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Mechanism design deals with the design of protocols to elicit individual preferences while

achieving some social objective (e.g., maximizing social welfare). An important property of

mechanisms is strategy-proofness, which requires that no agent can gain (or induce a more

preferred outcome) by misreporting her preferences to the mechanism. Previous results have

shown that when monetary transfer (e.g., in the form of payments) is allowed between agents

and the mechanism, the famous VCG mechanism is both strategy-proof and efficient (for social

welfare maximization).

Despite these positive results, there are still many settings where monetary transfer is diffi-

cult to implement, or even prohibited. For instance, political policies are generally determined

without payment; monetary compensation between parties that are involved in organ donation

is illegal in most countries, etc. It is natural to ask that whether it is possible to design strategy-

proof mechanisms when monetary transfer is not allowed. This line of research, referred to as

“mechanism design without payment”, has received much attention from people in economics,

political science, and more recently, computer science.

In this thesis, we study a classical embodiment of mechanism design without money called

the facility location problem: suppose the municipal government plans to build several homo-

geneous facilities according to the reported preferred locations of the residents. Each resident

would prefer one of the facilities built near his home/office (or ideal location), and the facilities
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should be built to minimize the social cost (i.e., sum of costs over all agents) or other social

objectives. We study the facility location from three perspectives: mechanism design, single-

peaked preferences and preference elicitation. We first propose a family of strategy-proof

mechanisms for multi-dimensional, multi-facility location problem, called quantile mecha-

nisms, by extending the classical generalized median mechanisms. We also show that the

quantile mechanism are approximately group strategy-proof for constrained/unconstrained fa-

cility location problems, and study the computational complexity of finding an optimal group

manipulation. Next, we study the common assumption of single-peakedness used in classical

mechanism design for facility location problems, and show that agent preferences are far from

being single-peaked in one-dimension, but approximately single-peaked in two-dimensions.

Finally, we study preference elicitation in facility location problems (along with the second

price auction), and propose a framework for analyzing the tradeoff between efficiency and

privacy.
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Chapter 1

Introduction

There are many settings where multiple self-interested agents have to make a joint decision,

e.g., choosing an outcome from a set, in which each agent has his own individual preference.

For example, a group of people may have to decide which restaurant to choose for lunch,

although each individual has his own preference for meals; the citizens of a country have to

elect a president from a set of candidates, where each voter may have a ranking over them;

the governments of different nations may have to come to an agreement on how to interact

with others, where each may hope to act for its own benefit. All these settings have something

in common, i.e., a joint decision has to be made to maximize group satisfaction, based on the

individual preferences that may conflict with each other. Such preference aggregation problems

have existed for millennia, and occur everywhere in our daily lives.

The above preference aggregation problem is a challenging task and requires knowledge

from multiple disciplines, including economics, political science, philosophy, mathematics,

computer science, etc. In this chapter, we will describe several aspects that are involved in the

process of preference aggregation, show what their limitations are, and briefly discuss how they

can be improved. The objective of this chapter is to give a high-level picture of the problems

studied in this thesis and outline the research contributions of this thesis.

1
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1.1 Preference Aggregation: An Economic Solution

In this section, we describe three aspects that are involved in preference aggregation: social

choice, game theory and preference elicitation.

1.1.1 Social Choice

Social choice, which is a theoretical framework for “analysis of combining individual opinions,

preferences, interests, or welfares to reach a collective decision or social welfare in some sense”

[Sen, 1987], plays an important role in preference aggregation. Generally speaking, social

choice blends elements of voting theory and welfare economics. While the former usually

assumes ordinal preferences, the latter uses utility functions to describe the degree or strength

of preferences.

The use of social choice methods for preference aggregation can be traced back to an-

cient times. For instance, the majority rule in which the joint decision is made based on the

opinion of the majorities, was used as a means of not allowing a minority to undo the will

of the people respecting the agreed-upon procedures in ancient Greek (around 9th-4th B.C.).

However, social choice theory did not become a social scientific discipline with sound math-

ematical foundations until 1950 with the seminal paper of Kenneth J. Arrow [1950], who in-

troduced the axiomatic method to the study of social choice. In particular, the famous Arrow’s

Impossibility Theorem shows that any social choice method that satisfies a list of seemingly

basic requirements must be dictatorial. Since then, much work in social choice theory has

focused on the possibility/impossibility results of preference aggregation methods that sat-

isfy certain desirable properties, including Pareto-efficiency, monotonicity, non-dictatorship,

non-manipulability, etc. Some landmark results include the Muller-Satterthwaite Impossibility

Theorem [Muller and Satterthwaite, 1977] and Gibbard-Satterthwaite Impossibility Theorem

[Gibbard, 1973, Satterthwaite, 1975].

While these impossibility theorems serve as negative results, they can be avoided by re-
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laxing the unrestricted preference assumption. In fact, it is natural to make certain restrictions

on the possible preferences of agents in many applications. For instance, a simple but elegant

domain restriction is single-peakedness. Roughly speaking, each individual has a single, most-

preferred point in the outcome space and outcomes become less preferred as one moves away

from that point. A typical example where such a preference restriction holds is the facility

location problem, in which some agency intends to build several homogeneous public facilities

(e.g., warehouses, libraries, etc.) and each user reports the ideal location at which she would

like the facility to be built. Many other social choice problems fit within this class. Voting

is one example: political candidates can be ordered along several dimensions (e.g., stance on

environment, health care, fiscal policy). Voters have preferences over points in this space, and

one must elect several candidates to a legislative body. Other embodiments include product

design, customer segmentation, etc. It has been shown that when individual preferences are

single-peaked, the median mechanism and its generalization [Black, 1948, Moulin, 1980, Bar-

berà et al., 1993] admits strategy-proof mechanisms, thus avoiding the Gibbard-Satterthwaite

theorem.

1.1.2 Game-Theoretic Paradigm

Social choice theory deals with the aggregation of preferences, assuming such information is

given truthfully by each individual. However, when intelligent agents interact with each other,

it is a different story. This is because in such settings, the consequences of one agent’s action

does not only depend on his own preference, but also the actions of other agents. In other

words, agents are strategic. We will refer to the setting in which intelligent agent interact with

each other as a game.

Fortunately, game theory enables us to analyse a game in a convenient way. Game theory

is “the study of mathematical models of conflict and cooperation between intelligent rational

decision-makers” [Osborne and Rubinstein, 1994]. In a game where intelligent agents interact

with each other, the concept of equilibrium is used to look for a stable state from which no
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individual will unilaterally deviate. This is because any agent that deviates from the equilibrium

while others do not will not be better off. So it is possible to predict the action taken by each

agent and the corresponding outcome induced by these joint actions.

Game theory provides a mathematical tool to analyse how intelligent agents interact. How-

ever, we still need some interaction protocol to implement the social choice function in equi-

librium, and such an interaction protocol is usually called a mechanism. A mechanism is a set

of rules defining what will happen given the selected actions of individuals. For example, in

an auction, an auction mechanism decides who will get the item, and at what price, depending

on the bids received; in an election, a voting mechanism determines who will be elected, based

on the votes of the voters; and in a matching problem, a matching mechanism assigns medical

residents to hospitals, given the declared preferences of both sides.

Mechanism design, a sub-field of game theory and microeconomics, deals with design of

protocols to elicit the preferences of self-interested agents so as to achieve a certain social

objective [Mas-Colell et al., 1995]. An important property in mechanism design is strategy-

proofness, which requires that agents have no incentive to misreport their preferences to the

mechanism. Previous work has focused on settings where agents can transfer utilities amongst

themselves in the form of payments. A typical example is the second price auction [Vickrey,

1961, Clarke, 1971, Groves, 1973], in which an item is sold to the highest bidder at the price

of the second highest bidder. It can be shown that this mechanism maximizes social welfare

and satisfies strategy-proofness, when agents have quasi-linear utilities.

However, there are also many settings where money cannot be used as a medium of com-

pensation, due to ethical and/or institutional considerations [Schummer and Vohra, 2007]. For

example, political decisions should be made without monetary transfers; monetary compen-

sation between parties that are involved in organ donation is illegal in many countries, etc.

A natural question is whether it is possible to design strategy-proof mechanisms when mon-

etary transfer is not allowed. This line of work, referred to as “mechanism design without

money”, has received much attention in economics, political science, and recently computer
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science in the past several decades [Black, 1948, Moulin, 1980, Procaccia and Tennenholtz,

2009, Schummer and Vohra, 2007].

1.1.3 Preference Elicitation

Preference elicitation is a process of assessing the individual preferences of agents, based on

which a joint group decision is made. In some settings the elicitation of individual preferences

can be seemingly trivial, e.g., in a single-item auction, the decision maker only has to know

the valuation of each bidder for the item. However, there are many other settings where the

amount of elicitation necessary to make a joint decision can be impractically large. Consider

the example of combinatorial auctions in which an agent is allowed to bid on bundles of items.

Preference elicitation in such a case may ask each agent to report her valuations for all possible

bundles (which is exponential in the number of items being sold), and may require complicated

techniques.

Methods for preference elicitation can be classified into three different categories. The first

is complete preference elicitation, which tries to elicit the full preferences of the agents, and

learn them in an efficient way [Zinkevich et al., 2003]. Complete preference elicitation is usu-

ally unnecessary and useful in settings where decisions have to be made repeatedly. Adaptive

preference elicitation focuses on gathering enough information about agents’ preferences to

make the group decision [Chajewska et al., 2000, Boutilier, 2002], and has been studied under

different settings [Parkes and Ungar, 2000, Conen and Sandholm, 2002], although worst case

results show that nearly complete information is needed in many settings [Nisan and Segal,

2006]. The third approach is decision-theoretic preference elicitation, which allows the trade-

offs between the quality of the decision made and the cost of elicitation [Blumrosen and Nisan,

2002, Hyafil and Boutilier, 2006a, 2007]. For example, at a certain stage of the elicitation

process, if the cost of extra refinement of preferences exceeds the expected improvement in

the quality of the decision, it may be better to stop elicitation, even though an optimal decision

may not be reached.
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1.2 Algorithmic Approaches and Our Contributions

With the rapid development of computer technology, computers are changing human society

dramatically. While computers help people solve problems more efficiently, they also bring

new challenges as will be introduced. In this section, we show how computer science is in-

volved in different aspects of preference aggregation and how it can be used to tackle these

challenges in this thesis.

1.2.1 Approximate Mechanism Design and Analysis

Classic work on mechanism design aims at implementing some social choice function in equi-

librium exactly. However, when it is difficult or impossible to do so, a reasonable solution

is to implement the social choice function approximately, under an appropriate approxima-

tion measure. Here, the resort to approximations is driven by two considerations. The first is

the computational difficulties that arise when optimizing the social objective, which is usually

ignored in classical mechanism design. For example, traditional approaches to mechanism de-

sign with money rely on finding the optimal allocation that maximizes social welfare. While

this is computationally trivial in a single-item auction, the problem becomes NP-complete in

combinatorial auctions [Rothkopf et al., 1998] where agents are allowed to bid on bundles of

items. Moreover, if one uses a sub-optimal allocation instead, the mechanism is in general

no longer strategy-proof when Groves payments are used. So an interesting question to ask is

whether it is possible to design computationally feasible allocation and payment schemes, such

that strategy-proofness can be guaranteed. There has been considerable amount of work on “al-

gorithmic mechanism design” in the past decade [Nisan and Ronen, 1999, 2000, Lehman et al.,

2002, Archer and Tardos, 2001, Dobzinski et al., 2006, Parkes, 2008], much of it focusing on

combinatorial domains, such as combinatorial auctions.

A second complication arises due to the incompatibility of social efficiency and strategy-

proofness. Consider the k-facility location problem for k ≥ 2: while the optimal solution is
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to cluster the agents into k clusters and choose the “median” within each cluster, such a so-

cial choice function cannot be implemented in equilibrium by any mechanism. In this case,

we have to give up efficiency to maintain strategy-proofness. Work along these lines includes

[Procaccia and Tennenholtz, 2009, Lu et al., 2009, 2010, Fotakis and Tzamos, 2010, Escoffier

et al., 2011], which tries to provide worst-case guarantees on the performance of “approxi-

mately efficient” mechanisms, and analyse the degree to which efficiency has to be sacrificed

to maintain strategy-proofness.

In this thesis, we will focus on the second form of approximation. Our first contribution in

this area is to propose a class of quantile mechanisms, a type of generalized median mechanism

[Moulin, 1980, Barberà et al., 1993, Barberà, 2010] for the multi-dimensional, multi-facility

location problem (Chapter 3). We derive several worst-case approximation ratios for social

cost and maximum load for the L1 and L2 cost models. While the performance guarantees

of such mechanisms under worst-case assumptions are quite discouraging, we also develop a

sample-based empirical framework for optimizing quantile mechanisms relative to a known

preference distribution. We use profiles sampled from this distribution to optimize quantiles

while maintaining strategy-proofness of our mechanisms. Our empirical results demonstrate

that, by exploiting probabilistic domain knowledge, we obtain strategy-proof mechanisms that

outperform mechanisms designed to guard against worst-case profiles, and give solutions ex-

tremely close to the optimum attainable with exact knowledge of agent preferences.

While quantile mechanisms are individual strategy-proof, they fail to guarantee group

strategy-proofness in multi-dimensional spaces. Intuitively, a mechanism is group strategy-

proof if any group of agents form a coalition and make a joint misreport, then there must be

some agent who is not strictly better-off. In fact, the characterization results of Barberà et

al. [1993] suggest that there is no (anonymous) non-dictatorial, group strategy-proof mech-

anisms in such a setting. However, the quantile mechanism may work “reasonably well” in

practice. Our second contribution in this area is to bound the maximum incentive for a group

of agents to misreport their preferences, assuming some form of cost function (Chapter 4). We
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provide several possibility/impossibility results with respect to individual and group strategy-

proofness in both unconstrained facility location—in which facilities can be placed at any point

in some (metric) space—and constrained facility location—in which agent preferred outcomes

may not be feasible (i.e., the feasible outcome space is constrained). We also complement

our results with empirical analysis of data from the 2002 Irish General Election and U.S. cap-

ital city locations, showing that while the probability of manipulation may remain high, the

gains and impact on social welfare are extremely small in practice (much less than worst-case

theoretical bounds).

1.2.2 Computational Social Choice

While traditional research on social choice focuses on the axiomatic properties for differ-

ent rules, their computational issues are rarely considered. For instance, while the Gibbard-

Satterthwaite Impossibility Theorem shows that it is impossible to devise a non-manipulable

rule satisfying certain desirable properties, computer science may provide tools for making

such manipulative behaviors computationally difficult (e.g., NP-hardness) to implement. This

idea was first explored in the work of Bartholdi et al. [1989b], which, together with that of

Bartholdi et al. [1989a, 1991], is broadly considered to be the starting point of Computational

Social Choice. After nearly 15 years, this groundbreaking result was followed by a number

of results on the computational complexity of manipulation in various settings [Conitzer and

Sandholm, 2003, Conitzer et al., 2007, Faliszewski et al., 2009a, Faliszewski and Procaccia,

2010].

Much like previous work, our contribution in this area is the analysis of the computational

complexity of the group manipulation problem in quantile mechanisms (Chapter 5). Specifi-

cally, focusing on the unconstrained facility location problem, we show that for single facility

location, the optimal group manipulation problem—in which the objective is to minimize the

cost over all manipulators—can be formulated as a linear program (LP) or second-order cone

program (SOCP), under theL1- andL2-norms, respectively, and hence can be solved in polyno-
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mial time; and for multi-facility location, the optimal group manipulation problem is NP-Hard

(reduction from p-median), but can be formulated as a mixed integer linear program (MILP)

or mixed integer second-order cone program (MISOCP), under the L1- and L2-norms, respec-

tively. We also show that our formulations work extremely well in practice and are scalable to

reasonably large problem size, despite the hardness result we provide.

1.2.3 Computational Aspects of Single-peakedness

Single-peakedness allows protocols such as the median mechanism to reduce the communi-

cation burden on participants in the mechanism, ensure truthful reporting, and can often ease

computational demands. While conceptually attractive, single-peakedness is a very strong as-

sumption and unlikely to hold in realistic settings, e.g., elections with thousands of voters and

more than a handful of candidates. Recent research has begun to investigate computational

methods to test single-peakednes [Escoffier et al., 2008], and to study various forms of approx-

imation (e.g., deleting voters, deleting candidates, clustering candidates, or adding additional

axes, etc.) [Escoffier et al., 2008, Faliszewski et al., 2011, Erdélyi et al., 2012, Galand et al.,

2012]. However, the extent to which these proposals for approximate single-peakedness can

further help explain actual voter preferences is unclear.

Our contributions in this area are as follows. First, we test single-peaked consistency,

and several forms of approximation used in the literature (in isolation and in combination) on

two election data sets to see if these approximations have any empirical explanatory power.

We developed a branch-and-bound algorithm to find the best single-dimensional axis given a

preference profile, i.e., the ordering of candidates for which the greatest number of voters are

single-peaked. The algorithm is easily extended to support various forms of approximation,

including voter deletion, local candidate deletion and adding new axes. While the best-axis

problem is computationally difficult, our method works well in practice. We show that voter

preferences in these elections cannot be explained by any form of approximation that are re-

cently proposed in the literature, and are far from being single-peaked. Next, we extend our
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algorithm to find the best multi-dimensional ordering to explain a preference profile. We show

that voter preferences in our data sets are approximately single-peaked in a two-dimensional

space, which suggest that a focus on multi-dimensional rather than single-dimensional models

can greatly enhance the applicability of single-peaked models in practice.

The rich literature on spatial models also bears a strong relationship to single-peaked pref-

erences [Hotelling, 1929, Hinich, 1978, Poole and Rosenthal, 1985]. Spatial models explain

voter choice by inferring the distances between voters and candidates, and typically using some

form of probabilistic choice model based on these distance [Bradley and Terry, 1952, Luce,

1959, Shepard, 1959]. While the model is more restrictive than single-peakedness in some

sense, stochastic choice allows for accommodation of “misorderings”, much like approxima-

tions in single-peaked models. We develop an alternating optimization algorithm for fitting

both voters and candidates into a latent space (combined with Plackett-Luce as the choice

model), when the voter preferences are given. Our findings show similar results to those de-

rived from the single-peaked model, namely that the two-dimensional fit is much better than

then one-dimensional fit. They also suggest that party policies plays an important role in the

electorates view of candidates.

1.2.4 Cost of Elicitation: Computation, Communication and Privacy

Much work in mechanism design assumes direct-revelation, in which agents reveal their full

preferences to the mechanism. While direct-revelation seems to be a natural way to elicit

preferences, it often elicits more information than needed to make the optimal decision, leading

to both communication and computational difficulties [Conitzer and Sandholm, 2004]. For

example, in a general combinatorial auction, an agent can report her valuations for all possible

bundles of items (which is exponential in the number of items being sold), most of which she

will not receive/win. The line of work on indirect-revelation mechanisms, commonly studied

in the settings of auctions, showed that each of these difficulties can be alleviated in some

settings [Parkes, 1999, Zinkevich et al., 2003], though not in the worst-case [Nisan and Segal,
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2006]. Direct revelation also requires a sacrifice of privacy: revealing her full preferences may

be undesirable for an agent, especially when some of that information is provably unnecessary

for computing the optimal outcome.

Previous work has considered the trade-off between communication and efficiency [Blum-

rosen and Nisan, 2002, Hyafil and Boutilier, 2007], and the trade-off between privacy and

communication [Sandholm and Brandt, 2008, Feigenbaum et al., 2010]. In our thesis, we

consider a third trade-off, that between social efficiency and privacy, and provide a general

framework for analyzing this trade-off (Chapter 7). Specifically, we consider approximately ef-

ficient mechanisms that find ε-optimal solutions to the choice problems, and show how agents’

privacy improves as one increases the degree of approximation ε. By extending the privacy ap-

proximation ratios introduced by Feigenbaum et al. [2010], we analyze the efficiency-privacy

trade-off in both second-price auctions and facility location problems (introducing new incre-

mental mechanisms for facility location along the way). We show that, both theoretically and

empirically, small sacrifices in efficiency can provide significant gains in privacy, in both the

average and worst case.

1.3 Outline of This Thesis

Generally speaking, this thesis focuses on the facility location problem, which is a typical em-

bodiment of mechanism design without money. We emphasize that facility location problems

embody a much richer class of mechanism design problems than suggested by the name. Other

problems that fit into this class of problems include voting, product configuration, political

decision making, etc. Please refer to Section 2.3 for a detailed discussion of these settings.

The thesis can be divided into three topics: mechanism design for facility location (Chapter

3-5), single-peakedness and approximation (Chapter 6) and preference elicitation (Chapter 7).

The overall structure of this thesis is illustrated in Figure 1.1.

We start by reviewing some necessary background in social choice, game theory and mech-
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Mechanism Design 
Without Money

Facility Location
Other MD w/o 

money, e.g., matching

Mechanism Design for Facility 
Location (Chapter 3-5)

Single-peakedness and 
Approximation (Chapter 6)

Preference Elicitation 
(Chapter 7)

Quantile Mechasnisms 
(Chapter 3)

Approximate Mechanism 
Design (Chapter 4)

Computational Complexity 
of Manipulation (Chapter 5)

Figure 1.1: The structure of this thesis.

anism design, single-peaked preferences, and introduce some definitions and notation used

throughout this thesis in Chapter 2. Then in the first part, we study the facility location prob-

lem from the perspective of mechanism design. Specifically,

• In Chapter 3, we propose the quantile mechanisms, a family of strategy-proof mech-

anisms for multi-dimensional, multi-facility location problems, and derive worst-case

approximation ratios for social cost and maximum load, respectively;

• In Chapter 4, we consider the constrained and unconstrained facility location problem,

providing several possibility/impossibility results with respect to individual and group

strategy-proofness. We also bound the incentive for manipulation in quantile mecha-

nisms where group strategy-proofness is not possible in general; and

• In Chapter 5, we analyze the computational complexity of the group manipulation prob-

lem in quantile mechanisms, showing that it can be solved in polynomial time in certain

cases, but that is NP-hard in others. We also provide compact linear and quadratic pro-

gramming formulations for the optimal group manipulation and analyze their solution
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empirically.

In the second part (Chapter 6), we focus on the commonly used assumption of single-

peakedness in the literature of facility location and social choice. Moreover,

• We first propose a branch-and-bound algorithm to find the best single-dimensional axis,

and extend the algorithm to support several forms of recently proposed approximations.

We show that agent preferences are far from single-peakedness in 1D, but are approxi-

mately single-peaked in 2D;

• We also study the spatial model and propose an alternating optimization algorithm to

estimate both agent and candidate positions in a same multi-dimensional space.

In the last part (Chapter 7), we address the preference elicitation problem in the facility

location (also the second price auction), and propose two incremental elicitation protocols

(English and bisection). Specifically,

• We propose a framework for analyzing the interesting trade-off between efficiency and

privacy, and provide several upper and lower bounds on the privacy approximation ratios

for different protocols.

While each of these chapters is independent, they all fit together and complement each

other. For instance, strategy-proofness of quantile mechanisms can be achieved if agent pref-

erences are single-peaked (see Chapter 3 for details). However, as we shall see in Chapter 6,

agent preferences are often not single-peaked, but may be approximately so in practice. An

interesting question is whether we can design approximately strategy-proof mechanism when

agent preferences are approximately single-peaked? In the final Chapter 8, we conclude this

thesis, talk about the connections between different chapters, and highlight some possible fu-

ture directions.



Chapter 2

Background

In this chapter, we present some necessary background to understand the the results in the

remaining chapters, and introduce some notation we use throughout in this thesis. We start

with social choice theory in Section 2.1. Then we introduce mechanism design in Section

2.2. In Section 2.3, we move on to the facility location problem—a classical embodiment of

mechanism design without money—and single-peaked preferences—an important preference

domain that admits strategy-proof mechanisms for facility location and other applications. We

also present some work on computational aspects of single-peakedness, and recent proposals

for approximate single-peakedness in Section 2.4. We also introduce the spatial theory of

voting in that section.

2.1 Social Choice Theory

Social choice deals with the aggregation of individual preferences. In this section, we start by

introducing preference relations and utility functions. Then we define social choice functions,

introducing some related properties and two impossibility theorems. Finally, we overview

some recent work on computational social choice.

14
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2.1.1 Preferences and Utility

We start by defining preference relation and utility function, and defer our definition of social

choice problem to the next section.

Suppose that a set N = {1, 2, . . . , n} of agents wants to make a joint decision (or select an

outcome) o ∈ O, where O is set of all possible outcomes. Each agent i ∈ N has a preference

over the outcome set O:

Definition 2.1 (Preference relation) A preference relation is a binary relation � over the set

of possible outcomes O.

For two outcomes o1, o2 ∈ O, o1 � o2 is interpreted as “outcome o1 is at least as preferred

as outcome o2”. For example, when the set O consists of different cuisines, Italian � French

means that Italian food is at least as preferred as French food. We use � to denote the strict

preference relation in which o1 � o2 means that o1 � o2 but o2 � o1, and use ∼ to denote

indifference in which o1 ∼ o2 means o1 � o2 and o2 � o1.

It is reasonable to assume that each agent is rational:

Definition 2.2 (Rational) A preference relation � is rational if it is complete, reflexive and

transitive, where � on a set O is complete if o1 � o2 or o2 � o1 for every two outcomes

o1, o2 ∈ O, reflexive if o � o for every outcome o ∈ O, and transitive if o1 � o3 whenever

o1 � o2 and o2 � o3 for any o1, o2, o3 ∈ O.

In other words, a rational preference relation is a weak order over the set of possible out-

comes. Such a preference is referred to as “ordinal”, which is in contrast to “cardinal” in which

the preference of the agent is specified by a utility function ui : O → R. In other words, the

cardinal properties are the numerical values associated with the outcomes, and hence the mag-

nitude of any differences in the utility measure between outcomes. Formally, we define a utility

function that is consistent with an ordinal preference � as follows:
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Definition 2.3 (Consistent Utility Function) A utility function u : O → R is consistent with

a preference relation �, when u(o1) ≥ u(o2) if and only if o1 � o2 for any two outcomes

o1, o2 ∈ O.

Note that for any given preference relation �, the utility function that can represent � is

not unique. However, under very weak condition, there always exists some utility function that

represents �. In the remainder of this thesis, we will use preference relation � or the utility

function u(·), depending on the problem being addressed.

2.1.2 Social Choice Functions and Impossibility Theorems

As mentioned above, social choice theory deals with “the combination of individual prefer-

ences to reach a collective decision”, which is usually accomplished through a social choice

function. Formally, let �i be the preference relation of agent i, and �= {�1, . . . ,�n} be the

preference profile of n agents. Also let Ri be set of all possible preference relations available

to agent i, andR =
∏

iRi, then we have:

Definition 2.4 (Deterministic social choice function) A deterministic social choice function

f is a mapping f : R → O.

In other words, a deterministic social choice function selects an outcome from the set of

possible outcomes given a preference profile. A social choice function can also be randomized

f : R → ∆(O), which defines a probability distribution over the outcome set O. Note that

give a preference profile, there are many social choice functions that can be used to determine

an outcome. We give two examples of commonly used social choice functions.

Example 2.1 (Plurality rule) The plurality rule is a voting rule in which the winner is the

candidate with the most first-place votes (assuming some tie breaking rule). Consider the

following voting problem. Four voters have to choose the president from three candidates
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{Clinton, Obama, McCain}, and their preferences are shown as follows:

Voter 1 : Clinton �1 Obama �1 McCain

Voter 2 : Obama �2 McCain �2 Clinton

Voter 3 : McCain �3 Clinton �3 Obama

Voter 4 : Obama �4 Clinton �4 McCain

If the plurality rule is used to select the president, i.e., the candidate who is ranked at top the

most time wins, and ties are broken alphabetically, then Obama will be the winner.

Example 2.2 (Borda rule) Consider the above example, but where the Borda rule is used. In

the Borda rule, the candidate that is ranked at the sth position in any vote receives a Borda

score of m− s from that vote, (where m is the total number of candidates), and the candidate

with the highest total score over all votes wins. With the above preferences, the Borda score

for Clinton, Obama and McCain are 4, 5 and 3, respectively. The Borda rule will generate a

social preference relation of Obama � Clinton � McCain, and Obama will be elected as the

president.

Traditional research on social choice deals with the axiomatic properties of the social choice

function, and provides a number of important impossibility results. An impossibility result is

one that shows certain properties cannot be simultaneously satisfied by any single social choice

function. In the remaining of this section, we will describe two important results: Muller-

Satterthwaite and Gibbard-Satterthwaite Impossibility Theorem. We first define some related

properties.

The first is Pareto efficiency, which requires that a social choice function cannot select a

dominated outcome. An outcome o is dominated by another outcome o′ if every agent prefers

o′ to o. Formally:

Definition 2.5 (Pareto efficient) A social choice function f is Pareto efficient, if for any pref-
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erence profile � with o = f(�), @o′ such that o′ �i o for all i and o′ �i∗ o for some i∗.

Monotonicity says that an outcome must remain the winner if the support for it is increased

relative to a preference profile under which it was already winning:

Definition 2.6 (Monotonicity) A social choice function f is monotonic if, for any preference

profile � with winning alternative o = f(�), and any profile �′ that is identical to � except

that o has a higher rank in the vote �′i of some voter i than it does in �i, we have o = f(�′).

We also have non-dictatorship, meaning the outcome is not dictated by a single agent:

Definition 2.7 (Non-dictatorship) Let τ(�) be the most preferred outcome in �. A social

choice function f is non-dictatorial if, @i such that τ(�i) ∈ f(�) for all �.

The Muller-Satterthwaite Theorem says that when agents preferences are unrestricted, if

a social choice function is Pareto efficient and monotonic, then it must be dictatorial. Agents

preference are said to be unrestricted if any rational preference can be held by an agent. This

result can be formally described as follows:

Theorem 2.1 (Muller-Satterthwaite Impossibility Theorem) When |O| ≥ 3 and agent pref-

erences are unrestricted, there is no social choice function that is Pareto efficient, monotonic

and non-dictatorial.

Note that the pre-criteria |O| ≥ 3 is necessary, otherwise there are social choice functions

that satisfy all these three properties (e.g., the majority rule, which selects alternatives among

two candidates which have a majority). The unrestricted preferences assumption is also critical,

otherwise the impossibility result can be avoided. We will discuss this point in Section 2.3.

Another important impossibility result in social choice theory is the Gibbard-Satterthwaite

Theorem, which says that when there are three or more outcomes and agent preferences are

unrestricted, then a unanimous social choice function is strategy-proof if and only if it is dicta-

torial. A social choice function is said to be unanimous if all agents prefer the same outcome,

then that outcome should be selected as the winner. Strategy-proofness requires that if each
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agent prefers the outcome selected given its truthful report, no matter what the reports of other

agents’ are. Formally, we have:

Definition 2.8 (Unanimous) A social choice function f is unanimous if, whenever o �i o
′ for

all o′ ∈ O and all i, then we have o ∈ f(�).

Definition 2.9 (Strategy-proof) Let �−i be the preference profile of all agents but i. A social

choice function f is strategy-proof if:

f(�i,�−i) �i f(�′i,�−i), ∀i,∀ �′i,∀ �−i

Theorem 2.2 (Gibbard-Satterthwaite Theorem) Let |O| ≥ 3 and agent preferences are un-

restricted, then a unanimous social choice function f is strategy-proof if and only if it is dicta-

torial.

Similarly, the conditions that |O| ≥ 3 and unrestricted preferences cannot be relaxed, oth-

erwise non-dictatorial and strategy-proof mechanisms exist (e.g., median mechanism and its

generalization when agents have single-peaked preferences). We will discuss this in Section

2.3 in detail.

2.1.3 Computational Aspects of Manipulation

Traditional research on social choice focuses on the axiomatic properties of different social

choice functions, however, the computational issues associated with these methods have only

been addressed recently. Initiated by Bartholdi et al. [1989b, 1989a, 1991], research began

to address problems in computational aspects of preference aggregation, and a burgeoning

area, Computational Social Choice, has been developed over the past decade. Focusing on

the computational aspects of strategy-proofness, we present some recent related work in this

section. Note that there are many other research topics in the area of computational social

choice, including computationally hard aggregation rules [Bartholdi III et al., 1989a, Conitzer,
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2006], communication requirements in social choice [Conitzer and Sandholm, 2002a, 2005,

Conitzer, 2009], distributed resource allocation [Lipton et al., 2004, Chen et al., 2013], etc.

However, as most of them are not the focus of this thesis,1 we omit the discussion but refer

readers to a survey [Brandt et al., 2015].

There has been extensive study of the manipulation problem in other social choice, espe-

cially in the context of voting. While the Gibbard-Satterthwaite impossibility theorem shows

that social choice functions that are immune to manipulation do not exist in general, Bartholdi

et al. [1989b] demonstrated that manipulation of certain voting rules can be computationally

difficult. Specifically, they show manipulating the single-transferable vote (STV) is NP-hard.

This spawned an important line of research into the complexity of various voting rules, which

collectively can be viewed as proposing the use of computational complexity as a barrier to

practical manipulation. Many existing voting rules have been proved NP-hard to manipulate,

including Copeland, ranked pairs, maximin, etc (see, for example, [Conitzer and Sandholm,

2003, Conitzer et al., 2007, Faliszewski et al., 2009a], and [Faliszewski and Procaccia, 2010]

for an excellent survey).2 Most of this work focuses on a discrete and atomic outcome space,

and the objective is to select a single winner.

Exploiting computational complexity to prevent (or reduce the odds of) manipulation is

somewhat problematic in that it focuses on worst-case scenarios, and usually assumes full

knowledge of agent preferences. However, there may still be an efficient algorithm that can

solve most “practical” instances of the manipulation problem, and if so, the computational

hardness only provides limited protection against manipulation. It would be much better if one

can show that manipulation is “usually” hard. Recent work has shown that when preferences

1An exception is the communication requirement, where people try to analyze the number of bits that have to
be transmitted to compute the outcome of a social choice function. For example, Sandholm and Brandt [2008]
showed that perfect privacy can be achieved using English protocol in the the second-price auction (see Example
2.3) at the expense of exponential communication. Feigenbaum et al. [2010] proposed a general framework
to analyze the trade-off between privacy and communication, defining several forms of privacy approximation
ratio. We address the this problem by showing that when approximation is allowed on the social choice function,
communication requirement can be further decreased. Moreover, there is a complicated four-way tradeoff between
efficiency, privacy, communication and incentives. We will talk about this more in Chapter 7.

2As NP-hardness of manipulation is not the focus in this thesis, we will omit the description of these rules.
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are single-peaked, the constructive manipulation problem—in which a set of manipulators try

to find a set of preference rankings (reports) that would make a specific candidate win—is

polynomial time solvable for many voting rules [Faliszewski et al., 2009b]. Recent work has

also studied average case manipulability (i.e., the probability that a preference profile is “eas-

ily” manipulable, assuming some distribution over preferences or preference profiles), and

shows that manipulation is often feasible both theoretically and empirically [Friedgut et al.,

2008, Isaksson et al., 2012, Conitzer and Sandholm, 2006, Procaccia and Rosenschein, 2007,

Walsh, 2009, Xia and Conitzer, 2008]. The complete information assumption has also been

challenged, and manipulation given probabilistic knowledge of other agent’s preferences has

been studied in equilibrium [Majumdar and Sen, 2004, Ángel Ballester and Rey-Biel, 2009]

and from an optimization perspective [Lu et al., 2012].

2.2 Game Theory and Mechanism Design

A commonly used assumption in social choice theory is that agents report their preferences

truthfully, which does not necessarily hold in practice. Consider the Example 2.1, in which

Obama is selected as the winner by the plurality rule if all agents report their preferences

truthfully. If voter 3 changes his vote to Clinton �3 McCain �3 Obama, then both Obama and

Clinton will be ranked first twice and Clinton will be selected the winner (assuming ties are

broken alphabetically). So voter 3 has an incentive to misreport her preference and can induce

a (personally) preferred outcome by such a misreport.

The above argument does not only hold for voter 3, but also every voter in the election. Such

strategic behavior makes it hard to predict the outcome. Fortunately, game theory provides a

mathematical framework for analyzing games in which a set of self-interested agents interact

with each other. In this section, we provide a brief introduction to game theory and various

solution concepts, and then introduce the mechanism design problem, which deals with the

design of communication protocols to implement specific social choice functions. We also
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introduce a famous family of VCG mechanisms when agents have quasi-linear utility, and

discuss other means to circumvent the Gibbard-Satterthwaite Theorem.

2.2.1 Games and Solution Concepts

A strategic game is a model used to study how self-interested agents interact with each other.

Let N be a finite set of agents, and O be a set of possible outcomes. For each agent i ∈ N ,

there is a set of possible actions Ai that can be taken by agent i, and the joint action a =∏
i∈N ai ∈ A =

∏
iAi determines an outcome (where ai ∈ Ai). An agent’s utility function

maps joint actions to real numbers, i.e., ui : A→ R. A game of complete information specifies

the utilities that each agent receives for all possible joint actions. In this setting, the utilities of

all agents are assumed to be common knowledge, and such a game is usually referred to as a

normal-form game.

However, we are more interested in settings where an agent may be uncertain about the

preferences of others. Such games are usually called games with incomplete information and

modelled as Bayesian games. A Bayesian game is similar to a normal-form game except

that instead of knowing the utilities of the others, each agent processes a (common) prior

distribution Pr(T ) from which the types of agents are drawn. Formally, we define a Bayesian

game as follows:

Definition 2.10 (Bayesian Game) A Bayesian game consists of:

• a finite set of agents N , and a set of outcomes O

• a set of types Ti for each agent i and a set of joint types T =
∏

i Ti

• a set of actions Ai available to each agent i ∈ N and a set of joint actions A =
∏

iAi

• an outcome function h : A→ O

• a joint prior distribution Pr(T ) over agent types
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• a utility function ui : O × Ti → R for each agent i ∈ N

The outcome function can also be randomized h : A → ∆(O), where ∆ is a distribution

over O. The marginal prior distributions Pr(Ti) can be different for each agent, as long as they

are commonly known to all of them.

In a Bayesian game, it is possible to analyze the action taken by each agent and predict the

outcome for the joint action, using the notions of solution concept in game theory. There are

three commonly used solution concepts for Bayesian games: dominant strategy equilibrium,

ex-post equilibrium, and Bayesian-Nash equilibrium. All these notions capture a steady state of

a Bayesian game from which no agent will unilaterally deviate if the others remain unchanged.

To define these solution concepts, we first define the strategy of an agent.

Definition 2.11 (Strategy) A strategy of agent i is a contingent plan that defines the action for

each possible type, i.e., si : Ti → Ai.

Let si ∈ Σi be the strategy of agent i, where Σi is the set of all possible strategies for agent

i. Each strategy defined above maps a single action to each possible type, and is often referred

to as a pure strategy. Alternatively, an agent can use a mixed strategy, denoted as si ∈ Pr(Σi),

which defines a probability distribution over pure strategies. We use si to denote both pure and

mixed strategies, and use ui to denote the expected utility for playing a pure/mixed strategy.

Let s = (s1, . . . , sn) be a strategy profile, and s−i = (s1, . . . , si−1, si+1, . . . , sn) be the joint

strategy of all agents except i. Also let t−i be the joint type of all agents except i. We can

define dominant strategy equilibrium as follows:

Definition 2.12 (Dominant strategy equilibrium) A strategy si is dominant for agent i if:

ui(h(si(ti), s−i(t−i)), ti) ≥ ui(h(s′i(ti), s−i(t−i)), ti), ∀s′i ∈ Σi,∀s−i ∈ Σ−i, t−i ∈ T−i

A strategy profile s = (s1, . . . , sn) is in dominant strategy equilibrium (DSE) if si is a dominant

strategy for each agent i.
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In other words, a strategy si is said to be a dominant strategy for agent i, if it maximize the

(expected) utility of agent i, no matter what strategies the other agents use or the realization of

their types. A strategy profile s is in dominant strategy equilibrium if everyone uses a dominant

strategy. Dominant strategy equilibrium is a very strong solution concept because each agent in

a game can commit to a dominant strategies without considering the strategies of other agents.

The following example shows that truthful bidding is a dominant strategy in the second price

auction:

Example 2.3 (Second price auction) Consider a second price auction (a.k.a. Vickrey auc-

tion) in which a single item is sold to the highest bidder at the second highest bid (assuming

ties are broken alphabetically). Let vi be the valuation of agent i on the item, bi(vi) be the bid

of agent i, and b′ be the highest bid from any other agent, then the utility of agent i is:

ui(bi, b
′, vi) =

 vi − b′ if bi > b′;

0 otherwise.

Remark 2.1 (DSE in second price auction) It is well known that the strategy profile in which

each agent bids her true valuation bi(vi) = vi is in DSE. In other words, it is optimal for each

agent i to bid her true valuation, no matter what the bids of other agents are. As b′ is the highest

bid from any other agent, then by case analysis, when b′ < vi it is optimal to bid bi > b′, and

when b′ ≥ vi then it is optimal to bid bi < b′. Bidding bi = vi solves both cases, and is a

dominant strategy for agent i.

One should note that a DSE does not always exists in a Bayesian game, and one may

use a weaker solution concept, e.g., ex-post equilibrium (EPE) or Bayesian-Nash equilibrium

(BNE). In an ex-post equilibrium, each agent’s action is a best response to the actions taken by

others that are dictated by their strategy, for any of their types; In a Bayesian-Nash equilibrium,

each agent chooses a strategy that maximizes the expected utility against the strategies of other

agents, given her belief about the others’ types. However, we focus on DSEs in this thesis, as
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they exist in most of the games we study here. In situations where a DSE does not exist, we look

for equilibria that are approximately dominant, i.e., the utility of each agent for committing the

corresponding strategy in the equilibrium is at most ε worse than that of committing any other

strategy, no matter what strategies the other agents uses or the realization of their types. We

will discuss this in detail in later chapters.

2.2.2 Mechanism Design and The Revelation Principle

While game theory provides a mathematical framework for analyzing the actions taken by

individual agents, and the corresponding outcomes that result in a strategic game, mechanism

design deals with the reverse problem of designing outcome rules (e.g., the mapping from

joint strategies to outcomes) such that an “optimal” outcome can be implemented under certain

solution concepts (e.g., Bayesian-Nash, ex-post or DSE). We start by defining a mechanism:

Definition 2.13 ((Deterministic) Mechanism) A (deterministic) mechanismM = (Σ1, . . . ,Σn, g)

consists of a set of strategies Σi for each agent i, and an outcome rule g :
∏

i Σi → O that

selects an outcome based on the joint strategy of the agents.

Note that the outcome rule g defined above maps each strategy profile to a single outcome,

i.e., the mechanism is deterministic. The outcome rule can also be randomized g :
∏

i Σi →

∆(O), where ∆ is the set of probability distributions over O, and such a mechanism is called

a randomized mechanism. Randomized mechanisms can can offer more flexibility as we will

see below in section 2.3.3.

