

Center for Information Services and High Performance Computing (ZIH)

# Performance Analysis of Computer Systems

Requirements, Metrics, Techniques, and Mistakes

Holger Brunst (<u>holger.brunst@tu-dresden.de</u>) Matthias S. Mueller (<u>matthias.mueller@tu-dresden.de</u>)



#### Announcements

#### Exercise tomorrow:

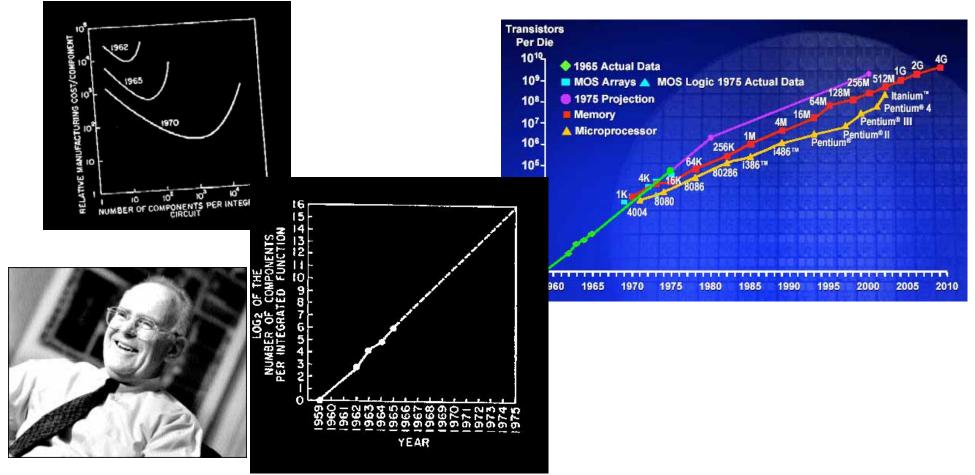
- 13:00 at INF E069
- Discussion of previous exercise
- Presentation of current exercise







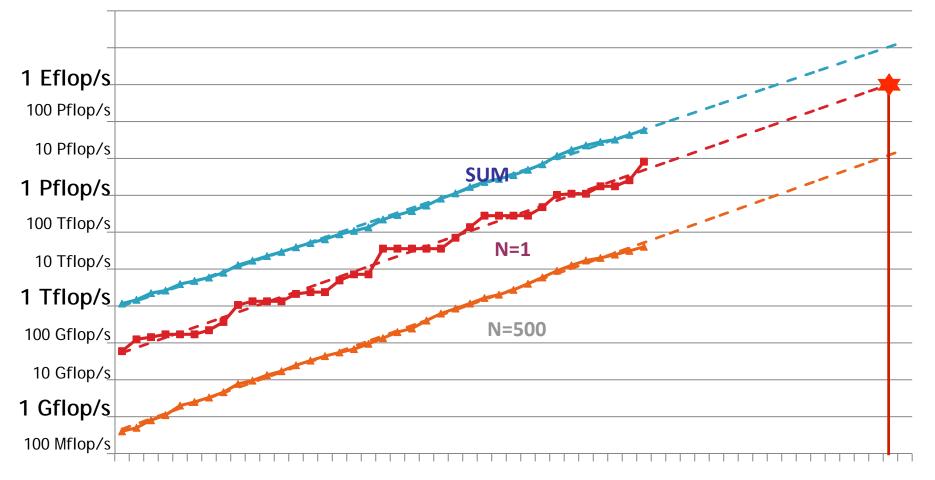
Center for Information Services and High Performance Computing (ZIH)


# **Summary of Previous Lecture**

#### Introduction and Motivation

Holger Brunst (<u>holger.brunst@tu-dresden.de</u>) Matthias S. Mueller (<u>matthias.mueller@tu-dresden.de</u>)




