost is linear

with the number of predicates and subscriptions: Space = O(Np + Ns).

The algorithm consists of two steps. First, predicate matching, consists of the time

to retrieve the attribute from the index, which is just one lookup (hash table). Then

all predicates under the same attribute are evaluated. In the original algorithm, all

predicates membership functions under the same attribute need to be computed to get

the possibility and necessity matching against the publication possibility distribution

function. Assume that the time spending to evaluate each predicate membership function

associate with the attribute is t1, and all predicates are distributed uniformly on each

attribute. Then the matching time for predicate matching is

T ime(regular predicate matching) = t1 ∗
Np

Na

∗ Nae

where Np is the total number of all predicates, Na is the total number of all attributes,

hence Np

Na
is the number of predicates associated with one attribute. Nae

is the average

attributes number in the event.

In the improved algorithm, we don’t need to evaluate all predicates associated with

one attribute because of the good organization of the predicates. Evaluation stops at

the point where all other predicates won’t match for sure. We define α(∈ [0, 1]) as the

coefficient between the number of predicates evaluated in the improved algorithm and in

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System53

the original one. This gives us a matching time of:

T ime(improved predicate matching) = α ∗ t1 ∗
Np

Na

∗ Nae

In the subscription evaluation, we suppose the time for one lookup is t2. In our

algorithm, for each matched predicate, we need to look up at the predicate subscription

association matrix to find out which subscription contains this predicate, hence the time

is t2 ∗ Nsp
∗ Npsat

where Npsat
is the average number of matched predicates. Since the

thresholds θΠ and θN are used to trim off the predicates whose matching degrees are

not big enough to satisfy users. We denote β as the coefficient between the number of

evaluated predicates and the number of the matched predicates whose matching degrees

are beyond the thresholds, then we get Npsat
= β ∗ Np

Na
∗Nae

. The subscription evaluation

time is

T ime(subscription evaluation) = β ∗ t2 ∗ Ns ∗
Np

Na

∗ Nae
.

In all, the matching time cost of the sequencing algorithm is

T ime = α ∗ t1 ∗
Np

Na

∗ Nae
+ β ∗ t2 ∗ Ns ∗

Np

Na

∗ Nae
.

4.3.3 Approximate Covering Algorithm

The covering algorithm is performed for each newly arriving subscription, which guaran-

tees that there is no cover relation among subscriptions in the routing table. Therefore,

if the new subscription is covered by any existing subscription, no other subscription in

the routing table can be covered by the new subscription. On the other hand, if the new

subscription covers an existing subscription, it won’t be covered by any other subscription

in the routing table. Based on these observations, we propose an algorithm that scans

the routing table once, determines all possible cover relations and updates the routing

table.

Algorithm coverChecking is the procedure for checking cover relations when a new

subscription S arrives. There are two stages in this algorithm. First covered and covering

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System54

predicates are found and, second, covered and covering subscriptions are identified. This

is a similar break-down as applied in the matching algorithm.

Algorithm coverChecking(S)

Input: an incoming subscription S

Output: boolean covered; a set R of subscriptions covered by S

1. SubSet = ∅

2. for each predicate p(µ) in S

3. for each predicate pi(µi) where p.attr == pi.attr

4. check predicate cover relation and set pi.coverflag

5. for each p where p.coverflag 6= 0

6. for each Si in p.subs

7. Si.count + +

8. set Si.coverflag according to pi.coverflag

9. SubSet = SubSet + Si

10. R = ∅, covered = false, covering = false

11. for each subscription Si ∈ SubSet

12. if ((|Si.preds| ≥ |S.preds|) and (Si.Count ≥ |S.preds|) and (Si.coverflag == “covering′′))

13. R = R ∪ Si

14. covering = true;

15. if (|S.preds| ≥ |Si.preds|) and (Si.Count ≥ |Si.preds|) and ((Si.coverflag == “covered′′))

16. covered = true

17. return

18. return R and covered

Analysis: In the first stage, for each predicate p in arriving S, we use its attribute

as the hash key to get a set of predicates and check their cover relations by comparing

their membership functions and p’s membership function. Only those subscriptions who

overlapped with S will go to the second step to check the subscription covering relation.

A covering or covered subscription is detected when all their predicates are set by the

same coverflag.

To check predicate cover relations, all predicates with the same attribute as the com-

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System55

ing predicate are evaluated. Assume all predicates are distributed uniformly on each

attribute. The time for predicate checking depends on the number of predicates in the

incoming subscription and the average number of predicates for each attribute, which is

T ime(predicate coverChecking) = O(
Np

Na

∗ |S.preds|)

where Np is the total number of all predicates, Na is the total number of all attributes,

hence Np

Na
is the average number of predicates associated with one attribute. |S.preds| is

the number of predicates in the incoming subscription.

In the subscription cover evaluation, for each subscription which contains at least one

covered/covering predicate, we check the coverflag for all of its predicates. The time is

O(|SubSet| ∗ |S.preds|) which depends on the number of subscriptions in SubSet. Thus,

the total time for the coverChecking algorithm is

T ime = O(
Np

Na

∗ Nsp
) + O(|SubSet| ∗ |S.preds|).

Since the total number of predicates is approximately linear with the number of total

subscriptions and |SubSet| ' ratiooverlap ∗ number of subscriptions. Therefore, the

overall time to check covering is linear with the total number of subscriptions and the

overlap degree:

T ime = O(ratiooverlap ∗ number of subscriptions).

4.3.4 Approximate Merging Algorithm

The merging-based routing is an extension of covering-based routing to reduce the rout-

ing table size and network traffic overhead further. Two subscriptions that are largely

overlapping each other can be merged into a more general subscription and be forwarded

into the network.

When we merge two subscriptions, we remove the predicates with different attributes,

and only keep the predicates with the same attributes and merge them to get the merged

subscription. Algorithm mergeSub describes the details of the merging procedure.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System56

Algorithm mergeSub(S1, S2)

Input: two overlapped subscriptions S1, S2

Output: a merged subscription S

1. i = 1

2. for each predicate p1(µ) in S1

3. pick a predicate p2(µi) where p1.attr == p2.attr

4. while (S2 /∈ p2.subList)

5. pick another predicate p2(µi) where p1.attr == p2.attr

6. if (S2 6= NULL)

7. S.pred[i + +] = mergePredicate(p1, p2)

8. return S

To minimize the false positives introduced by the merger, the subscriptions to be

merged should overlap maximally, in the other words, have the largest possible simi-

larity. Since subscription is a list of predicates, we define the similarity between two

subscriptions as the minimum of the similarities between each pair of predicates with the

same attribute. The similarity between two predicates is defined based on the overlap-

ping area and their matching degree. Take the predicates in Figure 4.5(a) as an example.

The overlap ratio between two predicates, Roverlap, is the ratio of the shaded area and

the area under their merger µm. Similar to the matching between subscription and pub-

lication, the intersection, (Π, N), is a fuzzy measure for their overlapping ratio. We use a

triple (Roverlap, Π, N) to describe the similarity between two predicates which means they

are overlapping each other by Roverlap ratio with (Π, N) possibility. When the merging

operation is performed, we only select the subscriptions whose similarity is larger than a

threshold (TRoverlap
, TΠ, TN). The threshold of (TΠ, TN) is for merging, and it is different

from (θΠ, θN) which is for matching.

Algorithm predChecking(P,L)

Input: an incoming predicate p, a list L which contain all the predicates with the same attribute as p

(∗ compute the overlap between µ and µi and set the value, pi.coverflag stores the type of covering ∗)

(∗ 1: µi covers µ, 2: µ covers by µi, 3: µ = µi, (0,1): the ratio of overlap between µ and µi ∗)

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System57

1. for each predicate pi(µi) in L

2. if ((µ == µi) and (θΠ == θΠi
) and (θN == θNi

))

3. pi.coverflag = 3

4. else if ((µ covers µi) and (θΠ ≤ θΠi
) and (θN ≤ θNi

))

5. pi.coverflag = 2

6. else if ((µi covers µ) and (θΠ ≥ θΠi
) and (θN ≥ θNi

))

7. pi.coverflag = 1

8. else pi.coverflag = computeoverlap(µ, µi)

9. pi.Pos = supx min(µ(x), µi(x))

10. pi.Nec = infx max(µ(x), 1 − π(x))

11. return L

We can calculate the similarity between the new subscription and each subscription

along with Algorithm coverChecking when the new subscription enters the system. This

calculation doesn’t need extra time and extra space. The similarity can be computed at

the same time when we check the cover relations and are stored in the space for matching.

The subscription who has the largest similarity with the incoming subscription will be

remembered. If there is no cover relation between incoming subscription and existing

subscriptions and the largest similarity is larger than the threshold we set, we will perform

the merge operation. This approach is better than offline merging since we don’t need

extra time to compute the similarity between each pair of subscriptions. Furthermore,

the routing table can be maintained as small as possible. The threshold for merging can

be used to tune the tradeoff between routing table size and false positives. The combined

algorithm to check predicate cover relation and calculate the similarity between predicates

is depicted in Algorithm predChecking .

Analysis: The procedure to calculate the similarity between subscriptions and

determine what to merge is performed simultaneously to checking cover relations. As

for the mergeSub procedure, it depends on the number of predicates in one subscription

and the length of the predicate list which shares the same attribute since we need to

go through the list to check whether another subscription contains a predicate who has

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System58

the same attribute. In the worst case we need to look through the whole list for each

predicate. Thus the complexity to merge two subscriptions is

O(|S.preds| ∗
Np

Na

)

where Np is the total number of all predicates, Na is the total number of all attributes,

hence Np

Na
is the average number of predicates associated with one attribute.

4.3.5 Intersecting-based Routing

In content-based routing, subscriptions are forwarded toward reverse path of intersecting

advertisement. Thus, we need to find intersecting subscriptions when receiving a new

advertisement and find intersecting advertisements when receiving a new subscription.

Since advertisement share the same representation of subscription, these two algorithms

are similar. Algorithm getIntersectingSubs describes the procedure to get a set of inter-

secting subscriptions upon receiving a new advertisement.

Algorithm getIntersectingSubs(A)

1. SubSet = ∅

2. for each predicate p(µ) ∈ A

3. for each predicate pi(µi) where pi.attr = p.attr

4. if (compute overlap(µ, µi) > 0)

5. SubSet = SubSet ∪ pi.subSet

6. return SubSet

4.4 Parameterizations Selection for A-ToPSS Model

The A-ToPSS model offers its users great flexibility and leaves room for tuning a wide

range of default parameters. It is often a challenge to select the right membership function

parameterizations, the exact number of membership functions to represent one dimension,

the appropriate aggregation function or the right thresholds. Users may like to define

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System59

their own specifications according to the information of other people’s requirements. It

will be more convenient if we could provide them with the aggregated knowledge of

current data in the system. For example, a user wants to get to know the average price

for a second-hand car and buy one with a price relative to the notion of cheap in the

system. Therefore, his specification for the price may vary according to the average price.

If the average price is 10K dollars, he will define his expectation between 8K to 11K.

However, if the average price is 5K, his expected price will decrease to [4k; 6k].

However, A-ToPSS is used in a context where many subscribers (potentially millions)

seek the right information. Consequently, much information about what defines certain

concepts in specific domains is readily available, such as an “average understanding” of

what constitutes a “cheap” price of a popular electronics gadget available in an online

auction. If this information could be exploited, better default parameter choices could

be determined for subscribers and publishers of such a system.

Therefore, we propose a density estimation approach to determine default value set-

tings for membership functions based on historical data (i.e., from past subscriptions and

publications). We demonstrate our approach on real data traces that we have collected

from an online auction site. The real data traces serve as models of subscriptions and

publications that have been submitted in the past (and will be made available in the

future). In the density estimation we do not differentiate between subscriptions or publi-

cations, but mine for default parameterizations of the membership functions underlying

both entities. This is possible due to the link of a fuzzy set and a possibility distribution,

explained in further detail in [59]. The mined parameterizations are then used to provide

default values for imperfect concepts.

The feasibility of membership function mining depends on the distribution of the

data in data set. Since we don’t know what distribution the data displays beforehand,

we can’t predefine any function to represent the distribution of the data. Therefore, we

propose a function mining approach based on the density estimation of the data.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System60

The function mining is performed for each attribute, thus it is based on one dimen-

sional data. The x-axis values are the distribution of the data for one attribute and the

goal is to get y-axis value for each x value to represent the degree of its membership. We

assume that the number of concepts to describe the characteristics of one dimension is

given. For example, the dimension price, could be represented by three concepts “cheap”,

“fair” and “expensive”. Each of these concepts is represented by a parameterized mem-

bership function, which can be adapted to a specific understanding by modifying its

parameters. We focus on estimating the representation of each parameterized member-

ship function.

There are two steps to estimate the representation of a membership function. First,

given k, the number of membership functions of one attribute, find the domain for each

membership functions. In other words, given a list of data xi, how to partition the list

into k clusters so that the distance between clusters are maximized and the inner distance

inside one cluster are minimized. Since the data in our case is one dimension, we compute

the distances between each pair of neighbors, choose the k − 1 largest distances as the

separators to partition the list (as shown in Figure 4.9). Next, the exact expression of the

function is estimated for each membership function based on the data density. We use

a similar density estimation as in probability and statistics. The basic idea is to count

the number of data points within a small region around each x-value and then divide it

by the length of the region to get the density. To make sure no y-value larger than 1, we

normalize the f(x) by dividing the maximum f(x). The detailed algorithm is described

in Algorithm DensityEstimation.

C1

C2

C3

x1 x i1 x i1+1 x i2 x i2+1 x n

d2d1

Figure 4.9: partition the list into k clusters

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System61

Algorithm DensityEstimation(V, k)

Input: a vector V of a list of data xi, number of membership functions k

Output: fj(x), j = i, · · · , k for each membership function

1. sort(V) so to get x1 ≤ x2 ≤ · · ·xn

2. calculate the distance between adjacent data di = |xi+1 − xi|

3. find the k − 1 largest distance, {dj |dj = xij+1 − xij
, j = 1, · · · , k − 1}

4. separate the list into k clusters, each cluster j has the domain Cj : [aj , bj] where aj = xij
and

bj = xij+1+1

5. for each cluster Cj : [aj , bj]

6. find the maximum distance d = max{di|di = |xi+1 − xi| ∧ xi ∈ [aj , bj]}

7. for each variable x

8. Ix = [max(aj , x − d/2),min(bj , x + d/2)]

9. Ax = xi|xi ∈ Ix

10. fj(x) = |Ax|/d

11. normalize: find the maximum fj(xi) M = max(fj(xi))

12. fj(x) = |Ax|/(d ∗ M)

4.5 Experiments

4.5.1 Experiment Setup

In this section we evaluate our approach to model uncertainties in content-based routing.

All experiments are run on a Linux system with 2GB RAM and a 2.4GHz microproces-

sor. First, we validate our density estimation algorithm to determine the membership

function. Next we evaluate the performance of the approximate matching algorithms on

a single router. Finally, we show the approximate content-based routing experiments on

a network.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System62

4.5.2 Model Parameterizations Mining

To validate our density estimation algorithm for membership function learning, we collect

a set of real data from an online apartment renting web site. The information posted

by publishers listed the type of apartment, rent range and other binary attributes of

the apartment including air conditioning, pet allowed etc. We classify all the data into

three categories according to apartment type: one-bedroom, two- bedroom and three-

bedroom, eliminate binary attributes and keep only the qualitative rent value since the

function mining algorithm can only be applied to qualitative data. In the collected data

set, there are two types of values for rent price: discrete point value and interval value.

The dataset size for these two types are summarized in 4.1. The dataset of two-bedroom

price is the largest one, thus we use this dataset to demonstrate model parameterizations

mining process.

Table 4.1: Data Classification and Dataset Size

Type Point Value Interval Value

one-bedroom 89 318

two-bedroom 180 1178

three-bedroom 87 592

Since the range of the interval is relative small compare to the value, we take the me-

dian as the representative and thus we get a set of discrete data points for rent attribute.

The distribution of the set of data is shown in Figure 4.10. From the figure, we can see

that most data drop in the range between $500 and $2000. There are very few users

subscribe their interest above $3000.

To get a membership function to analytically represent each attribute of price, we

applied the density esitimation algorithm to the price dataset.

Figure 4.11, Figure 4.12 and Figure 4.13 show the three membership functions mined

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System63

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

Price

Two Bedroom Price Distribution

Figure 4.10: Two Bedroom Price Distribution

Two Bedroom Cheap-Price Distribution

0

0.2

0.4

0.6

0.8

1

1.2

36
5

48
5

51
3

53
3

55
4

57
9

59
8

61
5

63
3

65
0

66
4

68
7

70
0

72
5

74
5

76
3

78
8

82
3

85
8

89
0

92
5

97
0

10
13

price

p
o
s
s
i
b
i
l
i
t
y

cheap prce density function

Approximation Polynomial

Figure 4.11: The function representing the cheap rent for two-bedrooms apartment

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System64

Two Bedroom Medium-Price Distribution

0

0.2

0.4

0.6

0.8

1

1.2

1
0
1
5

1
0
3
8

1
0
5
4

1
0
7
3

1
1
0
0

1
1
2
0

1
1
3
8

1
1
5
5

1
1
7
0

1
1
9
5

1
2
2
4

1
2
5
0

1
2
7
5

1
3
0
0

1
3
3
0

1
3
7
0

1
4
1
0

1
4
4
5

1
5
1
8

1
6
0
0

1
6
7
5

1
7
7
0

1
9
7
8

price

P
o
s
s
i
b
i
l
i
t
y

density function

approximation Polynomial

Figure 4.12: The function representing the medium rent for two-bedrooms apartment

for the rent of two-bedroom apartments. We partition the rent into three clusters: cheap,

medium and expensive. After applying Algorithm DensityEstimation, we smooth the

functions using polynomial approximations. The figures show that the density functions

for all three clusters basically follow a bell-shaped function distribution, which can be

used in our approximate matching semantics, although it is not very smooth for the

second cluster and has some fluctuations.

Two Bedroom Expensive-Price Distribution

0

0.2

0.4

0.6

0.8

1

1.2

2
2
2
3

2
2
3
7

2
2
5
5

2
3
1
7

2
3
4
8

2
3
7
1

2
4
1
0

2
4
7
3

2
5
3
8

2
6
2
3

2
6
2
8

2
6
4
5

2
7
1
0

2
7
5
0

2
8
4
9

3
0
1
7

3
1
0
0

3
3
0
0

3
3
2
5

3
3
4
5

3
7
5
0

4
0
4
5

4
1
7
5

4
6
9
8

6
3
5
6

price

p
o
s
s
i
b
i
l
i
t
y

density function

Approximation Polynomial

Figure 4.13: The function representing the expensive rent for two-bedrooms apartment

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System65

4.5.3 Evaluation of Approximate Matching on a Single Router

In this section, we evaluate the performance of the approximate matching algorithms with

respect to time and memory. The objective is to confirm the efficiency of the algorithms

and compare the crisp publish/subscribe model with the approximate model. We also

examine the trade off between matching precision against the space used for storage.

Experiment Framework

We are using a synthetic workload so that we can independently examine various as-

pects of the approach. The algorithm is implemented in C. To render the approximate

and crisp cases comparable, we generated crisp subscriptions and publications based on

approximate ones. For subscriptions, we define three interval types of crisp predicates

derived from the approximate ones: optimistic, pessimistic and middle. There are three

ways to determine the lower bound and upper bound of the interval. If m1,m2,m3,m4

are the four parameters for the representation of the approximate predicate then those

three interval types are defined in Figure 4.14.

1m 2m m3 4m2m1m m3 4m

pessimistic

middle
optimistic

approximate

+
2

+
2

n1 4nn2 3nn2 3n

approximate

point

interval

+
2

Figure 4.14: Definition of different subscription and publication types

Publications are generated similarly (cf. Figure 4.14). We have two choices when

generating crisp publications on the basis of approximate publications: point and inter-

val. They refer to the types of the value for each attribute in the publication. Point

type is defined to be consistent with the publication language data model in crisp pub-

lish/subscribe system so that they are comparable. Interval type serves to compare the

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System66

difference between an interval representation and a fuzzy set representation for an un-

certain constraint. Since we define three choices to generate interval subscriptions, we

can compare the effects of different lower bound and upper bound of the interval in the

subscriptions. Therefore, we only generate one interval type for publications.

Table 4.2: A-ToPSS Workload parameters

parameters value description

nt 42 size of predefined attributes

nv [2,5] number of predefined fuzzy concepts for each attribute

SizeP 4 number of attributes in publication

SizeS 2 number of predicates in subscription

Nsub [100, 100,000] number of subscriptions

Npub 10 number of publications

The workload parameters used in the experiments are shown in Table 4.2. A subscrip-

tion is a list of predicates. Predicates are determined by an attribute name and a fuzzy

set. Predicate attribute names are drawn from a predefined set of names. The same set

is used to generate publications. The total number of names available is determined by

nt. For each attribute name, we provided a set of fuzzy concepts (the number of those

concepts is nv) to be drawn as predicate’s lingual fuzzy value. In this experiment we

use a trapezoidal fuzzy set membership function. The function is defined by 4 points,

randomly selected from the domain, governed by a uniform distribution, to form the

membership function representation. The membership functions of covered subscriptions

are generated based on covering subscription’s membership functions, where the 4 points

of the covered function are selected from within the interval of the covering function.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System67

Performance Evaluation

To evaluate the performance, we classify the implementations into 3 pairs according to

different emphasis: 1. algorithms: regular matching vs. improved matching algorithm; 2.

matching result representation: float-wise (4 bytes) vs. bit-wise (8 bits or 4 bits); 3. the

data structure for the association between predicates and subscriptions: matrix-based vs.

list-based. We consider the following metrics: subscription loading time, matching time

and memory used. The matching time measurement starts just before the publication

has been submitted to the system and ends right after the system responds.

Figure 4.15: Matching Time

Figure 4.15 compares the matching time across all implementations. The matching

time depends on the number of predicates associated with the same attribute and the

number of subscriptions that include those matched predicates, hence matching time in-

creases with increasing the number of subscriptions. In Figure 4.15 we compare the float-

wise, bit-wise and improved matching implementations. The advantage of the improved

predicate matching algorithm is not distinguished since the subscription evaluation step

takes much more time than predicate matching. The bit-wise implementation runs slower

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System68

than the float-wise because it needs more computation to set the bit values. To show the

benefits of the improved predicate matching algorithm, we ran the predicate matching

process only and Figure 4.16 showed that the improved algorithm runs faster.

Figure 4.16: Predicate Matching Time

Figure 4.17: Loading Time

Figure 4.17 compares the loading time among different algorithms. Contrary to the

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System69

matching time, the improved algorithm needs more time than the other three. This is

because predicates need to be inserted into a sorted list based on the 4 points of the

function. This is a tradeoff between the loading time and matching time. In a real

application, most subscriptions stay in the system for a long time and the matching time

is more important to the user. With the high publication submission rate, it is better to

process the matching quickly and respond as soon as possible.

Figure 4.18 shows memory utilization for the float-wise and bit-wise algorithms. The

difference shows up only in the storage of matched result of predicates and subscriptions,

so we only consider the space used here. We can see that bit-wise one uses less than the

float version due to the space saved by using several bits instead of 4 bytes.

Figure 4.18: Memory Used

In our experiment, the workload is generated randomly, thus the number of sub-

scriptions that contain the same predicate is very small compared to the total number

of subscriptions. Therefore, both the matching time and memory using the list-based

approach is much less than the matrix-based approach considering the size of the list for

each predicate is much smaller. The results are shown in Figure 4.19 and 4.20. In the

case where each predicate is contained in most subscriptions, the matrix-based version

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System70

should be much better because access to the table is faster.