A mechanism offers each agent a set of strategies, and specifies how the outcome is chosen

for each selected joint strategy. In this sense, a mechanism can be viewed as a Bayesian game,

if associated with a utility function for each agent and a prior over types. The objective of

the mechanism designer is to choose the rule g to implement some social choice function with

respect to some solution concept (e.g., DSE, EPE or BNE). A commonly used social choice

function is the social welfare maximizer, i.e., f(t) ∈ arg maxo

∑
i ui(o, ti), which provides a
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utilitarian view on the society of agents. An alternative social choice function is the minimum

welfare maximizer, i.e., f(t) ∈ arg maxo mini ui(o, ti). Formally, we define:

Definition 2.14 (Implementation) A mechanismM is said to implement a social choice func-

tion f in DSE (respectively, EPE, BNE) if there exists a DSE (respectively, EPE, BNE) s =

(s1, . . . , sn), such that g(s1(t1), . . . , sn(tn)) = f(t) for any t. In this case, we also say that f

is implementable in DSE (respectively, EPE, BNE) byM.

In other words, a mechanism is said to implement some social choice function in DSE (re-

spectively, EPE, BNE), if: 1) there exists a DSE (respectively, EPE, BNE); and 2) the outcome

chosen by the mechanism under the above equilibrium coincides with the one selected by the

social choice function.

Recall that the objective of mechanism design is to choose the outcome rule to implement

a social choice function in DSE (respectively, EPE, BNE). However, the outcome rule must

be designed carefully to deal with every possible strategy profile of the agents, which makes

the search space huge for a mechanism. The revelation principle, one of the most important

theoretical results in mechanism design, indicates that when looking for mechanisms to imple-

ment a social choice function, we can focus only on those in which each agent reveal her type

truthfully without loss of generality (or incentive-compatible ones). In other words, if some

mechanism implements a social choice function under a given solution concept, then there

exists another mechanism that implements the same social choice function under the same so-

lution concept truthfully. Before describing the revelation principle formally, we provide some

definitions.

Definition 2.15 (Direct-revelation) A mechanismM is direct-revelation if Σi = Ti for all i.

In other words, in a direct-revelation mechanism each agent reveals a type (not necessarily

her true type), and the mechanism chooses an outcome based on the revealed type profile.

An agent’s strategy is truthful if she always reports her true type, and a mechanism is

incentive compatible if the strategy profile in which all agents are truthful is a dominant strategy
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(respectively, ex-post, Bayesian-Nash) equilibrium. Formally, we have:

Definition 2.16 (Truthful) In a direct-revelation mechanism, an agent’s strategy si is said to

be truthful if si(ti) = ti.

Definition 2.17 (Incentive compatibility) A direct-revelation mechanismM is dominant strat-

egy (respectively, ex-post, Bayesian-Nash) incentive compatible if the strategy profile in which

all agents report their types truthfully is a DSE (respectively, EPE, BNE) in the game induced

by the mechanismM.

Dominant strategy incentive compatibility is usually referred to as strategy-proofness (Def-

inition 2.9), and is a very important property in mechanism design. If a mechanism is strategy-

proof, then no agent has an incentive to misreport and can reveal her true type to the mechanism

without considering the strategies of others. In addition, the induced strategy profile is a DSE.

In fact, one can check that the second price auction defined in Example 2.3 is strategy-proof.

We will return to this example in section 2.2.3.

Now we are ready to describe the revelation principle. The result was first formulated for

dominant strategy equilibria by Gibbard [1973], and later extended to Bayesian-Nash equilibria

by Green and Laffont [1977] and Myerson [1979, 1981]. However, we will describe them in a

single theorem:

Theorem 2.3 (Revelation principle) If f is a social choice function that is implementable in

DSE (respectively, EPE, BNE) by a mechanismM, then f is also truthfully implementable in

DSE (respectively, EPE, BNE) by some direct mechanismM′.

2.2.3 The Vickrey-Clarke-Groves Mechanisms

The revelation principle allows one to focus on mechanisms in which agents report their prefer-

ence truthfully, however, the Gibbard-Satterthwaite Impossibility Theorem indicates that when

there are three or more possible outcomes and agent preferences are unrestricted, a mechanism
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is strategy-proof if and only if the social choice function it implements is dictatorial. While

any dictatorial social choice function is truthfully implementable in DSE, it fails to aggregate

preferences in a reasonable way.

The Gibbard-Satterthwaite impossibility theorem serves as a negative result. However, it

also makes the strong assumption of unrestricted preferences, and can be avoided if such an as-

sumption is relaxed. In this section, we present an important line of work on mechanism design,

namely the family of Vickrey-Clarke-Groves (VCG) mechanisms, which are non-dictatorial and

strategy-proof when agents have quasi-linear preferences. VCG mechanisms allow monetary

transfer among agents, and can be used to circumvent the Gibbard-Satterthwaite Theorem in

settings like auctions. Another important domain restriction on agent preferences is single-

peakedness, which also admits non-dictatorial strategy-proof mechanisms, as will be discussed

in detail in Section 2.3.

Consider a setting in which monetary transfer is allowed among agents themselves, e.g.,

an auction. In such a setting, an outcome is composed of two parts: a “non-payment” part

determines how the outcome is chosen (e.g., the allocation of the items) and a payment part

that determines how much each agent has to pay as a function of the reported types. The utility

of each agent is quasi-linear:

Definition 2.18 (Quasi-linear utility) The utility function of agent i is quasi-linear if:

ui(o, ti) = vi(o, ti)− pi

where pi :
∏

i Ti → R is the payment of agent i, and vi(o, ti) is the valuation of agent i on

outcome o.

Now, we are ready to describe the VCG mechanisms. We start from defining a more general

class of mechanisms called the Groves mechanisms:

Definition 2.19 (Groves mechanisms) A Groves mechanism is a direct-revelation mechanism
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M = (T1, . . . , Tn, g, p1, . . . , pn) in which:

• Ti is the set of types available to agent i and

• g is an outcome rule that g(t) ∈ arg maxo

∑
i vi(o, ti), i.e., an efficient outcome and

• pi is a payment rule that pi(t) = hi(t−i) −
∑

i′ 6=i vi′(g(t), ti′), where hi is an arbitrary

function on the types of all agents but i.

The term hi(t−i) has no strategic implications and can be viewed as a constant term for

agent i since it does not depend on her type ti, and the term
∑

i′ 6=i vi′(g(t), ti′) is the sum

of valuations over all agents but i in the efficient outcome g(t). The selection of hi has a

significant impact on the money paid by the agents, and some additional properties of the

mechanism (see below).

It is well known that Groves mechanisms are efficient and strategy-proof when agents have

quasi-linear utilities [Nisan et al., 2007]. The proof is straightforward. For each agent i, the

term
∑

i′ 6=i vi′(g(t), ti′) in the payment, when added with the own valuation vi(g(t), ti), is the

totally social welfare of g(t). This means that the mechanism aligns all agents’ incentives with

the social objective of maximizing social welfare, which is exactly achieved by revealing their

types truthfully.

Among the family of Groves mechanisms, one called Clarke (pivotal) mechanism is of

special interest:

Definition 2.20 (Clarke mechanism) A Clarke mechanism is a Groves mechanism in which

hi(t−i) = maxo

∑
i′ 6=i vi′(o, ti′).

In other words, in a Clarke mechanism, the function hi(t−i) is set to be the social welfare of

the efficient outcome when agent i is removed. Such a choice of the function hi(t−i) offers the

Clarke mechanism individual rationality and no negative externalities holds. A Groves mech-

anism is individual rational if agents always prefer to participate in the mechanism. Besides
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individual rational, the Clarke mechanism is also weakly budget-balanced that it does not have

to be subsidized when another property called no single-agent effect condition is satisfied.

2.2.4 Other Possibility Results and Computational Mechanism Design

In this section, we survey some other possibility results in mechanism design (without pre-

senting in full detail). As in the above section, we only focus on the setting of quasi-linear

preferences here.

The family of Groves mechanisms characterize all mechanisms that are efficient and strategy-

proof, which follows from two results. The first one is Robert’s Theorem, which says that for

quasi-linear preferences, a social choice function is implementable in DSE if and only if it is

an affine maximizer.3 It is also easy to see that the social welfare maximizer is a special case

of an affine maximizer in which γo = 0 and ωi = 1 for all i. The second result is by Green

and Laffont [1977], who showed that to implement an affine maximizer, it is necessary to use

Groves mechanisms.

Robert’s theorem also makes a strong assumption that agent valuations (i.e., vi) are unre-

stricted, which is unrealistic as additional structure may be imposed in some specific domains.

An interesting question is whether we can put structure on agent valuations, and derive a more

general class of social choice functions that are truthfully implementable in DSE. The answer

to this question is “yes”. Lavi et at. [2003] showed that weak monotonicity4 is an exact charac-

terization of the truthful social choice functions in order-based domains. A valuation domain is

said to be order-based if the domain of agent types can be characterized by ordinal constraints

on agent valuations. The order-base domain includes, for example, the domain of combinato-

rial auctions. Saks and Yu [2005] further extended this characterization, and showed that weak

monotonicity actually characterizes truthful social choice functions in the convex valuation do-

3A social choice function f is said to be an affine maximizer if f(t) ∈ argmaxo (γo +
∑

i ωivi(o, ti)), where
γo ∈ R is an arbitrary constant and ωi ∈ R+ is the weight of agent i.

4A social choice function f is said to satisfy weak monotonicity, if whenever f(ti, t−i) = o1 and f(t′i, t−i) =
o2, then vi(o2, t

′
i)− vi(o1, t

′
i) ≥ vi(o2, ti)− vi(o1, ti).
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main.5 Convex domains subsume order-based domains and includes many practical economic

environments [Saks and Yu, 2005].

The computational issues arising from different aspects of mechanism design with payment

are also considered. A striking example is the combinatorial auctions: To apply the VCG

mechanism, one must compute the optimal allocation with all agents included, as well as, for

each agent, the optimal allocation if she is removed. However, the corresponding optimization

problem for each allocation and payment problem is NP-Hard [Rothkopf et al., 1998], and

replacing the optimal solution with an approximate one fails to guarantee strategy-proofness

of the resulting mechanism. The challenge is to design strategy-proof mechanisms that are

computationally feasible, at the same time achieve reasonably good outcomes compared to

the optimal one. This line of work, which has been referred to as “computational mechanism

design” [Nisan and Ronen, 1999], has also produced several interesting results [Lehman et al.,

2002, Nisan and Ronen, 2000, Archer and Tardos, 2001, Archer et al., 2003, Dobzinski et al.,

2006].

2.3 Facility Location and Single-peaked Preferences

The Gibbard-Satterthwaite impossibility theorem makes strong assumptions of unrestricted

preferences. However, in many real-world applications (e.g., auctions), there may be structure

in agent preferences. We have shown in Section 2.2.3 that, when payments are allowed and

agent preferences are quasi-linear, the Gibbard-Satterthwaite theorem can be escaped and VCG

mechanisms are non-dictatorial and strategy-proof.

However, there are many other settings where money cannot be used as a medium of com-

pensation. This can arise from ethical/institutional considerations: political decisions must be

made without monetary transfers; organ donations can be arranged involving multiple needy

5An agent i’s valuation domain Ti is said to be convex if for two types ti, t′i ∈ Ti, and the corresponding
utilities vi(o, ti) and vi(o, t′i) for outcome o ∈ O, then we have t′′i ∈ Ti such that vi(o, t′′i ) = λvi(o, ti) + (1 −
λ)vi(o, t

′
i),∀λ ∈ [0, 1]. Note that this restriction is on the domain of valuations, not on the utility functions.
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patients and their relatives, yet monetary compensation is illegal [Schummer and Vohra, 2007].

It is natural to ask that whether it is possible to design strategy-proof mechanisms without pay-

ments.

In this section, we address this question and describe mechanism design without money in

detail. More specifically, we illustrate with the facility location problem, a classical problem

with single-peaked preferences, and show that strategy-proof mechanisms exist in such a set-

ting. Note that we simply use “facility” as a suggestive terminology, and the results can be

generalized to many other settings, such like voting, product design, market segmentation, etc.

2.3.1 The Model

In this section, we will introduce the model of facility location problem. We start with the

simple case of single-dimensional, single-facility location, and then generalize it to the multi-

dimensional, multi-facility case.

Suppose the government wants to build a public library along a street for the use of nearby

residents. Each resident has an single, ideal location at which he/she would like the library to

be built, and her cost is the distance between her ideal and the selected location of the library.

The government asks each resident to report her ideal location, and decides where to build

the library based on the received reports. Note that, depending on the rule used to make the

joint decision, the residents may have incentives to misreport their ideals and manipulate the

outcome.

Let us define this problem more formally: Suppose we have to choose a location x to

build a single facility in some one-dimensional space O = R (or some bounded subspace

thereof). We also have a set of agents N , each with a type ti ∈ Ti determining her personal

cost ci : R× Ti → R associated with each possible location. The objective in facility location

is to select a location x ∈ R to minimize some social objective. Two of the most commonly

studied are social cost (SC) and maximum cost (MC).6 Social cost is the sum of costs over all

6Alternative terminologies corresponding to social cost and maximum cost would be utilitarianism and egali-
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agents and maximum cost is the cost of the worst agent. Formally, we have:

SC(x, t) =
∑
i

ci(x, ti) and MC(x, t) = max
i
ci(x, ti)

It is natural to assume agent preferences are single-peaked in the facility location problem.

Intuitively, this means the agent has a single “ideal” location, and its cost for any chosen loca-

tion increases as it “moves away from” this ideal. Formally, we need only a strict ordering (or

axis) on outcomes, rather than a distance metric, to define betweenness. Following other work

in the literature, we will use the preference relation �i, instead of the type and utility function,

to denote the preference of an agent i:

Definition 2.21 (One-dimensional axis) An one-dimensional axis A on O is any strict order-

ing <A of the outcomes in O.

Definition 2.22 (One-dimensional single-peaked preference) [Black, 1948] Let O be a set

of possible outcomes, and A be an one-dimensional axis on O. An agent i’s preference �i is

one-dimensional single-peaked with respect to A if:

• There is a single, most-preferred outcome τ(�i) ∈ O (his ideal location or peak), satis-

fying τ(�i) �i o, ∀o 6= τ(�i)

• For any two outcomes α, β ∈ O, α �i β whenever we have β <A α <A τ(�i) or

τ(�i) <A α <A β

A preference profile is one-dimensional single-peaked if there exist an one-dimensional axis A

such that every agent is one-dimensional single-peaked with respect to A.

The intuition is that if outcome α is “closer” to τ(�i) than β, then α should be more pre-

ferred than β. Note that the most preferred outcome is selected based on �i, in the sequel, we

will denote ti = τ(�i) for convenience. While single-peaked preferences apply naturally to

tarianism.
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ObamaClinton McCain

1
2

3

Figure 2.1: An axis and a set of agent preferences in a one-dimensional space. The preference
profile �= {�1,�2} is single-peaked with respect to the axis, however, the preference profile
�′= {�1,�2,�3} is not.

problems that involve geometric/geographic distributions of physical objects like facility loca-

tion, the concept has much broader application like voting, product design, customer segmenta-

tion, etc. The following example shows the use of one-dimensional single-peaked preferences

in a voting:

Example 2.4 (Single-peaked preferences in voting) Consider the voting example in Exam-

ple 2.1, in which O = {Obama,Clinton,McCain}, and A = Clinton <A Obama <A McCain

be an axis (as shown in Figure 2.1). The preference profile�= {�1,�2}, where�1= Clinton �1

Obama �1 McCain and �2= Obama �2 McCain �2 Clinton is single-peaked. However, the

preference profile �′= {�1,�2,�3} is not single-peaked (with respect to A). This is because

when McCain is the most preferred outcome, single-peakedness (in Definition 2.22) requires

that Obama should be at least as preferred as Clinton, which is violated in�3. In fact, one can

check that there is no axis that the preference profile �′ is single-peaked with respect to.

Note that when determining whether a preference profile is single-peaked or not, one should

test single-peakedness for all agents on every possible axis. This could be computationally

difficult since there are many axes to consider. However, the structure in preferences imposed

by single-peakedness may be used to identify the axis (or axes) efficiently. We will come back

to this point later in Section 2.4.



CHAPTER 2. BACKGROUND 35



it



Figure 2.2: Single-peaked preference in a two-dimensional space, where ti is agent i’s peak,
and outcome α is at least as preferred as outcome β.

The facility location problem can be generalized to involve multiple facilities in multiple

dimensions. We start by defining single-peakedness in multi-dimensional space:

Definition 2.23 (Multi-dimensional axis) A multi-dimensional axis Am = 〈A1, . . . , Am〉 on

O is a collection of m distinct axes, each being an one-dimensional axis on O.

Definition 2.24 (Multi-dimensional single-peaked preference) [Barberà et al., 1993] Let O

be a set of possible outcomes, and Am be a m-dimensional axis on O. An agent i’s preference

�i is m-dimensional single-peaked with respect to Am if:

• There is a single most-preferred outcome ti ∈ O

• For any two outcomes α, β ∈ O, α �i β whenever β <Ak
α <Ak

ti or ti <Ak
α <Ak

β

for all axes Ak, k ≤ m

A preference profile is multi-dimensional single-peaked if there exists a multi-dimensional axis

Am such that every agent is multi-dimensional single-peaked with respect to Am.

In other words, if an outcome α lies within the “bounding box” of ti and β, then α is at

least as preferred as β. It is similar to the one-dimensional case in that if we move further away

from i’s peak ti, then we can reach α via some path before we reach β (see Figure 2.2). Note

that this requirement does not restrict i’s relative preference for α and β if neither lies within

the other’s bounding box with respect to ti).
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In multiple facility location problems, the objective is to select a location vector x =

{x1, x2, . . . , xq} of q facilities, instead of a single facility, in an m-dimensional space Rm

(or some bounded subspace thereof). Given a location vector x, each agent i uses the loca-

tion with least cost, i.e., ci(x, ti) = minj≤q ci(xj, ti), and the objective is to select a location

vector x to minimize the social cost SC(x, t) =
∑

i ci(x, ti) or to minimize maximum cost

MC(x, t) = maxi ci(x, ti).

Facility location can be interpreted literally, and naturally models the placement of several

facilities (e.g., warehouses, libraries, etc.) in some geographic space to meet the requirement

of its users. However, many other social choice problems fit within this class. Here, we list

several typical problems:

• Voting/Representative Selection. Consider a setting in which a vote needs to be held

to select one or more representatives to a committee. A typical example is fully pro-

portional representation [Chamberlin and Courant, 1983], where voters have preferences

(generally not single-peaked, but sometimes yes, see [Betzler et al., 2011, Galand et al.,

2012, Lan and Elkind, 2013]) over candidates, and one looks for a set of candidates that

maximizes social welfare, where the utility of a voter depends on his/her most preferred

candidate in the selected set. Each candidate represents a point in a multi-dimensional

space, with each axis representing a particular issue, e.g., fiscal policy, health care return,

etc., and voter can also be a point in the same space, representing the stance of her ideal

(perhaps hypothetical) candidate. The closer a candidate is to a voter, the more preferred

that candidate is (relative to others). Modelling this as a facility location problem, voters

are agents and candidates are facilities, and the voting method should be designed to

respect voters’ desires to the greatest extent possible.

• Product Configuration/Customer Segmentation. Suppose a vendor want to launch a

family of several new, related products, each described by a multi-dimensional feature

vector. Each customer has an ideal configuration of the product, and will prefer the prod-

uct that is closest to her ideal product in the feature space. In such a setting, customers are
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agents and products are facilities, and the vendor should configure products to maximize

overall customer satisfaction.

• Political Decision Making. Consider a scenario where one or several policy decisions

have to be agreed among several parties. Each policy consists of several aspects, e.g.,

stance on the environment, health care, human right, and each party want the policy to

be made to maximize its own benefit and be close to its own stance as much as possi-

ble. Parties are agents and policy decisions are facilities, and the agreement should be

achieved to minimize the objections from all parties.

2.3.2 Characterization of Strategy-proof Mechanisms for Facility Loca-

tion

In this section, we introduce several results on the characterization of strategy-proof mech-

anisms, when agents have general/specific single-peaked preferences. While general single-

peaked preferences refer to those defined in Definition 2.22 and 2.24, specific single-peaked

preferences are more restricted than the general ones and assume some specific form of cost

function. All of them focus on the single facility case and deterministic mechanisms.

Black [1948] first studied single-peaked preferences, and showed that when agents’ pref-

erences are single-peaked, the mechanism of choosing the median among all peaks strategy-

proof. Such a mechanism is referred to as a median mechanism. Formally,

Definition 2.25 (Median mechanism) Let agents have peaks of t1, t2, . . . , tn, and assume w.l.o.g.,

that t1 ≤ . . . ≤ tn. The median mechanism that selects the median among all peaks. Specifi-

cally, if n = 2t+ 1 for some integer t, then the median mechanism chooses the (t+ 1)th peak;

if n = 2t, then the median mechanism chooses the tth peak.

The median mechanism is strategy-proof. To see why, consider the options of one agent,

say agent 1. Let h be the index of the agent whose reported peak is the median position, then

consider the following two cases: (i) If she misreports some peak t′1 ≤ th, then according to



CHAPTER 2. BACKGROUND 38

the median mechanism, the outcome is still th and she is not better off; (ii) If she misreports

some peak t′1 > th, then the median mechanism will choose a new outcome o > th. However,

recall that agent 1’s preference is single-peaked with a true peak of t1, so we have th �1 o and

she is worse off by misreporting.

One can easily check that a mechanism that chooses any order statistic is strategy-proof,

using the same reasoning above. In addition, if a mechanism always chooses a fixed location,

no matter what the reports of agents are, then such a mechanism is also strategy-proof. In

fact, all of these mechanisms mentioned above can be formulated as a generalized median

mechanism, in which the outcome is computed as the median position among the actual agents

and a set of phantom agents.

Moulin [1980] provided an important characterization result showing that the generalized

median mechanisms composes the class of all strategy-proof mechanisms, when additional

property called anonymity7 is required. Formally, we have:

Theorem 2.4 (One-dimensional generalized median mechanism) A mechanismM (with the

outcome rule g) for single-peaked preferences in a one-dimensional space is strategy-proof and

anonymous if and only if there exist n+ 1 constants b1, . . . , bn+1 ∈ R∪{−∞,+∞} such that:

g(�) = med(t1, . . . , tn, b1, . . . , bn+1) (2.1)

where med is the median function.

The “if” part in the theorem says that a generalized median mechanism is strategy-proof

and anonymous, which can be easily checked; the “only if” part shows that there is no other

mechanism, beyond the generalized median, that satisfies strategy-proofness and anonymity

simultaneously. This serves as a strong theoretical result, and indicates that we can focus on

generalized median mechanisms when strategy-proofness and anonymity is required in single-

peaked domains. Moreover, generalized median mechanisms only require that each agent re-

7A social choice function f is anonymous, if for any permutation �′ of �, we have f(�′) = f(�) for all �.
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veals her most preferred outcome, i.e., her peak, instead of her full ranking over outcomes,

which is both communicationally and computationally efficient. Here are two examples of the

generalized median mechanisms:

Example 2.5 (Leftmost mechanism) Consider the mechanism that chooses the leftmost re-

ported peak. This mechanism is strategy-proof and anonymous, and it can be interpreted as a

generalized median mechanism by setting b1 = . . . = bn = −∞ and bn+1 = +∞, where the

median in Equation (2.1) is t1, i.e., the leftmost reported peak.

Example 2.6 (Fixed location mechanism) Consider the fixed location mechanism that locates

the facility at position 0 no matter what the reports of agents are. This mechanism is strategy-

proof and anonymous, and it can be interpreted as a generalized median mechanism by setting

b1 = . . . = bn+1 = 0, where the median in Equation (2.1) is 0.

Moulin [1980] also characterized the class of strategy-proof mechanisms when anonymity

is not required. A non-anonymous mechanism can choose the outcome based on the identity

of the agents, and is much less interesting for the social choice theory. In the sequel, we will

focus only on anonymous mechanisms.

Barberà et al. [1993] generalize the result of Moulin to the multi-dimensional case, using

multi-dimensional single-peaked preferences in Definition 2.24. They provided a character-

ization result showing a mechanism is strategy-proof and anonymous in a multi-dimensional

space if and only if it is a multi-dimensional generalized median mechanism. Am-dimensional

generalized median mechanism can be decomposed into m independent one-dimensional gen-

eralized median mechanisms, with the kth mechanism determining the coordinate of the facility

on the kth dimension, for all k ≤ m. Their results can be stated in the following theorem:

Theorem 2.5 (Multi-dimensional generalized median mechanism) A mechanism for multi-

dimensional single-peaked preferences in a multi-dimensional space is strategy-proof and anony-

mous if and only if it is an m-dimensional generalized median mechanism.
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The above theorem says that when generalized to the multi-dimensional space, the multi-

dimensional generalized median mechanisms are the only mechanisms that guarantee strategy-

proofness and anonymity. Moreover, the mechanism must satisfy strong separability assump-

tion, that the kth coordinate of the facility must be only determined by the peaks on the kth

dimension, for all k ≤ m.

Besides these characterization results for general single-peaked preferences, there are some

other results for more restricted preferences and domain assumptions. Massó and Moreno de

Barreda [2011] considered the case where agents have symmetric single-peaked preferences8

in one-dimensional spaces, and showed that a mechanism is strategy-proof and anonymous for

symmetric single-peaked preferences if and only if it is a disturbed generalized median mech-

anism. The class of disturbed generalized median mechanisms is broader than the generalized

median mechanisms by allowing discontinuity in some pre-defined intervals. More specifi-

cally, if the median position (with the phantom peaks) does not fall into any interval, then the

disturbed generalized median mechanism selects that location; if the median is in the left half

of an interval, then the disturbed generalized median mechanism selects the beginning point

of the interval; if the median is in the right half of an interval, then the disturbed generalized

median mechanism selects the ending point of the interval; otherwise if the median is exactly

the midpoint, then a tie-breaking rule is used to determine the outcome.

Border and Jordan [1983] consider multi-dimensional settings where agents’ preferences

are “separable quadratic”.9 They provide a characterization result (in terms of decomposabil-

ity) similar to Theorem 2.5 that a multi-dimensional mechanism for separable quadratic pref-

8An agent i’s preference is symmetric single-peaked if ∀o1, o2 ∈ O, o1 �i o2 if and only if |ti−o1| ≤ |ti−o2|.
The symmetric single-peaked preferences are more restricted than general single-peaked preferences, as outcomes
on different sides of an agent’s peak are comparable to each other now. However, it subsume many forms of cost
functions as special cases, e.g., Euclidean distance, Manhattan distance, quadratic distance, etc.

9The separable quadric preferences on a m-dimensional space is define as follows: Let (ok, o−k) ∈ Rm

be a location in the m-dimensional space, in which ok is the coordinate of the location on the kth dimension,
and o−k is the joint coordinate of the location on other dimensions. An agent i’s preference is separable if
her cost function satisfies ci((ok, õ−k),�i) ≤ ci((o

k′
, õ−k),�i) ⇔ ci((o

k, o−k),�i) ≤ ci((o
k′
, o−k),�i), for

all k ≤ m, all ok, ok ∈ R and all õ−k, o−k ∈ Rm−1. An agent i’s preference is quadratic if ci(o,�i) =∑m
k,k′=1 akk′(ti − ok)(ti − ok

′
). So an agent i’s cost is separable quadratic if and only if akk′ = 0 for k 6= k′,

and the cost function will be ci(o,�i) =
∑

k ak((ti)k − ok)2.
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erences is strategy-proof, anonymous and unanimous if and only if it can be decomposed into

m independent mechanisms, each being strategy-proof, anonymous and unanimous in one-

dimension. In addition, a mechanism for separable quadratic preferences is strategy-proof,

anonymous and unanimous if and only if it is a generalized median mechanism with two phan-

tom peaks of −∞ and +∞. Note that as the set of separable quadratic preferences is a strict

subset of the set of single-peaked preferences, their characterization result indicates that if we

enlarge the preference domain to separable but not quadratic, we still get the same class of

mechanisms that are strategy-proof, anonymous and unanimous.10 They also show that if we

allow for non-separable but quadratic preferences, then any strategy-proof mechanism must be

dictatorial.

2.3.3 Approximate Mechanism Design Without Money

In the above section, we have introduced previous work on mechanism design for facility

location from an economic view. However, this work focuses on the case of a single facility

and the characterization of strategy-proof mechanisms. In this section, we present some work

from the perspective of computer science, and show that strategy-proofness and efficiency are

not compatible. We also describe several mechanisms, showing the degree to which efficiency

can be approximated, when strategy-proofness is required. The focus of this section is multi-

facility location, and randomized mechanisms are also allowed.

To define efficiency (and approximation), we must adopt some specific form of cost func-

tion. Note that for general single-peaked preferences, each agent i’s peak ti does not fully

determine her preferences. However, if a specific form of cost function is adopted, then her

type and cost function are fully determined by her ideal location. For this reason, we equate an

agent i’s type with her ideal point ti.

10For single-peaked preferences, Moulin’s characterization results indicates that a mechanism is strategy-proof,
anonymous and unanimous if and only if it is a generalized median mechanism with two phantom peaks of −∞
and +∞. As separable preferences is between single-peaked and separable quadratic preferences, this conclusion
comes immediately.
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Given a location vector x = (x1, . . . , xq), let the cost function of agent i be ci(x, ti) =

minj≤q ||ti − xj||2., i.e., the Euclidean distance between her peak ti and the closest facility in

x. Recall that the objective in facility location is to minimize the social cost SC =
∑

i ci(x, ti)

or maximum cost MC = maxi ci(x, ti), we can define efficiency for them as follows:

Definition 2.26 (Efficient) A mechanism M (with outcome rule g) for the facility location

problem is efficient for social cost and maximum cost minimization, if g(t) ∈ arg minx

∑
i ci(x, ti)

and g(t) ∈ arg minx maxi ci(x, ti), respectively.

Procaccia and Tennenholtz [2009] first studied the problem of approximate mechanism

design without money. They observe that minimizing social cost for single facility location

can be easily implemented by Black’s median mechanism (in Definition 2.25), however, for

two or more facilities, there is no way to satisfy strategy-proofness and efficiency simulta-

neously. They propose to achieve strategy-proofness by considering approximately efficient

mechanisms:

Definition 2.27 (Approximation ratio) A mechanism M (with outcome rule g) has an ap-

proximation ratio of ε relative to social cost and maximum cost minimization if for all t, we

have:

∑
i

ci(g(t), ti) ≤ ε ·min
x

∑
i

ci(x, ti) and max
i
ci(g(t), ti) ≤ ε ·min

x
max

i
ci(x, ti)

In other words, a mechanism has an approximation ratio of ε if the social cost (respectively,

maximum cost) it achieves in an equilibrium outcome is at most ε times the minimum social

cost (respectively, maximum cost) achieved by any location vector, for all type profiles t. Note

that we have ε ≥ 1 for a minimization problem, and say a mechanism is approximately efficient

if ε > 1.

They show that for two-facility location in a one-dimensional space, the left-right mech-

anism is group strategy-proof. A mechanism is group strategy-proof, if for any coalition of
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agents, there is no joint misreport that makes everyone strictly better off:

Definition 2.28 (Group Strategy-proof) A mechanism M (with outcome rule g) is group

strategy-proof if, for any S ⊆ N , there exists an agent i ∈ S such that:

ci(g(tS, t−S), ti) ≤ ci(g(t′S, t−S), ti), ∀t′S,∀t−S

Theorem 2.6 (Left-right mechanism) Let t = (t1, t2, . . . , tn) be the ideal location profile. In

addition, denote the leftmost location in t by lt(t) = mini ti, and the rightmost location by

rt(t) = maxi ti. The left-right mechanism, which locates the two facilities at lt(t) and rt(t)

is group strategy-proof and has an approximation ratio of (n − 2) for social cost, and 2 for

maximum cost for one-dimensional, two-facility location problem.

In other words, the mechanism of locating the facilities at the leftmost and rightmost peaks

is group strategy-proof and has a bounded approximation ratio. They also provide some lower

bounds: for social cost minimization, there is no deterministic strategy-proof mechanism with

an approximation ratio less than 3/2 (this lower bound is improved by Lu et al. [2010] to (n−

1)/2); for maximum cost minimization, there is no deterministic strategy-proof mechanism

can give an approximation ratio smaller than 2.

An interesting observation is that by using randomization, one can allow for a broader class

of mechanisms, and achieve better performances. Procaccia and Tennenholtz [2009] provided

a randomized mechanism with an approximation ratio of 5/3, breaking the lower bound of 2

for deterministic mechanisms. As maximum cost is not the focus in this thesis, we will omit

further discussion.

Lu et al. [2010] also studied the two facility location problem in multi-dimensional spaces.

They first proved a lower bound of (n− 1)/2 for social cost, which confirms the conjecture of

Procaccia and Tennenholtz [2009]. This linear lower bound (in the number of agents) says that

there is no deterministic mechanism that guarantees an approximation ratio less than (n−1)/2,

implying that the left-right mechanism is asymptotically optimal. Another contribution of their
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paper is the randomized proportional mechanism with a constant approximation ratio for two-

facility location problem. The mechanism locates the first facility at the position of some

agent uniformly, and locates the second facility at the position of each agent with a probability

proportional to the distance between that agents and the first facility. They showed that the

proportional mechanism is strategy-proof, and has a constant approximation ratio of 4.

When moving to the case of more than two facilities, things are not easy. As far as we know,

no previous work has proposed any strategy-proof mechanism with bounded approximation

ratio for general multi-facility location problems in multi-dimensional space. Here, we discuss

two results that consider the problem in restricted settings.

Fotakis and Tzamos [2010] considered winner-imposing mechanisms for multi-facility lo-

cation in multi-dimensional spaces. Winner-imposing mechanisms only locate facilities among

the reported locations from agents, and the agents whose reports are selected for placing facil-

ities (or the winners) are only allowed to use the facilities located at their reports. Formally,

Definition 2.29 (Winner-imposing) Given an ideal location profile t, let P (t) be the set of

locations of all facilities, and Pi(t) be the set of locations of facilities available to agent i. A

mechanism is non-imposing if P (t) = Pi(t), ∀i. A mechanism is winner-imposing if ti ∈ P (t)

implies Pi = {ti}.

Winner-imposing mechanisms seem reasonable in the sense that agents should be “respon-

sible” for their reports, especially when positive results for non-imposing mechanisms are

unknown. They showed that the winner-imposing version of the proportional mechanism is

strategy-proof and has an approximation ratio of 4q for social cost, where q is the number of

facilities to be located.

Escoffier et al. [2011] studied non-imposing mechanisms in multi-dimensional spaces, but

in a very restricted setting where the number of agents is exactly one more than the number of

facilities, i.e., q = n−1. They proposed the inverse proportional mechanism, which locates the
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facilities at the position of all agents but i with probability proportional to the inverse distance

between agent i and the closest facility located so far, and provided an approximation ratio of

n/2 and n for social cost and maximum cost, respectively. They also provide several lower

bounds: for social cost, no deterministic mechanism has an approximation ratio less than 3 and

no randomized mechanism has an approximation ratio less than 1.055; for maximum cost, no

deterministic mechanism has an approximation ratio less than 2.

2.4 Computational Aspects of Single-peakedness

In above sections, we have presented some work on mechanism design, assuming agent pref-

erences are single-peaked. In addition, the axis on which the candidates (or outcomes) are

positioned is also assumed to be known in advance. However, in many scenarios, whether

agent preferences are single-peaked, and if so, the axis on which the candidates are positioned,

is partially or fully unknown, and these questions must be answered before aggregating indi-

vidual preferences. Recent research has begun to investigate computational methods to test the

single-peakedness of a profile [Bartholdi and Trick, 1986, Escoffier et al., 2008], and various

forms of approximation (e.g., by deleting outlier candidates, clustering candidates, deleting

voters, or adding additional axes) [Escoffier et al., 2008, Faliszewski et al., 2011, Erdélyi et al.,

2012, Galand et al., 2012], i.e., determining whether, given the agent preferences on a set

of candidates, these preferences are (approximately) single-peaked with respect to some axis

(which is usually referred to as single-peaked consistency), and if so, how one of the possible

axes can be identified.

In this section, we discuss some recent approaches to this problem. We first present some

recent work on determining single-peaked consistency, and then introduce several recently

proposed approximation of single-peakedness, and the corresponding consistency problem.
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2.4.1 Single-peaked Consistency

Given a preference profile, the single-peaked consistency problem is to determine whether

there exists an axis with respect to which the preference profile is single-peaked. Following

other work in the literature, we assume that the outcome (candidate) set is a finite set of C =

{1, 2, . . . , c}, and each preference relation �i is an (strict or non-strict) ordering on C.

Definition 2.30 (Single-peaked consistency) A preference profile �= (�1,�2, . . . ,�n) on a

finite set C is single-peaked consistent if there exists an axis A (or a strict ordering <A) such

that �i is single-peaked with respect to A for all i ≤ n.

The single-peaked consistency problem for a strict preference profile was first considered

by Bartholdi et al. [1986] (as well as the problem of determining whether a profile is sin-

gle peaked with respect to a tree [Trick, 1989], which is weaker than single-peakedness with

respect to an axis). A preference profile �= {�1,�2, . . . ,�n} is strict if each preference

relation �i is a strict preference relation, i.e., a total ordering without ties. They give an al-

gorithm whose running time is O(nc2), where n and c are the number of agents (voters) and

candidates, respectively. Escoffier et al. [2008] considered the same problem, and developed

a more efficient algorithm with a running time of O(nc).11 Their algorithm exploits the fact

that candidates ranked last in any voter’s ranking must lie at the extreme points of the axis, and

build an axis that is compatible with the preference profile in an “outside-in” fashion. More

specifically, the algorithm proceeds by placing one or two last-ranked candidates that have not

yet been placed at each step, and is repeated until all candidates have been placed (in which

case we have an axis A) or a contradiction with the preference profile has been found.

Recently, Lackner [2014] studied the single-peaked consistency problem for a non-strict

preference profile. A preference profile �= {�1,�2, . . . ,�n} is non-strict if each preference

relation �i is a weak ordering over the set C, i.e., a total ordering with ties. He showed that

when the preference profile contains at least one strict preference relation, then single-peaked

11Thanks to Jérôme Lang, who pointed out that a similar algorithm (up to minor details) was already published
in a paper by Doignon and Falmagne [1994].
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consistency problem for a non-strict preference profile can be solved in O(nc) time (where

n and c is the number of agents and candidates, respectively), although the general problem

remains open. He also provides a polynomial algorithm with a running time of O(nc2) for an

arbitrary top order preference profile, where a preference relation is said to be top-ordered if a

voter ranks only her t most-preferred candidates, where 1 ≤ t ≤ c− 2.

The consistency problem has also been studied for several recent notions of approximate

single-peakedness, which we will discuss below.

2.4.2 Approximate Single-peakedness

While single-peakedness is a powerful concept, preference profiles are unlikely to be single-

peaked in practice, especially as the number of voters or candidates becomes large.12 Sev-

eral forms of approximate single-peakedness have been proposed recently that allow limited

violations of the constraints imposed by single-peakedness. We now outline some of these.

Following this work, we assume that the preference profile �= {�1,�2, . . . ,�n} is strict.

Several approximation methods attempt to find some minimal change to the profile that

would render it single-peaked. Faliszewski et al. [2011] consider the removal of maverick

voters to render a profile single-peaked (e.g., perhaps certain voters are “irrational” in their

declared preferences). The aim is to delete as few mavericks as possible, which measures the

quality of the approximation.

Definition 2.31 (k-Maverick) A strict preference profile � is k-maverick single-peaked if a

profile �′ obtained by removing at most k voters from � is single-peaked.

Erdélyi et al. [2012] consider local candidate deletion (LCD), allowing the deletion of

misordered candidates from each voter’s preference—the notion is “local” since different can-

didates can be deleted from each �i. The goal is to minimize the (local) number of candidates

12In problems defined on metric spaces, such as facility location [Procaccia and Tennenholtz, 2009, Lu et al.,
2010, Escoffier et al., 2011, Dokow et al., 2012] single-peakedness is more likely to hold, but even then may be
compromised by considerations apart from distance.
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deleted.

Definition 2.32 (k-Local Candidate Deletion) A strict preference profile � is k-local candi-

date deletion (k-LCD) single-peaked if a profile �′ obtained by removing at most k candidates

from each �i is single-peaked.

One can also approximate single-peakedness by allowing multiple axes, where each voter

must be single-peaked with respect to at least one of these axes:

Definition 2.33 (k-Additional Axis) A strict preference profile � is k-additional axis (k-AA)

single-peaked if there are k + 1 axes A1, . . . , Ak+1 such �i is single-peaked w.r.t. at least one

axis, ∀i ∈ N .

It is important to note that k-AA single-peakedness, while it implies k + 1-dimensional

single-peakedness, is not equivalent to it. It imposes the stringent requirement that each

voter be single-peaked with respect to one of the axes, something not needed in true multi-

dimensional models.

Several other notions of approximate single-peaked have also been proposed, but these

are somewhat weaker than those above, so we do not investigate them. Among these are

k-Dodgson [Faliszewski et al., 2011], which allows performing at most k swaps of adjacent

candidates in each voter’s ranking. k-LCD is at least as powerful, since deleting a candidate

is at least effective as swapping two candidates [Erdélyi et al., 2012]. Another is clustered

single-peakedness [Galand et al., 2012], which allows groups of candidates to be clustered and

requires single-peakedness with respect to such clusters, with the aim of minimizing maximum

cluster size. k-LCD (indeed “global” candidate deletion) can simulate its effects (though their

quality measures are somewhat different).

The consistency problem for these notions has also been studied. Formally, we define:

Definition 2.34 (Approximately single-peaked consistency) For X∈ {Maverick, Local Can-

didate Deletion, Additional Axis}, the decision problem for approximately single-peaked con-
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sistency can be defined as follows: given a strict preference profile �= {�1,�2, . . . ,�n} on

a finite set of C and a positive integer k, is � k-X single-peaked consistent?

Erdélyi et al. [2012] showed that these decision problems are NP-complete. We will state

the theorem formally as follows without further explanation:

Theorem 2.7 The single-peaked consistency problem for Maverick, Local candidate deletion

and additional axis are all NP-complete.

2.4.3 Spatial Theory of Voting

The main criticism of single-peaked preferences is that the constraints it imposes on agent

preferences are too loose, since outcomes are comparable to each other only if the betweenness

relationship (with respect to the peak) holds. For instance, in Example 2.4 where the axis is

Clinton <A Obama <A McCain, knowing Obama is the peak will not determine a voter’s

preference on Clinton and McCain even it is single-peaked. Such restrictions are even looser

in multi-dimensional settings.

