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Machine learning, an important branch of artificial intelligence, is increasingly being applied 35 

sciences such as forest ecology. Here, we review and discuss three commonly used methods of 36 

machine learning including decision tree learning, artificial neural network, and support vector 37 

machine, and their applications in five different aspects of forest ecology over the last decade. 38 

These applications include: (1) species distribution models (SDMs), (2) carbon cycles, (3) hazard 39 

assessment and prediction, and (4) other applications in forest management. While machine 40 

learning approaches are useful for classification, modeling, and prediction in forest ecology 41 

research, further expansion of machine learning technologies is limited by the lack of suitable 42 

data and the relatively “higher threshold” of applications. However, the combined use of 43 

multiple algorithms and improved communication and cooperation between ecological 44 

researchers and machine learning developers still present major challenges and tasks for the 45 

betterment of future ecological research. We suggest that future applications of machine learning 46 

in ecology will become an increasingly attractive tool for ecologists in the face of “big data” and 47 

that ecologists will gain access to more types of data such as sound and video in the near future 48 

possibly opening new avenues of research in forest ecology. 49 

 50 
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1. Introduction 57 

Forests cover approximately 30% of the world’s land area and are the dominant terrestrial 58 

ecosystem on Earth (Schmitt et al. 2009). As such, forest ecosystems have historically 59 

received much attention from scientists who have been trying to understand the complex 60 

interactions between the various ecological processes that drive the dynamics of these systems. 61 

The recent increase in the availability of large amounts of data and the development of data 62 

analysis methods capable of handling large datasets are providing new opportunities to study 63 

these complex systems (Flach 2001; Crisci et al. 2012). Machine learning (ML) is an 64 

important branch of artificial intelligence (AI), which provides some significant advantages 65 

over traditional statistical methods for analyzing forest ecological data when sufficiently large 66 

data sets are available as model training sets. The ML application processes mainly include: (1) 67 

the selection of relevant data and its pre-processing; (2) the selection of adequate algorithms; 68 

and (3) its quality assessment solutions (Muhamedyev 2015). 69 

Since the 1990s, ML has increasingly been used in environmental sciences (Hsieh 2009). 70 

Previous reviews and books (Haupt et al. 2008; Hsieh 2009; Thessen 2016) focused on several 71 

fields of research that included oceanography, hydrology, and atmospheric sciences, but they 72 

rarely reported on how ML was used to study forest ecosystems although these methods had 73 

increasingly become popular over the last decade in forest ecosystem research as reflected by 74 

the increasing number of publications (see Fig. 1). In this research field, ML approaches 75 

provided powerful and efficient ways to deal with data that was nonlinear, had high 76 

dimensionality, contained complex interactions and/or missing values (Bhattacharya 2013; 77 

Thessen 2016). For example, using modern remote sensing and mapping techniques, ML 78 

methods effectively improved the accuracy of species distribution models (SDMs) (Garzón et 79 
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al. 2008; Vaca et al. 2011; Pouteau et al. 2012; Faleiro et al. 2013; Périé and Blois 2016), or in 80 

combination with traditional processes or empirical models, they were used to predict carbon 81 

(C) and energy fluxes (Papale and Valentini 2003; Papale et al. 2015; Shoemaker and Cropper 82 

2008, 2010; Tramontana et al. 2015, 2016). ML methods were also used in hazard assessment 83 

and forest management (Rogan et al. 2008; Hlásny et al. 2011; Hlásny and Turčáni 2013; 84 

Fassnacht et al. 2014; Bai et al. 2014; Satir et al. 2016; Vahedi 2016; Hengl et al. 2017).   85 

Here we present a concise review of ML approaches applied to forest ecosystem studies along 86 

with an elaboration of barriers that prevent wider ML adoption. To do so, we briefly: 87 

1) describe the general framework of ML, and then focus three particular ML algorithms for 88 

forest ecosystem research. 89 

2) review and synthesize recently (mostly after 2008) published applications of ML in forest 90 

ecosystems. 91 

3) discuss two bottlenecks of ML in forest ecology and some future relevant research. 92 

4) present key conclusions with outlooks on the application of ML methods. 93 

2. Machine learning 94 

2.1 Background 95 

Machine learning technology helps computers find patterns in data and use these patterns to 96 

improve predictions. At its core, the concept of ML is relatively simple and mirrors a similar 97 

process by which humans use information, experiences, and trials and errors in learning (Fig. 98 

2). People accumulate historical experiences and generalize these experiences to speculate on 99 

novel problems where underlying assumptions or processes may not be known with the goal of 100 

predicting specific outcomes. The “training” and “predicting” processes in ML can correspond 101 
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to human “generalization” and “speculation” processes. Just as experience is important in 102 

learning, historical datasets play a decisive role in ML. Within the data analytics field, ML is 103 

an approach that is used to design complex models that implement themselves for prediction 104 

(Carbonell et al. 1983). In environmental or ecological studies, these analytical models allow 105 

researchers to “output reliable, repeatable results” and discover “unknown relationships” 106 

through learning from historical datasets (Crisci et al. 2012; Domingos 2015).  107 

2.2 Three specific machine learning algorithms used in forest ecology 108 

ML can be divided into two large categories: supervised learning and unsupervised learning. 109 

Supervised learning provides a clear expectation of outputs after input samples have been 110 

trained through the model, such as classification and regression. Unsupervised learning is 111 

relatively unpredictable in what type of output is generated after input samples have been 112 

trained on the model. A typical example is clustering, that is, bringing together similar items 113 

(Fig. 3). Figure 4 shows the taxonomy of ML and some widely used algorithms. In the 114 

following sections, we provide a short description of the three well known and widely used 115 