Figure 4.19: List-based Matching Time

Figure 4.20: List-based Memory Used

The decrease in space using bits instead of float results in a loss of precision in the

matched results. A performance measure precision is defined as:

precision =
]Correct Subscriptions Returned

]Subscriptions Returned

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System71

In publish/subscribe systems, correctness means that the matched subscriptions the sys-

tem returns are exactly what the users want. For example, a user wants to be notified

when her subscription matches with a degree larger than 0.8. In the 10 value bit-wise

implementation (0,1 and eight equal parts in between), those matched degrees between

0.75 and 0.8 are represented by the same bit pattern as those between 0.8 and 0.875. If

users are only satisfied with the latter ones, there is an error since the system will return

all subscriptions whose degrees are between 0.75 and 0.875. Compared to the float-wise

implementation which always return the correct data, the bit-wise version will also return

some subscriptions that are not satisfied because of the precision loss. In our context,

the precision is computed by

precision =
]Subscriptions float-wise Returned

]Subscriptions bit-wise Returned

Figure 4.21 shows the precision of 8-bit-wise and 4-bit-wise implementations. We can

see that the precision of the 8 bits version is stable around 98% and the 4 bits is stable

around 96%. Considering the acceptance of users’ error range in the real world, the

decrease of the bits don’t introduce much error.

Comparison Between Crisp and Approximate Model

In this set of experiments we compare the crisp and approximate publish/subscribe

matching model with respect to the number of matches identified under different con-

ditions. Table 4.3 shows the different numbers of matches based on the evaluation of a

fixed number of approximate publications over different kinds of subscriptions and differ-

ent thresholds. We use α as the thresholds to assess a minimal possibility and necessity

beyond which a subscription is not counted as a match (i.e., ωΠ = ωN = α). We can

see that for one type of subscription, the number decreases with increasing α, which

indicates the threshold effect of α. With the same α, the pessimistic case results in the

largest number of matches and the optimistic case results in the fewest matches. The

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System72

Figure 4.21: The trade off between precision and space

approximate case and the middle case do not exhibit much difference. This is due to the

wider restriction of subscription, the greater the probability of being matched.

Table 4.3 then shows the numbers of matched subscriptions for different type of pub-

lication when the subscription type is fixed. When α = 0, the approximate publication

returns the most subscriptions and the point type returns the least. This is the same as

for subscriptions. However, with the increase of α, the approximate publication matches

a very small number of subscriptions, whereas point-valued publication matches the most.

This is because α is used as the threshold for both possibilities and necessities. Think of

the intuitive meaning of possibility and necessity we defined in the model section. For

the approximate publication, the function restricting the attribute has a wider domain,

thus it is more likely that the publication intersects with the complementary region of

subscriptions, therefore the necessities is very likely to be 0, which makes it more difficult

to reach the α threshold. For the point-valued publication, it is easy for such a value to

be located in the core of the subscription function, thus more subscriptions are matched

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System73

Table 4.3: Comparison of number of matches for various types of subscriptions with

approximate publications and number of matches for various types of publications with

approximate subscriptions.

Subscription Type α = 0 α = 0.5 α = 1

appro 4628 184 7

pessi 4628 804 281

middle 4438 184 39

optim 3763 47 7

Publication Type α = 0 α = 0.5 α = 1

appro 4628 184 7

interval 3720 474 170

point 2960 1932 868

with high α for point-valued type than others.

Effect of Choice of Aggregation Functions

To compute the overall degree of match for each subscription, different operations can

be chosen to aggregate the degrees of match of predicates (e.g., min, weighted average

etc.). For example, when students are looking for housing close to campus, they will

consider, both the price and the distance. One student may worry more about the price,

another student may be more indifferent and be satisfied with a balanced average, while

a third student maybe more location-sensitive. In the proposed approximate matching

scheme one aggregation function evaluates the degree of match of all subscriptions in the

system, which maybe influenced by different thresholds. However, it is also important to

understand the effect different aggregation functions have on matching effectiveness. This

effectiveness is evaluated through precision and recall metrics. Three popular aggregation

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System74

operations: min, max and average are compared. The definition of precision is given

before, recall is defined as:

recall =
]Correct Subscriptions Returned

]Correct Subscriptions
.

The F-measure is a common metric for the evaluation of information systems. It relates

precision and recall. It is computed as follows:

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall

The relationship of the set of matching subscriptions using different aggregation op-

erations is shown in Figure 4.22. The experiment runs by distributing user’s aggregation

expectation uniformly over 4 choices: min, max, average and weighted average (assign

a weight to each predicate.) The correct data set should contain subscriptions whose

overall degree, computed according to user’s expectation, are larger than the threshold

(ωΠ, ωN). The data set returned contain subscriptions whose overall degree, computed

by only one uniform function (either min, max or weighted average), is larger than the

thresholds. Among the set we returned, there maybe some subscriptions whose overall

degree is less than the threshold if computed according to the user’s expectation, which is

a positive error. Similarly, outside the data set we got, there maybe some subscriptions

that are not returned to the user, but the overall degree is larger than the threshold,

which is the negative error. Figure 4.22 shows the comparison of the F-measures on

these operations. It can be observed that all operations have high F-measures (around

95%), while the result of the average aggregation performs best.

4.5.4 Evaluation of Approximate Routing on a Network

Experiment Framework

We run experiments to evaluate the effects of approximate covering and merging algo-

rithms. To evaluate the effectiveness of the approximate covering and merging algorithms,

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System75

Figure 4.22: F-measure on aggregations

we measure subscription insertion time, matching time and routing table size. The rout-

ing table size is calculated based on the final number of subscriptions stored in the

system. The insertion time is calculated as the average over the last 1000 subscriptions

inserted. The matching time is computed as the average over the last 1000 publications

matching operations. For merging, we also evaluate the number of false positives and

false negatives introduced by the imperfect merger. The following factors influence the

performance of the algorithms: number of subscriptions stored in the routing table, sub-

scription covering ratio, and merging threshold. We examine the effect of these factors.

For each experiment, we vary one parameter and fix the others to their default values as

specified in Table 4.4.

Approximate Routing Performance

In following two figures, we evaluate the routing table size and the matching time, as

the number of subscriptions increases. We compare the matching performance for the

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System76

Table 4.4: Workload parameters for experiments on a network

parameters value description

SizeP 10 number of attributes in publication

SizeS 4 number of predicates in subscription

Nsub 100,000 number of subscriptions

Npub 20,000 number of publications

Rcovering 0.5 subscription covering ratio

Tmerge (0.5, 1, 0) threshold (TRoverlap
, TΠ, TN) for merging

algorithm without covering, with covering, and with merging. Figure 4.23 shows that the

routing table size is reduced significantly by covering and reduced even more by merging.

The results also show that the size of the routing table increases linearly with the increase

in the number of subscriptions, The rate of the increase differs for the three algorithms.

The covering algorithm decreases the speed with which the routing table increases in

size. The merging algorithm decreases the speed even further.

Figure 4.23: Routing Table Size vs. #subscriptions

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System77

Figure 4.24: Matching time vs. #subscriptions

Figure 4.24 shows the matching time for increasing number of subscriptions. The

matching time depends on the number of predicates with the same attribute as publica-

tion and the number of matched subscriptions. With the increase of the total number

of subscriptions, the predicates under one attribute increases, and also the number of

matched subscriptions. Thus, the matching time increases with the number of subscrip-

tions. However, using the covering algorithm, some covered predicates and some matched

subscriptions will be dropped since they are covered by others. Thus, there are fewer

subscriptions in the routing table than in the original workload and it takes less time to

match. Merging is similar, but the number of subscriptions is reduced even further and

matching is even faster.

Figure 4.25 shows the routing table size when the subscription covering ratio varies.

The workload contains 100,000 subscriptions. The larger the covering ratio in subscrip-

tions, the more subscriptions are covered and hence dropped. Thus, the smaller the

routing table and fewer subscriptions that need to be forwarded into the network. The

effect is a reduction in matching time, as shown in Figure 4.26. The merging algorithm is

a further optimization. However, the routing table size resulting from merging mainly de-

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System78

Figure 4.25: Routing table size vs. subscription covering ratio

Figure 4.26: Matching time vs. subscription covering ratio

pends on the merging threshold set in the merging algorithm, not on the ratio of covering

(this will be demonstrated later.)

Covering and merging can reduce the routing table size, but it requires more pro-

cessing time to check the cover relation among all subscriptions and to perform merging.

This is a trade off between matching time and subscription processing time. To evaluate

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System79

Figure 4.27: Insertion time vs. #subscriptions

Figure 4.28: Insertion time vs. subscription covering ratio

this trade off, we also measure the average insertion time of one subscription for the

covering and merging algorithm. We first fix the covering ratio and increase the number

of subscriptions. The results are shown in Figure 4.27. Not surprisingly, the subscription

insertion time with covering is larger than that without covering, due to the required cov-

ering computations. Without covering, the time is O(1). With the covering algorithm,

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System80

the average insertion time for one subscription grows with the increase in the number of

subscriptions, which validates the time complexity analysis of the covering algorithm for

a constant covering ratio. The relation of the insertion time and the covering ratio is also

shown in Figure 4.28 where the number of total subscriptions is fixed and the covering

ratio increases, therefore the routing table size decreases and the insertion time decreases

as well.

We also observe that the insertion time for the merging algorithm is similar to that

of the covering algorithm. This is because our merging computation is done at the same

time as the covering computation and does not require extra time. It only requires one

more operation to merge subscriptions, given their similarity is larger than the threshold.

However, this time may compensate for the decrease of routing table size. Therefore, the

insertion time of the covering algorithm and the merging algorithm do not differ a lot.

Figure 4.29: routing table size vs. merge percentage

The reduction of routing table size due to merging is determined by the merging

threshold assigned in the algorithm. The results are shown in Figure 4.29. The smaller

the threshold, the more subscriptions will be merged and the smaller the routing table.

The extreme case is that each pair of subscriptions has no overlap.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System81

Figure 4.30: false positive vs. merge percentage

The merging of subscriptions may result in the introduction of false positive (i.e., un-

matched publications that are forwarded into the network, but do not actually match the

individual subscriptions.) The more subscriptions are merged, the larger the potential

for false positives. We experiment with the possible impact of false positives based on a

workload of 10,000 subscriptions and 20,000 publications. Figure 4.30 shows the number

of false positives with the decrease of the merging threshold, which allows more subscrip-

tions with little similarity to be merged and results in more non matched publications to

be returned (in terms of the original workload.) The number of false positives is small

and, therefore, tolerable, especially considering the decrease in the routing table size.

Effects of the Merging Choice on Predicate Matching Threshold

As we mentioned in the merging-based routing, there are many choices to aggregate

matching thresholds of two predicates such as min, max and average. Different choice

may result in different set of matched publications returned. In this section, we will

experimentally evaluate the effects of these aggregation functions. A matched publication

(against the merged subscription) is a correct return if it matches either of the original

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System82

subscriptions. Otherwise it is false positive. A false negative refers to a publication that

should match one of the original subscriptions, but filters out (i.e., does not match) by

the merged subscription. Use of min won’t miss any correct matched publication, but

may get some false positives. Use of max can reduce the number of false positives, but

some correct publications may be missed. average is a compromise way to balance the

effects of these two choices.

To measure false positives, we use precision which is defined as

precision =
#correct matched publications returned

#all matched publications returned
.

The measure of false negatives is evaluated by a measure recall which is defined as

recall =
#correct matched publications returned

#all correct matched publications
.

We use the F-measure which is a common metric to combine precision and recall in

information systems to evaluate the effects of the above aggregation function. It is

computed as

F − measure =
2 ∗ precision ∗ recall

precision + recall

Figure 4.31 shows the comparison of the F-measure on the choices of these aggregation

functions of thresholds for merged predicates. It can be observed that all choices have

high F-measure (larger than 85%), while the result of the average and min are better

than max. These two choices can achieve 97% for F-measure.

4.6 A-ToPSS System Implementation

To demonstrate the viability of the approximate publish/subscribe model, we imple-

mented the Approximate Toronto Publish/Subscribe System (A-TOPSS). In this chap-

ter, we describe the overall system architecture of A-TOPSS and features supported by

the web interface. We will also explain the functions of a control panel that is used to

adjust experimental values and monitor the behavior of the system.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System83

Figure 4.31: Effects of choices to aggregate matching thresholds

4.6.1 System Architecture

The main challenge in applying publish/subscribe systems to real world applications lies

in the design of efficient matching algorithms that exhibit scalability. At Internet-scale,

such a system has to be able to process millions of subscriptions and react to thousands of

publications. The Approximate Toronto Publish/Subscribe System is implemented based

on this consideration. The architecture of A-ToPSS for a real-life application is shown in

Figure 4.32. Publishers and subscribers send requests through a web server (e.g., Apache)

to the system. The requests include personal information registration, subscribing their

interests and publishing data information. Subscriptions and publications are processed

by a matching engine. At the same time, all of users’ information passes through a

script engine (e.g., PHP, JSP or Metahtml, etc.), and is stored in a database. The

matching engine matches publications against subscriptions and returns the matched

subscriptions to a notification engine. The pervasive notification engine sends different

types of notifications (e.g. e-mail, ICQ, TCP/UDP, etc.) to the subscribers according to

their requests.

As an experimental platform, A-ToPSS demonstrates two parts to evaluate different

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System84

engine
matching

matching subscription IDs

- event-stream-req.

Data Miner
Metahtml)

- (s) http-requests

ICQ ...

SMS-gateway

WAP

TCP / UDP

SMTP (e-mail)

IIOP / RMI / SOAP

subscriber

publisher

- publish-requests

- subscribe-requests

- register-requests

 - pull-notify-requests

Application

(e.g., PHP, JSP,

Toronto Publish/Subscribe System

Web server

Context-aware extension

Pervasive notification engine

(e.g., Apache)

function parameters

Default

/ Analyzer
(clustering &

server

regression)

Figure 4.32: Overall Architecture of Publish/Subscribe System

subscription and publication language models and approximate matching algorithms.

One involves the normal operations (e.g., subscribing, publishing and matching) in a

publish/subscribe system. The other focuses on the experimental system operations to

investigate the effects of different parameters in controlling our system. The demonstra-

tion system setup that integrates these two parts together is depicted in Figure 4.33.

The approximate matching engine receives subscriptions and publications simultane-

ously from a workload generator and a web server. The workload generator is running

in the background to simulate a large number of other information providers and con-

sumers in the real world. Once a publication comes, the approximate matching engine is

triggered to match the coming publication against all the subscriptions in the system and

send the matched subscriptions to the notification engine. This consists of the normal

system operations part. An experiment control panel that manages system parameters

sends the changes of parameters to the matching engine. And a monitoring panel is used

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System85

Notification Engine

continuously
generating

System Performance
Monitoring & Control:

parameter change

e-mail

Interactive

form

http

UDP

eventsevents

subs

TCP

subs

matched subscriptions

Performance
Monitoring &
System

Control

Matching Engine

Experiment Control Panel

Approximate Web
Server

Web
ClientWorkload Generator

Figure 4.33: Demonstration Setup of Approximate Toronto Publish/Subscribe System

(A-ToPSS).

to monitor the effect of these parameters on system performance. This consists of the

experimental system operations part.

The workload generator can continuously generate new subscriptions and publications

according to the specification specified in a configuration file. The workload generation

of subscriptions and publications is controlled by two threads. There are other threads

dealing with the receival of subscriptions and publications from the web server. The

information transmission between the matching engine and the web server is realized by

two data buffers: one for publications and the other for subscriptions. The threads in

the web-server side put the publication or subscription into its individual buffer upon

receiving a piece of information. The threads in the matching side read the buffers at

a certain rate, take out the information if there is any, convert into structured data

and stored them into the system. There is also a thread for controlling the sending of

notifications (i.e., matched subscriptions) to the web server and a thread for handling the

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System86

deletion of information. In a real application, every subscription and publication is only

valid for a period of time. We use a thread to control the deletion of invalid subscriptions

and publications. The detail of the implementation design is shown in Figure 4.34.

Figure 4.34: A–ToPSS implementation design

4.6.2 Web Interface

A-TOPSS provides a web interface for users to interact with the system. The interactive

user interface is implemented by Meta-HTML web programming language. Meta-HTML

is a powerful, extensible server-side programming language specifically designed for work-

ing on the World Wide Web. It resembles a hybrid of HTML and Lisp languages and

has a huge existing function library, including supports for sockets, image creation, perl,

GNU plot, etc. It is extensible in both Meta-HTML and other languages (C, etc.).

A-ToPSS offers four classes of normal operations: registration, subscribing, publishing

and notification. The first time a user visits the web interface, registration is required to

access the information resource. The user need to create an ID and set a password for

herself. Personal information such as name, address is optional. However, the contact

information relevant to the notification must be provided in order to successfully receive

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System87

notifications. For example, email address must be provided by the user if she wants to

receive notifications via email. These are administrative operation, which is common to

most web applications. Next, we will describe features specific to to publish/subscribe

systems.

For simplicity, we will explain the operations for subscribing as an illustration. Opera-

tions for publishing are similar, and we won’t elaborate here. There are two types of users

in the system - administrators and regular users. Only administrators have the privilege

to create new subscription types, edit the existing ones or delete them. Subscription

types are templates for subscriptions. These templates specify the number of predicates

and whether an attribute accepts crisp or approximate value. Before the modification

or deletion of a subscription type, system will check whether any subscription is using

under this type. Subscription types can only be edited when no subscription is defined

under it.

The user-level operations on subscriptions are designed for the ordinary users. Sub-

scribers can add a new subscription, edit or delete the subscriptions they defined before.

When adding a new subscription, the user first chooses a type, then our system will

ask users to input corresponding information according to the requirements specified by

the subscription type. For crisp subscriptions, users need to provide attribute names,

operators (e.g., >,<, =, 6= and 6=) and values (e.g., integers, floats, strings, etc.). For

approximate subscriptions, it is more complicated. Other than attribute names, users

need to provide the number of approximate constraints for each attribute. For example,

the “price” attribute may have 3 approximate constraints that are “expensive”, “reason-

able” and “cheap”. For the representation of each constraint, the web interface gives the

flexibility for users to describe predicates. A user chooses among a family of functions to

represent the uncertain information. Figure 4.35 shows a screen shot of the subscription

entry panel of our system, where a user can view and adapt the membership function

representing her predicate.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System88

Figure 4.35: The power user’s interface for defining approximate subscriptions.

After users submit subscriptions and publications, their information will be stored

in a database, at the same time, transmitted to the matching engine to be processed.

After the matching, matched subscriptions are sent back to the web interface and stored

into the database. For the moment, A-ToPSS supports notification only by a pull model.

When a user click the “notification” button, the results of matching of her subscriptions

will be displayed on the web. A link to the publication which matches her subscription

is also offered. The user can browse the provided information for further use. If any

subscription or publication is deleted, the match related to it will be broken and won’t

be sent back to users.

4.6.3 Control and Monitoring Experiments

There are many variables, such as users’ satisfaction thresholds and publication rate, that

may affect system behavior. In order to illustrate the effects of these parameters have

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System89

on the performance of the system, we developed a control panel for adjusting the values

of system parameters and a monitoring panel for display system metric and observing

the system behavior in real time. Both the control panel and the monitoring panel are

written as Java applets.

To demonstrate the differences between the crisp and approximate publish/subscribe

models, for each model we deploy an experiment control panel (a java applet) where

users can manage the change of parameters, and a monitoring panel (a java applet) that

observes and displays system metrics. Figure 4.36 is a screen shot for part of the control

panel. On the control panel, users can adjust the following parameters (for both crisp

Figure 4.36: The control panel

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System90

model and approximate model):

• rate of subscription generation

• rate of publication generation

• rate of subscription deletion

• rate of publication deletion

• thresholds of users’ satisfaction

Since the number of predicates and subscriptions in the system is quite large, it is dif-

ficult to control the thresholds for each predicate or subscription. In the control panel,

we use the one pair of thresholds for all subscriptions to check their overall matching

degrees. The control of the representation of membership functions is implemented in

the normal system operations part. Users can choose a form from a function family and

adjust the shape of the function according to their own specification. The effects of the

representation of functions on the number of matched subscriptions is still in progress.

On the monitoring panels, the following metrics are observed and displayed:

• subscription loading time

• matching time

• number of matched predicates

• number of matched subscriptions

These metrics are taken at monitoring and control points indicated in Figure 4.33.

This part aims at both experimenting with the matching model to demonstrate and ex-

ploring its degrees of freedom. We can see that with the increase of the subscription

thresholds, the number of matched subscriptions decreases, as what we expect. Fig-

ure 4.37 shows the monitoring panel.

Chapter 4. Uncertainties in Content-Based Publish/Subscribe System91

Figure 4.37: The monitoring panel

Chapter 5

Filtering of Graph-Based Metadata

on Computing Cluster

RSS filtering is very important today with the increasing amount of information on the

Web. There are many tools to aggregate and manipulate content from around the web

based on the RSS format. Today clusters are the infrastructure of choice for many

large Internet service providers. In this chapter we develop algorithms to enable efficient

filtering of RSS documents, which is in a graph structured data format, on a computing

cluster.

The current RSS feed aggregators use pull-based architectures, where the aggregator

pulls RSS feeds from a web site that hosts the feed. It not only consumes unnecessary

resources, but also becomes difficult to ensure timely delivery of updates.

Consequently, a push-based architecture is more scalable in the sense that it provides

decoupling of senders and receivers, both in space (i.e., data independence) and time

(i.e., asynchronous operation), hence decreases the unnecessary polling traffic between

information providers and consumers. The publish/subscribe paradigm follows such an

architecture and is well suited for structuring of large and dynamic systems such as

RSS feed filtering, for instance. However, most current pub/sub systems are based on

92

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster93

predicates for content-based filtering or are designed for filtering tree-structured data

such as XML documents [3, 34, 5, 28]. These algorithms are not suitable for filtering

graph-structured metadata as required by a RSS feed aggregator. The underlying RDF

together with its query language, RDQL, follow a graph-structured model. Both RDF

and RDQL are based on a graph-structured data and query model.

The plethora of algorithm for filtering tree-structured data and pub/sub-style match-

ing are therefore not enough and cannot be applied. First, different from a tree-structured

data and query model (i.e., XML and XPath), a graph generally contains cycles and nodes

with multiple parents. Second, there is no concept of root, absolute, or relative level for

nodes in a graph. Thus it is difficult to define a starting state for filtering, as required by

many of the finite automata-based filtering algorithms for XML/XPath [28]. Third, edges

in graph-structured data such as RDF/RDQL have labels that impose semantics used

for filtering. However, the edges between two nodes in XML/XPath can only capture

structural relationships. For example, the RDQL query “SELECT ?a, ?b WHERE (?a,

http://somewhere/pred1, ?c), (?c, http://somewhere/pred2, ?b)” can not be expressed

by XPath because there is no syntax in XPath to specify the connection edge between

two nodes. XPath can only express the query as /?a/?c/?b which does not realize the

required edge semantic.

While RSS filtering has led to wide interest in the information dissemination com-

munity, development of a new kind of RSS-based applications would be easier and faster

given a scalable infrastructure for filtering and routing of RSS documents on an Internet-

scale. In this chapter, we describe G-ToPSS, a graph-based publish/ subscribe architec-

ture for dissemination of RSS feed.

At internet scale the, challenges of filtering graph-structured data as required by a

RSS feed aggregator include large query populations, overlap among queries, high data

rates and large number of matches. To address these challenges, in this chapter we

also develop algorithms to effectively distribute RSS filtering over a computer cluster,

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster94

demonstrating improved scalability by increasing the number of compute nodes in the

cluster.

In this chapter, Section 5.1 describes the architecture of a publish/subscribe system

for a compute cluster. The G-ToPSS publish/ subscribe model supporting graph-based

data matching is developed in Section 5.2. Section 5.3 develops the data structure and

two novel subscription indexing algorithms and a pipelined filtering algorithm designed

for the compute cluster. Section 5.4 presents our experimental evaluation. Finally a real

world application implementation is described in Section 5.5.

5.1 Architecture of the Graph-Based Metadata Match-

ing Engine

In a clustered system, we organize a set of machines into a two level network. One is

selected as the front-end server. The remaining machines are the back-end nodes that

connect to the server directly. Figure 5.1 illustrates the architecture of the pub/sub

cluster. The workload (publications and subscriptions) arrives through the front-end

server. For subscriptions, the server decides whether to keep them in the server or

distribute them to one of back-end nodes based on the subscriptions relations. An index

is built up to remember where each subscription is stored. For publications, the server

distributes the arriving publication stream to a collection of back-end nodes according

to the subscription index.