A more restricted model is the spatial model, in which both voters and candidates are rep-

resented by points in some single- or multi-dimensional space, and voter costs are computed as

a function of some distance measure between themselves and the candidates. Each dimension

can be interpreted as a specific issue (e.g., environment, health care or fiscal policy), and each

voter’s and candidate’s location can be interpreted as her stance on these issues. The spatial

model assumes that each voter recognizes her own stance, evaluates all possible candidates,

and casts her vote according to such evaluations. A typical example is where for each agent,

the most preferred candidate is the one closest to her own stance, the second most preferred

candidate is the one second closest, and so on. Formally, let N = {1, . . . , n} be a set of voters

and C = {1, . . . , c} be a set of candidate. A spatial model assumes that each agent i has a

position ti ∈ Rm and each candidate j has a position cj ∈ Rm, and let d(ti, cj) be the distance

between agent i and candidate j under some distance measure. Possible distance measures
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can be L1, L2 or squared Euclidean. For each agent i, the preference �i over C is computed

according to the distances between himself and the candidates, and a preference profile � is a

preference vector that �= {�1, . . . ,�n}.

The above model is deterministic in which the rank position of each candidate in a vote

is computed deterministically according to the distance between the voter and that candidate.

An alternative is a stochastic model in which the rank position of each candidate is a random

variable such that the closer a candidate is to a voter, the higher the probability that candidate

is more preferred. Popular stochastic choice model includes the Bradley-Terry model [Bradley

and Terry, 1952] and the Plackett-Luce model [Plackett, 1975, Luce, 1959].

Plackett-Luce Model In this thesis, we focus on the Plackett-Luce model [Plackett, 1975,

Luce, 1959]. Plackett-Luce is a popular stochastic choice model for comparisons involving

more than two candidates, and has been widely used in horse racing [Plackett, 1975], document

ranking [Cao et al., 2007], electorates modeling [Gormley and Murphy, 2007], etc. This model

is known as a multi-stage model, in which the voter keeps choosing the next most preferred

candidate from the set of available candidates every time until all candidates have been selected.

Formally, the model is parametrized by a vector bi for each agent i:

bi = (bi1, bi2, . . . , bic)

where
∑c

j=1 bij = 1, ∀i ∈ N . An intuitive explanation of bij is the probability that agent

i chooses candidate j as the most preferred one in her ranking. However, as we will see

shortly that the Plackett-Luce is a multi-stage model and bij can be interpreted as the relative

probability of choosing candidate j over any other candidates in the whole ranking subject to

the normalization constraints.

It is reasonable to assume that the probability of a voter choosing a candidate in the first

position is a decreasing function of the distance between that voter and candidate in the space.

A popular form is some exponentially decreasing function of the distance, in which the proba-
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Figure 2.3: The relationship between single-peaked preferences and the spatial model.

bility of bij is computed as:

bij =
exp{−d(ti, cj)}∑c

j′=1 exp{−d(ti, cj′)}

where exp{} is the exponential function with the base of constant e, and d(ti, cj) =
∑m

k=1(tki −

ckj )2 is the squared Euclidean distance between agent i and candidate j.

At each stage, the values of bij are normalized subject to the constraints that the candidates

already chosen are excluded from the vector bi (i.e., set bij = 0 for those js who have been

ranked). Assuming voters cast their vote independently, we can compute the probability that

a preference profile � is correct under the Plackett-Luce model with the parameter vector

b = (b1, b2, . . . , bn). Formally, we have:

Pr(� | b) =
n∏

i=1

c∏
j=1

bij∑
j�ij′

bij′
(2.2)

where the operator �i means as least as preferred to. The denominator is the sum of prob-

abilities over all candidates that are at least as preferred to j by agent i, which is used as a

normalization factor.

We will end this section by discussing the relationship between single-peaked preferences
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and spatial model (as shown in in Figure 2.3). The single-peaked preferences do not have

to be defined over a metric space, while the spatial model is distance-based; single-peaked

preferences require that the relative preference over two candidates are “deterministic” if the

betweenness relationship occurs, while the rank position of each candidate in the spatial model

is a random variable. In this sense, the spatial model (with stochastic choice model) can be

viewed as an approximation of single-peakedness, and if deterministic choice model is used, it

becomes a special case of single-peaked preference (e.g., the L1- or L2-cost).



Chapter 3

Quantile Mechanisms

3.1 Introduction

When agent preferences are single-peaked, previous work has shown that choosing a single

alternative (e.g., a single facility) can be accomplished in a strategy-proof fashion using the

well-known median mechanism [Black, 1948] and its generalizations [Moulin, 1980, Barberà,

2010]. Such models are used frequently for political choice, facility location, product design,

customer segmentation, and related tasks, as we discussed in section 2.3.1.

Unfortunately, such mechanisms are efficient (e.g., with respect to social cost) only in very

limited circumstances. Furthermore, extending these mechanisms to allow the choice of mul-

tiple alternatives (e.g., multiple facilities) generally causes even these limited guarantees to

evaporate. In response, research has begun to address the question of approximate mecha-

nism design without money [Procaccia and Tennenholtz, 2009], which focuses on the design of

strategy-proof mechanisms for problems such as multi-facility location that are approximately

efficient (i.e., have good approximation ratios) [Lu et al., 2010, Fotakis and Tzamos, 2010].

This work provides some positive results, but is generally restricted to settings involving two

facilities (or adopts other restrictions) and L2 (Euclidean) preferences.

In this chapter, we propose quantile mechanisms, a type of generalized median mechanism

53
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(GMM) [Barberà et al., 1993, Barberà, 2010]. However, we address a more general class of

problems than those tackled by GMMs. Specifically: (a) we consider problems involving

selection of multiple alternatives (e.g., multi-facilities) in a multi-dimensional outcome space;

(b) we address both social cost and maximum load as performance metrics; and (c) we analyze

our mechanisms relative to L1 (Manhattan) and L2 (Euclidean) preferences.

Our first contribution is the analysis of the approximation ratios of quantile mechanisms

under various assumptions. The performance guarantees of such mechanisms under worst-

case assumptions are quite discouraging (e.g., the approximation ratio is unbounded for social

cost).1 Indeed, designing mechanisms that have worst-case guarantees may lead to poor per-

formance in practice. Our second contribution is the development of a sample-based empirical

framework for optimizing quantile mechanisms relative to a known preference distribution. In

most realistic applications, such as facility location, product design, and many others, the de-

signer will have some knowledge of the preferences of participating agents. Assuming this

takes the form of a probability distribution, we use profiles sampled from this distribution to

optimize quantiles while maintaining strategy-proofness. Our empirical results demonstrate

that, by exploiting probabilistic domain knowledge, we obtain strategy-proof mechanisms that

outperform mechanisms designed to guard against worst-case profiles. Our framework can

be viewed as a form of automated mechanism design (AMD), which advocates the use of

preference (or type) distributions to optimize mechanisms [Conitzer and Sandholm, 2002b,

Sandholm, 2003].

3.2 One-dimensional Quantile Mechanisms

We begin with one-dimensional facility location problems to develop intuitions. Following

the notation from Section 2.3, we use n and q to denote the number of agents and facilities,

1A later characterization result by Fotakis and Tzamos [2012] shows that for multi-facility location problem,
there is no deterministic and strategy-proof mechanism with a bounded approximation ratio. In the sequel, we use
the term “bounded” if the approximation ratio is bounded by any function of the number of agents; otherwise, we
say the approximation ratio is unbounded.
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respectively. Our objective is to select q homogeneous facilities in a line, which is represented

by a location vector x = (x1, x2, . . . , xq), where xj ∈ R. We consider two specific forms

of cost functions: L1 (Manhattan) and L2 (Euclidean) distances. More specifically, given a

location vector x, we define the distance-based cost function for agent i as follows:

ci(x, ti) = min
j≤q
||ti − xj||p

where ti is the peak of agent i, and p ∈ {1, 2} reflects either L1 or L2 distance from agent

i’s nearest facility. In other words, ci(x, ti) reflects the cost to agent i of using her “closest”

facility in x under the relevant norm (L1 or L2). As in Section 2.3, we use ti = τ(�i) to denote

the peak of agent i.

We use xp[i,x] to denote the closest facility of agent i in the location vector x under the

Lp-norm (where p ∈ {1, 2}), and define the load of facility j given location vector x and type

profile t as lj(x, t) = #{i : xp[i,x] = j}, i.e., the number of agents using facility j. The

objective of the facility location problem is to choose a location vector x to minimize social

cost (SC) or maximum load (ML):

SC(x, t) =
∑
i

ci(x, ti) or ML(x, t) = max
j
lj(x, t)

Social cost is a natural objective as it reflects the social welfare over all agents. From an

algorithmic perspective, minimizing social cost is equivalent to the geometric p-median prob-

lems [Megiddo and Supowit, 1984] (we will talk about the p-median problem in Section 5.3.1),

which has been extensively studied in the literature [Kuhn, 1973, Vardi and Zhang, 2000, Arora

et al., 1998, Lin and Vitter, 1992]. Maximum load also makes sense, for instance, when a prod-

uct designer launches a family of q new products, consumers purchase the product closest to

their ideal product, but costs are minimized by balancing production; or when facility man-

agement costs increase super-linearly with load. Many other fundamental social objectives,

such as fairness (e.g., maximum agent distance), and combinations thereof can be adopted
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Figure 3.1: The (0.25, 0.75)-quantile mechanism for a two-facility location problem when
n = 9.

depending on one’s design goals.

Without loss of generality, we rename the agents so their ideal locations are ordered: t1 ≤

t2 ≤ . . . ≤ tn. Then we can define the quantile mechanisms as follows:

Definition 3.1 (Quantile mechanism) Let p = (p1, p2, . . . , pq) be a q-vector in the unit cube,

where 0 ≤ p1 ≤ p2 . . . ≤ pq ≤ 1. A p-quantile mechanism locates the jth facility at the pjth

quantile of the reported ideal location.2 Formally, we have:

xj = tij , where ij = b(n− 1) · pjc+ 1, ∀j ≤ q

In other words, the quantile mechanism locate each facility at a pre-specified quantile

among the reported peaks independently. Recall that any quantile (or order statistic) can be

implemented by arranging the phantom peaks in the generalized median mechanism, so our

quantile mechanism can be decomposed into q independent GMMs. The following example

shows a (0.25, 0.75)-quantile mechanism for a two-facility location problem:

Example 3.1 We illustrate the (0.25, 0.75)-quantile mechanism for a two-facility problem with

n = 9 agents in Figure 3.1. Ordering the nine agents’ reported locations so that t1 ≤ . . . ≤ t9,

the mechanism locates the first facility at x1 = t3 (since b8 · 0.25c+ 1 = 3) and the second at

x2 = t7.

The following theorem shows that the quantile mechanism is group strategy-proof:

2We could equivalently use order statistics; but the quantile formulation removes dependence on the number
of the agents in the mechanism’s specification.
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Theorem 3.1 (Strategy-proofness of quantile mechanism) The p-quantile mechanism is group

strategy-proof for any quantile vector p.

Proof: We prove group strategy-proofness for the case of q = 2, and describe how it can be

extended to q > 2 below.

Let S ⊆ N be a coalition of agents, x = (x1, x2) be the location vector if all agents

truthfully report their ideals, and x′ = (x′1, x
′
2) be the location vector if agents in S jointly

deviate from their peaks (assuming reports from agents in N\S remain fixed). In addition, let

∆1 = x1 − x′1 and ∆2 = x′2 − x2. We show that if either ∆1 or ∆2 is strictly greater or strictly

less than 0, some agent in S is worse off in the outcome x′ than she is in x, which is sufficient

to establish (group) strategy-proofness. There are four cases to consider:

I. ∆1 ≥ 0 and ∆2 ≥ 0. We can ignore the case where both ∆1 and ∆2 are 0, since no agent

in S gains by misreporting if neither facility moves. Assume, w.l.o.g., that ∆1 > 0 and

∆2 ≥ 0. Recall that x1 is the p1th quantile among all reported peaks. Hence ∆1 > 0

implies that some agent i ∈ S, with ti ≥ x1, reports a new ideal to the left of x1. Agent

i’s cost is now:

ci(x
′, ti) = min{ti − x′1, x′2 − ti} ≥ min{ti − x1, x2 − ti} = ci(x, ti)

So agent i has a greater or equal cost in x′ than in x.

II. ∆1 ≥ 0 and ∆2 < 0. In this case, there must be an i ∈ S, with ti ≥ x2, that reports a

new ideal to the left of x2; it’s cost is:

ci(x
′, ti) = ti − x′2 > ti − x2 = ci(x, ti)

Hence agent i has a greater cost by misreporting.

III. ∆1 < 0 and ∆2 ≥ 0. This case is completely symmetric to case II.
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IV. ∆1 < 0 and ∆2 < 0. The case is similar to case II: There must be an i ∈ S whose ideal

is to the right of x2 but misreports to the left of x2, increasing its cost.

This establishes group strategy-proofness for q = 2.

For the case of q > 2, we can define ∆t for each 1 ≤ t ≤ q. By using case analysis on all

possible combinations of ∆t, we can always find an agent in S who is not strictly better off,

which completes our proof.

Since any quantile mechanism is group strategy-proof for any class of single-peaked pref-

erences, it prevents strategic manipulation even when applied to specific cost/preference func-

tions such as L1 and L2 cost. Unfortunately, quantile mechanisms can give rise to poor approx-

imation ratios when we consider specific cost functions, specifically, L1 or L2 costs.

Theorem 3.2 Let agents have L1 or L2 preferences. Let p = (p1, p2, . . . , pq) define a quan-

tile mechanism M. If q ≥ 3, the approximation ratio of M with respect to social cost

is unbounded. The approximation ratio with respect to maximum load is q · z, where z =

max1≤j≤q(pj+1 − pj−1) (where p0 = 0 and pq+1 = 1).

Proof: We first show the approximation ratio is unbounded when the objective is social cost

minimization. The intuition is that for any quantile vector p, there is a type profile for which

optimal social cost is arbitrarily small, while the mechanism-induced social cost is constant.

We prove this for the case of q = 3 and describe how it can be extended to q > 3.

Let q = 3, and assume that each agent’s type is one of only four possible ideal locations, 0,

δ, 2 and 3, where 0 < δ < 1 (as shown in Figure 3.2). For any quantile vector p = (p1, p2, p3),

consider a type profile t = (t1, t2, . . . , tn) where t1 = . . . = ti1 = 0 and ti1+1 = . . . = ti2 = δ,

with b(n − 1) · p1c + 1 ≤ i1 < b(n − 1) · p2c + 1 ≤ i2. Given these reports, the p-quantile

mechanism locates the first two facilities at locations 0 and δ. In addition, let n1, n2, n3 and

n4 be the number of agents whose ideal locations are at 0, δ, 2 and 3, respectively. When δ is

small enough, the mechanism incurs a social cost of n3 (if the third facility is located at 3) or

n4 (if the third facility is located at 2). However, the optimal location of the three facilities for
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Figure 3.2: Unbounded approximation ratio of quantile mechanism with respect to social cost.

this profile is 0, 2 and 3, which has optimal social cost of n2 · δ (assuming n1 ≥ n2). Thus the

approximation ratio is n3/(n2 · δ) or n4/(n2 · δ), which is unbounded as δ → 0.

To extend to q > 3, we can construct a similar ideal location profile such that two out of q

facilities are located arbitrarily close at 0 and δ. As δ → 0, the optimal social cost is arbitrarily

small and the social cost induced by the quantile mechanism is not, leading to an unbounded

approximation ratio as well.

For maximum load, assume a quantile vector p = (p1, p2, . . . , pq), and the induced location

vector x = (x1, . . . , xq). For each facility 1 ≤ j ≤ q, the number of agents using facility

xj is at most lj(f(t), t) = n · (pj+1 − pj−1); this occurs when each agent with a peak in

(xj−1, xj+1) is closest to xj , in which case maximum load is ML(f(t), t) = n · z, where

z = max1≤j≤q(pj+1 − pj−1) (if we let p0 = 0 and pq+1 = 1). However, optimal maximum

load, which is dn/qe, occurs when all the facilities are in the same location and agents are

“assigned” to each facility evenly. So the approximation ratio is n·z
dn/qe ≈ q · z.

Notice that the theorem does not hold for social cost with q = 2 facilities: the left-right

mechanism, or (0, 1)-quantile mechanism in our terminology, has a bounded approximation

ratio of n − 1 for social cost [Procaccia and Tennenholtz, 2009]. Indeed, the (0, 1)-quantile

mechanism is the only mechanism within the quantile family that has a bounded approxima-

tion ratio, and the only anonymous, deterministic mechanism with a bounded approximation
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ratio for single-dimensional, two-facility location problem (see the characterization results

of Fotakis and Tzamos [2012] for details). For q ≥ 3, not only does no quantile mecha-

nism have bounded approximation ratio, it has recently been shown that no deterministic and

strategy-proof mechanism has bounded approximation ratio [Fotakis and Tzamos, 2012]. This

gives further motivation for the use of probabilistic prior distributions to optimize quantiles for

average-case performance rather than worst-case performance (see Section 3.4).

With respect to maximum load, it is natural to ask which quantile vector p minimizes z in

Theorem 3.2. We can show that the quantile mechanism that “evenly distributes” facilities is

approximately optimal, and that it has the smallest approximation ratio within the family.

Proposition 3.1 Let agents have L1 or L2 preferences. If q is odd, then the quantile mechanism

with pj = j
q+1

, ∀1 ≤ j ≤ q, is 2q
q+1

-optimal w.r.t. maximum load. If q is even, then the quantile

mechanism with pj = pj+1 = j+1
q+2

, ∀j = 2j′ − 1, 1 ≤ j′ ≤ q/2, is 2q
q+2

-optimal w.r.t. maximum

load. In each case, the mechanism has the smallest approximation ratio within the quantile

family.

Proof: We prove the proposition for cases where q = 2l + 1 is odd for some integer l. The

case for even q is similar.

We first show the approximation ratio of the mechanism in which pj = j/(q + 1). Ac-

cording to Theorem 3.2, the maximum load is at most 2n/(q + 1). However, the optimal

placements of facilities can induce a maximum load of dn/qe, so the approximation ratio is

2n/ ((q + 1) · dn/qe) = 2q/(q + 1).

Next, we show that this mechanism achieves the smallest approximation ratio within the

family. Suppose by contradiction that there is a mechanismM′ with the quantile vector p′ =

(p′1, p
′
2, . . . , p

′
q), who has a smaller approximation ratio, then it must be the case that z′ =
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max1≤j≤q
(
p′j+1 − p′j−1

)
< 2/(q + 1). Again, defining p′0 = 0 and p′q+1 = 1, we have:

p′q+1 − p′0 = (p′q+1 − p′q−1) + . . .+ (p′2 − p′0)

<
2

q + 1
+ . . .+

2

q + 1︸ ︷︷ ︸
l + 1 times

=
2(l + 1)

2l + 2
= 1

This contradicts the fact that p′0 = 0 and p′q+1 = 1, so such mechanism M′ does not

exists. To summary, the quantile mechanism in which pj = j/(q + 1) achieves the smallest

approximation ratio of 2q/(q + 1) with respect to maximum load within the quantile family.

Note that for even q, the mechanism is partially imposing. We locate two facilities at each

selected location, and balance the agents choosing any location; they are indifferent to the

“imposed” assignment, so it isn’t truly imposing mechanisms (we don’t remove choice from

the agents [Fotakis and Tzamos, 2010]). We use this for convenience; there are strictly non-

imposing mechanisms with the same ratio.

3.3 Multi-dimensional Quantile Mechanisms

We have shown that when locating multiple facilities in a single-dimensional space, the quan-

tile mechanisms are (group) strategy-proof. However, as we have discussed in Section 2.3.1,

many social choice problems can be interpreted as “facility location” problems when viewed

as making choices in a higher dimensional space, such as selection of political/committee rep-

resentatives, product design, and the like. For example, in a voting where multiple candidates

will be selected, each candidate might be represented by his/her stand on economics, medical

and social insurance, human rights and foreign policy, assuming these are the most important

characteristics that distinguish the candidates in the minds of voters. Thus each candidate can

be represented as a point in this 4-dimensional space, with each dimension describing his/her

position on one of these issues. In this section, we generalize quantile mechanisms to multi-
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dimensional spaces, and prove some properties as in the single-dimensional case.

We assume that agents have multi-dimensional single-peaked preferences (see Definition

2.24). Similarly, let n be the number of agents, q be the number of facilities and m be the

number of dimensions. Each agent i has an ideal location ti ∈ Rm, and the objective is to

select a location vector x = (x1, x2, . . . , xq) (where xj ∈ Rm) to minimize the social cost

SC(x, t) =
∑

i ci(x, ti) or maximum load ML(x, t) = maxj lj(x, t), assuming each agent

uses the facility with least distance under the L1 or L2 norm.

For any type profile t, we use tk1 ≤ tk2 ≤ . . . ≤ tkn to denote the ordered projection of t in

the kth dimension for all k ≤ m. In other words, we simply order the reported coordinates in

each dimension independently. An m-dimensional quantile mechanism is defined as follows:

Definition 3.2 (Multi-dimensional quantile mechanism) Let P be a q × m quantile matrix

p = (p1;p2; . . . ;pq), where each pj ∈ [0, 1]m is an m-vector in the unit cube, with pj =

(p1
j , p

2
j , . . . , p

m
j ). Given a reported profile t, the P-quantile mechanism locates the jth facility

by selecting, for each dimension k ≤ m, the pkj th quantile of the ordered projection of t in the

kth dimension as the coordinate of facility j in that dimension. Formally:

xj = (t1b(n−1)·p1jc+1, t
2
b(n−1)·p2jc+1, . . . , t

m
b(n−1)·pmj c+1), ∀j ≤ q,∀k ≤ m

The following example shows a two-dimensional quantile mechanism for two-facility lo-

cation.

Example 3.2 Consider the example shown in Figure 3.3, in which two facilities are to be

located in a two-dimensional space for n = 11 agents. With P = (0.2, 0.7; 0.8, 0.3), the P-

quantile mechanism locates the first facility at the x-coordinate of t3 (since b10 · 0.2c+ 1 = 3)

and at the y-coordinate of t8; and the second facility is placed at the x-coordinate of t9 and

the y-coordinate of t4. Notice facilities need not be located at the ideal point of any particular

agent.
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Figure 3.3: A quantile mechanism for a two-dimensional, two-facility location problem with
n = 11 agents.

The following theorem says that the m-dimensional quantile mechanism is strategy-proof.

In fact, as each facility is located using a generalized median mechanism independently, strategy-

proofness follows directly from that of GMM.

Theorem 3.3 The m-dimensional P-quantile mechanism is strategy-proof for any quantile

matrix P.

Unlike the single-dimensional case, the mechanism is not group strategy-proof : Consider

the two-dimensional case, where two agents i and j can collude to misreport their preferences

such that i’s misreport benefits j in one dimension, and j’s misreport benefits i in the other,

making both better off (see Example 4.1). We will talk about the incentive and complexity of

group manipulation later Chapter 4 and 5.

The following results generalize the corresponding one-dimensional results above.

Theorem 3.4 Let agents have L1 or L2 preferences, and P define a quantile mechanismM

for an m-dimensional, q-facility location problem with m > 1. The approximation ratio ofM
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is unbounded with respect to social cost for q ≥ 2. The approximation ratio ofM is q · z with

respect to maximum load, where z = maxk≤m maxj≤q(p
k
j+1 − pkj−1) (let pk0 = 1 and pkq+1 = 1

for all k ≤ q).

Proof: The unbounded approximation ratio with respect to social cost for q ≥ 3 follows

directly from Theorem 3.2, so we only have to prove for the case of q = 2. Consider the

following two-dimensional quantile mechanism in which P = (p1
1, p

2
1; p1

2, p
2
2), and without loss

of generality, let us assume p1
1 ≤ p1

2. Then there are two cases:

• p2
1 ≤ p2

2. Consider the type profile t = (

t copies︷ ︸︸ ︷
((0, a), . . . , (0, a)),

n−t copies︷ ︸︸ ︷
(a, 0), . . . , (a, 0)), where a >

0 is a positive real number. There are five possible outcomes for a quantile mechanism,

in which the two facilities at located at (0, 0) and (a, 0), or (0, a) and (a, a), or (0, 0) and

(a, a) or both at (a, 0) or both at (0, a), all leading to a positive social cost. However, the

optimal social cost is to locate two facilities at (0, a) and (a, 0), which has a social cost

of 0, inducing an unbounded approximation ratio.

• p2
1 > p2

2. Similarly, if we consider the profile t = (

t copies︷ ︸︸ ︷
((0, 0), . . . , (0, 0)),

n−t copies︷ ︸︸ ︷
(a, a), . . . , (a, a)),

then the quantile mechanism will have a strictly positive social cost, while the minimum

social cost is 0, inducing an unbounded approximation ratio.

The approximation ratio with respect to maximum load is computed similarly as in

Theorem 3.2. For each facility j and each dimension k, the number of agents whose

peaks are in (xkj−1, x
k
j+1) is at most n · (pkj+1 − pkj−1), and the maximum load achieved

by maximizing over all facilities and dimensions, i.e., ML(f(t), t) = n · z, where

z = maxk≤m maxj≤q(p
k
j+1 − pkj−1). However, the optimal maximum load is dn/qe,

and the approximation ratio is n · z/dn/qe ≈ q · z.

As in the single-dimensional case, we can optimize the quantiles for maximum load, when

q = q̃m for some integer q̃ by exploiting Proposition 3.1 in each dimension:
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Proposition 3.2 Let q = q̃m. If q̃ is odd, the mechanism that locates one facility at each 1
q̃+1

th

quantile in each dimension is
(

2q̃
q̃+1

)m
-optimal w.r.t. maximum load. If q̃ is even, the mechanism

that locates two facilities at each 2
q̃+2

th quantile in each dimension is
(

2q̃
q̃+2

)m
-optimal w.r.t.

maximum load. Moreover, these are the smallest approximation ratios within the family of

quantile mechanisms.

Proof: The proof is similar to that of Proposition 3.1. We only show for cases for q̃ = 2l + 1

being odd for some integer l. The case for even q̃ is similar.

We first show the approximation ratio of the given mechanism. In such a case, the maxi-

mum load is at most n · (
∏

k≤m maxj≤q(p
k
j+1 − pkj−1)) = n · (2/(q + 1))m. Note that this is

smaller than the upper bound we achieve in Theorem 3.4 as the facilities are arranged in grids.

On the other hand, the optimal placement of facilities can induce a maximum load of dn/q̃me,

so the approximation ratio is (2q̃/(q̃ + 1))m.

We also show that this mechanism achieves the smallest approximation ratio within the

family. Suppose by contradiction that there is a mechanismM′ with the quantile matrix P′ =

((p1′
1 , . . . , p

m′
1 ); . . . ; (p1′

q , . . . , p
m′
q )), who has a smaller approximation ratio, then it must be the

case that z′ = maxk≤q maxj≤q
(
pk
′

j+1 − pk
′

j−1

)
< (2/(q̃ + 1))m. Again, defining pk′0 = 0 and

pk
′

q+1 = 1 for all k ≤ m, we have:

pk
′

q+1 − pk
′

0 = (pk
′

q+1 − pk
′

q−1) + . . .+ (pk
′

2 − pk
′

0 )

<

(
2

q̃ + 1

)m

+ . . .+

(
2

q̃ + 1

)m

︸ ︷︷ ︸
l + 1 times

=

(
1

l + 1

)m−1

< 1

This contradicts the fact that pk′0 = 0 and pk′q+1 = 1. Hence there is no mechanism with

smaller approximation ratio.
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3.4 A Sample-based Optimization Framework

We have seen that quantile mechanisms are strategy-proof for generalm-dimensional, q-facility

location problems, and can offer bounded approximation ratios for L1 and L2 preferences

(though only under certain conditions for social cost). Unfortunately, these guarantees require

optimizing the choice of quantiles with respect to worst-case profiles, which can lead to poor

performance in practice. For example, in a single-dimensional, two-facility location problem,

decent approximation guarantees for social cost require using the (0, 1)-quantile mechanism

(or the left-right mechanism [Procaccia and Tennenholtz, 2009]) ; but if agent preferences are

uniformly distributed in one dimension, this mechanism will perform quite poorly. Intuitively,

the (0.25, 0.75)-quantile mechanism should have lower expected social cost due to its “proba-

bilistically suitable” placement of two facilities, each for use by half of the agents.

We consider a framework for empirical optimization of quantiles within the family of quan-

tile mechanisms that admits much better performance in practice. As in automated mechanism

design (AMD) [Conitzer and Sandholm, 2002b, Sandholm, 2003], we assume a prior distribu-

tion D over agent preference profiles. One will often assume a prior model D (e.g., learned

from observation) that renders individual agent preferences independent given that model, but

this is not a requirement for our method. In many settings, such as facility location or prod-

uct design, such distributional information will readily be available. We sample preference

profiles from this distribution, and use them to optimize quantiles to ensure the best expected

performance with respect to our social objective.

Unlike classic AMD, we restrict ourselves to the specific family of quantile mechanisms.

While this limits the space of mechanisms, we do this for several reasons. First, it provides a

much more compact mechanism parameterization over which to optimize than in typical AMD

settings.3 Second, since the resulting mechanism is “automatically” strategy-proof, no matter

which quantiles are chosen, the optimization need not account for incentive constraints. Third,

3Automated mechanism design has been explored in parameterized mechanisms, e.g., in combinatorial auc-
tions [Likhodedov and Sandholm, 2004, 2005].
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our optimized quantile mechanisms are responsive to specific preferences of agents, such that

the locations of facilities vary with different preference profiles. This stands in contrast to what

we term Bayesian optimization. In Bayesian optimization, the placement of facilities relative

to the prior is chosen by sampling profiles from the distribution without eliciting the actual

preferences of agents, and placing facilities that minimize average social cost relative to the

samples. In our model, samples are used to determine the mechanism’s quantiles; the actual

placement is made using these once preferences are elicited. (We empirically compare our

sample-optimized quantile mechanisms to direct Bayesian optimization below.)

Let agent type profiles t = (t1, t2, . . . , tn) be drawn from distribution D. Given a P-

quantile mechanism, let fP(t) denote the chosen locations when the agent type profile is t.

The goal is to select P to minimize the expected social cost or maximum load:

min
P
ED [SC(fP(t), t)] ; or min

P
ED [ML(fP(t), t)]

Naturally, other objectives can be modelled in this way too.

Given W sampled preference profiles, we optimize quantile selection relative to the W

sampled profiles. For small problems, we use simple exhaustive optimization for this purpose.

Specifically, we consider all possible values for the percentile matrix P. For each, we com-

pute the average social cost (maximum load) over W sample profiles, and select the one with

minimum objective value. This is feasible for problems of small size we consider.

For large problems, one can formulate the minimization problem as a mixed integer linear

program (MILP) for both L1 and L2 cost, and use standard optimization tools, e.g., CPLEX,

to solve the problem (for social cost minimization only). Relaxed formulations require O(nm)

variables however, rendering them intractable for problems with large numbers of agents. We

also we experimented with gradient and coordinate descent algorithms from random starting

points (i.e., P-matrices) on all of the problems described below. These worked extremely

well: no run of either algorithm on the problems below converged to a solution more than 2%
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from optimal (on avg. within 0.5% of optimal); and with 100 random restarts, both methods

found the optimal solution in every instance (and did so quickly, in times ranging from 0.88–

1.97 sec.). Details on the formulations of the MILP, and the gradient and coordinate descent

algorithms are described in the appendix of this chapter for references.

3.5 Empirical Evaluation

In this section, we present an empirical evaluation of the practical performance of our quan-

tile mechanisms. Specifically, we consider problems with n = 101 agents in the following

experiments, with agent preferences drawn independently from three classes of distributions:

uniform Du, Gaussian Dg and mixtures of Gaussians Dgm with 3 components.4 Each distribu-

tion reflects rather different assumptions about agent preferences: that they are spread evenly

(Du); that they are biased toward one specific location (Dg); or that they partitioned are into 2

or 3 loose clusters (Dgm). In all cases, W = 500 sampled profiles are used for optimization.

We examine results for both social cost and maximum load.

3.5.1 One-dimensional mechanisms

We begin with simple one-dimensional problems with q = 2, 3 or 4. Table 3.1 shows the quan-

tiles resulting from our optimization for both SC and ML under each of the three distributions.

For example, when agent ideal locations are uniformly distributed, the (0.25, 0.75)-quantile

mechanism is optimal in terms of minimizing the expected social cost for two facilities. This

is expected, since the uniform (and Gaussian) distribution partitions agents into two groups of

roughly equal size, and facilities should be located at the median positions of each group.

The performance of the optimized quantile mechanisms are extremely good. Figure 3.4

compares the expected social cost and maximum load of our mechanisms with those given

by optimal placement of facilities for the case of q = 3. Recognize however that optimal

4Du is uniform on [0, 10]. Dg is GaussianN (0, 2). Dgm is a Gaussian mixture with 3 components: N (−4, 4)
(weight 0.4), N (0, 1) (weight 0.45), and N (5, 2) (weight 0.15).
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Distribution q = 2 q = 3 q = 4

Du
SC (0.25, 0.75) (0.16, 0.5, 0.84) (0.12, 0.37, 0.63, 0.88)

ML (0.49, 0.50) (0.33, 0.35, 0.98) (0.25, 0.26, 0.74, 0.75)

Dg
SC (0.25, 0.75) (0.15, 0.5, 0.85) (0.1, 0.35, 0.65, 0.9)

ML (0.49, 0.50) (0.33, 0.35, 0.9) (0.25, 0.26, 0.74, 0.75)

Dgm
SC (0.17, 0.68) (0.16, 0.59, 0.93) (0.12, 0.37, 0.68, 0.94)

ML (0.49, 0.50) (0.14, 0.65, 0.66) (0.17, 0.34, 0.73, 0.74)

Table 3.1: Optimal quantiles for different distributions, objectives, and numbers of facilities.

0

30

60

90

120

Du Dg Dgm

SCp SCopt

(a) Social Cost

0

10

20

30

40

50
MLp MLopt

Du Dg Dgm

(b) Maximum Load

Figure 3.4: Comparison of optimized quantile mechanism and optimal value (q = 3).

placement is not realizable with any strategy-proof mechanism. Despite this, the optimized

quantile mechanisms perform nearly as well, in expectation, as optimal placement in all three

cases. Contrast this with the performance of the mechanisms with provable approximation

ratios. When q = 2, the (0, 1)-quantile mechanism has an average social cost of 242.4, 340.9

and 523.2 for Du, Dg and Dgm, respectively; but the social cost of our mechanisms are only

123.7, 76.5, and 165.1, respectively. When q = 3, the (0.25, 0.5, 0.75)-quantile mechanism

has the best approximation ratio for ML (see Proposition 3.1). Its average maximum loads are

39.5, 38.7 and 38.3, which are close to (but not as good as) the loads of the optimized quantile

mechanisms (36.5, 36.5, and 36.2).

We also compare the performance (with respect to social cost) of our optimized quantile

mechanism with Bayesian optimization (see column 1D in Table 3.2). Bayesian optimization

performs almost as well as the optimal quantile mechanism when the number of agents is large.
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Distr.
1D 2D 4D

n = 101 n = 21 n = 101 21 n = 101 21

q = 2 3 4 q = 2 3 4 q = 3 q = 2

Du 2.2 3.0 3.8 9.7 18.5 24.6 1.4 7.4 1.0 6.2

Dg 1.4 2.3 3.1 11.6 19.7 27.9 1.5 5.4 0.9 2.9

Dgm 2.2 1.7 3.8 8.2 11.9 21 1.2 6.2 0.9 3.6

Table 3.2: Percentage improvement in social cost of optimized quantile mechanism vs.
Bayesian optimization.

However, for the smaller population, eliciting ideal locations using the quantile mechanism

gives much better results than the Bayesian approach. For example, when q = 4, the optimized

quantile mechanism has an expected cost that is 3.1% better than the Bayesian model with

n = 101 agents; but the performance gaps grows to 27.9% with n = 21 agents. In addition,

we see that the agent-facility ratio also matters (i.e., when there are more facilities, the quantile

mechanism tends to exhibit a greater performance gap).

These results are not surprising in this i.i.d. setting: indeed simple law-of-large-numbers

arguments suggest that no elicitation of ideal points is needed at all for optimal placement

given a sufficiently large population.5 However, our framework does not require this i.i.d.

assumption—preferences can be arbitrarily correlated. In such a case, Bayesian optimization

can work extremely poorly. For example, consider a 1-D, 2-facility problem in which a la-

tent variable V correlates preferences: if V is true, ideal points are drawn from a Gaussian

N (µ1, σ); otherwise, they are drawn from N (µ2, σ). If each realization of V is equally likely,

optimal Bayesian placement selects facilities at each of µ1 and µ2. By contrast, the optimal

quantile mechanism is a simple function of σ, and will place facilities around the mean of the

single “true” Gaussian, greatly improving social cost.

5Thanks to Lirong Xia for this observation.
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3.5.2 Multi-dimensional mechanisms

We also experimented with two additional problems. 2D is a two-dimensional, three-facility

location problem where agents have L2 preferences, capturing, say, the placement of three

public projects like libraries, or warehouses. 4D is a four-dimensional, two-facility location

problem with L1 preferences, which might model the selection of 2 products for launch, each

with four attributes that predict consumer demand.6

For the problem 2D we show the expected placement of facilities given the selected quan-

tiles in Figure 3.5(a)-(c), for both SC and ML, for each of the three distributions. (Actual

facility placement will shift to match the reported type profile in each instance.) Placement

for SC tends to be distributed appropriately, while ML places two facilities adjacent to one

another. For 4D, we measure performance rather than visualizing locations. Figure 3.5(d)

compares expected SC and ML of our optimized quantile mechanisms to those using true op-

timal facility placements: the quantile mechanisms are always optimal for ML;7 and for SC ,

placements using our optimized strategy-proof mechanisms are only 1.77%-4.66% worse than

the corresponding non-strategy-proof optimal placements. This strongly suggests that quantile

mechanisms, optimized using priors over preferences, are well-suited to multi-dimensional,

single-peaked domains. The improvement of optimized quantile mechanisms over Bayesian

optimization (see columns 2D and 4D in Table 3.2) exhibits trends similar to those in the 1D

case.

3.6 Conclusion

In this chapter, we introduced a family of mechanisms, namely quantile mechanisms, for gen-

eral multi-dimensional, multi-facility location problems. We showed that the quantile mecha-

6For 2D, Du is uniform over [0, 10] in each dimension. Dg is normal with mean µ = [3, 2] and covariance
Σ = [2, 1]I. Dgm is a 2 component mixture: N ([−2,−1], [2, 1]I) (weight 0.3) andN ([0, 2], [1, 3]I) (weight 0.7).
For 4D, Du is uniform over [0, 10] in each dimension. Dg is N ([3, 2, 1, 2], [2, 3, 4, 1]I). Dgm is a 2 component
mixture: N ([2, 1, 0, 1], [4, 6, 8, 5]I) (weight 0.4) and N ([1, 2, 1, 0], [7, 4, 5, 8]I) (weight 0.6).

7This is because the mechanism locates two facilities at almost the same position, and achieves optimal maxi-
mum load. However, this is not always possible for three or more facilities.
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SC 871.2/832.4

ML 51/51
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SC 424.8/417.4

ML 51/51
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SC 696.5/681.5

ML 51/51

Figure 3.5: Optimized quantiles for (a) 2D: Uniform, (b) 2D: Gaussian, (c) 2D: Gaussian
mixture, and (d) 4D.

nisms are strategy-proof for any quantile matrix, and provided several bounds on the approxi-

mation ratio for both social cost and maximum cost. We also developed a sample-based frame-

work (and corresponding algorithms) for optimizing the selection of quantiles, when some prior

distribution over agent preferences are known. Empirical results show that while the worst-case

approximation ratios appear discouraging, the optimized quantile mechanisms work very well,

and performs extremely close the optimum attainable even with precise knowledge of agent

preferences.

The quantile mechanisms are just a starting point for the design of optimized mechanisms



CHAPTER 3. QUANTILE MECHANISMS 73

for single-peaked domains, and can be extended in several ways. First, further development

of optimization methods for quantile mechanisms (e.g., our MIP or MIQCP formulations) are

needed to make our approach more scalable. Sample complexity results—theoretical bounds

on the number of sampled profiles needed by our technique to ensure near-optimal results with

high probability—are also of interest. Finally, incremental (or multi-stage) mechanisms that

trade off social cost, communication costs, and agent privacy (as will be discussed in Chapter

7) would be extremely valuable. We will discuss potential future research directions in detail

in Chapter 8.

Appendix of Chapter 3

MIP Formulation of Quantile Optimization (for Social Cost Only)

In this section, we describe our formulation of mixed integer linear program for social cost

minimization in the quantile mechanism. Given W sampled preference profiles, our objective

is to select the quantiles to minimize the average social cost relative to the W sampled profiles.

Let n be the number of agents, andm be the number of dimensions. Recall that the quantile

mechanism locates the facilities facility on each dimension independently, so for each sampled

profile, the total number of possible locations for a facility is nm. If we use j to index all these

possible locations, and define aj as an indicator variable whose value is 1 iff a facility is placed
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in the jth location, then we can formulate the optimization problem as follows:

min
aj

W∑
w=1

n∑
i=1

(
dwij · Y w

ij

)
(3.1)

s.t. Y w
ij ≤ aj, ∀i ≤ n,∀j ≤ nm, ∀w ≤ W (3.2)
nm∑
j=1

Y w
ij = 1, ∀i ≤ n,∀w ≤ W (3.3)

nm∑
j=1

aj = q (3.4)

Y w
ij ∈ {0, 1}, ∀i ≤ n,∀j ≤ nm,∀w ≤ W (3.5)

aj ∈ {0, 1}, ∀j ≤ nm (3.6)

The dwij is the pre-computed distance between agent i and facility j in sample w, Y w
ij is an

indicator variable whose value is 1 iff agent i is “assigned” to use facility j in samplew, and the

objective function minimizes the sum of social cost over all W sampled profiles. Constraints

(2) says that no agent can be assigned to facility j unless it is selected, and constraints (3)

says that each agent can only be assigned to exactly 1 facility. Finally, constraints (4) requires

that a total number of q facilities have to be selected. Note that the indicator variables Y w
ij

is binary technically, however, they can be relaxed due to the following reason: when the

objective is a minimization problem, each agent will be “assigned” to the facility with least

cost automatically, and allowing for fractional assignment will not change the objective value.

In the relaxed formulation, the number of continuous variables is O(Wnm+1) and the num-

ber of binary variables is O(nm). This preliminary formulation can be used to solve small

problems, but fails to scale very well. Please see the next section for two heuristic algorithms

for solving large problems.
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Gradient and Coordinate Descent Algorithms

In this section, we propose two heuristic algorithms for the sample-based optimization: gradi-

ent and coordinate descent. Both algorithms applies to social cost and maximum load mini-

mization, and performs extremely well compared with the simple exhaustive method.