#### Moore's Law: 2X Transistors / "year"



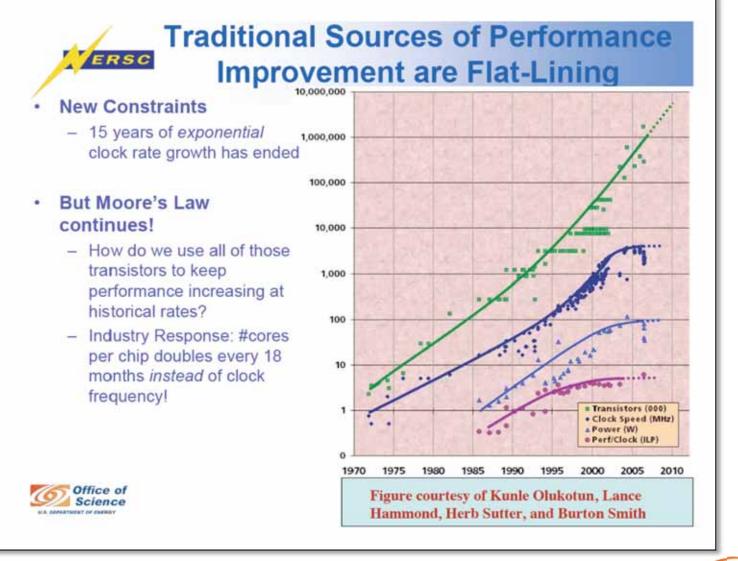
- "Cramming More Components onto Integrated Circuits"
- Gordon Moore, Electronics, 1965
- # on transistors / cost-effective integrated circuit double every N months (18  $\leq$  N  $\leq$  24)



#### **Extrapolation to Exascale**



1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020


Erich Strohmaier: Highlights of the 37th TOP500 List, ISC'11

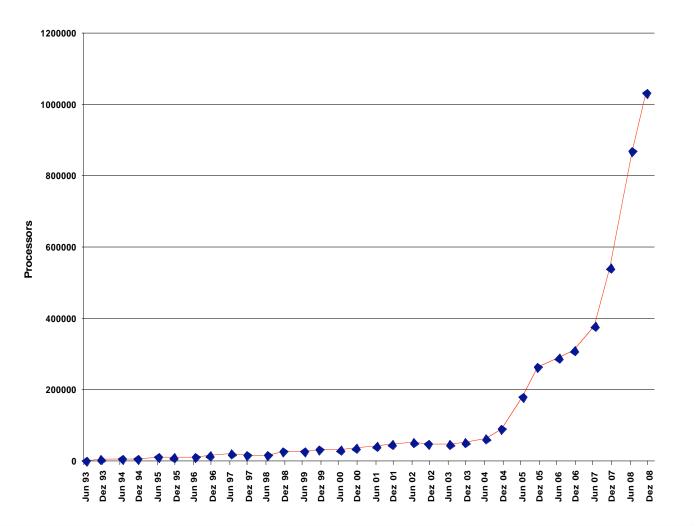




LARS: Introduction and Motivation

### John Shalf (NERSC, LBNL)








LARS: Introduction and Motivation

#### Number of Cores per System is Increasing Rapidly

Total # of Cores in Top15







LARS: Introduction and Motivation

### **IBM Roadrunner**

- First computer to surpass the 1 Peta FLOPS barrier
- Installed at Los Alamos National Laboratories
- Hybrid Architecture
- 13,824 AMD Opteron cores
- 116,640 IBM PowerXCell 8i cores
- Costs: \$120 Mio.







