

Revue canadienne des sciences de la Terre

Geochemistry, geochronology, and fluid inclusion study of the Late Cretaceous Newton epithermal gold deposit, British Columbia

Journal:	Canadian Journal of Earth Sciences
Manuscript ID	cjes-2015-0068.R1
Manuscript Type:	Article
Date Submitted by the Author:	05-Oct-2015
Complete List of Authors:	Liu, Lijuan; University of Alberta, Earth & Atmospheric Sciences Richards, Jeremy P.; Dept of Earth and Atmospheric Sciences DuFrane, S. Andrew; University of Alberta, Earth & Atmospheric Sciences Rebagliati, Mark; Hunter Dickinson Inc.,
Keyword:	Newton, Intermediate sulfidation, Epithermal gold deposit, British Columbia

1	Geochemistry, geochronology, and fluid inclusion study of the Late Cretaceous
2	Newton epithermal gold deposit, British Columbia
3	Lijuan Liu, Jeremy P. Richards, S. Andrew DuFrane, Mark Rebagliati
4	
5	Lijuan Liu (e-mail: lijuan1@ualberta.ca), Jeremy P. Richards* (e-mail:
6	Jeremy.Richards@ualberta.ca), and S. Andrew DuFrane (e-mail: dufrane@ualberta.ca)
7	Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, AB,
8	T6G 2E3, Canada
9	Mark Rebagliati (MarkRebagliati@hdimining.com)
10	Hunter Dickinson Inc., Vancouver, BC, V6E 4H1, Canada
11	
12	* Corresponding author: Jeremy P. Richards, Dept. Earth and Atmospheric Sciences
13	Earth Sciences Building, Rm. 3-02, University of Alberta, Edmonton, Alberta,
14	Canada, T6G 2E3
15	Tel: 780-492-3430
16	Fax: 780-492-2030
17	E-mail: Jeremy.Richards@ualberta.ca
18	

20 Abstract

21	Newton is an intermediate-sulfidation epithermal gold deposit related to Late
22	Cretaceous continental arc magmatism in south-central British Columbia.
23	Disseminated gold mineralization occurs in quartz-sericite-altered Late Cretaceous
24	felsic volcanic rocks, and feldspar-quartz-hornblende porphyry and quartz-feldspar
25	porphyry intrusions. The mineralization can be divided into 3 stages: (1) disseminated
26	pyrite with microscopic gold inclusions, and sparse quartz-pyrite \pm molybdenite
27	veins; (2) disseminated marcasite with microscopic gold inclusions and minor base
28	metal-sulfides; and (3) polymetallic veins of pyrite-chalcopyrite-sphalerite-
29	arsenopyrite.
30	Re-Os dating of molybdenite from a stage 1 vein yielded an age of 72.1 ± 0.3
31	Ma (McClenaghan 2013). The age of the host rocks has been constrained by U-Pb
32	dating of zircon: Late Cretaceous felsic volcanic rocks: 72.1 ± 0.6 Ma (Amarc
33	Resources Ltd., unpublished data, reported in McClenaghan 2013); feldspar-quartz-
34	hornblende porphyry: 72.1 \pm 0.5 Ma; quartz-feldspar porphyry: 70.9 \pm 0.5 Ma (Amarc
35	Resources Ltd., unpublished data, reported in McClenaghan 2013). The mineralized
36	rocks are intruded by a barren diorite, with an age of 69.3 ± 0.4 Ma.
37	Fluid inclusions in quartz-pyrite \pm molybdenite \pm gold veins yielded an average
38	homogenization temperature of $313^{\circ} \pm 51^{\circ}$ C (n = 82) and salinity of 4.8 ± 0.9 wt.%
39	NaCl equiv. $(n = 46)$, suggesting that a relatively hot and saline fluid likely of
40	magmatic origin was responsible for the first stage of mineralization. Some evidence
41	for boiling was also observed in the veins. However, the bulk of the gold
42	mineralization occurs as disseminations in the wallrocks, suggesting that wallrock
43	reactions were the main control on ore deposition.

44

45 Keywords: Newton, Intermediate-sulfidation, Epithermal, Gold, British Columbia

47 Introduction

48	The Newton gold deposit is a significant new discovery in southern British
49	Columbia. It is located roughly 110 km southwest of Williams Lake at 51°47'N and
50	123°36' W (Fig. 1). The disseminated Au mineralization in the Newton area is
51	genetically and spatially associated with Late Cretaceous calc-alkaline felsic volcanic
52	rocks and coeval intrusions (Bordet et al. 2011; McClenaghan 2013).
53	Gold mineralization was first discovered by Mr. Newton in 1916 (Pressacco
54	2012). The Newton property changed hands several times between 1972–2006, during
55	which time 39 drill holes with a total length of 5762.2 m were completed by Cyprus
56	(10 holes in 1972), Taseko (12 holes in 1982), Rea Gold (5 holes in 1992), and High
57	Ridge (12 holes in 2006) (Pressacco 2012).
58	The Newton gold deposit was acquired by Amarc Resources Ltd. in 2009, who
59	completed 89 diamond drill holes with a total length of 27 944.5 m between 2009 and
60	2012. The drilling programs conducted by Amarc successfully intersected Au
61	mineralization, and delineated a new epithermal Au system (McClenaghan 2013). A
62	resource of 111.5 million tonnes with an average grade of 0.44 g/t Au (0.25 g/t Au
63	cut-off) was reported by Pressacco (2012).
64	The Newton deposit has characteristics of both porphyry and epithermal
65	deposits, and McClenaghan (2013) classified it as an intermediate sulfidation
66	epithermal system. McClenaghan (2013) conducted a petrologic, geochemical, and
67	geochronological study on the deposit, and interpreted the Newton deposit to be an
68	intermediate-sulfidation epithermal deposit based on the classifications of Hedenquist
69	et al. (2000) and Sillitoe and Hedenquist (2003). McClenaghan (2013) noted that
70	Newton matches these descriptions in the following ways: rhyolitic host rocks,
71	quartz-sericite alteration, Au and Ag mineralization, and relatively abundant base-

metal sulfides (pyrite, marcasite, sphalerite, and galena). Here we present additional
geochemical and geochronological (U-Pb) data, plus fluid inclusion data from the
mineralized veins, in order to further characterize the deposit. This work forms as part
of a wider study of the geology and geophysical signatures of porphyry-epithermal
systems in British Columbia (Hübert et al., in press).

78 Tectonic History and Regional Geology

79 Tectonic history of the British Columbian Cordillera

80 The Cordillera of British Columbia is a complex amalgamation of the ancient 81 North American passive continental margin, several island arcs, and an accretionary 82 wedge, which is overlain by later continental arc volcanosedimentary sequences and 83 glacial tills (Nokleberg et al. 2000, 2005). The Cordillera can be divided into several 84 terranes, including the Alexander, Wrangellia, Stikinia, Cache Creek, Quesnel, and 85 Slide Mountain terranes, which abut the North American craton margin, from west to 86 east (Wheeler et al. 1991; Colpron et al. 2006; Nelson and Colpron 2007; Fig. 1). The 87 Phanerozoic tectonic history of British Columbia can be divided into four stages: (1) 88 A passive continental margin developed on the western edge of Laurentia during the 89 Late Cambrian to the Middle Devonian. (2) The passive margin changed to an active 90 margin when the Panthalassa oceanic plate began to subduct beneath Laurentia in the 91 Middle Devonian; back-arc rifting formed island arcs offshore of the continental 92 margin from the Middle Devonian to Early Jurassic. (3) Several island arcs were 93 accreted to the margin during the Middle Jurassic to Middle Cretaceous. (4) 94 Continental arc magmatism was widespread during the Late Cretaceous to Eocene; 95 the Newton deposit is genetically associated with this Late Cretaceous magmatism in 96 the Stikinia terrane.

97	During this fourth tectonic phase, oblique convergence between the Kula
98	oceanic plate and North American plate led to compressional and transpressional
99	stress in British Columbia (Engebretson et al. 1985), which resulted in regional
100	deformation, crustal thickening, and uplift (e.g., the Sevier and Laramide orogenies;
101	Gillespie and Heller 1995; English and Johnston 2004). Major displacements occurred
102	along several extensive strike-slip faults during this period, including the dextral
103	Eocene Tintina, Fraser, and Yalakom faults (Gabrielse et al. 2006). Compression and
104	transpression changed to extension and transtension in southern British Columbia in
105	the Eocene (Parrish et al. 1988), probably in response to a change in obliquity of
106	convergence of the Kula oceanic plate (Nokleberg et al. 2000). Continental arc
107	magmatism continued throughout the Late Cretaceous-Eocene, and is related to
108	porphyry and epithermal deposit formation within the accreted terranes, such as the
109	Bulkley intrusive suite (84-64 Ma) and associated porphyry deposits (e.g.,
110	Huckleberry, Whiting Creek, and Emerald Glacier; MacIntyre et al. 1994; McMillan
111	et al. 1995; Lepitre et al. 1998; Riddell 2011). Epithermal deposits include Newton,
112	Blackwater, Capoose, Black Dome, Wolf, and Clisbako (Fig. 2; Nelson and Colpron
113	2007; Mihalasky et al. 2011; Pressacco 2012; McClenaghan 2013). The Newton
114	property is situated between two regional dextral strike-slip faults, the Yalakom fault
115	to the west and the Fraser fault to the east, which were formed by Eocene crustal-
116	scale transtension (Nelson and Colpron 2007; Figs. 1, 2).
117	

118 Regional geologic setting of the Newton deposit

The Stikinia terrane sequence in the vicinity of the Newton Au deposit is mainly
composed of four rock units: volcanic and sedimentary rocks of the Early Cretaceous
Spences Bridge and Gambier Groups; the Paleogene Endako and Ootsa Lake Groups;

122	the Mio-Pliocene Chilcotin Group; and Jurassic to early Tertiary intrusive rocks (Fig.
123	3; Massey et al. 2005). The Early Cretaceous Spences Bridge Group consists of
124	andesite and dacite lava flows and breccias, minor basalt and rhyolite, pyroclastic
125	deposits, sandstone, siltstone, and mudstone (Massey et al. 2005). This unit is
126	conformably overlain by the Early Cretaceous Gambier Group, which is mainly
127	composed of mafic-intermediate-felsic volcanic, pyroclastic, and sedimentary rocks
128	(Massey et al. 2005). Rhyolite from the Gambier Group yielded a U-Pb age of 112.0
129	\pm 0.3 Ma (Lynch 1995). The Paleogene Endako and Ootsa Lake Groups
130	unconformably overlie the Gambier Group, and consist of mafic to felsic volcanic
131	sequences, and minor sedimentary rocks (Massey et al. 2005).
132	These sequences are intruded by a wide variety of Jurassic to early Cenozoic
133	dikes and stocks in the Newton area, including felsic porphyry dikes, and quartz
134	monzonite, feldspar-quartz-hornblende porphyry, and diorite stocks (McLaren and
135	Rouse 1989). These rocks are unconformably overlain by the Miocene-Pliocene
136	Chilcotin Group, which mainly consists of basaltic lava flows (Bevier 1983a, 1983b).
137	
138	Newton Deposit Geology

139 Quaternary glacial till covers most of the Newton property, and outcrop is 140 sparse. Consequently, geological information has primarily been obtained from drill 141 core. Six main lithological units occur on the property. Layered mafic volcanic rocks 142 are overlain by sedimentary rocks and then felsic volcanic rocks. These layered rocks 143 are intruded by quartz-feldspar porphyry, feldspar-quartz-hornblende porphyry, and 144 diorite intrusions (Riddell 2006; Pressacco 2012). The quartz-feldspar porphyry and 145 feldspar-quartz-hornblende porphyry bodies mainly occur in the center of the Newton 146 deposit, whereas diorite occurs as a large unmineralized intrusion in the northwest

147 corner of the property, and as minor dikes intruding the central quartz-feldspar

148 porphyry and feldspar-quartz-hornblende porphyry (Fig. 4).

149 The mafic volcanic rocks and sedimentary rocks at Newton have not been

dated, but based on regional geological maps (Fig. 3), these rocks are thought to be

151 part of the Lower Cretaceous Gambier Group, which includes similar lithologies. The

152 felsic volcanic rocks and quartz-feldspar porphyry have been dated by zircon U-Pb

analysis, and yielded ages of 72.1 ± 0.6 Ma and 70.9 ± 0.5 Ma, respectively

154 (unpublished data, Amarc Resources Ltd., reported in McClenaghan 2013). Gold

155 mineralization at Newton is hosted by these Late Cretaceous felsic volcanic rocks and

the quartz-feldspar porphyry and feldspar-quartz-hornblende porphyry intrusions (see

157 below). McClenaghan (2013) reported a Re-Os molybdenite age of 72.1 ± 0.3 Ma for

a porphyry-hosted quartz-calcite-pyrite-molybdenite vein, indicating a close temporal

relationship between the mineralization and its host rocks.

160

161 Mafic volcanic rocks

162 Mafic volcanic rocks mainly occur in the central part of the Newton deposit.

163 The age of these rocks is not known, but regionally mafic volcanic rocks only occur

164 in the Lower Cretaceous Gambier Group, to which we therefore assign this sequence.

165 This unit is basaltic to andesitic in composition, dark green to dark brown in color,

166 massive in texture, and over 300 m thick on the property (Pressacco 2012). The rocks

are mainly composed of volcaniclastic units, lava flows, and volcanic tuff (Fig. 5C),

168 which are epidote-chlorite-altered to varying degrees.