Recall that the objective is to choose a quantile matrix P to locate q facilities in some m-

dimensional spaces, so the total number of possible quantile matrices is (nm)q. Let tw be the

type profile in sample w, and xw = fP(tw) be the chosen location vector under the P-quantile

mechanism in sample w, we first define the neighbourhood as follows:

Definition 3.3 (Neighbourhood) A quantile matrix P′ is said to be a neighbour of P if there

exist a single facility j∗ and a single dimension k∗ such that b(n − 1)pkj c − b(n − 1)p
′k
j c ∈

{−1, 1} if j = j∗ and k = k∗, and pkj = p
′k
j otherwise.

In other words, if we consider the induced location vector by a quantile matrix, we can only

move the location of a single facility on a single dimension to the (ordered) previous or next

peak. Also note that we are optimizing the quantile matrix over all W sampled profiles, those

moves over all W profiles have to be for the same facility, on the same dimension, and alone

the same dirction.

Given a quantile matrix P, we use N(P) to denote the set of neighbours of P. We also

use tw to denote the type profile in sample w. Then our gradient descent algorithm can be

described as follows. The algorithm is presented for minimizing social cost, but can be easily

generalized for maximum load minimization with minor changes.

The algorithm starts from a random quantile matrix, and compute the corresponding social

cost over all W sampled profiles. Among the neighbours of the current quantile matrix, it

chooses the one that improves (decreases) the social cost most, and update the quantile matrix.

This process is repeated until a local minimum has been reached. We also use the random

restart strategy, i.e., repeat Algorithm 1 for 1000 times, each with a randomly chosen quantile

matrix, and keep the one that induces smallest social cost.
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Algorithm 1 The Gradient Descent Algorithm for Social Cost Minimization

1: P← A random quantile matrix, and SC =
∑W

w=1 SC(fP(tw), tw)
2: While True do
3: P∗ = arg minP′∈N(P)

∑
w SC(fP′(t

w), tw) and SC∗ =
∑

w SC(fP∗(t
w), tw)

4: if SC∗ ≥ SC then
5: break
6: else
7: P← P∗, and SC = SC∗

8: return P

Algorithm 2 The Coordinate Descent Algorithm for Social Cost Minimization

1: P← A random quantile matrix, SC =
∑W

w=1 SC(fP(tw), tw)
2: j∗ = 0 and k∗ = 0
3: While True do
4: for j from 1 to q do
5: for k from 1 to m do
6: if j = j∗ and k = k∗ do
7: break
8: p

′k
j = arg min0≤p≤1

∑
w SC(fP′(t

w), tw), and SC ′ =
∑

w SC(fP′(t
w), tw), where

9: P′ is the quantile matrix achieved by replacing pkj in P with p′kj
10: if SC ′ ≥ SC then
11: j∗ = j and k∗ = k
12: else
13: P← P′, and SC = SC ′

14: return P

Note that at each step, the gradient descent algorithm has to compute the best neighbour

among all possible neighbour. For any quantile matrix P, the total number of neighbours is

O(q2m), which may make the algorithm intractable when the number of dimension is large. We

also propose a coordinate descent algorithm. The intuition of the algorithm is that at each step,

we fix all but one quantile, and find the optimal value for that quantile. The process is repeated

until no improvement for any quantile can be made. The algorithm is given in Algorithm 2.

Similarly, we also use random restart techniques, repeating the algorithm for 1000 time and

returning the quantile matrix with the minimum social cost over all W sampled profiles.



Chapter 4

Group Manipulation: Incentives

4.1 Introduction

In the previous chapter, we introduced the family of quantile mechanism. While quantile

mechanisms are individual strategy-proof, they fail to guarantee group strategy-proofness in

multi-dimensional spaces.

In this chapter, we address mechanism design in the multi-dimensional case when multiple

facilities can be chosen, addressing both unconstrained FLPs—in which facilities can be placed

at any point in some (metric) space—and constrained FLPs— in which some outcomes in the

preference space are not feasible (i.e., the outcome space is constrained). In particular, we

consider cases in which strategy-proofness cannot be achieved, and analyze approximately

strategy-proof mechanisms. If one can bound the potential gain an agent (or group) can obtain

by misreporting their preferences, the cost of determining an optimal misreport may outweigh

the benefits, rendering such mechanisms “practically strategy-proof” [Hyafil and Boutilier,

2007, Lu et al., 2012].

In unconstrained problems, individual strategy-proofness can be achieved using general-

ized median mechanisms, or GMMs [Moulin, 1980, Barberà et al., 1993] for single-FLPs,

and quantile mechanisms (QMs) for multi-FLPs (as we have shown in Chapter 3), but group

77
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strategy-proofness is unachievable in general. Our first contribution is to provide an impos-

sibility result showing that the incentive for any group of agents to misreport is unbounded

for arbitrary preference profiles. Then we give a profile-specific bound on the incentive to

misreport. Second, we analyze constrained FLPs, defining a new family of closest candidate

mechanisms (CCMs). CCMs use QMs to determine tentative locations, then project these to

the nearest feasible locations using some distance function. While CCMs are not strategy-proof

in general, we are able to bound the incentive for individuals and groups to misreport. Finally,

we empirically evaluate the performance of our mechanisms using real-world preference data

in electoral and geographic facility domains. We evaluate the probability of agents (or groups)

successfully manipulating outcomes, and more importantly show that their expected gain and

impact on social welfare is quite small in practice. This suggests that the mechanisms analyzed

here, namely, GMMs, QMs and CCMs, may be “sufficiently strategy-proof” for practical pur-

poses.

4.2 Unconstrained Facility Location

We follow the notation introduced in Section 2.3. Let n be number of agents, q be the number

of facilities to be located, and m be the number of dimensions. The objective is to select q

homogeneous facilities in some m-dimensional space Rm. Such an outcome is represented

by a location vector x = (x1, x2, . . . , xq), where xj ∈ Rm. Each agent has a type ti ∈ Ti

determining her cost associated with any location vector x, i.e., ci(x, ti) = minj≤q ci(xj, ti), in

which each agent uses the facility with least cost.

As discussed in Chapter 3, when agents have single-peaked preferences (e.g., ci equals

the L1 or L2 cost), the median mechanism and its generalization [Black, 1948, Moulin, 1980]

guarantee individual strategy-proofness for unconstrained facility location problems. These

mechanisms have also been generalized to multi-dimensional spaces [Barberà et al., 1993],

i.e., the multi-dimensional generalized median, and for multi-facility location, i.e., the quantile
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Figure 4.1: A two-dimensional counter example showing that quantile mechanisms are not
group strategy-proof.

mechanisms we introduced in Chapter 3.

While the GMMs and the QMs are group strategy-proof in single-dimensional spaces, they

fail to guarantee group strategy-proofness in multiple dimensions. Consider a two-dimensional,

single facility location problem as shown in the Example 4.1 below. These two agents can col-

lude to misreport their preferences such that agent 1 can benefit from the misreport of agent 2 in

one dimension, while agent 2 can benefit from the misreport of agent 1 in the other dimension,

making both better off.

Example 4.1 Consider a two-dimensional, single facility location problem for 2 agents. The

quantile mechanism {0; 1} is used, i.e., locate the facility at the intersection position of the left-

most coordinate on the first dimension and the rightmost coordinate on the second dimension.

If the agent peaks are (0, 0) and (2, 2), then the mechanism will locate the facility at (0, 2) and

the cost of both agents is 2 under the L2-norm. However, if both agents misreport (1, 1), then

the facility will be located at (1, 1), in which case both agents have a cost of
√

2 ≈ 1.414 < 2.

This is shown in Figure 4.1.

In fact, the characterization results of Barberà et al. [1993] indicate that there is no (anony-
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mous) group strategy-proof mechanism in such settings.

Remark 4.1 (Non-existence of group strategy-proof mechanism) [Barberà et al., 1993] There

is no (anonymous) group strategy-proof mechanisms for multi-dimensional, unconstrained fa-

cility location problems.1

Alternatively, one can try to bound the incentive for any group of agents to misreport,

showing GMMs and QMs to be approximately group strategy-proof. Here, approximately

group strategy-proofness means that a mechanism is not group strategy-proof, but the incentive

for any group of agents to misreport is bounded.

Definition 4.1 (Approximately group strategy-proof) A mechanism f is ε-group strategy-

proof if, for any S ⊆ N , any group misreport t′S and any type profile of other agents t−S ,

there is some i ∈ S such that:

ci(f(tS, t−S), ti) ≥ ci(f(t′S, t−S), ti) + ε

where tS and t−S are the type profile of all agents in S and N \ S, respectively.

In other words, if a group of agents form a coalition and misreport their peaks, there must

by one of them whose gain is less than or equal to ε. If the value of ε is small enough, then

considering the cost of finding a good lie (e.g., information cost, computational cost, etc), such

a mechanism is “practically group strategy-proof” (note that if ε = 0, this definition reduces

to group strategy-proofness in Definition 2.28). This definition requires that each agent in a

manipulating coalition S has some gain by participating, which is sensible in settings with

non-transferable utility (as is the case in many social choice problems).

Let f be any mechanism, S be a coalition with (fixed) true type profile tS , and t−S be the

(fixed) reports of the other agents. We define the gain of i ∈ S for a (coalitional) misreport

t′S to be G(i, S, t′S) = ci(f(tS, t−S), ti) − ci(f(t′S, t−S), ti); the maximum gain of i to be
1Anonymity is critical, as dictatorial mechanisms belong to the class of GMMs and offers group strategy-

proofness.



CHAPTER 4. GROUP MANIPULATION: INCENTIVES 81

G(i, S) = maxt′S
G(i, S, t′S); and incentive for S to misreport to be G(S) = maxi∈S G(i, S).

We say a misreport t′S is viable iff G(i, S, t′S) ≥ 0 for each i ∈ S and G(i, S, t′S) > 0 for some

i ∈ S.

To quantify the incentive for a group of agents to misreport, one must make assumptions

about agent cost functions. Here we assume that cost is equal to the L2 distance from the ideal

point, i.e., ci(xj, ti) = ||xj − ti||2.2 We first give an impossibility result, showing that the

incentive for group manipulation can be arbitrarily large.

Theorem 4.1 (Unbounded group strategy-proofness) GMMs and QMs are not ε-group strategy-

proof for any fixed ε > 0 under the L2-norm.

Proof: We give a counter-example for two-dimensional, two-facility location under QMs. The

result applies directly to GMMs since QMs are a specific instance of GMMs.

Let p = (p1, p2) be a two-dimensional, quantile matrix used for a QM, in which the facility

is located at the coordinate of the p1th peak in the first dimension, and at the coordinate of the

p2th peak in the second dimension. Consider the following two cases:

I. p1 + p2 ≤ 1.

Consider the following profile t = ((a, 0), . . . , (a, 0)︸ ︷︷ ︸
np2 copies

, (0, a), . . . , (0, a)︸ ︷︷ ︸
np1 copies

, (a, a), . . . , (a, a)︸ ︷︷ ︸
n(1− p1 − p2) copies

),

where a > 0 is a positive real number (as shown in Figure 4.2). The QM will locate

the facility at position (0, 0), and the costs of the agents are: a, for those at (a, 0) and

(0, a); and
√

2a, for those at (a, a). However, if all n agents are manipulators, then

there exists a viable misreport in which all agents report (a/2, a/2), which will then be

selected. The cost under this misreport is
√

2/2a for each agents, and the gains are:

a −
√

2/2a ≈ 0.293a, for those at (a, 0) and (0, a); and
√

2/2 ≈ 0.707a, for those at

(a, a). As a can be arbitrarily large, so are the gains due to manipulation.

2Barberà et al.’s [1993] characterizations do not preclude the existence of group strategy-proof mechanisms
when specific cost functions are used (e.g., L2-norm). However, it is still meaningful to study the group ma-
nipulation of GMMs and QMs due to their simplicity and intuitive nature, their (individual) strateg-yproofness,
and flexibility (e.g., the fact that they can be optimized or tuned for specific prior distributions over preferences).
Similar remarks apply to the negative results of Barberà et al. [1997] for constrained FLPs.
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Figure 4.2: A two-dimensional counter example showing the incentive for a group of agents to
misreport can be unbounded.

II. p1 + p2 > 1.

Consider the following profile t = ((a, 0), . . . , (a, 0)︸ ︷︷ ︸
n(1− p1) copies

, (0, a), . . . , (0, a)︸ ︷︷ ︸
n(1− p2) copies

, (0, 0), . . . , (0, 0)︸ ︷︷ ︸
n(p1 + p2 − 1) copies

).

The QM will locate the facility at (a, a), and the agents costs are: a, for those at (a, 0) and

(0, a); and
√

2a, for those at (0, 0). As above, a viable manipulation exists in which each

manipulator misreports (a/2, a/2), and again the gain of the manipulators is arbitrarily

large as a→∞.

This demonstrates that the (additive) incentive for manipulation is unbounded for GMMs and

QMs.

We note that while the gain is unbounded in an additive sense, the relative gain is also

unbounded (if all the n(1−p1−p2) agents are at location (a/2, a/2) in Figure 4.2). While this

observation serves as a negative result, it is an a priori worst-case analysis, allowing arbitrary

preference profiles. In practice, the incentive for a group of agents to misreport depends on the

actual ideal points of the sincere agents and the manipulators, i.e., tS and t−S . In the remainder

of this section, we assume that the true peaks of both sincere agents and manipulators are

known, and provide a profile-specific, a posteriori bound that relies on this knowledge. Such
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a bound represents the maximum gain that the set of manipulators can realize by conducting

a joint misreport. In cases where only some but not all of the preferences (peaks) are known,

bounds can be developed using similar analysis. Moreover, if some prior distribution of agent

peaks is known in advance, incentives for manipulation can be evaluated empirically using the

sample-based optimization framework in Chapter 3.

We begin with single-facility case, and providing an upper bound on the incentive for a

group of agents to misreport.

Definition 4.2 (Pareto optimal misreport) Let S ⊆ N be a set of manipulators. A misreport

t′S is Pareto optimal if there is no other misreport t′′S such that ci(f(t′′S, t−S)) ≤ ci(f(t′S, t−S))

for all i ∈ S and for some i∗ ∈ S, we have ci∗(f(t′′S, t−S)) < ci∗(f(t′S, t−S)).

Intuitively, a misreport t′S is Pareto optimal if there is no other misreport in which no manip-

ulator is worse off than they were in t′S and at least one is strictly better off than she is in

t′S .

When bounding the incentive for a group of agents to misreport, we can focus on Pareto

optimal misreports without loss of generality (since making a Pareto improvement to some

non-Pareto optimal misreport will improve the lot of the manipulators and can only increase

the upper bound on this incentive). The following lemma provides a necessary condition for a

misreport to be Pareto optimal.

Lemma 4.1 Let S ⊆ N be a set of manipulators, and x = f(tS, t−S) be the chosen lo-

cation under truthful reports. We use superscript k to index dimensions, and define Ik =

[mini∈S t
k
i ,maxi∈S t

k
i ] to be the tightest the bounding interval containing all manipulator peaks

in the kth dimension. Also let t′S be a Pareto optimal misreport and x′ = f(t′S, t−S) be the

location chosen under t′S . Then we have x′k ∈ Ik if xk ∈ Ik and x′k = xk otherwise.

Proof: Suppose the lemma does not hold. Then for each dimension k, one of the following

two situations must arise:
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I. x′k /∈ Ik and xk ∈ Ik. Note x′k /∈ Ik means either x′k < mini∈S t
k
i or x′k > maxi∈S t

k
i ,

and w.l.o.g., we assume it is the former case. Recall that we have fk(t′s, t−S) = x′k <

xk = fk(tS, t−S), which means there must be some manipulator whose misreport lies

to the left of (is less than) mini∈S t
k
i in the kth dimension. We can construct another

misreport t′′S such that fk(t′′S, t−S) = mini∈S t
k
i and f k̃(t′′S, t−S) = xk̃,∀k̃ 6= k, and each

manipulator i strictly gains in the kth dimension without losing in any other dimension.

This means ci(f(t′′S, t−S)) < ci(f(t′S, t−S)), which contradicts our assumption that t′S is

a Pareto optimal misreport.

II. x′k 6= xk and xk /∈ Ik. Similarly xk /∈ Ik means either xk < mini∈S t
k
i or xk > maxi t

k
i ,

and w.l.o.g., we assume it is the former case. Since QMs locate the facility at a specified

quantile, we must have x′k < xk. We can construct another misreport t′′S such that

fk(t′′S, t−S) = xk and f k̃(t′′S, t−S) = xk̃,∀k̃ 6= k, and each manipulator i strictly gains in

the kth dimension without losing in any other dimension. This too contradicts the Pareto

optimality of t′S .

Lemma 4.1 shows that, when bounding the incentive to misreport, we can focus our at-

tention on those dimensions in which the coordinate of the facility selected under truthful

reporting lies within the corresponding bounding interval of the manipulator peaks—for those

dimensions where this is not true, the manipulators can safely leave their reports on those

dimensions unchanged (i.e., report sincerely).

Before describing our bound, we first introduce some notation. Let S ⊆ N be a set of

manipulators and x be the chosen location under truthful reporting. We define C(i, x) = {x̄ ∈

Rm : ||x̄− ti||2 ≤ ||ti − x||2} to be the circle centered at ti with radius ||ti − x||2. Let C(S) =

∩i∈SC(i, x) denote the intersection of these circles. Let Ik be the bounding interval as defined

in Lemma 4.1, and C⊥(S) = {x̄ ∈ Rm : x̄k ∈ Ck(S) if xk ∈ Ik and x̄k = xk otherwise} be

the projection of C(S) onto the subspace of Rm in which we fix the coordinates of x in those

dimensions k not contained in the bounding intervals to xk. We have the following theorem:
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Figure 4.3: An two-dimensional example showing that a viable misreport must induce a loca-
tion contained in C⊥(S) (the shaded area).

Theorem 4.2 (Incentive under single-FLPs) Let S ⊆ N be a set of manipulators, and x =

f(tS, t−S) be the chosen location under truthful reports. For single-facility location problems

under GMMs/QMs, the incentive for manipulators in S to misreport is at most:

εS = max
g∈C⊥(S)

[
max
i∈S

(||x− ti||2 − ||g − ti||2)

]
.

Proof: Let t′S be any group misreport and g = f(t′S, t−S) be the induced location of the

facility. The first thing to note is that for the misreport t′S to be viable, the induced location g

must be contained in C(S), otherwise there will be some manipulator who is strictly worse-off

(as shown in Figure 4.3).

By Lemma 4.1, we need only consider the projection of C(S) onto the subspace C⊥(S)

(as defined above). For each location g, the gain of manipulator i is ||x− ti||2 − ||g − ti||2. If

we take the maximum over all manipulator, and all possible locations g, we obtain the stated

bound.

In the multi-facility case, we provide an upper bound on the incentive to misreport by
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considering each facility independently. Formally, let S ⊆ N be a set of manipulators, and

x = f(tS, t−S) be the chosen location vector under truthful reporting. For each facility j

with location xj ∈ x, we define Sj = {i ∈ S : j = arg minj′≤q ||xj′ − ti||2} as the set

of manipulators whose closest facility is j under truthful report. We also define C(i, xj) and

C(Sj) similarly as in the single-facility case, and Dj = {i ∈ Sj : ∃j′ s.t. C(i, xj) ∩ C(Sj′) 6=

∅} as the set of manipulators in Sj whose circles intersect with C(Sj′) for some other facility

j′. Intuitively, Dj denotes the set of manipulators in Sj who may deviate from using facility j

to use other facilities. Then we have:

Theorem 4.3 (Incentive under multi-FLPs) Let S ⊆ N be a set of manipulators, and x =

f(tS, t−S) be the chosen location under truthful reports. For multi-facility location problems

under GMMs/QMs, the incentive for a set of manipulators S to misreport is at most εS =

maxj εSj
, where:

εSj
= max

g∈C⊥(Sj\Dj)

[
max

i
(ci(x, ti)− ||g − ti||2)

]
.

Proof: Let t′S be any group misreport and g = fj(t
′
S, t−S) be the induced location of facility

j. Among the manipulators whose closest facility is j, we have to preclude those who may

deviate from using j to other facilities, which we denote by Dj .

By Lemma 4.1, we can focus our attention on the projection of C(Sj\Dj) onto subspace

in which the coordinates of xj are not contained in the bounding intervals. If we take the

maximum over all manipulators, over all possible locations g for each facility, and over all

facilities, we obtain the stated bound.

4.3 Constrained Facility Location

We now turn our attention to constrained facility location problems, in which facilities can

only be placed at a restricted finite set of feasible location C = {c1, . . . , cl} (where l > q is
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the number of feasible locations). For instance, in political settings, agent i’s ideal point may

corresponds to a “fictitious” candidate who agrees with i on every issue, while selection is

limited to those “actual” candidates who have agreed to stand for election. Similar restrictions

often apply in voting (a finite set of candidates under consideration), product design (selecting

from an existing assortment), and other forms of facility location problems.

Barberà et al. [1997] studied constrained FLPs and provided an important characterization

result that a mechanism is strategy-proof in a constrained setting iff: a) it is a generalized

median mechanism; and b) it satisfies the intersection property, a condition requiring that the

decision rules operating on different dimensions must be coordinated to guarantee a feasible

location. The intersection property can be satisfied when the set of feasible locations has some

special shapes (e.g., rectangles), however, it will, as they say, “anticipate impossibility theo-

rems in most applications” (for arbitrary shape of the set of feasible locations as we consider

in this chapter).

So as above, we turn our attention to approximately strategy-proof mechanisms. The defini-

tion of approximately strategy-proofness can be reduced from Definition 4.1 in which |S| = 1.

In other words, a mechanism is ε-strategy-proof if the gain for any agent, any misreport and

any other reports is at most ε.

Focusing on QMs (since they apply to single- and multi-FLPs), we deal with constraints by

defining closest candidate mechanisms (CCMs), and assume L2-distance for costs and “pro-

jection” to the nearest feasible location:

Mechanism 4.1 (Closest candidate mechanism (CCM)) Let C = {c1, . . . , cl} be a set of

feasible locations, and f ′ a (multi-dimensional) QM. A closest candidate mechanism (CCM)

f , based on QM f ′, selects a location vector, given reports t, as follows: (i) let f ′(t) = x̃ =

{x̃1, . . . , x̃q}; (ii) return location vector x = {x1, . . . , xq}, where xj = arg minc∈C ||c− x̃j||2.

In other words, the mechanism runs a QM on the reported peaks and replaces any infeasible

location x′j /∈ C with the nearest feasible location in C. The following is an example of how



CHAPTER 4. GROUP MANIPULATION: INCENTIVES 88

CCM works in 1D:

Example 4.2 Let the feasible set of facilities be C = {2, 3, 7}, and agents’ peak profile be

t = {0, 1, 4, 7, 10}. Then a CCM with quantile vector (0.25, 0.75) will locate the first facility

at x1 = 2 (as 2 = arg minc∈C ||c− 1||2) and the second at x2 = 7 (as 7 is in the feasible set).

While not strategy-proof in general, CCMs are in fact (group) strategy-proof in 1D:

Theorem 4.4 (Group strategy-proofness of one-dimensional CCM) CCMs are group strategy-

proof in 1D for one-dimensional FLPs under L2 cost.

Proof: We first describe the proof assuming q = 2, and then show how the analysis can be

generalized when q > 2.

Let S ⊆ N , and x̃ = {x̃1, x̃2} be the location vector chosen by the QM if all agents report

truthfully, and x = {x1, x2} be the projected location vector into C. Let x̃′ = {x̃1
′, x̃2

′} be the

vector chosen by the QM if agents in S jointly misreport, and x′ = {x′1, x′2} be its projection.

W.l.o.g., assume x1 < x2 and x′1 < x′2. Consider four cases:

I. x1 ≥ x′1 and x2 > x′2: Both x2 and x′2 are feasible, so x̃2
′ ≤ (x′2 +x2)/2 ≤ x̃2. Since QM

chooses each location using quantiles, suppose some i, with peak ti > x̃2, misreports to

the left of x̃2. Then i ∈ S, and i’s cost now is ci(x′, ti) = ti − x′2 > ti − x2 = ci(x, ti),

and is strictly worse off.

II. x1 < x′1 and x2 > x′2: As above, there must be some i ∈ S, with peak ti > x̃2, who

misreports to the left of x̃2. So i’s cost now is ci(x′, ti) = ti − x′2 > ti − x2 = ci(x, ti),

and is strictly worse off.

III. x1 < x′1 and x2 ≤ x′2: Symmetric to cases I and II.

IV. x1 ≥ x′1 and x2 ≤ x′2: There must some i ∈ S, with type x̃1 < ti < x̃2, who misreports

to the left of x̃1 or to the right of x̃2. W.l.o.g., assume a misreport to the left of x̃1. Then

i’s cost is ci(x′, ti) = min{ti−x′1, x′2− ti} ≥ {ti−x1, x2− t2} = ci(x, ti), and is worse

off.
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This establishes group strategy-proofness for q = 2.

For the case of q > 2, we can define x̃, x, x̃′ and x′ similarly. Then by using case analysis

as in the case of q = 2, we can always find an agent in S who is not strictly better off, which

completes our proof.

One can show that CCMs in the multi-facility case are a straightforward extension of the

family of disturbed GMMs [Massó and Moreno de Barreda, 2011] in the 1D setting, which

characterize all strategy-proof mechanisms when agents have symmetric single-peaked prefer-

ences (of which L1- and L2-preferences are a special case). CCMs also satisfy the intersection

property in 1D, a sufficient condition for a mechanism to be strategy-proof with constraints,

hence it is consistent with Barberà et al.’s characterization result.

Evaluating incentives to misreport in multi-dimensional spaces is more involved. Our main

results, Theorems 4.5 and 4.6 below, require two preliminary lemmas. The first addresses

single-agent misreports. We begin with some some notation.

Definition 4.3 For each feasible c ∈ C, we define its electoral zone to be Zc = {x ∈ Rm, c =

arg minc′∈C ||c′ − x||2}.

Definition 4.4 LetCk
c be the potential deviation area of feasible candidate c if a single manipu-

lator changes her report in all but dimension k, i.e.,Ck
c = {x ∈ Rm, xk = x′k for some k where x′ ∈

Zc}, and Cc = ∪kCk
c be the union of potential deviation areas over all dimensions.

Then we have the following result:

Lemma 4.2 For any two feasible locations c1, c2 ∈ C, an agent i can gain from a misreport

that changes the location of a facility from c1 to c2 only if C1 ∩ Z2 6= ∅.

Proof: We provide a proof for the case of 2D first, and then show how it can be generalized

to any number of dimensions. Consider two feasible locations c1 and c2 (see Figure 4.4). Let

g be one of the chosen locations under a QM f ′, and c1 be its projected feasible location under

CCM f (note we must have g ∈ Z1, otherwise f will not project g to c1). Suppose there exists
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Figure 4.4: An example where a manipulator can benefit by changing the outcome from c1 to
c2.

a location profile t in which an agent i (with true peak x) will use facility c1, but has a positive

incentive to change it to c2. Then we can construct another profile t′ such that if imisreports x′,

the selected location for g under the QM f ′ will be g′ ∈ C1 (more specifically C2
1 in the figure).

Since f projects g′ to the closest feasible location, which is c2 instead of c1, agent i gains by

misreporting. However, f will project g′ to c2 only if there is no other feasible location closer

to g′, i.e., only if g′ is in the electoral zone of c2. This implies C1 ∩ Z2 6= ∅.

For the case of m > 2, C1 ∩ Z2 6= ∅ implies that there is at least on dimension k such

that Ck
1 ∩ Z2 6= ∅. Then we can construct a location profile if some agent misreports her

ideal location in all but dimension k and move one of the chosen locations under the quantile

mechanism to some point in the electoral zone of c2. The CCM will project to the feasible

location of c2 instead of c1 now, completing our proof.

This lemma ensures an agent can profitably change a facility only if she can move the

corresponding quantile-location into the electoral zone of another feasible outcome. The next

lemma bounds the gain an agent can realize by changing one of the CCM’s outcomes from

one feasible location to another. For each pair of feasible locations c1, c2 ∈ C, we define

K1,2 = {k : Z2 ∩ Ck
1 6= ∅} as the set of dimensions that Z2 intersects with C1. For any two
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points x, y ∈ Rm, let B(x, y) be the minimum bounding box containing x and y. Then we

have:

Lemma 4.3 Let c1, c2 ∈ C. The maximum gain any agent can realize by replacing c1 with c2

in a CCM is:

G(c1, c2) =

 ||c2 − c1||2 if ∃x ∈ C1 ∩ Z2 s.t. B(c2, x) ∩ Z1 6= ∅

maxk′∈K1,2

√∑
k 6=k′ |ck1 − ck2|2 otherwise.

Proof: We prove the lemma for 2D case first, and show how the analysis can be generalized

to higher dimensions.

For the feasible pair of outcomes c1, c2 ∈ C, we consider the following two cases:

I. c2 ∈ Ck
1 for some k, ∃x ∈ C1 ∩ Z2 and g ∈ B(c2, x) ∩ Z1 (as shown in Figure4.5

left). Consider the situation in which a manipulator’s true peak coincides with c2, which

provides the maximum gain for a manipulation that induces location c2. We can construct

a location profile such that g is one of the quantile-location under truthful report before

projection. As we have g ∈ Z1, the CCM will project it to c1, and the manipulator cost is

at most ||c2−c1||2 (equality if c1 is the closest facility under truthful report). However, the

manipulator can misreport and change the quantile-location for g to x (as g ∈ B(c2, x)),

inducing a projection to c2 (as x ∈ Z2) and a cost of 0, so her gain is at most ||c2 − c1||.

II. c2 /∈ Ck
1 for any k. If K1,2 = ∅, then by Lemma 4.2 we have G(c1, c2) = 0, otherwise

the upper bound is demonstrated using the properties of a hyperbola. Given two focal

points, the difference of the distances to these two foci from any point on a hyperbola

is constant. Let a and b be the semi-major and semi-minor axes, and c the half distance

between two foci satisfying c2 = a2 + b2.

Let c1 and c2 be two focal points of a hyperbola (see Figure 4.5 right). Let the angle

between line c1c2 and the horizontal axis be α, and the angle between the asymptotes and

the semi-major axis be θ. Our goal is to bound the maximum value of 2a, which is the
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Figure 4.5: The incentive is bounded if some manipulator can benefit from changing the out-
come from c1 to c2.

difference of distances to the two foci on a hyperbola, s.t. the constraint that hyperbola

l intersects the horizontal or vertical axis (otherwise no agent can benefit this much).

Suppose w.l.o.g., we have Z2 ∩ C2
1 6= ∅. The maximum gain is achieved when the

angle θ > 90◦ − α and the hyperbola intersects the shaded area C1
1. Recall that for an

asymptote, we have tan(θ) = b/a, so we can formulate this as a maximization:

max 2a

s.t.
(
c1

2 − c1
1

)2
+
(
c2

2 − c2
1

)2
= 4(a2 + b2)

b

a
>
|c1

2 − c1
1|

|c2
2 − c2

1|

Solving the above maximization, we have 2a = |c2
1 − c2

2|. And if we consider every

dimension k ∈ K1,2, we can get the above bound.

When generalizing to higher dimensions, the analysis in case I still applies. For case II, we

use two sheeted hyperboloid instead of hyperbola and conical surface instead of asymptotes,
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where the above optimization becomes:

max 2a

s.t.
∑
k

(ck2 − ck1)2 = a2 + b2

b

a
> max

k
{ |ck2 − ck1|√∑

k′ 6=k |ck
′

2 − ck
′

1 |2
,

√∑
k′ 6=k |ck

′
2 − ck

′
1 |2

|ck2 − ck1|
}

Solving the above maximization problem, we have 2a = maxk′

(∑
k 6=k′ |ck2 − ck1|2

)1/2

, com-

pleting our proof.

We now describe the main results of this section, and provide upper bounds on the in-

centives for individuals and groups misreport in CCMs under the L2-norm. Unlike the uncon-

strained case, the bound here applies for any group of manipulators with any preference profile,

and is a function of the feasible locations only. The first result is for a single manipulator:

Theorem 4.5 (Approximate strategy-proofness of multi-dimensional CCM) CCMs are ε-

strategy-proof in multi-dimensional FLPs under the L2-norm, where

ε = max
(cr,cs)∈C

G(cr, cs)

Proof: For each feasible pair of outcomes cr, cs ∈ C, the gain of any agent when changing the

outcome from cr to cs is at most G(cr, cs) by Lemma 4.3. Maximizing over all feasible pairs

completes the proof.

For group misreports, we provide a loose bound:

Theorem 4.6 (Approximate group strategy-proofness of multi-dimensional CCM) CCMs are

ε-group strategy-proof in multi-dimensional FLPs under the L2-norm, where

ε = max
cr,cs∈C

||cr − cs||2
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Figure 4.6: An example where a manipulator can benefit from changing the outcome from c1

to c2.

Proof: Consider any feasible pair of outcomes cr, cs ∈ C. Let g be one of the chosen locations

under a QM f ′, which is projected to cr under the CCM f . We can construct a location profile

and a manipulator set S = {x, y, p} such that: (i) all the manipulators are closer to cs than to

cr; and (ii) one of the manipulators p coincides with cs. In addition, we can also ensure that x

and y are “far enough away” so that the bounding box containing x, y and p intersects with Zcr

(as shown in Figure 4.6).

A viable group manipulation exists if all three manipulators misreport cs, and move the

selected quantile-location from g to ds, in which the gain of the each manipulators is at most

||cr−cs||2 (the bound is tight if q = 1). Maximizing over all feasible pairs completes the proof.

Recall that this upper bound is a function of the feasible locations, so for the unconstrained

facility location problem (where C = Rm), this result reduces to Theorem 4.1. Also note

that this bound can be viewed as a negative result, as it naturally holds in any mechanism for

constrained FLPs (for any mechanism that maps agent profiles to feasible locations, this bound

is the most that any agent can gain by misreporting). However, the proof of the worst-case

bound makes strong assumptions about the locations of the peaks of both the sincere agents
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and the manipulators. Such worst-case bounds are unlikely to arise in practice, as we explore

empirically in the next section.

4.4 Empirical Analysis

The theoretical bounds derived above offer some insight into the performance of GMMs, QMs

and CCMs w.r.t. incentive for manipulation. But the tightness of these bounds in practice

depends on the distribution of agent preferences (i.e., their peaks in the underlying space). We

evaluate these incentives empirically using two real-world data sets.

The first uses voting data from the Dublin West constituency in the 2002 Irish General

Election.3 It consists of 29,989 votes over nine candidates, with each vote a ranking of a

subset the candidates. We use the 3800 votes that rank all nine candidates. For this data set,

it includes only voter rankings of candidates and not ideal points (which may not correspond

to any candidate). Furthermore, the (latent) space in which candidates and voter peaks lie

is not given, and voter preferences may not be single-peaked. Fortunately, recent analysis

has suggested not only that this data is approximately single-peaked in two dimensions (see

Section 6.3 later), but also that a spatial model [Poole and Rosenthal, 1985] using L2 distance

provides a reasonable explanation of voter preferences ([Gormley and Murphy, 2007]). We

fit this data to a 2D-spatial model by estimating both voter peaks (ideal points) and candidate

positions (i.e., the feasible set), using an alternating optimization algorithm. The details will be

introduced in Section 6.4 later. We use the estimated voter peaks in tests of unconstrained QMs

(ignoring the candidates) and constrained CCMs (limiting selection to the nine candidates).

The second data set comprises geographic data for facility location [Daskin, 2011], with

latitude and longitudes of 88 cities in the continental United States (the 48 state capitals unioned

with the 50 largest cities). Following [Snyder and Daskin, 2005], we treat these locations as

both the ideal points of 88 agents and the feasible locations in constrained FLPs. In other

3Available from www.dublincountyreturningofficer.com.
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words, the agents reveal their locations (which we assume to be private, but in fact linked to a

specific site) and then place a small set of facilities among themselves (the setup is similar to

a voting for representatives from within a group [Alon et al., 2011]). This data is used to test

CCMs.

To generate unconstrained FLPs from the voting data, we assume s ∈ {2, 5, 8} manipula-

tors and n ∈ {0, 2, 5, 10, 20, 50,80, 100} sincere voters. For each setting, we randomly sample

voter peaks from the 3800 estimated (spatial) positions to generate 1000 type profiles. For

each profile, we either enumerate all manipulating coalitions of the required size or randomly

sample t ∈ {10, 20, 50, 100, 200} sets of s manipulators (depending on problem size). For

each of the 1000 profiles, if any of the coalitions has a viable manipulation, we say the profile

is manipulable and report the average gain of the coalition members in the coalition that has

maximal gain.4 We report the following in our results:

• The probability of manipulation, i.e., the proportion of the 1000 profiles that admit a

beneficial manipulation for some coalition;

• The (normalized) gain for the coalition with maximal gain, averaged over the 1000 pro-

files; and

• The average loss in social welfare realized, relative to truthful reporting.

To test CCMs on constrained FLPs, we use a smaller number of manipulators 1, 2 and 4,

but otherwise use the same settings as in the unconstrained case.

Figure 4.7 shows results on unconstrained problems for a single facility (winning candidate)

using the median mechanism (quantile 0.5). Interestingly, the probability of manipulation

increases with the number of sincere agents and converges to 1.0 (see the middle figure of

Figure 4.7). This occurs because we simply measure whether some coalition among the set

4This set up assumes, somewhat unrealistically, that the members of this worst-case coalition can “discover”
each other, and that they generate their misreport with full knowledge the reports of the sincere agents, as is
common in analysis of manipulation in voting. For an analysis of manipulation in voting under more realistic
knowledge assumptions, see [Lu et al., 2012].
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of agents can successfully manipulate. This suggests that there is almost always some group

whose peaks “contain” the median position. However, the left figure in Figure 4.7 shows that

the average normalized gain decreases significantly with the number of sincere agents (e.g.,

with 2 manipulators, manipulation probability increases from 9.7% to 100%, but normalized

gain reduces from 6.2% to 0.33%. Manipulative power is limited by the nearby peaks of sincere

voters, and diminishes with more sincere voters. Impact on social welfare is also limited and is

very small beyond 10 sincere agents, suggesting that QMs (including the median mechanism)

are robust to manipulation in practice (note that manipulation may both increase or decrease

total social cost).

We next evaluate CCMs in constrained two-facility FLPs, using the QM q = {0.2, 0.3; 0.8, 0.7}

to make the initial selections (which are then projected using CCM). Figure 4.8 and 4.9 show

the results on both the voting data set and the geographic data set, respectively. The results for

the voting data in constrained FLPs is similar to those for the unconstrained FLPs, except that

the probability of manipulation initially increases as the number of sincere agents grows, and

then decreases. The initial increase occurs for the same reason as in the unconstrained case,

and subsequently decreases because the number of feasible locations is fixed and small, which

limits the probability of manipulation as the number of sincere agents increases. For the geo-

graphic data set, the probability of manipulation remains high, suggesting that there is always

some group that can profitably manipulate a QM. Compared with the results on the voting

data set, this occurs, in part, because the number of feasible outcomes increases as the number

of agents increases, making it more probable for the manipulators to probe new possibilities.

Average normalized gain and loss in social welfare is much higher than in the voting data set

(e.g., with 2 of each agent type, average gain in constrained FLPs is 52%, compared to 4.7%

in the voting data set). This is largely due to the fact that the agents’ ideal locations and the

feasible locations are much more tightly clustered in the geographic data set (since ideal points

coincide with feasible locations) than in the voting data set. Despite this, both average gain and

impact on social cost drop quickly with the number of sincere agents.
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4.5 Conclusion

In this chapter, we have studied the mechanism design problem for both unconstrained and

constrained FLPs, investigating the degree to which individual and group strategy-proofness

can be achieved, and providing bounds on the incentive for individuals and groups to misreport

in generalized median, quantile, and our newly proposed closet candidate mechanisms. Empir-

ical analysis of Irish electoral data shows that these mechanisms may perform extremely well

in practice, limiting the odds of manipulation and especially the potential gains and impact on

social welfare.

There are several interesting future directions that extend the results in this chapter. Ex-

ploring the approximate incentive properties of additional mechanisms (beyond GMMs, QMs,

CCMs) and cost functions (beyond L2) is of interest. The exploration of incremental (or multi-

stage) mechanisms that trade off social cost, incentives, privacy and communication would

be extremely valuable (as will be discussed in Chapter 7). In addition, preferences are often

not fully single-peaked in realistic domains, but are often approximately so (as we will see in

Chapter 6). Extending the theoretical analysis to this setting would be of value. Finally, we

are interested in examining the optimization problem facing manipulators when they have only

probabilistic knowledge of the potential reports of the sincere agents, as well as the impact

of this limited knowledge on the probability of manipulation, average gain/incentive, and loss

in social welfare Lu et al. [2012]. This would provide a more realistic assessment of the ro-

bustness/resistance of GMMs and QMs to group manipulation. We will discuss more future

directions in Chapter 8.
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Chapter 5

Group Manipulation: Optimization and

Complexity

5.1 Introduction

Quantile mechanisms, as defined in Chapter 3, are strategy-proof, but as shown in Chapter 4,

are not group strategy-proof, and provide several possibility/impossibility results on the incen-

tives for a group of agents to misreport. While group strategy-proofness cannot be guaranteed,

this does not mean that finding a viable or optimal group manipulation is computationally fea-

sible for a group of agents. In this chapter, we study the computational complexity for group

manipulation in unconstrained facility location. Specifically, focusing on quantile mechanisms

(QMs) (and to some extent generalized median mechanisms (GMMs)), we consider the formu-

lation of the optimal group manipulation problem as mathematical programs of various types;

the computational complexity of this problem; and how much manipulators might gain given

optimal manipulations, under different cost functions, when GMMs/QMs are used.

Our primary contribution is to formulate the group manipulation problem—for both single-

and multi-FLPs under both the L1- and L2-norms (where these metrics measure distance/cost

between ideal points and facilities)—as convex optimization problems, and study their compu-

102
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tational complexity. We show that single-FLPs with L1 and L2 costs can be specified as linear

programs (LPs) and second-order cone programs (SOCPs), respectively. This means both can

be solved in polynomial time (using interior point methods [Boyd and Vandenberghe, 2004]).

By contrast, we show that multi-FLPs are NP-hard by reduction from the geometric p-median

problem [Megiddo and Supowit, 1984] under both norms. Despite this, we provide formula-

tions of these problems as mixed integer linear (MILPs) and mixed integer SOCPs (MISOCPs)

for L1 and L2 costs, respectively. We also test these formulations empirically, with results that

suggest commercial solvers can compute optimal group manipulations (or prove that none ex-

ists) for multi-FLPs of reasonable size rather effectively, despite the theoretical NP-hardness

of the problem.