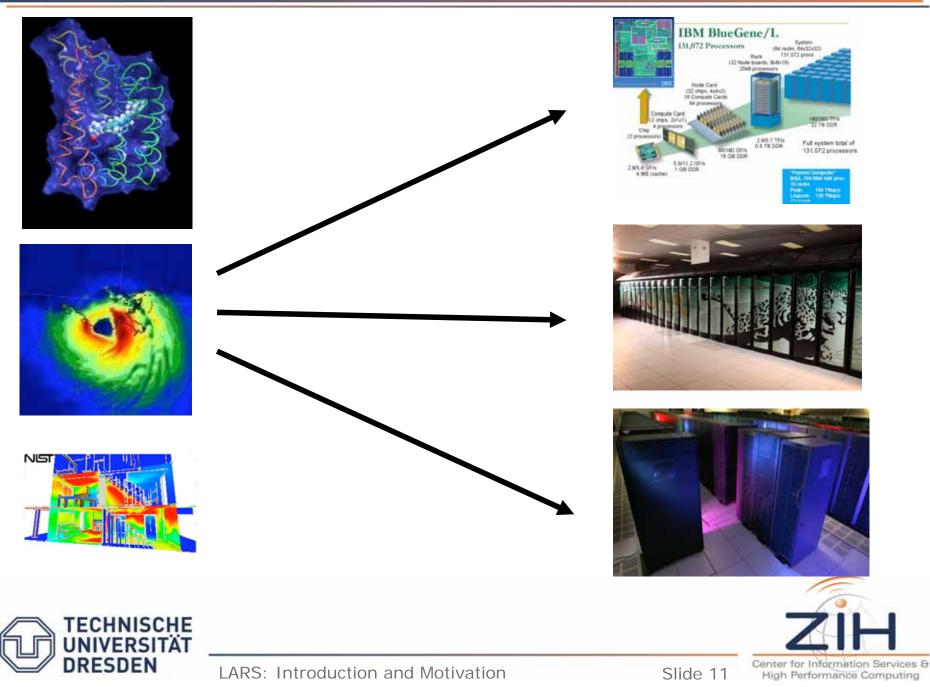
LARS: Introduction and Motivation

### **K** Computer System

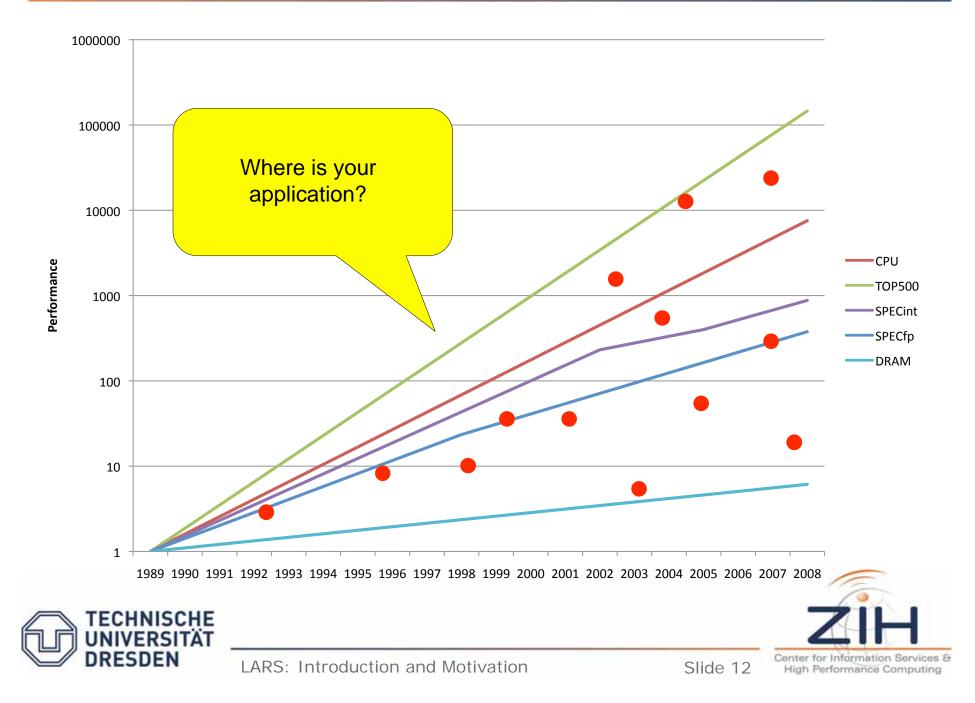


- Nr. 1 System in TOP500 (June 2011)
- "K" means 10^16
- >80,000 Processors
- >640,000 Cores
- 10 MW power consumption
- SPARC64 VIIIfx CPU
- 16 GB/node, 2 GB/core
- Direct water cooling




#### What Kind of Know-How is Required for HPC?

- Algorithms and methods
- Performance Analysis
- Programming (Paradigms and details of implementations)
- Operation of supercomputers (network, infrastructure, service, support)






#### **From Modeling to Execution**



#### Performance Trends over a 20 years life cycle





Center for Information Services and High Performance Computing (ZIH)

# Performance Analysis of Computer Systems

Requirements, Metrics, Techniques, and Mistakes

Holger Brunst (<u>holger.brunst@tu-dresden.de</u>) Matthias S. Mueller (<u>matthias.mueller@tu-dresden.de</u>)



## Outline

- Preliminary remarks
- Systematic approach to performance evaluation
- Metrics
- Comparison of evaluation techniques
- Common mistakes





#### **Performance Evaluation**

- The development of computer systems in respect of hard- and software is accompanied by performance measurements and modeling since the 1960s
- However, only a small fraction of the research work is applied in the field
- Ferrari (1986):

The study of performance evaluation as an independent subject has sometimes caused researchers in the area to lose contact with reality.