169

170 Sedimentary rocks

171	Cretaceous sedimentary rocks are primarily located in the eastern part of the
172	Newton property (Fig. 4). The unit mainly consists of conglomerates, mudstones, and
173	sandstones (Fig. 5H). Contacts between these sedimentary rocks and the mafic
174	volcanic rocks are mostly faulted such that their stratigraphic relationships are not
175	clear. However, the presence of some mafic volcanic clasts in the conglomerates
176	suggests that these sediments overlie the mafic volcanic sequences (McClenaghan
177	2013).
178	
179	Felsic volcanic rocks
180	Felsic volcanic rocks are mainly located in the central and eastern part of the
181	Newton property, and consist dominantly of felsic tuff (Fig. 5D) with minor coarse-
182	grained felsic volcaniclastic rocks. The felsic volcanic rocks overlie the sedimentary
183	rocks, and unconformable contacts are observed in drill cores (McClenaghan 2013).
184	The felsic volcanic rocks are rhyolitic in composition with calc-alkaline affinity, are
185	white to grey in color, and banded to massive in texture. Most felsic volcanic rocks
186	have undergone strong quartz-sericite alteration, and are the primary host rocks for
187	Au mineralization at Newton.
188	
189	Intrusive rocks
190	Quartz-feldspar porphyry: The quartz-feldspar porphyry intrudes the
191	sedimentary and felsic volcanic rocks. It is granitic in composition, and consists of
192	10-15 vol.% quartz phenocrysts (1-5 mm) and 5-15 vol.% plagioclase phenocrysts
193	(2–5 mm) within a matrix of fine-grained sericite and quartz (<0.05 mm) (Fig. 5E).
194	The porphyry has undergone strong quartz-sericite alteration associated with Au
195	mineralization, and most plagioclase phenocrysts have been replaced by sericite.

196	Feldspar-quartz-hornblende porphyry: The feldspar-quartz-hornblende
197	porphyry intrudes the sedimentary and felsic volcanic rocks, but no cross-cutting
198	relationships were seen with the quartz-feldspar porphyry. However, cross sections
199	drawn by McClenaghan (2013) show the feldspar-quartz-hornblende porphyry cross-
200	cutting all the sedimentary and volcanic sequences, as well as the quartz-feldspar
201	porphyry. The feldspar-quartz-hornblende porphyry is composed of 20–30 vol.%
202	plagioclase phenocrysts (1–3 mm), 10 vol.% quartz phenocrysts (0.5–2 mm), and 5
203	vol.% hornblende phenocrysts (1–3 mm) set in a fine-grained quartz-feldspar matrix.
204	Like the quartz-feldspar porphyry, the feldspar-quartz-hornblende porphyry has
205	undergone strong sericitic alteration associated with gold mineralization, and sericite
206	has replaced most of the plagioclase phenocrysts (Fig. 5F).
207	<i>Diorite</i> : Diorite occurs as a large (>1 km diameter) intrusion to the northwest of
208	the main mineralized zone, and as dikes that cut through the mineralized quartz-
209	feldspar porphyry and feldspar-quartz-hornblende porphyry in the center of the
210	deposit, indicating that it post-dates the main mineralization event. The diorite has
211	undergone propylitic, potassic, and sericitic alteration to varying degrees, but is
212	unmineralized. Relatively fresh diorite (Fig. 5A, B) consists of 30-40 vol.%
213	plagioclase phenocrysts (3–5 mm), 15–20 vol.% hornblende phenocrysts (1–5 mm),
214	and 5 vol.% biotite phenocrysts (1-3 mm) in a fine-grained quartz-plagioclase-
215	hornblende matrix. This unit is weakly to strongly magnetic.
216	Intrusive breccias: Intrusive breccias locally cut the felsic tuff and porphyry
217	intrusions. They consist of subangular to subrounded fragments of felsic tuff, quartz-
218	feldspar porphyry, and feldspar-quartz-hornblende porphyry in a rhyolitic matrix
219	(McClenaghan 2013). Pressacco (2012) noted that gold mineralization is locally

220 present in the quartz-sericite-altered breccias. The average grade of Au in

221	breccias	is	0.2	g/t	based	on	the	assay	data	provide	by	Amarc Resources
222	Ltd.											

224	Structural set	ting
-----	----------------	------

225	Several faults have been identified or inferred on the Newton property, most of
226	which cut the mineralized rocks and therefore post-date mineralization. The Newton
227	Hill Fault is the most significant, and cuts through the main mineralized zone in the
228	eastern part of the property (Fig. 4). This fault strikes approximately 027° and dips at
229	\sim 30° to the northwest, and displays 300–350 m of dip-slip displacement (Pressacco
230	2012). Mineralized felsic volcanic rocks, quartz-feldspar porphyry, and feldspar-
231	quartz-hornblende porphyry occur in both the hanging wall and footwall of the fault.
232	
233	Alteration and Mineralization
234	Quartz-sericite, argillic, propylitic, and potassic alteration occur at Newton.
235	Quartz-sericite alteration is widespread in the centre of the property, and is closely

associated with gold and base metal mineralization.

237

238 *Quartz-sericite alteration*

Quartz-sericite alteration occurs in the felsic volcanic rocks, quartz-feldspar
porphyry, and feldspar-quartz-hornblende porphyry (Fig. 6). It is characterized by
secondary quartz and sericite, which replace volcanic glass shards, volcanic fragments,
and plagioclase, and infill small fractures. The quartz-sericite alteration is most
strongly developed in the felsic volcanic rocks, whereas it is relatively weak in the
quartz-feldspar porphyry and feldspar-quartz-hornblende porphyry (McClenaghan
2013). This may reflect the higher permeability and reactivity (fine-grained, possibly

246	originally glassy groundmass) of the felsic volcanic rocks compared with the quartz-					
247	feldspar porphyry and feldspar-quartz-hornblende porphyry (McClenaghan 2013).					
248	This alteration style is only locally present in the diorite (Fig. 7A, B).					
249	The quartz-sericite alteration can be divided into two stages:					
250	1. The first stage predominantly consists of quartz, sericite, and pyrite (Fig. 5D,					
251	E), and is associated with gold mineralization (mostly as microscopic					
252	inclusions of electrum in disseminated pyrite).					
253	2. The second stage is similar but contains more marcasite than pyrite (Fig. 5F),					
254	accompanied by base metal sulfides (sphalerite and chalcopyrite; Fig. 5F). This					
255	stage is also associated with gold mineralization (microscopic inclusions in					
256	disseminated marcasite and pyrite) but with lower grades than stage 1.					
257						
258	Argillic alteration					
259	Argillic alteration is not extensively developed at Newton, and was only					
260	observed locally in the quartz-feldspar porphyry and feldspar-quartz-hornblende					
261	porphyry where it overprints the quartz-sericite alteration (Fig. 5G). It is characterized					
262	by kaolinite, sericite (relict from the earlier alteration), and carbonates (McClenaghan					
263	2013), which partially or completely replace plagioclase phenocrysts. Minor amounts					
264	of gold are locally reported in assay from argillic-altered rocks (McClenaghan 2013),					
265	but it is not clear whether the Au was introduced during the argillic alteration, or is					
266	residual from the earlier quartz-sericite alteration.					
267						
268	Propylitic alteration					
269	Propylitic alteration is characterized by secondary epidote, chlorite, and					

270 carbonate (Fig. 5A, C). Epidote and chlorite are dominant and pervasive, whereas

271	calcite typically occurs in veinlets. This alteration is widespread but variably
272	developed in the mafic volcanic rocks, and is locally present in the diorite (Fig. 7C).
273	Gold and base metal mineralization do not occur in propylitic-altered rocks.
274	
275	Potassic alteration
276	The least common alteration type observed at Newton is potassic alteration,
277	which is characterized by the local development of fine-grained secondary biotite and
278	minor pyrite in diorite at its contacts with mafic volcanic rocks (Fig. 7D; Pressacco
279	2012). Locally, the potassic alteration is overprinted by sericite, and propylitic
280	alteration commonly overprints both potassic and sericitic alteration within the diorite
281	(Fig. 5). Potassic-altered rocks are not associated with economic mineralization at the
282	levels explored to date by drilling.
283	
283 284	Mineralization
283 284 285	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite,
283 284 285 286	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi
283 284 285 286 287	<i>Mineralization</i> Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing
283 284 285 286 287 288	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing minerals mainly occur as inclusions in sulfides, especially pyrite and marcasite
283 284 285 286 287 288 288	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing minerals mainly occur as inclusions in sulfides, especially pyrite and marcasite (Pressacco 2012). Disseminated mineralization is the predominant style; veinlet
283 284 285 286 287 288 289 290	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing minerals mainly occur as inclusions in sulfides, especially pyrite and marcasite (Pressacco 2012). Disseminated mineralization is the predominant style; veinlet mineralization is also present, but it accounts for less than 1 vol.% of the mineralized
283 284 285 286 287 288 289 290 291	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing minerals mainly occur as inclusions in sulfides, especially pyrite and marcasite (Pressacco 2012). Disseminated mineralization is the predominant style; veinlet mineralization is also present, but it accounts for less than 1 vol.% of the mineralized rocks (Pressacco 2012).
283 284 285 286 287 288 289 290 291 291	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing minerals mainly occur as inclusions in sulfides, especially pyrite and marcasite (Pressacco 2012). Disseminated mineralization is the predominant style; veinlet mineralization is also present, but it accounts for less than 1 vol.% of the mineralized rocks (Pressacco 2012).
283 284 285 286 287 288 289 290 291 291 292 293	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing minerals mainly occur as inclusions in sulfides, especially pyrite and marcasite (Pressacco 2012). Disseminated mineralization is the predominant style; veinlet mineralization is also present, but it accounts for less than 1 vol.% of the mineralized rocks (Pressacco 2012). Three stages of mineralization have been recognized based on observations of hand samples and polished thin sections (Fig. 8).
283 284 285 286 287 288 289 290 291 291 292 293 294	Mineralization Metallic minerals at Newton consist of pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, molybdenite, arsenopyrite, electrum, and Ag-Au and Au-Bi tellurides (in approximate order of abundance; McClenaghan 2013). The gold-bearing minerals mainly occur as inclusions in sulfides, especially pyrite and marcasite (Pressacco 2012). Disseminated mineralization is the predominant style; veinlet mineralization is also present, but it accounts for less than 1 vol.% of the mineralized rocks (Pressacco 2012). Three stages of mineralization have been recognized based on observations of hand samples and polished thin sections (Fig. 8). 1. The earliest stage of Au mineralization is associated with quartz-sericite-pyrite

296		accompanied by minor chalcopyrite, pyrrhotite, and sphalerite, commonly as
297		small inclusion in pyrite (Fig. 9A). Gold mainly occurs as inclusions of
298		electrum, silver-gold telluride, and gold-bismuth telluride in the pyrite (Fig.
299		9B; Pressacco 2012). Veins are not common, but where present consist of
300		pyrite (Fig. 5D), quartz-pyrite (Fig. 5E), and quartz-molybdenite-pyrite (Fig.
301		9C), which are relatively straight and 1–3 mm in width.
302	2.	Stage 2 mineralization is associated with the later quartz-sericite-marcasite
303		alteration. Disseminated marcasite, minor pyrite, chalcopyrite, and sphalerite
304		occur in the felsic volcanic and intrusive rocks (Fig. 9D, E; McClenaghan
305		2013). Base metal-sulfides are more abundant than in stage 1 (McClenaghan
306		2013). Although disseminated mineralization is dominant, minor marcasite
307		veinlets also occur in quartz-sericite-marcasite-altered rocks (Fig. 5F). These
308		veinlets are relatively straight, and usually 1–2 mm in width. Pressacco (2012)
309		noted that Au occurs as electrum inclusions in marcasite, but this was not
310		observed in this study.
311	3.	Polymetallic veins occur locally in the sedimentary and felsic volcanic rocks,
312		but are not common. They represent the last stage of mineralization, and
313		cross-cut the disseminated quartz-sericite-pyrite/marcasite mineralization (Fig
314		5H). Pyrite, chalcopyrite, sphalerite, and arsenopyrite are primary constituents
315		of these veins, commonly with calcite (Figs. 9F, 5H). These veins are 1-10
316		mm in width, and are commonly straight but with various orientations; they
317		lack alteration selvages. No gold has been reported in these veins.
318		
319	Previo	us metallogenic studies

320	Molybdenite from a stage 1 quartz-molybdenite-pyrite vein in the feldspar-
321	quartz-hornblende porphyry has been dated at 72.1 ± 0.3 Ma (McClenaghan 2013),
322	indicating that the mineralization occurred broadly at the same time as magmatism.
323	McClenaghan (2013) also reported oxygen isotopic compositions (δ^{18} O) of 8.4
324	to 9.5‰ and hydrogen isotopic compositions (δD) of -83.0 to -66.5‰ for sericite
325	associated with auriferous pyrite and marcasite, and calculated $\delta^{18}O_{fluid}$ and δD_{fluid}
326	compositions of 2.5‰ to 6.8‰, and -63 to -46.5‰, respectively, suggesting a
327	predominantly magmatic origin for the fluid. Similarly, sulfur isotopic compositions
328	of disseminated pyrite, marcasite, and chalcopyrite range from $\delta^{34}S = -1.1$ to 3.2‰,
329	consistent with a magmatic source for sulfur (McClenaghan 2013).
330	McClenaghan (2013) interpreted the Newton deposit to be an intermediate-
331	sulfidation epithermal deposit based on the classifications of Hedenquist et al. (2000)
332	and Sillitoe and Hedenquist (2003). McClenaghan (2013) noted that Newton matches
333	these descriptions in the following ways: rhyolitic host rocks, primary quartz-sericite
334	alteration, Au and Ag mineralization, and relatively abundant base-metal sulfides
335	(pyrite, marcasite, sphalerite, and galena).
336	
337	Analytical methods
338	Sample selection
339	Twenty-eight drill core samples were collected for this study, which are