Going beyond filtering on a single machine requires two steps: (1) determining how

to partition the subscriptions among machines of a cluster to maximize parallel filtering

and (2) extending the centralized filtering system to a multi-partition case.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster95

Filtering
Cluster

RSS subscriber RSS feed

N1 N2 Nnsub3
sub2
......

sub5
sub8
......

server
front−end

sub1
sub4
......

notification engine

RDQL
subscriptions

RSS
publications

......

matches

back−end nodes

Figure 5.1: Publish/Subscribe Cluster

5.1.1 Subscription Partitioning

The server is responsible for partitioning subscriptions among the back-end nodes in

order to maximize throughput. All events enter the system via the server1. The server

acts as an index of subscription partition.

The key problem in designing a cluster-based pub/sub system is how to efficiently

distribute the workload (subscription indexing and publication filtering) among the clus-

ter nodes. A simple approach of randomly distributing subscriptions among all nodes

in the cluster, may result in performance degradation to the extent that it is worse

than a centralized filtering system. This can happen since the matching on the cluster

involves additional time for index lookup and communication. In the worst case, all

matched subscriptions could end up collocated on the same node. In this case the time

for communication and index lookup is pure overhead. A good way for workload distri-

bution is that can achieve the maximum parallel filtering. In this chapter, we developed

1The index at the server can be replicated to multiple machines if the index lookup becomes the
bottleneck. In this case, one of the replicas acts as the master and others as slaves. The master is
responsible for doing index updates, while slaves only do index lookups.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster96

two indexing algorithms that complement pipelined filtering by effectively partitioning

subscriptions into disjoint sets in order to reduce filtering time at each cluster node. Con-

tainment partitions subscriptions based on semantic similarity, while merging partitions

subscriptions based on run-time access frequency.

The partitioning of subscriptions is done dynamically based on the workload itself and

also the recent filtering statistics. In particular, the system tries to prevent filtering hot-

spots by distributing the filtering among a number of back-end nodes. The server index is

created based on the semantics of the subscriptions and access frequency. Subscriptions

that are semantically related via containment relationship, are always partitioned into

disjoint sets. Similarly, subscriptions that are frequently accessed together (via similar

publications) are also partitioned into disjoint sets. The intuition behind this is that

subscriptions that are related either using containment or using similarity of events are

most likely to be part of the filtering result set. Consequently, we distribute the job of

determining those results among many back-end nodes in order to achieve concurrent

filtering of the matching result set as identified by similarity or containment.

Containment Partitioning: Given two subscriptions S1 and S2, S1 contains S2

if and only if all the publications that match S2 also match S1, which is denoted by

S1 � S2. If we denote by E1 and E2 the set of publications that match subscription S1

and S2, respectively, then E2 ⊆ E1. When the server receives a subscription S, S will be

inserted into the subscription index if and only if there is not another subscription S ′ in

the index that contains S. If there is another subscription S ′ in the index that contains

S, S will be distributed to a back-end node. The server will not miss any publication

that matches S even though S is not stored in the index, since it receives all publications

that match S ′ and the publications that match S are a subset of the publications that

match S ′. Further filtering can be executed on the back-end nodes in parallel.

Access Frequency Partitioning: Subscriptions that are not in a containment

relation may still relate to each other based on the event result set in which they appear.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster97

Subscriptions that frequently appear together in the same event result set, can be merged

into a new subscription. The new subscription will replace the individual subscriptions

in the index, while the individual subscriptions are distributed to disjoint back-end nodes

so that they can be evaluated concurrently. A merged subscription SM , based on merging

subscription S1 and S2, contains both S1 and S2, which is represented as SM � S1 and

SM � S2.

5.1.2 Pipelined Filtering

The publications are processed as follows. For each incoming publication at the server,

check if there are matching subscriptions. If there are, deliver the publication to the

subscribers. Note that some of the matching subscriptions are part of the subscription

index as created by containment and merging, thus the publication will be delivered to

client nodes for further filtering.

The system throughput on a cluster pub/sub can be increased, compared to the cen-

tralized system, by the parallel filtering executed at the back-end nodes. The throughput

is further increased by the ability to pipeline the filtering of the two stages: index at server

and filtering at the back-end nodes. This is possible because of the stateless operation

of partitioning and filtering operations.

5.2 Graph-Based Publish/Subscribe Model

5.2.1 Language and Data Model

In this section, we describe the four components of the graph-structured data model:

publications, subscriptions, matching semantics and ontology support. Publications are

RDF documents. Subscriptions are queries for filtering of RDF documents following

certain patterns. Our subscription language model is similar to RDQL (RDF Query

Language), but the difference is that RDQL is a typed language featuring variables on

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster98

labels for nodes (classes) and edges (properties). However, our G-ToPSS model only

supports variables on node labels and opts to include ontology information in a separate

taxonomy. We refer to our subscription language as GQL.

Publication Data Model

A G-ToPSS publication is an RDF document, which is represented as a directed labelled

graph. By the specification of RDF semantics by Pat Hayes, an RDF graph can be

represented by a set of triples (subject, property, object). Each triple represents by a

node-edge-node link (as shown in Figure 5.2). subject and property are URI references,

while object is either an URI reference or a literal. A publication is a directed graph where

the vertices represent subjects and objects and edges between them represent properties.

Subject property Object

Figure 5.2: RDF triple graph

For short, we represent the triple (subject, property, object) simply as (s, p, o). For-

mally, a G-ToPSS publication is defined as a set of triples:

p = {(s1, p1, o1), (s2, p2, o2), · · · , (sn, pn, on)}.

Figure 5.3 illustrates a university web page about the G-ToPSS project under the

supervision of Prof A. Notice that this publication is in a graph format. Prof A got

tenure in the same year as when the project G-ToPSS was published. The same object

(2005) is used in these two links pointed by two different nodes. Such graph-structured

data cannot be processed by XML filter, but can be supported by our G-ToPSS matching

engine.

The example publication as shown in Figure 5.3 can be represented formally as:

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster99

Home Page
#325

G−ToPSS

2005

MSRG

Middleware

Research
System

Group|Home

title

project

Prof A

supervisor

author

got tenure in

year

Figure 5.3: G-ToPSS Publication Example

Webpage = {(HomePage#325,project,G-ToPSS),(HomePage#325,author, MSRG),

(HomePage#325,title,Middleware System Research Group),

(G-ToPSS,supervisor,Prof A),((Prof A, got tenure,2005),

(G-ToPSS,year,2005)}

Subscription Language Model

A G-ToPSS subscription is a directed graph pattern specifying the structure of the pub-

lication graph with optional constraints on vertices. A subscription is represented by a

set of 5-tuples (subject, property, object, constraintSet (subject), constraintSet (object)).

Constraint sets can be empty.

Similar to the publication data model, each 5-tuple represents a link starting from

the subject node and ending at the object node with the property as its label. From

the publication data model, we know that each node is labelled with a specific value.

However, in a subscription, we also allow subject and object to be either a constrained

or unconstrained variable. An unconstrained variable matches any specific value of the

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster100

publication; while the constraint variable matches only values satisfying the constraint.

A constraint is represented as a predicate of the form (?x, op, v) where ?x is the variable,

op is an operator and v is a value.

There are two types of operators: Boolean, for literal value filtering and is-a, for

RDFS taxonomy filtering. Boolean constrains are one of =, ≤ and ≥ with traditional

relational operator semantics. is-a operators are also one of =, ≤ and ≥ but with

alternative semantics. ≤ is “descendantOf” which means that variable ?x is an instance

of a descendant of class v. ≥ is “ancesterOf” which means that ?x is an instance of an

ancestor of class v. = means that ?x is the direct instance of class v (i.e., a child of v).

In summary, we represent the 5-tuple (subject, property, object, constraintSet (sub-

ject), constraintSet (object)) simply as t = (s, p, o, (s, ops, vs)?, (o, opo, vo)?)). Formally, a

G-ToPSS subscription is defined as a set of 5-tuples:

s = {t1, t2, · · · , tm}

= {(s1, p1, o1, (s1, ops1
, vs1

)?, (o1, opo1
, vo1

)?), · · · ,

(sm, pm, om, (sm, opsm
, vsm

)?, (om, opom
, vom

)?)}

For example, Figure 5.4 illustrates a subscription that specifies interest in a web page

which is about the G-ToPSS project supervised by Prof A who got tenure before the

year 2006. The same subscription can also be represented declaratively by the following

RDQL:

SELECT * FROM Webpages WHERE

(HomePage#325,project,G-ToPSS) AND

(G-ToPSS,supervisor,Prof A) AND

((Prof A, got tenure,?x) AND (?x,<,2006))

The subscription in Figure 5.5 is looking for a web page about a new project after

2004. There are two variables; the one constraining the year is a literal value filter; the

other is a semantic constraint which uses the class taxonomy. Only an instance about

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster101

Home Page
#325

Prof A
?x

?x < 2006
project

G−ToPSS
supervisor

tenure

got

Figure 5.4: Subscription S1

HomePage which is a descendant of the “Academia” class is going to match (refer to

Figure 5.6). This subscription can be represented by the following RDQL:

SELECT * FROM Webpages WHERE

(?y,project,G-ToPSS) AND

(G-ToPSS,year,?z) AND

((?y, <=, Academia) AND (?z,>,2004))

?z > 2004
?zproject year

G−ToPSS
?y

?y <= Academia

Figure 5.5: Subscription S2

Matching Semantics

We denote GP as the publication graph and GS as the subscription graph pattern. The

matching problem is then defined as verifying whether GS is embedded in GP . Graph

pattern GS is embedded in GP if GS is isomorphic to a subgraph of GP and all constraints

of GS are satisfied.

Conretely speaking, for each 5-tuple (subject, property, object, constraintSet (subject),

constraintSet (object)) in subscription graph GS, there is at least one triple (subject, prop-

erty, object) in publication GP such that the subject and object nodes are matched and

linked by the same property edge. The nodes that match are either the same (i.e., their

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster102

labels are lexicographically equal) or the node in GS is a variable for which the value of

the node in GP satisfies all constraints associated with the variable.

For example, the subscription in Figure 5.4 is matched by the publication in Figure 5.3

since the publication contains the same links (Home Page]325, project, G-ToPSS), (G-

ToPSS, supervisor, Prof A), and (2005 < 2006); thus (Prof A, got tenure,?x(?x,<,2006))

are satisfied.

Ontology Support

An RDFS class taxonomy with is-a relationship is the semantic information about a

subject or an object that is available in the G-ToPSS ontology. An RDF schema supports

constrain is-a relationship on properties (i.e., represented by the edge between subject

and object). However, to simplify the system design, we only support the taxonomy

information about subject and object nodes in our G-ToPSS model. As explained in the

following section, structure matching and constraint matching are separate stages in the

matching algorithm. It is straight forward to extend the current model to support other

RDF schema semantics (e.g., subPropertyOf, Datatype, etc.).

G-ToPSS allows the designer to use multiple inheritance in the taxonomy, with the

restriction that the taxonomy must be acyclic. The taxonomy contains the hierarchy of

all classes and lists all instances of a class. Alternatively, this information can be specified

in the RDF graph using a type property, but for simplicity we have opted to include this

information in the taxonomy. Note that an instance can also have multiple parents.

In Figure 5.6, we show an example of a class taxonomy about an academic webpages

system. Boxes represent classes and circles represent instances. Class “Academia” in-

cludes two subclasses: “Research Lab” and “University”. Class “Middleware Group”

includes “Pub/Sub System Development” and “Aspect Oriented Software Development”

two subclasses. The document instance “Home page]325” belongs to both “UofT” and

“Pub/Sub System Development”.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster103

Academia

UniversityResearch
Lab

UofTMITIBM

Home Page
#325

Pub/Sub AOP

Middleware

: class

: instance

Figure 5.6: Example taxonomy

As a side note, existing publish/subscribe systems are classified as either content-

based or hierarchical (topic) based. Thus, a class taxonomy is a way to seamlessly

integrate both models. When filtering, a subscription is matched if and only if both the

content and the hierarchical constraints are satisfied.

5.3 Data Structures and Algorithms

To exploit overlap between subscriptions we integrate all subscriptions into a single graph.

We denote the graph containing all subscriptions as GM . Figure 5.7 shows an example of

GM which combines two subscriptions S1 and S2 as shown in Figure 5.4 and Figure 5.5.

After we integrated both S1 and S2, the matrix graph GM may contain cycles or nodes

with multiple parents. For example, in Figure 5.7, node ?1 represents both variable ?x

in subscription S1 and variable ?y in subscription S2 and it is pointed by two different

parental nodes, forming a graph-structured query language model, which is more general

and expressive than a tree-structured data and query model (i.e., XML and XPath).

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster104

Home Page
#325

year

supervisorproject

S1:(?x < 2006)
S2:(?z > 2004)

*1

Prof A

got tenure

project

*2

Academia)
S2: (?y <=

G−ToPSS

Figure 5.7: Matrix GM contains both S1 and S2

Given all subscriptions, GM and a publication, GP , the publish/subscribe graph

matching problem is to identify all the subgraphs GSi
(representing a subscription Si)

in GM which are matched by GP . In other words, the goal is to determine all graph

patterns, GSi
that are subscriptions, in GM that match some subgraph of GP .

This matching problem is a specialization of subgraph isomorphism [91]. The sub-

graph isomorphism problem is defined as follows: given graphs G1 and G2, identify all

subgraphs of G2 which are isomorphic to G1. The general subgraph isomorphism [48]

only concerns the structure of two graphs (i.e., the adjacency relationship of verticies).

However, in the graph-based publish/subscribe model, pattern graph maps to a data

graph if the topology (structure) of the two graphs matches and all variable constraints

(literal and ontology) are satisfied. Thus, the G-ToPSS matching problem is specilized

by imposing more restrictions on verticies labels, edges labels and variable constraints

in addition to the structure restriction. Based on this specialization, we propose a data

structure to index all subscriptions and an efficient matching algorithm whose complexity

is linear with the number of matches.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster105

5.3.1 Data Structures

Since there can be multiple edges between the same pair of nodes, we use two-level hash

tables to represent GM . At the first level, we use a hash table to store all the pairs of

vertices taking the names of the two nodes as the hash key. Each entry of the first hash

table is a pointer to another (second-level) hash table that contains a list of all the edges

between these two nodes. The edge label (i.e., “property” in the 5-tuple) is used as the

hash key. Each edge points to a list of subscriptions that contain this edge.

AB

...

...

*
1
*
2

...

a

b

a

b

S1
 S2
 ...

S1
 ...
 ...

….
 ….
 ...

Figure 5.8: Data Structure

Figure 5.8 shows the data structure of GM . There are two edges between node A and

B and both s1 and s2 contain the edge a between A and B.

Any subscription can contain multiple variables that can be matched by any vertex

in the publication graph. For example, Figures 5.4 and 5.5 show two subscription graphs

containing variables and the merged subscription graph, GM , in Figure 5.7.

The data structure from Figure 5.8 allows us to store uniquely labeled nodes only

once. In other words, nodes belonging to different subscriptions, but with the same label

map to the same node in GM . This is possible because each node in a graph is uniquely

identified by its label. However, this is not the case with nodes with variable labels.

Variable labels do not uniquely identify nodes, but instead they represent a (possibly

constrained) pattern on node labels from a publication.

We introduce a special sequence of labels, ?i|i ≥ 1, to represent variables. The value of

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster106

index i is bounded by the number of variables in the subscription with the most variables

among all subscriptions in GM .

For example, in Figure 5.7, we use one node labeled as ?1 to represent both ?x and

?z; ?x and ?y are represented by two nodes ?1 and ?2 since they appear in the same

subscription. Mapping between original variable labels from the subscription (e.g., ?x)

to the corresponding star name is preserved.

Mapping of variables from subscriptions to star labels is arbitrary for the sake of

simplicity, even though some mappings are better than others since they can results in a

sparser GM . In the future, we are going to investigate how much can be gained, in terms

of matching performance, by having a more sophisticated mapping.

We use a graph GM to contain all subscriptions. Next, we discuss how GM is created

when inserting subscriptions. Suppose GS is a subscription graph. |GS. ? | is the number

of variables in the subscription graph, variable vertices in GS are labelled as ?i where

0 < i < |GS. ? |. GM .? is the number of stars in GM . Note that all vertices in GS and GM

are unique. GM .T1 is the first-level hash table, and T2 is the second-level hash table.

E.subs is a set of subscriptions containing edge E, GM .subs is the set of all subscriptions

in GM . E (and E2) is a directed edge from E.v to E.w, E.smEdge is an edge in GM

that overlaps with E. newTable(A,B) creates a table with 2 columns A and B that will

be used to decided on the bindings for variables.

Algorithm Insert(GS)

1. if GS .? > GM .?

2. GM .? = GS .?

3. for each edge E ∈ GS .edges

4. T2 = GM .T1.getTable(E.v,E.w)

5. if (T2 is null)

6. T2 = GM .T1.insert(E.v,E.w)

7. E2 = T2.getEdge(E)

8. if (E2 is null)

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster107

9. E2 = T2.insertEdge(E)

10. E2.bindingTable = newTable(E.v,E.w)

11. E2.subs = E2.subs + GS

12. GM .subs = GM .subs + GS

13. E.smEdge = E2

Algorithm Insert is the procedure for subscription insertion. For each edge in GS,

we check if there is a corresponding edge in the first-level hash table. If there is no such

edge, we update the hash tables by inserting E.vE.w into the first-level hash table and

inserting edge E into the corresponding second-level hash table. Finally, the subscription

id is inserted into the list associated with edge E and added to GM .subs.

5.3.2 Filtering Algorithm on a Single Node

Original Filtering Algorithm

In this section, we explain how to perform matching using the subscription graph GM

when a publication arrives. GP is the publication graph (the number of edges in GE is m).

G′
P is a completed graph containing vertices E.v, E.w, ?i such that 0 < i < |GM . ? |+ 1.

All nodes in GP are unique. SubSet contains all subscriptions that have at least one

edge in GM that are referenced by GP . Result is a set of (S,R) where S is a subscription

and R is a satisfying binding for variables. Natural join (./) is an equality join on all

common columns.

Algorithm match(GP)

1. for each E ∈ GP .edges

2. create a fully connected graph G′

P

3. for each edge E2 ∈ G′

P

4. T2 = GM .T1.getTable(E2.v, E2.w)

5. if (T2 not null)

6. E3 = T2.getEdge(E)

7. if (E3 not null)

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster108

8. for all S ∈ E3.subs

9. S.edgeCount + +

10. E3.bindingTable+ = (E.v,E.w)

11. SubSet = SubSet + E3.subs

12. result = 0

13. for all subscriptions S ∈ SubSet

14. if (S.edgeCount ≥ |S.edges|)

15. S.edgeCount = 0

16. b = E.smEdge.bindingTable|E ∈ S

17. for every edge E2 ∈ S.edges − E

18. b = b ./ E2.smEdge.bindingTable

19. for every row R ∈ b

20. if CheckConstraint(R,CS , T)

21. result = result + (S,R)

Algorithm match is the procedure for matching publications against subscriptions.

There are two stages in the matching process. First, for each edge in the publication,

we check all the corresponding subscription edges in GM . Then we find the satisfying

bindings for variables and evaluate the constraints.

In the first stage, for the publication edge v1v2, it can be matched by edges v1v2, v1?i,

?iv2 and ?i?j in GM . There are three actions to perform on these potentially matching

edges. (1) Add v1v2 into the binding tables of all matching edges so that they can be

used in the second stage. (2) Increase the counters of subscriptions associated with these

edges. (3) Put the subscriptions into Subset as matching candidates. This completes the

first stage of matching.

In the second stage, we find the matched subscriptions by checking the candidates in

Subset one-by-one. For each subscription si in Subset, we join all the binding tables of

edges belonging to si. If the result table is not empty, then the entries in the result table

contain all valid binding values for all variables in the subscription.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster109

Figure 5.9 provides an example for a binding table join. For example, the subscription

contains two edges A?1 and ?1B. There are three entries in the binding table of A?1 which

means A?1 is matched by three edges AB, AC and AE in the publication. ?1B is matched

by 5 edges in the publication. Joining of these two tables produces ACB and AEB and

hence ?1 can be bounded with value C and E.

A
*
1
 AB

AC

AE

AB

DB

CB

*
1B

EB

GB

ACB

AEB

A
 *
1

B

Figure 5.9: Binding table join

After identifying all valid bindings of variables, we can use the binding value w to

evaluate the constraint. For the constraint (?x, op, v), we need to check whether (w op v)

is true. For the value filtering constraint, (w op v) is evaluated using standard relational

operator comparison.

For the class taxonomy filtering constraint (w op v), we need to check the descendant-

ancestor relationship between the specific instance w and the class v by traversing the

taxonomy tree. The constraint checking algorithm is shown in Algorithm CheckCon-

straint .

Algorithm CheckConstraint(R,CS , T)

1. for each variable ? in S

2. find the value v in R and the constraint (op, c)

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster110

3. return isTrue(v, op, c, T)

Algorithm isTrue(v, op, c, T)

1. if op = LT return isNodeDescendant(v, c, T)

2. if op = GT return isNodeDescendant(c, v, T)

3. if op = EQ return (c.equals(v))

For example, in Figure 5.7, for subscription s2, ?2 is matched by node “2005” since

2005 > 2004 and ?1 is matched by node “Home Page]325” since it is descendant of class

“Academia.”

Optimized Filtering Algorithm

To avoid evaluating subscriptions one by one, we store subscription graphs in a way that

exploits commonalities between them and filters publications efficiently. To exploit over-

lap between subscriptions we integrate all subscriptions into a single graph. We denote

the graph containing all subscriptions by GM (Subscription Matrix). As an example, Fig-

ures 5.7 shows how two subscriptions are combined into one subscription matrix graph.

Given all subscriptions, GM , and a publication, GP , the matching problem is to identify

all the subgraphs, GSi
(representing a subscription Si) in GM which are matched by GP .

We use a two-level hash table to store GM . The first-level hash table contains all

edge labels. Each entry Ei is a pointer to a second-level hash table that contains all the

pairs of vertices that the edge between them has label Ei. Each entry of the second table

points to a list of subscriptions that contain the edge between this pair of vertices. If any

vertex is a variable, the subscriptions are classified according to constraints associated

with this variable and are ordered into a table, as shown in Figure 5.10. For example, for

integer constraints there are four disjoint operators: =, >, < and 6=. In the constraint

table, we keep four lists for each of the four operators. An entry in each of these lists

maps a value to a set of subscriptions that have a satisfying constraint. For example, an

entry in the “>” list contains a key value 10 and subscriptions S2 and S5. This means

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster111

that S2 and S5 contain a common edge E2(A, ?) with the same constraint “? > 10”. The

four lists are ordered according to the values of keys in an increasing order.

BCEi

...

E2

E1

A*

*D

10
S2,S5S3 ...

... 150
S7

5

...

... 100
S4

10
S2

0
S1

>

<

=

...

op

...

key value

sub_id

node pair

edge label
DE

BF S1 S3 S4 S12. . .

constraint table for Ei(*D)

constraint table for E2(A*)

Figure 5.10: G-ToPSS Data Structure

To match a publication against GM , first, for each edge in the publication, we check

all the individual matched subscription edges in GM . Then we use natural join operation

for connectivity checking between edges to determine the satisfying bindings for variables

and evaluate the constraints sequentially. The join operation consumes the majority of

the matching time. To avoid this expensive operation as much as possible, we push

the constraint evaluation forward before the join operation. There are two advantages.

First, the number of subscriptions remaining for join operation decreases significantly.

Second, the subscriptions whose constraints are satisfied can be retrieved faster without

evaluating the constraints for each subscription sequentially.

Algorithm improvedMatch(GP)

1. SubSet = ∅

2. for each e(v, w) ∈ GP

3. get a set of matched edges E from GM

4. for each e′(v′, w′) ∈ E

5. get a set of subscriptions C whose constraints are satisfied

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster112

6. for each s ∈ C

7. e′.bindingTable+ = (v, w); SubSet = SubSet + s

8. result = ∅

9. for each subscriptions s ∈ SubSet

10. join binding table e.bindingTable for each edge e ∈ s.edges

11. if the final binding table is not empty

12. result = result + s

Algorithm improvedMatch is the optimized algorithm for matching publications

against indexing subscriptions on the server to get the satisfied indexes, which is used to

determine which client the publication will be sent. There are two stages in the matching

process. In the first stage, for the publication edge e(v, w), the potentially matched edges

in GM are e′(v′, w′) where e.label = e′.label and (v′ = v||v′ = ?) and (w′ = w||w′ = ?)).