ML algorithms in forest ecosystems: decision tree learning, artificial neural network (ANN), 116 

and support vector machine (SVM).  117 

2.2.1 Tree-based learning 118 

Decision tree (DT) learning is a predictive model and a support tool that combines a decision 119 

graph (such a bifurcating flow charts, dichotomous keys and even ‘choose your own adventure’ 120 

books designed for children) with possible outcomes or results. DT have a simple recursive 121 

structure composed of the root node, internal nodes, and leaf nodes and branches that 122 

represents the knowledge extracted from data (see Fig. 5A) (Quinlan 1987). Each internal node 123 

represents an attribute which is associated with a test or decision rule relevant to data 124 
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classification. Each leaf node represents a class label and each branch represents the outcome 125 

of the test. The path from root to leaf represents the value of the target variable that is 126 

conditional to the value of the input variables. DT correspond to a logical expression and thus 127 

are often referred to “white box” models (Breiman et al. 1984). A consequence of successive 128 

partitioning is that nonlinear relationships between parameters do not affect tree performance; 129 

likewise, complex interactions are readily interpretable as successive partitioning often 130 

identify and isolate conditional variables in the initial splits of a tree. These are major 131 

advantages of tree-based models over methods such as regularized discriminant analysis (RDA) 132 

or canonical correspondence analysis (CCA). Tree methods also can be used as a good 133 

extension to a large database, while its size is independent of the database size. However, DT 134 

has more difficult to deal with missing data. 135 

The classification and regression tree (CART) model is one of the most popular tree-based 136 

methods introduced by Breiman et al. (1984). As the name suggests, CART performs 137 

classification and regression analysis; however, it also can manage mixed variable types and 138 

missing values that DT cannot (Bell 1999). This approach has been expanded to include 139 

multivariate datasets (De’ath 2002) and thus is becoming increasingly utilized in biodiversity 140 

assessments (Work et al. 2008; Work et al. 2010; Paradis et al. 2011; Graham-Sauvé et al 141 

2013). Another DT approach is random forest (RF) (Breiman 2001). RF methods generate and 142 

aggregate results of multiple trees using bootstrap samples of the input data (Svetnik 2003). 143 

All DT may suffer from overfitting; whereby trees are overgrown and provide terminal nodes 144 

which may not be statistically different. In CART, overfitting is avoided using cross-validation 145 

procedures. In RF reliance on multiple trees is used to avoid overfitted trees. It mainly depends 146 

on three random processes: the samples that generate DTs are randomly generated; the 147 
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eigenvalues of building a DT are randomly selected; and the random direction is chosen for 148 

tree fission selection during the production process. 149 

2.2.2 Artificial neural network 150 

An ANN is a mathematical or computational model that mimics the structure and function of 151 

biological neural networks (i.e., the central nervous system of animals, especially the brain) 152 

(Bishop 1995; Liu et al. 2010). An ANN is composed of a large number of artificial neurons 153 

which may be favored or disfavored through a weighting processes as learning proceeds. 154 

Neurons in the ANN are organized into different layers which may perform different types of 155 

transformations on their inputs. Figure 5B shows a schematic of a typical multilayer 156 

feedforward network which includes the input layer, the output layer, and the hidden layer. 157 

Signals travel from the first (input) to the last (output) layer, possibly after traversing the 158 

layers multiple times. In most cases, ANNs can change their internal structure on the basis of 159 

external information; thus, it is an adaptive system (Haykin 2001). In other words, learning 160 

process of ANN cannot be observed directly and thus these methods are often referred to as 161 

“black box” methods. This can lead to output that is difficult to explain. However, ANNs have 162 

the ability to learn, model nonlinear and complex relationships and are also robust and fault 163 

tolerant to noisy data. 164 

There are many powerful ANN algorithms that are used for various studies in forest ecology. 165 

The backpropagation algorithm is often used to train neural networks that calculate the errors 166 

at the output layers and are distributed back through the network layers. The backpropagation 167 

method calculates the gradient of the loss function for all weights in a network. This gradient 168 

is fed back to the optimization method to update weights by which to minimize the loss 169 

function (Rojas 2013). A cascade correlation artificial neural network (CCANN) is a 170 

Page 7 of 45

https://mc06.manuscriptcentral.com/er-pubs

Environmental Reviews



Draft

supervised algorithm which was developed by Fahlman and Lebiere (1990), with the main 171 

objective of managing several perceived problems deriving from the backpropagation method. 172 

It starts with a minimal network and adds new hidden units step by step to the hidden layer. 173 

The CCANN algorithm learns very quickly because the network determines its own size and 174 

topology (Fahlman and Lebiere 1990). The self-organizing map (SOM) is a type of ANN that 175 

uses unsupervised learning to generate a low-dimensional (usually two-dimensional), 176 

discretized representation of the input space of the training sample. Unlike other ANN 177 

methods, SOM is a topographic organization for which nearby locations in the map represent 178 

inputs with similar properties (Shah-Hosseini 2011).  179 

2.2.3 Support vector machine 180 

The SVM algorithm uses non-parametric kernel-based techniques derived from statistical 181 

learning theory, which was primarily invented and developed by Vapnik (Vapnik 2013; 182 

Vapnik and Chervonenkis 2015). Since the mid-1990s, SVMs have been particularly appealing 183 

in addressing nonlinear classification, regression, and density estimation problems. Moreover, 184 

SVM often uses kernel functions to project the multidimensional space of data in the form of 185 

points, and then finds the best classification of the hyperplane, finally being classified 186 

according to this plane (Vapnik 2013). For example, in Fig. 5C, although both “a” and “b” are 187 

classified as hyperplanes, neither are optimal. This is because they are too close to the samples, 188 

which are highly sensitive to noise and poorly generalized. The essence of the SVM algorithm 189 

is to find a hyperplane (as seen in Fig. 5C “c”) that maximizes a value, which is the minimum 190 

distance between the hyperplane and all training samples. This minimum distance is called 191 

“margin” in SVM terms. 192 

Page 8 of 45

https://mc06.manuscriptcentral.com/er-pubs

Environmental Reviews



Draft

Furthermore, SVM has a core function which is the sequence minimum optimization (SMO) 193 

algorithm. The aim of the SMO is to find the optimal parameter α and calculate the hyperplane 194 

for classification. The SMO method can decompose a large optimization problem into several 195 

small optimization problems that greatly simplifies resolution processes (Were et al. 2015). 196 