- Why is it that performance measurements are by no means an integrated and natural part of computer system development?
  - The primary duty of system developers is to create functionally correct systems!
  - Performance evaluation tends to be optional. Some people compare it to the freestyle event in ice-skating





- The term , performance' is ambiguous in computer science. It can stand for:
  - "Well, it's functioning (more or less)";
  - A short development cycle;
  - High throughput;
  - Short response times;
  - Good reliability.
- Doherty (1970)

Performance is the degree to which a computing system meets expectations of the persons involved in it.

#### Graham (1973)

Performance ... is the effectiveness with which the resources of the host computer system are utilized toward meeting the objectives of the software system. Or short:

How well does the system enable me to do what I want to do?





#### Ferrari (1978)

We use the term ,performance' to indicate how well a system, assumed to perform correctly, works.

#### DIN-Norm 66273

The German DIN-Norm considers a computer system as a black box and "... baut die Messung und Bewertung der Schnelligkeit ausschließlich auf das Verhalten der Datenverarbeitungsanlage an der vom Anwender sichtbaren Schnittstelle auf."

#### Jain (1991)

Contrary to common belief, performance evaluation is an art. ... Like artist, each analyst has a unique style. Given the sample problem, two analysts may choose different performance metrics and evaluation methodologies.





# Objectives

- Performance analysis: Get highest performance for a given cost
- "Performance Analyst": Anyone who is a associated with computer systems, i.e. systems engineers and scientists but also users
- Which tasks need to be carried out?
- Tasks:
  - Specification of performance requirements
  - Evaluation of design alternatives
  - Comparison of two or multiple systems
  - Finding the best value of given system parameter (system tuning)
  - Identification of bottlenecks
  - Workload characterization for a given system
  - Finding the right size and number of hardware and software components (capacity planning)
  - Performance prediction at future workloads (forecasting)



Center for Information Services

High Performance Computing

### Conventions

- System:
  - An arbitrary collection of hardware, software, and firmware e.g.:
  - CPU
  - Database
  - Network of computers
- Metric:
  - A criteria used to evaluate the performance of a system e.g.:
  - Response time
  - Throughput
  - Floating point operations per second
- Workload(s):
  - Representative collection of user requests to a system e.g.:
  - CPU workload: Instructions to execute
  - Database workload: Which queries to perform





### Example 1: Select Metric, Technique, Workload

- What performance metrics should be used to compare the performance of disk drives or SANs?
- How and where would you start?
- Examples:
  - Capacity
  - Price
  - Read/write throughput
  - Seek latency
  - Energy consumption
  - Mean-time to failure
  - Emission of heat and noise
  - Form factor etc.





### **Example 2: Correctness of Perf. Measurements**

- How to measure the performance of a computer system?
- At least two tools are required:
  - Load generator
  - Performance monitor
- Which type of monitor would be more suitable (software or hardware) for measuring the following quantities?
  - Number of instructions executed by a processor
  - Degree of multiprogramming on a timesharing system
  - Response time of packets on a network





### **Example 3: Experiment Design**

- The performance of a system depends on the following three factors:
  - Garbage collection used: G1, G2, or none
  - Type of workload
    - Editing
    - Computing
    - Artificial intelligence
  - Type of CPU: C1, C2, or C3
- How many experiments are needed?
- How does one estimate the performance impact of each factor?





### **Example 4: Simple Queuing Models**

- The average response time of a database system is three seconds. During a 1-minute observation interval, the idle time on the system was 10 seconds.
- A queuing model for the system can be used to determine the following:
  - System utilization
  - Average service time per query
  - Number of queries completed during the observation interval
  - Average number of jobs in the system
  - Probability of number of jobs in the system > 10
  - 90 percentile response time t
    - 90% of observations stay below t
    - German: Perzentile/Prozentränge oder allg.: Quantile
    - Reminder: 50<sup>th</sup> percentile is the median
  - 90 percentile waiting time





### The Art of Performance Evaluation

- Successful evaluation cannot be produced mechanically
- Evaluation requires detailed knowledge of the system to be modeled
- Careful selection of methodology, workload, and tools
- Conversion from an abstract feeling or notion to a real problem which needs to be formalized in a way that can be handled by established tools
- Analysts tend to have different "styles"