For each e′(v′, w′), the constraint-satisfied subscriptions C include three parts: the list

of subscriptions that have no constraints on either v′ or w′; the subscriptions whose con-

straints on variable v′ are satisfied by publication value v; and the subscriptions whose

constraints on variable w′ are satisfied by publication value w.

With a publication value v, the following satisfied subscriptions can be retrieved from

the constraint table by traversing each of the four lists: In the “=” list, the subscriptions

with a key value v; in the “>” list, the subscriptions with key value v ′(v′ < v); in the “<”

list, the subscriptions with key value v′(v′ > v) and in the “6=” list, all other subscriptions

except those with key value v. Since the lists are ordered, the traversal can be stopped

at the first non-satisfied look-up, hence speeding up the matching.

Filtering Algorithm Analysis

Space Complexity: The space cost mainly includes two parts: hash tables and linked

lists associated with each edge to store the subscription ids that contain this edge. The

size for the hash tables is determined by the number of unique edges among all the sub-

scriptions. The length of the linked list depends on the average number of subscriptions

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster113

each edge is associated with. Therefore, the space complexity is

O(|GM .edgs| + |GM .edgs| × Nse
)

where |GM .edges| is the number of unique edges in matrix GM and NSe
is the average

number of subscriptions each edge is associated with.

Time Complexity: For the procedure of insert a subscription into the system, he

insert(GS) algorithm iterates for every edge in the coming subscription, locate the corre-

sponding list associated with the edge and add an entry of the coming subscription into

the list. Thus, the insert algorithm depends on the number of edges for each subscription

and the time complexity is

O(|GS.edges|).

To form the graph GM which contains all subscriptions, we have to insert subscrip-

tions one by one. Therefore, the time to load a batch of subscriptions at a time is

∑

si
|GSi

.edges|. Since the number of edges in each subscription is very small, the time

complexity of loading subscription is

O(number of subscriptions).

The matching algorithm consists of two stages. First is edge matching. By checking

each edge in the publication, we determine all the subscriptions that have at least one

edge matched by the publication. The time of the first stage depends on the size of

the completed graph G′
P and the number of edges in the publication. Suppose k is the

number of stars in GM , since each graph G′
P contains all the stars in GM plus E.v and

E.w, the number of edges in G′
P is

(

k+2
2

)

. Suppose m is the number of edges in the

publication, we have

O(m ∗ 2

(

k + 2

2

)

) ∼ O(mk2).

In the second stage, for each subscription in SubSet, if all the edges of it are matched, we

perform a join operation on the binding tables to determine whether there is a satisfying

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster114

binding for the variables, then we check the constraints. To join two tables, the time is

linear with the size of the smaller table. The time complexity to find satisfying bindings

of variables for each subscription is

O(lk)

where k is the number of stars in GM and l is the size of the smallest binding table for

variables.

The time to check whether the constraint for the variable is satisfied includes two

parts: checking the constraints for class variables according to the class taxonomy and

checking the constraints for literal variables according to publication literal values. The

time for the first part is dependent on the complexity of the taxonomy tree. Since multiple

parents are allowed in the class taxonomy tree, the time is O(dt) where d is the depth of

the tree and t is the average number of parents each node may have.

Overall, the matching time to evaluate all subscriptions is

O(mk2) + O(n1 ∗ lk + n2 ∗ k ∗ dt + n2 ∗ k ∗ γ)

where n1 is the number of subscriptions in SubSet, n2 is the number of subscriptions

among SubSet having possible bindings and γ is the unit time of constraint checking for

one literal variable. In real applications, the class taxonomy tree is fixed, the number of

variables in one subscription is small (usually 1 to 3, at most 5). n1 ' n2 ' n where n

is around the number of matched subscriptions. Also in the real applications, m << n.

Therefore, the overall matching time is linear with the number of matched subscriptions:

O(ratiomatch ∗ number of subscriptions).

Complexity Analysis for Optimization: The matching algorithm consists of two

steps. The time for the first step depends on the number of edges in the publication. In

the second step, for each subscription in SubSet, a join operation is performed for each

pair of connected edges The computation of this join operation depends on the size of the

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster115

binding table of the variable. Suppose the average number of variables in a subscription

is α and the average number of possible bindings for a variable is β. Then the time of

the join operations for one subscription to determine satisfying bindings for variables is

βα. Overall, the matching time to evaluate a publication against all subscriptions in GM

is |P.edges| + βα ∗ |SubSet|. In practice, α, β and |P.edges| are small and SubSet can

be considered as approximately equal to |Nstructure matched subs|, compared to the large

number of subscriptions that need to be filtered. Furthermore, |Nstructure matched subs|

is approximately equal to the number of finally matched subscriptions. The overall

matching time is thus linear in the number of matched subscriptions: O(ratiomatch ∗

number of subscriptions).

From the above analysis, we conclude that the matching time to process a publication

on a single node depends on the number of matched subscriptions. This leads to the

intuition behind our indexing algorithms – to partition the subscriptions that are possibly

matched together into disjoint sets to achieve maximum throughput.

5.3.3 Indexing Algorithms for a Cluster

The goal in designing a cluster-based publish/subscribe system is to partition the sub-

scriptions that are possibly matched together into disjoint sets and delivered to different

clients so that filtering can be processed concurrently and maximum throughput can be

achieved. In this section, we first give a theoretical analysis behind our indexing algo-

rithms. Then we describe two indexing algorithms to fulfill subscription partition. The

indexing algorithms identify those subscriptions that are possibly matched together: one

exploits semantic relationships among subscriptions via containment, and the other ex-

ploits the run-time relationships via access frequency during filtering. At last, we present

a pipelined filtering algorithm on the cluster.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster116

Theoretical Analysis

Intuitively, we would cluster similar subscriptions together to speed processing publi-

cations. That is also the main goal for all existing subscription clustering papers such

as [78, 69]. However, it is not the best solution for our matching algorithm. From our

earlier work [73], we know that the filtering on a single machine depends on the number

of matches. Therefore, in order to increase the system throughput, subscription index-

ing aims to distribute subscriptions that are possibly matched by the same publication

to different machines. We will show below why subscription distribution is superior to

subscription clustering.

Suppose there are a front server and k back-end nodes in the system. In order

to achieve the maximum throughput, we assume there are k publications and the ith

publication matches mi subscriptions. Since the matching time depends on the number

of matches, we assume the filtering time for a single match is t, then the filtering time of

publication i is mi ∗ t if all mi matched subscriptions are located in one machine. Given

these assumptions, next we will give a theoretical analysis for subscription clustering

model and subscription distribution model, separately.

In the subscription clustering model, all similar subscriptions should be clustered to-

gether. Thus the optimal subscription partition is that each node process one publication

and all its matches are stored in the same node so that all k publications can be processed

in parallel. Thus the filtering time of the whole system (all k publications) depends on

the processing of the publication which has the most matches, and the system filtering

time would be

max
i

(mi) ∗ t.

In the subscription distribution model, subscription partitioning aims to distribute

subscriptions that are possibly matched by the same publication to different machines.

Based on this goal, for each publication, we distributed its matched subscriptions uni-

formly to k nodes. So each node ends up with mi/k matches for the ith publication.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster117

Since each back-end node contains mi/k matched subscriptions for the ith publication,

it has to be sent to every node to be processed in parallel and the filtering time would be

mi/k ∗ t. Similar things happens for other publications. Thus the total system filtering

time would be
∑

i

mi

k
∗ t.

Comparing the two filtering times maxi(mi) ∗ t and
∑

i
mi

k
∗ t, it is obvious that

∑

i
mi

k
∗ t ≤ maxi(mi) ∗ t. Therefore, the subscription distribution model is better than

the subscription clustering model. In the next subsections, we will describe two concrete

indexing algorithms to achieve the goal of subscription distribution.

Precise Indexing Algorithm Using Containment

Based on the graphical representation of subscriptions, the definition of containment

can be stated as follows: for two subscriptions S1 and S2, S1 contains S2 iff for each

edge e1(v1, w1) in S1, there is an edge e2(v2, w2) in S2 that e1.label = e2.label and v1

contains v2 and w1 contains w2. The node containment relation is defined as v1 contains

v2 iff v1.label = v2.label or v1 is a variable. Subscriptions with containment relations

form a containment tree. Figure 5.11 shows an example of subscription containment

relations where S2 contains S1, and also an example of a containment tree formed by

five subscriptions on the left. Only the root subscription is stored in the index (at the

server node). The descendant subscriptions (contained by the root) are partitioned into

disjoint sets and distributed to different clients. In other words, there is no containment

relation among the subscriptions in the index.

The subscription index based on containment is built incrementally with the incoming

subscriptions. When a new subscription S coming into server. If there it is contained by

other subscription in the index, S will be sent to a client. If there are other subscriptions

are contained by S, these subscriptions will be partitioned equally into disjoint and sent

to each client. Algorithm containmentIndexing describes the detailed operation to index

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster118

Home Page
#325

?x
?x > 2004

Subscription S :2Subscription S :1

RSS Filter

Prof A

Home Page
#325

project
year

supervisor

S contains S2 1

yearproject ?x
?x > 2003RSS Filter

got tenure

Figure 5.11: Example of Subscription Containment

S3

S4

S2
S5

S1

S4: * −> *S1: a −> b
S5: a −> b −> cS2: a −> *

S3: * −> b

Figure 5.12: Example of Subscription Containment Tree

an incoming subscription S.

Algorithm containmentIndexing(S)

1. Rcontained = null

2. //S is contained by other subscription

3. if (server.containmentChecking(S,Rcontained))

4. client o = server.getNextClient();

5. server.send(S, o)

6. subscription Sc = Rcontained.getNextSub()

7. client set O = server.index.get(Sc)

8. add o into O

9. server.index.put(Sc, O)

10.else if (Rcontained! = ∅)

11. client set O = server.index.get(S)

12. for each Si ∈ Rcontained

13. client o = server.getNextClient();

14. server.send(Si, o)

15. add o into O

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster119

16. server.index.put(Sc, O)

17.else server.insert(S)

Let Σ be the subscription set in the index server, S is the new incoming subscription.

This indexing method has the following property for a new subscription coming into

the index server, we have the following property: If the new subscription is contained

by a subscription in the index, no other subscription in the index can be contained by

the new subscription. On the other hand, if the new subscription contains an existing

subscription, it will not be contained by any other subscription in the index. This is

formalized in the following theorem:

Theorem: For the new subscription S, (1) if ∃S ′ ∈ Σ such that S ′ � S, then

∀S ′′ ∈ Σ, we have S 6� S ′′; (2) if ∃S ′ ∈ Σ such that S � S ′, then ∀S ′′ ∈ Σ, we have

S ′′ 6� S.

Proof: We first prove (1). Suppose ∃S ′′ ∈ Σ such that S � S ′′, since ∃S ′ ∈ Σ such

that S ′ � S, then we have S ′ � S ′′. This contradicts the condition that there is no

containment relation among the subscriptions in the index. Similarly for (2), suppose

∃S ′′ ∈ Σ such that S ′′ � S, since ∃S ′ ∈ Σ such that S � S ′, then we have S ′′ � S ′. This

contradicts the condition that there is no containment relation among the subscriptions

in the index.

Query containment for relational databases is one of the most thoroughly investigated

problems in database theory. Recently, conjunctive queries over trees also attracted quite

some attention [40, 64]. There are many complexity results for XPath containment

ranging from PTIME to Undecidable depending on the expressiveness of the language. In

G-ToPSS model, we use the same definition of query containment to define subscription

containment, but the subscription (query) containment is defined on labeled graphs,

rather than XPath queries. Since the subscription index based on containment is built

incrementally with the incoming subscriptions, we don’t need to find out all containment

relations among a set of subscriptions from the beginning. From the theorem, if the new

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster120

subscription is contained by a subscription in the index, no other subscription in the index

can be contained by the new subscription. On the other hand, if the new subscription

contains an existing subscription, it will not be contained by any other subscription

in the index. Based on these observations, we propose an algorithm to determine all

subscription containment relations for the newly coming subscription in linear time.

Algorithm containmentChecking(GS)

Output: boolean contained; a set R of subscriptions contained by GS

1. SubSet = ∅

2. for each edge e(v, w) ∈ GS

3. for each e2(v2, w2) ∈ GM where e2.label = e.label

4. for each Si ∈ e2.subs

5. Si.counter + +

6. e.bindingTable+ = (v2, w2)

7. e2.bindingTable+ = (v, w)

8. SubSet = SubSet + Si

9. R = ∅, contained = false, containing = false

10. for each subscription Si ∈ SubSet

11. if Si.counter + + satisfied containing condition

12. b = e.bindingTable | e ∈ S

13. for every edge e ∈ S.edges

14. b = b ./ e.smEdge.bindingTable

15. if b.isContained()

16. R = R ∪ Si, containing = true;

17. if Si.counter + + satisfied contained condition

18. b = e.bindingTable | e ∈ Si

19. for every edge e ∈ Si.edges

20. b = b ./ e.smEdge.bindingTable

21. if b.isContained()

22. contained = true, R.add(Si)

23. return

24. return R and contained

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster121

Algorithm containmentChecking is executed for each new subscription that is to be

added to the index. If GS is already contained by any existing subscription the algorithm

stops. Otherwise, a set of subscriptions that are contained by GS will be returned. There

are two stages.

In the first stage of the algorithm, we use the edge label to get a set of subscriptions

that contain the same edge as the incoming subscription. for each incoming edge e(v, w)

in S, we use the edge label to get a set of candidate edges e2(v2, w2) in GM , which has

the same edge label but the two end nodes (v2, w2) may be different from (v, w). For

each subscription that contains e2, its counter is incremented by 1.

Therefore, if subscription Si in GM is contained by the arriving S, the condition

that Si.edgeCnt ≥ S.edges and Si.edges ≥ S.edges is satisfied. On the other hand, if Si

contains the arriving S, the condition that S.edges ≥ Si.edges and Si.edgeCnt ≥ Si.edges

is satisfied. At the end of the first stage, only the subscriptions that satisfy either of the

above two conditions will be processed in the next stage.

In the second stage, the containment relation is computed for each subscription in

the candidate set SubSet. From the definition of the containment relation, we know that

if S1 contains S2 this implies that S1.edges ≤ S2.edges. Therefore, for each subscription

Si in Subset, we first check the edge counter condition. If S.edges ≥ Si.edges, we join

the binding tables of edges belonging to Si. If Si.edges ≥ S.edges, we join the binding

tables of edges belonging to S. If the result table is not empty, and the bindings in the

table are contained by Si or S, then a containment relation is detected.

Figure 5.13 illustrates an example of checking containment relations between S and S ′.

From edge e1(a, b) in S, we get two edges in S ′ with the same label e1(a, b) and e1(a, c).

Then we put (a, b),(a, c) into the binding table of e1(a, b) in S. From edge e1(a, ?) in S,

we obtain e1(a, b) and e1(a, c) in S ′ and put (a, b),(a, c) into the binding table of e1(a, ?)

in S. Similarly, (b, d) and (c, d) are put into the binding table of e2(?, d). Finally, we get

three tables as shown in Figure 5.13. Joining of these three tables produces one entry

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster122

T(ab d)

T(ab) T(d)

* d

a
b

e1
e2

e1

incoming S:

b

a d

c

e1

e1

e2

e2

MS’ in G :

*1

a,b
a,c *1T(ab) a,b

a,c T(a)

a,b,c b,d
c,d

a,b,c,d

Join binding tables

*1

*1

Figure 5.13: Computing containment relation

(a, b, c, d) in the result. Since (a, b, c, d) is contained by (a, b, ?, d), we conclude that S ′ is

contained by S.

Complexity Analysis: The containmentChecking algorithm consists of two stages.

The time for the first stage depends on the number of edges in the subscription, and

the second stage depends on SubSet size Overall, the time to evaluate containment

among all subscriptions is O(m) + O(n) where m is the number of edges in the new

subscription. n is the number of subscriptions in SubSet which is approximately equal

to the number of contained subscriptions. Since m << n, the overall time to check for

containment relations is linear with the number of contained subscriptions, O(ratiooverlap∗

number of subscriptions).

Imprecise Indexing Using Merging

The static structure relationship among subscriptions is one aspect that we explore to

partition subscriptions. The second indexing algorithm identifies those subscriptions that

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster123

are frequently part of the same result set at run-time. Such subscriptions can be deter-

mined by analyzing run-time filtering statistics based on the matched event result set in

which they appear. The identified subscriptions are removed from the index and parti-

tioned into disjoint sets at the clients (for concurrent evaluation). A new subscription is

added to the index that represents the merger of the removed subscriptions. The infor-

mation about the sets to which the removed subscriptions have been placed is recorded

with the new subscription.

When a set of subscriptions are frequently matched together, the publications match-

ing them are similar and contain a common part. Based on this observation, we determine

the set of subscriptions for merging based on the similarity of publications. Given two

publications P1, P2 and a threshold T , we say P1 and P2 are similar if |P1.edges∩P2.edges|
|P1.edges∪P2.edges|

≥ T .

The server keeps statistics on subscription access frequency through result set mem-

bership, as identified by an event. The event matrix EM contains a set of publication

summaries that have been processed. The publication summaries contain aggregate in-

formation about similar publications.

The statistic collection is done separately from the matching process and its effect on

the matching process is negligible. The statistic collection could be performed outside of

the cluster by duplicating the event stream (or some sample of it) and the index, as that is

the only information that is required for the collection process. While the performance of

the collection process is not important, we assume it does not have real-time result goals,

and that it can even be done off-line. In the future, we are going to investigate sampled

approach to statistic collection that introduces inaccuracies, but has better scalability.

The collection process algorithm is described in Algorithm statCollection.

Algorithm statCollection(p)

1. p.counter = p.matchedSubs.size

2. find out p′ in EM such that p′ has the largest similarity (larger than threshold Th) with p

3. while (p′ != null)

4. pnew = merge(p, p′)

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster124

5. pnew.counter = p.counter + p′.counter

6. p = pnew

7. find out p′ in EM such that p′ has the largest similarity (larger than threshold Th) with p

8. insert p into EM

In our approach, the policy is to perform merging index updates when the size of

the index reaches a certain threshold C. We first choose a publication summary p from

EM with the largest access frequency, then match p against the subscription matrix GM

to get a set of subscriptions mergeSubs. mergeSubs are removed from the index, and

a new, merged, subscription is added to the index. mergeSubs are then partitioned

into disjoint sets (and distributed to clients). The merging procedure is described in

Algorithm mergeIndexing .

Algorithm mergeIndexing(C)

1. p = server.getLargestMergePub(EM)

2. mergeSubs = server.match(p)

3. while ((mergeSubs.size > 1) and (index.size > C)) do

4. remove the first element Si from mergeSubs;

5. while (there is any subscription Sj that the merged result SM = Si ∩ Sj is not empty) do

6. remove Sj from mergeSubs

7. client o = server.getNextClient();

8. server.send(Si, o)

9. client set O = server.index.get(Si)

10. add o into O

11. server.index.put(Si, O)

12. client o = server.getNextClient();

13. server.send(Sj , o)

14. client set O = server.index.get(Sj)

15. add o into O

16. server.index.put(Sj , O)

17. Si = SM

18. server.containmentIndexing(SM)

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster125

Complexity Analysis: The merge indexing algorithm takes out subscription from

the mergSubs set one by one and merges them until mergSubs is empty or the index size

decreases to below the capacity threshold C. Therefore, the time complexity depends on

max(mergeSubs.size, index.size − C).

For how to merge, the simple form of a perfect merger is defined as union of subscrip-

tions: SM = S1 ∨S2. Since each subscription is a graph in our model, the perfect merger

does not reduce the number of subscriptions and the routing table size. On the other

hand, due to the occurrence of variables in subscriptions, it is difficult to find a simple

connected graph to represent a union of two graphs.

To simplify the representation of the merged subscription, we define the merger as

the intersecting subgraph of two subscriptions where GM = GS1
∩ GS2

. In other words,

GM contains a set of edges that belong to both GS1
and GS2

. The merging relation also

forms a merging tree, the root is the merger and the leaves are the merged subscriptions.

Only the merger exists in the server as an index.

Figure 5.14 shows an example of the merger. This merging rule satisfies the definition

of a merged subscription and the representation is in a simple form which significantly re-

duces memory use. However, it forms an imprecise merger and introduces false positives.

That’s why this indexing algorithm based on merging is called imprecise indexing. For

example, the publication shown in Figure 5.14 matches the index subscription (merger),

but it does not match any of the original two subscriptions.

5.3.4 Index Maintenance

In a publish/subscribe cluster, subscriptions are spread out among all the nodes. When

an unsubscription message is received, we need to modify the subscription index so as

to ensure the correctness of filtering. For example, an unsubscription of a previously

contained subscriptions is no longer in the index (it was effectively removed due to the

containment relation.) More importantly, in order to build a correct routing path after

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster126

*

a c d
e2e1

*ca
e1 e2

a c

a

b

ce1

e3

e2

+

publication:

merger:

e
e1 e2

Figure 5.14: Merger of Subscriptions

unsubscribing, the contained subscriptions needs to be recovered when deleting the con-

taining subscription. The same is done for unsubscribing merged subscriptions. Based on

the containment and merging definition, we can easily obtain the following propositions.

Proposition 1: If subscription S is in the server index, S satisfies one and only one

of the following properties: (1) S has no relation with other subscriptions; (2) S is a root

of a containment tree; (3) S is a root of a merging tree.

Corollary 1: For an unsubscribe(S) message, if S is in the index, S is either an

independent subscription or a root of a containment tree.

Proposition 2: The server index is complete, there is no other containment relations.

Proposition 3: If subscription S is not in the index, S satisfies one and only one of

the following properties: (1) S is an inner node (or leaf) of a containment tree; (2) S is

a leaf node of a merging tree.

Proposition 4: The leaves of a merging tree are either independent subscriptions or

a root a containment tree.

When receiving an unSub(S) message, it is simple if S is not in the index. We just

forward unSub(S) message to all client and the client which contains S will delete it.

Deleting subscription from client will not affect publication filtering. However, if S is in

the index, we need to maintain the containment and merging relations to ensure correct

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster127

filtering.

S

C

C

S1

S2 S

C

C

S1

S3

S2

S1

S2

S

C

C

S2 S

C

C

S1S3

S1

S2

unsub(S2) unsub(S2)

unsub(S1) unsub(S4)

S4

S1 and S2 are merged into S3
S4 is unique

S1 contains S2

Figure 5.15: Deleting Subscriptions

Based on the above propositions, next we will discuss the detailed operation of sub-

scription deletion for each indexing algorithm. When receiving an unSub(S) message,

we need to update the subscription index, containment trees and merging trees. For

subscription index, delete S from the index if it exists; otherwise forward unSub(S) to

all clients, which will delete S if they know about it.

If S is in a containment tree, S can be the root or inner (or leaf) node. If S is the

root, S.children (contained subscriptions) will be recovered into subscription index. If

S is an inner (or leaf) node, the index remains unchanged, delete S from client. The

containment tree is updated by putting S.children directly under S.parent.

If S is in a merging tree, S can only be the leaf node since only leaves are real

subscriptions and root (or inner) nodes are constructed mergers. In this case, the parent

of S will be decomposed into the original subscriptions. The merger should be deleted

from the index and the other subscription will be inserted into the index. Figure 5.15

shows examples to unSub a subscription which has containment relation. S3 is a merger

of S1 and S2 and the server receives a unSub(S2) message. Then S3 will be deleted from

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster128

the index and S1 is moved from the client to the index (at the server). For the unique

subscription S4, just simply remove from the index.

5.3.5 Pipelined Filtering Algorithm

For each incoming publication on a cluster, the server does a lookup in the subscription

index to check if there are matching subscriptions. For each matched subscription s,

the publication is forwarded to the appropriate subscriber. Note that one or more of the

subscribers could be other cluster nodes, in which case, the publication is forwarded to the

appropriate back-end node for the second step of filtering. While the back-end nodes are

filtering the publication, the server starts filtering the next publication. This pipelined

processing enables higher throughout than a single machine filtering. The pseudocode is

shown in Algorithm filtering .