Another important part of SVM is the kernel function. Its main function is to map data from 197 

low- to high-dimensional space and resolve nonlinear data problems without considering 198 

mapping processes (see Fig. 5D). In SVM theory, the use of different kernel functions will 199 

result in different SVM algorithms (Cristianini et al. 2000). Moreover, SVM can cope well 200 

with noisy conditions; this is because it automatically identifies and incorporates support 201 

vectors during training processes and prevents the influence of non-support vectors over the 202 

model (Cherkassky et al. 2004; Yu et al. 2006). It is also fairly robust against overfitting, 203 

especially in high-dimensional space. In addition, SVM can be trained with a few meaningful 204 

pixels and is able to fit limited information (e.g. Pouteau et al. (2012)). The main weakness of 205 

SVM is that it can be very time consuming to find the suitable kernel function (Sujay et al. 206 

2014). 207 

In this article, we also summarize several advantages and disadvantages of these methods (see 208 

Table 1). For more detailed information of other ML algorithms see previous reports (Haupt et 209 

al. 2008; Hsieh 2009; Michalski et al. 2013; Muhamedyev 2015; Thessen (2016). 210 

3. Application of machine learning techniques in forest ecology 211 

ML has been widely adopted and put into practice by researchers in light of increasing 212 

concerns over forest ecosystems, including (1) species distribution modeling; (2) C cycles; (3) 213 

hazard assessment and prediction; and (4) other applications in forest management (Table 2). 214 
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In this article, we only focus on relatively recent (mostly after 2008) published applications of 215 

ML in forest ecosystems. Previous ML applications, in environmental science and ecology, 216 

were reviewed by Haupt et al. (2008) and Hsieh (2009). 217 

3.1 Species distribution models 218 

Many ML algorithms have been used to study the impact of environmental changes in 219 

biodiversity. A regional-scale study of the effect of global warming on forest distribution was 220 

reported by Garzón et al. (2008). They predicted future tree species distribution using the RF 221 

algorithm in the Iberian Peninsula. Additionally, their research simulated the distributions of 222 

20 tree species that could be impacted by climate change under four Intergovernmental Panel 223 

on Climate Change (IPCC) scenarios (i.e., A1, A2, B1, and B2) and for the time points 2020, 224 

2050, and 2080. The results indicated that the distribution of temperate broad-leaved species 225 

and Mediterranean and sub-Mediterranean species will decrease, while the potential area of 226 

mountain conifer species will rapidly decrease suggesting that climate change could have 227 

serious potential impacts in the Iberian Peninsula. However, their models did not consider the 228 

effects on land-use change and other factors on forest distribution that could limit accurate 229 

predictions by the model. Another uncertainty is that they did not simulate species that could 230 

expand into the Iberian Peninsula (e.g., from North Africa). In addition, Vaca et al. (2011) also 231 

used the RF method to potentially improve the accuracy of coarse resolution vegetation maps 232 

by downscaling to finer resolution climatic grids. Finally, Périé and Blois (2016) assessed 233 

habitat suitability with climate change for five dominant tree species in Québec (Canada). 234 

Their SDMs used eight modeling techniques which were produced using default BIOMOD 235 

(Groner et al. 1971; Thuiller 2003; Thuiller et al. 2009) parameters where appropriate. For 236 

each species, they used a random subset of data containing 70% of the 20×20-km cells (i.e., 237 
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4,493 cells) to build SMDs, and then they evaluate the predictive performance of the models 238 

using the remaining 30% (i.e., 1,925 cells). Based on their results, they suggested that 239 

traditional whole regional vegetation assemblages could become less adapted to their 240 

traditional regions, which would significantly impact the forest economies in these regions. 241 

SDMs are frequently used to illustrate and predict species distributions and environmental 242 

preferences. Identifying priority areas for environmental conservation is a main application for 243 

SDMs. SDMs are able to simulate the dispersal capacity of each species in order to minimize 244 

the distance between their present and future distributions while determining priority sites for 245 

conservation (Loyola et al. 2012). Through statistical and ML methods, SDMs are most 246 

regularly built by inferring occurrence–environment relationships of species. Faleiro et al. 247 

(2013) developed spatial conservation designs using SDMs to predict range migrations 248 

affected by climate and landscape changes. They also measured and reduced uncertainties 249 

associated with SDMs, which include three distance methods (i.e., BIOCLIM, Euclidian, and 250 

Gower distances); three statistical methods (i.e., GLM, GAM, and MARS); and three ML 251 

methods (i.e., RF, maximum entropy, and genetic algorithms (GA)). ML approaches 252 

outperformed these other models in terms of accuracy (i.e., the highest true skill statistics (TTS) 253 

values). The TSS range from -1 to +1, where values that equal +1 represent a perfect 254 

prediction and values equal or less than zero (0) represent a prediction no better than random, 255 

in prediction species distributions. Pouteau et al. (2012) used the SVM approach to predict rare 256 

plant distributions in island forest ecosystems. In their study, SVM performed significantly 257 

better than RF, especially when observational records were limited (the number of available 258 

training pixels ranged from 13 to 54). They reported that high conservation priority should be 259 
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given to the rare species found in the low- and mid-elevation forests of Pacific islands since 260 

such areas are much more prone to extinction. 261 

Multi-SDMs may have the potential for researchers to understand and predict the structure of 262 

forest ecosystem communities. Chapman and Purse (2011) predicted assemblages of 701 263 

native plant distributions across Great Britain at a 10-km2 grid scale. They compared single- 264 

and multi-SDM versions (univariate and multivariate) of two ML distribution models, based 265 

on CART and ANN algorithms. They found that multi-SDMs were slightly less accurate than 266 

single-SDMs; however, they also claimed that multi-SDM models provide a highly simplified 267 

way in which to model spatial patterns, and that fact in itself counteracts their inferior 268 

performance. Another reason is that multi-SDMs can generate more sufficiently realistic 269 

response curves when modeling shared environmental responses. 270 

3.2 Carbon cycles 271 

Traditional modeling approaches (both empirical and process-based modeling) have a great 272 

capacity to quantify and predict C cycles (e.g., Peng et al. 2002; Kurz et al. 2009), which 273 

mostly depends on the data used for parameterization and identification of input-output 274 

relationships, and can be upscaled from local to regional or global scales. However, the 275 

adaptability of these models are typically unsatisfactory, which generally leads to uncertain 276 

predictions if spatial and temporal conditions change. Fortunately, the adaptability of ANNs to 277 

environmental conditions is strong if training and test data are sufficient. Papale and Valentini 278 