340 representative of the country rocks, intrusions, alteration facies, and mineralization

- 341 styles at Newton. Detailed information on these samples is listed in Table A1, and
- 342 sampled drill holes are marked on the geological map in Figure 4. All the drill holes
- 343 sampled were vertical. Fifteen polished thin sections were made for petrographic

344 study, and 5 fluid inclusion sections were made from quartz-sulfide and carbonate-

- 345 sphalerite veins for fluid inclusion study.
- 346
- 347 *Lithogeochemical analysis*
- 348 Five feldspar-quartz-hornblende porphyry and five diorite samples were
- 349 collected for whole-rock geochemical analysis. Lithogeochemical analyses were
- 350 conducted at Activation Laboratories Ltd. (Ancaster, Ontario, Canada) using a
- 351 combination of methods including instrumental neutron activation analysis and
- 352 lithium metaborate/tetraborate fusion inductively coupled plasma mass spectrometry
- 353 (Actlabs code 4E Research + ICP/MS). Based on reproducibility of standards and
- duplicates, accuracy is typically within 5 relative percent for major elements, and 10
- 355 relative percent for minor and trace elements.
- 356

357 Zircon U-Pb dating

358 Zircon crystals were separated from two samples of drill core with lengths of 1– 359 2 m by crushing, Wilfley table heavy mineral separation, magnetic separation, heavy-360 liquid separation, and handpicking. Selected crystals were mounted in epoxy, and 361 polished to expose their cores. They were then analyzed using a Nu-Plasma multi-362 collector inductively coupled plasma-mass spectrometer (MC-ICP-MS; Nu 363 Instruments, UK) coupled to a frequency quintupled ($\lambda = 213$ nm) Nd:YAG laser 364 ablation system (New Wave Research, USA) in the Radiogenic Isotope Facility at the 365 University of Alberta. Details of the analytical setup and protocols employed are 366 described in Simonetti et al. (2005). Laser pit dimensions were 30 µm diameter and 367 approximately 20–30 µm deep. A 30 s blank analysis prior to ablation was made for determination of ²⁰⁴Hg contributions, and was followed by 30 s ablations on samples. 368

Zircon reference materials GJ1-32 and LH94-15 were used to correct instrumental

370	bias, drift, and laser induced U-Pb fractionation. Standards were analyzed after every
371	ten unknowns, and the 2σ reproducibility of the standards was ~3% for U/Pb and 1%
372	for ²⁰⁷ Pb/ ²⁰⁶ Pb. Reported errors are a quadratic combination of the within-run
373	precision and the external reproducibility of the standards. All U-Pb plots were
374	generated using the Isoplot software (Ludwig 2003), and concordia intercept ages
375	were derived by anchoring to a common Pb value of 0.83 ± 0.06 (Stacey and Kramers
376	1975).
377	
378	Fluid inclusion measurements
379	Fluid inclusion measurements were conducted using a Linkham THMSG600
380	microthermometric stage mounted on an Olympus BX50 microscope. Fluid inclusions
381	were cooled to -100°C, and then final ice melting temperatures, clathrate melting
382	temperatures, and total homogenization temperatures were recorded during reheating.
383	The salinities of aqueous, CO ₂ clathrate-bearing, and halite-bearing inclusions were
384	calculated using final ice melting, final CO ₂ clathrate melting, and halite dissolution
385	temperatures, based on the equations of Bodnar (1993), Bozzo et al. (1975), and
386	Sterner et al. (1988), respectively. Bozzo et al. (1975) noted that their equation strictly
387	applied only to fluid inclusions that contained liquid CO ₂ at the point of clathrate
388	melting, but Diamond (1992) noted that the presence or absence of a CO ₂ liquid phase
389	actually had little effect on salinity calculations. Liquid CO ₂ was not observed in our
390	fluid inclusions, but on the basis of Diamond's (1992) findings, we have used Bozzo
391	et al.'s (1975) equation for salinity estimation in clathrate-bearing inclusions.
392	Synthetic fluid inclusion standards from Syn Flinc were used for calibration: reported
393	measurements are accurate to ± 0.2 °C below 10 °C, and ± 2 °C above 10 °C.

Fluid inclusions were classified as primary, pseudosecondary, and secondary
based on the criteria of Roedder (1984) and Goldstein (2003), and were grouped in
fluid inclusion assemblages (Goldstein and Reynolds 1994; Goldstein 2003).

398 Geochemical Compositions of Igneous Rocks

Ten new whole-rock geochemical analyses of feldspar-quartz-hornblende porphyry and diorite are listed in Table 1. These analyses are combined with 21 analyses of felsic volcanic rocks and quartz-feldspar porphyry reported by McClenaghan (2013) to assess the compositional range and geochemical affinity of the Newton igneous suite. All of the samples show some degree of alteration, but selected samples showed the least alteration of available material.

405

406 *Major element compositions and lithological classification*

407 Major element data for igneous rock samples from the Newton deposit were 408 recalculated on a volatile-free basis, and plotted on a total alkali–silica classification 409 diagram (Fig. 10). Diorite samples plot in the diorite to granodiorite fields, feldspar-410 quartz-hornblende porphyry samples plot in the granodiorite and granite fields, and 411 quartz-feldspar porphyry samples plot in the granite field. The felsic volcanic rocks 412 plot almost exclusively in the granite (rhyolite) field. McClenaghan (2013) identified 413 two samples of felsic volcanic rock and quartz-feldspar porphyry as "least altered" 414 (based on geochemical and petrographic criteria, such as containing largely unaltered 415 plagioclase phenocrysts), but all other samples show moderate to strong degrees of 416 alteration (mostly sericitic). Because all of the samples plotted here are altered to 417 varying degrees, caution must be exercised when using the total alkali-silica diagram 418 for lithological classification purposes. However, the data plot fairly tightly, and the

419	compositions of the two least-altered volcanic and quartz-feldspar porphyry samples
420	are similar to more altered equivalents. We therefore consider that alteration has not
421	affected these rocks to a degree that would change their broad lithological
422	classification. On this basis, the data suggest a typical calc-alkaline trend from dioritic
423	to granitic compositions for the intrusive rocks, and predominantly rhyolitic
424	compositions for the volcanic rocks (Peccerillo and Taylor 1976; Fig. 10).
425	Concentrations of TiO ₂ , MgO, and P_2O_5 are plotted relative to SiO ₂ in Figure
426	11A-C, and show reasonably well correlated inverse trends, suggesting a cogenetic
427	relationship though fractionation of ferromagnesian silicates, magnetite, and apatite.
428	Potassium shows greater scatter relative to SiO ₂ , likely due to the effects of
429	hydrothermal alteration, but the data nevertheless group within the calc-alkaline to
430	high-K calc-alkaline fields in Figure 11D, consistent with a volcanic arc origin.
431	

432 *Trace element compositions*

Due to varying degrees of hydrothermal alteration at Newton, plots using
immobile elements Y, Yb, Ta, Nb, are used for tectonic discrimination (Fig. 12). All
samples plot in the field of volcanic arc rocks.

436 Trace element data for igneous rock samples from the Newton deposit are 437 plotted on primitive mantle-normalized trace element and chondrite-normalized rare 438 earth element (REE) diagrams in Figures 13 and 14. The samples display broadly 439 similar patterns on primitive mantle-normalized trace element diagrams (Fig. 13), 440 with relative enrichments in incompatible large-ion lithophile elements (LILE) and 441 distinctive depletions in Nb, Ta, and Ti, characteristic of arc-related magmas (Gill 442 1981; Briqueu et al. 1984; Brown et al. 1984). The suite also shows depletions in Sr 443 and P, which, along with Ti, are more pronounced in the felsic volcanic rocks,

444 reflecting fractionation of feldspar, apatite, and magnetite, respectively. The more 445 mafic diorites show positive anomalies for Sr, which may indicate minor plagioclase 446 feldspar accumulation. The diorites also have higher concentrations of compatible 447 elements such as middle and heavy REE (MREE, HREE) compared to the more 448 evolved rocks. 449 On chondrite-normalized rare earth element diagrams (Fig. 14), the quartz-450 feldspar porphyry, feldspar-quartz-hornblende porphyry, and felsic volcanic rock 451 samples show listric-shaped REE patterns (steep slopes from light REE (LREE) to 452 MREE, and shallow to flat slopes from MREE to HREE; La/Yb = 11.7 to 36.0), 453 suggesting that amphibole fractionation was important (Sisson 1994). In contrast, the 454 diorite samples show slightly shallower slopes from LREE to MREE, and flat slopes 455 from MREE to HREE, consistent with their less evolved compositions relative to the 456 felsic rocks (La/Yb = 4.6 to 23.6). 457 The more felsic rocks (quartz-feldspar porphyries and volcanic rocks) display 458 small negative Eu anomalies (Figs. 14 and 15), indicative of feldspar fractionation. 459 The lack of significant negative Eu anomalies in the more mafic lithologies (Figs. 460 14A and 15) indicates that plagioclase fractionation was not important during early 461 crystallization of the parental magmas, but small positive anomalies for some diorite

samples are consistent with some later-stage plagioclase accumulation, as also

463 indicated by elevated Sr concentrations (Fig. 13A).

464

465 Zircon U-Pb dating

The felsic volcanic rocks and quartz-feldspar porphyry have been dated by

- 467 Amarc Resources Ltd. (reported in McClenaghan 2013). The felsic volcanic rock
- 468 sample yielded a weighted mean 206 Pb/ 238 U age for two zircon grains of 72.1 ± 0.6 Ma

469	(2σ error; McClenaghan 2013). The quartz-feldspar porphyry sample yielded a
470	weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 70.9 ± 0.5 Ma (MSWD = 1.8; McClenaghan 2013).
471	In order to better understand the relationships between the felsic volcanic rocks and
472	the three phases of intrusions (diorite, feldspar-quartz-hornblende porphyry, quartz-
473	feldspar porphyry), the feldspar-quartz-hornblende porphyry and diorite were dated in
474	this study. The feldspar-quartz-hornblende porphyry sample was collected from drill
475	hole 10031 (Fig. 4) at a depth of 320 m, and the diorite sample was collected from
476	drill hole 10023 (Fig. 4) at a depth of 146 m.
477	The analyzed zircons are clear, colorless, euhedral, and prismatic, which are
478	characteristic features of magmatic zircons. Oscillatory zoning is well developed in
479	zircons from the diorite (as seen in backscattered electron SEM images; Fig. 16),
480	whereas zircons from the feldspar-quartz-hornblende porphyry are largely unzoned.
481	Variations in the brightness of the different zones are attributed to different
482	proportions of trace elements such as Hf, Y, and REE (Hoskin 2000).
483	U-Pb dating results for zircons from the feldspar-quartz-hornblende porphyry
484	(NT129) and diorite (NT090) are listed in Table 2 and plotted on Tera-Wasserburg
485	diagrams in Figure 17 (Tera and Wasserburg 1972). The feldspar-quartz-hornblende
486	porphyry sample contains a relatively homogeneous population of concordant zircons,
487	which yielded a U-Pb concordia intercept age of 72.1 ± 0.5 Ma (n = 25, MSWD =
488	1.4; Fig. 17A). The diorite sample contains a slightly more complicated population of
489	zircons, which yielded a U-Pb concordia intercept age of 69.3 ± 0.4 Ma (n = 21,
490	MSWD = 1.5; Fig. 17B). A 238 U/ 206 Pb age histogram for the diorite zircons (Fig. 18)
491	suggests the presence of two populations of zircon in the diorite sample, one with an
492	age close to the bulk sample at ~69 Ma, and a smaller group with slightly older ages
493	\sim 71 Ma. This older group is similar to the ages of the feldspar-quartz-hornblende

494 porphyry and felsic volcanic rocks, and may represent xenocrystic or antecrystic

495 zircon inherited from slightly earlier intrusions within the same magmatic complex.

Alternatively, the younger (~69 Ma) ages may reflect minor Pb-loss, and the true age

497 of the diorite may be essentially coeval with the other igneous rocks at \sim 71 Ma.

498

499 Fluid inclusions

500 Quartz veins are not common at Newton. Measurable primary and 501 pseudosecondary fluid inclusions were only found in two quartz vein samples, which 502 are both related to stage 1 mineralization. One sample is a quartz-pyrite vein (with 503 electrum inclusions in pyrite) hosted by quartz-feldspar porphyry (sample NT049) 504 from borehole 9004 at a depth of 270 m. The other sample is a quartz-molybdenite-505 pyrite vein hosted by felsic volcanic rocks (sample NT060) from borehole 12057 at a 506 depth of 200 m. No quartz veins related to stage 2 mineralization were found, and 507 sphalerite from a stage 3 polymetallic sulfide vein mineralization was too opaque to 508 observe fluid inclusions.

509 Ninety-six quartz-hosted fluid inclusions were analyzed. Only primary and 510 pseudosecondary inclusions were analyzed (Fig. 19; criteria of Roedder 1984, and 511 Goldstein 2003), and necked or leaked inclusions were avoided. Primary inclusions 512 were mostly observed in growth zones, whereas pseudosecondary inclusions occur in 513 micro-fractures developed during crystal growth. Measured inclusions ranged in size 514 between $3-7 \mu m$ with a few up to 10 μm . Most fluid inclusions are present in groups 515 as fluid inclusion assemblages, in which the vapor/liquid phase ratios are constant 516 (Fig. 19A; Goldstein and Reynolds 1994; Goldstein 2003). A few fluid inclusions 517 occurred as larger isolated inclusions (10-13 μ m), which are interpreted to be primary 518 in origin.