Algorithm filtering(GP)

1. R1 = server.match(GP)

2. Rmatched = ∅

3. for each s ∈ R1

4. node set O = server.index.get(s)

5. for each o ∈ O

6. Rmatched = Rmatched∪ o.match(GP)

7. else Rmatched = Rmatched ∪ s

8.return Rmatched

Complexity Analysis: The goal of indexing and cluster filtering is to fulfill parallel

processing, thus to increase the system throughput compared to a centralized setting. The

increased throughput is obtained by trading off the cost of indexing subscriptions. The

total filtering time depends on the server index lookup time and back-end node parallel

matching time. From the above analysis, the matching time to process a publication on

a single node depends on the number of matches. Suppose the time to find one match for

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster129

a publication is t, and the ith publication has mi matches, then sequentially processing p

publications in a centralized system cost
∑p

i=1 mi time. However, on a computer cluster

with k back-end nodes, the pipelined filtering time is decreased to p + 1
k

∑p

i=1 mi time,

where p is the index lookup time at server, the other part is the parallel matching time

on clients. When k is small, the total filtering time decreases linearly to the proportion of

the increase of k. When k is large, the total filtering time is asymptotic to p as k → ∞.

In the next section, we will examine the performance of indexing algorithms and

cluster filtering algorithms to verify the above analysis.

5.4 Eexperiments

In this section we evaluate our approach to filter graph-based data on a computing

cluster. After a brief description of the experiments setup. First we show the filtering

performance on a centralized system. Next we evaluate the indexing algorithms required

by a cluster environment. Finally, we experimentally evaluated the performance of the

filtering system in a cluster environment and compared it to a centralized system to show

that the throughput scales linearly with the number of cluster nodes.

5.4.1 Experiment Setup

We have implemented the algorithm in Java. We experimentally evaluate the rate of

matching and the memory use. We run the experiments on a Linux system with 1GB

RAM and a 1GHz microprocessor. We are using a synthetic workload so that we can

independently examine various aspects of G-ToPSS. We report the results for the two

most important metrics from a user’s perspective, namely the rate of matching and the

memory requirements. The workload parameters are shown in Table 5.1.

SizeP and SizeS are decided by (number of nodes, number of edges) the publication

graph and the subscription graph. The number of edges must be larger than the number

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster130

Table 5.1: The workload parameters in experiments

parameters default values description

SizeP (35,90) size of publication

SizeS (5,35) size of subscription

Nsub 30,000 number of subscriptions

ratiomatch 0.1% ratio of matched subscriptions among all

Nstars 2 number of stars (variables) in one subscription

Nsub∗ 27,000 number of subscriptions containing stars

overlaps 50% ratio of overlap among subscriptions

of nodes in order to obtain a connected graph. We use ratiomatch to control the number

of matched subscriptions that are generated as subgraphs from the publication graph.

We generate the test workload using the parameter values from Table 5.1. A publi-

cation is generated first. For example, for publication of size (k,m) we first generate a

simple path of length k − 1 and then we generate m− k + 1 edges between random pairs

of the k nodes.

Subscriptions are generated in four steps. 1.ratiomatch subscriptions that match the

publication are generated by randomly selecting a subgraph of the publication. 2. Using

same technique, overlapped subscriptions are generated as subgraphs from one big graph.

3. Nsub∗(1−overlaps) non-overlapping subscriptions are generated randomly in the same

way that the publication was generated. 4. Nstars vertices are selected from all Nsub∗

subscriptions and replaced with a variable (?). Alternatively, we limit values that can be

bound to a variable by adding constraints.

All measurements are performed after G-ToPSS has loaded all the subscriptions. We

look at the effect of the number of subscriptions, subscription size and matching ratio

(number of subscriptions matched by a publication). Finally, we compare G-ToPSS with

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster131

two alternative implementations. For each experiment, we vary one parameter and fix

the others to their default values as specified in Table 5.1.

5.4.2 Filtering Performance on a Single Node

Number of subscriptions: Figure 5.16 shows the memory use with increasing number

of subscriptions. We see that the memory size grows linearly as the number of subscrip-

tions increase. Since all subscriptions in our experiments are of the same size and the

overlap factor is constant, the memory increase per subscription is also a constant.

Figure 5.16: Memory vs. #subscriptions

Figure 5.17 shows the time to find all matches for a publication given a fixed set of

subscriptions. As the set of subscriptions increases, so does the time. The number of

subscriptions that match the publication is relative to the total number of subscriptions

in the set. Consequently, the number of matches increases as the number of subscriptions

increases.

The time to match a publication is split between structure matching phase and con-

straint evaluation phase. As the number of subscriptions increases, both of these times

increase by a fixed amount because the number of matches increases constantly.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster132

Figure 5.17: Matching time vs. #subscriptions

Subscription size: Figure 5.18 shows how the space used by the subscriptions de-

creases as the overlap between them increases. We present this to validate our workload.

The matrix space is the size of GM , while whole memory is equal to the size of GM plus

the space used to store all the subscriptions.

Figure 5.18: Memory vs. subscription overlap

Figure 5.19 shows the effect of increasing subscription size on the matching time. We

see that the time increases more rapidly as the number of edges increases (e.g., from 4 to

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster133

Figure 5.19: Matching time vs. subscription size

8), the time almost doubles. On the other hand, as the number of edges increases slowly,

so does the increase of matching time, hence the matching time is not affected by the

number of nodes, but by the number of edges in the subscription.

Matching ratio: Figure 5.20 shows the effect of increasing the number of subscrip-

tions that match the publication. As this number grows, the time to match grows very

rapidly. This is mainly due to increase in time to calculate all the bindings for each

subscription.

G-ToPSS vs. Alternatives: In Figure 5.21 we compare the performance of our

algorithm to the OPS algorithm [92]. As the graph shows, OPS matching time increases

very rapidly with the number of subscriptions. The main reason for the significant dif-

ference in matching times comes from the differences in basic assumptions. The OPS

algorithm makes the same basic assumption as do other, traditional, subgraph isomor-

phism algorithms [48], namely that every node in a subscription is a variable. In other

words, any node of a publication can match with any other node in the subscription

graph. However, this assumption unnecessarily increases the matching complexity, as we

see in the evaluation. We make a more realistic assumption that the number of variables

in any subscription is low as compared to the total number of nodes in a subscription

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster134

Figure 5.20: Matching time vs. matching ratio

graph and the nodes in a RDF publication are unique.

Figure 5.21: G-ToPSS vs. OPS

Figure 5.22 illustrates that, even though OPS is less scalable than G-ToPSS, it is still

far better then a naive approach which sequentially checks all subscriptions to find the

matching ones.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster135

Figure 5.22: OPS vs. naive

5.4.3 Indexing Performance

To evaluate the performance of the indexing algorithms, we measure the subscription

index size on the server, subscription insert time, index lookup time and merging time.

The subscription index size is the number of subscriptions stored on the server. The

insertion time is calculated as the average over 1000 subscriptions inserted. The index

lookup(match) time is computed as the average over 100 publication matching operations

on the server. For merging, we also evaluate the number of false positives introduced by

an imprecise merger. The following factors influence the performance of the algorithms:

number of total subscriptions received by the cluster), ratio of subscription overlap and

merging percentage. We examine the effects of these factors. For each experiment, we

vary one parameter and fix the others to their default values as specified in Table 1.

We first evaluate the time for index lookup on the server. Figure 5.23 shows the time

to find all matched indexing subscriptions for a publication given a set of subscriptions.

Since we fixed the match ratio, the number of matches increases linearly with the number

of subscriptions, so does the matching time.

Next we compare our index lookup algorithm match with GToPSS described in [73].

Our algorithm is especially useful for the workload where most subscriptions have same

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster136

0

20

40

60

80

100

120

140

160

5,
00
0

8,
00
0

10
,0
00

20
,0
00

30
,0
00

40
,0
00

50
,0
00

60
,0
00

70
,0
00

80
,0
00

90
,0
00

10
0,
00
0

number of subscriptions

m
a
t
c
h
i
n
g

t
i
m
e

(
m
s
)

Figure 5.23: index lookup time vs. #subscriptions

1

10

100

1000

10000

100
 1000
 10000
 100000

number of subscriptions

m
a
t
c
h
i
n
g

t
i
m
e

original

optimized

Figure 5.24: GToPSS vs. Optimization

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster137

graph structure but different constraints. In the experiment, we fix the number of

matched subscriptions (both structurally and constraints) and vary the total number

of subscriptions that have same structure but different constraints. Figure 5.24 shows

that the matching time of GToPSS increases to 2500ms when the number of subscriptions

increase to 100K. This is because almost all subscriptions are involved in binding check-

ing and constraint evaluation. However, the matching time of our algorithm is constant

to around 20ms and only depends on the number of finally matched subscriptions.

In a cluster-based publish/subscribe system, the size of the index on the server plays

an important role in filtering. We examine this metric for centralized architecture and

cluster-based architecture with different indexing algorithms. Figure 5.25 shows that the

subscription index size on the server is reduced to 50% by indexing.

0

20000

40000

60000

80000

100000

120000

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

number of subscriptions

su
b

sc
ri

p
ti

o
n

 in
d

ex
 s

iz
e

no cover

covering

merging

Figure 5.25: server index size vs. #subscriptions

Figure 5.26 shows the matching time when the number of matches in the workload

varies. The matching time is dependent on the number of matches in the routing table.

Without checking the covering relation, all the matched subscriptions will be read from

the workload into the routing table. However, using the covering algorithm, some of the

matched subscriptions will be dropped since they are covered by others. Thus, there are

fewer matches in the routing table it takes less time to match. Merging is similar. but

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster138

the number of matches is reduced even further and matching is even faster.

Figure 5.26: Matching time vs. #matches

Containment Indexing

0

20000

40000

60000

80000

100000

120000

0.1
 0.2
 0.3
 0.4
 0.5

Subscription overlap ratio

S
u

b
sc

ri
p

ti
o

n
 In

d
ex

 S
iz

e

Figure 5.27: routing table size vs. overlapping ratio

Figure 5.27 shows the subscription index size for the containment indexing algorithm

when the ratio of overlap among subscriptions varies. The workload contains 100,000

subscriptions. The larger the ratio of overlap in subscriptions, the more containment

relations existed among the subscriptions; and the more subscriptions are distributed

to clients; thus the smaller the subscription index size. The subscription index size is

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster139

approximately equal to number of subscriptions ∗ (1 − ratiooverlap). The subscription

index size resulting from merge indexing mainly depends on the merging threshold set in

the merging algorithm, not on the ratio of overlap.

For a fixed workload, the subscription index size for the merging algorithm varies

according to the merge percentage we set in the algorithm. Figure 5.28 shows this

relation. Subscription index size decreases to 629 when the merge percentage increases

to 99%. For some subscriptions without similarity, we just leave them there, since the

merging result will be an empty subscription. Therefore, The final index size is larger

than number of subscriptions ∗ (1 − merge percentage). 2

0

20000

40000

60000

80000

100000

20%
 50%
 70%
 90%
 99%

Merge Percentage

su
b

sc
ri

p
ti

o
n

 in
d

ex
 s

iz
e

Figure 5.28: index size vs. merge percentage

The merging of subscriptions may result in the introduction of false positive (i.e.,

unmatched publications that are forwarded into client nodes, but do not actually match

the individual subscriptions. They are not forwarded to real subscribers, since they are

filtered out by the client node.) False positives result in extra time of filtering and thus

decrease the system throughput. We experiment the impact of false positives based on a

workload of 10,000 subscriptions and 20,000 publications. Figure 5.29 shows that there

2We usually set two thresholds for merging, a higher threshold is used to trigger merging and a lower
threshold to control the index size and the difference between them gives the space for the index to keep
increasing without the need to trigger merging frequently.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster140

are only 0.13% false positives for a 90% merge percentage.

0

50

100

150

200

250

30%
 40%
 50%
 60%
 70%
 80%
 90%

merge percentage

n
u

m
b

er
 o

f
m

at
ch

ed
 p

u
b

lic
at

io
n

s
 merging

no merging

0

%

0.13%

0.04%

0.09%

0.04%
0.04%
0.04%

Figure 5.29: false positive vs. merge percentage

In a cluster-based architecture, the publication filtering can be executed for disjoint

subscription sets concurrently, thus improve the filtering efficiency. The price for this

improvement is the indexing time consumed by the indexing algorithms to check the

relations among all subscriptions and to perform subscription partitioning. To evaluate

this trade off, we measure the average insertion time for one subscription. In Figure 5.30,

the subscription insertion time with containment indexing is larger than that without

any indexing, due to the required containment checking computations. Also the average

insertion time for one subscription grows with the increase in the number of subscription,

which validates the time complexity analysis of the containment indexing algorithm for

constant ratio of overlap.

Finally, we evaluate the merging algorithm. As we mentioned in Section 5.3.3, the

merging algorithm is dependent on the length of the merge candidate list and the differ-

ence between the size of subscription index and the capacity threshold. Thus the merging

time in Figure 5.31 increases with the increase of merging percentage.

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster141

0

10

20

30

40

50

60

70

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

70
00
0

80
00
0

90
00
0

10
00
00

number of subscriptions

in
se

rt
 t

im
e

pe
r

su
b

(m
s)

 no cover

with cover

Figure 5.30: Insertion time vs. #subscriptions

5.4.4 Filtering Performance on a Cluster

The goal of using a cluster-based architecture for filtering is to increase the system

throughput. The increased throughput is tradeoff by the cost of distributing (i.e., in-

dexing) subscriptions among the cluster nodes. The following parameters are factors

that influence the system throughput: number of nodes in the cluster, number of sub-

scriptions, number of matches, subscription overlapping ratio and merge percentage. We

examine the effect of these factors on both indexing cost and system throughput. In the

experiments, we use a workload of 1 million subscriptions.

System throughput depends on the degree of filtering parallelism. The parallelism

degree depends on the number of nodes in the cluster. In the following experiments,

cluster size equals to the number of back-end nodes. cluster size equals 0 represents a

centralized architecture, there is only one node which contains the entire workload. The

indexing algorithms only work when cluster size > 0.

First we examine the performance of containment indexing. Figure 5.32 shows the

effect of cluster size and number of total subscriptions on the average number of sub-

scriptions stored in each node. The figure shows that the number of subscriptions per

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster142

0

20

40

60

80

100

30%
 40%
 50%
 60%
 70%
 80%
 90%

merge percentage

m
er

g
in

g
 t

im
e

(s
)

Figure 5.31: Merging time vs. merge percentage

node decreases proportionally with the increase of cluster size.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Cluster Size

#s
ub

sc
rip

tio
ns

/n
od

e
(m

ill
io

ns
)

1,000,000 subs
500,000 subs
100,000 subs

Figure 5.32: Number of Subscriptions per node vs.cluster size

Figure 5.33 shows the effect of overlapping ratio and cluster size on the subscription

indexing time (or loading time in a centralized architecture). Obviously, in a centralized

architecture, there is no containment checking, therefore, the loading time is the smallest.

In a cluster architecture, the loading time decreases with the increased number of cluster

node. The decreased indexing cost is due to the parallel processing. For a fixed cluster

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster143

size, the indexing time decreases with the increase of subscription overlapping ratio. With

larger overlapping ratio, there are more overlapped subscriptions, and more commonality

among subscriptions, thus less time needed for inserting a subscription.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

Overlapping ratio

In
de

xi
ng

 T
im

e
(s

)

centralized
5 nodes
10 nodes
15 nodes
20 nodes

Figure 5.33: Indexing time vs.overlapping ratio

Next we examine the system throughput when using containment indexing in the

cluster. In the experiments, we fixed the workload at 1, 000, 000 subscriptions. We run

the same workload on the clusters with different number of nodes and different percentage

of matches per publication. The figure shows that for fixed percentage of matches, the

system throughput increases linearly with the increase of cluster size. This is due to the

parallel filtering in the cluster architecture. From [73], we know that the matching time

on one node depends on the number of matches. Therefore, we can see that the system

throughput decreases with the increase of matching percentage in figure 5.34.

In a cluster-based architecture, if the number of nodes are fixed, the more subscrip-

tions are distributed from server to back-end nodes, the larger the parallelism degree

and the larger the system throughput. In the merging algorithm, the merge percentage

controls how many subscriptions will be merged, which is how many subscriptions will

be distributed to back-end nodes. Figure 5.35 shows the effect of the merge percentage

and cluster size on system throughput for a workload with 1, 000, 000 subscriptions and

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster144

0 5 10 15 20
0

5

10

15

20

25

Cluster size

T
hr

ou
gh

pu
t (

#p
ub

lic
at

io
ns

)

10% matches
5% matches
1% matches
0.5% matches
0.1% matches

Figure 5.34: System throughput vs.cluster size for containment indexing

among which there are 1% matches. The figure validates the above argument: the benefit

of the cluster filtering system increases with the increase of merge percentage and the

cluster size. However, the increase speed slows down for larger merge percentage. The

merge percentage is defined as the threshold to allow merging process, not the real per-

centage of subscriptions being merged. Although the merge percentage is set high, there

may not have enough similar subscriptions to be merged. Therefore, the throughput

increasing speed slows down for large merge percentage.

5.5 G-ToPSS System Implementation

5.5.1 Web Application

Recent years have seen a rise in the number of unconventional publishing tools on the In-

ternet. Tools such as wikis, blogs, discussion forums, and web-based content management

systems have experienced tremendous rise in popularity and use; primarily because they

provide something traditional tools do not: easy of use for non computer-oriented users

and they are based on the idea of “collaboration.” It is estimated, by pewinternet.org,

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster145

0 5 10 15 20
0

1

2

3

4

5

Cluste Size

T
hr

ou
gh

pu
t (

#p
ub

lic
at

io
ns

)

20% merge percentage
50% merge percentage
70% merge percentage
90% merge percentage

Figure 5.35: Throughput vs. cluster size for merging indexing

that 32 million people in the US read blogs (which represents 27% of the estimated 120

million US Internet users) while 8 million people have said that they have created blogs.

Web-based collaboration is the common idea for this new breed of content-management

tools. The center piece of such tools is a web page that is being used as an area where mul-

tiple users participate in content creation. More significantly, the collaboration enabling

tool used is the web page itself (accessed through the all-pervasive web browser).

With these new web applications, there rose a need for users to stay informed about

changes to the content. In general, users want to be updated about daily news headlines

of interest to them, or be notified when there is a reply in a discussion they participate

in, or their favorite web personality has updated his/her blog (online diary etc.).

RSS3 is quickly becoming the dominant way to disseminate content update notifica-

tions on the Internet. pewinternet.org reports that 6 million people in the US use RSS

aggregators (a service/application that monitors large numbers of RSS feeds).4

Web-based content management systems (CMS) have also grown in popularity mainly

3web.resource.org/rss/1.0/spec
4Reported by Pew Internet & American Life Project (www.pewinternet.org), an organization that

produces reports that explore the impact of the Internet on families, communities, the daily life. Also
reported by “RSS at Harvard Law” (blogs.law.harvard.edu/tech/)

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster146

because they are based on the publishing tools just described, but also because they are

much easier to use and maintain than traditional CMS.5 Like traditional CMS systems,

they provide content access control, user profiles, persistent storage, web access, RSS

authoring, advanced content management, content routing and taxonomic content clas-

sification.

In this section, we describe an extension to content management systems, CMS-

ToPSS, for scalable dissemination of RSS documents, based on the publish/subscribe

model. To illustrate the effectiveness of the system, we extend an existing open-source

web-based content-management system, Drupal (drupal.org) to use CMS-ToPSS in a

manner that is transparent to end users, yet provides an efficient content-routing archi-

tecture.

5.5.2 System Architecture

CMS-ToPSS consists of three main components: The Drupal module (a content manage-

ment system), the G-ToPSS filtering service and connector between them. The overall

architecture is shown in Figure 5.36. The Drupal module acts as a client to the filtering

service. The module does not require any changes to Drupal, and any Drupal installa-

tion can experience the benefits of CMS-ToPSS by simply retrieving and installing the

module.

G-ToPSS filtering service is accessible via XML-RPC and can be accessed by the

XML-RPC client. The CMS-ToPSS connector reads RSS feeds and serializes them into

publications and subscriptions as input to G-ToPSS. In Figure 5.37 we show an example

of an RSS feed (ie.e, a publication) and a subscription is shown in Figure 5.38. Both

publications and subscriptions are RSS feeds. And subscriptions are differentiated by the

key word GQL in title and the query can be taken out from description.

Upon receiving a publication and subscriptions, G-ToPSS performs the matching

5Mid Market Web CMS Vendors Pull Ahead. Brice Dunwoodie. CMSwire.com

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster147

G−ToPSS

Drupal running on a Web Server

Web Browser
content (web pages, forum, etc.)

subscriptions(GQL)Publication

matching Publication

RSS feed

matching RSS

To Client

CMS−ToPSS

converterXML−RPC

user profile

Figure 5.36: CMS-ToPSS system architecture

Figure 5.37: RSS feed example

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster148

Figure 5.38: Subscription example

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster149

between them and the outputs are notifications which are also serialized as RSS feeds

over the converter back to the client via XML-RPC. Each subscription that a user submits

is, in fact, a distinct RSS feed (containing items matching the user’s subscription).

The Drupal module performs both subscribing and publishing based on user interac-

tion with Drupal CMS. User can easily generate an RDF document using our template

and publish to G-ToPSS. Also user can form a subscription with specified constraints

from the interaction panel and send it to G-ToPSS. The module serializes all content

changes in Drupal using RSS and sends them to the G-ToPSS filter service. The filtering

service forwards the document to the interested clients which could be other XML-RPC

clients as well as other Drupal modules. Note that the G-ToPSS filtering service can

serve multiple Drupal sites.

In addition to publishing all content changes in RSS, the Drupal module also extends

different kinds of Drupal content with change notification capabilities. For example, users

can subscribe to receive notifications when they have replies on the discussion forum, or

when a certain web page in Drupal has been updated. The Drupal module registers these

kinds of subscriptions with the G-ToPSS filtering service transparently to the user.

A user, using a web browser, accesses a Drupal site that is extended with the module

described in this chapter. The user can choose to receive notifications for content of her

choice (e.g., discussion forum replies, web page updates etc.) Drupal supports convenient

taxonomic content classification, which can be directly mapped to a G-ToPSS ontology.

In this case, the user will get notifications only when both the content and taxonomic

constraints of her subscription are satisfied. The users can also create content (e.g., par-

ticipate in a discussion form or create/update a web page) to trigger notifications. The

users’ subscriptions are stored as part of their Drupal profile. Via the profile web page,

users can review their notification requests as well as see all notifications received for

those requests.

We also allow users to subscribe directly on the RSS content by expressing their

Chapter 5. Filtering of Graph-Based Metadata on Computing Cluster150

Figure 5.39: CMS-ToPSS User API

subscriptions in G-ToPSS’s SQL-like subscription language (GQL). The subscriptions

and their results are also shown as part of the user profile. The screenshot of the user

interface is shown in Figure 5.39.

Chapter 6

Probabilistic Publish/Subscribe

System

Efficient Pattern matching over event streams is increasing being employed in many areas

and has aroused significant interest in industry [84, 24]. Much effort has been devoted to

developing efficient matching algorithms [96, 2]. Up to now, all the systems developed to

date perform a fully evaluation for each subscription pattern. The match result will not

be reported until the whole subscription has been evaluated. Especially in the domain

of complex event processing, action waits to be taken until all subscribed events have

occured, there is no response at intermediate state.

Many applications of complex event processing are monitoring systems such as flight

alert system, intrusion detection,credit card fraud detection, traffic monitoring system.

It would be more flexible for these systems to take action if a match of the defined

monitoring pattern could be predicted in advance rather than wait until the situation

becomes worse. Take the intrusion detection system as an example, if a series of suspicious

activities is predicted as a potential intrusion with a large probability, the system would

responds by resetting the connection or by reprogramming the firewall to block network

traffic from the suspected malicious source.

151

Chapter 6. Probabilistic Publish/Subscribe System 152

To the best of our knowledge, there is no research prototype has the feature to predict

the occurrence of complex event associated with a probability based on the partial match

status. In this thesis we will propose a model by leveraging the Markov Model to offer

this ability.