(2003) reported on how C flux data obtained from the EUROFLUX project was used to train 279 

ANN models and to provide spatial (1 km × 1 km) and temporal (weekly) estimates of C flux 280 

(i.e., C uptake was 0.47Gt C yr-1) in forests on a continental scale (Europe as a whole). Later, 281 

Papale et al. (2015) again attempted to further develop ANN methods for the prediction of 282 
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gross primary production (GPP), latent heat flux (LE), and net ecosystem exchange (NEE) of 283 

CO2 while primarily trying to assess the uncertainties in extrapolation due to sample selection. 284 

Their results showed that ANN models had a higher accuracy with both GPP and LE than with 285 

NEE. A possible reason for this is the marked influence of management practices, disturbances, 286 

and site history of NEE. However, they did not include these variables as drivers in their ANN 287 

models. Papale et al. (2015) also validated models using data obtained from different 288 

continents, and they found that the extrapolation of similar climatic and vegetation conditions 289 

was possible. However, accuracy decreased when the extrapolation was applied to regions 290 

under differing seasonal cycles.  291 

In general, ML methods combined with traditional models (e.g., process-based models) are an 292 

efficient way to study C cycles. Shoemaker and Cropper (2008, 2010) developed a generalized 293 

southern pine leaf area index (LAI) predictive model (GSP-LAI) based on ANN methods, 294 

yielding coefficients of determination (R2) of 0.77 and root mean square errors (RMSE) less 295 

than 0.50 during validation tests. They applied the model to predict LAI values, and then they 296 

estimated NEE through a process-based model (SPM-2) in a slash pine forest (North Central 297 

Florida). Tramontana et al. (2015) reported on the application of the RF algorithm to predict 298 

uncertainties in GPP at three different spatial scales: the site itself, the ecosystem, and Europe 299 

as a whole. Given that the use of satellite-measured data can avoid the propagation of 300 

uncertainties related to the modeled grid, they were able to confirm the importance of remote 301 

sensing data in the spatial upscaling of GPP. Subsequently, in 2016, they conducted a new 302 

study using 11 ML algorithms while applying four broad approaches (tree-based methods, 303 

regression splines, neural networks, and kernel methods) predict CO2 and energy flux (i.e., 304 

NEE, ecosystem respiration, GPP, LE, sensible heat, and net radiation) across various 305 
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ecosystem types (Tramontana et al. 2016). In their study, better predictions of flux were 306 

achieved for forested and temperate regions compared to areas under extreme climate 307 

conditions or with less data (e.g., tropic sites). They found that ML methods were able to 308 

predict across-site variability and mean seasonal cycles of the observed flux well (R2>0.7); 309 

however, they obtained uncertainty results with 8-day deviations from the mean seasonal cycle 310 

(R2<0.5). 311 

Additionally, ANN methods also have excellent data mining capabilities that allow 312 

relationships to be extracted directly from the data to predict C flux. For example, Moffat et al. 313 

(2010) developed a feedforward ANN using a backpropagation algorithm to forecast daytime 314 

C flux for a deciduous broadleaf forest in Germany. Their results showed that the first 315 

dominant control of daytime response was total photosynthetic photon flux (PPF) density, and 316 

the vapor pressure deficit (VPD) was the most important non-radiative control. If climate 317 

change had caused changes in ecosystem response to its relevant climatic controls, they 318 

believed their ANN model would be able to detect these directly in the historical data better 319 

than purely empirical models would alone. Were et al. (2015) used support vector regression 320 

(SVR), ANN, and RF models to create prediction maps of soil organic carbon (SOC) stocks in 321 

forest ecosystems in Kenya, Africa. Given that the RMSE was 14.9 Mg C ha-1 and R2 was 0.6, 322 

the SVR model based on an SMO algorithm was found to be the best approach in predicting 323 

SOC stocks. They remarked that data quality was very important for predictions, and that total 324 

nitrogen (TN) was the most important factor in explaining the observed variability of SOC 325 

stocks in forest ecosystems. 326 

More recently, Li et al. (2017) developed a three-layer backpropagation neural network 327 

(BPNN) model to quantify the response of global terrestrial net primary production (NPP) to 328 
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multifactor global change data from 1961 to 2010. Their results indicated that the ANN 329 

method is capable of simulating and predicting global terrestrial ecosystem NPP, yielding a 330 

simulation accuracy of 0.72 and a prediction accuracy of 0.60. Song et al. (2014) reported soil 331 

respiration (Rs) estimates for seven sub-forest types across China using an ANN model. In 332 

addition, based on comprehensive global Rs databases, Zhao et al. (2017) developed ANN 333 

models which were capable of spatially estimating global Rs and evaluating the effects of 334 

interannual climate variation on 10 major global biomes. The development of reliable global 335 

NPP and Rs databases that could be incorporated into a comprehensive benchmarking system 336 

for global land and soil C models will aid in our understanding of the mechanisms underlying 337 

variations in vegetation and soil C dynamics and in quantifying uncertainty in global C cycles. 338 