519	Three distinct fluid inclusion types were recognized. Type 1 inclusions are two-
520	phase liquid-rich inclusions, and occur in both samples. CO_2 was not seen as a
521	separate liquid or vapor phase, and no melting events were observed at -56.6°C
522	during heating that would indicate the presence of CO ₂ . However, some inclusions
523	displayed melting events at temperatures above 0°C, indicating that small amounts of
524	CO_2 are present as CO_2 clathrate. Therefore the type 1 inclusions can be subgrouped
525	into type 1a inclusions (without CO_2 clathrate) and type 1b inclusions (with CO_2
526	clathrate).
527	Type 2 inclusions are two-phase vapor-rich inclusions, and also occur in both
528	samples. It is difficult to observe phase changes in these predominantly dark
529	inclusions, and no microthermometric data could be obtained (cf. Bodnar et al. 1985).
530	Primary type 2 inclusions occur together with liquid-rich type 1 inclusions in one
531	fluid inclusion assemblage from the quartz-pyrite-gold vein (NT049), and this is taken
532	to be evidence that boiling occurred in this vein sample (Fig. 19C). Boiling also likely
533	occurred in the other quartz-molybdenite-pyrite vein, as evidenced by the presence of
534	type 2 vapor-rich fluid inclusions in this sample (NT060). However, they were not
535	observed in the same assemblages as type 1 inclusions, so the identification of boiling
536	is not definitive for this sample.
537	Type 3 fluid inclusions contain three or four phases, including halite and in
538	some cases opaque daughter minerals, in addition to liquid and vapor phases (Fig.
539	19B). Halite crystals were recognized by their cubic morphology and relatively slow
540	dissolution during heating. Type 3 inclusions are rare, and only occur locally at the
541	edges of the quartz-molybdenite-pyrite vein (NT060). Type 3 inclusions are therefore
542	thought to represent early stage fluids.

544 Homogenization temperature and salinity measurements

- 545 Microthermometric measurements and salinity estimates for fluid inclusions are
- 546 presented in Figures 20 and 21, and listed Table A2.
- 547 *Quartz-pyrite-gold vein sample (NT049):* Type 1a fluid inclusions from the
- 548 quartz-pyrite-gold vein sample homogenized by bubble disappearance at temperatures
- ranging from 210° to 415°C (average = $327^\circ \pm 48^\circ$ C; n = 47). Fluid salinities for type
- 1a inclusion (as measured from ice melting temperatures) range from 4.0 to 6.0 wt.%

551 NaCl equiv. (average = 5.2 ± 0.7 wt.% NaCl equiv., n = 24).

552 Type 1b inclusions from this sample homogenized at similar temperatures to

553 type 1a inclusions (316° to 355°C; average = $343^\circ \pm 15^\circ$ C, n = 6). Salinities

- calculated from clathrate melting temperature are more scattered because of the lower
- precision of this method (0.8 to 7.1 wt.% NaCl equiv.; average = 4.0 ± 2.4 wt.% NaCl

equiv., n = 6, but overlap the tighter range of type 1a inclusions.

- 557 The homogenization temperatures and salinities of type 2 vapor-rich fluid
- inclusions could not be measured due to the small amount of liquid present, but type

1a inclusions in the same assemblage range from $293^{\circ}-369^{\circ}C$ (average = $329^{\circ} \pm$

560 32° C, n = 7) and 4.3–6.0 wt.% NaCl equiv. (average = $5.3^{\circ} \pm 0.6^{\circ}$ C, n = 7).

561 *Quartz-molybdenite-pyrite vein sample (NT060):* Type 1a fluid inclusions from

the quartz-molybdenite-pyrite vein sample homogenized by bubble disappearance at

- temperatures ranging from 205° to 388°C (average = $294^\circ \pm 49^\circ$ C; n = 35). Fluid
- salinities for type 1a inclusion range from 2.9 to 6.4 wt.% NaCl equiv. (average = 4.5

565 ± 1.0 wt.% NaCl equiv., n = 22).

566 Type 1b inclusions from this sample homogenized at similar temperatures to

567 type 1a inclusions (241° to 389°C; average = $314^\circ \pm 71^\circ$ C, n = 4). Salinities

568 calculated from clathrate melting temperature also overlap (at the lower end) the

569	range for type 1a inclusions (2.8 to 4.7 wt.% NaCl equiv.; average = 3.8 ± 0.9 wt.%
570	NaCl equiv., $n = 4$).
571	Rare type 3 hypersaline fluid inclusions occur in quartz at the vein margin. They
572	homogenized finally by halite daughter crystal dissolution at temperatures ranging
573	from 335° to 355°C (average = $343^\circ \pm 9^\circ$ C; n = 4), indicating salinities of (34.2 to
574	35.1 wt.% NaCl equiv.; average = 34.8 ± 0.5 wt.% NaCl equiv., n = 4). The vapor
575	bubble disappeared at lower temperatures (244°–260°C; average = $255^{\circ} \pm 8^{\circ}$ C; n =
576	4).
577	Homogenization temperature-salinity data from a quartz-molybdenite-pyrite
578	vein show a trend from a relatively high temperature and saline composition (370°C;
579	5.7 wt.% NaCl equiv.) to a lower temperature and less saline fluid (205°C; 3.1 wt.%
580	NaCl equiv.; Fig. 21). This trend is not observed in individual fluid inclusion
581	assemblages, indicating that in situ fluid mixing was not occurring. Instead, the trend
582	can be correlated with vein paragenesis, with high temperature and salinity (including
583	hypersaline) fluid inclusions occurring only near the vein margins, and lower
584	temperature and salinity fluid inclusions occurring toward the vein centers.
585	
586	Pressure estimates
587	Because there is evidence of boiling in one vein sample, homogenization
588	temperatures are assumed to be close to the real trapping temperatures for most of the
589	type 1 fluid inclusions, and no pressure corrections have been made to
590	homogenization temperatures (Roedder and Bodnar 1980; Bodnar and Vityk 1994).
591	The average homogenization temperature and fluid salinity of all type 1a inclusions is
592	$313^{\circ} \pm 51^{\circ}$ C (n = 82), and 4.8 ± 0.9 wt.% NaCl equiv. (n = 46). Therefore assuming
593	that the hydrothermal fluid is a pure H ₂ O-NaCl system with a temperature of \sim 310°C

594	and salinity of ~5 wt.% NaCl equiv., the trapping pressure for fluid inclusions related
595	to stage 1 mineralization can be estimated to be ~95 bars, equivalent to a depth of
596	around 1160 m (assuming hydrostatic pressure conditions) based on the data of Haas
597	(1971). However, the presence of small amounts of CO_2 in some type 1b inclusions
598	may mean that fluid pressures (and therefore depths) were slightly greater.
599	Trapping pressure of type 3 inclusions were estimated using the program
600	HOKIEFLINCS_H2O-NaCl (Steele-MacInnis et al. 2012), and yielded values of 98
601	to 125 bar (average = 108 bar, $n = 4$), consistent with the estimates from boiling
602	assemblages. A trapping depth of ~ 1 km is therefore considered reasonable based on
603	these data.
604	

605

Discussion

606 *Timing and petrogenesis*

607 The felsic volcanic rocks, feldspar-quartz-hornblende porphyry, quartz-feldspar 608 porphyry, and post-mineralization diorite stock at Newton yielded U-Pb zircon ages 609 of 72.1 ± 0.6 Ma, 72.1 ± 0.5 Ma, 70.9 ± 0.5 Ma, and 69.3 ± 0.4 Ma respectively 610 (McClenaghan 2013; this study). These ages indicate that the magmatic activity at 611 Newton is broadly coeval, and spanned a time period of ~ 3 m.y. ($\sim 72-69$ Ma), or 612 possibly only ~ 1 m.y. if the true age of the diorite is closer to 71 Ma, as suggested by 613 the bimodal population of zircon ages for this samples (the younger ages ~69 Ma 614 reflecting minor Pb-loss). A single Re-Os date on hydrothermal molybdenite (72.1 \pm 615 0.3 Ma) reported by McClenaghan (2013), is consistent with the ages of the felsic 616 volcanic rocks and feldspar-quartz-hornblende porphyry, but is slightly older than the 617 age of the main quartz-feldspar porphyry host rock. This slightly inconsistent result 618 cannot be explained at this time, but may relate to problems comparing data from two

619 different geochronological systems, and also to the difficulty of resolving minor Pb-620 loss in young samples dated by LA-ICP-MS. Broadly, however, the molybdenite age 621 is consistent with a cogenetic relationship between the magmatic and hydrothermal 622 activity at ~72 Ma. 623 The felsic volcanic rocks, quartz-feldspar porphyry, feldspar-quartz-hornblende 624 porphyry, and diorite are also broadly cogenetic in terms of their geochemical 625 compositions, and they are assumed to have been derived from the same parent 626 magma. Because the most mafic rock, diorite, is the youngest intrusion, the data 627 cannot be modelled as a simple fractionation trend. However, the diorite is likely 628 reflective of the composition of the more mafic end-member in this suite, and the 629 more evolved lithologies may have evolved from a similar, earlier dioritic magma at 630 depth.

631 The diorite contains hornblende phenocrysts, which indicate that the magma 632 contained at least 4 wt.% H₂O (Naney 1983). High magmatic water contents can 633 suppress early crystallization of plagioclase, which is evidenced by the absence of 634 europium anomalies in the normalized REE patterns for the diorites (because plagioclase preferentially partitions Eu^{2+} relative to Eu^{3+} and other REE; Hanson 635 636 1980). However, the absence of Eu anomalies can also be explained by relatively 637 oxidizing conditions, under which Eu is mainly present as Eu^{3+} (and is therefor not 638 partitioned into plagioclase). Thus, the diorites are interpreted to be either relatively 639 hydrous or oxidized, or both, which are favorable characteristics for the formation of 640 porphyry and related epithermal deposit (Candela 1992; Richards 2003). 641 Immobile trace element and major element compositions suggest that the 642 Newton igneous suite is of calc-alkaline, continental arc affinity, with compositions

ranging from diorite to granite. Listric-shaped REE patterns combined with the lack

- of europium anomalies in more mafic rocks suggest that the suite was hydrous, and
- evolved by early fractionation of amphibole (± titanite; Gromet and Silver 1983;
- 646 Green and Pearson 1985; Rollinson 1993).
- 647
- 648 *Characteristics of ore-forming fluids*

649	Fluid inclusions from two vein samples from stage 1 mineralization record
650	similar temperatures and salinities. Data for type 1a two-phase (liquid + vapor)
651	inclusions from a quartz-sericite-pyrite vein indicate an average homogenization
652	temperature of $327^{\circ} \pm 48^{\circ}$ C (n = 47) and salinity of 5.2 ± 0.7 wt.% NaCl equiv. (n =
653	24). Data from the quartz-molybdenite-pyrite vein overlap this range but show a trend
654	from early inclusions near the vein margin with homogenization temperatures of
655	~370°C and salinities of ~5.7 wt.% NaCl equiv., and later inclusions near the vein
656	centre with ~205°C and 3.1 wt.% NaCl equiv.; Fig. 21); rare hypersaline fluid
657	inclusions also occur near the vein margin. These data are interpreted to reflect
658	evolution of the fluid in this vein from high temperature and salinity fluids, to cooler,
659	lower salinity compositions.
660	The presence of vapor-rich fluid inclusions in some assemblages indicates that
661	trapping conditions were at or near the two-phase boundary, and homogenization
662	temperatures of type 1 fluid inclusions have therefore not been corrected for pressure.
663	Pressure estimates from these inclusions, and also from hypersaline inclusions,
664	suggest values ~100 bars, and depths of trapping ~1 km (assuming hydrostatic
665	pressure conditions).
666	McClenaghan (2013) calculated the isotopic composition of hydrothermal fluids
667	in equilibrium with sericite, and reported $\delta^{18}O_{fluid}$ values ranging from 5.7 to 6.8‰
668	(average = 6.0 ± 0.4 %, n = 6), and δD_{fluid} from -55.8 to -46.5% (average = $51.0\% \pm$