In this chapter, Section 6.1 describes a probabilistic publish/subscribe model for com-

plex event processing supporting expressive operators. Section 6.3 develops the data

structures and the algorithms constitute our matching and predicting functionality. Fi-

nally, the system architecture is presented in Section 4.1.

6.1 System Model

In this section we describe the language and data model underlying our probabilistic

publish/subscribe approach. The objectives are to allow subscribers to express interests

in complex constellations of events over event streams allowing the subscriber to join

individual events through Boolean operators and constrain interests via explicit and

implicit temporal conditions. The language is the basis for algorithms to probabilistically

match subscriber interests and to predict matching results from partially detected events.

6.1.1 Publication Data Model

Publications describe real-world events and are defined by a set of attribute value pairs:

ei = {(a1, v1) · · · (an, vn)}.

Unlike conventional publish/subscribe approaches, the model in this chapter operates

over event streams, where an event stream is interpreted as infinite sequence of events,

and each event represents an occurrence of interest at a designated point in time. As is

common in the publish/subscribe literature, we are using the terms event and publication

synonymously. Each event contains an attribute that records when it occurred. Events

are assumed to be processed in the order they occurred.

Chapter 6. Probabilistic Publish/Subscribe System 153

For example, Table 6.1 shows the events logged by a typical operating system monitor-

ing facility. Whenever a login attempt is registered by the system, the event is recorded

with a time stamp, a status message, and the IP address from where the attempt was

made. We add an event ID, as a unique identifier for each event.

Table 6.1: Event stream of login history

EID Time Status IP

e0 2007/02/14/12:38:10 denied 128.100.2.15

e1 2007/02/14/12:42:10 denied 128.100.2.15

e2 2007/02/14/12:42:10 denied 128.100.2.15

e3 2007/02/14/12:43:28 success 128.100.2.15

e4 2007/02/14/12:43:56 logoff 128.100.2.15

e5 2007/02/14/12:45:28 success 128.100.5.10

6.1.2 Subscription Language

A subscription expresses the interest of a subscriber in events. A primitive subscription

is a subscription that is matched by a single event. In contrast, a composite subscription

is a subscription that may require multiple independent events to be matched.

A primitive subscription is a conjunction of predicates. Each predicate defines a

constraint over an attribute. More formally, a primitive subscription is as follows:

s = p1 ∧ p2 ∧ · · · ∧ pk,

where the pi are Boolean predicates.

For example, a primitive subscription that monitors a failed login from a specific

computer is expressed as follows:

sfailed login : (LOGIN = denied) ∧ (IP = 128.100.2.15).

Chapter 6. Probabilistic Publish/Subscribe System 154

A primitive subscription can be matched by multiple events. In the above example,

sfailed login is matched by e1 and e2. In contrast, a composite subscription expresses

interest in composite events. Here, composite events represent constellations of events

in the event stream, but not necessarily contiguous. Composite subscriptions correlate

events from the event stream through temporal and logical operators. More formally, a

composite subscription is defined as an expression over primitive subscriptions that are

related by temporal and Boolean operators:

cs = R(s1, s2, · · · , sk),

where R denotes operators listed in Table 6.2.

Table 6.2: Composite subscription operators

Temporal Boolean

R Description R Description

, contiguous sequence ∧ conjunction

; non-contiguous sequence ∨ disjunction

@ explicit temporal operator

The contiguous sequence operator, “,”, requires its operand subscriptions to be matched

by contiguous events in the event stream. The non-contiguous sequence operator, “;”, is

similar, but allows other events to occur between the events in the event stream matching

the operand subscriptions, as long as the matched events occur in order. Since events in

the event stream occur in order and, we assume, no events occur at the same time, there

is an implicit temporal condition associated with both “,” and “;” operators. That is the

time interval between the events matching the operand subscriptions has to be greater

than zero. One event cannot match two operands of the same composite subscription.

In contrast, “@” is an explicit temporal operator; it adds an explicit temporal condition

that requires the matching events to occur in the specified time interval.

Chapter 6. Probabilistic Publish/Subscribe System 155

In the intrusion detection scenario, from above, a possible intrusion can be modeled

by a composite subscription as follows:

s1, s2, s3 : IP = $x ∧ LOGIN = denied

s4 : IP = $x ∧ LOGIN = success

csintrusion : s1; s2; s3@(t(s3) − t(s1) < 5min), s4

csintrusion defines a potential intrusion as the occurrence of at least three failed login

attempts followed by one successful login attempted, where the interval between the first

failed attempt and the last attempt must be less than 5 minutes and all logins occur from

the same IP address. The variable, x, in the IP predicate represents the join condition

that all login attempts originate form the same IP address. The non-contiguous sequence

operator used, allows for other events to occur in between.

The following shows a more general example.

s1, s2 : IP = $x ∧ LOGIN = denied

s3, s4 : IP = $x ∧ LOGIN = success

s5 : IP = $x ∧ ACTION = passwd

s6 : IP = $x ∧ ACTION = logoff

cscompromised = s1; ((s2; s3@(t(s3) − t(s1) < d)) ∨ (s4, s5)); s6

cscompromised defines an intrusion pattern bracketed by a failed login attempt at the

start and a logoff action at the end; in between these events, either there are at least

one failed login followed by one successful login, or one successful login followed by a

password reset action. This composite subscription illustrates the combination of both

temporal and Boolean operators.

6.1.3 The Matching and Prediction Problems

In this section we define the matching problem and the prediction problem for the prob-

abilistic publish/subscribe model.

Chapter 6. Probabilistic Publish/Subscribe System 156

The matching problem is similar to the standard publish/subscribe matching problem:

Given a set of composite subscriptions CS and an event stream {ei}, find all cs ∈ CS

such that for each si of cs there is an ej that matches si and the occurrence time of all

matching ej satisfies the temporal conditions specified in cs.

For example, csintrusion is matched by the event sequence e0, e1, e2, e3 from Table 6.1.

Next, we describe the prediction problem. At some time, tnow, events in the event

stream may have matched some of the primitive subscriptions registered with the system.

A composite subscription for which some of its primitive subscriptions are matched is

said to be in a partially matched state. This is the case, for example, when s1 and s2 in

csintrusion are matched.

Our objective is to be able to predict that the probability a subscription, cs, will

match is greater than a threshold, θcs, after processing N further events.

Say, based on past observations, we know that an intrusion occured half of the time

after the first failed login and 80% of the time after two failed logins. Based on this, we

conclude that the composite subscription, csinstrusion, is matched with a probability of

0.5 after observing the first login failure and with a probability of 0.8 after the second

failure.

That is given an event stream, we aim to calculate the probability that a composite

subscription, cs, is matched some time in the future given its current partial matching

state. The challenge is to efficiently calculate this conditional probability for all compos-

ite subscriptions. Thus, the prediction problem is as follows: Given a set of composite

subscriptions, CS, and an event stream, {ei}, find all partially matched composite sub-

scriptions cs ∈ CS such that the probability of cs transitioning from a partial match to a

full match, after processing N events, is greater than the threshold, θcs.

Chapter 6. Probabilistic Publish/Subscribe System 157

6.2 Subscription Processing

In this section we describe the system architecture and subscription processing.

The probabilistic publish/subscribe system performs four principal matching tasks.

These are the matching of primitive subscriptions, the matching of sequence and temporal

operators, the matching of Boolean expressions underlying composite subscriptions, and

the prediction of subscription matches based on partial matching state evolving over

time. Figure 6.1 shows the matching engine architecture and hints at the processing flow

of events through the system.

Before discussing the event processing flow in more detail, we describe how composite

subscriptions are decomposed and represented in the system. A composite subscription

is an expression tree. Intermediate tree nodes represent the operators and leaf nodes the

expressions of primitive subscriptions.

The Boolean expressions defining the composite subscription are represented as Boolean

trees and are managed by the Boolean Matching Engine (BME) in the architecture.

The temporal subexpressions of composite subscriptions are represented as finite state

machines and are managed by the State Machine Engine (SME). Individual primitive

subscriptions, which are at the leaves of the tree, are managed by the Atomic Subscrip-

tion Matcher (ASM). The decomposition of a composite subscription into finite state

machines and Boolean trees is described in Sec. 6.2.4.

Input events are first evaluated against all primitive subscriptions stored in the SM.

The resulting matches drive the state transitions of the SME and the matching of the

Boolean operators of composite subscriptions in the BME. SME and BME produce three

kinds of outputs. The first kind are the fully matched composite subscriptions. The

second kind are referred to as derived events. These are events that are fed back from

the SME to the BME and from the BME to the SME to trigger further state transitions

and Boolean matches, respectively. The third kind are partial matches passed on to the

Prediction Engine (PE).

Chapter 6. Probabilistic Publish/Subscribe System 158

BME
(Boolean Trees)(Finite State

Machines)

SME

matches
(pattern, probability)

Parser

partial
matches

partial
matches

subscribers

Match Engine

Finite State Machines Boolean Machines

composite subscription patterns

Matcher
Atomic Sub

Notifications {(pattern, event sequence, probability)}

derived
events

derived
events

full matches full matchesPrediction Engine

event stream

event stream

Figure 6.1: System Architecture

Primitive subscription matching and Boolean expression matching has been exten-

sively studied [53, 23, 34] and will not be further discussed here. In our implementation

we experiment with a Binary Decision Diagram (BDD)-based matcher for evaluating

primitive subscriptions [54] and employ a variant of the Rete algorithm [53] for the state-

ful Boolean expression matching required by the BME. The BME needs to track partially

matched composite subscriptions.

Here, we focus our discussion on the algorithms underlying the State Machine Engine

(SME), which leverages finite state machines (FSM) [45] for the processing of sequence

operators. Subscription expressions are graphs that represent finite state machines de-

rived from the sequence operators. In the graph a node represents a state, an edge

represents a state transition labelled by a primitive subscription whose match triggers

Chapter 6. Probabilistic Publish/Subscribe System 159

the transition. State transitions are triggerd by events.

Traditional algorithms for converting regular expression into FSMs can not be used

due to the explicit temporal operator, @. Below, we describe the FSM construction and

event processing algorithms for our composite subscription expressions. There are five

cases to consider, as detailed in Table 6.3.

Table 6.3: FSM Construction Cases

Case Description Op. Algo.

Contiguous op w/ explicit time condition ,
1

Contiguous op w/o time condition , @

Non-contiguous op w/o time condition ; 2

Non-contiguous op w/ time condition ; @ 3

General , ; @ 4

6.2.1 Contiguous Sequence Operators

Constructing an FSM and processing it for expressions using the contiguous sequence

operator is simple. It constitutes a building block for supporting the other operators. In

our presentation, we assume the processing of one expression, deferring optimizations for

the merging and joint processing of multiple FSMs to below.

Given an expression consisting of k primitive subscriptions cs = s1, s2, · · · , sk, the

FSM has k + 1 states capturing the intermediate states of matching the individual prim-

itive subscriptions. N0 is the initial state (no matches), N1 represents the state that s1

matches, N2 represents the state that the previous two contiguous events match s1 and

s2. Nk−1 represents the state that the previous k contiguous events match s1, s2 · · · sk−1,

and the last Nk represents the state that the whole expression is matched.

The key to constructing the FSM is the addition of all necessary transitions among

Chapter 6. Probabilistic Publish/Subscribe System 160

N0
N2 N3N1

(F)

F SF
(F,F) (F,F,S)

S N4
(F,F,S,S)

Figure 6.2: FSM for F, F, S, S

states so that the FSM can always match the largest partial state given any input. For

each state Ni, i = [0, k − 1], we add a transition from state Ni to state Ni+1 upon the

match of the primitive subscription si+1.

During matching, the initial state is always checked for each new event to see whether

a new partially matching instance of the FSM must be initiated. Therefore, if nothing

matches the incoming event, all current FSM instances are simply discarded. The detail

of the algorithm is described in Build State Machine For Term.

Algorithm Build State Machine For Term(cs = s1, s2, · · · , sk)

(∗ construct a state transition graph given a composite subscription containing only “,” operators ∗)

1. construct k + 1 states N0, N1 = s1, N2 = s1, s2, · · ·, Nk−1 = s1, s2, · · · , sk−1, Nk = s1, s2, · · · , sk

2. for each state Ni = s1, s2, · · · , si(i = 0, · · · k − 1)

3. add an edge si+1 from Ni to Ni+1

Taking the expression cs = F, F, S, S as example, there are five states N0, N1, N2, N3,

and N4. For example, state N2 represents that the sub-expression F, F matches. If a

successful login S event occurs, we move to the next state N3. Figure 6.2 shows this

example.

We treat the temporal condition defined by @ as an additional predicate of the as-

sociated primitive subscription. The above algorithm can be applied to build the FSM

for expressions containing @ operators. Figure 6.3 shows an example for the expression

F, F, F@(tN3
− tN1

< d), S.

To support the explicit temporal operator in event processing, each state is associated

with an attribute that records the most recent transition into the state. When the time

condition is evaluated for determining whether to take the transition, the value of this

Chapter 6. Probabilistic Publish/Subscribe System 161

N0
N3

(F,F,F)
N1
(F)

N2 S N4
(F,F,F,S)

F F@(t3−t1<d)F
(F,F)

Figure 6.3: FSM for F, F, F@(tN3
− tN1

< d), S

attribute is used.

When a new instance of a state machine is created, separate time attribute instances

are initialized as well. For example, given a state machine as shown in Figure 6.3, there

would be three instances of the state machine if events matching F@1, F@3, F@4 occurred.

In one instance, the current state is N1 with a time attribute value of 4; in another

instance, the current state is N2 and the previous state N1 has a time attribute value

of 3. In the last instance, the current state is N3 and the previous state N1 has a time

attribute value of 1.

6.2.2 Non-contiguous Sequence Operators

There are two differences for the FSM that represents expressions with non-contiguous

sequence operators. First, since events not contributing to matching an expression are

allowed to occur during matching, the FSM must remains at the current state, even if

the primitive subscription that triggers the transition to the next state is not matched.

Second, if the next primitive subscription is matched, we need to take two transitions in

order to track all matching possibilities. One transition leads to the next state, the other

transition leads back to the state itself to allow future matches of the next primitive

subscription to trigger the transition to the next state. Figure 6.4 shows an example and

Algorithm Transition Between Term describes the detail of the graph construction. In

the figure we use the “?” symbol to represent any input.

Algorithm Transition Between Term(cs = s1; s2; · · · ; sk)

(∗ construct a state transition graph for composite subscription with only “;” operators ∗)

1. construct k + 1 states N0, N1 = s1, N2 = s1; s2, · · ·, Nk−1 = s1; s2; · · · ; sk−1, Nk = s1; s2; · · · ; sk

Chapter 6. Probabilistic Publish/Subscribe System 162

N0
N3

(s1;s2;...sk)
N1 N2s1 s2 s3 sk...
(s1) (s1;s2)

* *

Figure 6.4: FSM for s1; s2; · · · ; sk

N0
N1 N2 N3 N2

S2 F

S F S@TF
(F) (F;S) (F;S;F) (F;S;F;S)

1

1: primary link 2: secondary link

F

* * *

4

3

3: self link 4: out link

Figure 6.5: FSM for F ; S1; F ; S2@(tS2
− tS1

< T)

2. for each state Ni = s1; s2; · · · ; si

3. add an edge si+1 from Ni to Ni+1

4. add an edge ? from Ni to Ni

In order to support the explicit temporal operator “@”, we need to record the match-

ing time of the primitive subscriptions that are referred to by a time condition. We

associate a time attribute with each state. Thus, we need to differentiate the transitions

by which the state is reached. Taking Figure 6.5 as an example, there are three incoming

links to state N2. From state N1, there is a link to state N2 upon the match of S. This

is the first time that N2 is reached upon a match, and we call this link the primary link.

From state N2, there are two links back to itself. One is triggered also upon a match of

S, and we call this link the secondary link. Since the non-contiguous sequence operator

allows other events to occur in between, the transition will stay in the current state.

This link is called a self link and and is triggered on all events except those that cause

a transition of the primary or secondary links. Except the self links, both of the other

links (primary, secondary) are triggered upon a match. The transition times should be

recorded with these transitions for future evaluation of the associated time conditions.

Chapter 6. Probabilistic Publish/Subscribe System 163

6.2.3 General Sequence Operators

When the contiguous sequence operators and non-contiguous sequence operators are used

together in one composite subscription, we decompose the composite subscription into

multiple terms separated by the non-contiguous sequence operators and each term con-

tains only contiguous sequence operators. For each term, we add transitions using Algo-

rithm Build State Machine For Term, and we apply Algorithm Transition Between Term

to add transitions between terms. Algorithm Build State Machine describes the detailed

process.

Algorithm Build State Machine(cs = R(s1, s2, · · · , sm))

(∗ construct a finite state machine for a composite subscription containing “, ;” and “@” operators ∗)

1. Decompose the whole composite subscription into n terms that are separated ed by non-contiguous

sequence operator, cs = T1;T2; · · · ;Tn; each term Ti = Si1, Si2, · · · , Siki
contains only contiguous

sequence operator

2. m = k1 + k2 + · · · + kn

3. construct m states N0, N1 = s1, · · ·,

4. Nm = s11, s12, · · · , s1k1
; · · · ; sn1, sn2, · · · , snkn

, where each state represents that partial match state

of one more primitive subscription

5. for each term Ti = si1, si2, · · · , siki

6. Build Transition For Term(Ti = si1, si2, · · · , siki
)

7. for each state Nj = · · · ; si1, si2, · · · , siki
(= sj)

8. add an edge sj+1 from Nj to Nj+1

9. add an edge sj from Nj to Nj

10. add an edge ? from Nj to Nj

Take Figure 6.6 as an example. This composite subscription is composed of three

terms: (F, F, S), (F, S) and (F, S). There is a time condition between the F event in the

last term and first F event in the first term. To construct the state transition graph for

this composite subscription, we first create a chain of states where each state indicates

incremental match status of one more match of a primitive subscription than the previous

state. And for each term, we add transitions according to the rule for the contiguous

Chapter 6. Probabilistic Publish/Subscribe System 164

N0
N1
(F)

N2
(F,F)

N3
(F,F,S)

N4
(T1;F)

N5
(T1;F,S)

N6
(T1;T2;F)

N7
(T1;T2;F,S)

F F S F S F S

* *

F S

Term1: F,F,S

F

Term2: F,S

F
Term3: F,S

<T

Figure 6.6: FSM for F, F1, S; F, S; F2@(tF2
− tF1

< T), S

operators. Then we add transitions between the states across different terms according

to the rules for non-contiguous operators.

6.2.4 Combining Boolean/Sequence Operators

Given a general composite subscription that contains both sequence operators and Boolean

operators, it will be decomposed using Algorithm Build Machines to generate a set of

state machines and Boolean machines. The decomposed state or Boolean machines may

hierarchically compose another one. Then we call those decomposed machines as child

machines, and the machine containing the decomposed ones as parent machines. The

machine which appears at the top level represents the original whole composite subscrip-

tion pattern, and we call it the master machine. The whole composite subscription is

matched when the master machine reaches the matched state.

Algorithm Build Machines(pattern = s1s2 · · · sn)

Input: a general composite subscription which is a String with n symbols, the symbol might be sub-

scription id, sequence operator or Boolean operator

Output: a set of State Machines and Boolean Machines

1. symbols = new stack()

2. Machines = ∅

3. for each symbol σ in pattern

4. if σ 6=′)′

5. symbols.push(σ)

6. else

Chapter 6. Probabilistic Publish/Subscribe System 165

NX2NX1NX0

Sx : S , S2 3

S3S2

NY0 NY1 NY2

5Sy : S , S4

S4 S5 Sz

SySx S8

Su

Su : S7 S8Sz : Sx Sy

S7

(a) State machines and Boolean machines

N0 N1 N2
N3 N4

S Sz S

* * *

Su1 6

(b) The Master State Machine for cs = s1; ((s2, s3) ∧ (s4, s5)); s6; (s7 ∨ s8)

Figure 6.7: General composite subscription

7. str = null

8. σ = symbols.pop()

9. while σ 6=′ (′

10. str = σ + str

11. if str.get(1).isBoolean()

12. M = Build Boolean Machine(str)

13. else M = Build State Machine(str)

14. Machines.add(M)

15. new symbol = M.reference

16. symbols.push(new symbol)

17. return Machines

Parentheses may be used to explicitly specify the operator precedence in a pattern.

For example, the composite subscription cs = s1; ((s2, s3) ∧ (s4, s5)); s6; (s7 ∨ s8) can be

represented by three state machines and one Boolean machines as shown in Figure 6.7.

Chapter 6. Probabilistic Publish/Subscribe System 166

When a composite subscription contains multiple state machines and Boolean ma-

chines, a special trigger event is created in order to trigger the transition between the

state and Boolean matching engines. We define two types of trigger events. One is called

in trigger which is a event sent by a parent state machine to start a child state machine.

The other is called out trigger which is sent by a child state machine to a parent machine

notifying a match. Once a child state machine is triggered, it remains active in order to

detect more matches. Matches in the child state machine generate derived events that are

consumed by the master state machine. The child state machine only terminates when

the master state machine terminiates, i.e., the whole composite subscription is matched

or times out.

6.2.5 Merging Multiple Graphs

Each composite subscription is represented by one or more state machines and Boolean

machines. Machines that share common subexpressions can be optimized by merging

their commonalities into a single machine. This helps save memory and improve the

matching efficiency. Merging Boolean expressions has been studied and is not the focus

of this thesis. Here we describe how to merge multiple state machines.

The principle of merging multiple state machines is to maintain the correctness of the

merged state machine. Concretely speaking, given two state machines, two states N1 in

cs1 and N2 in cs2 are chosen to be merged if at any time cs1 arrives the state N1, cs2

arrives the state N2. States N1 and N2 are said to be equivalent.

Definition: Two states N1 and N2 are equivalent if the following conditions are satisfied:

(1) The number of incoming transitions of N1 and N2 are equal.

(2) For each incoming transition, there exists an equivalent mapping between N1 and N2,

that is for ∀I1 →
x N1,∃I2 →

x N2 and I1 and I2 are equivalent.

Figure 6.8 shows the result of merging three state machines cs1 = a; b, c, cs2 = a; b, d

and cs3 = a. State M1 and M2 are merge states representing the partial matches for both

Chapter 6. Probabilistic Publish/Subscribe System 167

M1
(a)

M0

b

*

(a;b)

(a;b,d)

M

(a;b,c)

M

M

2

3

4

c

d
a

a

(a)
M5

cs1

cs2

cs3

Figure 6.8: Merging Multiple State Machines

cs1 and cs2. However, state M1 and M3 cannot be merged although both of them will

be triggered upon an occurrence of event a. M1 and M3 are not equivalent since there is

another incoming transition (the ? edge) associated with state M1.

6.3 Event Processing

This section will describe the event matching and prediction algorithms.

6.3.1 Matching Algorithm

In our model, all composite subscriptions are represented as state machines and Boolean

machines. Each primitive subscription match triggers a transition. The main challenge

in the composite subscription evaluation is the management of time information for

each matched primitive subscription and the efficient evaluation of the associated time

conditions.

The discussion below considers the case where the explicit temporal operator ref-

erences states within a finite state machine, and one where it references states across

different state machines.

Chapter 6. Probabilistic Publish/Subscribe System 168

Time conditions within a finite state machine

Each time condition involves two primitive subscriptions. We refer to the first matched

primitive subscription as the referencing subscription, and the latter matched primitive

subscription as the dependent subscription. In the state machine, the state whose arrival

is triggered by the referencing subscription is called the referencing state and the state

whose arrival is triggered by the dependent subscription is called the dependent state. For

example, suppose there is a time condition @(ts2
− ts1

) < d between primitive subscrip-

tions s1 and s2. s1 is the referencing subscription and s2 is the dependent subscription.

During matching, all the primary and secondary transitions into the referencing state

should be recorded so that the time condition can be evaluated later when the dependent

state is reached.

In order to record the incoming transition time for individual states, we associate a

time list Tm(si) for each referencing state referred to by a time condition. Each entry in

the list is a time recording when the state is reached (or when the primitive subscription

triggering the arrival of this state is matched). New entries will be inserted into the time

list when a primary transition or a secondary transition is taken. Since each state can be

referred to by multiple time conditions and each time entry may satisfy a different set of

time conditions, we associate a time compatible Set Tc(si) with each entry containing the

set of time conditions satisfied by this entry.