3.3 Hazard assessment and prediction 339 

Natural hazards caused by insect outbreaks are among the most widespread disturbances that 340 

impact the balance of forest ecosystems in different regions. Fassnacht et al. (2014) 341 

implemented a supervised classification technology (i.e., SVM) combined with an improved 342 

feature-selection approach (i.e., genetic algorithm; GA) to assess the potential of hyperspectral 343 

imagery, and they generated a map of bark beetle-induced tree mortality. Their results showed 344 

that the overall accuracy (OA) of mapping dead trees was 84%–96%, and the OA of the 345 

separation between healthy and dead trees was 94%–97%. Hlásny and Turčáni (2013) used 346 

spatial-dependence analysis, ordinary kriging, and neural network-based regression modeling 347 

to investigate the patterns of bark beetle outbreaks and the casual relationships in secondary 348 

Norway spruce forest ecosystems. They inferred that two bark beetle outbreaks (1995–1999 349 

and 2001–2004) resulted in unsustainable secondary spruce forests in Central Europe. 350 
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The sensitivity rating of trees for diseases and pests can provide information that could be used 351 

to evaluate current or future hazardous situations in forests of concern (Mason et al. 1985). In 352 

order to enhance the predictive accuracy of forest pest occurrences, Bai et al. (2014) promoted 353 

a type of forecasting approach based on a combination of three technologies: rough set theory, 354 

particle swarm optimization (PSO), and BPNN. In view of their findings, rough set theory 355 

could effectively discard the characteristic dimension and the new POS-BP model could 356 

decrease iteration times, with an average accuracy of 94.8 %. Though Bai et al. (2014) yielded 357 

results that supported their methodology for classifying dead trees, their attempt to accurately 358 

map different mortality stages was defective. In addition, three remote sensing indicators 359 

(temperature/Vegetation Dryness Index, LAI, and canopy water content) were defined by 360 

Wang et al. (2010) and combined with ANNs to predict pest hazards in a larch forest. 361 

Self-organizing maps (SOMs) are another type of ANN that has been well established in 362 

dealing with high-dimensional data (e.g., gridded meteorological data). Thus, SOMs are 363 

typically applied in hazard assessment models primarily driven by meteorological factors. Park 364 

et al. (2013) applied SOM and RF to identify the hazard ratings of trees (on an individual scale) 365 

and forests (on a stand scale) infested by the pine wood nematode (PWN) and consequently 366 

impacted by the pine wood disease (PWD). In their study, they combined SOM with RF to 367 

predict both the number and rate of infested trees, and they even applied this approach to 368 

evaluate the relative significance of each environmental factor in determining PWD infestation. 369 

They found that large trees which were taller and had wider crown volumes were at higher risk 370 

for PWD, and a drop in tree vigor may be caused by a susceptibility to PWD. 371 

Fire is one of the most important disturbances for ecosystem hazard assessments as well as 372 

being a primary cause of forest destruction. Lagerquist et al. (2017) developed a new fire-373 
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weather prediction model that could be deployed in real time in northern Alberta (Canada). 374 

They implemented SOMs to predict fire spread days using six key predictors (e.g. sea-level 375 

pressure, 500 hPa geopotential height, etc.). Spread day mean extreme threshold values of 376 

three Canadian Fire Weather Index System (CFWIS) variables include the fine fuel moisture 377 

code, the initial spread index, and the fire weather index. The BPNN method is suitable for 378 

dealing with nonlinear problems due to it being capable of nonlinear mapping. Satir et al. 379 

(2016) successfully used the BPNN method to map forest fire probability in the Upper Seyhan 380 

Basin River (Turkey). Results were validated by relative operating characteristic analysis, 381 

which indicated that BPNN yielded a good coefficient of accuracy (R=0.83). Safi and 382 

Bouroumi (2013) also tested their BPNN model using a real fire dataset from the Montesinho 383 

Natural Park in Portugal and obtained a satisfactory prediction of forest fire occurrences. Sakr 384 

et al. (2010) favorably utilized a SVM algorithm to predict the fire hazard level of a day based 385 

only on previous (from 2000 to 2008) meteorological data in Lebanon. 386 

Snow hazard is an important natural disturbance of forest growth, regeneration, and 387 

distribution (Valinger and Fridman 1999). Hlásny et al. (2011) studied a neural network-based 388 

regression model to assess snow damage in Norway spruce forests. They analyzed the 389 

relationship between environmental parameters and various types of snow damage (i.e., tree 390 

top breakage, crown breakage, stem breakage, and uprooting). Their results showed that snow 391 

hazards were largely associated with the developmental stage of the forests (i.e., forest age, 392 

height, and diameter) and not closely related to forest density or tree taper. Thus, they 393 

proposed that more ways in preserving forest health and productivity should be applied to 394 

spruce forest management to deal with snow disturbances. 395 

3.4 Other applications in forest management 396 
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Forest mapping is a key measure in forest management. Especially in semiarid environments, 397 

soil moisture can limit leaf structure and orientation; thus, the classification of tree species 398 

becomes more difficult. Increasingly, ML methods have been used in land-cover mapping and 399 

monitoring based on remote sensing data (Lees and Ritman 1991; Gopal et al. 1999; Lawrence 400 

and Wright 2001; Pal and Mather 2003). Rogan et al. (2008) compared a Fuzzy ARTMAP 401 

neural network algorithm with two classification tree algorithms (i.e., C4.5 and S-Plus) in 402 

mapping land-cover modifications over large areas (California, USA). In their study, the 403 

ARTMAP neural network algorithm led to higher accuracy (approximately 84%) compared to 404 

the two classification tree algorithms in land-cover mapping. Moreover, the ARTMAP was 405 

also less impacted by noise and produced more stable results in large area mapping. In 406 

addition, Adelabu et al. (2013) conducted an experiment to separate Colophospermum mopane 407 

from coexisting species around Botswana’s Central District by means of high-resolution (5 m) 408 

satellite images (i.e., RapidEye) and ML classification algorithms (i.e., RF and SVM). They 409 

proposed that SVM could be used to map plant species based on a small pixel sample, and this 410 

approach had a higher accuracy compared to RF. However, no significant difference was 411 

detected between SVM and RF when sufficient training data was available.  412 

It is often necessary for forest managers to predict aboveground biomass (AGB). Vahedi (2016) 413 

conducted a study that compared ANN to allometric equations for forecasting AGB in mixed-414 

beech forests in Hyrcania, Iran. The diameter at breast height (DBH), tree height, and wood 415 

density were used to train and test ANN and the allometric equation models. They reported 416 

that some statistical issues (e.g., reliability of parameters and collinearity among the 417 

parameters) influenced the development of allometric equations; however, they found that 418 