669	3.8, $n = 6$). Combined with the S isotopic composition of sulfides from stage 1
670	mineralization (δ^{34} S = 1.2 to 3.2‰; average = 2.1 ± 0.6‰, n = 10), McClenaghan
671	(2013) concluded that the fluids and sulfur associated with ore formation at Newton
672	were of magmatic origin. Our fluid inclusion data, and especially the observation of
673	hypersaline fluid inclusions, are consistent with this conclusion.
674	Newton has been classified as an intermediate-sulfidation epithermal gold
675	deposit (McClenaghan 2013), although the quartz-sericite alteration and relatively
676	high fluid temperatures place it in the deeper parts of the spectrum of epithermal
677	deposits, close to the porphyry environment. This interpretation is supported in this
678	study by the observation of porphyry-like halite-bearing fluid inclusions in stage 1
679	veins, and the presence of potassic alteration in the diorite. Therefore, we propose that
680	the Newton deposit formed near the transition zone between porphyry and epithermal
681	environments. This interpretation implies the potential for porphyry-type
682	mineralization at depth below the currently explored levels, as also suggested by
683	geophysical data (Hübert et al. in press).
684	
685	Ore depositional processes
686	Gold is mainly present as inclusions in disseminated pyrite and marcasite in
687	quartz-sericite alteration, and auriferous veins are relatively rare. Consequently, wall
688	rock reactions appear to be the main controls on the precipitation of gold from the
689	magmatic hydrothermal fluids, although minor gold may have been precipitated
690	during boiling in the rare quartz-sulfide veins observed. If it is assumed that gold was
691	dissolved as bisulfide complexes (e.g., $Au(HS)_2$; Seward 1989, 1991), then wallrock
692	sulfidation reactions may have been responsible for the coprecipitation of gold with
693	pyrite and marcasite, through reactions such as:

https://mc06.manuscriptcentral.com/cjes-pubs

694	$FeO_{(wallrock)} + 2 H_2S + \frac{1}{2} O_2 = FeS_2 + 2 H_2O$ (eq. 1)
695	$2 \operatorname{Au}(\operatorname{HS})_{2}^{-} + \operatorname{FeO}_{(wallrock)} + 2 \operatorname{H}^{+} = 2 \operatorname{Au} + \operatorname{FeS}_{2} + 2 \operatorname{H}_{2}S + \operatorname{H}_{2}O (eq. 2) (Mikucki$
696	1998)
697	
698	Newton compared with other intermediate-sulfidation epithermal deposits
699	Epithermal deposits can be classified into high-, intermediate-, and low-
700	sulfidation types in terms of their sulfidation state (Hedenquist et al. 2000; Einaudi et
701	al. 2003; Sillitoe and Hedenquist 2003). The main characteristics of the Newton
702	deposit are compared with Sillitoe and Hedenquist's (2003) description of
703	intermediate-sulfidation (IS) epithermal deposit in Table 3, and key similarities
704	include:
705	1. The Newton deposit is genetically related to calc-alkaline and esitic-rhyolitic
706	arc magmas.
707	2. The main wallrock alteration mineral at Newton is sericite.
708	3. Sulfide abundance in mineralized rocks at Newton is ~ 2 to 6%.
709	4. Key sulfide minerals are pyrite, marcasite, sphalerite, galena, and minor
710	chalcopyrite.
711	5. The main metal enrichments are Ag, Au, Cu, Zn, and Pb, with minor Mo and
712	As.
713	6. Telluride minerals locally occur as inclusions in pyrite and marcasite.
714	7. Magmatic fluids were primarily responsible for mineralization at Newton.
715	Newton differs to some extent from typical IS deposits in being dominated by
716	disseminated mineralization, whereas vein type mineralization is more common in
717	other deposits (Sillitoe and Hedenquist 2003). The disseminated mineralization style
718	at Newton might be related to the transpressional tectonic setting thought to have

719	prevailed at the time of its formation (Nelson and Colpron 2007), leading to more
720	dispersed mineralization styles. Similar disseminated IS-type mineralization is found
721	in the San Cristobal deposit in the Altiplano of Bolivia, which is interpreted to have
722	formed in a compressional tectonic setting (Lamb et al. 1997; Buchanan 2000; Sillitoe
723	and Hedenquist 2003). In contrast, IS deposits formed in extensional tectonic
724	environments tend to be vein or breccia-hosted, such as the Arcata deposit in Peru,
725	and the Fresnillo deposit in Mexico (Noble et al. 1990; Albinson et al. 2001; Sillitoe
726	and Hedenquist 2003).
727	Two other IS Au-Ag deposits of similar age and disseminated mineralization
728	style occur in the southern Stikinia terrane of central British Columbia: the
729	Blackwater and Capoose deposits (Fig. 2; Bordet et al. 2013; McClenaghan 2013).
730	The timing of magmatism and mineralization at these three deposits is similar (72 to
731	67 Ma), suggesting a pulse of transpression-related magmatism and mineralization in
732	this region in the Late Cretaceous (Andrew 1988; Lane and Schroeter 1997; Friedman
733	et al. 2001; Christie et al. 2014).
734	The Newton deposit appears to be transitional to underlying porphyry type
735	alteration (and potentially mineralization), as indicated by the presence of rare
736	hypersaline fluid inclusions in early vein stages, the local presence of potassic
737	alteration, and geophysical data (Hübert et al. in press). This is consistent with the
738	commonly observed spatial and genetic relationship between shallow IS and deeper
739	porphyry systems, such as the coupled Acupan and Antamok IS and the Ampucao
740	porphyry deposits in the Baguio district, and the Victoria IS and Far Southeast
741	porphyry deposits in the Mankayan district of the Philippines (Cooke et al. 1996,
742	2011; Chang et al. 2011).
743	

https://mc06.manuscriptcentral.com/cjes-pubs

744	Conclusions
745	The Newton epithermal deposit is hosted by a Late Cretaceous volcanoplutonic
746	complex with continental arc affinity, and consists of felsic volcanic rocks (72.1 ± 0.6
747	Ma; Amarc Resources Ltd., unpublished data, reported in McClenaghan 2013)
748	intruded by coeval quartz-feldspar porphyry (70.9 \pm 0.5 Ma; Amarc Resources Ltd.,
749	unpublished data, reported in McClenaghan 2013) and feldspar-quartz-hornblende
750	porphyry (72.1 \pm 0.5 Ma; this work) stocks and dikes, and a late diorite body (69.3 \pm
751	0.4 Ma; this work). The timing of gold mineralization was constrained by Re-Os
752	dating of molybdenite in a quartz-pyrite-molybdenite vein at 72.1 ± 0.3 Ma
753	(McClenaghan 2013). Gold is mainly present as electrum and gold-silver tellurides in
754	disseminated pyrite and minor marcasite associated with quartz-sericite alteration in
755	the felsic volcanic rocks and porphyries. Three stages of mineralization are
756	recognized: stage 1 disseminate pyrite with gold and minor quartz-pyrite \pm
757	molybdenite veins; stage 2 disseminated marcasite with gold; and stage 3
758	polymetallic-sulfide-carbonate veins (pyrite-chalcopyrite-sphalerite-arsenopyrite-
759	calcite). Stages 1 and 2 are related to quartz-sericite alteration, whereas the stage 3
760	veins cut across quartz-sericite altered rocks, and lack noticeable alteration selvedges.
761	New fluid inclusion data combined with stable isotope data from McClenaghan
762	(2013) indicate that a relatively hot and saline fluid (~313°C, ~4.8 wt.% NaCl equiv.)
763	of probable magmatic origin was likely responsible for the first stage of
764	mineralization. The coprecipitation of gold with pyrite/marcasite in the sericitized
765	wallrocks likely reflects wallrock sulfidation reactions, while lesser gold may have
766	been precipitated in rare quartz-sulfide veinlets by boiling.
767	Newton is thought to be typical of deep intermediate-sulfidation-style gold
768	deposits related to the shallow parts of porphyry systems, and there is some evidence

769	in the presence of rare hypersaline fluid inclusions and localized potassic alteration
770	for the presence of such a system at depth, although this has not been explored to
771	date.
772	
773	Acknowledgements
774	This work was funded by a Strategic Projects Grant from the Natural Sciences
775	and Engineering Research Council of Canada (STPGP413264-11) and industry
776	partners Amarc Resources Ltd., Geotech Ltd., Gerald G. Carlson, and John A.
777	Chapman. Amarc Resources Ltd. is thanked for providing access to drill cores of the
778	Newton property. We thank Diane Nicolson for her support on the Newton deposit,
779	and Ben Harding for field assistance. We also thank Martin von Dollen, Diane Caird,
780	Andy DuFrane, Robert Dokken, and Robert Creaser for their help with sample
781	preparation, XRD analysis, zircon U-Pb dating, and molybdenite Re-Os dating,
782	respectively.
783	
784	References
785	Albinson, T., Norman, D.I., Cole, D., and Chomiak, B. 2001. Controls on formation
786	of low-sulfidation epithermal deposits in Mexico: Constraints from fluid
787	inclusion and stable isotope data. Society of Economic Geology Special
788	Publication, 8: 1–32.
789	Andrew, K.P.E. 1988. Geology and genesis of the Wolf precious metal epithermal
790	prospect and the Capoose base and precious metal porphyry-style prospect,
791	Capoose Lake area, central British Columbia. MSc. thesis, University of British
792	Columbia, Vancouver, B.C.
793	Atwater, T. 1989. Plate tectonic history of the northeast Pacific and western North

794 America. In The eastern Pacific Ocean and Hawaii: Boulder, Colorado. Edited 795 by Winterer, E.L., Hussong, D.M., and Decker, R.W. Geological Society of 796 America. Geology of North America, N: 21–72. 797 Bevier, M.L. 1983. Implications of Chemical and Isotopic Composition for 798 Petrogenesis of Chilcotin Group Basalts, British Columbia. Journal of 799 Petrology, 24: 207-226. 800 Bevier, M.L. 1983. Regional stratigraphy and age of Chilcotin Group basalts, south-801 central British Columbia. Canadian Journal of Earth Sciences, 20: 515–524. 802 Briqueu, L., Bougault, H., Joron, J.L. 1984. Quantification of Nb, Ta, Ti and V 803 anomalies in magmas associated with subduction zones: petrogenetic 804 implications. Earth and Planetary Science Letters, 68: 297–308. 805 Brown, G.G., Thorpe, R.S., and Webb, P.C. 1984, The geochemical characteristics of 806 granitoids in contrasting arcs and comments on magma sources. Journal of the 807 Geological Society, 141: 413-426. 808 Bodnar, R.J., Burnham, C.W., and Sterner, S.M. 1985, Synthetic fluid inclusions in 809 natural quartz. III. Determination of phase equilibrium properties in the system 810 H₂O-NaCl to 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 49: 811 1861-1873. 812 Bodnar, R.J. 1993. Revised equation and table for determining the freezing point 813 depression of H₂O-NaCl solutions. Geochimica et Cosmochimica Acta, 57, 814 683–684. 815 Bodnar, R.J., and Vityk, M.O. 1994. Interpretation of microthermometric data for 816 H₂O-NaCl fluid inclusions. In Fluid inclusions in minerals: Methods and 817 applications. Edited by B. DeVivo and M.L. Frezzotti. Virginia Tech Press, 818 Blacksburg, VA. pp. 117–130.

819	Bordet, E., Hart, C, and McClenaghan, L. 2011. Epithermal-style Au-Ag				
820	mineralization in Cretaceous to Eocene felsic volcanic complexes, central				
821	British Columbia, western Canada. In Let's Talk Ore Deposits Proceedings of				
822	the Eleventh Biennial SGA Meeting. Edited by F. Barra, M. Reich, E. Campos,				
823	F. Tornos. Ediciones Universidad Catolica del Norte, Antofagasta, Chile. pp.				
824	714–716.				
825	Bozzo, A.T., Chen, H.S., Kass, J.R., and Barduhn, A.J. 1975. The properties of the				
826	hydrates of chlorine and carbon dioxide. Desalination, 16: 303-320.				
827	Buchanan, L.J. 2000. The geology of the San Cristobal deposit. Abstracts with				
828	Programs - Society of Mining Engineers: 60.				
829	Candela, P.A. 1992. Controls on ore metal ratios in granite-related ore systems: An				
830	experimental and computational approach. Transactions of the Royal Society of				
831	Edinburgh, Earth Sciences, 83: 317–326.				
832	Chang, Z., Hedenquist, J.W., White, N.C., Cooke, D.R., Roach, M. 2011. Exploration				
833	Tools for Linked Porphyry and Epithermal Deposits: Example from the				
834	Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines. Economic				
835	Geology, 106: 1365–1398.				
836	Christie, G., Lipiec, I.T., Simpson, R.G., Horton, J., Borntraeger, B. 2014. Technical				
837	report on feasibility study of the Blackwater Gold deposit, British Columbia.				
838	New Gold Inc. NI43–101 Report.				
839	Colpron, M., and Price, R.A. 1995. Tectonic significance of the Kootenay terrane,				
840	southeastern Canadian Cordillera: An alternative model. Geology, 23: 25–28.				
841	Colpron, M., Nelson, J.L. and Murphy, D.C. 2006. A tectonostratigraphic framework				
842	for the pericratonic terranes of the northern Canadian Cordillera. In Paleozoic				
843	Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific				
844	Margin of North America, Canadian and Alaskan Cordillera. Edited by M.				
-----	--	--	--	--	--
845	Colpron and J.L. Nelson. Geological Association of Canada Special Paper 45.				
846	pp. 1–23.				
847	Cooke, D.R., McPhail, D.C., and Bloom, M.S. 1996. Epithermal gold mineralization,				
848	Acupan, Baguio district, Philippines: Geology, mineralization, alteration, and				
849	the thermochemical environment of ore deposition. Economic Geology, 91:				
850	243–272.				
851	Cooke, D.R., Deyell, C.L., Waters, P.J., Gonzales, R.I., and Zaw, K. 2011. Evidence				
852	for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal				
853	and Porphyry Deposits of the Baguio District, Philippines. Economic Geology,				
854	106: 1399–1424.				
855	5 Diamond, L.W. 1992. Stability of CO_2 clathrate hydrate + CO, liquid + CO_2 vapour +				
856	aqueous KCI-NaCl solutions: Experimental determination and application to				
857	salinity estimates of fluid inclusions. Geochimica et Cosmochimica Acta, 56:				
858	273–280.				
859	Edwards, B.R., and Russell, J.K. 1999. Northern Cordilleran volcanic province: A				
860	northern Basin and Range. Geology, 27: 243-246.				
861	Edwards, B.R., and Russell, J.K. 2000. Distribution, nature, and origin of Neogene-				
862	Quaternary magmatism in the northern Cordilleran volcanic province, Canada.				
863	GAS bulletin, 112: 1280–1295.				
864	Einaudi, M.T., Hedenquist, J.W., and Inan, E. 2003. Sulfidation state of hydrothermal				
865	fluids: The porphyry-epithermal transition and beyond. Society of Economic				
866	Geologists Special Publication 10. pp. 285-313.				
867	Engebretson, D.C., Cox, Allan, and Gordon, R.G. 1985. Relative motions between				
868	oceanic and continental plates in the Pacific Basin. Geological Society of				