5.2 Group Manipulation for Single-Facility Location Prob-

lems

In this section, we address the problem of group manipulation for single-facility location prob-

lems, first describing its general form, then describing a linear programming formulation under

the L1-norm (or distance metric), and finally describing a second-order cone programming for-

mulation under the L2-norm.

Following the notation in Section 2.3, we let n be the number of agents, q be the number

of facilities, and m be the number of dimensions. Also let fP be a quantile mechanism with

quantile matrix P, which select q homogeneous facilities in the m-dimensional space Rm.

Such an outcome is represented by a location vector x = (x1, x2, . . . , xq), where xj ∈ Rm.

Each agent has a type ti ∈ Ti determining her cost associated with any location vector x, i.e.,

ci(x, ti) = minj≤q ci(xj, ti), in which each agent uses the facility with least cost.

Informally, the optimal group manipulation problem is that of finding a joint misreport for

a group of manipulators such that the outcome induced by this misreport is such that: (a) the

sum of costs of the manipulators is minimized; and (b) relative to the outcome that would have
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been induced by truthful reporting, no manipulator is worse off (has a higher cost) and at least

one is strictly better-off (has lower cost). We formalize this as follows:

Definition 5.1 (Optimal group manipulation) Let N = S ∪M , where S is a set of sincere

agents and M is a set of manipulators with type vectors tS and tM , respectively. Let fP

be a QM with quantile matrix P. Let xP = fP(tM , tS) be the location chosen by fP if all

agents report their peaks truthfully, and x′P = fP(t′M , tS) be the location chosen given some

misreport t′M by the manipulators M . The optimal group manipulation problem is to find a

joint misreport t′M for the agents in M satisfying:

t′M = arg min
t′M

∑
i∈M

ci (x′P, ti) (5.1)

s.t. ci (x′P, ti) ≤ ci (xP, ti) , ∀i ∈M (5.2)

ci (x′P, ti) < ci (xP, ti) , for some i ∈M (5.3)

Notice that we assume agents have non-transferable utilities, otherwise we can optimize

objective (5.1) without the constraints (this is because for the case of transferable utilities,

all agents can be made better off by transferring some positive fraction of the gain to each

other). One may also argue whether the objective of minimizing social cost among the ma-

nipulators makes sense. Definitely, one can use other objective functions (e.g., maximum cost

minimization), however, we choose this particular one because: 1) this is a natural objective

that maximizes the social welfare of the manipulators, and (2) it subsumes the ”existence of

a misreport”, i.e., whether there exists a joint misreport that no one is worse-off and the total

gain is greater than zero.

Given a group of manipulators M , we generally refer to the remaining agents S = N \M

as “sincere,” though we need not presume that their reports are truthful in general, only that M

knows (or can anticipate) their reports.
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5.2.1 Group Manipulation Specification

Recall from Defn. 5.1 that a group manipulation is a set of misreports by the manipulating

coalitionM such that no manipulator is worse off and at least one is better off. The optimization

formulation of this problem in Eq. (5.16) requires that one find the misreport that provides the

greatest total benefit to the coalition. This explicit, straightforward formulation considers all

possible misreports (i.e., the vector of purported “preferred” locations of each manipulator),

which in principle induces a very large high-dimensional search space, from which the optimal

misreport must be selected.

Fortunately, we can decrease the search space dramatically by considering only viable lo-

cations for manipulator misreports. We first define viability:

Definition 5.2 (Viability) Let fP be a QM with quantile matrix P, and tS be the reported

types of the sincere agents in S = N \M . A location x ∈ Rm is viable for a manipulating

coalition M if there exists a joint misreport t′M s.t. x = fP(t′M , tS) We say t′M implements x

in this case.

The following proposition shows that, in single-FLPs, if a mechanism fP selects a location

x′P = fP(tS, t
′
M) under a group manipulation t′M , then it also selects x′P if each manipulator

misreports x′P as her peak.

Proposition 5.1 For single-FLPs, let t′M be a group manipulation and x′P be a viable loca-

tion implemented by t′M under mechanism fP. Then x′P is also implemented by the group

manipulation t∗M = {x′P, . . . , x′P}.

Proof: We first provide a proof for m = 2 first, and then show how the analysis can be gener-

alized to the case of m > 2. Consider an arbitrary group manipulation t′M , which implements

location x′P = fP(t′M , tS) ∈ R2 (as shown in Figure 5.1). Let us denote the misreport of each

manipulator by t′i = (t
′1
i , t

′2
i ),∀i ∈M and the location by x′P = (x

′1
P, x

′2
P).

Pick an arbitrary manipulator i ∈ M , and assume w.l.o.g. that t′1i ≤ x
′1
q and t′2i ≥ x

′2
q . We
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i

Figure 5.1: Each manipulator can move her misreport to x′P without changing the outcome.

construct another group manipulation t
′′
M by changing the misreport of manipulator i to x′P.

Recall that the mechanism fP locates the facility at a specified quantile, so we have:

fP(t′M , tS) = fP((t′i, t
′
M\i), tS)

= fP(((t
′1
i , x

′2
P), t′M\i), tS)

= fP(((x
′1
P, x

′2
P), t′M\i), tS)

= fP((x′P, t
′
M\i), tS) = fP(t

′′

M , tS)

Repeating this procedure over all manipulators completes our proof for m = 2.

For the case of m > 2, we can also change the misreport from each manipulator to the

coordinate of the implemented location on each dimension independently, without changing

the location of the facility. This completes our proof.

Proposition 5.1 demonstrates that we can limit our attention to the “unanimous” reporting

of viable locations when searching for optimal misreports, without considering misreports that

reveal locations that cannot be implemented or realized by the manipulators. Since Propo-

sition 5.1 gives us license to consider only viable locations as potential misreports, we can
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reformulate the optimal group manipulation problem (Defn. 5.1) as follows:

Definition 5.3 (Optimal group manipulation) Let fP be a QM with quantile matrix P. Let

xP = fP(tM , tS) be the location chosen by fP if all agents report their peaks truthfully, and

x′P = fP(t′M , tS) be the location chosen given some misreport t′M by the manipulatorsM . The

optimal group manipulation problem can be reformulated as:

min
x∈Rm

∑
i∈M

ci (x, ti) (5.4)

s.t. ci (x, ti) ≤ ci (xP, ti) , ∀i ∈M (5.5)

ci (x, ti) < ci (xP, ti) , for some i ∈M (5.6)

x is a viable location under fP and tS (5.7)

In the sequel, our specific formulations of the problem will rely on Defn. 5.3. We can also

safely omit the constraints embodied in Eq. 5.6, as they can easily be checked after the fact

given the optimized location vector—if no manipulator is strictly better off under the optimal

misreport, then a group manipulation obviously cannot exist.

5.2.2 LP Formulation under the L1-norm

We now consider the formulation of optimal manipulation when the L1-norm is used as the

cost function, i.e., ci(x, ti) =
∑

k≤m |xk − tki | for any location x ∈ Rm. Let x = (x1, . . . , xm)

represent the location to be optimized (i.e., the location induced by the manipulation) in single-

FLPs, where each xk is a continuous variable. Let ci be a continuous variable denoting the cost

of manipulator i given outcome x. We can formulate the objective function Eq. (5.4), and the
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constraints Eq. (5.5), as follows:

min
x

∑
i∈M

ci (5.8)

s.t. ci =
∑
k≤d

|xk − tki |, ∀i ∈M (5.9)

0 ≤ ci ≤ ui, ∀i ∈M (5.10)

where ui = ci(xP, ti) is the cost of manipulator i under a truthful report tM by the manipula-

tors.

This formulation contains absolute values in the nonlinear constraints (5.9). We introduce

an additional set of variables to linearize these constraints. Letting Dk
i be an upper bound on

the distance between ti and x in the kth dimension, we linearize the constraints (5.9) as follows:

−Dk
i ≤ tki − xk ≤ Dk

i , ∀i ∈M, ∀k ≤ m (5.11)

Dk
i ≥ 0, ∀i ∈M,∀k ≤ m (5.12)

ci =
∑
k≤m

Dk
i , ∀i ∈M (5.13)

Finally, we need constraints that guarantee that new location x is viable. Recall that a

QM locates the facility at a specified quantile of the reported peaks in each dimension inde-

pendently, and by Proposition 5.1 we can assume w.l.o.g. that all manipulators use the same

misreport. This implies that a viable location for the facility is bounded by the reported coordi-

nates of two sincere agents in each dimension. Formally, let P = (p1, . . . , pm) be the quantile

vector for mechanism fP (for single-FLPs, we have a single vector rather than a full matrix),

and let

⊥k = min{z ∈ Z+ : z + |M | ≥ pk · n} and

>k = max{z ∈ Z+ : |S|+ |M | − z ≥ (1− pk) · n}.
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(For convenience, we assume w.l.o.g. that pk ·n is an integer.) If we let x̃kS = {x̃k1, . . . , x̃k|S|} de-

note the ordered coordinates of the reported peaks of the sincere agents S in the kth dimension,

then we have:

Lemma 5.1 For single-FLPs, a location x = (x1, . . . , xm) ∈ Rm is viable if and only if

x̃k⊥k ≤ xk ≤ x̃k>k ,∀k ≤ m.

Proof: We first show x is viable if x̃k⊥k ≤ xk ≤ x̃k>k , ∀k ≤ m. By Lemma 5.1, we can assume

w.l.o.g. that all manipulators misreport xk on the kth dimension. Also by the definition of ⊥k

and>k there are (pk ·n−|M |) and ((1− pk) ·n−|M |) sincere agents on the left of (including

equal to) x̃k⊥k and on the right of (including equal to) x̃k>k on the kthe dimension, respectively1.

Now consider any xk satisfying x̃k⊥k ≤ xk ≤ x̃k>k . As all manipulators misreport xk on the kth

dimension, then the total number of agent (including sincere agents and manipulators) on the

left and right of or equal to xk is at least (pk · n) and ((1 − pk) · n), respectively. Recall that

the QM locates the facility at the pkth quantile on each dimension we know xk = fk
P, i.e., x is

a viable location.

We prove the converse by contradiction. Suppose x is a viable location where, say w.l.o.g.,

xk < x̃k⊥k . By Lemma 5.1, we can assume w.l.o.g. that all manipulators misreport xk on

dimension k. By the definition ⊥k, the total number of agents (including sincere agents and

manipulators) on the left of or equal to x̃k⊥k is at most (pk · n − |M | + |M |) = (pk · n). This

suggests that fk
P = x̃k⊥k > xk, contradicts the fact that x is a viable location.

This lemma ensures that we can use the following boundary constraints as to enforce via-

bility (see Eq. (5.7)):

x̃k⊥k ≤ xk ≤ x̃k>k , ∀k ≤ m (5.14)

To summarize, we can formulate the optimal group manipulation under the L1-norm as an

LP, which is stated in the following theorem:

1For convenience, we assume w.l.o.g. that qk · n is an integer.
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min
x

∑
i∈M

ci

s.t. 0 ≤ ci ≤ ui, ∀i ∈M
−Dk

i ≤ tki − xk ≤ Dk
i , ∀i ∈M, ∀k ≤ m

Dk
i ≥ 0, ∀i ∈M,∀k ≤ m

ci =
∑
k≤m

Dk
i , ∀i ∈M

x̃k⊥k ≤ xk ≤ x̃k>k , ∀k ≤ m

Figure 5.2: The complete linear program of optimal group manipulation for single facility
location problem under the L1-norm.

Theorem 5.1 (LP for optimal group manipulation in single-FLPs) The optimal group ma-

nipulation problem for single facility location under the L1-norm can be formulated as a linear

program (LP), with objective function (5.8) and constraints (5.10)-(5.14).

Proof: Figure 5.2 provides a snapshot of the whole LP. The objective function (5.8) min-

imizes the sum of costs over all manipulators. Constraints (5.10)-(5.13) guarantee that no

manipulators is worse off, and constraints (5.14) ensure that the optimized location induced by

the misreport is viable. As both the objective and the constraints are linear, and all variables are

continuous, this constitutes a linear program. The total number of variables is (m+ 1)|M |+m

or O(m|M |) (where |M | comes from the manipulator cost ci, m|M | comes from Dk
i s, and the

rest m comes from x).

As such, the optimal manipulation problem can be solved in polynomial time.

5.2.3 SOCP Formulation under the L2-norm

The optimization formulation for the L1-norm above can be easily modified to account for L2

costs. Specifically, we need only a minor modification of the constraints (5.13) to incorporate
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min
x

∑
i∈M

ci

s.t. 0 ≤ ci ≤ ui, ∀i ∈M
−Dk

i ≤ tki − xk ≤ Dk
i , ∀i ∈M, ∀k ≤ m

Dk
i ≥ 0, ∀i ∈M,∀k ≤ m

(ci)
2 ≥

∑
k≤m

(
Dk

i

)2
, ∀i ∈M

x̃k⊥k ≤ xk ≤ x̃k>k , ∀k ≤ m

Figure 5.3: The complete second-order cone program of optimal group manipulation for single
facility location problem under the L2-norm.

Euclidean distances as follows:

(ci)
2 ≥

∑
k≤m

(
Dk

i

)2
, ∀i ∈M (5.15)

We also have the following theorem:

Theorem 5.2 (SOCP for optimal group manipulation in single-FLPs) The optimal group ma-

nipulation problem for the single facility location under the L2-norm can be formulated as a

second-order cone program (SOCP), with objective function (5.8) and constraints (5.10)-(5.12)

and (5.14)-(5.15).

Proof: Figure 5.3 provides a snapshot of the whole SOCP. The objective function (5.8) min-

imizes the sum of costs over all manipulators. Constraints (5.10)-(5.12) and (5.14)-(5.15)

guarantee that no manipulator is worst-off and the new location is viable. This constitutes a

second-order cone program (SOCP) under the L2-norm. The total number of variables is also

O(m|M |).

Since SOCPs can be solved in polynomial time, we have the following:

Remark 5.1 The optimal group manipulation problem for single-facility location under both

the L1- and L2-norms can be solved in polynomial time.
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5.3 Group Manipulation for Multi-Facility Location Prob-

lems

In this section, we extend our analysis of group manipulation to multi-facility location prob-

lems. Unlike single-FLPs, we show that problem in computationally intractable for multi-

FLPs, under both the L1- and L2-norms. However, we provide mathematical programming

models that are often quite efficient in practice.

Following the notation in Section 2.3, we let n be the number of agents, q be the number

of facilities, and m be the number of dimensions. Also let fP be a quantile mechanism with

quantile matrix P, which select q homogeneous facilities in the m-dimensional space Rm.

Such an outcome is represented by a location vector x = (x1, x2, . . . , xq), where xj ∈ Rm.

Each agent has a type ti ∈ Ti determining her cost associated with any location vector x,

i.e., ci(x, ti) = minj≤q ci(xj, ti), in which each agent uses the facility with least cost. Then

the optimal group manipulation problem is to find a joint misreport t′M for the agents in M

satisfying:

t′M = arg min
∑
i∈M

ci (x′P, ti) (5.16)

s.t. ci (x′P, ti) ≤ ci (xP, ti) , ∀i ∈M (5.17)

ci (x′P, ti) < ci (xP, ti) , for some i ∈M (5.18)

where xP = fP(tM , tS) is the location vector chosen by fP if all agents report their peaks

truthfully, and x′P = fP(t′M , tS) is the location vector chosen given some misreport t′M by the

manipulators M .

5.3.1 The Complexity of Group Manipulation

We first show that group manipulation is NP-hard for multi-FLPs.
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Theorem 5.3 (NP-Hardness of optimal group manipulation in multi-FLPs) The optimal group

manipulation problem for multi-facility location under either the L1- or L2-norms is NP-hard.

Proof: We prove the hardness result using a reduction from p-median. W.l.o.g., we can focus

on the two-dimensional version of this problem: Given a set R = {(x1, y1), . . . , (xt, yt)} of

points in the plane, we want to find a set Q = {(z1, s1), . . . , (zp, sp)} of p points so as to

minimize:

t∑
i=1

min
1≤j≤p

{|xi − zj|+ |yi − sj|} (5.19)

or

t∑
i=1

min
1≤j≤p

{
√

(xi − zj)2 + (yi − sj)2} (5.20)

where formula (5.19) and (5.20) are referred to as the Rectilinear and Euclidean p-median

problem, respectively.

Consider the following 3 steps.

I. Take an arbitrary instance of the p-median problem. Specifically, letR = {(x1, y1), . . . , (xt, yt)}

be a set of t points in the plane, and Q∗ = {(z∗1 , s∗1), . . . , (z∗p , s
∗
p)} be a p-median of R.

We assume all the points in R are in the unit box, and so are the medians (as shown in

Figure 5.4) without loss of generality, as for any fixed problem, we can bring all points

into this normalized from by rescaling.

II. Let P be a quantile matrix that is consistent with Q∗. We say a quantile matrix is consis-

tent with a set of points Q if there exists a type profile t such that fP(t) = Q. It is not

hard to see that such a quantile matrix always exists (if may not be unique).2 Recall that

P is a p× 2 matrix with the form of P = {(p1
1, p

2
1); . . . ; (p1

p, p
2
p)}. We can create another

2Given a set of points Q, we can construct a consistent quantile matrix P as follows: for any two points
(q1

j , q
2
j ), (q

1
j′ , q

2
j′) ∈ Q, we have to guarantee that the corresponding quantile values satisfy p1

j ≤ p1
j′ iff q1

j ≤ q1
j′

and p2
j ≤ p2

j′ iff q2
j ≤ q2

j′ . If we do this for every pair of points in Q, we can get a consistent quantile matrix.
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Figure 5.4: The p-medians of a set of points, where each × represents a given point, and each
• represents one solution point of the p-median problem.

matrix P̃ by adding (0, 0) as the first row to P, i.e., P̃ = {(0, 0); (p1
1, p

2
1); . . . ; (p1

p, p
2
p)}.

Let > = max{p1
1, . . . , p

1
p, p

2
1, . . . , p

2
p}, i.e., the maximum quantile value in P. Then

we create another set R̃ of t + U points by adding U copies of (−b,−b) into R, i.e.,

R̃ = {
Ucopies︷ ︸︸ ︷

(−b,−b), . . . , (−b,−b)} ∪ R, where b is a positive number, and U is a large

positive integer satisfying (U + t) · > ≤ U . The reason that we add these points is to

guarantee that the quantile mechanism fP̃ will locate all facilities at (−b,−b) if if we

treat the points in R̃ as peaks from the agents.

Now consider the optimal group manipulation problem for (p + 1) facilities under the

quantile mechanism fP̃, where the ideals of manipulators are R̃ and there is no sincere

agent. If the U we choose satisfy the above inequality and all manipulators report their

peaks truthfully, then all the (p + 1) facilities will be located at (−b,−b) (as shown in

Figure 5.5), i.e., xP̃ = {
(p+1) copies︷ ︸︸ ︷

(−b,−b), . . . , (−b,−b)}. Under this location vector xP̃, every

manipulator with the peak of (−b,−b) has a cost of 0, and everyone else has a cost of

at least 2b under the L1-norm or
√

2b under the L2-norm. However, there exists a group
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Manipulator
Location vector under
truthful report

(-b, -b)

U copies

Figure 5.5: The outcome of mechanism fP if all manipulators report truthfully, where each ×
represents the true peak of a manipulator, and each � represents the location of one facility
under fP.

manipulation: if some manipulators at (−b,−b) misreport their peaks, claiming they lie

within the unit box, then this will “push” some facilities into the unit box, benefiting the

other t manipulators.

III. So far, we have encoded the p-median problem as a group manipulation problem. The

last step is to show that if we have a solution to the optimal manipulation problem defined

in step II, we also have a solution to the p-median problem defined in step I. This will

indicate that the optimal group manipulation is at least as hard as the p-median problem,

which is known to be NP-Hard.

Let x∗
P̃

be the optimal solution of the optimal group manipulation problem defined in step
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II, our first claim is that (−b,−b) ∈ x∗
P̃

. This is trivial because a group manipulation

requires that no manipulator is worse off (i.e., constraints (5.5) in Definition 5.3), and

there must be one facility located at (−b,−b) for every optimal manipulation.

Our next claim is that x∗
P̃
\(−b,−b) ∈ arg minQ

{∑t
i=1 min1≤j≤p{|xi − zj|+ |yi − sj|}

}
(or x∗

P̃
\(−b,−b) ∈ arg minQ

{∑t
i=1 min1≤j≤p{

√
(xi − zj)2 + (yi − sj)2}

}
). In other

words, if we remove (−b,−b) from the solution vector x∗
P̃

we get from step II, then

the remaining locations constitutes an optimal solution to the p-median problem de-

fined in step I. Suppose by contradiction that this is not true. If we use D(Q∗) to

denote the value of the p-median problem induced by a set of points Q∗, this means

we have
∑

i∈R ci(x
∗
P̃
\(−b,−b), ti) > D(Q∗). However, if we consider the set Q′ =

{(−b,−b)} ∪ Q∗, we would like to show that Q′ is a solution to the group manipula-

tion problem with lower cost for the manipulators if b is large enough, contradicting the

optimality of x∗
P̃

.

We first show that Q′ actually induces a smaller objective value:

∑
i∈R̃

ci(Q
′, ti) =

∑
i∈R

ci(Q
′, ti) +

∑
i∈R̃\R

ci(Q
′, ti)

=
∑
i∈R

ci(Q
′, ti) + 0

=
∑
i∈R

ci(Q
∗, ti)

= D(Q∗) <
∑
i∈R

ci(x
∗
P̃
\(−b,−b), ti)

=
∑
i∈R̃

ci(x
∗
P̃
, ti)

where the third equality comes from the fact that if b is large enough, then no manipulator

in R will use the facility located at (−b,−b), and as we will see in Lemma 5.2, there is a

closer facility in the unit box where everyone is better-off.

We next show that both constraints (5.5) are satisfied. We first give the following lemma:



CHAPTER 5. GROUP MANIPULATION: OPTIMIZATION AND COMPLEXITY 117

Lemma 5.2 There exists a solution point x ∈ x∗
P̃

, such that x is in the unit box.

Proof: Suppose by contradiction that there is no solution point in the unit box, then

if we randomly pick one location x = (x1, x2) from x∗
P̃

. W.l.o.g., we can consider the

following 2 cases: (1) x is in the unit box in only one dimension, e.g., 0 ≤ x1 ≤ 1 and

x2 ≥ 1, and (2) x is not in the unit box in either dimension, e.g., x1 ≥ 1 and x2 ≥ 1. For

the fist case, we can have a group manipulation where all reports between 1 and x2 on

the second dimension are changed to 1, and the induced location vector (which contains

(x1, 1) instead of (x1, x2)) is a better group manipulation. We can do the similar thing for

the latter case, in which (x1, x2) will be replace by (1, 1) and a better group manipulation

is found. This contradicts with our assumption that x∗
P̃

is optimal, completing our proof.

By Lemma 5.2, we know that for every manipulation in R, their cost is at most 2 under

the L1-norm or
√

2 under the L2-norm. So if b � 1, then each manipulator located at

(−b,−b) has a cost of 0, and everyone else has a cost of at most 2 under the L1-norm or
√

2 under the L2-norm, satisfying constraints (5.5).

The last step is to show that Q′ is a viable location set under the quantile mechanism fP̃.

Recall that Q′ = {(−b,−b)} ∪Q∗ and P̃ = {(0, 0); q}. As P is consistent with Q∗, so if

we add a bottom-left point in Q and a corresponding quantile vector in P, then the new

quantile matrix P̃ is also consistent with Q′.

So we have reduced the p-median problem to our optimal group manipulation problem.

As the p-median problem is NP-Hard, so is our group manipulation.

From the reduction, we can see that the problem remains NP-hard even for two dimensions.

Moreover, the NP-hardness result only holds when the number of facilities p is a variable. If p

is fixed, the problem is solvable in polynomial time [Boyd and Vandenberghe, 2004].
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Finally, we would like to show that the following decision problem which is derived from

the optimal group manipulation problem is NP-Complete.

Problem 5.1 Given a set of sincere agents and manipulators, a quantile mechanism fP, a

location vector xP chosen under fP, and a positive value h. Is there a group manipulation t′M ,

such that
∑

i∈M ci(fP(t′M , tS), ti) ≤ h, and no manipulator is worse off?

This problem belongs to NP, because given a joint misreport, we can check in polynomial

time if the objective function has a smaller value and if no manipulator is worse off. In addition,

the above theorem implies that its optimization counterpart is an NP-Hard. Therefore, this

decision problem is NP-Complete.

As with any computational hardness result, while this implies worst-case instances may

be difficult to solve, it does not mean that many (or even most) of the instances that occur in

practice can’t be solved effectively. In the remainder of this section, we describe formulations

of the optimal group manipulation problem for multi-FLPs as integer programs (linear and

SOCP) that may be practically solvable. Our formulations are quite compact, and combined

with the empirical evaluation provided in Section 5.4, suggest that optimal group manipulations

can be found reasonably quickly, the NP-hardness of the problem notwithstanding.

5.3.2 MILP Formulation under the L1-norm

In this section, we describe our mixed integer linear programming (MILP) formulation of op-

timal group manipulation in multi-FLPs under the L1-norm.

The following proposition is the analogous to Proposition 5.1 for single-FLPs.

Proposition 5.2 Let t′M be a group manipulation and x = {(x1
1, . . . , x

m
1 ); . . . ; (x1

q, . . . , x
m
q )}

be a viable location vector implemented by t′M (assuming reports from agents in S = N\M

remain fixed to be tS). Let Xk = {xk1, . . . , xkq} denote the set of coordinates of these facilities

in the kth dimension. Then there exists a group manipulation t∗M that implements x, where

t∗i ∈
∏

k≤m Xk,∀i ∈M .
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1x

i

i’

2x

Figure 5.6: The probability that a random drawn point falls into each region.

Proof: We first prove the proposition for a two-dimensional, two-facility location problem,

and then show how the analysis can be generalized to any number of dimension and facility.

Consider the group manipulation shown in Figure 5.6, where the optimized new location

vector is x = {x1, x2}. While we can think that x has partitioned the space into 9 small grids

(assuming x1
1 6= x1

2 and x2
1 6= x2

2), which are separated by (x1
1, x

2
1), (x1

1, x
2
2), (x1

2, x
2
1) and

(x1
2, x

2
2). For each manipulator i ∈M , we can move her misreports towards the closest of these

four locations without passing through it, creating another group manipulation GM ′ from the

original group manipulation GM . Similar to the single-facility case, the way that quantile

mechanism works will guarantee that the new location vector x remains unchanged.

For the case of multi-facility location in multi-dimensional space, we can view the intersec-

tion positions induced by different facilities on different dimensions as partitioning the space

into small boxes. For each manipulator, we can change her misreport to one corner of the box

which her misreport lies in without changing the implemented viable location vector. As each

corner corresponds an element in
∏

k≤m Xk, this completes our proof.

In other words, we can assume w.l.o.g. that manipulators misreports are drawn from the

“intersection positions” in different dimensions induced by the different facilities contained



CHAPTER 5. GROUP MANIPULATION: OPTIMIZATION AND COMPLEXITY 120

within some viable location vector. Of course, the precise misreports at these intersection

positions must be coordinated to guarantee that the resulting location vector x is itself viable

(a point we return to below).

Let x = {(x1
1, . . . , x

m
1 ), . . . , (x1

q, . . . , x
m
q )} represent the location vector to be optimized

(i.e., induced by the manipulation). Let ci be a continuous variable denoting the cost of manip-

ulator i given outcome x. Finally, let cij be the cost of manipulator i w.r.t. facility j, and Iij be

a 0-1 variable whose value is 1 iff the closest facility for manipulator i is j. We can formulate

the objective function Eq. (5.4), and the constraints Eq. (5.5), as follows:3

min
x∈(Rm)q

∑
i∈M

ci (5.21)

s.t. ci =
∑
j≤q

Iij · cij, ∀i ∈M (5.22)

∑
j≤q

Iij = 1, ∀i ∈M (5.23)

Iij ∈ {0, 1}, ∀i ∈M,∀j ≤ q (5.24)

0 ≤ ci ≤ ui, ∀i ∈M, ∀j ≤ q (5.25)

cij ≥ 0, ∀i ∈M,∀j ≤ q (5.26)

Here ui = ci(xP, ti) is the cost of manipulator i under a truthful report tM by the manipulators.

Constraints (5.22)-(5.24) require that each manipulator be closest to (or more precisely,

decide to use) only one of the facilities, and ensure her cost for that facility is minimized over

all facilities. Constraint (5.25) ensures that no manipulator is worse off w.r.t. truthful reporting.

Since both Iij and cij are variables in constraint (5.22), we must linearize these quadratic terms

by introducing additional variables. Let Oij represent the product of Iij and cij . We can then

3For convenience, we refer to the formulations for single-FLPs, which can be generalized to multi-FLPs easily.
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replace the constraint (5.22) by

ci =
∑
j≤q

Oij, ∀i ∈M (5.27)

Oij ≥ cij + (Iij − 1)U, ∀i ∈M,∀j ≤ q (5.28)

Oij ≥ 0, ∀i ∈M,∀j ≤ q (5.29)

where U is any upper bound on manipulator cost.

These constraints guarantee that when Iij = 1, Oij is equal to cij (by constraints (5.29)),

and when Iij = 0, Oij is equal to 0 (by constraints (5.28) and (5.29) together). Note that as the

objective function is a minimization problem, we only need lower bounds on Oij here.

We also need constraints similar to constraints (5.11)-(5.13) to bound each manipulator’s

cost with respect to each facility cij . Let Dk
ij be an upper bound on the distance between

manipulator i and facility j in the kth dimension. We have:

−Dk
ij ≤ tki − xkj ≤ Dk

ij, ∀i ∈M, ∀j ≤ q,∀k ≤ m (5.30)

Dk
ij ≥ 0, ∀i ∈M, ∀j ≤ q,∀k ≤ m (5.31)

cij =
∑
k≤m

Dk
ij, ∀i ∈M,∀j ≤ q (5.32)

Finally, we must ensure that location vector x is viable. Let

⊥k
j = min{z ∈ Z+ : z + |M | ≥ pkj · n}, and

>k
j = max{z ∈ Z+ : |S|+ |M | − z ≥ (1− pkj ) · n},

and x̃kS = {x̃1, . . . , x̃|S|} be the ordered coordinates of the reports of the sincere agents in S

in the kth dimension. We break [x̃k⊥k
j
, x̃k>k

j
] into several (ordered) close and open intervals:

[x̃k⊥k
j
, x̃k⊥k

j
], (x̃k⊥k

j
, x̃k⊥k

j +1
), . . . , (x̃k>k

j−1
, x̃k>k

j
), [x̃k>k

j
, x̃k>k

j
] (see Figure 5.7 for an illustration). Let

∆k
j index these intervals (0 ≤ ∆k

j < 2|M | + 1), and let I∆k
j

be an indicator variable whose
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Figure 5.7: For each facility in each dimension, the boundaries are further split into small
intervals, each bounded by one/two sincere agents.

value is 1 iff the coordinate of facility j is contained in the ∆k
j th interval in the kth dimension.

We then have:

∑
∆k

j

I∆k
j
= 1, ∀j ≤ q,∀k ≤ m (5.33)

∑
∆k

j

I∆k
j
x̃kl ≤ xkj ≤

∑
∆k

j

I∆k
j
x̃kr , ∀j ≤ q,∀k ≤ m (5.34)

I∆k
j
∈ {0, 1}, ∀j ≤ q,∀k ≤ m (5.35)

where

l = ⊥k
j + b∆k

j/2cx̃ks ,

r = ⊥k
j + b(∆k

j + 1)/2c.

Constraints (5.33) and (5.35) ensure that each facility is located within only one interval in
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each dimension, while constraint (5.34) defines the upper and lower bounds for that interval.

For each interval, we can pre-compute the number of sincere agents that lie to the left of

(below) and right of (above) it (including equality) in each dimension k, which we denote by

L∆k
j

and R∆k
j
, respectively.4 We also introduce another indicator variable T k

ij whose value

is 1 iff manipulator i misreports the location of facility j in the kth dimension (this binary

variable can be relaxed, since all terms in (5.36) and (5.37) are integral). Given a quantile

matrix P = {(p1
1, . . . , p

m
1 ); . . . ; (p1

q, . . . , p
m
q )}, the location vector x to be optimized is viable

under fP if the following constraints are satisfied:

∑
∆k

j

I∆k
j
L∆k

j
+
∑
j′≤Pj

∑
i∈M

T k
ij′ ≥ nqkj , ∀j ≤ q,∀k ≤ m (5.36)

∑
∆k

j

I∆k
j
R∆k

j
+
∑
j′≥Pj

∑
i∈M

T k
ij′ ≥ n(1− qkj ),∀j ≤ q,∀k ≤ m (5.37)

∑
j≤q

T k
ij = 1, ∀i ∈M,∀k ≤ m (5.38)

T k
ij ∈ [0, 1], ∀i ∈M, ∀j ≤ q,∀k ≤ m (5.39)

The LHS of constraint (5.36) indicates the total number of sincere agents (the first term)

and manipulators (the second term) to the left of (or at) facility j in the kth dimension, where

j′ ≤P j denotes the facility j′ to the left of j in the kth dimension (i.e., pkj′ ≤ pkj ). According to

fP, this number should be greater than or equal to nqkj . Constraints (5.37) are similar, but used

to count from the right. Constraints (5.38) and (5.39) ensure that each manipulator reports the

location of one facility on each dimension.

To summarize, we have the following result:

Theorem 5.4 (MILP for optimal group manipulation in multi-FLPs) The optimal group ma-

4The reason that we have closed and open intervals is that we have to compute L∆k
j

and R∆k
j

differently. For
a closed interval, the sincere agent whose coordinate coincides with the interval should be counted twice when
computing both L∆k

j
and R∆k

j
, so we should have L∆k

j
+ R∆k

j
≥ |S| + 1. However, while for an open interval,

no sincere agent is double counted, so L∆k
j
+R∆k

j
= |S|.
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nipulation for multi-facility location under L1-norm can be formulated as a mixed integer lin-

ear program with objective function (5.21) and constraints (5.23)-(5.39).

Proof: Figure 5.8 provides a snapshot of the whole MILP. The objective function (5.21)

minimizes the sum of the costs of all manipulators. Constraints (5.23)-(5.32) guarantee that

the new location vector is mutually beneficial and each manipulator uses her closest facility.

Finally, constraints (5.33)-(5.39) ensure that the optimized location vector is viable.

Next, we analyse the number of variables. As we have mentioned, there are at most 2|M |+1

intervals for each facility j on each dimension k, so the total number of variables for I∆k
j

is at

most (2|M |+1)qm. We also need another q|M | variables to denote the closest facility for each

manipulator, so the total number of binary variables is 2(|M |+ 1)qm or O(qm|M |), where m

is the number of dimensions, q is the number of facilities and |M | is number of manipulators.

The number of continuous variables is (1 + 2q + 2qm)|M | + qm or O(qm|M |) (where |M |

comes from cis, 2q|M | comes from cijs and Oijs, 2qm|M | comes from Dk
ijs and T k

ijs, and the

rest qm comes from x).

The final step is to construct a misreport profile t′M that implements the location vector

optimized above. By Proposition 5.2, we can assume each manipulator reports one of the

intersection positions of the target outcome vector. So we arbitrarily choose a set of manipu-

lators of size exactly
∑

i T
k
ij for each target facility j in each dimension k. This completes the

construction of the misreport that implements the target location vector.

5.3.3 MISOCP Formulation under the L2-norm

When optimizing misreports for multi-FLPs under the L2-norm, we can use an approach simi-

lar to that used in the single-facility case, and formulate the optimal manipulation as an mixed-

integer SOCP (MISOCP). We need only modify constraints (5.32) as follows:

(cij)
2 ≥

∑
k≤m

(
Dk

ij

)2
, ∀i ∈M, ∀j ≤ q (5.40)
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min
x∈(Rm)q

∑
i∈M

ci

s.t. ci =
∑
j≤q

Oij, ∀i ∈M

Oij ≥ cij + (Iij − 1)U, ∀i ∈M, ∀j ≤ q

Oij ≥ 0, ∀i ∈M, ∀j ≤ q∑
j≤q

Iij = 1, ∀i ∈M

Iij ∈ {0, 1}, ∀i ∈M,∀j ≤ q

0 ≤ ci ≤ ui, ∀i ∈M,∀j ≤ q

cij ≥ 0, ∀i ∈M, ∀j ≤ q

−Dk
ij ≤ tki − xkj ≤ Dk

ij, ∀i ∈M,∀j ≤ q,∀k ≤ m

Dk
ij ≥ 0, ∀i ∈M, ∀j ≤ q,∀k ≤ m

cij =
∑
k≤m

Dk
ij, ∀i ∈M,∀j ≤ q∑

∆k
j

I∆k
j

= 1, ∀j ≤ q,∀k ≤ m

∑
∆k

j

I∆k
j
x̃kl ≤ xkj ≤

∑
∆k

j

I∆k
j
x̃kr , ∀j ≤ q,∀k ≤ m

I∆k
j
∈ {0, 1}, ∀j ≤ q,∀k ≤ m∑

∆k
j

I∆k
j
L∆k

j
+
∑
j′≤Pj

∑
i∈M

T k
ij′ ≥ nqkj , ∀j ≤ q,∀k ≤ m

∑
∆k

j

I∆k
j
R∆k

j
+
∑
j′≥Pj

∑
i∈M

T k
ij′ ≥ n(1− qkj ),∀j ≤ q,∀k ≤ m

∑
j≤q

T k
ij = 1, ∀i ∈M,∀k ≤ m

T k
ij ∈ [0, 1], ∀i ∈M, ∀j ≤ q,∀k ≤ m

Figure 5.8: The complete second-order cone program of optimal group manipulation for single
facility location problem under the L1-norm.
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Using this we obtain the following result:

Theorem 5.5 (MISOCP for optimal group manipulation in multi-FLPs) The optimal group

manipulation problem for multi-FLPs under the L2-norm can be formulated as a mixed inte-

ger second-order cone program, with objective function (5.21), and constraints (5.23)-(5.31)

and (5.33)-(5.40).

Proof: Figure 5.9 provides a snapshot of the whole MISOCP. The objective function (5.21)

minimizes the sum of the costs of all manipulators. Constraints (5.23)-(5.31) and (5.40) guar-

antee that the new location vector is mutually beneficial and each manipulator uses her closest

facility. Finally, constraints (5.33)-(5.39) ensure that the optimized location vector is viable.

The number of binary and continuous variables are both O(qm|M |).

5.4 Empirical Evaluation

In this section, we evaluate the efficiency of the formulations in outlined above. Since the

optimal manipulation problem for single-FLPs is computationally tractable (polynomial in the

input size), we provide empirical results only for multi-facility problems here, testing the effi-

ciency of the MILP and MISOCP formulations described in Section 5.3.

We test two problems. The first is a two-dimensional, two-facility location problem under

the L2-norm, where the quantile matrix used is P = {0.3, 0.4; 0.8, 0.7}. The second is a four-

dimensional, three-facility location problem under the L1-norm, where the quantile matrix

used is P = {0.1, 0.6, 0.4, 0.9; 0.4, 0.2, 0.8, 0.6; 0.7, 0.8, 0.3, 0.4}. For both problems, we vary

the number of sincere agents |S| ∈ {100, 200, 500}, and the number of manipulators |M | ∈

{5, 10, 20, 50, 100, 200}. We randomly generated 100 problems instances for each parameter

setting in which the peaks of both the sincere agents and the manipulators are randomly drawn

from the same data set (data sets are explained in detail below). We compute the average

execution time of our MILP/MISOCP models, and the probability of manipulation (i.e, the

proportion of the 100 instances in which a viable manipulation exists for the randomly chosen



CHAPTER 5. GROUP MANIPULATION: OPTIMIZATION AND COMPLEXITY 127

min
x∈(Rm)q

∑
i∈M

ci

s.t. ci =
∑
j≤q

Oij, ∀i ∈M

Oij ≥ cij + (Iij − 1)U, ∀i ∈M, ∀j ≤ q

Oij ≥ 0, ∀i ∈M, ∀j ≤ q∑
j≤q

Iij = 1, ∀i ∈M

Iij ∈ {0, 1}, ∀i ∈M,∀j ≤ q

0 ≤ ci ≤ ui, ∀i ∈M,∀j ≤ q

cij ≥ 0, ∀i ∈M, ∀j ≤ q

−Dk
ij ≤ tki − xkj ≤ Dk

ij, ∀i ∈M,∀j ≤ q,∀k ≤ m

Dk
ij ≥ 0, ∀i ∈M, ∀j ≤ q,∀k ≤ m

c2
ij ≥

∑
k≤m

(
Dk

ij

)2
, ∀i ∈M,∀j ≤ q∑

∆k
j

I∆k
j

= 1, ∀j ≤ q,∀k ≤ m

∑
∆k

j

I∆k
j
x̃kl ≤ xkj ≤

∑
∆k

j

I∆k
j
x̃kr , ∀j ≤ q,∀k ≤ m

I∆k
j
∈ {0, 1}, ∀j ≤ q,∀k ≤ m∑

∆k
j

I∆k
j
L∆k

j
+
∑
j′≤Pj

∑
i∈M

T k
ij′ ≥ nqkj , ∀j ≤ q,∀k ≤ m

∑
∆k

j

I∆k
j
R∆k

j
+
∑
j′≥Pj

∑
i∈M

T k
ij′ ≥ n(1− qkj ),∀j ≤ q,∀k ≤ m

∑
j≤q

T k
ij = 1, ∀i ∈M,∀k ≤ m

T k
ij ∈ [0, 1], ∀i ∈M, ∀j ≤ q,∀k ≤ m

Figure 5.9: The complete second-order cone program of optimal group manipulation for single
facility location problem under the L2-norm.
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Figure 5.10: Time to solve for an optimal manipulation (both axes are log-scale). The error
bars show the standard deviations.

manipulators).

For the two-dimensional problem, we use preference data from the Dublin west constituency

in the 2002 Irish General Election. As in Section 4.4, we use the results from fitting the elec-

tion data to a two-dimensional spatial model and estimating the voter and candidate positions

in the underlying latent space.5 For the four-dimensional problem, we use a synthetic data set

in which the peaks of both the sincere agents and the manipulators are randomly generated

from a uniform distribution on the unit cube.

For each instance, the MILP/MISOCP is solved using CPLEX (version 12.51), on a ma-

chine with a quad-core CPU (2.9Gz/core) and 8GB memory. Figure 5.10 shows the average

computation time required to find the optimal group manipulation (or showing that no group

manipulation exists) for both formulations. We see that our formulations admit very effec-

tive solution—for small problems, the optimal group manipulation can be found in less than 1

second; even for reasonably large problems, such as the four-dimensional, three-facility prob-

lem with 100 sincere agents and 200 manipulators, the optimal manipulation is found in 35.47

seconds (on average). The standard deviation also indicates that the performance of our formu-

5Please see Section 6.4 for details.
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Figure 5.11: Probability to find an optimal manipulation (both axes are log-scale).

lations is very stable—the coefficient of variation (ratio of the standard deviation to the mean)

ranges from 0.21 to 1.58 for the 2D problem, and from 0.45 to 1.92 for the 4D problem.