ANN did not experience these problems. Their ANN model was designed by two hidden 419 
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layers and 20 neurons per layer. Their results showed that ANN resulted in the better 420 

prediction of AGB (RMSE% = 7.3) compared to allometric equations in natural forest 421 

ecosystems. In order to better manage cork-oak plantations and ensure the sustainability of the 422 

Maâmora forest, Lahssini et al. (2015) proposed an assessment to evaluate the suitability of 423 

cork oak, based on a random forest algorithm. In their evaluation model, the most important 424 

indicator was the success rate of cork-oak plantations. The model produced a map which 425 

enabled forest managers to choose the most suitable area for planting and regeneration. 426 

Accurate measurements associated with wood volume, tree height, and stem taper are critical 427 

in forest management. First, Diamantopoulou and Milios (2010) used a CCANN model to 428 

predict the total volume of dominant pine trees in north-eastern Greece. They used the Kalman 429 

filter method (Brown and Hwang 1992) to obtain the best weight estimates in their study. They 430 

also compared results between multiple linear regressions (MLR), nonlinear regressions 431 

(NLR), and CCANN. The CCANN model performed best and proved to be a useful tool for 432 

predicting the total volume of dominant pine trees. Second, Özçelik et al. (2013) conducted a 433 

comparative analysis between three methods (i.e., mixed-effects models, generalized models, 434 

and BPNN) to obtain tree height predictions in the south and southwestern region of Turkey. 435 

This study showed that both nonlinear mixed-effects regression and BPNN could both 436 

successfully predict tree bole height with high accuracy when the variability of the height-437 

diameter relationship from stand to stand was incorporated into the model. Finally, Nunes et al. 438 

(2016) evaluated ANN and RF methods in modeling stem taper, while comparing their results 439 

to traditional techniques (i.e., taper-based equations) across three different forest types, a 440 

tropical savanna, a seasonal semi-deciduous forest, and a rainforest in Brazil. They found that 441 

RF was not good at predicting diameter and wood volume; it tended to over predict low 442 
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diameter- and under predict high-diameter values. However, the ANN model performed well 443 

in taper predictions and was determined to be better than taper-based equations.  444 

Forest property data are typically collected by point sampling. However, researchers and forest 445 

managers often require spatially continuous data over a region of interest to make informed 446 

decisions. Although geographic information systems (GIS) and modeling techniques have 447 

traditionally been powerful tools in forest ecosystem management and conservation, spatially 448 

continuous data of environmental variables is increasingly required. Machine learning methods, 449 

such as RF and SVM, have proven their predictive accuracy in data mining fields and superior 450 

performance in various disciplines (Drake et al. 2006; Shan et al. 2006; Cutler et al. 2007; 451 

Marmion et al. 2009). Hengl et al. (2017) primarily used tree-based models, such as RF and 452 

gradient tree boosting, to account for local relationships between soil variables and covariates. 453 

For example, they used 150 000 soil profiles for training and a stack of 158 remote sensing-454 

based soil covariates (primarily derived from MODIS land products, Shuttle Radar 455 

Topography Mission (SRTM) digital elevation model (DEM) derivatives, climatic images, and 456 

global landform and lithology maps), which they used to fit an ensemble of ML methods using 457 

the R package. The results from greater than tenfold cross validations showed that the 458 

ensemble models explained between 56% (coarse fragments) and 83% (pH) of variation with 459 

an overall average of 61%. However, this approach suffered from two limitations: (1) It is 460 

difficult to derive spatially explicit measurements of prediction accuracy using ML approaches. 461 

Although they calculated accuracy measurements using greater than tenfold cross validations, 462 

these were only global measurements. (2) Machine learning approaches are highly opaque due 463 

to the “black box” effect, and it is difficult to incorporate knowledge of soil formation 464 

processes and soil properties in the prediction algorithm. Recently, Li et al. (2011) 465 
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successfully applied ML methods, such as SVM, RF, and combined methods (e.g., a hybrid 466 

method where RF is combined with ordinary kriging; RFOK) to spatial interpolation, and its 467 

prediction error (relative mean absolute error; RMAE) was less than 19% of the control (using 468 

the inverse distance squared (IDS)). Prediction errors of this method were also less than 30% 469 

compared to the best methods published in literature. This study demonstrated that combined 470 

ML method approaches and other existing spatial interpolation techniques have a great 471 

potential and shed a new light on a potential direction for future studies in order to select 472 

statistical methods for spatial interpolation. 473 

4. Discussion 474 

4.1 Bottlenecks of machine learning in forest ecology 475 

As described above, ML is a powerful classification, modeling, and prediction tool in forest 476 

ecology research. Specifically, ML models have a higher accuracy and faster capacity in 477 

resolving complex issues, analyzing interactions, and predicting nonlinear system behavior. 478 

However, there are two bottlenecks that limit further expansion of ML technologies. 479 

On the one hand, the lack of suitable data (in both quantity and quality) is a major bottleneck 480 

that prevents the widespread application of ML methods in forest ecology. None the less, 481 

compared to traditional empirical and process-based models that require frequent parameter 482 

initialization and adjustment under different conditions (e.g., climate, region, or disturbance), 483 

ML technologies have stronger environmental adaptability. This strength of ML methods, 484 

however, requires more rigorous training and test data. However, long-term and highly-485 

accurate monitoring is expensive monitoring, data collection, storage and up-dating can be 486 

disrupted by: reduced funding, instrument failure, limitations of historical technologies, 487 

interference by human activities, and so on. For example, the loss of historical data required 488 
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Wang et al. (2010) to perform additional analysis, which made validation difficult. 489 