Canadian Journal of Earth Sciences

869	America, Special Paper 206, pp. 59.
870	English, J.M., and Johnston, S.T. 2004. The Laramide Orogeny: What were the
871	Driving Forces? International Geology Review, 46: 833-838.
872	Friedman, R., Diakow, L., Lane, R., and Mortensen, J. 2001. New U Pb age
873	constraints on latest Cretaceous magmatism and associated mineralization in the
874	Fawnie Range, Nechako Plateau, central British Columbia. Canadian Journal of
875	Earth Sciences, 38: 619–637.
876	Gabrielse, H. 1991. Late Paleozoic and Mesozoic terrane interactions in north-central
877	British Columbia. Canadian Journal of Earth Sciences, 28: 947–957.
878	Gabrielse, H., and Yorath, C.J. 1991. The Cordilleran orogen in Canada. Geoscience
879	Canada, 16: 67–83.
880	Gabrielse, H., Murphy, D.C., and Mortensen, J.K. 2006. Cretaceous and Cenozoic
881	dextral orogen-parallel displacements, magmatism and paleogeography, north-
882	central Canadian Cordillera. In Paleogeography of the North American
883	Cordillera: Evidence For and Against Large-Scale Displacements. Edited by
884	J.W. Haggart, J.W.H. Monger, and R.J. Enkin. Geological Association of
885	Canada, Special Paper 46, pp. 255–276.
886	Gill, J.B. 1981. Orogenic andesites and plate tectonics. New York, Springer-Verlag,
887	pp. 390.
888	Gillespie, J.M., and Heller, P.L. 1995. Beginning of foreland subsidence in the
889	Columbian-Sevier belts, southern Canada and northwest Montana. Geology, 23:
890	723–726.
891	Goldstein, R.H. 2003. Petrographic analysis of fluid inclusions. In Fluid inclusions:
892	Analysis and interpretation. Edited by I. Samson, A. Anderson, and D. Marshall.
893	Mineralogical Association of Canada, Short Course Handbook, 32: 9-53.

- 894 Goldstein, R.H., and Reynolds, T.J. 1994. Systematics of fluid inclusions in
- diagenetic minerals. Society of Economic Paleontologists and Mineralogists,
- 896 Short Course Handbook 31, p. 199.
- 897 Green, T.H., and Pearson, N.J. 1985. Experimental determination of REE partition
- 898 coefficients between amphibole and basaltic to andesitic liquids at high pressure.
- Geochimica et Cosmochimica Acta, 49: 1465–1468.
- 900 Gromet, L.P., Silver, L.T. 1983. Rare earth element distributions among minerals in a
- 901 granodiorite and their petrogenetic implications. Geochimica et Cosmochimica
- 902 Acta, 47: 925–939.
- Haas, J.L. 1971. The effect of salinity on the maximum thermal gradient of a
- 904 hydrothermal system at hydrostatic pressure. Economic Geology, 66: 940–946.
- Hanson, G. 1980. Rare earth elements in petrogenetic studies of igneous systems.

Annual Review of Earth and Planetary Sciences, 8: 371–406.

907 Harms, T. A. 1986. Structural and tectonic analysis of the Sylvester Allochthon, SW

908 McDame map area, northern British Columbia: Implications for

- paleogeography and accretion. Ph.D. thesis, University of Arizona, Tucson,
- 910 America.
- 911 Hedenquist, J.W., Arribas, A., Gonzalez-Urien, E. 2000. Exploration for epithermal
- gold deposits. Reviews in Economic Geology, 13: 245–277.
- 913 Hoskin, P.W.O. 2000. Patterns of chaos: Fractal statistics and the oscillatory
- 914 chemistry of zircon. Geochimica et Cosmochimica Acta, 64: 1905–1923.
- 915 Hübert, J., Lee, B.M., Liu, L., Unsworth, M.J., Richards, J.P., Abbassi, B., Cheng,
- 916 L.Z., Oldenburg, D.W., Legault, J.M., Rebagliati, M. Three-dimensional
- 917 imaging of a Ag-Au-rich epithermal system in British Columbia, Canada using
- 918 airborne ZTEM and ground-based magnetotelluric data. Geophysics, in press.

Canadian Journal of Earth Sciences

919	Lamb, S., Hoke, L., Kennan, L., and Dewey, J. 1997. Cenozoic evolution of the
920	Central Andes in Bolivia and northern Chile. Geological Society [London]
921	Special Publication 121, pp. 237–264.
922	Lane, R.A., and Schroeter, T.G. 1997. A review of metallic mineralization in the
923	Interior Plateau, central British Columbia. In Interior Plateau Geoscience
924	Project, Summary of Geological, Geochemical and Geophysical Studies. Edited
925	by L.J. Diakow, and J.M. Newell. BCGS Survey Branch Open File 1996-2, pp.
926	237–256.
927	Lepitre, M.E., Mortensen, J.K. Friedman, R.M., and Jordan, S.J. 1998. Geology and
928	U-Pb geochronology of intrusive rocks associated with mineralization in the
929	northern Tahtsa Lake district, west-central British Columbia. Geological
930	Fieldwork 1997, British Columbia Ministry of Energy and Mines, Paper 1998-
931	1, pp. 1–32.
932	Ludwig, K.R. 2003. Isoplot/Ex, a geochronological toolkit for Microsoft Excel,
933	Version 3.00. Berkeley Geochronology Center, Special Publication 4, pp. 1–43.
934	Lynch, G. 1995. Geochemical polarity of the Early Cretaceous Gambier Group,
935	southern Coast Belt, British Columbia. Canadian Journal of Earth Sciences, 32:
936	675–685.
937	MacIntyre, D.G., Ash, C., and Britton, J. 1994. Geological compilation, Skeena-Nass
938	area, west-central British Columbia, NTS 93E, L, M; 94D; 103G, H, I, J, P;
939	104A, B. British Columbia Ministry of Energy, Mines and Petroleum
940	Resources, Open File 1994–14.
941	Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J., and Cooney, R.T. 2005. Digital
942	geology map of British Columbia; whole province. British Columbia Ministry
943	of Energy, Mines and Petroleum Resources, Open-File 2005-01.

https://mc06.manuscriptcentral.com/cjes-pubs

- 944 McClenaghan, L. 2013. Geology and Genesis of the Newton Bulk-Tonnage Gold-
- 945 Silver Deposit, Central British Columbia. M.Sc. thesis, The University of
- 946 British Columbia, Vancouver, B.C.
- 947 McLaren, G., and Rouse, J. 1989. Geology and Geochemistry of the Taseko Lakes
- Area (NTS 092O/3, 4, 5, 6). British Columbia Ministry of Energy, Mines and
 Petroleum Resources, Open File 1989–25.
- 950 McMillan, W.J., Thompson, J.F.H., Hart, C.J.R., and Johnston, S.T. 1995. Regional
- 951 geological and tectonic setting of porphyry deposits in British Columbia and
- 952 Yukon Territory. In Porphyry deposits of the northwestern Cordillera of North
- 953 America. Edited by T.G. Schroeter. Canadian Institute of Mining, Metallurgy
- and Petroleum, Special Volume 46, pp. 40–57.
- 955 Middlemost, E.A.K. 1994. Naming materials in the magma/igneous rock system.
- Earth-Science Reviews, 37: 215–224.
- 957 Mihalasky, M.J., Bookstrom, A.A., Frost, T.P., and Ludington, S. 2011. Porphyry
- 958 Copper Assessment of British Columbia and Yukon Territory, Canada. U.S.
- 959 Geological Survey Scientific Investigations Report 2010-5090-C.
- 960 Mikucki, J.E. 1998. Hydrothermal transport and depositional processes in Archean
- 961 lode–gold systems: A review. Ore Geology Review, 13: 307–321.
- 962 Monger, J., and Price, R. 2002. The Canadian Cordillera: Geology and Tectonic
- 963 Evolution. CSEG Recorder, 2: 17–36.
- 964 Nelson, J., and Colpron, M. 2007. Tectonics and metallogeny of the British Columbia,
- 965 Yukon and Alaskan Cordillera, 1.8 Ga to the present. In Mineral Deposits of
- 966 Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the
- 967 Evolution of Geological Provinces, and Exploration Methods. Edited by W.D.
- 968 Goodfellow. Geological Association of Canada, Mineral Deposits Division,

969	Special Publication 5, pp. 755–791.
970	Naney, M.T. 1983. Phase equilibria of rock-forming ferromagnesian silicates in
971	granitic systems. American Journal of Science, 283: 993-1033.
972	Noble, D.C., Eyzaguirre, V.R., and McKee, E.H. 1990. Precious-metal mineralization
973	of Cenozoic age in the Andes of Peru. Circum-Pacific Council for Energy and
974	Mineral Resources, Earth-Science Series, 11: 207–212.
975	Nokleberg, W.J., Parfenov, L.M., Monger, J. W. H., Norton, I.O., Khanchun, A.I.,
976	Stone, D.B., Scotese, C.R., Scholl, D.W., and Fujita, K. 2000. Phanerozoic
977	Tectonic Evolution of the Circum-North Pacific. U.S. Geological survey
978	Professional Paper 1626, p. 122.
979	Nokleberg, W.J., Bundtzen, T., Eremin, R.A., Ratkin, V.V., Dawson, K.M.,
980	Shpikerman, V.V., Goryachev, N.A., Byalobzhesky, S.G., Frolov, Y.F.,
981	Khanchuck, A.I., Koch, R.D., Monger, J.W.H., Pozdeev, A.A., Rozenblum, I.S.,
982	Rodionov, S.M., Parfenov, L.M., Scotese, C.R. and Sidorov, A.A. 2005.
983	Metallogenesis and tectonics of the Russian Far East, Alaska and the Canadian
984	Cordillera. U.S. Geological Survey Professional Paper 1697, p. 397.
985	Parrish, R.R., Carr, S.D., and Parkinson, D.L. 1988. Eocene extensional tectonics and
986	geochronology of the southern Omineca Belt, British Columbia and
987	Washington. Tectonics, 7: 181–212.
988	Pearce, J.A., Harris, N.B.W., and Tindle, A.G. 1984. Trace element discrimination
989	diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,
990	25: 956-983.
991	Peccerillo, A., and Taylor, S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic
992	rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy
993	and Petrology, 58: 63–81.

- 994 Pressacco, R. 2012. Technical report on the initial mineral resource estimate for the
- 995 newton project, central British Columbia, Canada. Amarc Resources Ltd. NI43–
 996 101 report.
- Richards, J.P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit
 formation. Economic Geology, 98: 1515–1533.
- 999 Riddell, J. M. 2006. Geology of the Southern Nechako Basin NTS 92N, 92O, 93B,
- 1000 93C, 93F, 93G. British Columbia Ministry of Energy, Mines and Petroleum
- 1001 Resources, Open-File 2006–01.
- 1002 Riddell, J. 2011. Lithostratigraphic and tectonic framework of Jurassic and
- 1003 Cretaceous Intermontane sedimentary basins of south-central British Columbia.
- 1004 Canadian Journal of Earth Sciences, 48: 870–896.
- 1005 Roback, R. C., Sevigny, J. H., Walker, N. W. 1994. Tectonic setting of the Slide
- 1006 Mountain terrane, southern British Columbia. Tectonics, 13: 1242–1258.
- 1007 Roedder, E., and Bodnar, R.J. 1980. Geologic pressure determinations from fluid
- inclusion studies. Annual Review of Earth and Planetary Sciences, 8: 263–301.
- 1009 Roedder, E. 1984. Fluid inclusions. Reviews in Mineralogy, 12, p. 644.
- 1010 Rollinson, H. 1993. Using Geochemical Data. Evaluation, Presentation,
- 1011 Interpretation, p. 352.
- 1012 Seward, T.M. 1989. The hydrothermal chemistry of gold and its implications for ore
- 1013 formation: Boiling and conductive cooling as examples. In The Geology of
- 1014 Gold Deposits. Edited by R.R. Keays, W.R.H. Ramsay, D.I. Groves. The
- 1015 Perspective in 1988, Economic Geology Monograph Series, 6: 398–404.
- 1016 Seward, T.M. 1991. The hydrothermal geochemistry of gold. In Gold Metallogeny
- and Exploration. Edited by R.P. Foster, pp. 37–62.
- 1018 Sillitoe, R.H., and Hedenquist, J.W. 2003. Linkages between volcanotectonic settings,

Canadian Journal of Earth Sciences

1019	ore-fluid compositions, and epithermal precious-metal deposits. Society of
1020	Economic Geologists Special Publication 10, pp. 315-343.
1021	Sisson, T.W. 1994. Hornblende-melt trace-element partitioning measured by ion
1022	microprobe. Chemical Geology, 117: 331–344.
1023	Simonetti, A., Heaman, L.M., Hartlaub, R.P., Creaser, R.A., MacHattie, T.G., and
1024	Bohn, C. 2005. U-Pb zircon dating by laser ablation-MC-ICP-MS using a new
1025	multiple ion counting Faraday collector array. Journal of Analytical Atomic
1026	Spectrometry, 20: 677–686.
1027	Steele-MacInnis, M., Lecumberri-Sanchez, P., and Bodnar, R.J. 2012.
1028	HOKIEFLINCS_H2O-NACL: A Microsoft Excel spreadsheet for interpreting
1029	microthermometric data from fluid inclusions based on the PVTX properties of
1030	H2O-NaCl. Computers & Geosciences, 49: 334-337
1031	Sterner, S.M., Hall, D.L., and Bodnar, R.J. 1988. Synthetic fluid inclusions. V.
1032	Solubility relations in the system NaCl-KCl-H ₂ O under vapor-saturated
1033	conditions. Geochimica et Cosmochimica Acta, 52: 989–1005.
1034	Stock, J., and Molnar, P. 1988. Uncertainties and implications of the Late Cretaceous
1035	and Tertiary position of North America relative to the Farallon, Kula, and
1036	Pacific plates. Tectonics, 7: 1339–1384.
1037	Sun, S.S., and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic
1038	basalts: Implications for mantle composition and processes. Geological Society
1039	of London Special Publication, 42: 313-345.
1040	Tera, F., and Wasserburg, G.J. 1972. U-Th-Pb systematics in three Apollo 14
1041	basalts and the problem of initial Pb in lunar rocks. Earth and Planetary
1042	Science Letters, 14: 281–304.