We also show the probability of manipulation for both problems in Figure 5.11. For 2D

problems, the probability of manipulation decreases from around 80% (for 5 manipulators) to

20% (for 20 manipulators) and finally to 0 (for 200 manipulators), indicating that it is very hard

for a randomly selected set of manipulators to find a viable manipulation; for 4D problems, the

probability remains high (close to 1) even with 20 manipulators then decreases with larger

sets of manipulators. This is not surprising since, as the number of manipulators get larger, it is

harder for them to find a mutually beneficial misreport. The higher probability for 4D problems

is due to the fact that we are placing three facilities rather than two, increasing the potential of

viable manipulations.

5.5 Conclusion

In this chapter, we have addressed the optimal group manipulation problem in multi-dimensional,

multi-facility location problems. Specifically, we analyzed the computational problems of ma-
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nipulating quantile mechanisms. We showed that optimal manipulation for single-facility prob-

lems can be formulated as an LP or SOCP, under the L1- and L2-norm, respectively, and thus

can be solved in polynomial time. By contrast, the optimal manipulation problem for multi-

facility problems is NP-hard, but can be formulated as an ILP or MISOCP under the L1- and

L2-norm, respectively. Our empirical evaluation demonstrates that our MILPs/MISOCPs for-

mulation for multi-FLPs scales well, despite the NP-hardness of the problem.

The results in this chapter suggests a number of interesting future directions. First, more

empirical results would be helpful in understanding the practical ease or difficulty of group

manipulation, as well as the probability of manipulation, the potential gain of manipulators, and

the impact of manipulation on social welfare. Second, other objectives for the manipulating

coalition (e.g., minimizing the maximum cost), and mechanisms with other cost functions are

also of interest. Finally, some research has shown that agent preferences are often not exactly

single-peaked, but may be approximately so under some forms of approximation (as we will

see in Chapter 6). The theoretical and empirical evaluation of group manipulation in such

settings would be extremely valuable. We will discuss more future directions in Chapter 8.



Chapter 6

Multi-dimensional Single-peakedness and

its Approximation

6.1 Introduction

In the preceding chapters, we have focused on models in which agent preferences are assumed

to be single-peaked. In such a setting, mechanisms like the median and generalized median

mechanisms provide strategy-proof guarantees. In addition, they also ease communication and

computational demands, since agents need only reveal their peak preferences.

While conceptually attractive, single-peakedness is a very strong assumption, one unlikely

to fully hold in many realistic settings [Conitzer, 2009, Escoffier et al., 2008]. Consider an

elections with thousands of voters and more than a handful of candidates. While each voter

has her own opinion about how candidates can be ordered according to some particular issue

(e.g., left-right spectrum, foreign policy, economic policy, etc), it is very unlikely that all of

them agree upon a same ordering.

However, one might hope that preferences are approximately single-peaked, and thereby

retain some of the advantages mentioned above. To this end, recent research has begun to in-

vestigate computational methods to test single-peakedness [Escoffier et al., 2008], and various

131
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forms of approximation (e.g., by deleting outlier candidates, clustering candidates, deleting

voters, or adding additional axes) [Escoffier et al., 2008, Faliszewski et al., 2011, Erdélyi et al.,

2012, Galand et al., 2012]. These techniques, however, have focused on one-dimensional (1D)

preferences, and have not been tested empirically to determine if these approximations can

explain observed preferences in, say, real-world elections.

We address this issue in two ways. First, we test single-peaked consistency, and several

forms of approximation (in isolation and in combination) on two election data sets to see if

these approximations have any empirical explanatory power. To do so, we develop a branch-

and-bound (BB) algorithm to find the best (1D) axis given a preference profile, i.e., the order-

ing of candidates for which the greatest number of voters are single-peaked (as will be defined

formally later). The algorithm is easily extended to support various forms of approximation.

While this best-axis problem is computationally difficult, our method works well in practice.

We show that none of the forms of approximation proposed in the literature come close to

explaining voter preferences in these election data sets: the best axis explains under 2.9% of

voter preferences in one case and under 0.4% in the other; and even aggressive approxima-

tion improves this to only 50% and 25%, respectively. To address this problem, we extend

our algorithm to support multi-dimensional single-peaked consistency. Focusing on the two-

dimensional (2D) case, we show that exact 2D-single-peakedness explains the datasets much

better1—without approximation, the best axis set explains over 38% and 26% of voter pref-

erences respectively; and with a very small degree of approximation, the 2D model explains

almost all voters. Apart from our algorithmic developments, our findings suggest a focus on

multi-dimensional rather than 1D models can greatly enhance the applicability of single-peaked

models in practice.

The rich literature on spatial models for voter or consumer choice bears a strong rela-

tionship with single-peaked preferences as well [Hotelling, 1929, Hinich, 1978, Poole and

1An interesting question is whether one can get a better fitting result with higher number of dimensions. The
answer is yes, however, we also have to consider the arising computational issues due to the increase of the number
of dimensions and the over fitting problem. It turns out that a two-dimensional model is enough to explain voter
preferences. The same arguments apply for the spatial model discussed later.
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Rosenthal, 1985]. Spatial models explain voter choice by estimating (from data) distances

between voters and candidates, and typically using some form of probabilistic choice based

on these distances [Bradley and Terry, 1952, Luce, 1959, Shepard, 1959] (see Section 2.4.3).

While the model is more restrictive than multi-dimensional single-peakedness in some senses,

stochastic choice allows for accommodation of “misorderings,” much like approximations in

single-peaked models. Spatial models are typically used to explain choice data rather than full

preference rankings (see [Gormley and Murphy, 2007] for an exception). We study a spatial

model for rank data. In particular, we consider a stochastic choice models, namely Plackett-

Luce, and propose an alternating optimization algorithm that optimizes voter and candidate

positions alternatively before converge. We also conduct an empirical study on two data sets

from the Irish General Election 2002. The results show that, the two- dimensional fit is much

better than then single-dimensional fit. It is also suggested that party policies plays an impor-

tant role in the electorates view of candidates.

6.2 A One-Dimensional Branch and Bound Algorithm

We first define the best axis problem, and present our branch and bound algorithm for solving

this problem in a one-dimensional space. Following the notations from Section 2.3 and 2.4,

let N = {1, . . . , n} be a set of agents (or voters) and C = {1, . . . , c} be a set of c options (or

candidates). Each voter i ∈ N has a preference (or strict total order) �i over C, with c1 �i c2

meaning i prefers candidate c1 to c2. A preference profile �= {�1, . . . ,�n} reflects the joint

preferences of all voters.

a one-dimensional axis A is any strict ordering <A of the candidates in C. Intuitively,

it represents an ordering of candidates relative to some salient quality, e.g., on the left-right

political spectrum. We define the best axis problem as follows:

Definition 6.1 (Best axis problem) Given a preference profile � and a one-dimensional axis,

we define s(A) as the score of A, i.e., the number of voters whose preferences �i are single-
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peaked with respect to A. The best axis problem is to find a single axis A∗ ∈ arg maxA s(A).

In other words, the best axis problems finds a single axis that explains the preferences of

the greatest number of voters (i.e., renders � single-peaked). Note that this problem is harder

than the problem of determining single-peaked consistency (as in Definition 2.30) introduced

in Section 2.4. For example, the algorithm by Escoffier et al. [2011] finds an axisA that renders

the profile (perfectly) single-peaked if one exists; but if no such A exists, it does not find a best

axis that fits the greatest number of voters. On the other hand, if we have an algorithm that

can solve the best axis problem and return an axis A, then we use this to determine if the

preference profile is single-peaked consistent with respect to A if s(A) = A. Also the best

axis problem is just the optimization variant of the k-maverick problem (see Definition 2.31),

which is NP-complete [Erdélyi et al., 2012]. We develop a branch-and-bound algorithm for

this problem, and use this as a building block for generating additional axes and for supporting

approximations like k-LCD and k-AA (see Definition 2.32 and 2.33).

6.2.1 The Algorithm

Our branch-and-bound algorithm, 1D-SPBB, is specified in Algorithm 3 and adopts ideas from

the single-peaked consistency method of Escoffier et al. [2008]. Each node in the search tree

is labelled by a partial axis in which a subset of the candidates are ordered.

Definition 6.2 (Partial axis) A partial axis Ap,q is an ordering of a subset of candidates of

the form Ap,q = {(c1, . . . , cp), . . . , (cq, . . . , cz)}, where p candidates c1 <Ap,q . . . <Ap,q cp are

ordered on the left of the axis and z − q + 1 candidates cq <Ap,q . . . <Ap,q cz are ordered on

the right.

We also use Cr = C\{c1, . . . , cp, cq, . . . , cz} to denote the remaining candidates that are

not yet ordered on the axis. If Cr = ∅, we say that partial axis is complete.

An extension of partial axis Ap,q is any complete axis A that retains the two sub-orderings

and completes the ordering by placing the remaining candidates between the two in some
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Algorithm 3 1D-SPBB(A0,z+1 ← ∅, Cr ← C, lb∗ ← 0)
1: while There exists an unchecked axis do
2: Pick two candidates c′ and c′′ from Cr

3: Build the axis Ap+1,q−1 from Ap,q by locating c′ at
the position of p+ 1 and c′′ at q − 1

4: if Cr\{c′, c′′} = ∅ then
5: Mark the complete axis Ap+1,q−1 as checked
6: Compute the score s(Ap+1,q−1)
7: if s(Ap+1,q−1) > lb∗ then
8: lb∗ ← s(Ap+1,q−1) and A∗ ← Ap+1,q−1

9: else
10: Compute the upper bound ub for Ap+1,q−1

11: if ub > lb∗ then
12: 1D-SPBB(Ap+1,q−1, Cr\{c′, c′′}, lb∗)
13: else
14: Mark the whole branch as checked
15: Return

fashion. Let E(Ap,q) be the set of extensions of Ap,q. We say a voter i is consistent with Ap,q

if �i is single-peaked with respect to some A ∈ E(Ap,q). 1D-SPBB also maintains, at each

node, the list of voters who are consistent with that node’s partial axis.

The algorithm starts with an empty axis and extends it from the “outside in.” At each step,

1D-SPBB branches by placing two candidates in Cr at positions p + 1 and q − 1 of a partial

axisAp,q to form a more complete axisAp+1,q−1. It then computes the corresponding consistent

voters in the preference profile. The number of consistent voters provides a upper bound on

the score s(A) of any A ∈ E(Ap+1,q−1). If the axis is complete, this gives us the exact score

s(A) of this axis, and a lower bound on s(A∗). In typical fashion, 1D-SPBB maintains a global

lower bound lb∗, corresponding to the score of the best complete axis A∗ found so far. It cuts

the search for extensions of a partial axis Ap,q when the upper bound on Ap,q falls below lb∗;

and when it terminates, the best axis A∗ is the optimal axis.

We now consider several key steps in the algorithm that ensure its practicality despite the

theoretical hardness of the problem. First, note that axes of the form A1,z at the first level of

the search tree fix only the two extreme points of the axis. Symmetry means that we need not

consider any axis with c′ at the leftmost position and c at the rightmost, if we have already
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Algorithm 4 Compute Score or Upper Bound of (Partial) Axis A
1: V ← {}%Set of consistent voters%
2: for agent i ∈ N do
3: consistent← TRUE
4: l← 1, r ← n %Left and right pointers%
5: for t from z to 1 do
6: if A[l] =�i,t or unplaced candidate then
7: l← l + 1
8: else if A[r] =�i,t or unplaced candidate then
9: r ← r − 1

10: else
11: consistent← FALSE
12: break
13: if consistent = TRUE then
14: V ← V ∪ {i}

expanded the partial axis with c leftmost and c′ rightmost. This reduces the search tree size by

a factor of two, improving efficiency.

A critical component of 1D-SPBB is the identification of consistent voters given a partial

(or complete) axis. Given A, Algorithm 4 computes an upper bound on the score of any Ã ∈

E(A); and if A is complete, it will return s(A). We let A[j] denote the candidate at the jth

position of A and �i,t the candidate ranked tth in voter i’s preference �i. The algorithm is

based on that of Escoffier et al. [2008] for testing single-peaked consistency, exploiting the

fact that candidates ranked last in any �i must lie at the extreme ends of the axis.

Since Algorithm 4 will be called frequently by 1D-SPBB (see Algorithm 3), its running

time should be slight. Fortunately, it is easy to see that this is the case:

Theorem 6.1 Algorithm 4 has a running time of O(nc).2

Proof: The algorithm checks, for each agent i, that whether the currently ranked last candidate

in �i is at the extreme location on the axis (or an unplaced candidate). As there are a total

number of n agents and c candidates, the total running time is O(nc).

2Note that the running time of O(nc) is based on the fact that the computation is done on a single processor.
However, it can be accelerated by sharding the voters/agents votes across multiple processors, which has a running
time of O(c).
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Good heuristics for selecting branches (i.e., partial axes to expand) can have a dramatic

impact on any branch-and-bound algorithm: the ability to increase our lower bound quickly

can significantly impact the degree of pruning. Our current heuristic simply expands nodes in

descending order of their upper bounds, in the hope that a partial axis with a large upper bound

will have some completion with a high score, thereby improving our global lower bound. If

additional domain-specific information is available, other heuristics may be used. For instance,

if a probabilistic prior distribution over voter preferences is known, then the expected degree of

consistency can be used to heuristically score nodes for expansion. Other possibilities include

expanding nodes that are “least similar” or most likely to be “correct” given the nodes that have

already been expanded.

6.2.2 Approximation

We use the best axis algorithm 1D-SPBB as the core of more general algorithms to find optimal

axes under various forms of approximation, and to estimate the degree to which a preference

profile is approximately single-peaked. We propose several extensions of 1D-SPBB for three

different notions of approximately single-peaked consistency (see Definition 2.34). In some

cases, the algorithms do not guarantee discovery of the optimal approximation (i.e., the mini-

mum k), but they provide both upper and lower bounds on the degree of approximation.

k-maverick consistency. Computing the minimum k for which a profile is k-maverick con-

sistent is precisely what 1D-SPBB does. The best axis A∗ found by the algorithm explains

s(A∗) consistent voters (and this is the maximum number of voters explainable by any axis).

Hence, the remaining n− s(A∗) voters form the maverick set of minimum size. Hence, Algo-

rithm 3 can be applied without any change.

k-additional axis consistency. The 1D-SPBB algorithm can also be used to compute k-

AA consistency. We investigate a simple greedy algorithm to approximate the minimum k for

which a profile � is k-AA single-peaked consistent. The algorithm, 1D-SPBB-AA, is shown
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Algorithm 5 1D-SPBB-AA(Nr ← N )
1: k ← 0
2: while Nr 6= ∅ do
3: Run Algorithm 3 on Nr, get the best axis A∗ and the corresponding set of consistent

voters V ∗

4: Nr ← Nr\{V ∗}
5: k ← k + 1
6: Return k

in Algorithm 5 and works as follows: starting with the full profile, we find the best axis A1

using 1D-SPBB. We then remove all n1 voters consistent with A1 from the profile (we use Nr

to denote the set of voters that have not been removed, whose initial value is N ) and rerun

1D-SPBB on the profile of the n−n1 remaining voters. We repeat until the profile is empty. If

it terminates after k + 1 iterations, 1D-SPBB-AA verifies k-AA consistency.

The value k determined by 1D-SPBB-AA is only an upper bound on the minimum k re-

quired for k-AA consistency because of its greedy nature. Note that deciding if a profile is

k-AA consistent is NP-complete [Erdélyi et al., 2012], so our greedy algorithm cannot ensure

an optimal k in general. However, The first iteration of the algorithm also determines a lower

bound on k: if the first axis returned explains n1 voters, then k ≥ d n
n1
e is needed to ensure

k-AA consistency. We exploit this fact below in analyzing our data sets.

k-local candidate deletion consistency. We can readily adapt 1D-SPBB to work with k-

LCD consistency. Specifically, given a fixed value of k, we modify the algorithm to compute

the best axis, i.e., the axis that renders the greatest number of voters single-peaked when we

allow up to k candidates to be deleted from any voter’s ranking. This is useful if we wish

to see how single-peaked a profile is when voters, say, make “mistakes” in their ballots, or

fail to distinguish certain candidates from one another. We can also combine this with k-AA

consistency, finding the number of additional axes needed when each axis is allowed to explain

voter preferences using k-LCD.

1D-SPBB can be used directly for this purpose, and requires only a modification in Algo-

rithm 4, when computing the upper bound of a partial axis (or score of a complete axis) for
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Algorithm 6 Compute Score or Upper Bound of (Partial) Axis A for k-LCD
1: V ← {}%Set of consistent voters%
2: for agent i ∈ N do
3: consistent← TRUE, vi ← 0
4: l← 1, r ← n %Left and right pointers%
5: for t from z to 1 do
6: if A[l] =�i,t or unplaced candidate then
7: l← l + 1
8: else if A[r] =�i,t or unplaced candidate then
9: r ← r − 1

10: else
11: vi ← vi + 1
12: if vi ≤ k then
13: Delete �i,t from A if it has been placed or a place holder otherwise
14: else
15: consistent← FALSE
16: break
17: if consistent = TRUE then
18: V ← V ∪ {i}

k-LCD. Instead of reporting a violation of single-peakedness when �i is inconsistent with the

(partial) axis, it records, for each voter i, the number of inconsistencies detected so far (which

we use vi to denote, whose initial value is 0 for all voters)—each inconsistency can be managed

by a local deletion. If k+ 1 violations occur, then i is reported as inconsistent with the (partial)

axis. The algorithm is presented in Algorithm 6.

We use this method to find the best axis for fixed values of k in experiments below. The

algorithm, 1D-SPBB-LCD, is presented in Algorithm 7. Since the number of consistent voters

is non-decreasing in k, we can use binary search to find the minimum value of k that ensures k-

LCD single-peaked consistency w.r.t. the best axis found by Algorithm 3. Since we can always

make any profile single-peaked by removing z − 2 candidates from each voter’s ranking in the

worst case, binary search will take at most log2(z − 1) iterations. Like k-AA, this problem

is NP-complete [Erdélyi et al., 2012] and the algorithm may not find the minimum number of

local deletions required: this is due to the fact that when a violation occurs, we simply remove

the lower-ranked candidate in �i, whereas a deletion of the higher-ranked candidate may have

led to a fewer future deletions for voter i. Thus our method returns only an upper bound of the
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Algorithm 7 1D-SPBB-LCD(0, c− 2)
1: k ← c− 2
2: t = b(c− 2)/2c
3: Run Algorithm 3 (combined with Algorithm 6 to compute lower (upper) bound for k-

LCD), get the best axis A∗ and the set of consistent voters V ∗

4: if V ∗ = N then
5: k ← t
6: 1D-SPBB-LCD(0, t)
7: else
8: 1D-SPBB-LCD(t, c− 2)
9: Return k

optimal solution.

We also adapt the greedy algorithm, 1D-SPBB-AA, to find (approximate) the minimal

number of additional axes needed when allowing k-LCD: we call this method 1D-SPBB-AA-

k-LCD. The algorithm is a combination of Algorithm 3, Algorithm 5 and Algorithm 6, and

used to test whether combinational of approximations can explain voter preferences. We will

not the present the algorithm here, but refer the readers to the next section for experimental

results.

6.2.3 Results from 2002 Irish General Election

We applied our algorithms to two data sets taken from the 2002 Irish general election.3 The

Dublin West election has 9 candidates and 29,989 votes of the top-t form (for varying values

of t), of which 3,800 are complete preference rankings. In Dublin North, there are 12 candi-

dates and 43,942 votes, of which 3,662 are complete.4 Our primary experiments are run on

the subset of votes comprising all complete rankings. We first ran 1D-SPBB (Algorithm 3),

combined with Algorithm 4, to compute the best single axis for the two data sets. Figure 6.1

shows that the best axis explains, assuming single-peaked preferences, a tiny fraction of voter

preferences, only 109 of 3,800 (2.87%) and 14 of 3,662 (0.38%) in Dublin West and Dublin

3Data sets obtained from: www.dublincountyreturningofficer.com.
4A ranking has top-t form if a voter ranks only her t most-preferred candidates. If t < c − 1, the ranking is

incomplete.
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Dublin West Dublin North

# of consistent voters 109 (2.9%) 14 (0.4%)

Complete axis visited 2 3

Branch out due to bound 9,375 509,202

Running time (in sec.) 0.64 2.92

Figure 6.1: 1-D branch-and-bound results (best single axis).

North, respectively. Clearly voter preferences are far from being single-peaked.

Our methods can easily be adopted to partial rankings in the obvious fashion. Prelimi-

nary results on the full voting data sets, including the truly partial rankings, show that 6%

(respectively, 6.5%) of voters are single-peaked with respect to the best axis in the West (re-

spectively, North) data sets. This larger fraction is not unexpected, since single-peakedness

cannot be violated by unranked candidates (so voters with top-t preferences for smaller values

of t are consistent with far more axes). Despite this, voter preferences remain far from being

single-peaked.

We also see that 1D-SPBB is quite efficient. While the total number of axes are 9!/2 ≈

181K and 12!/2 ≈240M , respectively, the algorithm needs only 0.64s. (respectively, 2.92s)

to find the best axis, visiting only two (respectively, three) complete axes, and branching out

9,375 (respectively, 509,202) times, indicating good pruning due to strong lower bounds.

We also investigate the various approximations described above. The (single) best axis re-

sults immediately tell us that k-maverick consistency requires deletion of 97.13% (respectively,

99.62%) of voters to ensure the preference profile is single-peaked. We also immediately ob-

tain a lower bound on k-AA consistency: Dublin West needs a minimum of d3800
109
e = 35

additional axes, while North needs 262 additional axes. We also ran the greedy k-LCD ap-

proximation algorithm, 1D-SPBB-AA-k-LCD, for different values of k (when k = 0, this is

just 1D-SPBB-AA). Figure 6.2(a) and (b) show the percentage of voters explained with each

additional axis added for different values of k (note the log-scale on the x-axis). Without k-

LCD approximation (i.e., when k = 0), 447 (respectively, 1,452) axes are needed to explain
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Figure 6.2: 1-D branch-and-bound results, with LCD-approximation: Dublin West (top);
Dublin North (bottom).

all voter preferences (this is an upper bound on k-AA consistency). k-LCD without multiple

axes requires deletion of k = 7 (respectively, k = 10) candidates, the maximum possible for

each data set. Even with k-LCD for reasonable values of k, many additional axes are needed

to explain the data: for instance, 31 axes are needed to explain Dublin West when k = 2, while

Dublin North, with an aggressive k = 4, needs 39 axes. The linear nature of the plots (recall the

log-scale) also shows that deletion of maverick voters will not help. This suggests that, even al-

lowing for combinations of approximations proposed in the literature, preferences in these data

sets are very far from being single-peaked in 1D. This motivates the use of higher-dimensional

models, to which we now turn.

6.3 A Two-dimensional Branch and Bound Algorithm

Since voter preferences in the data sets above are not single-peaked in the one-dimensional

sense—even when aggressive approximation is considered—the explanatory power of these

proposed approximations in 1D is rather limited. We now extend these techniques to two-

dimensional (2D) models (see Definition 2.24). Our extensions generalize beyond two dimen-

sions, but we focus on 2D models for ease of presentation, and also because, as we see below,

two dimensions suffice for our data sets
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6.3.1 The Algorithm

Extending our branch-and-bound algorithm to the 2D case presents several challenges. First,

the search space explodes, as we must potentially consider all O((z!)2) combinations of first

and second axes. Second, candidates ranked last in some �i need no longer lie at the extreme

point of an axis (as we will see later). Third, in two-dimensions, some axes are dominated

by others—these should be pruned for computational efficiency to the greatest extent possible.

We now outline a 2D extension of the 1D-SPBB called 2D-SPBB, and explain how to tackle

each of the issues above.

To address the combinatorial explosion of possible pairs of axes, instead of considering all

candidate permutations as possible first axes, we admit only a relatively small set of potential

initial axes, or a limited sample of possible axes. For each such (potential) first axis, we fix it as

our first dimension, then apply our 1D algorithm 1D-SPBB to compute the second dimension.

Our implementation uses 1D-SPBB-AA to find a collection of 1D axes that fully explains the

given profile �—we use this as our set of potential first dimension axes. This guarantees that

each �i is single-peaked consistent w.r.t. at least one of the axes.5 This way of structuring

2D-SPBB means any axis searched/expanded in the first dimension is always complete, never

partial. Of course, this is simply a heuristic, and may limit our ability to find a good 2D model.

Computing scores and upper bounds.

To address the second problem, we develop a new algorithm to compute the upper bound

for a pair of partial axes in a 2D space (i.e., maximum number of voters that are consistent

with some extension of the partial pair), or the score of the pair of axes if they are complete.

This includes variants that incorporate the same forms of approximation as above. One key

difference between 2D and 1D lies in the computation of consistency. In a 2D space, the

inconsistency of �i with single-peakedness only occurs with the violation of some bounding

box constraint.

5If a voter is single-peaked w.r.t. one axis A, then she is also single-peaked w.r.t. any 2D-space using A as one
of its axes.
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Definition 6.3 (Bounding box constraint) A bounding box constraint b = 〈b1, b2, b3〉 is tuple

of three candidates b1, b2, b3 ∈ C such that ||b1 − b3||1 = ||b1 − b2||1 + ||b2 − b3||1.

In other words, a tuple b = 〈b1, b2, b3〉 is a bounding box constraint if b2 is contained

in the minimum bounding box of b1 and b3. Recall that the definition of multi-dimensional

single-peakedness (Definition 2.24), each bounding box constraint imposes two restrictions for

single-peakedness on agent preferences: first., if b1 is the peak of an agent, then b2 must be

ranked before b3 in her preference; and second if b3 is the peak, then b2 must be ranked before

b1. The following example shows a bounding box constraint imposed by a multi-dimensional

axis.

Example 6.1 (Bounding box constraint in 2D) The following 2D example with five candi-

dates c1, . . . , c5 illustrates the concept of bonding box constraint. Assume two axes, A1 =

c4 <A1 c3 <A1 c1 <A1 c2 <A1 c5 and A2 = c1 <A2 c2 <A2 c4 <A2 c5 <A2 c3 (as shown

in Figure 6.3). The only bounding box constraint is 〈c1, c2, c5〉, which induces two restric-

tions on agent preferences: (a) if τi = c1 for some i, then we must have c2 �i c5; and (b) if

τi = c5 for some i, then we must have c2 �i c1. So the preference profile �= {�1,�2} where

�1= c4 �1 c3 �1 c1 �1 c5 �1 c2 and �2= c5 �1 c1 �1 c2 �1 c3 �i c4 is not single-peaked,

as the condition (b) is violated by agent 2.

Note that in a multi-dimensional space, candidates ranked last in some �i need no longer

lie at the extreme point of an axis, so Algorithm 4 does not apply here. For instance, in the

above example, c4 �i c3 �i c1 �i c5 �i c2 is a valid single-peaked preference, but the

least preferred candidate c2 is not extreme on either axis. So we need a new algorithm as the

counterpart of Algorithm 4 to compute the lower and upper bound for a multi-dimensional

axis. The algorithm is given in Algorithm 8, which checks for violations of bounding box

constraints in agent preferences. Specifically, for each�i, we compute the set of bounding box

constraints B induced by the partial axes. Recall that each constraint b = 〈b1, b2, b3〉, involves

three candidates: if τi = b1 (respectively, τi = b3), then we must have b2 �i b3 (respectively,
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Figure 6.3: Bounding box constraints imposed by an axis.

b2 �i b1) to ensure single-peakedness of �i. If no constraints are violated, i joins the set of

consistent voters.

As in the 1D case, consistency testing must be fast to ensure that nodes in the branch-and-

bound tree are processed quickly. Consistency testing is polynomial time:

Theorem 6.2 Given a preference profile �, the number of voters consistent with a pair of

partial axes A1, A2 can be computed in O(nc4) time.

Proof: The set of bounding box constraints B can be computed in O(c3) time, since each

constraint involves candidate triples (of which there are at most
(
c
3

)
). Testing a ranking �i

against each such constraint (as described above) can be accomplished in O(c) time, and must

be done at most once for each of n voters (generally, substantially fewer at deeper nodes in the

tree).6 Thus total running time is O(c3) +O(nc4) = O(nc4).

We mention two important details regarding the computation of the set of bounding box

constraints B. First, it can be done incrementally by inheriting bounding box constraints from

nodes higher in the search tree, then adding only the new constraints induced by placing two
6Other efficiencies, e.g., caching consistency tests across voters with identical preference orderings, are also

possible.
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Algorithm 8 Compute Lower (Upper) Bound for A (2D) Axis A = (A1, A2)

1: B← The set of bounding box constraints induced by A
2: V ← {}%Set of consistent voters%
3: for agent i ∈ N do
4: consistent← TRUE
5: for bounding box constraint b ∈ B do
6: if �i,1= b1(b3) then
7: if b2 is ranked lower than b3 (b1) then
8: consistent← FALSE
9: break

10: if consistent = TRUE then
11: V ← V ∪ {i}

more candidates on the second axis. Second, for any incomplete axis, apart from “explicit”

constraints involving candidates on the axis, we can also compute “implicit” constraints. For

example, suppose A1 is fixed, with c1 <A1 c2 <A1 c3 <A1 c4 <A1 c5 <A1 c6, while A2

is partial, with A2 = c1 <A2 c6 <A2 . . . <A2 c5 <A2 c2. The only explicit constraint is

〈c6, c5, c2〉; but four implicit constraints can be added: 〈c1, c3, c5〉, 〈c1, c4, c5〉, 〈c6, c4, c2〉 and

〈c6, c3, c2〉. This allows more precise upper bound computation and more aggressive pruning.

Removing dominated axes.

The fact that pairs of axes in 2D give rise to bounding box constraints leads to a form of

“domination” that can be exploited to further reduce the combinatorial overhead of searching.

Definition 6.4 A pair of (partial) axes A = 〈A1, A2〉 is dominated by A′ = 〈A′1, A′2〉 if the set

of bounding box constraints induced by A′ is a strict subset of that induced by A.

Consider A = 〈A1, A2〉, with complete axis A1 = c1 <A1 c2 <A1 c3 <A1 c4 <A1 c5 and partial

axis A2 = c1 <A2 . . . <A2 c5. A = 〈A1, A2〉 is dominated by a different pair A = 〈A1, A
′
2〉:

we obtain strictly fewer bounding box constraints by swapping c1 with whichever candidate

happens to be placed in the second position of A2, and c5 with whichever candidate is placed

in the fourth position. As such, assuming A1 is fixed (as we would in a specific branch of

2D-SPBB), a different axis A′2 offers strictly more flexibility than A2.

We exploit this fact by using an algorithm for removing (some, but not all) dominated axes
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Dublin West Dublin North

k = 0 2,498/3800 (65.73%) 1,732/3,662 (47.30%)

k = 1 3,553/3800 (93.5%) 2,948/3,662 (80.50%)

k = 2 3,788/3800 (99.68%) 3,436/3,662 (93.83%)

k = 3 3,800/3800 (100%) 3,645/3,662 (99.54%)

Figure 6.4: 2-D branch-and-bound: number of consistent voters with single best 2D axis using
k-LCD approximation.

during 2D-SPBB: detecting this can allow pruning of a large part of the branch-and-bound tree.

We test domination by checking whether a swap of two adjacent candidates on any axis can

induce a strict subset of original constraints (as in the above example): if yes, the (partial) axis

is pruned. This simple test is sound; and while it does not ensure pruning of all dominated

axes, it improves run-time dramatically.

Approximation.

As in the 1D case, 2D-SPBB automatically generates the minimal k required for k-maverick

consistency. Of course, if we use sampling to limit the axes that will be considered for the

first dimension, we will obtain only an upper bound on k. It can also be applied repeatedly to

greedily approximate the minimal set of additional 2D “axis pairs” needed to explain a profile;

and we can easily incorporate k-LCD approximation into 2D-SPBB using similar modifications

to those described in Sec. 6.2.2. We focus on k-LCD below.

6.3.2 Results from the 2002 Irish General Election

We use the Dublin West and North data sets to test the effectiveness of 2D-SPBB and specif-

ically the ability of k-LCD approximation to fit the Irish voting data. Figure 6.4 shows the

fraction of voters that are explained by the best axis pair generated using 2D-SPBB, both with-

out approximation (k = 0), and allowing k-LCD approximation for k ≤ 3. The contrast with

the 1D fit is notable: even without approximation, the best 2D-axis pair explains 65.7% (re-

spectively, 47.3%) of all voters. Allowing 2 out of 9 (respectively, 3 out of 12) local candidate
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Figure 6.5: 2-D branch-and-bound results, anytime performance: (a) Dublin West; (b) Dublin
North.

deletion provides a near-perfect fit, covering 99.68% (respectively, 99.54%) of voters. This

strongly suggests that the 2D model carries far more explanatory power for this Irish voting

data.

The 2D algorithms are more computationally intensive than their 1D counterparts (though

restricting attention to sampled axes in the first dimension helps tremendously). It is instructive

to examine the anytime performance of 2D-SPBB to see how quickly it converges to the best

2D model, and how quickly model quality improves for various levels of k-LCD. Figs. 6.5 (a)

and (b) show that, while convergence to the best 2D model can take a considerable amount

of time, the anytime performance is very good, allowing the discovery of models that capture

most of the (explainable) voters extremely quickly (note the log-scale on the x-axis).

6.4 Spatial Model for Rank Data

As mentioned above, single-peaked preference is a “loose” model in the sense that it admits

a large number of consistent preference relations. A more restricted model the spatial model

introduced in Section 2.4.3, in which both voters and candidates are represented by points in

some single- or multi-dimensional space and the closer a candidate is to a voter, the more

preferred that candidate is.

Recall from Section 2.4.3 that, if the agent and candidate positions are given in some single-
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or multi-dimensional space, then the preference of each agent �i can be computed either de-

terministically or stochastically. In this section, we consider the reverse problem of given a

preference profile �= {�1, . . . ,�n}, can we fit both agents and candidates into some single-

or multi-dimensional space such that the “error” observed in � is minimized. In particular,

we consider the Plackett-Luce model introduced in Section 2.4.3, and propose an alternating

optimization algorithm to maximize the log-likelihood value of the observed preferences. We

present some preliminary results on fitting spatial models to two data sets from real-world elec-

tions. These fitting results have been used for generating single-peaked preferences in Section

5.4 and 4.4 for both unconstrained-FLPs (if only considering agent positions) and constrained-

FLPs (if considering both agent and candidate positions).

We use the same notation as in Section 2.4. Let N = {1, . . . , n} be the set of voters and

C = {1, . . . , c} be the set of candidates. Each voter i ∈ N has a strict preference �i over C,

and a preference profile �= {�1, . . . ,�n} is the joint preferences of all voters. Our objective

is to estimate the voter positions ti and candidate positions cj in the latent feature space, given

a preference profile �.

6.4.1 Log-likelihood Maximization

Recall from Section 2.4.3 that the Plackett-Luce model is parametrized by a vector bi =

(bi1, . . . , bin) for each agent i, where bij is the probability that agent i will choose candidate j

as as her most preferred one. A popular form of this probability is the exponential decreasing

function of the squared distances:

bij =
exp{−d(ti, cj)}∑c

j′=1 exp{−d(ti, cj′)}

where d(ti, cj) = ||tki − ckj ||22 is the squared distance between ti and cj .

The model is a multi-stage model such that each agent keeps choosing the next most pre-

ferred candidate from the set of available candidates until all candidates have been selected
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in her ranking. At each stage, the probability bij is normalized subject to the constraints that

candidates who have been selected are excluded from the vector bi. If we use ti to denote the

position of agent i and cj to denote the location of facility j, then the log-likelihood of the

observed preference profile (assuming each agent cast her vote independently) is:

ln(Pr(� | b)) = ln
n∏

i=1

c∏
j=1

bij∑
j�ij′

bij′
= −

n∑
i=1

c∑
j=1

d(ti, cj)−
n∑

i=1

c∑
j=1

lnωij (6.1)

where ωij =
∑

j�ij′
exp{−d(ti, c

′
j)} is a normalization factor, which is the sum of probabili-

ties over all candidates who are not ranked higher than candidate j in voter i’s ranking.

Note that the only unknown variables in Equation (6.1) are ti and cj , so our objective is to

choose ti and cj to maximize the log-likelihood value in Equation (6.1). Similar problem has

also been considered by Gormley and Murphy [2007]. They focus on learning the distribution

of agent and candidate positions using a Metropolis-Hastings algorithm, while we use a differ-

ent optimization algorithm to optimize agent and candidate positions alternatively. The details

of the algorithm will be introduced in the next section.

6.4.2 An Alternating Optimization Algorithm

In this section, we propose an alternating optimization algorithm that optimizes voters’ and

candidates’ positions alternatively to maximize the value in Equation (6.1). Our algorithm is

a natural extension of that proposed by Poole and Rosenthal [1985] in the sense that it can be

applied to model preference rankings rather than binary choices.

The algorithm is specified in Algorithm 9, and is composed of two stages. In the first stage,

it optimizes each voter’s position (ti) to maximize the log-likelihood with respect to that agent

independently (line 2-4), assuming the positions of candidates (cjs) are fixed. This is because

each voter cast her vote independently, and her ranking only depends on the distance between

herself and the candidates, whose positions are fixed in this stage. In the second stage, it jointly

optimize candidates’ positions (cjs) to maximize the log-likelihood value in Equation(6.1) (line
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Algorithm 9 The Alternating Algorithm for Maximizing Log-likelihood in (6.1)
1: Randomly select initial positions of ti and cj .
2: while not converged do
3: for agent i ∈ N do
4: Fix the positions of candidates, and optimize voter i’s position ti to maximize

her log-likelihood given her ranking �i.
5: end for
6: Fix the positions of voters optimized in the first stage, jointly optimize candidates’

positions cjs to maximize the log-likelihood in (6.1).
7: end while

5), assuming agent positions (tis) are fixed. Note that the candidate positions cannot be opti-

mized independently because the probability that a voter makes her first choice depends not

only on how close she is to that candidate, but also on how close she is from the others. Fortu-

nately, the number of candidates is usually small, and the number of variables that have to be

optimized simultaneously is c ·m (where c is the number of candidates and m is the number of

dimensions). The alternating optimization is repeated until the algorithm has converged.

It is hard to optimize Equation (6.1) analytically because of the second term (lnωij is the log

value of a sum), so we use numerical optimization here. In each stage of the algorithm, we use

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to maximize the log-likelihood values.

The BFGS algorithm is a Quasi-Newton method for solving nonlinear optimization problems

[Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno and Kettler, 1970, Shanno, 1970].

Compared with Newton’s method in which evaluating the Hessian matrix is computationally

intensive, the BFGS method only approximates the Hessian matrix by (approximate) gradient

evaluations. It should be noted that the BFGS method is not guaranteed to converge in general,

however, when combined with random restart techniques, it is shown to be very efficient in

practice.

6.4.3 An Empirical Study on Irish General Election 2002

We conduct an empirical study on two data sets from the Irish general election 2002, and eval-

uate the accuracy of the spatial model in terms of the likelihood values. Specifically, we use
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the alternating optimization algorithm to maximize the log-likelihood value in Equation (6.1)

and estimate both agent and candidates positions in the latent 1D or 2D space. Note that the-

oretically one can use a space with any number of dimensions, however, the computational

effort required and improvement on accuracy should also be factored when moving to higher

dimensions. Given the estimated agent and candidate positions, we also compute the inferred

rankings of agents using the deterministic choice model introduced in Section 2.4.3 (in particu-

lar, L2 cost), and compare them with the actual observed ranking using two different measures:

Kendall Tau distance and Spearman’s Footrule distance. The former measures the number of

misranked pairs, and the latter one computes the sum of differences in positions.

Definition 6.5 (Kendall Tau distance) Let α and β be two rankings. The Kendall Tau (KT)

distance of α and β is defined as:

K(α, β) = {(i, j)|i < j, (α(i)− α(j)) · (β(i)− β(j)) < 0}

where α(t) and β(t) are the ranked position of candidate t in α and β, respectively.

Definition 6.6 (Spearman’s Footrule distance) Let α and β be two rankings. The Spear-

man’s Footrule (SF) distance of α and β is defined as:

S(α, β) =
c∑

i=1

|α(i)− β(i)|

where α(t) and β(t) are the ranked position of candidate t in α and β, respectively.

Data Source The Irish general election of 2002 was the first time that electronic voting ma-

chines are used in an Irish election, in three constituencies: Dublin-west, Dublin-north and

Meath. We will use the two data sets of Dublin-west and Dublin-north here.7

There are three and four seats allocated to the constituency of Dublin-west and Dublin-

7The data sets are available from http://www.dublincountyreturningofficer.com
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Candidate Party
Brain Lenihan, Jnr (BLJ) Fianna Fáil (FF)

Joe Higgins (JH) Socialist Party (SP)
Joan Burton (JB) Labour Party (LP)
Sheila Terry (ST) Fine Gael (FG)

Deirdre Doherty Ryan (DDR) Fianna Fáil (FF)
Tom Morrissey (TM) Progressive Democrats (PD)

Mary Lou McDonald (MLM) Sinn Féin (SF)
Robert Bonnie (RB) Green Party (GP)

John Smyth (JS) Christian Solidarity (CS)

Table 6.1: Candidates and their belonging parties for the constituency of Dublin-west

north, respectively. The voting mechanism used is called single transferable vote form of

proportional representation (PR-STV). In PR-STV, each voter provides a (incomplete) ranking

of the candidates, and her vote is initially allocated to the most preferred candidate. During the

counting process, if a candidate is elected or eliminated, then votes from voters who place that

candidate as her first choice will be transferred to other candidates according to her ranking.

This procedure is repeated until all seats are allocated or a sufficient number of candidates are

left.

For Dublin-west, there are 9 candidates and 29,989 votes of the top-t form, of which 3,800

are complete; For Dublin-north, there are 12 candidates and 43,942 votes of the top-t form, of

which 3,662 are complete. The candidates and their belong parties are listed in Table 6.1 and

6.2 for details (Candidates in bold text are winners).

Results of Learning a Spatial Model Figure 6.6 shows the estimated agent and candidate

positions using one- and two-dimensional model, respectively, when the best fitting result (i.e.,

maximum log-likelihood value in Equation (6.1)) is selected among 100 runs of Algorithm 9.