# **Systematic Performance Evaluation (1)**

#### **TEN STEPS:**

- 1. State goals of the study and define the system
  - Identical hardware and software: Yet, the system may vary depending on goals
  - The chosen system boundaries affect the performance metrics as well as the workloads used to compare the systems
  - Additionally: Administrative control of the sponsors of the study. Sponsors may want to keep uncontrollable components out of the system boundaries
- 2. List services and outcomes
  - Network: Send packets to a specified destination
  - Processor: Perform a number of different instructions
  - Database: Respond to queries
  - Also list the possible outcomes, e.g. db query: correctly, incorrectly, not at all

#### 3. Select metrics

- Criteria to compare the performance: usually **speed**, **accuracy**, and **availability** 
  - Network: throughput, delay (speed); error rate (accuracy)
  - CPU: time to execute various instructions (speed)





# **Systematic Performance Evaluation (2)**

#### 4. List parameters that affect performance

- System parameters (both hardware and software)
- Workload parameters (characteristics of users' requests)
- The list of parameters may not be complete
- Parameters may be added, always keep list as comprehensive as possible
- 5. Select factors to study
  - Factors: Parameters that are varied during the evaluation
  - Levels: Values of a factor
  - Limited resources 
    start with a short list and extend if the resources permit
  - Chose parameters expected to have high impact as factors
  - Also consider economic, political, technological constraints, and decision makers
- 6. Select technique for evaluation
  - Analytical modeling, simulation, measuring a real system
  - Depends on time, resources, and the desired level of detail





#### 7. Select workload

- List of service requests to the system
- Depends on the evaluation technique: probability of various requests (analytical), trace of requests from real system (simulation), user scripts (measurement)
- Representative workloads often require to measure and characterize the workload on existing systems

#### 8. Design experiments

- Maximum information with minimum effort
- Two phases:
  - First: Many factors, only few levels → determine relative effect of factors
  - Second: Few most significant factors, increase the number of levels

#### 9. Analyze and interpret data

- Consider the variability of simulation and measurement results. Use statistics!
- Interpretation is the key part of the analyst: Analysis produces results but no conclusions or decisions
- Analysts' conclusions may be different given the same set of results





# **Systematic Performance Evaluation (4)**

#### **10.Present results:**

- Communicate the results to other member of the decision-making team
- Information needs to be easily understood
  - No statistical jargon!
  - Chose graphic form with proper scaling of graphs
- At this point: Reconsider and question some of the decisions made in the previous steps (e.g. system boundaries, factors, or metrics)
- The complete evaluation project consists of several cycles rather than a single sequential pass



High Performance Computing



- What is a performance metric?
  - The absolute number a service has been carried out
  - The time taken to perform a service
  - The size of the resources required to perform a service
- Options
  - Use values directly
  - Normalize values to a common time basis to provide a speed metric (divide number by time)
  - Derive probabilities
- Choosing an appropriate performance metric depends on the goals and the costs of the performance study





### **Characteristics of Good Performance Metrics**

- Linear
  - Intuitive for the majority of decision makers. Exception dB scale!
- Reliable
  - Useful for comparison and prediction
- Easiness of measurements
  - Unlikely that anyone will use a complicated
  - Difficult to measure complicated metric correctly
- Repeatable
- Consistent
  - Definition is the same across different configurations and different systems
  - Not true in many cases (ex. MIPS and MFLOPS)
- Independent of outside influences
  - No intervention from vendors to influence the composition of the metric to their benefit





# **Commonly Used Performance Metrics (1)**

#### Clock rate

- Most prominent indication of performance often is the frequency of the processors central clock
- This performance metric completely ignores how much computation is actually performed
- It is repeatable, easy to measure, consistent, no games from vendors, but ...
- It is nonlinear and unreliable
- Number of cores!
- MIPS
  - Millions Instructions per Second
  - Rate metric (amount of computation performed per time unit)
  - It is easy to measure, repeatable, independent, but
  - Nonlinear, not reliable, and not consistent
  - problem: amount of computations per instruction differ (also: RISC, CISC)





# **Commonly Used Performance Metrics (2)**

#### FLOPS

- Floating Point Operations per second (Mega-, Giga-, TeraFLOPS)
- Defines an arithmetic operation on two floating point quantities to be the basic unit
- Tries to correct shortcoming of the MIPS metric
- No value for integer applications
- Agreeing on exactly how to count the number still difficult
- Pretty much the dominant metric in the HPC field
- It is repeatable, easy to measure (now), but ...
- It is nonlinear and inconsistent, there are some games from vendors
- SPEC
  - Standard Performance Evaluation Cooperative (SPEC)
  - Collection of specialized benchmarks (e.g. CINT2006, CFP2006, etc.)