1043 Umhoefer, P.J. and Schiarizza, P. 1996. Latest Cretaceous to early Tertiary dextral

- strike-slip faulting on the southeastern Yalakom fault system, southeastern
- 1045 Coast belt, British Columbia. Geological Society of America Bulletin, 108:
- 1046 768–785.
- 1047 Wheeler, J.O., Brookfield, A.J., Gabrielse, H., Monger, J.W.H., Tipper, H.W. and
- 1048 Woodsworth, G.J. 1991. Terrane map of the Canadian Cordillera: Geological
- 1049 Survey of Canada, Map 1713A, scale 1: 2 000000.
- 1050

1051	Figure captions
1052	Fig. 1. Terrane map of the British Columbian Cordillera, showing the location of the
1053	Newton Au deposit in the southern Stikinia terrane. Fault abbreviations: FF-Fraser
1054	fault; YF-Yalakom fault. Modified from Nelson and Colpron (2007).
1055	
1056	Fig. 2. Geological map of the British Columbian Cordillera, showing major terranes,
1057	Cretaceous to Eocene volcanic and intrusive rocks, regional faults, and Late
1058	Cretaceous-Eocene epithermal gold deposits in the Newton area. Epithermal deposit
1059	abbreviations: B-Blackwater; BD-Black Dome; C-Capoose; Cl-Clisbako; W-Wolf.
1060	Redrawn from Pressacco (2012).
1061	
1062	Fig. 3. Regional geological map of the Newton area and its surroundings. Modified
1063	from Massey et al. (2005).
1064	
1065	Fig. 4. Geological map of the Newton property. Modified from McClenaghan (2013).
1066	
1067	Fig. 5. Hand specimens of the main lithological units in the Newton deposit: (A)
1068	chlorite-epidote-altered diorite (NT067); (B) biotite-altered diorite (NT089); (C) weak
1069	propylitic-altered mafic volcanic rock (NT083); (D) quartz-sericite-altered felsic tuff
1070	with disseminated pyrite, and pyrite veinlets (NT058); (E) quartz-sericite-altered
1071	quartz-feldspar porphyry with disseminated pyrite and a quartz-pyrite veinlet (NT011);
1072	(F) quartz-sericite-altered feldspar-quartz-hornblende porphyry with disseminated
1073	marcasite, and marcasite veinlets (NT007); (G) kaolinite-altered feldspar-quartz-
1074	hornblende porphyry (NT009); (H) sandstone cut by polymetallic veins containing
1075	sphalerite, chalcopyrite, arsenopyrite, and carbonate. The carbonate on the surface is

1076 oxidized to an orange color (NT110). The scale divisions are in millimeters.

1077

- 1078 Fig. 6. Quartz-sericite alteration in the Newton volcanic and intrusive rocks (taken in
- 1079 cross-polarized light): (A) altered felsic volcanic rocks (NT014); (B) altered felsic
- 1080 flow with banded texture (NT002); (C) altered feldspar-quartz-hornblende porphyry
- 1081 (NT038); (D) altered quartz-feldspar porphyry (NT052).

- 1083 Fig. 7. Alteration in diorite (A and B taken in cross-polarized light; C and D in cross-
- 1084 polarized light): (A) sericite alteration overprinted by later chlorite alteration (NT067);
- 1085 (B) sericite alteration overprinting potassic alteration; plagioclase phenocrysts are
- 1086 replaced by secondary sericite (NT091); (C) propylitic alteration: hornblende
- 1087 phenocrysts are replaced by chlorite (NT135); (D) potassic alteration with secondary
- 1088 biotite (NT091).
- 1089
- 1090 Fig. 8. Vein and alteration paragenesis based on hand sample observations and
- 1091 petrographic studies.
- 1092
- 1093 Fig. 9. Paragenetic relationships between sulfide minerals (photomicrographs taken in
- 1094 reflected light, except core sample in C): (A) chalcopyrite, sphalerite, and pyrrhotite
- 1095 inclusions in pyrite (quartz-feldspar porphyry; NT011; stage 1 mineralization); (B)
- 1096 electrum inclusions in pyrite (quartz-feldspar porphyry; NT011; stage 1
- 1097 mineralization); (C) quartz-molybdenite-pyrite vein hosted by quartz-sericite-pyrite-
- altered felsic volcanic rock (NT060; stage 1 mineralization;); (D) minor sphalerite
- 1099 intergrown with marcasite in felsic volcanic rock (NT028; stage 2 mineralization); (E)
- 1100 chalcopyrite intergrown with sphalerite in felsic volcanic rock (NT028; stage 2

1101	mineralization); (F) polymetallic vein: pyrite, arsenopyrite, chalcopyrite, and
1102	sphalerite form a layered sequence in the vein, which is cross-cut by a late calcite vein
1103	(felsic volcanic host rock; NT062; stage 3 mineralization). Abbreviations: Apy =
1104	arsenopyrite, Cpy = chalcopyrite, Mo = molybdenite, Mrc = marcasite, Po =
1105	pyrrhotite, $Py = pyrite$, $Sp = sphalerite$.
1106	
1107	Fig. 10. Total alkali (Na ₂ O+K ₂ O) versus silica diagram (Middlemost 1994) showing
1108	the compositions of igneous rocks from the Newton area. The felsic volcanic rock and
1109	quartz-feldspar porphyry data are from McClenaghan (2013).
1110	
1111	Fig. 11. Harker diagrams showing variations of (A) TiO ₂ , (B) MgO, (C) P ₂ O ₅ , and (D)
1112	K_2O versus SiO ₂ for igneous rocks from the Newton property. Data for felsic volcanic
1113	rocks and quartz-feldspar porphyry are from McClenaghan (2013).
1114	
1115	Fig. 12. Tectonic discrimination diagrams for igneous rocks from the Newton
1116	property (after Pearce et al. 1984). Abbreviations: syn-COLG = syn-collisional
1117	granites, ORG = ocean ridge granites, VAG = volcanic arc granites, WPG = within
1118	plate granites.
1119	
1120	Fig. 13. Primitive mantle-normalized trace element diagrams for samples of (A)
1121	intrusive and (B) extrusive rocks from Newton (primitive mantle normalization values
1122	from Sun and McDonough 1989). Data for felsic volcanic rocks and quartz-feldspar
1123	porphyry are from McClenaghan (2013).
1124	
1125	Fig. 14. C1 Chondrite-normalized REE diagrams for samples of (A) intrusive and (B)

1126 extrusive rocks from Newton (normalization values from Sun and McDonough 1989).

1127 Data for felsic volcanic rocks and quartz-feldspar porphyry are from McClenaghan

1128 (2013).

1129

1130 Fig. 15. Eu anomaly vs. SiO₂ diagram for samples of igneous rock from Newton

1131 $(Eu_n/Eu^* = Eu_n / \sqrt{Sm_n^*Gd_n}).$

1132

1133 Fig. 16. Backscattered electron images of typical zircons from the feldspar-quartz-

1134 hornblende porphyry (A, NT129) and diorite (B, NT090). Zircons from the diorite are

slightly larger than from the feldspar-quartz-hornblende porphyry, and show clear

1136 magmatic oscillatory zoning from center to margin. Dark areas are small inclusions of

1137 other minerals, which were avoided during analysis.

1138

Fig. 17. U-Pb Tera-Wasserburg diagrams for zircon laser ablation ICPMS data from
the feldspar-quartz-hornblende porphyry (A; sample NT129) and diorite (B; sample
NT090). The error ellipses are 2 sigma.

1142

1143 Fig. 18. Zircon U-Pb 238 U/ 206 Pb age histogram and relative probability curve for the 1144 diorite sample (NT090).

1145

1146 Fig. 19. Transmitted light photomicrographs showing primary fluid inclusions from

1147 stage 1 mineralization: (A) type 1 fluid inclusion assemblage from a quartz-pyrite

- 1148 vein (NT049); (B) type 3 primary multi-phase inclusion (liquid-vapor-halite/opaque
- 1149 mineral) from a quartz-molybdenite-pyrite vein (NT060); (C) type 1 liquid-rich
- 1150 inclusion with type 2 vapor-rich inclusions in a primary fluid inclusion assemblage

1151	from a quartz-pyrite vein (NT049).
------	------------------------------------

- 1152
- 1153 Fig. 20. Histograms showing homogenization temperature and salinity distribution for
- type 1 fluid inclusions from quartz-pyrite (NT049) and quartz-molybdenite-pyrite
- 1155 (NT060) veins.
- 1156
- 1157 Fig. 21. Salinity versus homogenization temperature plot for inclusions from quartz-
- 1158 pyrite (NT049) and quartz-molybdenite-pyrite (NT060) veins.

Fig. 1. Terrane map of the British Columbian Cordillera, showing the location of the Newton Au deposit in the southern Stikinia terrane. Fault abbreviations: FF-Fraser fault; YF-Yalakom fault. Modified from Nelson and Colpron (2007).

Fig. 2. Geological map of the British Columbian Cordillera, showing major terranes, Cretaceous to Eocene volcanic and intrusive rocks, regional faults, and Late Cretaceous-Eocene epithermal gold deposits in the Newton area. Epithermal deposit abbreviations: B-Blackwater; BD-Black Dome; C-Capoose; Cl-Clisbako; W-Wolf. Redrawn from Pressacco (2012).

Fig. 3. Regional geological map of the Newton area and its surroundings. Modified from Massey et al. (2005).

Fig. 4. Geological map of the Newton property. Modified from McClenaghan (2013).

Fig. 5. Hand specimens of the main lithological units in the Newton deposit: (A) chlorite-epidote-altered diorite (NT067); (B) biotite-altered diorite (NT089); (C) weak propylitic-altered mafic volcanic rock (NT083); (D) quartz-sericite-altered felsic tuff with disseminated pyrite, and pyrite veinlets (NT058); (E) quartz-sericite-altered quartz-feldspar porphyry with disseminated pyrite and a quartz-pyrite veinlet (NT011); (F) quartz-sericite-altered feldspar-quartz-hornblende porphyry with disseminated marcasite, and marcasite veinlets (NT007); (G) kaolinite-altered feldspar-quartz-hornblende porphyry (NT009); (H) sandstone cut by polymetallic veins containing sphalerite, chalcopyrite, arsenopyrite, and carbonate. The carbonate on the surface is oxidized to an orange color (NT110). The scale divisions are in millimeters.

Fig. 6. Quartz-sericite alteration in the Newton volcanic and intrusive rocks (taken in cross-polarized light):
(A) altered felsic volcanic rocks (NT014); (B) altered felsic flow with banded texture (NT002); (C) altered feldspar-quartz-hornblende porphyry (NT038); (D) altered quartz-feldspar porphyry (NT052).

Fig. 7. Alteration in diorite (A and B taken in cross-polarized light; C and D in cross-polarized light): (A) sericite alteration overprinted by later chlorite alteration (NT067); (B) sericite alteration overprinting potassic alteration; plagioclase phenocrysts are replaced by secondary sericite (NT091); (C) propylitic alteration: hornblende phenocrysts are replaced by chlorite (NT135); (D) potassic alteration with secondary biotite (NT091).

Minaral	Stage 1	Stage 2	Stage 3
wineral	Dissemination	Dissemination	Veins
Quartz			
Sericite			
Pyrite			
Electrum			
Au-telluride			
Chalcopyrite	-	-	-
Marcasite			
Sphalerite	-	-	
Pyrrhotite	-		
Arsenopyrite			-
Molybdenite	_		
Calcite			

Fig. 8. Vein and alteration paragenesis based on hand sample observations and petrographic studies.

Fig. 9. Paragenetic relationships between sulfide minerals (photomicrographs taken in reflected light, except core sample in C): (A) chalcopyrite, sphalerite, and pyrrhotite inclusions in pyrite (quartz-feldspar porphyry; NT011; stage 1 mineralization); (B) electrum inclusions in pyrite (quartz-feldspar porphyry; NT011; stage 1 mineralization); (C) quartz-molybdenite-pyrite vein hosted by quartz-sericite-pyrite-altered felsic volcanic rock (NT060; stage 1 mineralization;); (D) minor sphalerite intergrown with marcasite in felsic volcanic rock (NT028; stage 2 mineralization); (E) chalcopyrite intergrown with sphalerite in felsic volcanic rock (NT028; stage 2 mineralization); (F) polymetallic vein: pyrite, arsenopyrite, chalcopyrite, and sphalerite form a layered sequence in the vein, which is cross-cut by a late calcite vein (felsic volcanic host rock; NT062; stage 3 mineralization). Abbreviations: Apy = arsenopyrite, Cpy = chalcopyrite, Mo = molybdenite, Mrc = marcasite, Po = pyrrhotite, Py = pyrite, Sp = sphalerite.