Figure 6.9 shows an example of the data structure we described above to support

explicit temporal operators. There are three time conditions in the example involving

three subscriptions s1, s2 and s3 (also three states N1, N2, N3). We create a time list

for each state. Assume that the incoming events matched the subscriptions in a time

sequence as shown at the bottom of Figure 6.9.

The first three times will be inserted into time list Tm(s1) as they indicate three

matches of s1. At time 4, s2 is matched. Before moving to the state N2, time condition

T1 is evaluated based on the match time of s2 (ts2
= 4) and the entries in Tm(s1).

Chapter 6. Probabilistic Publish/Subscribe System 169

N0

~
S1

~
S1

Time
S1 S1 S1 S2 S2 S2 S3S3 S3

N1

S2
~ ~

T1S2&

(S1)
N2

S3
~ S3&

~
T2

(S1,S2)

N3
(S1,S2,S3)@T (Ts −Ts <3)1 2 1 @T (Ts −Ts <6)3 3 1

4

3
2, 3

3

S1

1 4 7

S1 S2 S3

@T (Ts −Ts >3)2 3 2

Tm(S3):

8

Tm(S1):

1

2

3

Tm(S2):

5

Tc(S2)

Tc(S1)
4N1 Tm(S1):

N2

N3 Tm(S3):

TCT:

Tm(S2):

Figure 6.9: Data structure for subscription cs = s1; s2@(ts2
− ts1

< 3); s3@(ts3
− ts1

<

6)@(ts3
− ts2

> 3)

Only time 2 and 3 in the list satisfies T1, so time 1 will be deleted from Tm(s1). Time

4 is inserted into Tm(s2) and at the same time time 2 and 3 are inserted into Tc(s1).

Similarly, at time 5, s2 is matched again, time 5 is inserted into Tm(s2) and time 3 is

inserted into Tc(s1). At time 6, s2 is matched again. However, since it doesn’t satisfy

the time condition T1 based on the time entries in Tm(s1), it is discarded. For the same

reason, at time 7, s3 is matched. But it is discarded since the time condition T3 is not

satisfied for 7.

At time 8, subscription s3 is matched again, we evaluate the time conditions T2 and

T3 associated with this subscription. T2 is satisfied for the match time 4 of s2 and T3

is satisfied for the match time 3 of s1. Thus, time 2 will be deleted from the Tm(s1)

and Tc(s1) lists. Similarly time 5 will be deleted from Tm(s2). At this point, the time

lists and compatible lists will be updated as shown in the figure. According to these

entries in the lists, we know that the composite subscription is matched by the pattern

Chapter 6. Probabilistic Publish/Subscribe System 170

(s1(@3); s2(@4); s3(@8)).

The time lists and compatible lists will be updated along with the matches of sub-

scriptions (or transitions in the state machines). We describe the detailed process in

Algorithm Match.

Algorithm Match(FSM, e)

(∗ Given a finite state machine FSM and an event e update the current state and time lists ∗)

1. Nn = δ(Nc, e, t) //Find the next state Nn based on current state Nc, event input e, current time t

and transition function δ

2. if ∃ time condition @T refered by state Nn

3. insert time t into Tm(sn)

4. for each time condition @T dependant on state Nn

5. Ni = Get Ref State(@T)

6. List lm = Ni.get time list()

7. Set matched times = eval(@T, lm, t)

8. if !matched times.isEmpty()

9. entry = Tm(sn).insert(t)

10. entry.set(Ni, matched times)

11. if Nn 6= Nc

12. prune(Nc), Nc = Nn

13. if Nc is matched state

14. find the final matched time if no time list is empty

15. return Nc.getMatchedPattern()

Algorithm Prune(Nc)

(∗ Recursively update the time lists when leaving a state ∗)

1. List lc = Nc.get time list()

2. for each time condition @T associated with the incoming transition to Nc

3. Ni = Get Ref State(@T)

4. List li = Ni.get time list()

5. U =
⋃

k lc[k].get(Ni)

6. li.Update(U)

7. Prune(Ni)

Chapter 6. Probabilistic Publish/Subscribe System 171

8. for each time condition @T associated with the outgoing transition from Nc

9. Ni = Get Dependent State(@T)

10. List li = Ni.get time list()

11. for each li[k].Tc(sc)

12. li[k].Tc(sc).update(li)

13. Prune(Ni)

Upon an incoming event e, we find the primitive matched subscriptions and the next

state Nn based on the current state Nc. If there is no time condition associated with this

transition, we just move to the next state. Otherwise, we insert the time into the time

list of the next state if it is referred by a time condition (Nn is the referencing state of

a time condition). If there are time conditions dependent on Nn (Nn is the dependent

state), we update its compatible sets. When leaving the current state, we recursively

prune all time lists and compatible sets to find out the final matches that satisfy all time

conditions. If Nn is a final matched state, we get the associated composite subscriptions

and report the result.

Time conditions across finite state machines

In general, a composite subscription contains both temporal operators and Boolean op-

erators, in which case, it consists of multiple state machines and Boolean machines.

Notice that a primitive subscription can also be considered as a state machine. Thus,

all time conditions appear among state machines. According to the locations where the

dependent state and referencing state of a time condition appear, we classify the time con-

dition evaluation procedure for a general composite subscription into five cases as listed

in Table 6.4. The graphically representation of the example composite subscription in

Table 6.4 is shown in Figure 6.7.

In Table 6.4, SMx represents state machine x, BM(SMx) represents the Boolean

machine where a reference to state machine x appears. In case 1, the time condition

is defined between two subscriptions in the same state machine. In cases 2 and 3, the

Chapter 6. Probabilistic Publish/Subscribe System 172

Table 6.4: Time condition @(si, sj) for example subscription cs = s1; ((s2; s3) ∧

(s4, s5)); s6; (s7 ∨ s8).

Ref. State Location Dep. State Location Example

(SM(si)) (SM(sj))

SMx(= SX) SMx @(s2, s3)

master SMy(= SY) @(s1, s2)

SMx master @(s4, s6)

SMx 6= SMy 6= master, BM(SMx) = BM(SMy)(= SZ) @(s3, s4)

SMx 6= SMy 6= master, BM(SMx)(= SZ) 6= BM(SMy)(= SU) @(s3, s7)

time condition is defined across the child state machine and the master state machine.

In cases 4 and 5, the time condition is across two different child state machines that are

referred to by the same Boolean machine (case 4) or by different Boolean machines (case

5).

To evaluate time conditions across different state machines, we build a global time

condition table TCT (as shown in Figure 6.9) containing the mapping between refer-

encing/dependent states and the corresponding time lists. When the referencing state

is reached (e.g., si is matched), a new entry will be inserted into its time list in TCT .

When the dependent state is going to be reached (e.g., sj is matched), the associated

time condition will be evaluated and the time list and its compatible list is updated

accordingly. If sj is not referred by any latter time condition, the time list of sj will be

cleaned up. This procedure will be applied for cases 1,2,3 and 5 as listed in Table 6.4.

For case 4, when the time condition is between two states located in different state

machines, but the two state machines belongs to the same Boolean machine, there is no

order constraint of these two primitive subscriptions. In this case, the time condition is

treated as an absolute time difference, of the form |tsi
− tsj

| < T . For this type of time

Chapter 6. Probabilistic Publish/Subscribe System 173

x2N

NY1

...

Tm(s3)

Tm(s4) 5

3 4

Figure 6.10: Global Time Condition Table Example

condition, we can’t fix either state to be the dependent state at which the time condition

will be evaluated. Instead, we have to evaluate the condition −T ≤ tsi
− tsj

< T after

both si and sj are matched. To save the evaluation time, we insert new entries into the

time lists upon the match of si and sj, but we don’t evaluate the condition, create the

compatible list or do pruning until we transit into the first common descendent node of

the two nodes in the Boolean tree referring to the state machines where si and sj appears.

Take the composite subscription shown in Figure 6.7 as an example. The composite

subscription is defined as s1; ((s2; s3) ∧ (s4; s5)); s6 and the time condition is defined

as @(|ts3
− ts4

| < T1). The state machines and Boolean machines are represented in

Figure 6.7. To enable the time condition evaluation, we build a global time condition

table as shown in Figure 6.10. There are two entries: one records the matching time for

s3 which is updated upon entering node NX2
; the other records the matching time for s4

which is updated upon entering node NY1
. s1 appears in the state machine SMX and s2

appears in the state machine SMY . The time condition won’t be evaluated until the first

common descendent of SMX and SMY , SMZ in this case, is reached, which means that

both s3 and s4 are matched and we can start evaluating the absolute time condition.

Notice that absolute time condition is not possible for case 5 even though the time

condition is also across two non-master state machines. Since SMX and SMY do not

belong to one Boolean machine, there must be a sequence operator between SMX and

SMY , and thus, an absolute time condition is not possible.

Chapter 6. Probabilistic Publish/Subscribe System 174

6.3.2 Prediction Algorithm

Each finite state machine records incremental matches of a pattern. Each successive state

in a finite machine represents a further partial match status towards the final full match.

If the machine is in state Nc currently, then the probability that it moves to state Nn

upon the occurrence of next event depends only on the present state. In other words,

the description of the present state fully captures all the information that could influence

the future evolution of the process. Therefore, a finite state machine in our model can

be considered as a Markov chain.

We propose a mechanism to leverage the properties of Markov chains to predict the

probability of a future match of a composite subscription based on the current state and

event history. First we explain how to assign the transition probabilities for a Markov

chain (i.e., a state machine) based on the event history. Then we introduce a conditional

probability for a single state machine to reach the matched state given the current state.

Finally, we define a probability of future match for a general composite subscription

represented by multiple state machines and Boolean machines.

Markov Chain Model Training

In order to calculate the probability of reaching future states, we need to determine the

long-run transition probability for the finite state machine, i.e., the Markov chain.

With this objective, we set a counter for each transition in a state machine. Along

with the incoming event stream, these counters are updated when the state machine

takes a transition from the present state to another state. If the occurrence of the events

follows a certain probability distribution, the behavior of the Markov Chain would exhibit

a certain probability distribution.

Definition: Given a finite state machine, which is represented as a digraph G = (V,E).

eij ∈ E is an edge from node vi to node vj, where vi ∈ V, vj ∈ V are the states. The

Chapter 6. Probabilistic Publish/Subscribe System 175

transition probability from state i to state j is defined as

pij =
Neij

∑

k Neki

where Neij
is the number of times that the transition from state i to state j has been

taken and
∑

k Neki
is the total number of times that all incoming transitions have been

taken, which is also the number of times we have arrived at state i.

Given the transition probabilities between the states, the state machine can be consid-

ered as a complete Markov chain model. Since in our model, the state space is finite, the

transition probability distribution can be represented by a matrix P , called the transition

matrix, with the (i, j)th element of P equal to

pij = Pr(Xn+1 = j | Xn = i).

Prediction for Simple Composite Subscription

When we call the prediction engine to evaluate the probability of a match, we assume

the Markov chain is a time-homogeneous Markov chain, so that the transition matrix P

always remains the same at each step. The following probabilities can be computed:

1. Given the current state of a state machine, what is the probability of reaching the

final matched state over the next n events. This probability is referred as n-step

probability. We have P , which tells us what happens over one step, then we can

work out what happens over n steps by P (n) = P n. Let αi be the probability of

reaching the final matching state (state M , which represents a match of the whole

pattern) from the current state (state i) over the next n events is the (i,M)th

element of P (n):

α
(n)
i = P

(n)
iM .

2. Given the current state of a state machine, what is the probability of reaching the

final matched state within the next n events. Within n steps means the match

Chapter 6. Probabilistic Publish/Subscribe System 176

can occur over any k steps with the condition k ≤ n. Let βi be the probability of

reaching the final matched state (state M) from state i within the next n events is:

β
(n)
i =

∑

k≤n

α
(k)
i =

∑

k≤n

P
(k)
iM .

Prediction for General Composite Subscription

When a composite subscriptions consists of both temporal operators and Boolean oper-

ators, it is represented by multiple state machines and Boolean machines. We define a

global state to represent the status of such composite subscriptions.

Definition:A global state G is a group of sub-states. If we use M to represent the master

state machine, C1, · · · , Ck to represent the set of child state machines, the global state

can be represented as follows:

Gi = {M.NiM , C1.Nic1 , C2.Nic2 , · · · , Ck.Nick
}.

Definition:The prediction problem for a general subscription with multiple state and

Boolean machines is defined as follows: given the current global state Gi, find the

probability of reaching fully matched state Gm in n steps: Pr(n)(Gm|Gi), where Gi =

{M.NiM , C1.Nic1 , C2.Nic2 , · · · , Ck.Nick
} and Gm = {M.NmM

, C1.Nmc1
, · · · , Ck.Nmck

}.

When Gi or Gm consist of active states of child state machines, individual conditional

probabilities can be computed for each state machine separately, then these probabilities

will be combined according to their relationship in the Boolean machine. Multiple state

machines can be considered as independent events. The “and” Boolean operator require

the occurrence of two events, and the “or” operators requires the occurrence of at least

one of two events. Based on probability theory, we give the definition of the conditional

probability for a simple composite subscription which contains only two child state ma-

chines that are combined by one Boolean operator. In this case, there are two states in

the master state machine.

Given a composite subscription sG = sC1
∧sC2

where sC1
and sC2

contain only sequence

operators. C1 and C2 are two child state machines. Suppose the current global state is

Chapter 6. Probabilistic Publish/Subscribe System 177

Gi = {C1.Ni1, C2.Ni2}, and the matching state would be Gm = {C1.NF1, C2.NF2}. Then

the probability of reaching the final matched state in n steps would be

Prn
∧(Gm|Gi) = Prn

C1
(NF1|Ni1) ∗ Prn

C2
(NF2|Ni2).

If sG = sC1
∨ sC2

, the probability would be as follows:

Prn
∨(Gm|Gi) = Prn

C1
(NF1|Ni1) + Prn

C2
(NF2|Ni2).

For a complex composite subscription which contains multiple child state machines

and Boolean machines, we decompose the transition process into three steps when com-

puting the conditional probability. The decomposition is performed on the master state

machine M . The first step is to move from the current state M.NiM to the next state

M.NiM+1. The second step is to move from M.NiM+1 to the state just before the global

state, M.NjM−1. The third step is to move from M.NjM−1 to the global state M.NjM
.

Prn(Gj|Gi)

= Σp+q+r=nPrp(Gi → M.NiM+1) · Prq(M.NiM+1 → M.NjM−1) · Prr(M.NjM−1 → Gj)

The first and last function will be expanded according to the combination functions

if Gi or Gj contains active child state machines. The second function can be computed

based only on the master state machine since it doesn’t involve any active child state

machine. Taking Figure 6.7 as an example, suppose currently s2 and s4 are matched.

The probability that cs is fully matched in n steps would be

Prn(Gm|Gi)

= Prn(M.N4|X.NX1
, Y.NY1

)

= Σp+q=nPrp(M.N2|X.NX1
, Y.NY1

) · Prq(M.N4|M.N2)

= Σp+q=n(Prp(X.NX2
|X.NX1

) · Prp(Y.NY2
|Y.NY1

)) · Prq(M.N4|M.N2)

6.4 Experiments

In this section we experimentally evaluate our approach. All the algorithms are imple-

mented in Java, and the experiments are run on a 3GHz Linux machine with 4GB of

Chapter 6. Probabilistic Publish/Subscribe System 178

RAM. We are using two workloads for experimentation: a synthetic load that lets us in-

dependently examine various aspects of our approach by running controlled experiments;

and a second real-world data set to demonstrate the behavior of our approach under

realistic conditions. Our workloads comprise composite subscriptions and events.

Table 6.5: Ptopss Workload parameters

Parameters Description Default values

Lengthcs Length of each composite subscription 10

Numnon contiguous op Number of non-contiguous operators 2

Numcs Number of composite subscriptions 1,000

Numfull matches Number of fully matches per subscription 20

Numpartial matche Number of partial matches per subscription 20

Sizeevent pool Size of pool where workload is generated 50

The parameters that characterize the workload generation are summarized in Ta-

ble 6.5. First, we generate Ncs = 1000 composite subscriptions, each with length

Lengthcs = 10. The length represents the number of primitive subscriptions in the

composite subscription. To generate primitive subscriptions, we randomly draw an event

from a pool of predetermined events, and generate the subscription to either match or

not match the event. By default the event pool contains 50 events.

The event pool is also used to generate the event stream. Based on the probability

of drawing events from the pool, we generate two composite subscription workloads: (1)

a uniform cs workload, where each event is selected from the event pool based on a

uniform distribution (i.e., each event has the same probability to be selected.); and (2)

a gaussian cs workload, where the probability for each event to be selected follows a

Gaussian distribution. Each sequence of primitive subscriptions has Nnon contiguous op = 2

non-contiguous operators that are randomly distributed among a total of Lengthcs − 1

Chapter 6. Probabilistic Publish/Subscribe System 179

a b a b e c e f a b c d d g aevent stream:

subscription: a,b;c

P F F P

F: full match
P: partial match

Figure 6.11: Sample event stream

operators.

The generation of event streams is controlled by varying the sequences of events that

lead to full matches versus partial matches. The parameters are, Numfull matches = 20,

the number of full matches and, Numpartial match = 20, the number of partial matches.

Sequences of events giving rise to full versus partial matches are generated in a random

order. They are also interspersed with a number of irrelevant events that do not match

primitive subscriptions. Figure 6.11 shows an example of an event stream.

We generate two kinds of event stream workloads: (1) uniform pub and (2) gaus-

sian pub, according to the probability distribution that determines the length of each

fully or partially matching event sequence. In the uniform pub workload, the length of

each event sequence is uniformly distributed between 1 and Lenthcs. In the gaussian pub

workload the length is drawn from a Gaussian distribution.

All measurements are performed after the system loaded all subscriptions. For eval-

uating the matching algorithm, we look at the effect of the number of composite sub-

scriptions, their length, the number of non-contiguous operators and the size of the event

pool. For the prediction algorithm, we look at the ratio of the number of full matches to

partial matches, the number of prediction steps, and the prediction threshold. For each

experiment, we vary one parameter and fix others to their default values as specified in

Table 6.5.

6.4.1 Matching Performance

Number of subscriptions: Figure 6.12 shows the number of states with increasing

number of subscriptions. We see that the number of states grows linearly as the number

Chapter 6. Probabilistic Publish/Subscribe System 180

of subscriptions increase. Furthermore, the rate of increase for small event pool size

is less than that of the larger event pool size. This is because there are more merged

common states with a smaller event pool size. Similarly, for the gaussian cs workload,

a small number of events are selected to generate the subscription, and hence there are

even more common states than the uniform cs workload.

 0

 20

 40

 60

 80

 100

 4 5 6 7 8 9 10

N
um

be
r

of
 S

ta
te

s
(1

00
0s

)

Number of Composite Subscriptions (1000s)

no merge
pool 20, uniform cs
pool 50, uniform cs

pool 100, uniform cs
pool 20, gaussian cs
pool 50, gaussian cs

pool 100, gaussian cs

Figure 6.12: #States vs. #subscriptions

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 m
at

ch
in

g
tim

e
pe

r
ev

en
t (

m
s)

Number of composite subscriptions (1000s)

pool 100, gaussian pub
pool 100, uniform pub
pool 50, uniform pub

pool 50, gaussian pub
pool 20, uniform pub

pool 20, gaussian pub

Figure 6.13: Matching time vs. #subscriptions

Figure 6.13 shows the average time to process one event given a fixed set of subscrip-

tions. As the subscription size size increases, so does the time. Unlike the number of

Chapter 6. Probabilistic Publish/Subscribe System 181

states, given a fixed number of subscriptions, the matching time is larger for a smaller-

sized event pool or gaussian cs subscriptions where the workload share more common

states. This is because with a larger number of common states, one event may trigger

more transitions, thus requiring processing time.

Number of non-contiguous operators: Figure 6.14 shows that as the number of

non-contiguous operators increases, so does the matching time. This is because more

subscription instances remain partially matched, waiting for events to trigger their tran-

sitions.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5 6 7 8 9

M
at

ch
in

g
tim

e
pe

r
ev

en
t (

m
s)

Number of non-contiguous operators

Figure 6.14: Matching time vs. #operators

Composite subscription length: Figure 6.15 shows the effect of increasing the

length of composite subscriptions on merging. We plot the commonality, which is rep-

resented by the ratio between the number of shared states with merging and the total

number of states without merging. We see that the commonality decreases with increas-

ing subscription length. In our FSM model, each state in the FSM is defined by the prefix

of the subscription. For a longer subscription, there are much more combinations to se-

lect events to generate a subscription compared to a shorter subscription. This explains

why the commonality degree decreases with the increase of the subscription length. This

experiment also shows that the merging process favors shorter subscriptions.

Chapter 6. Probabilistic Publish/Subscribe System 182

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 3 4 5 6 7 8 9 10

M
er

gi
ng

 d
eg

re
e

Length of Composite Subscription

Figure 6.15: Merging degree vs. sub length

 7000
 7200
 7400
 7600
 7800
 8000
 8200
 8400
 8600
 8800
 9000
 9200

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 s

ta
te

s

Size of event pool

uniform cs
gaussian cs

Figure 6.16: #States vs. pool size

Size of event pool: The remaining figures show the effect of the event pool size

on merging and matching. Figure 6.16 shows the number of states increasing with the

pool size for the uniform cs and gaussian cs workloads. As the size of the event pool

increases, the number of states for both workloads increases. This is because the number

of shared common states among subscriptions decreases with increasing event pool size.

However, for the gaussian cs workload, a small number of events in the pool is selected

to generate the subscription, therefore, the gaussian cs workload has less states than the

Chapter 6. Probabilistic Publish/Subscribe System 183

uniform cs workload.

Figure 6.17 shows that the number of transitions decreases with the increasing event

pool size for different workloads. As we mentioned before, the number of shared common

states among subscriptions decreases with increasing event pool size. Hence there are

fewer instances during the matching process and so fewer transitions as well. The publi-

cation workload generated by the Gaussian distribution contains shorter partial matches

than the workload generated by the uniform distribution, which results in fewer transi-

tions. Thus, the number of transitions in the Gaussian workload is smaller than that in

the uniform workload.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 T

ra
ns

iti
on

s

Size of Event Pool

uniform cs, uniform pub
uniform cs, gaussian pub

Figure 6.17: #Transitions vs. pool size

6.4.2 Prediction Performance

We evaluate our prediction algorithm on three important metrics: false positives, true

positives and precision, which is defined as the ratio between true positives and all pre-

dictions. We look at the effect of the number of lookaheads, the threshold, and the ratio

between the number of full matches and partial matches, and at the effect of the workload

distribution. The prediction results are described as follows.

Chapter 6. Probabilistic Publish/Subscribe System 184

First, we compare the precision results when using the same workload to train our

model, but test the prediction algorithm on different workloads. The workloads are

different in terms of the increased number of partial matches (i.e., decreased ratio of the

number of full matches and partial matches) in the event stream. In Figure 6.18, we

can see that the precision decreases as the number of lookaheads increases. Also, the

precision increases with the increase of prediction threshold but it stabilizes for larger

thresholds. The precision decreases when the test file contains more partial matches.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

di
ct

io
n

pr
ec

is
io

n

Prediction probability threshold

partial matches 5, steps 1
partial matches 5, steps 5
partial matches 5, steps 9

partial matches 10, steps 1
partial matches 10, steps 5
partial matches 10, steps 9

Figure 6.18: Precision vs. #partial matches

Second, we compare the precision results when using different workloads for training,

but test on the same workload. In this experiment, the workloads are different in terms

of the event distribution; all the other parameters are the same. Figure 6.19(a) shows

the precision when testing on the same workload as training. Figure 6.19(b) shows the

precision when training with a Gaussian event stream and testing on a uniform event

stream. Comparing these two figures, we see that the precision decreases when the

training workload and testing workload are not consistent. An additional discovery is

that the precision converges for different number of lookaheads in Figure 6.19(a). We

can conclude from this result that if we train and test on the workload with the same

distribution, an increase in the number of lookahead steps does not decrease the quality

Chapter 6. Probabilistic Publish/Subscribe System 185

of prediction for larger thresholds.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

di
ct

io
n

pr
ec

is
io

n

Prediction probability threshold

steps 1
steps 3
steps 5
steps 7
steps 9

(a) Precision for uniform workload

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

di
ct

io
n

pr
ec

is
io

n

Prediction probability threshold

steps 1
steps 3
steps 5
steps 7
steps 9

(b) Precision for gaussian workload

Figure 6.19: Comparing prediction results for different workload

In order to validate the practicality of our approach, we evaluated with a real-world

data set, where the daily temperatures are monitored and an alert is announced when

the temperature is high for several consecutive days, perhaps indicating a heat wave. We

download a set of real weather data consisting of average daily temperatures for 157 U.S

Chapter 6. Probabilistic Publish/Subscribe System 186

and 167 international cities 1. We define the subscription as s = (T > 30), cs = s, s, s, s, s,

where it represents the case the temperature is higher than 30 degree for five consecutive

days. The generated model is built based only on the composite subscription, without

any knowledge of the event data. In the generated model, there are only 5 states and

each state represents one more hot day than the previous state. For comparison, we

divide the temperature into 4 categories separated by 30, 20, 10 degrees and manually

build a full Markov model consisting of all temperature combinations from one day to

5 days. There are 1365 states in total. We ran our predicting algorithm for these two

models and the results are shown in 6.20.