## **Commonly Used Performance Metrics (3)**

- QUIPS (QUality Improvement Per Second)
  - Traditionally: Metrics define effort to reach a certain result
  - Here: Metric defines the quality of a solution
  - Quality is defined based on mathematical characteristics of a given problem
  - Source: HINT: A New Way To Measure Computer Performance, John L. Gustafson and Quinn O. Snell, *Proceedings of the 28th Annual Hawaii International Conference on System Sciences –* 1995
- Execution time (system/user)
- Wall clock time



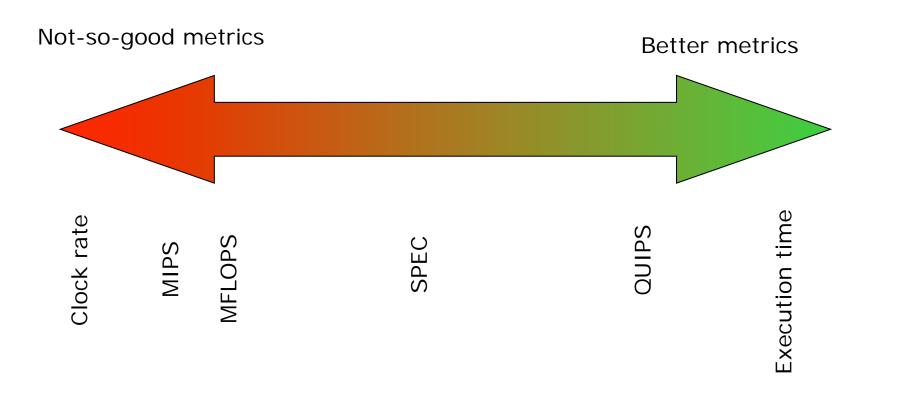


# **Commonly Used Performance Metrics (4)**

- Response time
  - The time interval between a user's request and the system response
  - Response time, reaction time, turnaround time, etc.
  - Small response time is good:
    - For the user: waiting less
    - For the system: free to do other things
- Throughput
  - Number of work units done per time unit
  - Applications being run, files transferred, etc.
  - High throughput is good
    - For the system: was able to serve many clients
    - For the user: might imply worse service
  - MIPS is one measure of throughput






# **Commonly Used Performance Metrics (5)**

#### Utilization

- Percentage of time the system is busy serving clients
  - Important for expensive shared system
  - Less important (if at all)
    - for single user systems, for real time systems
- Utilization and response time are interrelated
  - Very high utilization may negatively affect response time
- Other metrics:
  - Mean Time Between Failures (MTBF)
  - Supportable load
  - Speedup
  - Scalability (weak/strong)











#### **Quantitative vs. Qualitative Metrics**

- Quantitative metrics
  - Measure what was done
  - Whether or not it was useful!
    - NOP instructions, multiply by zero, ...
  - Produces unreliable metrics
- Qualitative metrics
  - Measures progress towards a goal
  - Only counts what is actually accomplished





# **Evaluation Techniques: Analytical Modeling**

- Based on a rigorous mathematical model
- Provides the best insight into the effects of different parameters and their interaction
  - Is it better to configure the system with one fast disk or with two slow disks?
- Can be done before the system is built and takes a short time
- Rarely accurate
  - Usually needs many simplifying assumptions
  - Depends on the quality and correctness of these assumptions





#### **Evaluation Techniques: Simulation**

- Simulate the system operation (usually only small parts thereof)
- Flexibility: full control of simulation model, parameters, level of detail
- Disk: average seek time vs. acceleration and stabilization of the head
- Can be done before the system is built
  - Simulation of a full system is infeasible
  - Simulation of the system parts does not take everything into account





#### **Evaluation Techniques: Measurement**

- Implement the system in full and measure its performance directly
- The most convincing
  - Effects of varying parameter values cannot (if at all) be easily isolated
  - Often confused with random changes in the environment
- High cost:
  - Implement the system in full, buy hardware