Fig. 10. Total alkali (Na2O+K2O) versus silica diagram (Middlemost, 1994) showing the compositions of igneous rocks from the Newton area. The felsic volcanic rock and quartz-feldspar porphyry data are from McClenaghan (2013).

Fig. 11. Harker diagrams showing variations of (A) TiO2, (B) MgO, (C) P2O5, and (D) K2O versus SiO2 for igneous rocks from the Newton property. Data for felsic volcanic rocks and quartz-feldspar porphyry are from McClenaghan (2013).

Fig. 12. Tectonic discrimination diagrams for igneous rocks from the Newton property (after Pearce et al., 1984). Abbreviations: syn-COLG = syn-collisional granites, ORG = ocean ridge granites, VAG = volcanic arc granites, WPG = within plate granites.

Fig. 13. Primitive mantle-normalized trace element diagrams for samples of (A) intrusive and (B) extrusive rocks from Newton (primitive mantle normalization values from Sun and McDonough, 1989). Data for felsic volcanic rocks and quartz-feldspar porphyry are from McClenaghan (2013).

Fig. 14. C1 Chondrite-normalized REE diagrams for samples of (A) intrusive and (B) extrusive rocks from Newton (normalization values from Sun and McDonough, 1989). Data for felsic volcanic rocks and quartzfeldspar porphyry are from McClenaghan (2013).

Fig. 15. Eu anomaly vs. SiO2 diagram for samples of igneous rock from Newton (Eun/Eu* = Eun / $\sqrt{$ Smn*Gdn).

Fig. 16. Backscattered electron images of typical zircons from the feldspar-quartz-hornblende porphyry (A, NT129) and diorite (B, NT090). Zircons from the diorite are slightly larger than from the feldspar-quartzhornblende porphyry, and show clear magmatic oscillatory zoning from center to margin. Dark areas are small inclusions of other minerals, which were avoided during analysis.

Fig. 17. U-Pb Tera-Wasserburg diagrams for zircon laser ablation ICPMS data from the feldspar-quartzhornblende porphyry (A; sample NT129) and diorite (B; sample NT090). The error ellipses are 2 sigma.

Fig. 18. Zircon U-Pb 238U/206Pb age histogram and relative probability curve for the diorite sample (NT090).

Fig. 19. Transmitted light photomicrographs showing primary fluid inclusions from stage 1 mineralization: (A) type 1 fluid inclusion assemblage from a quartz-pyrite vein (NT049); (B) type 3 primary multi-phase inclusion (liquid-vapor-halite/opaque mineral) from a quartz-molybdenite-pyrite vein (NT060); (C) type 1 liquid-rich inclusion with type 2 vapor-rich inclusions in a primary fluid inclusion assemblage from a quartzpyrite vein (NT049).

Fig. 20. Histograms showing homogenization temperature and salinity distribution for type 1 fluid inclusions from quartz-pyrite (NT049) and quartz-molybdenite-pyrite (NT060) veins.

Fig. 21. Salinity versus homogenization temperature plot for inclusions from quartz-pyrite (NT049) and quartz-molybdenite-pyrite (NT060) veins.

Table 1. Major and trace element analyses of igneous rock samples from the Newton gold of						
Sample ID	NT038	NT047	NT056	NT059	NT066	NT090
Rock-type	Feldspar- quartz- hornblende porphyry	Feldspar- quartz- hornblende porphyry	Diorite	Feldspar- quartz- hornblende porphyry	Diorite	Diorite
Alteration	Quartz- sericite	Quartz- sericite	Weak potassic	Quartz- sericite	Weak propylitic	Weak potassic
wt.%						
SiO ₂	69.76	66.64	64.34	65.04	61.04	59.37
Al_2O_3	14.80	14.44	15.14	13.14	15.74	15.55
Fe ₂ O ₃	3.80	2.18	6.20	8.91	6.61	6.74
CaO	0.32	3.62	3.89	0.25	3.73	3.57
MgO	0.55	0.70	2.10	0.30	2.10	2.75
Na ₂ O	0.13	1.44	3.33	0.17	3.04	3.22
K ₂ O	3.80	3.47	1.78	3.91	2.53	2.05
TiO ₂	0.25	0.23	0.64	0.21	0.65	0.72
P ₂ O ₅	0.09	0.09	0.11	0.08	0.27	0.28
MnO	0.01	0.03	0.07	0.02	0.06	0.04
LOI	4.48	5.36	1.66	6.28	4.22	4.39
Total	97.99	98.20	99.26	98.31	99.99	98.68
ррт						
Cs	2.0	2.5	3.1	0.6	1.8	2.7
T1	1.02	0.85	0.76	1.23	1.31	0.82
Rb	80	52	47	88	69	53
Ba	1069	869	1232	773	1028	924
Th	6.52	6.25	3.09	5.80	4.32	4.20
U	1.91	3.58	1.74	1.76	2.18	2.25
Nb	6.4	6.6	3.9	6.4	5.6	5.7
Та	0.61	0.62	0.26	0.59	0.37	0.42
La	18.1	15.3	10.8	18.5	20.5	19.1
Ce	33.2	29.1	22.4	32.1	37.2	37
Pr	3.79	3.52	3.05	3.72	4.97	4.74
Sr	28	108	310	26	633	611
Р	393	393	480	349	1178	1222
Nd	12.5	13.4	13	12.9	19.4	18.3
Zr	101	116	97	102	110	115
Hf	2.6	2.9	2.5	2.7	2.6	2.8
Sm	2.11	2.3	3.41	1.99	3.72	3.55
Eu	0.55	0.61	0.87	0.70	0.95	1.10
Ti	1498	1402	3824	1283	3884	4327
----	------	------	------	------	------	------
Gd	1.33	1.67	3.52	1.37	2.83	2.51
Tb	0.19	0.24	0.58	0.17	0.44	0.33
Dy	1.06	1.31	3.73	0.94	2.43	1.75
Y	5	8	22	5	13	9
Но	0.20	0.24	0.78	0.17	0.45	0.33
Er	0.59	0.70	2.25	0.51	1.23	0.91
Tm	0.10	0.11	0.34	0.08	0.18	0.13
Yb	0.72	0.78	2.29	0.59	1.24	0.81
Lu	0.12	0.13	0.35	0.11	0.20	0.13

• •			
leposit	2177100		
NT097	NT129	NT134	NT137
Feldspar- quartz- hornblende porphyry	Feldspar- quartz- hornblende porphyry	Diorite	Diorite
Ouartz-	Ouartz-	Weak	Weak
sericite	sericite	propylitic	propylitic
		1 15	1 15
66.39	62.57	56.56	65.17
13.52	14.45	15.84	15.46
4.58	4.34	7.63	6.35
2.04	2.82	4.01	4.50
0.94	1.41	3.26	1.63
1.28	3.37	2.34	3.26
5.18	2.91	3.15	1.62
0.25	0.47	0.83	0.65
0.07	0.17	0.32	0.11
0.09	0.03	0.04	0.07
5.21	5.74	5.41	1.17
99.54	98.27	99.39	99.99
2.2	2.2	5.0	1.(
2.2	2.3	<u> </u>	1.6
00	0.78	1.30	0.02
1730	1075	1620	42 846
5.88	6.00	3.46	3 10
2.82	3 36	2.44	1.72
5.5	5	5.7	3.8
0.55	0.53	0.40	0.28
21	16.7	19.4	11.2
38	30.2	39	23.8
4.43	3.62	5.04	3.22
169	467	1021	327
306	742	1397	480
15.5	13.8	20.3	13.6
92	107	103	103
2.5	2.6	2.4	2.7
2.51	2.49	3.76	3.42
0.66	0.72	1.24	0.87

1468	2799	4951	3920
1.55	1.75	2.79	3.58
0.22	0.25	0.36	0.62
1.21	1.35	1.93	3.86
6	8	9	24
0.22	0.25	0.36	0.79
0.66	0.74	0.98	2.37
0.11	0.11	0.14	0.37
0.73	0.74	0.88	2.44
0.11	0.12	0.13	0.37

					²⁰⁶ Pb/ ²³⁸ U
Sample name	²⁰⁷ Pb/ ²⁰⁶ Pb	2 s	²⁰⁶ Pb/ ²³⁸ U	2 s	age (Ma)
Feldspar-quartz-hornbler	ide nornhvrv				
NT 129 1	0.05077	0.00080	0.01121	0.00023	72
NT 129 2	0.05356	0.00154	0.01121	0.00029	72
NT 129 3	0.05106	0.00087	0.01105	0.00023	73
NT 129 4	0.05166	0.00115	0.01123	0.00023	72
NT 129 5	0.05474	0.00101	0.01113	0.00032	71
NT 129 6	0.06242	0.00234	0.01141	0.00026	73
NT 129 7	0.04871	0.00060	0.01145	0.00028	73
NT 129 8	0.06386	0.00247	0.01144	0.00026	73
NT 129 9	0.05521	0.00284	0.01118	0.00024	72
NT 129 10	0.05589	0.00183	0.01145	0.00025	73
NT 129 11	0.05312	0.00115	0.01140	0.00033	73
NT 129 12	0.05129	0.00096	0.01146	0.00030	73
NT 129 13	0.05335	0.00094	0.01131	0.00027	72
NT 129 14	0.05565	0.00136	0.01150	0.00039	74
NT_129_15	0.05043	0.00084	0.01138	0.00031	73
NT_129_16	0.05586	0.00182	0.01168	0.00034	75
NT_129_17	0.05028	0.00095	0.01178	0.00037	75
NT_129_18	0.05577	0.00155	0.01172	0.00034	75
NT_129_19	0.05741	0.00228	0.01142	0.00035	73
NT_129_20	0.05203	0.00095	0.01119	0.00031	72
NT_129_21	0.05503	0.00108	0.01125	0.00032	72
NT_129_22	0.05556	0.00141	0.01110	0.00033	71
NT_129_23	0.05731	0.00168	0.01124	0.00029	72
NT_129_24	0.04910	0.00066	0.01121	0.00032	72
NT_129_25	0.05003	0.00079	0.01130	0.00030	72
Diorite					
NT090 1	0.04870	0.00087	0.01091	0.00026	70
NT090 ²	0.04660	0.00099	0.01092	0.00031	70
NT090 ³	0.04769	0.00078	0.01101	0.00025	71
NT090_4	0.04807	0.00131	0.01084	0.00023	69
NT090_5	0.04816	0.00090	0.01097	0.00018	70
NT090_6	0.04803	0.00088	0.01075	0.00021	69
NT090_7	0.04825	0.00101	0.01080	0.00031	69
NT090_8	0.04791	0.00070	0.01078	0.00020	69

Ta	ble	2.	Ziron	U	-Pb	data	for	feld	spar-	guartz	z-hori	nblend	e por	phy	vrv	and	dio	orite	from	Newto
		-	-	-			-				-				· •/				-	

NT090_9	0.05956	0.00259	0.01104	0.00032	71
NT090_10	0.05262	0.00113	0.01097	0.00025	70
NT090_11	0.05189	0.00085	0.01079	0.00030	69
NT090_12	0.05408	0.00102	0.01105	0.00027	71
NT090_13	0.05585	0.00175	0.01074	0.00031	69
NT090_14	0.05024	0.00082	0.01098	0.00024	70
NT090_15	0.07272	0.00575	0.01104	0.00025	71
NT090_16	0.05321	0.00104	0.01066	0.00021	68
NT090_17	0.05167	0.00087	0.01078	0.00024	69
NT090_18	0.05332	0.00092	0.01070	0.00024	69
NT090_19	0.05753	0.00191	0.01082	0.00027	69
NT090_20	0.05260	0.00093	0.01072	0.00018	69
NT090_21	0.05036	0.00074	0.01108	0.00021	71

n	
	2 s
e	rror (Ma)
	_
	2
	2 1
	2
	2
	2
	2
	2
	2
	2
	2
	23
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	1
	1
	1
	∠ 1
	1

	Characteristics of intermediate sulfidation deposits (Sillitoe and Hedenquist 2003)
Genetically related volcanic rocks	Principally andesite to rhyodacite and locally rhyolite
Mineralization style	Veins and breccias, minor disseminations
Key alteration minerals	Sericite; adularia generally uncommon
Silica gangue	Vein-filling crustiform and comb quartz
Carbonate gangue	Common in veins, typically including manganiferous varieties
Other gangue	Barite and manganiferous silicates present locally
Sulfide abundance	5–>20 vol.%
Key sulfide minerals	Sphalerite, galena, tetrahedrite-tennantite, chalcopyrite
Main metals	Ag-Au, Zn, Pb, Cu
Minor metals	Mo, As, Sb

Table 3 Comparison of Newton to other intermediate-sulfidation epithermal depo

osits described by Sillitoe and Hedenquist (2003)

Characteristics of the Newton deposit
Rhyodacite to rhyolite
Disseminated
Sericite
Quartz veins are not well developed
Carbonate is only associate with stage 3
polymetallic-sulfide veins
Rare
~5–10 vol.%
Pyrite, marcasite, sphalerite, galena, and
minor chalcopyrite
Ag-Au, Zn, Pb
Mo, As