An interesting results is that party politics plays an important role in the electorates view of

the candidates: in Dublin-west, there are only two candidates who are from the same party

(BLJ and DDR are from FF), and in both our one and two-dimensional fitting results, these

two candidates are clustered together; in Dublin-north, there are two parties with more than

one candidate (FF has JG, GVW and MK, FG has NO and CB), and in both results, candidates
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Candidate Party
Trevor Sargent (TS) Green Party (GP)

Seán Ryan (SR) Labour Party (LP)
Jim Glennon (JG) Fianna Fáil (FF)

G. V. Wright (GVW) Fianna Fáil (FF)
Clare Daly (CD) Socialist Party (SP)

Michael Kennedy (MK) Fianna Fáil (FF)
Nora Owen (NO) Fine Gael (FG)
Mick Davis (MD) Sinn Fèin (SF)

Cathal Boland (CB) Fine Gael (FG)
Ciaràn Goulding (CG) Ind. Health Alliance (IHA)

Eamon Quinn (EQ) Independent (IND)
David Walshe (DW) Christian Solidarity (CS)

Table 6.2: Candidates and their belonging parties for the constituency of Dublin-north

belonging to the same parties are clustered together.

We also compare the average likelihood, average Kendall Tau distance, and average Spear-

man’s Footrule distance respectively in Table 6.3. We can see that the two-dimensional model

beats the one-dimensional model in all three measures: for the average likelihood, the two-

dimensional model is 37.72 and 12.25 times better than the one-dimensional model for Dublin-

west and Dublin-north, respectively; for the average KT and SF distances, the two-dimensional

model is also better than the one-dimensional better, although not that significantly. The re-

sults are also consistent with the findings we have in single-peaked model (see earlier results

presented in this chapter) and those reported by Gormley and Murphy [2007] such that the

two-dimensional model can explain more voter preferences than the single-dimensional one.

Dublin-west Dublin-north
1-D 2-D 1-D 2-D

Avg. Likelihood 8.35E-05 3.15E-03 8.16E-06 1.00E-04
Avg. KT Dis. 10.56 8.22 19.94 16.86
Avg. SF Dis. 17.05 13.71 30.55 26.43

Table 6.3: Comparison of the one-dimensional and two-dimensional Fittings
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(a) Dublin-west, 1-D (b) Dublin-north, 1-D

(c) Dublin-west, 2-D (d) Dublin-north, 2-D

Figure 6.6: Results of the one-dimensional fitting: a) One-dimensional Fitting for Dublin-west,
b) One-dimensional Fitting for Dublin-north, c) Two-dimensional Fitting for Dublin-west, d)
Two-dimensional Fitting for Dublin-north

6.5 Conclusion

In this chapter, we have developed a branch-and-bound algorithm designed to determine the

degree to which a preference profile can be viewed as single-peaked in both the single- and

multi-dimensional senses. It uses, and combines, various forms of approximation. Exper-

iments on two election data sets demonstrate clearly that one-dimensional models, for any

reasonable degree of approximation, cannot explain voter preferences in the two data sets we

have explored. By contrast, a two-dimensional model provides an excellent fit, using very low

degrees of local candidate deletion (as the only form of approximation) to explain the prefer-

ences of over 99% of the voters in each data set. Our algorithms are very effective in practice in
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1D spaces, and feasible in 2D with strong anytime performance, despite the NP-completeness

of these problems. While these findings are preliminary, and need to be corroborated on further

election and other preference data sets, they suggest that the extension to two (or additional)

dimensions may render the use of single-peaked modeling, or its approximations, more appli-

cable in practice.

We also studied a spatial model for ranking. Combined with the Plackett-Luce model as the

choice model, we fit both voters and candidates in a samem-dimensional space by maximizing

the log-likelihood that the observed rankings are correct. We propose an alternating algorithm

to optimize the voters’ and candidates’ position by fixing one or the other. An empirical study

on two data sets from the Irish General Election 2002 shows applicability of our method, and

suggests that two-dimensional model is better in terms of fitting accuracy.

The results in this chapter can be extended in several ways. One is to further develop the

theoretical foundations of single-peaked consistency for different forms of approximations in

higher dimensions. Second, multi-dimensional single-peakedness is a much weaker assump-

tions than its 1D counterpart; so while it may fit preference data better, its predictive power is

lessened. Developing a deeper understanding of these tradeoffs is vital. An interesting ques-

tion is, for instance, minimum conditions on profiles that prevent the fit of any m-dimensional

model (c.f 1D, where single-peakedness can be violated with only two voters and four can-

didates, or three voters and three candidates Ballester and Haeringer [2011]. Finally, while

much attention has been paid to mechanisms that exploit single-peakedness (e.g., generalized

median mechanisms or quantile mechanisms as we have introduced), little work has addressed

the impact of approximate single-peakedness on these mechanisms, or the design and analysis

of mechanisms specifically for approximate single-peakedness. Having a sense of which forms

of approximation best fit real-world preferences can help focus mechanism design efforts on

those most likely to have a practical impact. We will address more future work in detail in

Chapter 8.



Chapter 7

The Trade-off Between Efficiency and

Privacy

7.1 Introduction

We have described the median mechanism and its generalization [Black, 1948, Moulin, 1980,

Barberà et al., 1993] in Chapter 2. We also showed that how these mechanism can be gen-

eralized to multi-dimensional, multi-facility location problems (e.g., through quantile mecha-

nisms) in Chapter 3. All of these mechanisms assume direct revelation, in which agents reveal

their full utility functions to the mechanism. However, direct mechanisms often elicit more

information than required to make optimal choices, leading to communication and computa-

tional difficulties [Conitzer and Sandholm, 2004]. For example, consider the simple median

mechanism (in Definition 2.25) which selects the median position among all reported peaks.

Revealing full preferences is often unnecessary in terms of communication: while the only

information needed by the mechanism is the peaks (most preferred outcomes) of the agents,

direct revelation requires agents to evaluate their preferences over all outcomes and report such

preferences to the mechanism.

Direct revelation also requires a sacrifice of privacy: revealing its full utility function may

157
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be undesirable for an agent, especially when some of that information is provably unnecessary

for computing the optimal outcome. Again, in the median mechanism where peak positions

are the only require information, agents may prefer not to reveal their full preferences over

other candidates. Recent work—using techniques similar to those used in the analysis of com-

munication complexity [Kushilevitz and Nisan, 1996]—has analyzed privacy preservation of

specific mechanisms in this sense; that is, where the degree to which an agent reveals more

than is strictly needed to compute the outcome of the mechanism is the degree to which privacy

has been lost.1 For instance, Sandholm and Brandt [2008] showed that, for the second-price

auctions (see Example 2.3), the English auction (defined formally later) preserves complete

privacy—no agent reveals any more than is strictly necessary to determine the outcome—but

that this comes at the cost of exponential communication complexity. More recently, Feigen-

baum et al. [2010] proposed a general framework to analyze the trade-off between privacy and

communication, defining several forms of privacy approximation ratio. They also showed how

different mechanisms for second-price auctions (and several other problems) improve privacy

at the expense of communication, and vice versa.

Previous work has addressed both the trade-off between communication and efficiency, and

the trade-off between privacy and communication. In this chapter, we address a third trade-off,

that between efficiency and privacy, and provide a general framework for analyzing this trade-

off. Specifically, we consider approximate mechanisms that find ε-optimal solutions to a social

choice problem, and show how agents’ privacy improves as one increases the degree of ap-

proximation ε. Our contributions are as follows: In Section 7.2 we define a general framework

for analyzing these trade-offs, extending privacy approximation ratios, introduced by Feigen-

baum et al. [2010], to the case of approximate mechanisms. In Section 7.3, we analyze the

efficiency-privacy trade-off in approximate versions of several mechanisms for second-price

1Note that the notion of privacy used here is quite different from differential privacy, which deals with the po-
tential “leakage” of a user’s private information associated with a particular set of queries to a database [Dwork,
2006]. Though some connections between differential privacy and mechanism design have been developed [Mc-
Sherry and Talwar, 2007], these have focused largely on how to exploit differential privacy to design approx-
imately efficient and truthful mechanisms, and do not attempt to limit information revelation in the sense we
pursue here.
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auctions, including the English, sealed-bid, and bisection protocols (these will be defined for-

mally later) in both the worst and average cases, and compare our ε-privacy approximation

ratios with the exact ratios derived by Feigenbaum et al. [2010]. We also generalize their anal-

ysis from 2-agent to n-agent auctions. In Section 7.4, we develop incremental protocols for

facility location problems that implement the classic median mechanism (in Definition 2.25).

We analyze the exact privacy approximation ratio for these new protocols, and again derive re-

sults demonstrating the efficiency-privacy trade-off induced by approximate versions of these

protocols.

Approximate mechanisms will not just improve (increase) privacy, but also generally im-

prove (reduce) communication complexity. Furthermore, sacrificing efficiency usually breaks

the incentive properties of standard mechanisms. We note that all of our mechanisms are ex-

actly truthful or ε-incentive compatible,2 and demonstrate this below.

7.2 Efficiency-Privacy Trade-off

Much of mechanism design deals with direct revelation mechanisms, in which each agent re-

veals its entire type to the mechanism. For simple outcome spaces (e.g., single-item auctions),

the precision required by direct revelation is often unnecessary; in complex settings (e.g., com-

binatorial auctions [Cramton et al., 2005] in which each agent can bid on a combination of

items), the outcome set O has exponential size, imposing significant burdens on communica-

tion. Incremental mechanisms have been proposed (e.g., ascending auctions [Parkes, 1999]

and adaptive elicitation [Zinkevich et al., 2003] for combinatorial auctions) which, by eliciting

only information that is “needed,” can reduce this burden in practice. In general, however, such

methods cannot reduce information requirements in the worst case [Nisan and Segal, 2006].

In a different vein, one can use informational approximation, eliciting information about

agent valuations that admits only an approximately optimal choice. For example, priority

2Indeed, when one factors in incentives, there is a more complex four-way trade-off between efficiency, pri-
vacy, communication complexity and incentives.



CHAPTER 7. THE TRADE-OFF BETWEEN EFFICIENCY AND PRIVACY 160

games [Blumrosen and Nisan, 2002] model single-item auctions in which agents express their

valuations with limited precision, and provide allocations (and prices) that sacrifice efficiency

(since true types are unknown) for communication savings; they are also strategy-proof. Par-

tial revelation VCG mechanisms [Hyafil and Boutilier, 2007] apply in any setting where VCG

can be used (namely, to maximize social welfare under quasi-linear utility), but again limit rev-

elation and sacrifice efficiency. Without efficient outcome selection, such mechanisms are not

strategy-proof; but with approximate variants of VCG pricing, ε-efficiency induces ε-incentive

compatibility in dominant strategies.

The communication complexity model [Kushilevitz and Nisan, 1996] provides a useful

framework for analyzing the communication or informational costs of specific protocols. They

can also be adapted to quantify the degree of privacy revelation in mechanisms. Follow-

ing our notation in Section 2.2, if we let n be the number of agents, t = (t1, . . . , tn) be a

type profile, and f is a social choice function, then one can think of the social choice func-

tion f as a n-dimensional matrix (tensor) M f whose entry at position (a type profile) t is

f(t) = f(t1, · · · , tn). Then we can define the ideal monochromatic region and the ideal

monochromatic partition as follows:

Definition 7.1 (Ideal monochromatic region and partition) Let f be an arbitrary social choice

function. The ideal monochromatic region for a type profile t ∈ T with respect to f is

RI
f (t) = {t′|f(t′) = f(t)}. The ideal monochromatic partition of f is the set of (disjoint)

ideal monochromatic regions with respect to T .

Intuitively, RI
f (t) describes the set of type profiles t′ that are indistinguishable from t

relative to the social choice function f : each such t′ leads to the same choice o = f(t). Thus

the the ideal monochromatic region in which the true profile t is contained can be thought of

as minimum information required to compute the outcome f(t), and is both necessary and

sufficient to determine that outcome.

A (deterministic) communication protocol p specifies the rules by which agents with private
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information share that information (with a third party or one another) to compute the outcome

of a function [Kushilevitz and Nisan, 1996]. If the outcome selected under a communication

protocol (or the run) is the same as that selected under a social choice function for any input,

then we say the protocol implements the social choice function. As such, a mechanism is

simply a protocol. Formally, we have:

Definition 7.2 (Run of a protocol) Let p be a communication protocol, and t be a type profile.

We define the run of a protocol on a type profile, denoted as p(t), as the outcome selected under

the execution of p when agents have preferences t.

Definition 7.3 (Implementation) Let p be a communication protocol, and p(t) be run of p on

t. We say p implements a social choice function f if p(t) = f(t),∀t ∈ T .

A communication protocol induces rectangles, corresponding to the information reveal by

that protocol. We define a rectangle of M f to be a submatrix of M f . Formally:

Definition 7.4 (Protocol induced rectangle) Let pf be a communication protocol that imple-

ments some social choice function f . The pf -induced rectangle for a type profile t ∈ T ,

denoted by Rp
f (t), is the maximal submatrix S of M f containing t such that the run of pf on t

is indistinguishable for any t′ ∈ S,3 i.e., pf (t) = pf (t′).

Recall from Definition 7.1 that the ideal monochromatic region represents the minimum

information required to compute a social choice function f . This means that if a protocol pf

implements f , then the information elicited by pf is at least as much as the minimum, i.e.,

Rp
f (t) ⊆ RI

f (t). Feigenbaum et al. [2010] use the ratio of the sizes of the ideal (maximal)

regions of f and the regions (rectangles) induced by pf to characterize the degree to which pf

discloses extraneous private information.4 We present the definitions using two agents with

type vector t = (t1, t2) (as in Feigenbaum et al. [2010]), though they extend to n agents in the

obvious way (see below):
3The fact that indistinguishable regions of pf must be rectangles is a consequence of the communication model

[Kushilevitz and Nisan, 1996] (e.g., see later in Figure 7.1).
4These notions corresponds to the objective privacy approximation ratios defined in [Feigenbaum et al., 2010].
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Definition 7.5 (Privacy approximation ratio) The worst case privacy approximation ratio (WPAR)

of a protocol pf for a social choice function f is:

wpar(pf ) = max
(t1,t2)∈T

|RI
f ((t1, t2))|

|Rp
f ((t1, t2))|

.

Let D be a distribution over T . The average privacy approximation ratio (APAR) of a protocol

pf for a social choice function f w.r.t. D is:

apar(pf ) = E(t1,t2)∼D

[
|RI

f ((t1, t2))|
|Rp

f ((t1, t2))|

]
.

We can think of perfect privacy as revealing only enough information about the type profile

of the agents to compute a social choice function f (i.e., reveal only the ideal region). These

ratios (PARs) then measures how much additional information a protocol pf reveals about the

type vector (in the worst case, or on average given some distribution over types). A smaller PAR

indicates that p offers a greater degree of privacy, with the smallest PAR value of 1 meaning

that p offers perfect privacy. A PAR value of k > 1 means that (either in the worst or average

case) the protocol learns that the joint type lies in a region that is k times smaller than required

to compute f .

Sandholm and Brandt [2008] show that for SPAs, the English protocol is the only perfect

privacy preserving protocol for two bidders, though it bears exponential communication cost;

furthermore, perfect privacy is not possible for n > 2 bidders. Feigenbaum et al. [2010]

demonstrate an interesting trade-off between privacy and communication complexity in two-

bidder SPAs by analyzing English, sealed-bid and bisection protocols. We discuss these results

below when defining approximate versions of these protocols.

The work described above studies the trade-off between efficiency and communication,

and the trade-off between privacy and communication. A third natural trade-off suggests itself,

namely, that between efficiency and privacy. We exploit the notion of approximate solution

[Blumrosen and Nisan, 2002, Hyafil and Boutilier, 2007] and show how it can be used to
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improve the privacy approximation ratios of Feigenbaum et al. [2010]: that is, how much

additional privacy can be preserved if we allow an ε sacrifice in efficiency. We first define

ε-approximation and ε-implementation:

Definition 7.6 (ε-approximation and ε-implementation) A social choice function f̃ is said

to ε-approximate another social choice function f if |
∑

i vi(f(t), ti) −
∑

i vi(f̃(t), ti)| ≤ ε,

∀t ∈ T . If a protocol pf̃ implements such an f̃ , then we say pf̃ ε-implements f .

In other words, f̃ (and any corresponding protocol pf̃ ) approximates f if the difference in

the social welfare between the two is no more than ε for any type profile, where the social

welfare is defined as the sum of agent utilities.

We can now introduce privacy approximation ratios relative to approximate implementa-

tions of a social choice function f .

Definition 7.7 (Approximate privacy approximation ratio) Let pf̃ be a communication pro-

tocol that ε-implements f with social choice function f̃ . The ε-worst case privacy approxima-

tion ratio of pf̃ is:

ε-wpar(pf̃ ) = max
t∈T

|RI
f (t)|

|Rp

f̃
(t)|

.

Let D be a distribution over T . The ε-average case privacy approximation ratio of pf̃ is:

ε-apar(pf̃ ) = ED

[
|RI

f (t)|
|Rp

f̃
(t)|

]
.

These definitions are similar to those in Definition 7.5 except that we compare the ideal

monochromatic regions of a social choice function f to the regions (or rectangles) induced

by a protocol for its ε-approximation f̃ . Our definitions in fact reduce to Definition 7.5 when

f̃ = f and thus ε = 0. As above, smaller values of ε-par indicate a greater degree of privacy

preservation. Unlike exact par which has a minimum value of 1 (perfect privacy), ε-par can be

less than 1, indicating that strictly less information than required for computing f is revealed.
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Indeed, this is only possible because of approximation. While both measures are interesting,

we believe the average case measure ε-apar (using appropriate distributions in specific appli-

cations) may be more useful in practice.

We note that these definitions can be recast to minimize ε-par over all ε-implementations

of f , measuring the trade-off inherent in f ; but we focus here on the analysis of specific

families of protocols. Mechanisms for specific problems, e.g., SPAs, can be parameterized by

the degree of approximation ε they offer, especially by limiting the precision with which agents

reveal their valuations, hence improving ε-par by sacrificing efficiency. We now explore this

trade-off.

7.3 Trade-offs in Second Price Auctions

We illustrate the usefulness of our framework by analyzing the efficiency-privacy trade-off for

approximate versions of three mechanisms used in second price auctions, the English auction,

the sealed-bid auction, and the bisection auction. Our contributions are two-fold: first, we gen-

eralize the two-agent analysis of Feigenbaum et al. [2010] by providing privacy approximation

ratios (or bounds) for n-agent SPAs (whose analysis is somewhat more involved). Second, we

demonstrate the additional privacy savings obtained by admitting approximate efficiency.

Consider a setting with n agents, and each agent i ≤ n has a valuation vi for some item.

Let v[h] be the h-th highest valuation in (multiset) V = {v1, · · · , vn} and a[h] the agent with

valuation v[h] (ties broken lexicographically). The SPA allocates the item to a[1] for price v[2].

We consider the following three protocols that implement the second price auction:

Definition 7.8 (Sealed-bid auction (for SPAs)) The sealed-bid mechanism is a one-shot pro-

tocol for SPAs: each agent submits its valuation to the mechanism, which awards the item to

the agent with the highest bid at the price of the second highest bid. Ties (i.e., when more than

one agents have the same highest price) are broken lexicographically.
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Definition 7.9 (English auction (for SPAs)) The English auction is incremental: a (small)

bid increment δ is chosen, and the asking price p is raised by δ at each round. Each agent

i can drop out in any round (however, an agent will drop out when p > vi strategically). The

item is awarded to the last remaining agent, at the current asking price. Ties (i.e., when more

than one agent drops out at the last round) are broken lexicographically (at the prior price,

which all final agents “accepted”).

Definition 7.10 (Bisection auction (for SPAs)) The bisection auction [Grigorieva et al., 2007]

uses a binary search (asking each i whether her value vi is above specific values) to determine

a value b ∈ (v[1], v[2]]) (and b = v[1] if v[1] = v[2]). Once b is identified, binary search on the

interval containing v[2] is used to identify v[2] to a desired precision σ. Note once vi < v[2] is

proven for some agent i, no further queries are asked.

Following Feigenbaum et al. [2010], we treat the valuation space as discrete, representable

with k bits, allowing ν = 2k distinct valuations. We assume, w.l.o.g., that vi ∈ Vk =

{0, . . . , 2k−1}. In the following, we will analyze the privacy approximation ratio (or bounds)

for these three protocols, when approximate implementation of the social choice function is

used.

English Protocol The English protocol with an “exact” bid increment δ = 1 has exponential

communication complexity O(2k) [Sandholm and Brandt, 2008]: simply consider the case

of v[2] = 2k − 1. But this high cost allows for very strong privacy: for two agents, par in

both the worst case and average case is 1, i.e., it is perfectly privacy preserving. For n > 2

agents, perfect privacy is not possible [Sandholm and Brandt, 2008]. The thin line in Figure 7.1

illustrates the ideal monochromatic partition for a two-agent SPA.

We can approximate the English auction by simply increasing the bid increment, setting

δ = 1 + ε = 2d for some precision integer d > 0.5 Clearly this ε-English protocol, denoted by

pεE , ε-approximates the exact SPA, with suboptimal allocation happening only when multiple

5We use powers of 2 for convenience only.
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Figure 7.1: Partitions induced by the English auction for 2-bidder SPAs when δ=1 (ε=0, thin
line) and δ= 2 (ε= 1, thick line). When δ= 1, this is also the ideal monochromatic partition.
The shaded region indicates the inputs from which ε-wpar is derived. The numbers indicate
the outcome for each ideal rectangle (e.g., in the leftmost rectangle, the item is allocated to
agent 1 for a price of 0).

agents drop out at the last round; but all such agents have values within an interval of size

(1 + ε), guaranteeing ε-efficiency. The price paid is also within ε of that dictated by the exact

SPA, and pεE is ε-incentive compatible (in fact, ε-strategy-proof). The thick line in Figure 7.1

illustrates the protocol-induced partition for the ε-English auction when ε = 1. Notice that

for some type profiles, the outcome is different from that in the exact protocol (e.g., with

profile (2, 3), pεE allocates the item to agent 1 for a price of 2, while the exact protocol allocates

efficiently to agent 2 for a price of 2). It is easy to verify that, for any type profile t, the protocol

induced rectangle for pεE is at least as large as that induced by the exact English protocol,

indicating privacy savings. The shaded area denotes the profiles from which we derive ε-wpar:

the ideal monochromatic region has size 3 while the protocol-induced rectangle has size 4.

Note that ε-wpar = 3
4
< 1, indicating better than perfect privacy.

These intuitions can be generalized to n-agent SPAs, where we have:
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Theorem 7.1 (ε-worst case privacy approximation ratio of ε-English protocol (for SPAs))

For n-agent SPAs, the ε-worst case privacy approximation ratio of ε-English protocol (for large

enough n) is:

ε-wparp(p
ε
E) =

(2k)n−1 − (2k − 1)n−1

(1 + ε)n

Proof: See appendix of this chapter.

The worst case occurs when the valuations of all agents are 2k − 1, such that the size of

the ideal monochromatic region is maximized and the size of the protocol induced rectangle is

minimized. Relative to the exact protocol in which ε = 0, worst-case privacy savings of pεE are

(1 + ε)n, as one would expect (1 + ε per agent). It is important to note that privacy loss (or

savings) exponential in n is an artifact of the definitions: if each of n agents gives up a bounded

amount of privacy κ relative to the ideal region, the “product” of their losses is κn. Hence this

should not be viewed as especially problematic here or in the sequel.

Next, we consider the average case. Suppose we have a uniform distribution D over type

profiles (all average-case analysis in the sequel uses the uniform distributionD). We can bound

the ε-average case privacy approximation ratio ε-apar of the ε-English protocol:

Theorem 7.2 (ε-average case privacy approximation ratio of ε-English protocol (for SPAs))

For n-agent SPAs, the ε-average case privacy approximation ratio of ε-English protocol is:

2
(2k−1)n−3(n−3

bn
2
c

)
(1 + ε)n

≤ ε-apar(pεE) ≤ 2

(
n

2

)
(2k)n−2

(1 + ε)n−1

Proof: See appendix of this chapter.

In the ε-English protocol, the valuations of at least n−1 agents are identified with precision

1+ε, so privacy savings are at between (1+ε)n−1 and (1+ε)n relative to exact implementation.

Exact average case savings are computed numerically below.
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Bisection Protocol A natural way to approximate the bisection protocol is to use early termi-

nation, stopping when we identify v[2] with some desired precision σ (i.e., when the bisection

interval containing v[2] is no larger than σ). We then allocate the item to a[1] using the price at

the low end of v[2]’s interval (with ties broken lexicographically). To ensure ε-efficiency, thus

defining the ε-bisection protocol pεB, we must have σ ≤ ε+ 1 (otherwise the mechanism is not

ε-efficient). This mechanism is also ε-incentive compatible (an agent’s gain by misreporting is

at most ε), and the ε-worst case privacy approximation is as follows:

Theorem 7.3 (ε-worst case privacy approximation ratio of ε-bisection protocol (for SPAs))

For n-agent SPAs, the ε-worst case privacy approximation ratio of ε-bisection protocol is:

ε-wpar(pεB) =
(2k)n−1 − (2k − 1)n−1

(1 + ε)n

Proof: See appendix of this chapter.

The worst case privacy approximation ratio under the ε-bisection protocol is exactly the

same as that under the ε-English protocol, which occurs when all agents have values clustered

at v[2] = 2k−1: each reports its valuation with the maximum precision, so ε-wpar is exponen-

tial in both k and n. The privacy savings of pεB relative to exact implementation are precisely

(ε+ 1)n.

For the average case, we have the following bounds:

Theorem 7.4 (ε-average case privacy approximation ratio of ε-bisection protocol (for SPAs))

For n-agent SPAs,

nk

(1 + ε)n
≤ ε-apar(pεB) ≤ n(n− 1)

(k)n−1

1 + ε

Proof: See appendix of this chapter.

We see that apar for (exact and approximate) bisection is polynomial in k (and exponential

in n), which compares favorably to the English protocol (exponential in both k and n). De-
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pending on the number of agents whose values fall in the bisection interval containing v[2] at

termination, the privacy savings for pεB range from ε+1 to (ε+1)n. Exact average case savings

are computed numerically below, and compared with those for the ε-English protocol pεE .

Sealed-Bid Protocol The ε-sealed-bid protocol pεS approximates the exact sealed-bid proto-

col by simply “coarsening” the valuation space, asking for reports vi with limited precision

σ. The bound σ ≤ 1 + ε also holds for pεS , requiring termination only when v[2] is known to

lie within an interval of length 1 + ε. The ε-worst case approximation ratio ε-wpar of pεS in

n-agent SPAs is identical to that for ε-English and ε-bisection, since it induces the same size

of rectangle in the worst case.

Theorem 7.5 (ε-worst case privacy approximation ratio of ε-sealed-bid protocol (for SPAs))

For n-agent SPAs, the ε-worst case privacy approximation ratio of ε-sealed-bid protocol is:

ε-wpar(pεS) =
(2k)n−1 − (2k − 1)n−1

(1 + ε)n

Proof: See appendix of this chapter.

Again, the worst case occurs when all agents have valuations 2k − 1, and the size of the

ideal monochromatic region is (2k − 1)n−1 − (2k)n−1, and the size of the protocol induced

rectangle is exactly (1 + ε)n. The privacy savings compared to the exact sealed-bid protocol

are also (1 + ε)n (1 + ε per agent).

Despite the same worst case behavior, ε-sealed-bid protocol is much worse on average than

ε-bisection protocol:

Theorem 7.6 (ε-average case privacy approximation ratio of ε-sealed-bid protocol (for SPAs))

For n-agent SPAs, the ε-average case privacy approximation ratio of ε-sealed-bid protocol is:

2
(2k−1)n−3(n−3

bn
2
c

)
(1 + ε)n

≤ ε-apar(pεS) ≤ (2k)n−1 − (2k − 1)n−1

(1 + ε)n
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ε
Second Price Auctions

n = 3 n = 4 n = 5

ε=0 32 / 15 / 410 1225 / 72.4 / 11254 46563 / 350 / 333760
ε=1 8.1 / 5.11 / 51.25 156 / 20.7 / 703.4 2942 / 86 / 10430
ε=3 2.05 / 1.56 / 6.4 19 / 5 / 44 173 / 17.3 / 325.9
ε=7 0.48 / 0.4 / 0.8 1.95 / 0.96 / 2.75 8.0 / 2.6 / 10.2

Table 7.1: ε-apar for SPAs with different n and ε when k = 5 bits. The three values in each
cell indicate ε-apar for the ε-English, ε-bisection and ε-sealed-bid protocols, respectively.

Proof: See appendix of this chapter.

Our current lower bound for ε-apar(pεS) is quite loose; but we can use the lower bound

for ε-apar(pεE) instead: for each profile, the size of the protocol induced rectangle for pεE is

at least as large as that for pεS (because the valuation of the highest bid is only revealed in

some extent), so we must have Rp
pεS

(t) ⊆ Rp
pεE

(t),∀t. According to our definition of ε-apar,

this means ε-apar(pεS) ≥ ε-apar(pεE). Hence, ε-apar(pεS) is exponential in both k and n. In

addition, since the size of all induced rectangles is (ε+1)n, in both the worst and average case,

pεS offers privacy savings of (ε+ 1)n over exact sealed-bid.

Summary The average case ε-privacy approximation ratios for SPAs of different sizes, com-

puted numerically, are shown in Table 7.1.6 Recalling that smaller ε-apar indicates better

privacy, we see that our ε-approximate protocols offer significant privacy savings relative to

their exact counterparts. For instance, when n = 3 and ε = 1, the ε-English protocol reveals

8.1
32
≈ 1

4
of the information revealed by the exact protocol, while ε = 3 requires only 1

16
of

information. We also see that ε-bisection has the smallest ε-apar, preserving much more pri-

vacy than either ε-English or ε-sealed-bid; e.g., when ε = 3 and n = 4, ε-bisection requires

revelation of only 5
19

and 5
44

of the information required by ε-English and ε-sealed-bid, respec-

tively. We also notice that ε-apar, and the privacy savings of the approximate protocols over

their exact counterparts, grow exponentially with n. This is consistent with our theoretical re-

6For each type profile t, we first derive the size of the ideal monochromatic region (see Claim 7.2 in the
appendix of this chapter), run simulation of a particular protocol to get the size of the protocol induced rectangle,
and compute their ratios. Then the average PAR is the weighted sum over all possible type profiles.
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sults. Moreover, though our current lower bound for ε-bisection is linear in ε, these numerical

results suggest that the actual savings are much greater. We conjecture that the true savings

area O((1 + ε)
n
c ), for some constant c > 1.

To summarize, we have derived privacy approximation ratios for the n-agent versions of

three key protocols for SPAs. We have also shown that approximate variants of these protocols

allow for savings in privacy over their exact counterparts that is exponential in the number of

agents n and polynomial in the degree of approximation ε in almost all cases (both worst and

average case).

7.4 Tradeoffs in Facility Location

We now consider another classic domain in mechanism design, one-dimensional, single facility

location problems as defined in Section 2.3. Following notation in Section 2.3, we assume

there are n agents, each with an ideal location ti in a finite set of possible locations L =

{0, . . . , 2k − 1}. For ease of exposition, we assume an odd number of agents n = 2m− 1; we

also assume (w.l.o.g.) that agents are sorted by preferred location: t1 ≤ . . . ≤ tn. The objective

is to select an optimal location of the facility that maximizes social welfare by minimizing the

social choice function f(x) =
∑

i c(x, ti) = |x− ti|, i.e., the sum of distance between the ideal

location of each agent and the facility.

The median mechanism (as in Definition 2.25), which asks each agent i to report her most

preferred location ti and locates the facility at the median tM of the reported values, is a

strategy-proof mechanism that selects the optimal location. Generally direct elicitation of the

ideal locations (i.e., sealed-bid) is used to implement such a mechanism; however, incremental

elicitation can be accomplished using mechanisms much like those for SPAs. We define the

following two incremental mechanisms:

Definition 7.11 (English protocol (for FLPs)) We define an English protocol for FLPs as fol-

lows: beginning with a current location p = 0, we increment p by δ = 1, asking i if ti ≥ p,
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stopping when at least m agents have dropped out, thereby identifying the median.

Definition 7.12 (Bisection protocol (for FLPs)) The bisection protocol for FLPs simply con-

ducts a binary search to find the median tM . Starting from an asking position tp = 2k − 1,

we ask for each agent if ti ≥ tp or ti ≤ tp, and update tp to be the middle of the interval

containing the median tM . At any stage, if we know ti ≥ tM or ti ≤ tM , agent i is asked no

further queries. The process is repeated until tM has been identified.

Approximate versions of both protocols (as well as “sealed-bid”) are defined analogously

to the case of SPAs.

Before describing our results regarding privacy approximation ratios, we first provide a

general negative result showing that there is no perfect privacy preserving protocol for the

median mechanism. The intuition is that any protocol requires the revelation of the identity of

an agent with the median value in at least some instances. We state the results formally in the

following theorem:

Theorem 7.7 (Non-existence of perfect privacy preserving protocols for FLPs) There is no

perfect privacy preserving protocol for the median mechanism for n-party FLPs, for any n ≥ 2.

Proof: We show the proof for the case of n = 2, but the analysis can be generalized to any

number of agents. Consider a two-agent facility location problem, where we use the leftmost

mechanism (as in Example 2.5) to locate the facility. The leftmost mechanism can be viewed as

a median mechanism (as in Definition 2.25) for the two-agent case, and is both strategy-proof

and efficient for the two-agent FLPs.

Figure 7.4 shows the ideal monochromatic partition for the two-agent FLPs. Clearly, ex-

cept the bottom-right one, no other ideal monochromatic regions are rectangles. However, the

communication model requires that the indistinguishable regions of any communication proto-

col must be rectangles [Kushilevitz and Nisan, 1996], indicting that there is no perfect privacy

preserving protocol.
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Figure 7.2: Ideal monochromatic partition for 2-agent FLPs.

Before computing the privacy approximation ratio, we first analyze the size of the ideal

monochromatic region for a location profile. We have the following:

Claim 7.1 Let t be a type profile with median tM . Then the size of the ideal monochromatic

region is:

RI
f (t) =

m−2∑
r=0

(
n

r + 1

)
[

r∑
s=0

(
n− 1− r

m− 1− r + s

)
· (tM)m−1−r+s

· (2k − 1− tM)m−1−s] +
n∑

r=m

(
n

r

)
(2k − 1)n−r

The first term reflects the case when fewer than m agents have an ideal location that co-

incides with the median tM , and the second when at least m agents have the ideal location

tM .

It should be noted that the size of the ideal monochromatic region for FLPs is a function

Z(tM) of tM , not the entire profile t. If we denote:

Z(r) = O(rm−1(2k − 1− r)m−1),
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then one can check that the maximum is attained when r = 2k−1 or r = 2k−1−1 and minimum

is attained when r = 0 or r = 2k− 1. This property will be used when proving both worst case

and average case PARs for all three protocols.

Next, we provide the ε-worse and ε-average case privacy approximation ratios (or bounds)

for n-agent FLPs for each of the three protocols: English, bisection and sealed-bid.

English Protocol We first analyze the worst case privacy approximation ratio of the exact

English protocol for FLPs (i.e., where δ = 1): Each agent is asked by the mechanism that

whether their valuation is higher or lower than the current asking location p. If n1 ≤ m − 1

agents drop out at location p − 1 and n2 ≥ m agents drop out at location p, then the median

value is exactly p. The result is shown in the following theorem:

Theorem 7.8 (Worst case privacy approximation ratio of English protocol (for FLPs)) Let

pEF be the exact English protocol for n-agent FLPs. Then the worst case privacy approxima-

tion ratio is:

Z(0) ≤ wpar(pEF ) ≤ Z(2k−1)

Proof: See appendix of this chapter.

While we are unable to get an exact wpar value for the English protocol, the lower bound

Z(0) means that wpar is exponential in both k and n, indicating weak privacy guarantees.

The ε-English protocol pεEF uses a bid increment δ > 1, identifying the median with pre-

cision δ when the protocol stops, and randomly selecting a location within this δ-interval. To

ensure ε-approximation, δ cannot be too large:

Lemma 7.1 Let pεEF be the ε-English protocol for n-agent FLPs. Then pεEF ε-implements the

median mechanism only if the bid increment δ satisfies δ ≤ 1 + ε
n

.

Proof: We prove this lemma by contradiction. Let pεEF be an ε-English protocol that

ε-implements the median mechanism, with a bid increment of δ > 1 + ε
n

. Consider the type
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Figure 7.3: English protocol for facility location problem

profile shown in Figure 7.4, in which the median is tM . Let a be the location that n1 ≤ m− 1

agents drop out and b = a+ δ be the location that n2 ≥ m agents drop out. Then the ε-English

protocol will locate the facility at location a, and the induced social cost is:

SC(a) =

n1∑
i=1

(ti − a) +
n∑

i=n1+1

(ti − a) (7.1)

However, if the facility is located at the median position tM , then the social cost is:

SC(tM) =
m−1∑
i=1

(tM − ti) +
n∑

i=m+1

(ti − tM) (7.2)

Subtracting Equation 7.2 from Equation 7.1, we have:

SC(a)− SC(tM) =
m−1∑

i=n1+1

(2ti − 2a) + (tM − a) ≥ n(δ − 1) > ε

which contradicts our assumption that pεEF ε-implements the median mechanism, completing

our proof.

The distinction with SPAs, which allow increments of (1 + ε), is due to the fact that an

ε-misplacement of the facility can impact all n agents (not just the winner as in SPAs). The

mechanism is ε
n

-incentive compatible.

By Theorem 7.8 and Lemma 7.1, we have:

Corollary 7.1 (ε-worst case privacy approximation ratio of ε-English protocol (for FLPs))
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For n-agent FLPs, the ε-worst case privacy approximation ratio of ε-English protocol satisfies:

lim
n→∞

ε-wpar(pεEF ) ≤ lim
n→∞

Z(2k−1)

(1 + ε
n
)m

=
Z(2k−1)

eε/2

and

lim
n→∞

ε-wpar(pεEF ) ≥ lim
n→∞

Z(0)

(1 + ε
n
)n

=
Z(0)

eε

For the ε-English protocol, at least m and at most n agents’ locations are identified with a

precision of 1 + ε
n

, so the privacy savings are between (1 + ε
n
)m and (1 + ε

n
)n, which converges

to eε/2 and eε as n→∞. Similarly, the Z(0) term in the lower bound indicates that ε-wpar is

exponential in both k and n.

For the average case, we begin our analysis with the exact protocol, providing upper and

lower bounds:

Theorem 7.9 (Average case privacy approximation ratio of English protocol (for FLPs)) Let

pEF be the exact English protocol for n-agent FLPs. Then the worst case privacy approxima-

tion ratio is:

m

(
m− 1

m/2

)
(2k−1)m−2 ≤ apar(pEF ) ≤ m

(
n

m− 1

)
(2k)m−1

Proof: See appendix of this chapter.

This result allows us to show that the average case privacy savings of pεEF relative to exact

pEF are at most (1 + ε
n
)m. However, in the ε-English protocol pεEF , we “coarsen” the revealed

locations of at least m and at most n agents, which means the saving is between (1 + ε
n
)m and

(1 + ε
n
)n, and converges to eε/2 and eε as n→∞. These values can be multiplied by the terms

in the bounds of Theorem 7.9 to derive bounds on ε-apar(pεEF ).
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Bisection Protocol We now consider the bisection protocol pBF for FLPs and analyze its

privacy approximation ratios before considering its ε-approximate implementation. We first

consider the worst case PAR for pBF :

Theorem 7.10 (Worst-case privacy approximation ratio of bisection protocol (for FLPs))

Let pBF be the exact bisection protocol for n-agent FLPs. Then the worst case privacy approx-

imation ratio is:

wpar(pBF ) = Z(2k−1)

Proof: See the appendix of this chapter.

This worst case occurs with a type profile in which m−1 agents have ideal location 2k−1 +

1 and m agents prefer location 2k−1: the pBF -induced rectangle has size 1 while the ideal

monochromatic region has size Z(2k−1). Similarly, the Z(2k−1) term indicates that wpar is

exponential in both k and n.

The approximate ε-bisection protocol pεBF for FLPs identifies the median only to some de-

sired precision, but uses a dynamic precision parameter to determine termination. Specifically,

we terminate when the median is proven to lie in some interval [tM− , t
M
+ ), and a random point

in that interval is selected for the facility. The mechanism is ε
n

-incentive compatible. To ensure

ε-efficiency, we require:

Lemma 7.2 Let l and r be the number of agents in [tM− , t
M
+ ) whose desired location is left of

(less than) and right of (greater than) of tM , respectively. Then pεBF ε-implements the median

mechanism for FLPs iff (tM+ − tM− − 1)(2 max{l, r}+ 1) ≤ ε.

Proof: Let tM− and tM+ be the lower and upper bound of the interval containing tM , and

suppose by contradiction that the condition does not hold, i.e., (tM+ −tM− −1)(2 max{l, r}+1) >



CHAPTER 7. THE TRADE-OFF BETWEEN EFFICIENCY AND PRIVACY 178

ε. Then if tM− is selected as the median, we have:

SC(tM− )− SC(tM) =
m−1−l∑
i=1

(tM− − ti) +
n∑

i=m−l

(ti − tM− )

−

(
m−1∑
i=1

(tM − ti) +
n∑

i=m+1

(ti − tM)

)

≥(2l + 1)(tM+ − tM− − 1)

>ε

which contradicts with our assumption that pεBF ε-implements the median mechanism, so we

must have (2l + 1)(tM+ − tM− − 1) ≤ ε. On the other hand, if tM+ is selected as the median, we

can derive (2r + 1)(tM+ − tM− − 1) ≤ ε, using similar analysis. This completes our proof.

This means the “precision” of the final interval [tM− , t
M
+ ) is determined by pεBF dynamically:

if, when the median value interval is identified, no other agents’ locations lie within [tM− , t
M
+ ),

the protocol can stop when the interval is narrowed to tM+ − tM− ≤ 1 + ε; but if m − 1 agents

remain in the interval, and are left of tM , then the protocol stops only when tM+ − tM− ≤ 1 + ε
n

.

This mechanism is also ε
n

-incentive compatible. By Theorem 7.10 and Lemma 7.2, we have

the following corollary for the ε-bisection protocol:

Corollary 7.2 (ε-worst case privacy approximation ratio of ε-bisection protocol (for FLPs))

For n-agent FLPs, the ε-worst case privacy approximation of ε-bisection protocol satisfies:

lim
n→∞

ε-wpar(pεBF ) = lim
n→∞

Z(2k−1)

(1 + ε
n
)n

=
Z(2k−1)

eε

For average case analysis, we again begin with exact bisection protocol, providing upper

and lower bounds in the following theorem:

Theorem 7.11 (Average-case privacy approximation ratio of bisection protocol (for FLPs))

Let pBF be the ε-bisection protocol for n-agent FLPs. Then the ε-average case privacy approx-
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imation ratio is:

(
n

m

)
km−1 ≤ apar(pBF ) ≤ m

(
n

m

)
km

Proof: See appendix of this chapter.