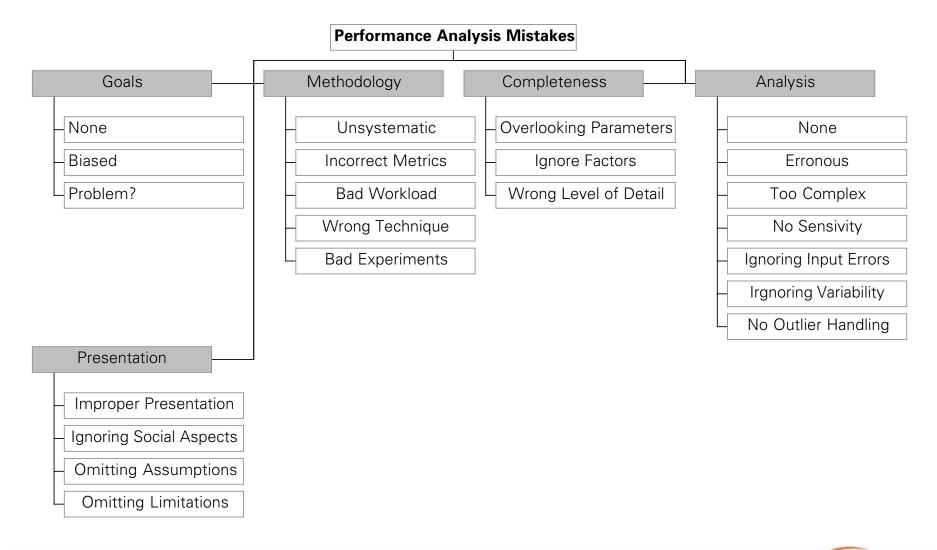




#### **Evaluation Techniques: Pros and Cons**

| Criterion               | Analytical<br>Modeling | Simulation            | Measurement     |
|-------------------------|------------------------|-----------------------|-----------------|
| Stage                   | Any                    | Any                   | Post-prototype  |
| Time Required           | Small                  | Medium                | Varies          |
| Tools                   | Analysts               | Computer<br>languages | Instrumentation |
| Accuracy                | Low                    | Moderate              | Varies          |
| Trade-off<br>evaluation | Easy                   | Moderate              | Difficult       |
| Cost                    | Small                  | Medium                | High            |
| Saleability             | Low                    | Medium                | High            |




# The Bottom Line

- Simulation is the most widely used technique
- Combination of techniques is recommended
- Never trust the results produced by the single method
- Validate with another one, e.g.
  - analysis + simulation
  - simulation + measurements,





# **Common Mistakes in Performance Analysis**







# Common Mistakes: What are the goals?

- No goals with a good understanding of the problem
  - Many performance efforts are started without clear goals
  - Performance model must be developed with a particular goal in mind
  - First, understand the system and the problem (40%)
  - Then, start writing the simulation code
  - Not trivial. Goals often change with a better understanding of the problem
- Biased goals
  - "show that one system is better than another"
  - Metric and workload are not selected for proper comparison but for highlighting a given system
  - Performance analysts are to be unbiased!
  - The role of a performance analyst is like that of a jury
  - Depend your conclusions on results rather than on believes





# **Common Mistakes: Methodology Selection**

- Unsystematic approach
  - Arbitrary selection of system parameters, factors, metrics, and workloads lead to inaccurate conclusions. Be complete!
- Incorrect performance metrics
  - Example 1: Comparison of MIPS of a RISC and a CISC architecture
  - Example 2: Computer advertisement "datasheets" for GHz, GB, Core number, and Megapixel fans
- Unrepresentative workload
  - Workload should represent the actual usage of the system in practice
  - Example: Packet sizes in a network
- Wrong evaluation technique
  - Analysts are often "married" with one technique, i.e. measurement, or simulation, or analytical modeling
  - Resulting in model optimized for the analyst rather than the problem
  - An analyst should have a basic knowledge of all three techniques





### **Common Mistakes: Completeness and Balance**

- Overlooking important parameters
  - List system and workload characteristics that affect performance
  - System: quantum (CPU) and working set (memory) size
  - Workload: number of users, request patterns, priorities
- Inappropriate level of detail
  - Very different alternatives: Use high-level model
  - Slight variations: Use more detailed model
  - Do not take a detailed approach when a high-level model will do and vice versa
- Ignoring significant factors
  - Varied parameters are called factors
  - Usually, not all parameters are factors.
  - Identify the ones that significantly alter performance if varied e.g. response time: packet size vs. arrival rate
  - Favor factors that are directly controlled by the user
  - The choice of factors should be based on relevance, not on their knowledge