Comparing figures 6.20(a), 6.20(b), 6.20(c) and 6.20(d), we can see that generated

model makes more predictions than the full model. Both the number of false positives

and true positives are bigger in the generated model than the full model. However with

a larger number of lookaheads, both false positives and true positives drops to zero faster

in the full model than in the generated model when increasing the prediction threshold.

This is because the full model consists of much more states and information, thus we can

differentiate the cases how the partial match status is reached and be more conservative

to make predictions. Figures 6.20(e) and 6.20(f) shows the prediction precisions. When

increasing the lookaheads, the generated model performs much better than the full model.

Furthermore, the number of states in our model is much less than that in the full model,

thus the prediction algorithm runs much faster on the generated model than on the

full model, the cost to maintain the transition probability is also much smaller in the

generated model.

1The data is downloaded from http://www.engr.udayton.edu/weather/source.htm. Source data are
from the Global Summary of the Day (GSOD) database archived by the National Climatic Data Cen-
ter. The average daily temperatures are computed from 24 hourly temperature readings in the Global
Summary of the Day (GSOD) data.

Chapter 6. Probabilistic Publish/Subscribe System 187

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 p

os
iti

ve
s

Prediction probability threshold

steps 1
steps 2
steps 3
steps 4

(a) False positives (full model)

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 p

os
iti

ve
s

Prediction probability threshold

steps 1
steps 2
steps 3
steps 4

(b) False positives (generated)

 0

 100

 200

 300

 400

 500

 600

 700

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
po

si
tiv

es

Prediction probability threshold

steps 1
steps 2
steps 3
steps 4

(c) True positives (full model)

 0

 500

 1000

 1500

 2000

 2500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
po

si
tiv

es

Prediction probability threshold

steps 1
steps 2
steps 3
steps 4

(d) True positives (generated)

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

di
ct

io
n

pr
ec

is
io

n

Prediction probability threshold

steps 1
steps 2
steps 3
steps 4

(e) Prediction precision (full model)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

di
ct

io
n

pr
ec

is
io

n

Prediction probability threshold

steps 1
steps 2
steps 3
steps 4

(f) Prediction precision (generated)

Figure 6.20: Evaluation on real data, compared with a model with full knowledge

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we propose an approximate publish/subscribe model to express uncertainties

in both subscriptions and publications when exact information is not available. Based on

the approximate model, we define an approximate matching mechanism. We developed

two algorithms to optimize routing performance – approximate covering-based routing

and approximate merging-based routing based on the similarity of subscriptions. The

system we describe is able to support high matching rates for very complex subscriptions

through covering and merging optimizations. Our experiments show reduction of at

least 25% in matching time, 30% in routing table size, while resulting only less than

5% false positives. The approximate routing algorithms are expressive in the sense that

the possibility and necessity measure associated with the similarity provides flexibility

to tune the trade off between routing table size and false positives.

The use of RDF as a language for representing metadata is growing. Applications

such as RSS and content management are exhibiting use patterns that current web-

based systems are not designed for. Cluster-based, data-centric, publish/subscribe-based

systems, as described in this thesis, are a very good fit for such applications. The

188

Chapter 7. Conclusions and Future Work 189

system we presented in this thesis is able to achieve high throughput for very complex

subscriptions by distributing the matching on a computing cluster. The containment and

merging algorithms we developed are essential to efficiently partitioning of subscriptions

among nodes of a cluster. Our experiments show that the throughput scales linearly

with the number of cluster nodes. For the architecture with one server and two client

nodes, the throughput is twice of that of a centralized architecture; while the throughput

increases to 400% for an architecture with one server and six client nodes. Based on our

experimental results, we calculate the index size be 150K when the imprecise indexing

algorithm is used to manage millions of subscriptions. Since the filtering algorithm can

process 150K subscriptions in a single node, we can support 1 million subscriptions on a

computer cluster with 7 client nodes.

Our experiments are designed to test the scalability limits of the system. In practice,

we expect subscriptions to be simpler (i.e., have smaller number of edges and variables)

than the ones used in our experiments and be more similar to each other, hence it is likely

that there will be even more containment. This observation is based on the expectation

that RSS will follow Web content popularity clustering as evident from anecdotal evidence

today. Applications exhibiting such interest clustering would benefit the most from our

approach.

In this thesis, we propose a probabilistic publish/subscribe model to match and pre-

dict future matches of composite subscription pattern with temporal and Boolean oper-

ators. In the model, a finite state machine is built for the temporal subexpressions of

each pattern. The finite state machine is a Markov chain, with transition probabilities

obtained from given event histories, and is used to compute pattern match probabilites

and notify subscribers of possible future matches.

To optimize our matching and prediction algorithms, those finite state machines that

share certain common subexpressions are merged into a single machine. This optimiza-

tion helps save memory and improve the matching efficiency while maintaining the cor-

Chapter 7. Conclusions and Future Work 190

rectness of the match probability computation.

7.2 Future Work

Uncertainties exist in many aspects in information dissemination systems. Investigate

uncertainties management in information filtering systems due to the lack of informa-

tion, imprecision and semantic ambiguity intrinsic to data is becoming more and more

essential. Based on my previous work, future enhancements to manage uncertainties fall

in the area of representation, filtering and processing of imprecise data.

In this thesis we designed an approximate matching algorithm to process information

with uncertainties. The question it leaves for us is how to improve the algorithm effi-

ciency. Can we pick out the matched predicates and subscriptions more quickly based on

the properties of membership functions used to describe the vagueness? Are the users sat-

isfactory degrees useful to trim out unnecessary data? When applying algorithm to select

the function parameters for approximate publish/subscribe model, clustering algorithms

such as K-means are good alternatives for merging especially when the distribution of

subscriptions follow certain patterns. With the imprecision nature of our model, how to

apply approximate clustering algorithms to decide the parameters for our membership is

also an interesting direction.

For graph-based metadata filtering, join operation is used in both indexing and fil-

tering algorithms and this operation consumes large portion of the time complexity.

Improve the join operation is the key to improve the algorithm efficiency for indexing

and query processing. One avenue of future research is how to allow a join operator

combine multiple tuples into a new tuple based on some constraints.

Being based on RDF, the G-ToPSS system can be easily extended to use additional

semantic information expressed in languages built on top of RDF, such as RDFS and

OWL. RDFS taxonomy can be used to increase the expressiveness of the query language.

Chapter 7. Conclusions and Future Work 191

In the future, we will work on extending the covering and merging indexing algorithms

not only from the syntax relationship among subscriptions, but also based on the seman-

tics (taxonomy). With the additional semantics information about the query and RSS

documents, the workload partition would achieve more accurate matching results and

higher throughput.

For probabilistic publish/subscribe system, currently the Markov probability distri-

bution is build based on composite subscription pattern, in other words, on top of the

finite state machine where the states are directly known. However, if the subscription

patterns change frequently with insertion and deletion, the current model incurs large

cost to maintain. Therefore, an alternative approach is to construct a Hidden Markov

Model based on the event stream itself, where the transition states are not directly vis-

ible. Currently the prediction is performed for crisp data which means that both the

event and subscription patterns information are certain. To incorporate the A-ToPSS

and G-ToPSS model, how to conduct prediction for uncertain data and for semantic

information leave problems for long term future work.

Bibliography

[1] Web Services Notification (WS-Notification), Version 1.0. 2004.

[2] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient

pattern matching over event streams. In Proceedings of the ACM SIGMOD/PODS

Conference (SIGMOD 2008), 2008.

[3] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and

Tushar Deepak Chandra. Matching events in a content-based subscription system.

In Symposium on Principles of Distributed Computing, pages 53–61, 1999.

[4] M. Altherr and M. Erzberger. ibus- a sfotware bus middleware for the java platform.

In International Workshop on Reliable Middleware Systems, pages 43–53, 1999.

[5] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents for

selective dissemination of information. In the 26th VLDB Conference, 2000.

[6] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational processing

of uncertain data. In the International Conference on Data Engineering, Cancun,

Mexico, 2008.

[7] Ghazaleh Ashayer, Hubert Leung, and H.-Arno Jacobsen. Predicate matching and

subscription matching in publish/subscribe systems. In DEBS’02 Workshop at

ICDCS’02 (DEBS’02), Vienna, Austria, 2002.

192

Bibliography 193

[8] S. Bahu and J Widom. Continuous queries over data streams. ACM Special Interest

Group on Management of Data (SIGMOD) Record, 3:109–120, 2001.

[9] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.

Sturman. An efficient multicast protocol for content-based publish-subscribe sys-

tems. In International Conference on Distributed Computing Systems, 1999.

[10] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Robert E.

Strom, and Daniel C. Sturman. An efficient multicast protocol for content-based

publish-subscribe systems. In 19th IEEE International Conference on Distributed

Computing Systems (ICDCS)’99, 1999.

[11] D.J. Barrett, L.A. Clarke, P.L. Tarr, and A.E. Wise. A framework for event-based

software integration. ACM Transaction on Software Engineering and Methodology,

5(4):378–421, 1996.

[12] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom. An introduction to uldbs

and the trio system. IEEE Data Engineering Bulletin, Special Issue on Probabilistic

Databases, 29(1):5–16, 2006.

[13] P. Bose, M. Galibourg, and G. Hamon. Fuzzy querying with SQL: Extensions and

implementation aspects. Fuzzy Sets and Systems, 28, 1988.

[14] Ioana Burcea, Hans-Arno Jacobsen, Eyal de Lara, Vinod Muthusamy, and Milenko

Petrovic. Disconnected operation in publish/subscribe middleware. In Mobile Data

Management, pages 39–, 2004.

[15] Ioana Burcea and H.-Arno Jacobson. L-ToPSS - push-oriented location based ser-

vices. In Proceedings of the 2003 Workshop on Technologies for E-Services, Lecture

Notes in Computer Science. Springer, 2003.

Bibliography 194

[16] Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design and eval-

uation of a wide-area event notification service. ACM Transactions on Computer

Systems, 19(3):332–383, August 2001.

[17] Chee-Yong Chan, Pascal Felber, Minos Garofalakis, and Rajeev Rastogi. Efficient

filtering of XML documents with xpath expressions. In International Conference on

Data Engineering (ICDE), 2001.

[18] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis, and Rajeev Rastogi. Efficient

filtering of XML documents with XPath expressions. The VLDB Journal, 11:354–

379, 2002.

[19] J. Chen, D.J. Dewitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query

system for internet databases. The 19th ACM SIGMOD International conference

on Management of Data, pages 9–17, 2000.

[20] Paolo Ciaccia, Danilo Montesi, Wilma Penzo, and Alberto Trombetta. Fuzzy query

languages for multimedia data.

[21] M. Cilia, C. Bornhoevd, and A. P. Buchmann. CREAM: An Infrastructure for

Distributed Heterogeneous Event-based Applications. In Proceedings of the Inter-

national Conference on Cooperative Information Systems, pages 482–502, 2003.

[22] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anony-

mous information storage and retrieval system. In Workshop on Design Issues in

Anonymity and Unobservability, pages 311–320, Berkeley, CA, 2000.

[23] A. Compailla, S. Chaki, S. Jha, and H. Veith. Efficient filtering in publish-subscribe

system using binary decision diagrams. In 23rd International Conference on Software

Engineering(ICSE), 2001.

[24] Coral8. http://www.coral8.com.

Bibliography 195

[25] T. Corporation. Everything you need to know about middleware: Mission-critical

interprocess communication (white paper). 1999. http://www.talarian.com.

[26] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI event-

based infrastructure and its application to the development of the OPSS WFMS.

IEEE Transactions on Software Engineering, 27:827–850, sep 2001.

[27] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases.

VLDB Journal, 16(4):523–544, 2007.

[28] Yanlei Diao, Peter Fischer, Michael Franklin, and Raymond To. Yfilter: Efficient

and scalable filtering of XML documents. In Proceedings of International Conference

on Data Engineering, 2002.

[29] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an internat-scale xml

dissemination service. In Proceedings of the International Conference on Very Large

Data Bases (VLDB 2004), 2004.

[30] R. Dingledine, M. J. Freedman, and D. Molnar. The free haven project: Distributed

anonymous storage service. In Workshop on Design Issues in Anonymity and Un-

observability, 2000.

[31] Didier Dubois and Henri Prade. Possibility Theory: An Approach to Computerized

Processing of Uncertainty. Plenum Press, New York, 1988.

[32] P. T. Eugster, R. Guerraoui, and J. Sventek. Type-based publish/subscribe. Tech-

nical Report, Distributed Programming Laboratory, Ecole Polytechnique Federale de

Lausanne, 2000.

[33] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-

rec. The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131,

2003.

Bibliography 196

[34] Francoise Fabret, H.-Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth Ross,

and Dennis Shasha. Filtering algorithms and implementation for very fast pub-

lish/subscribe systems. In The 20th ACM SIGMOD International Conference on

Management of Data, 2001.

[35] R. Fagin. Combining fuzzy information from multiple systems. In Proc. ACM

SIGMOND/SIGACT conf. on Princ. of Database Syst. (PODS), Montreal, Canada,

1996.

[36] R. Fagin. Fuzzy queries in multimedia database systems. In Proceedings of ACM

SIGMOND/SIGACT conference on Principle of Database Systems. (PODS), Seat-

tle, WA, USA, 1998.

[37] R. Fagin, Lotem A., and Naor M. Optimal aggregation algorithms for middleware.

In Proc. Twentieth ACM Symposium on Principles of Database Systems, pages 102–

113, 2001.

[38] Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski. The padres dis-

tributed publish/subscribe system. In International Conference on Feature Interac-

tions in Telecommunications and Software Systems(ICFI’05), Leisester, UK, 2005.

[39] Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra for integration

of information retrieval and database systems. ACM Transactions on Information

Systems, 15(1), 1997.

[40] G. Gottlob, C. Koch, and K.U. Schulz. Conjunctive queries over trees. Journal of

ACM, 53(2):238–272, 2006.

[41] Ashish Kumar Gupta and Dan Suciu. Stream processing of xpath queries with

predicates. In Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, pages 419–430, New York, NY, USA, 2003. ACM Press.

Bibliography 197

[42] Volker Haarslev and Ralf Moller. Incremental Query Answering for Implementing

Document Retrieval Services. In Proceedings of the International Workshop on De-

scription Logics, 2003.

[43] M. Happner, R. Burridge, and R. Sharma. Java message service. October 1998.

[44] M. Happner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java message service.

Sun Microsystems Inc., 2002.

[45] John Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison Wesley, 2000.

[46] Shuang Hou and H.-Arno Jacobsen. Predicate-based filtering of xpath expressions.

In Proceedings of the 20th International Conference on Data Engineering, 2006.

[47] Shuang Hou and Hans-Arno Jacobsen. Predicate-based filtering of xpath expressions.

In the 22nd International Conference on Data Engineering, Atlanta, Georgia, USA,

April 2006.

[48] H.Whitney. Congruent graphs and the connectivity of graphs. J. AM, 23(1):31–42,

1976.

[49] George J. Klir and Tina A. Folger. Fuzzy Sets, Uncertainty, and Information. Pren-

tice Hall International Editions, 1992.

[50] OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.

[51] Hubert Ka Yau Leung. Subject space: A state-persistent model for pub-

lish/subscribe systems. In Proceedings of the 2002 conference of the Centre for

Advanced Studies on Collaborative research, page 7. IBM Press, 2002.

[52] K.S. Leung, M.H. Wong, and W. Lam. A fuzzy expert database system. Data and

Knowledge Engineering, 4:287–304, 1989.

Bibliography 198

[53] Charles L.Forgy. Rete: a fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, 19:17–37, 1982.

[54] G. Li, Sh. Hou, and H. A. Jacobsen. A unified approach to routing, covering and

merging in publish/subscribe systems based on modified binary decision diagrams.

International Conference on Distributed Computing Systems (ICDCS’05).

[55] Guoli Li, Alex Cheung, Shuang Hou, Songlin Hu, Vinod Muthusamy, Reza Sher-

afat, Alex Wun, Hans-Arno Jacobsen, and Serge Manoviski. Historic data access in

publish/subscribe. In International Conference on Distributed Event-based Systems,

Toronto, Canada, June 2007.

[56] Haifeng Liu and H.-Arno Jacobsen. A-ToPSS - a publish/subscribe system support-

ing approximate matching. In Proceeding of the 28th International Conference on

Very Large Data Bases, Demonstration, Hong Kong, August 2002.

[57] Haifeng Liu and H.-Arno Jacobsen. Approximate matching in publish/subscribe. In

Proc. 5th IEEE International Symposium on Computational Intelligence in Robotics

and Automation, Japan, 2003.

[58] Haifeng Liu and H.-Arno Jacobsen. A-ToPSS - a publish/subscribe system support-

ing imperfect information processing. In the 30th International Conference on Very

Large Data Bases, Demonstration, Toronto, Canada, 2004.

[59] Haifeng Liu and H.-Arno Jacobsen. Modeling uncertainties in publish/subscribe

system. In Proceedings of the 20th International Conference on Data Engineering,

Boston, USA, April 2004.

[60] Haifeng Liu and Hans-Arno Jacobsen. Object-oriented publish/subscribe for model-

ing and processing of uncertain information. Chapter in Advances in Fuzzy Object-

Oriented Databases: Modeling and Application, pages 301–302, 2005.

Bibliography 199

[61] Haifeng Liu, Milenko Petrovic, and Hans-Arno Jacobsen. Efficient and scalable

filtering of graph-based metadata. Journal of Web Semantics, 2006.

[62] L. Liu, C. Pu, and W. Tang. Continuous queries for internet scale event-driven infor-

mation delivery. IEEE Transaction on Knowledge and Data Engineering, 11(4):583–

590, 1999.

[63] S. P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Cambridge

University Press, 2005.

[64] G. Miklau and D. Suciu. Containment and equivalence for a fragment of xpath.

Journal of ACM, 51(1):2–45, 2004.

[65] Richard Monson-Haefel and David A. Chappell. Java message service. In O’Reilly,

2001.

[66] Object Management Group. Event Service Specification, Version 1.1. 2001.

[67] Object Management Group. Notification service specification, version 1.0.1. August

2002. http://www.research.att.com/ ready.

[68] Object Management Group. Notification Service Specification, version 1.0.1. 2002.

[69] Olga Papaemmanouil and Ugur Cetintemel. Semcast: Semantic multicast for

content-based data dissemination. In Proceedings of International Conference on

Data Engineering, 2005.

[70] Joao Pereira, Franoise Fabret, H.-Arno Jacobesen, Franois Llirbat, and Dennis

Shasha. WebFilter: A high-throughput XML-based publish and subscribe system.

In VLDB conference, 2002.

[71] Milenko Petrovic, Ioana Burcea, and H.-Arno Jacobsen. S-ToPSS - a semantic pub-

lish/subscribe system. In Proceedings of the 2nd Annual International Conference

Bibliography 200

on Mobile and Ubiquitous Systems (MobiQuitous 2005), San Diego, CA, USA, July

2005.

[72] Milenko Petrovic, Haifeng Liu, and Hans-Arno Jacobsen. CMS-ToPSS - efficient

dissemination of rss documents. In Proceedings of 31st International Conference on

Very Large Data Bases (VLDB), Demonstration, September 2005.

[73] Milenko Petrovic, Haifeng Liu, and Hans-Arno Jacobsen. G-ToPSS - fast filtering

of graph-based metadata. In the 14th International World Wide Web Conference,

Chiba, Japan, May 2005.

[74] Milenko Petrovic, Vinod Muthusamy, and H.-Arno Jacobsen. Content-based rout-

ing in mobile ad hoc networks. In Proceedings of the IEEE MobiQuitous, Berlin,

Germany, September 2003.

[75] F.E. Petry. Fuzzy databases: Principles and applications, with contribution by

patrick bose. International Series in Intelligent Technologies, page 240, 1996.

[76] The Resource Description Framework (RDF). http://www.w3.org/RDF/.

[77] RSS Readers. http://www.rss-specifications.com/aggregator-how-to.htm.

[78] Anton Riabov, Zhen Liu, Joel L.Wolf, Philip S. Yu, and Li Zhang. Clustering

algorithms for content-based publicaation-subscription systems. In Proceedings of

International Conference on Distributed Computing Systems, 2002.

[79] David S. Rosenblum and Alexander L. Wolf. A design framework for internet-scale

event observation and notification. In 6th European Software Engineering Confer-

ence/ACM SIGSOFT 5th Symposium on the Foundations of Software Engineering,

pages 344–360, 1997.

[80] RDF Schema. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

Bibliography 201

[81] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne Hambrusch,

and Rahul Shah. Orion 2.0: Native support for uncertain data. In the ACM Special

Interest Group on Management of Data (SIGMOD 2008), Vancouver, Canada, 2008.

[82] D. Skeen. Vitria’s publish-subscribe architecture: Publish-subscribe overview. 1998.

http://www.vitria.com.

[83] Philippe Smets. Imperfect information: Imprecision and uncertainty. In Uncertainty

Management in Information Systems, pages 225–254. 1996.

[84] StreamBase. http://www.streambase.com.

[85] RDF Site Summary. web.resource.org/rss/1.0/spec.

[86] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting disconnectedness - trans-

parent information delivery for mobile and invisible computing. In 2001 IEEE In-

ternational Symposium on Cluster Computing and the Grid, 2001.

[87] David Tam, Reza Azimi, and H.-Arno Jacobsen. Building content-based pub-

lish/subscribe systems with distributed hash tables. In International Workshop

On Databases, Information Systems and Peer-to-Peer Computing, Berlin, Germany,

September 2003.

[88] The READY Project Group AT&T Labs Research. Ready a high performance event

notification service. http://www.research.att.com/ ready.

[89] TIBCO Inc. Tibco/rendezvous concepts. October 2000.

[90] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of wireless microsensor

network models, 2002.

[91] J. R. Ullmann. An algorithm for subgraph isomorphism. Amer.J.Math, 54:150–168,

1932.

Bibliography 202

[92] Jinling Wang, Beihong Jin, and Jing Li. An Ontology-Based Publish/Subscribe

System. In Middleware, 2004.

[93] Yi-Min Wang, Lili Qiu, Dimitris Achlioptas, Gautam Das, Paul Larson, and Helen J.

Wang. Subscription partitioning and routing in content-based publish/subscribe

systems. In the International Symposium on Distributed Computing Toulouse, 2002.

[94] Ouri Wolfson, Ana Lelescu, and Bo Xu. Approximate retrieval from multimedia

databases using relevance feedback.

[95] A. Wolski and T. Bouaziz. Fuzzy triggers: Incorporating imprecise reasoning into

active database. In Proceedings of the 14th International Conference on Data Engi-

neering, 1998.

[96] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event pro-

cessing over streams. In Proceedings of the ACM SIGMOD/PODS Conference (SIG-

MOD 2006), 2006.

[97] Zhengdao Xu and H. Arno Jacobsen. Location constraing processing. In Proceedings

of 30th International Conference on Very Large Data Bases (VLDB), Demonstra-

tion, 2004.

[98] T.W. Yan and H.G. Molina. Index structures for information filtering under the

vector space model. In Proceedings of the International Conference on Data Engi-

neering, November 1993.