As with SPAs, apar for bisection in FLPs is polynomial in k, offering significant privacy

savings relative to the English protocol. With ε-approximation, we can show that the privacy

savings range from ε+ 1 to (ε+ 1)n, depending on the number of agents whose locations fall

into the bisection interval as tM . We compare average case savings numerically across these

different protocols below.

Sealed-Bid Protocol The sealed-bid protocol pSF for FLPs has each agent reveal her pre-

ferred location and returns the median. So the size of the protocol induced rectangle is always

1 regardless of the type profile.

We first give the worst-case privacy approximation ratio in the following theorem:

Theorem 7.12 (Worst-case privacy approximation ratio of sealed-bid protocol (for FLPs))

Let pSF be the exact sealed-bid protocol for n-agents FLPs. Then the worst case privacy ap-

proximation ratio is:

wpar(pSF ) = Z(2k−1)

Proof: See appendix of this chapter.

The worst also occurs when m− 1 agents have ideal location 2k−1 + 1 and m agents have

ideal location 2k−1, as in the exact bisection protocol.

The ε-sealed-bid protocol pεSF asks for locations with limited precision σ. In the worst

case, when all locations lie in the interval of tM , Lemma 7.2 needs precision σ ≤ 1 + ε
n

, and

ε-wpar(pεSF ) is identical to that for pεBF .
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ε
Facility Location Problems

n = 3 n = 5

ε=0 96 / 42 / 1228 8776 / 1514 / 1.50E+06
ε=10 6.1 / 3.6 / 19.2 374 / 154 / 46766
ε=15 3.0 / 3.6 / 19.2 152 / 61 / 1461
ε=22 1.34 / 0.97 / 2.4 86 / 36 / 1461

Table 7.2: ε-apar for FLPs with different n and ε when k = 5 bits. The three values in each
cell indicate ε-apar for the ε-English, ε-bisection and ε-sealed-bid protocols, respectively.

Corollary 7.3 (ε-worst case privacy approximation ratio of ε-sealed-bid protocol (for FLPs))

For n-agents FLPs, the ε-worst case privacy approximation ratio of ε-sealed-bid protocol is:

lim
n→∞

ε-wpar(pεSF ) = lim
n→∞

Z(2k−1)

(1 + ε
n
)n

=
Z(2k−1)

eε

For the average case, we have upper and lower bounds on apar for exact sealed-bid protocol

pSF :

Theorem 7.13 (Average case privacy approximation ratio of sealed-bid protocol (for FLPs))

Let pSF be the exact sealed-bid protocol for n-agents FLPs. Then the average case privacy ap-

proximation ratio is:

Z(0) ≤ apar(pSF ) ≤ Z(2k−1 − 1)

Proof: See appendix of this chapter.

In the ε-sealed-bid protocol pεSF , each rectangle has size ε
n

(compared to size 1 for exact

sealed-bid protocol pSF ), so average privacy saving are (1 + ε
n
)n, converging to eε as n→∞.

However, ε-apar(pεSF ) is still exponential in both k and n.

Summary As with SPAs above, Table 7.2 shows average case ε-privacy approximation ratios

for FLPs of different sizes computed numerically. Results are similar to those for SPAs that

approximation provides significant savings in privacy, and the bisection protocol offers the
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greatest privacy preservation.

To summarize, we have proposed two incremental mechanisms for FLPs: the English and

the bisection protocols. Together with the sealed-bid protocol, we have provided upper and

lower bounds on worst- and average-case par, showing, as with SPAs, that the bisection proto-

col offers relatively strong privacy guarantees compared to the other two (polynomial in k and

exponential in n). With ε-approximation, strong privacy savings are possible (exponential in ε

as n→∞).

7.5 Conclusion

In this chapter, we have presented a framework for analyzing the natural tradeoff between

efficiency and privacy in mechanism design. Within this model, we have analyzed second-price

auctions and facility location problems, and for each investigated the extent to which privacy is

preserved for a variety of different protocols. We have shown that the bisection protocol offers

significant privacy advantages over other protocols, and also demonstrated the degree to which

additional privacy preservation can be gained through ε-approximation of these protocols over

their exact implementations, using both worst and average case analyses.

Our framework can be generalized in several ways. While we have presented our work in

the context of mechanism design, it can be applied to any form of distributed function com-

putation. One might also consider other forms of approximate privacy that account for, say,

different sensitivity to the reports of different agents, or from different regions of type space.

Our analysis can also be extended in several ways, including deriving average case results

for more realistic distributions of valuations; and broadening the class of mechanisms and so-

cial choice functions. Finally, this work suggests a complicated four-way tradeoff between

communication, efficiency, incentives and privacy in the design of mechanisms. Developing

optimization models that explicitly trade off these criteria against one another will be impor-

tant in the automated design of privacy-preserving mechanisms. Incremental mechanisms such
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as those discussed here should have even greater potential to offer practical—if not (worst-

case) theoretical—privacy and communications savings. We will discuss more future work in

Chapter 8.

Appendix of Chapter 7

Proof of Theorems

Theorem 7.1 (ε-worst case privacy approximation ratio of ε-English protocol (for SPAs))

For n-agent SPAs, the ε-worst case privacy approximation ratio of ε-English protocol (for large

enough n) is:

ε-wparp(p
ε
E) =

(2k)n−1 − (2k − 1)n−1

(1 + ε)n

Proof: According to Definition 7.7, the ε-worst case PAR is the ratio between the ideal

monochromatic region RI
f (t) and the protocol induced rectangle Rp

f̃
(t) for some type profile

t. We prove this theorem by computing the maximum for the numerator and the minimum for

the denominator independently, and then showing they can be achieved by a same type profile.

Recall that the second price auction is a Groves mechanism with payment (as in Defini-

tion 2.19). We use 〈i, p〉 to denote an outcome, where i ∈ {1, . . . , n} is the identity of the

winning agent, and p is the payment. Let RI
f (i, p) be the size of the ideal monochromatic

region when the outcome is 〈i, p〉, then we have:

Claim 7.2 For SPAs, the size of the ideal monochromatic region for an outcome 〈i, p〉 is:

RI
f (i, p) = (2k − p− 1)

n−1∑
j=1

(
n− 1

j

)
pn−1−j + pi−1

n−i∑
j=1

(
n− i
j

)
pn−i−j

The first term corresponds to the case that the winner’s valuation is strictly greater than p,

and the second term corresponds to the case that the winner’s valuation equals to p. Note that
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as ties are broken alphabetically, so if agent i wins the item at the price p, then the valuation of

all agents whose identities are less than i can only be in [0, p− 1].

Next we show the size of the ε-English protocol induced rectangle:

Claim 7.3 For the ε-English protocol and the corresponding social choice function f̃ , the size

of the protocol induced rectangle is Rp

f̃
(i, p) = (2k − p+ ε)(1 + ε)n−1 for an outcome 〈i, p〉.

When the auction stops, the ε-English protocol has identified the valuations all agents but

the winner within a precision of (1 + ε), and the valuation of the winner in the interval [p −

ε, 2k − 1], so the protocol induced rectangle has a size of (2k − p+ ε)(1 + ε)n−1.

Now let us consider the ratio between this two. It is not hard to see thatRI
f (i, p) ≤ RI

f (1, p),

i.e., the size of the monochromatic region is maximized when the first agent gets the item (this

is because of our tie breaking strategy), and we have RI
f (1, p) = (2k−p)

∑n−1
j=1

(
n−1
j

)
pn−1−j =

(2k − p)[(p+ 1)n−1− pn−1]. On the other hand we have Rp

f̃
(i, p) = (2k − p+ ε)(1 + ε)n−1, so

the ε-worst case privacy approximation ratio of ε-English protocol is:

ε-wpar(pεE) = max
t

RI
f (t)

Rp

f̃
(t)

= max
〈i,p〉

RI
f (i, p)

Rp

f̃
(i, p)

≤
RI

f (1, p)

Rp

f̃
(i, p)

=
(2k − p)

∑n−1
j=1

(
n−1
j

)
pn−1−j

(2k − p+ ε)(1 + ε)n−1

=
(2k − p) [(p+ 1)n−1 − pn−1]

(2k − p+ ε)(1 + ε)n−1

If we view this as a function of p, the maximum is achieved with p = 2k − 1 for large

enough n, and we have:

ε-wpar(pεE) ≤ (2k)n−1 − (2k − 1)n−1

(1 + ε)n



CHAPTER 7. THE TRADE-OFF BETWEEN EFFICIENCY AND PRIVACY 184

This worst case happens when the valuation of all agents are 2k − 1, and all the equalities

above holds, completing our proof.

Theorem 7.2 (ε-average case privacy approximation ratio of ε-English protocol (for SPAs))

For n-agent SPAs, the ε-average case privacy approximation ratio of ε-English protocol is:

2
(2k−1)n−3(n−3

bn
2
c

)
(1 + ε)n

≤ ε-apar(pεE) ≤ 2

(
n

2

)
(2k)n−2

(1 + ε)n−1

Proof: The upper and lower bounds on average case PAR for the exact protocol are

computed as a special case (m = n− 1) of those in Theorem 7.9.

For the approximation case, the valuation of at least n − 1 agents are identified with a

precision of ε+ 1, so the saving is between (1 + ε)n−1 and (1 + ε)n, completing our proof.

Theorem 7.3 (ε-worst case privacy approximation ratio of ε-bisection protocol (for SPAs))

For n-agent SPAs, the ε-worst case privacy approximation ratio of ε-bisection protocol is:

ε-wpar(pεB) =
(2k)n−1 − (2k − 1)n−1

(1 + ε)n

Proof: Our proof is similar to that of Theorem 7.1. We have shown the size of the ideal

monochromatic region for any outcome 〈i, p〉 in Claim 7.2, and we consider the size of the

ε-bisection protocol induced rectangle:

Claim 7.4 For the ε-bisection protocol and the corresponding social choice function f̃ , the

size of the protocol induced rectangle is Rp

f̃
(i, p) ≥ (1 + ε)n for an outcome 〈i, p〉.

The worst case occurs when the valuations of all agents fall into a same interval of length
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ε+ 1, so the ε-worst case privacy approximation ratio of ε-bisection protocol is:

ε-wpar(pεB) = max
t

RI
f (t)

Rp

f̃
(t)

≤
RI

f (1, p)

Rp

f̃
(i, p)

≤ (2k − p) [(p+ 1)n−1 − pn−1]

(1 + ε)n

≤ (2k)n−1 − (2k − 1)n−1

(1 + ε)n

The equalities hold when all agents have values 2k − 1, completing our proof.

Theorem 7.4 (ε-average case privacy approximation ratio of ε-bisection protocol (for SPAs))

For n-agent SPAs,

nk

(1 + ε)n
≤ ε-apar(pεB) ≤ n(n− 1)

(k)n−1

1 + ε

Proof: The upper and lower bounds on average case PAR for the exact protocol are

computed as a special case (m = n− 1) of those in Theorem 7.11.

For the approximation case, the valuation of at least 1 agents are identified with a precision

of ε+ 1, so the saving is between (1 + ε) and (1 + ε)n.

Theorem 7.5 (ε-worst case privacy approximation ratio of ε-sealed-bid protocol (for SPAs))

For n-agent SPAs, the ε-worst case privacy approximation ratio of ε-sealed-bid protocol is:

ε-wpar(pεS) =
(2k)n−1 − (2k − 1)n−1

(1 + ε)n

Proof: Our proof is similar to that of Theorem 7.1 and 7.3 .We have shown the size

of the ideal monochromatic region for any outcome 〈i, p〉 in Claim 7.2. For the size of the

ε-sealed-bid protocol induced rectangle, we have the following claim:
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Claim 7.5 For the ε-sealed-bid protocol and the corresponding social choice function f̃ , the

size of the protocol induced rectangle is Rp

f̃
(i, p) = (1 + ε)n for an outcome 〈i, p〉.

For any outcome 〈i, p〉, the size of the ε-sealed-bid protocol induced rectangle is exactly

(1 + ε)n (as the valuation of each agent is identified with a precision of 1 + ε). So the ε-worst

case privacy approximation ratio is:

ε-wpar(pεS) = max
t

RI
f (t)

Rp

f̃
(t)

≤
RI

f (1, p)

Rp

f̃
(i, p)

≤ (2k − p) [(p+ 1)n−1 − pn−1]

(1 + ε)n

≤ (2k)n−1 − (2k − 1)n−1

(1 + ε)n

Similarly, the equalities hold when all agents have valuations of 2k − 1, completing our

proof.

Theorem 7.6 (ε-average case privacy approximation ratio of ε-sealed-bid protocol (for SPAs))

For n-agent SPAs, the ε-average case privacy approximation ratio of ε-sealed-bid protocol is:

2
(2k−1)n−3(n−3

bn
2
c

)
(1 + ε)n

≤ ε-apar(pεS) ≤ (2k)n−1 − (2k − 1)n−1

(1 + ε)n

Proof: We first consider the average case PAR for the exact sealed-bid protocol. Recall

that the size of the protocol induced rectangle is always 1, then by Definition 7.5 (or Claim 7.6
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that will be described soon) and the property of RI
f (i, p), we have:

apar(pf ) =
1

2kn

∑
t∈T

RI
f (i, p)

=
1

2kn

∑
〈i,p〉

Rp
f (i, p) ·Rp

I(i, p)

≥ Rp
f (n, 0) · 1

2kn

2k−1∑
i=0

RI
f (i, p)

= Rp
f (n, 0) = 2k − 1

and

apar(pf ) =
1

2kn

∑
〈i,p〉

Rp
f (i, p) ·RI

f (i, p)

≤ Rp
f (1, 2k − 1) · 1

2kn

2k−1∑
i=0

RI
f (i, p)

≤ Rp
f (1, 2k − 1) = (2k + 1)n−1 − (2k)n−1

where the equation (
∑2k−1

i=0 RI
f (i, p))/2kn = 1 comes from the fact that the sum over all possi-

ble ideal monochromatic regions equals the whole type space (see Figure 7.1).

Note that the lower bound we derived here is quite lose—it is exponential in k but not n.

However, we can use that of ε-English protocol in its place. This is because for each type

profile, the size of the ε-English induced rectangle is at least as large as that induced by the

ε-sealed-bid protocol. This will give us a tighter lower bound.

For the approximate case, each valuations of all agents are identified with a precision of

ε+ 1, so the saving is exactly (1 + ε)n.

Theorem 7.8 (Worst case privacy approximation ratio of English protocol (for FLPs)) Let

pEF be the exact English protocol for n-agent FLPs. Then the worst case privacy approxima-
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tion ratio is:

Z(0) ≤ wpar(pEF ) ≤ Z(2k−1)

Proof: We first prove the upper bound. By the definition of wpar, we have:

wpar(pEF ) = max
t

RI
f (t)

Rp

f̃
(t)
≤ max

0≤r≤2k−1
Z(r) = Z(2k−1)

where the inequality comes from the fact that the size of the English protocol induced rectangle

is always greater than 1, and the second equality comes from the property of function Z(r).

For the lower bound, we consider the location profile t = {2k−1, 2k−2, . . . , 2k−2, 2k−1},

in which m agents have peak 2k − 1, m − 1 agents have peak 2k − 2 and the median position

is 2k − 1. The English protocol induced rectangle has a size of 1 (the median will not be

determined until the last agent is queried), and we have:

wpar(pEF ) = max
t

RI
f (t)

Rp

f̃
(t)
≥ Z(2k − 1) = Z(0)

This completes our proof.

Theorem 7.9 (Average case privacy approximation ratio of English protocol (for FLPs)) Let

pEF be the exact English protocol for n-agent FLPs. Then the worst case privacy approxima-

tion ratio is:

m

(
m− 1

m/2

)
(2k−1)m−2 ≤ apar(pEF ) ≤ m

(
n

m− 1

)
(2k)m−1

Proof: Recall from Definition 7.5, the average case PAR is defined as:

apar(pf ) = ED

[
|RI

f ((t1, t2))|
|Rp

f ((t1, t2))|

]
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Assuming uniform distribution, we can rewrite the above equation as shown in the follow-

ing claim:

Claim 7.6 Let pf be some protocol that implements a social choice function f . Then the

average case privacy approximation ratio satisfies:

apar(pf ) =
1

(2k)n

∑
t

|RI
f (t)|

|Rf
p(t)|

=
1

2kn

∑
R(pf )

|R(pf )|
|RI

f (R(pf ))|
|R(pf )|

=
1

2kn

∑
R(pf )

|RI
f (R(pf ))|

where the sum is over protocol induced rectangles R(pf ), and RI
f (R(pf )) denotes the ideal

region that contains the protocol induced rectangle R(pf ).

In other words, instead of considering each type profile independently, we can consider

the protocol induced rectangles. Using this idea, we first show the lower bound of average

case PAR. Let Sn
[0,2k−1]

(m) =
∑

R(pf ) |RI
f (R(pf ))| be the average case PAR (before divided by

2kn) of finding the median (or mth smallest number) among n agents, where each agent has a

valuation in [0, 2k − 1]. Then by the English protocol, we have:

Sn
[0,2k−1](m) ≥ (m− 1)Sn−1

[0,2k−1]
(m− 1) + Sn

[1,2k−1](m)

Sn
[1,2k−1](m) ≥ (m− 1)Sn−1

[1,2k−1]
(m− 1) + Sn

[2,2k−1](m)

............

Sn
[2k−3,2k−1](m) ≥ (m− 1)Sn−1

[2k−3,2k−1]
(m− 1) + Sn

[2k−2,2k−1](m)

Sn
[2k−2,2k−1](m) ≥ (m− 1)Sn−1

[2k−2,2k−1]
(m− 1) + Sn

[2k−1,2k−1](m)

The intuition behind this is that the average case PAR (before division) can be computed

recursively. More specifically, the problem of finding themth smallest number among n agents
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2k

2k0
0

[1,2 1]
( )k

nS m


[0,2 1]
( )k

nS m


Figure 7.4: The English protocol induced rectangles after the first round for n = 2.

in which each agent’s valuation is in [0, 2k−1] can be decomposed to the problem of finding the

(m−1)th smallest number among (n−1) agents in which each agent’s valuation is in [0, 2k−1]

(conditional on knowing one agent has a valuation of 0), and the problem of finding the mth

smallest number among n agents in which each agent’s valuation is in [1, 2k − 1] (conditional

on knowing none of them has valuation of 0). The multiplier of (m − 1) comes from the fact

that we can choose at most (m− 1) non-overlapping valuation spaces for the remaining n− 1

agents. The case for n = 2 is shown in Figure 7.4.

Summing over all these inequalities, we have:

Sn
[0,2k−1](m) ≥ (m− 1)

[
Sn−1

[0,2k−1]
(m− 1) + ...+ Sn−1

[2k−2,2k−1]
(m− 1)

]
+ Z(2k − 1)



CHAPTER 7. THE TRADE-OFF BETWEEN EFFICIENCY AND PRIVACY 191

By reorganizing the S terms and using the above inequalities iteratively, we have:

Sn
[0,2k−1](m) ≥(m− 1)([Sn−1

[0,2k−1]
(m− 1)− Sn−1

[1,2k−1]
(m− 1)] + ...

+ (2k − 2)[Sn−1
[2k−3,2k−1]

(m− 1)− Sn−1
[2k−2,2k−1]

(m− 1)]

+ (2k − 1)Sn−1
[2k−2,2k−1]

(m− 1)) + Z(2k − 1)

≥(m− 1)2(Sn−2
[0,2k−1]

(m− 2) + 2Sn−2
[1,2k−1]

(m− 2) + ...

+ (2k − 1)Sn−2
[2k−2,2k−1]

(m− 2))

+
[
1 + (2k − 1)(m− 1)

]
Z(2k − 1)

≥............

≥
(m−1)/2∏

t=1

(m− t)2

[(
m− 2

m− 2

)
Sn−m−1

[0,2k−1]
(1) + ...+

(
2k +m− 4

m− 2

)
Sn−m−1

[2k−2,2k−1]
(1)

]

+

[
m−2∑
i=0

((
2k − 2 + i

i

) i−1∏
j=0

m− 1− bj
2
c

)]
Z(2k − 1)

Note that the terms Sm
[i,2k−1]

(1) are the PARs (before division) for the problem of finding

the smallest number among m agents, which is given in the following claim:

Claim 7.7 Let Sn−m−1
[i,2k−1]

(1) be the PAR (before division) of finding the smallest number among

n−m− 1 agents, then we have:

Sn−m−1
[i,2k−1]

(1) = (n−m− 1)
2k−2∑
j=i

Z(j) + Z(2k − 1)
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Combining the previous inequality and Claim 7.7, we have:

Sn
[0,2k−1](m) =

(m−1)/2∏
t=1

(m− t)2

2k−2∑
i=0

m

2k−2∑
j=i

(
m− 2 + j

m− 2

)
Z(j)

+

[
m(2k − 1) +

m−2∑
i=0

((
2k − 2 + i

i

) i−1∏
j=0

m− 1− bj
2
c

)]
Z(2k − 1)

≥m
(m−1)/2∏

t=1

(m− t)2

(
2k−1 +m− 3

m− 2

) 2k−2∑
j=0

Z(j)

+

[
m(2k − 1) +

m−2∑
i=0

((
2k − 2 + i

i

) i−1∏
j=0

m− 1− bj
2
c

)]
Z(2k − 1)

≥m
(m−1)/2∏

t=1

(m− t)2

(
2k−1 +m− 3

m− 2

) 2k−1∑
j=0

Z(j)

≥m
(

m− 1

(m− 1)/2

)
(2k−1)m−2

2k−1∑
j=0

Z(j)

where the second inequality comes from Claim 7.1 such that Z(j) = Z(2k − 1 − j) for all

integer j ∈ [0, 2k − 1].

Note that the term
∑2k−1

j=0 Z(j) is the sum of the size of ideal monochromatic region over

all possible outputs, so we have
∑2k−1

j=0 Z(j) = 2kn, which cancels with the denominator 2kn,

and we have:

apar(pf ) ≥ 1

2kn

m( m− 1

(m− 1)/2

)
(2k−1)m−2

2k−1∑
j=0

Z(j)

 = m

(
m− 1

(m− 1)/2

)
(2k−1)m−2

For the upper bound, we use the following property, whose intuition can also be explained

in Figure 7.4:

Sn
[i,2k−1](m) ≤ nSn−1

[i+1,2k−1]
(m) + Sn

[1,2k−1](m), ∀i
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Using similar techniques as for the lower bound, we have:

Sn
[0,2k−1](m) ≤n

[
Sn−1

[0,2k−1]
(m− 1) + ...+ Sn−1

[2k−2,2k−1]
(m− 1)

]
+ Z(2k − 1)

≤n(n− 1)
[
Sn−2

[0,2k−1]
(m− 2) + ...+ (2k − 1)Sn−2

[2k−2,2k−1]
(m− 2)

]
+
[
1 + (2k − 1)n

]
Z(2k − 1)

≤............

≤
m−2∏
t=0

(n− t)
2k−2∑
i=0

m

2k−2∑
j=i

(
m− 2 + j

m− 2

)
Z(j)

+

[
m−2∑
i=0

((
2k − 2 + i

i

) i−1∏
j=0

(n− j)

)]
Z(2k − 1)

≥m
(

n

m− 1

)
(2k)m−1

2k−1∑
j=0

Z(j)

Similarly, the term
∑2k−1

j=0 Z(j) = 2kn and cancels with the denominator, so we have the upper

bound as shown above, completing our proof.

Theorem 7.10 (Worst-case privacy approximation ratio of bisection protocol (for FLPs))

Let pBF be the exact bisection protocol for n-agent FLPs. Then the worst case privacy approx-

imation ratio is:

wpar(pBF ) = Z(2k−1)

Proof: Consider the type profile t = {2k−1, 2k−1 + 1, . . . , 2k−1 + 1, 2k−1}, in which m

agents have peak 2k−1, m− 1 agents have peak 2k−1 + 1 and the median position is 2k−1. If we

use the bisection protocol, then the valuations of all agents are identified with a precision of 1

(as the median cannot be determined until every agent is queried), and the size of the protocol
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induced rectangle is also 1. Combined with Claim 7.1, we have:

wpar(pBF ) = max
t

RI
f (t)

Rp

f̃
(t)
≤ max

0≤r≤2k−1
Z(r) = Z(2k−1)

in which equalities holds with the above type profile, completing our proof.

Theorem 7.11 (Average-case privacy approximation ratio of bisection protocol (for FLPs))

Let pBF be the ε-bisection protocol for n-agent FLPs. Then the ε-average case privacy approx-

imation ratio is:

(
n

m

)
km−1 ≤ apar(pBF ) ≤ m

(
n

m

)
km

Proof: By Claim 7.6, we have:

apar(pf ) =
1

2kn

∑
R(pf )

|RI
f (R(pf ))| = 1

2kn

2k−1∑
i=0

ni · Zi

where ni is the number of pf induced rectangles where i is the median.

The next claim shows the maximum and minimum value of ni:

Claim 7.8 Let ni be the number of rectangles induced by a protocol in which i is the median,

then we have minj nj = n0 =
∑n

i=m

(
n
i

)
kn−i and maxj nj = n2k−1 ≤ m

(
n
m

)
km.
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Using the above claim, we have:

apar(pf ) =
1

2kn

2k−1∑
i=0

ni · Z(i)

≥ 1

2kn

2k−1∑
i=0

n0 · Z(i)

≥ n0
1

2kn

2k−1∑
i=0

·Z(i)

≥
(
n

m

)
km−1

and

apar(pf ) =
1

2kn

2k−1∑
i=0

ni · Z(i)

≤ 1

2kn

2k−1∑
i=0

n2k−1 · Z(i)

≤ n2k−1

1

2kn

2k−1∑
i=0

·Z(i)

≤ m

(
n

m

)
km

This completes our proof of the theorem.

Theorem 7.12 (Worst-case privacy approximation ratio of sealed-bid protocol (for FLPs))

Let pSF be the exact sealed-bid protocol for n-agents FLPs. Then the worst case privacy ap-

proximation ratio is:

wpar(pSF ) = Z(2k−1)

Proof: The proof is similar as that of Theorem 7.10. Note that in a sealed-bid protocol,
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the size of the protocol induced rectangle is always 1, so we have:

wpar(pSF ) = max
t

RI
f (t)

Rp

f̃
(t)
≤ Z(2k−1)

in which equalities holds with the type profile of t = {2k−1, 2k−1 + 1, . . . , 2k−1 + 1, 2k−1},

completing our proof.

Theorem 7.13 (Average case privacy approximation ratio of sealed-bid protocol (for FLPs))

Let pSF be the exact sealed-bid protocol for n-agents FLPs. Then the average case privacy ap-

proximation ratio is:

Z(0) ≤ apar(pSF ) ≤ Z(2k−1 − 1)

Proof: Note that in the sealed-bid protocol, all the protocol induced rectangles have size

1. According to Claim 7.6, the average case privacy approximation ratio satisfies:

apar(pf ) =
1

2kn

2k−1∑
i=0

Z(i) · Z(i)

≥ 1

2kn

2k−1∑
i=0

Z(0) · Z(i)

≥ Z(0)
1

2kn

2k−1∑
i=0

·Z(i)

≥ Z(0)
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and

apar(pf ) =
1

2kn

2k−1∑
i=0

Z(i) · Z(i)

≤ 1

2kn

2k−1∑
i=0

Z(2k−1 − 1) · Z(i)

≤ Z(2k−1 − 1)
1

2kn

2k−1∑
i=0

·Z(i)

≤ Z(2k−1 − 1)

This completes our proof of the theorem.



Chapter 8

Conclusion and Future Work

Facility location models the placement of facilities (e.g., warehouses, public facilities, etc.)

in some geographic space where agents use the least cost (or “closest”) facility. Moreover,

such a problem represents a general class of social choice problems (e.g., voting, product con-

figuration, customer segmentation, etc.), and receives much attention in economics, political

science, and recently computer science. In this thesis, we have studied the facility location

problem from three perspectives: mechanism design, single-peaked consistency (and approxi-

mation), and preference elicitation. In this chapter, we first summarize the results presented in

this thesis, and then highlight some possible future research directions.

8.1 Summary of Results

We provide a brief summary of the results in this thesis.

Mechanism Design for Facility Location Problems

Despite the extensive work on mechanism design for facility location problems, most of them

focuses on either single facility or single dimension. In Chapter 3, we proposed a class of

quantile mechanisms, a form of generalized median mechanisms for multi-dimensional multi-

198
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facility location problem, that are strategy-proof, and derived worst-case approximation ratios

for social cost and maximum load for L1- and L2-cost models. More importantly, we proposed

a sample-based framework for optimizing the choice of quantiles relative to any prior distri-

bution over preferences, while maintaining strategy-proofness. Our empirical investigations,

using social cost and maximum load as objectives, demonstrated the viability of this approach

and the value of such optimized mechanisms vis-à-vis mechanisms derived through worst-case

analysis.

While quantile mechanisms are strategy-proof for unconstrained facility location problems,

they are not group strategy-proof in multi-dimensional spaces. Moreover, guarantees on indi-

vidual strategy-proofness evaporate in settings allowing constraints on the feasible placement

of facilities (i.e., constrained facility location problems). In Chapter 4, we addressed these

more general problems, providing several possibility/impossibility results with respect to in-

dividual and group strategy-proofness in both constrained and unconstrained problems. We

also bounded the incentive for manipulation in median-like mechanisms in settings where indi-

vidual/group strategy-proofness is not possible. We complemented our results with empirical

analysis of both electoral and geographic facility data, showing that the odds of successful ma-

nipulation, and more importantly, the gains and impact on social welfare, are small in practice

(much less than worst-case theoretical bounds). These results showed that the quantile mecha-

nisms are “practically” strategy-proof considering the cost of find a good lie (e.g., information

cost, communication cost, computational cost, etc.).

While the generalized median/quantile mechanisms are not group strategy-proof, this does

not mean finding a viable group manipulation is computationally easy for a group of ma-

nipulators. In Chapter 5, we addressed optimal group manipulation in unconstrained, multi-

dimensional, multi-facility location problems. We focused on two families of mechanisms,

generalized median and quantile mechanisms, evaluating how hard it is for a group of agents to

manipulate these mechanisms. We showed that, in the case of single-facility problems, optimal

group manipulation can be formulated as a linear or second-order cone program, under the L1-
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and L2-norms, respectively, and hence can be solved in polynomial time. For multiple facili-

ties, we showed that optimal manipulation is NP-hard, but can be formulated as a mixed integer

linear or mixed integer second-order cone program, under the L1- and L2-norms, respectively.

Despite this hardness result, empirical evaluations showed that multi-facility manipulation can

be computed in reasonable time with our formulations.

Single-peaked Consistency and Its Approximations

Single-peakedness is one of the most commonly used domain restrictions in social choice.

However, whether agent preferences are single-peaked in practice, and the extent to which re-

cent proposals for approximate single-peakedness can further help explain voter preferences, is

unclear. In Chapter 6, we assessed the ability of both single-dimensional and multi-dimensional

approximations to explain preference profiles drawn from several real-world elections. We de-

veloped a simple branch-and-bound algorithm that finds multi-dimensional, single-peaked axes

that best fit a given profile, and which works with several forms of approximation. Empirical

results on two election data sets showed that preferences in these elections are far from single-

peaked in any one-dimensional space, but are nearly single-peaked in two dimensions. Our

algorithms are reasonably efficient in practice, and also show excellent any-time performance.

The Trade-off Between Efficiency and Privacy

A key problem in mechanism design is the construction of protocols that reach socially effi-

cient decisions with minimal information revelation. This can reduce agent communication,

and further, potentially increase privacy in the sense that agents reveal no more private infor-

mation than is needed to determine an optimal outcome. This is not always possible: previous

work has explored the tradeoff between communication cost and efficiency, and more recently,

communication and privacy. We explored a third dimension: the tradeoff between privacy

and efficiency. By sacrificing efficiency, we can improve the privacy of a variety of existing

mechanisms. We analyzed these tradeoffs in both second-price auctions and facility location
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problems (introducing new incremental mechanisms for facility location along the way). Our

results showed that sacrifices in efficiency can provide gains in privacy (and communication),

in both the average and worst case.

8.2 Future Work

We highlight some possible future directions that would extend the results in this thesis.

Facility Location with Other Objectives

Most work on facility location focuses on the objective of minimizing social cost or minimiz-

ing maximum cost. In Chapter 3, we considered another objective, that of minimizing the

maximum load. However, there are many other objectives that can be factored in. For exam-

ple, a natural extension of the facility location problem is to assume a (uniform) opening cost

for each facility, with the social cost defined as the total distance of agent peaks to the closest

facility plus the opening costs. Here, the number of facilities may vary according to agent pref-

erences, e.g., new facilities decrease social cost, but their expense must be factored in [Lu and

Boutilier, 2011a]. How to design strategy-proof mechanisms for such settings, and bound the

incentive for misreporting if the social choice functions are not strategy-proof, are interesting

future directions.

Mechanism Design With Approximately Single-peaked Preferences

Most previous work on mechanism design for facility location assumes exact single-peakedness

of agent preferences. However, as we have shown in Chapter 6 that, preference profiles drawn

from real-world applications are only approximately single-peaked under some notions of ap-

proximation defined in Section 2.4. A natural question is to extend the previous mechanisms

(e.g., median, generalized median and quantile mechanisms) to settings where agent prefer-

ences are approximately single-peaked (e.g., as those defined in Section 2.4) and analyse the
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incentive for agents to misreport. We conjecture that the incentive is bounded for some forms

of approximation, while unbounded for others.

Characterization of Strategy-proof Mechanisms for Multi-FLPs

There has been a fair amount of work on characterization of strategy-proof mechanisms for

single facility location problem: Moulin [1980] showed that a (anonymous) mechanism is

strategy-proof if and only if it is a generalized median mechanism. Barberà et al. [1993] further

generalized this result to the multi-dimensional space, showing that a multi-dimensional mech-

anism is strategy-proof if and only if it is a multi-dimensional generalized median mechanism

that locates the facility by choosing its coordinates in each dimension independently. Border

and Jordan [1983] provide a similar characterization results for multi-dimensional separable

star-shaped (including quadratic) preferences. Massó and Moreno de Barreda [2011] showed

that the disturbed generalized median mechanisms are the only strategy-proof mechanisms for

symmetric single-peaked preferences (of which L1 and L2 are instances). However, all of these

characterization results focus on the single facility location problem. An interesting question

is to characterize the class of strategy-proof mechanisms for multi-facility location problems

with some specific form of single-peaked preferences (e.g., L1 or L2). Our conjecture is that

the class of mechanisms should be close to the disturbed generalized median mechanisms for

symmetric single-peaked preferences, but with some additional constraints.

Theoretical Foundations of Approximate Single-peaked Consistency

The single-peaked consistency problem has been studied for different notions of approxima-

tion. For example, Erdélyi et al. [2012] showed that the consistency (decision) problem for

k-maverick, k-LCD and k-AA are NP-complete. However, most previous work focuses on the

single-peaked consistency problem in single-dimensional space, and the corresponding con-

sistency problem in multi–dimensional spaces, is unclear. We conjecture that the consistency

(decision) problems remain NP-complete in multi-dimensional spaces. In addition, the ex-
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planatory power of the multi-dimensional single-peaked model, i.e., the minimum size of a

profile that cannot by explained by any multi-dimensional axes, and the maximum size of a

profile that can be explained by some multi-dimensional axes, is another interesting future

direction.

Deterministic Choice Models for Spatial Theory of Voting

In Section 6.4, we fit both voters and candidates into some latent feature spaces under the

spatial model, in which the stochastic choice model of Plackett-Luce is used. Another inter-

esting direction is to use a deterministic (e.g., L1- or L2-distance) rather than stochastic choice

models, and see how well such models fit these data sets. Knoblauch [2010] showed that the

corresponding consistency problem in 1D, i.e., given a preference profile, whether there exists

a one-dimensional metric space in which both agents and candidates belong to such that the

ranking for each agent is dictated by the distance between her peak and the candidates under

the L1- or L2-norm, can be solved in polynomial time. However, how the analysis can be gener-

alized to higher dimensions, and how it can be adapted to allow for approximations, is unclear.

For example, one can optimize the candidate and voter positions in a way such that the number

of candidates that have to be locally deleted from each vote to render the profile consistent

with the observed rankings under L1- or L2-norm, is minimized (i.e., k-LCD). It is possible

to formulate this as a mixed integer linear program (MILP) under L1-cost, or a mixed integer

quadratically constrained program (MIQCP) under the L2-costs, and use standard optimization

tools, e.g., CPLEX, to solve the optimization problem.

Other Elicitation Protocols for FLPs

In Chapter 7, we have proposed two incremental elicitation protocols for single-FLPs, i.e., En-

glish and bisection. However, there are many other potential elicitation strategies for eliciting

the agent peaks. For example, Conitzer [2009] proposes to use pairwise comparisons of candi-

dates to elicit preferences and identify the one-dimensional axes with respect to which agents
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are single-peaked; Lu and Boutilier [2011b] use the both comparison and top-t queries to get

agent rankings (although not for single-peaked preferences) for robust decision making, etc.

In addition, the one-shot rather than incremental elicitation [Hyafil and Boutilier, 2006b], in

which one partitions the type space off-line and ask agents to reveal the partitions which their

true types belong to, may also be an interesting direction.
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Michael H. Rothkopf, Aleksander Pekeč, and Ronald M. Harstad. Computationally manage-

able combinatorial auctions. Management Science, 44(8):1131–1147, 1998.

Michael Saks and Lan Yu. Weak monotonicity suffices for truthfulness on convex domains.

In Proceedings of the Sixth ACM Conference on Electronic Commerce (EC’05), pages 286–

293, Vancouver, 2005.

Tuomas Sandholm. Automated mechanism design: A new application area for search al-

gorithms. In Proceedings of the International Conference on Principles and Practice of

Constraint Programming (CP-03), Kinsale, Ireland, 2003.

Tuomas Sandholm and Felix Brandt. On the existence of unconditionally privacy-preserving

auction protocols. ACM Transactions on Information and System Security, 11(2), 2008.

Article 6.

Mark A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-

dence theorems for voting procedures and social welfare functions. Journal of Economic

Theory, 10:187–217, 1975.

James Schummer and Rakesh V. Vohra. Mechanism design without money. In Noam Nisan,



BIBLIOGRAPHY 217

Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory,

pages 243–265. Cambridge University Press, 2007.

Amartya Sen. Social choice. The New Palgrave Dictionary of Economics, 1987.

David F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathe-

matics of Computation, 24(111):647–656, 1970.

David F. Shanno and Paul C. Kettler. Optimal conditioning of quasi-newton methods. Mathe-

matics of Computation, 24(111):657–664, 1970.

Roger N. Shepard. Stimulus and response generalization: A stochastic model relating general-

ization to distance in psychological space. Psychometrika, 22(4):325–345, 1959.

Lawrence V. Snyder and Mark S. Daskin. Reliability models for facility location: the expected

failure cost case. Transportation Science, 39(3):400–416, 2005.

Michael A Trick. Recognizing single-peaked preferences on a tree. Mathematical Social

Sciences, 17(3):329–334, 1989.

Yehuda Vardi and Cun-Hui Zhang. The multivariate l1-median and associated data depth.

Proceedings of the National Academy of Sciences, 97(4):1423–1426, 2000.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of

Finance, 16(1):8–37, 1961.

Toby Walsh. Where are the really hard manipulation problems? the phase transition in manip-

ulating the veto rule. In Proceedings of the Twenty-first International Joint Conference on

Artificial Intelligence (IJCAI-09), pages 324–329, Pasadena, CA, 2009.

Lirong Xia and Vincent Conitzer. A sufficient condition for voting rules to be frequently ma-

nipulable. In Proceedings of the Ninth ACM Conference on Electronic Commerce (EC’08),

pages 99–108, Chicago, 2008. doi: http://doi.acm.org/10.1145/1386790.1386810.



BIBLIOGRAPHY 218

Martin Zinkevich, Avrim Blum, and Tuomas Sandholm. On polynomial-time preference elic-

itation with value queries. In ACM Conference on Electronic Commerce, pages 176–185,

San Diego, 2003.


	Introduction
	Preference Aggregation: An Economic Solution
	Social Choice
	Game-Theoretic Paradigm
	Preference Elicitation

	Algorithmic Approaches and Our Contributions
	Approximate Mechanism Design and Analysis
	Computational Social Choice
	Computational Aspects of Single-peakedness
	Cost of Elicitation: Computation, Communication and Privacy

	Outline of This Thesis

	Background
	Social Choice Theory
	Preferences and Utility
	Social Choice Functions and Impossibility Theorems
	Computational Aspects of Manipulation

	Game Theory and Mechanism Design
	Games and Solution Concepts
	Mechanism Design and The Revelation Principle
	The Vickrey-Clarke-Groves Mechanisms
	Other Possibility Results and Computational Mechanism Design

	Facility Location and Single-peaked Preferences
	The Model
	Characterization of Strategy-proof Mechanisms for Facility Location
	Approximate Mechanism Design Without Money

	Computational Aspects of Single-peakedness
	Single-peaked Consistency
	Approximate Single-peakedness
	Spatial Theory of Voting


	Quantile Mechanisms
	Introduction
	One-dimensional Quantile Mechanisms
	Multi-dimensional Quantile Mechanisms
	A Sample-based Optimization Framework
	Empirical Evaluation
	One-dimensional mechanisms
	Multi-dimensional mechanisms

	Conclusion

	Group Manipulation: Incentives
	Introduction
	Unconstrained Facility Location
	Constrained Facility Location
	Empirical Analysis
	Conclusion

	Group Manipulation: Optimization and Complexity
	Introduction
	Group Manipulation for Single-Facility Location Problems
	Group Manipulation Specification
	LP Formulation under the L1-norm
	SOCP Formulation under the L2-norm

	Group Manipulation for Multi-Facility Location Problems
	The Complexity of Group Manipulation
	MILP Formulation under the L1-norm
	MISOCP Formulation under the L2-norm

	Empirical Evaluation
	Conclusion

	Multi-dimensional Single-peakedness and its Approximation
	Introduction
	A One-Dimensional Branch and Bound Algorithm
	The Algorithm
	Approximation
	Results from 2002 Irish General Election

	A Two-dimensional Branch and Bound Algorithm
	The Algorithm
	Results from the 2002 Irish General Election

	Spatial Model for Rank Data
	Log-likelihood Maximization
	An Alternating Optimization Algorithm
	An Empirical Study on Irish General Election 2002

	Conclusion

	The Trade-off Between Efficiency and Privacy
	Introduction
	Efficiency-Privacy Trade-off
	Trade-offs in Second Price Auctions
	Tradeoffs in Facility Location
	Conclusion

	Conclusion and Future Work
	Summary of Results
	Future Work

	Bibliography