# **Common Mistakes: Analysis**

- No analysis
  - Analysts are good at collecting enormous amounts of data but often cannot analyze the data and write understandable summaries
  - Result: No useful analysis at all or a thick report with many graphs but no interpretation
  - Teamwork can help
- Erroneous analysis
  - Let's average ratios! Short simulation runs or so much more convenient!
- No sensitivity analysis (German: Empfindlichkeitsanalyse)
  - Do not present your results as facts but as evidence
  - Performance results may be sensitive to workload and system parameters
- Ignoring errors in input
  - Parameters of interest cannot be measured. Example: Network device
- Improper treatment of outliers: Measurement error vs. system phenomenon
- Analysis too complex: Published models are often too complex for the real world
- Ignoring variability: Common to analyze only the mean performance. Example: Daily averages of computer demands which ignore the large hourly peaks.





#### **Common Mistakes: Presentation**

- Improper presentation of results
  - Help decision making
  - "The right metric to measure the performance of an analyst is not the number of analyses performed but the number of analyses that helped the decision makers."
- Ignoring social aspects
  - Presentation requires social and substantive skills!
  - Analysts typically have good substantive skills...
  - Trust between analyst and decision makers
  - Conflict of interest: Innovativeness of the modeling approach (analyst) vs. quickly getting to the final results (decision maker)
- Omitting assumptions and limitations
  - Users will try to reproduce your results under *their* assumptions which is likely to reveal different results



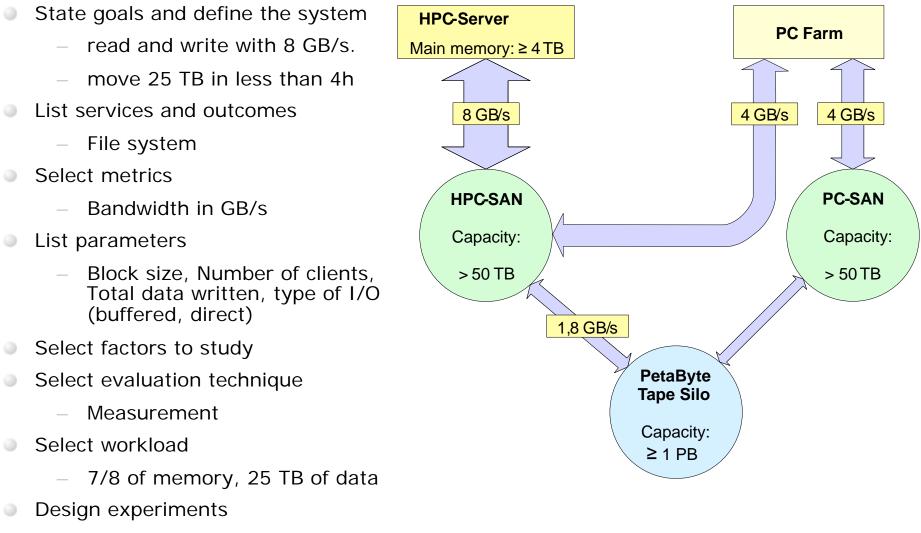


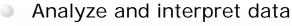
# **Checklist for Avoiding Mistakes I**

- Is the system correctly defined and the goals clearly stated?
- Are the goals stated in an unbiased manner?
- Have all the steps of the analysis followed systematically?
- Is the problem clearly understood before analyzing it?
- Are the performance metrics relevant for this problem?
- Is the workload correct for this problem?
- Is the evaluation technique appropriate?
- Is the list of parameters that affect performance complete?
- Have all parameters that affect performance been chosen as factors to be varied?
- Is the experimental design efficient in terms of time and results?
- Is the level of detail proper?
- Is the measured data presented with analysis and interpretation?






# **Checklist for Avoiding Mistakes II**


- Is the analysis statistically correct?
- Has the sensitivity analysis been done?
- Would errors in the input cause an insignificant change in the results?
- Have the outliers in the input or output been treated properly
- Have the future changes in the system and workload been modeled?
- Has the variance of input been taken into account?
- Has the variance of the results been analyzed?
- Is the analysis easy to explain?
- Is the presentation style suitable for its audience?
- Have the results been presented graphically as much as possible?
- Are the assumptions and limitations of the analysis clearly documented?





# Short Example: Bandwidth to Filesystems











Center for Information Services and High Performance Computing (ZIH)

# **Thank You!**

Holger Brunst (holger.brunst@tu-dresden.de) Matthias S. Mueller (matthias.mueller@tu-dresden.de)