Additionally, Papale et al. (2015) suggested that more study sites would be needed to provide 490 

the necessary data as well as to reliably forecast GPP, LE, and NEE fluxes that are crucial for 491 

predicting global C cycles. Tramontana et al. (2016) also proposed that the number of eddy-492 

covariance sites be increased, especially in poorly represented regions (e.g., the tropics, which 493 

account for a disproportionate share of global terrestrial water and C flux), to improve the 494 

predictive capacity of ML methods. In the coming years, the development of big data research 495 

and data sharing may be an effective way to resolve the problem of insufficient data. 496 

On the other hand, the relatively “higher threshold” of application is another key constraint for 497 

the widespread use of ML. For example, the different algorithms used in ANN determine the 498 

number of processing elements in the hidden layer(s) as well as the number of hidden layers. 499 

The development of black box package algorithm has greatly simplified the application of 500 

ANN since many ecologists only need to know what the characteristics of the different 501 

algorithms are. They will thus now be able to apply the ANN method in their own research. 502 

That being said, there are no new algorithms specifically designed for forest ecosystem 503 

research. Currently, not only ANN but also most ML algorithms are very complex. These 504 

algorithms typically require strong mathematical skills and major investments in time to 505 

understand them in detail (Thessen 2016) as well as to avoid “black box” and overfitting 506 

problems. Although the unfamiliarity with “black box” effects does not necessarily hamper the 507 

use of ML algorithms, it may influence which algorithms are selected by users. More 508 

specifically, it also influences the adaptation of the algorithm itself to different environments 509 

by developers. Overfitting is usually a product of nonparametric and nonlinear ML models that 510 

have more flexibility when learning a target function. To avoid overfitting in ML models, 511 
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users must understand in greater detail the principles of different algorithms. For instance, 512 

Diamantopoulou and Milios (2010) randomly divided their data into training (80% of the total 513 

data) and test (the remaining 20%) datasets. The test data were only used to examine model 514 

performance with the new dataset. In addition, having a certain level of programming skill is 515 

also necessary for applying ML methods. Although convenient tools (e.g., MATLAB and the 516 

R programming language) have already provided powerful and friendly user interfaces (UI) 517 

which aim to reduce many user barriers, ML users still need to master some necessary skills 518 

that, many ecologists lack unfortunately, to debug parameters. Finally, if ML is to be more 519 

frequently used in forest ecology, ecologists need better mathematical proficiency and more 520 

training skills in programming (e.g., through taking workshops or applying for summer 521 

courses) to ensure that they understand algorithms and potential problems such as overfitting.  522 

4.2 Challenges and future directions 523 

To help better understand the various ecological mechanisms in forests and to find new ways 524 

to address problems, we suggest applying a combination of different ML methods as well as a 525 

combination of ML methods with traditional statistical methods. With this in mind, forest 526 

ecologists must understand that there is no universal best ML method. The choice of a specific 527 

method or a combination of methods depend on specific users and the questions they’re asking 528 

(Flach 2001; Crisci et al. 2012; Bhattacharya 2013). Park et al. (2013) confirmed that a 529 

combination of SOM and RF was effective in extracting ecological information from a dataset. 530 

Diamantopoulou and Milios (2010) also built a novel model that used multivariate analysis to 531 

decrease and select a minimum set of tree measurements. They then introduced this set to 532 

CCANN models in which the Kalman learning algorithm was embedded for training. Bai et al. 533 

(2014) applied rough set theory to eliminate redundancy attributes, for which input factors 534 
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could be reduced from 16 to eight. Following this, Bai et al. (2014) used a PSO algorithm to 535 

optimize weights and thresholds in BPNN.  536 

With the rapid development of computing power, more complex ML algorithms can be 537 

implemented more rapidly when trained by larger datasets. This trend will promote the more 538 

extensive application of ML. For instance, most SDMs based on ML methods incorporate 539 

remote sensing as extremely large data sets are being generated (e.g., Garzón et al. 2008; 540 

Chapman and Purse 2011; Vaca et al. 2011; Pouteau et al. 2012; Faleiro et al. 2013). Deep 541 

learning is a machine learning method based on feature learning. From 2006 to 2014, deep 542 

learning, especially deep neural network, had achieved rapid development (Schmidhuber 543 

2015). In 2006, Hinton et al. (2006) introduced the Deep Belief Network (DBN) that took ML 544 

into a new phase of deep learning. Feature learning aims to find better representations and to 545 

create better models for learning from large unlabeled data (LeCun et al. 2015). Today, deep 546 

learning has swept across many fields, such as computer vision, speech recognition, natural 547 

language processing, audio recognition, and bioinformatics fields (Turovsky 2016; Ghasemi et 548 

al. 2017). However, the higher data requirements and more complex model architectures have 549 

slowed the application of deep learning to forest ecosystems and sustainable development. 550 

However, a successful example is that of Jean et al. (2016) who combined satellite imagery 551 

and a novel convolutional neural network (CNN) model (a type of deep learning method) to 552 

quantify and predict poverty in developing countries in Africa. This demonstrates that ML 553 

techniques can still be powerful when applied to a setting with limited training data. Ecologists 554 

need to be more effectively engaged with ML research in the future, especially deep learning 555 

developers so that more techniques can be specifically developed for the field. For instance, 556 

SDM studies will potentially achieve higher accuracy and wider application by combining 557 
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remote sensing and deep learning methods if developers can create more suitable models with 558 

the help of ecologists. In addition, since ML promotes the development and application of 559 

smart devices more specialized and more intelligent observation equipment or technologies 560 

will help ecologist to increase the quantity of empirical data. 561 

Uncertainty plays a fundamental role in all ML applications. Many aspects of ML crucially 562 

depend on a careful probabilistic representation of uncertainty. One way to deal with 563 

uncertainties effectively is to develop a probabilistic machine learning (PML) approach which 564 

provides a framework for representing and manipulating uncertainty related to data, models, 565 

and predictions (Ghahramani 2015). The PML approach to ML and artificial intelligence is a 566 

very active area of research with wide-ranging impacts beyond conventional pattern-567 

recognition problems. It will thus continue to play a central role in the development of ever 568 

more powerful ML systems for future application in forest ecosystems. 569 

5. Summary 570 

This study primarily dealt with literature related to ML applications focused on forest ecology. 571 

However, despite our encouragement for greater use of ML, ML approaches are not meant to 572 

and will never be able to answer all issues related to forest ecology. ML methods, however, 573 

provides many useful tools that should be more critically considered to deal with some 574 

relevant ecological problems.  575 

In this study, we propose two outlooks for future research that is related to this topic:  576 

(1) Data mining, especially deep mining, has consistently been the strength of ML approaches. 577 

As greater and greater data sharing becomes a reality, ML approaches will be the best choice 578 
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for ecologists in the face of an influx of a massive amount of research data, especially at a 579 

global scale.  580 

(2) With the rapid development of deep learning techniques, image and voice recognition 581 

technologies have progressively improved although not yet perfected. We thus boldly predict 582 

that researchers will be able to apply not only the statistics and analysis of numerical and 583 

remote sensing data, but also the application of other types of data (such as sound and video) 584 

to study forest ecology in the near future. 585 

 586 
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Figure 1 The number and proportion of publications searched by the topics “three different ML 828 

methods” and “forest ecosystem” on the ISI Web of Knowledge from 2008 to 2017. Three 829 

different ML methods are included: ANN represents artificial neural network; SVM represents 830 

support vector machine; DT represents decision tree. 831 

Figure 2 Analogy of machine learning and human thinking. 832 

Figure 3 Schematic of clusters. 833 

Figure 4 Taxonomy of machine learning algorithms. 834 

Figure 5 (A) Decision tree schematic; (B) The schematic for a common multilayer feedforward 835 

network; (C) Support vector machine (SVM) schematic; and (D) SVM project data from low 836 

dimensional to high dimensional space and the determination of the hyperplane for classification. 837 
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Figure 2 Analogy of machine learning and human thinking.  
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Figure 3 Schematic of clusters.  
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Figure 4 Taxonomy of machine learning algorithms.  
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Figure 5 (A) Decision tree schematic; (B) The schematic for a common multilayer feedforward network; (C) 
Support vector machine (SVM) schematic; and (D) SVM project data from low dimensional to high 

dimensional space and the determination of the hyperplane for classification.  
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Table 1 Strengths and weaknesses of decision tree learning, artificial neural networks, and support vector machines 

 Strengths Weaknesses Reference 

Decision Tree 

Learning 

Nonlinear relationships between parameters do not 

affect tree performance; thus, tree methods require 

relatively little effort for users in data preparation. 

Ease of interpretation and understanding are the best 

features of using trees for analytics. Tree methods also 

can be used as a good extension to a large database, 

while its size is independent of the database size. 

CART is robust to the effects of outliers in the output. 

RF can effectively reduce the risk of overfitting. 

Missing data will effect decision trees, and 

overfitting may result. It has more difficult to 

deal with missing data. 

Breiman et al. 

1984;  

Tramontana et 

al. 2015 

Artificial 

Neural 

Networks 

(ANNs) 

ANNs have the ability to learn as well as model 

nonlinear and complex relationships. They are also 

robust and fault tolerant to noisy data. ANNs have a 

strong capacity for parallel processing. 

Learning process cannot be observed in a 

black box, which leads to output that is 

difficult to explain. ANNs are unable to 

identify the relative importance and effects of 

individual environmental variables. 

Thuiller 2003; 

Liu et al. 2010 

Support Vector 

Machine 

(SVM) 

SVMs can model nonlinear decision boundaries, and 

there are many kernels to choose from. It is also fairly 

robust against overfitting, especially in 

high-dimensional space. SVMs can be trained with a 

few meaningful pixels and is able to fit limited 

information. 

SVM is memory intensive, trickier to tune 

owing to the importance of picking the correct 

kernel, and it does not scale well to larger 

datasets. Poor model extrapolation will result 

if prior data is inconsistent as the model 

completely depends on the past records as 

support vectors. 

Gunn 1998;  

Tripathi et al. 

2006; Vapnik 

2013; 

Adelabu et al. 

2013 
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Table 2 The application and highlights of machine learning in forest ecology 1 

Applications Methodology Highlights References 

Predicted species 
distribution with 
climate change 

Random Forest 
RF can improve the accuracy of 
predictions 

Garzón et al. (2008); Vaca et al. 
(2011); 
Faleiro et al. (2013); 
Périé and Blois (2016) 

 
Support Vector Machine 

SVM performs well when observed 
records are limited 

Pouteau et al. (2012) 

Prediction of carbon 
and energy flux 

Artificial Neural Network 
ANNs combined with traditional 
models are an effective way to 
reduce uncertainty predictions 

Papale and Valentini (2003); 
Papale et al. (2015); 
Shoemaker and Cropper (2008, 2010); 
Tramontana et al. (2015, 2016) 

  
ANNs  have the excellent data 
mining capacity 

Moffat et al. (2010); Li et al. (2017); 
Zhao et al. (2017) 

Hazard assessment 
and prediction 

Artificial Neural Network 
ANNs  can be well applied and deal 
with high-dimensional data 

Wang et al. (2010); Park et al. (2013); 
Bai et al. (2014) 

  
ANNs are capable of nonlinear 
mapping 

Satir et al. (2016); 
Safi and Bouroumi (2013) 

 
Support Vector Machine 

SVM is a powerful tool for resolving 
classification issues 

Sakr et al. (2010); 
Fassnacht et al. (2014) 

Forest management Artificial Neural Network 
ANNs are good at predicting 
aboveground biomass, wood volume, 
tree height, and stem taper 

Diamantopoulou and Milios (2010); 
Özçelik et al. (2013); Vahedi (2016); 
Nunes et al. (2016) 

 
Random Forest 

Combining RF and other spatial 
interpolation approaches has great 
potential 

Hengl et al. (2017); 
Li et al. (2011)  

 2 
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