
SIFT: A Tool for Property Directed Symbolic
Execution of Multithreaded Software

Tuba Yavuz

ECE Department
University of Florida

Gainesville, FL, USA

tuba@ece.ufl.edu

Abstract—
Analyzing multithreaded programs is notoriously hard due to

the exponential number of thread interleavings. Although race
detectors can help developers find and fix such bugs before the
code is deployed, multithreaded code may still be buggy due
to memory errors and assertion violations that are not due to
race conditions. This paper presents a property directed symbolic
execution of multithreaded code. Our approach, named SIFT,
differs from previous work on detecting errors in multithreaded
code by being property directed and by handling both memory
safety and assertion checking that can be further customized by
the user. SIFT can detect bugs that may or may not be due
to data races, and works in an iterative way. In each step, it
explores the state space using selective scheduling based on a set
of interleaving points that have been inferred in the previous step.
We have developed three partitioning strategies for improved
effectiveness and performance. We have implemented SIFT on
top of the KLEE symbolic execution engine and applied it to
various real-world and academic benchmarks. SIFT could detect
more vulnerabilities than a state-of-the-art memory vulnerability
detector.

Index Terms—concurrency, symbolic execution, bug finding

I. INTRODUCTION

Analyzing multithreaded programs is notoriously difficult

due to the exponential number of thread interleavings. Al-

though race detectors [14], [6], [13] can help developers find

and fix such bugs before the code is deployed, multithreaded

code may still be buggy due to memory errors and assertion

violations that are not due to race conditions. Also, race

condition warnings may require additional analysis in case the

programmers may not be convinced of the potential risks.

There have been some recent efforts [9], [12], [17], [4],

[11], [7], [13] to fill this gap in the reliability and security of

multithreaded software. These approaches share in common

the idea of analyzing the dependencies in the state space of a

multithreaded code and inferring bug revealing schedules.

Some of these works depend on an offline static analysis

for pointer analysis [9], [13] while others analyze dynamic

execution traces [12], [17], [4], [11] to identify the schedule

relevant program actions. Thread scheduling related search

space reduction techniques include assertion guided prediction

of error relevant states [9], constraint solving [12], [17],

[11], distributed trace partitioning [11], leveraging stack traces

from crashing runs [4], and distance-based selection of event

reordering [7]. The approach in [9] targets assertion failures.

Cortex [17] and the approach in [12] do not target specific

types of bugs. ConCrash [4] is not restricted in terms of the

types of bugs it can detect as long as the crash report con-

tains sufficient information about the crash. UFO [11] detects

Use-After-Free (UAF) vulnerabilities. ConVul [7] detects, in

addition to UAF, the Null pointer dereferencing and Double-

Free (DF) vulnerabilities. RAZZER [13] guides its fuzzing

engine to detect race conditions.

We think that there is a need for a generic property directed
approach for the analysis of multithreaded programs. The

properties of interest include memory safety and other user

defined safety properties. The analysis should be able to

identify property relevant data-flow dependencies as precisely

as possible to effectively search the huge state space of

scheduling scenarios.

This paper presents a property directed symbolic execution

of multithreaded code. We choose symbolic execution as

the underlying program analysis technique due to its precise

memory model and its intrinsic capability to detect memory

vulnerabilities. Our approach, named SIFT, differs from previ-

ous work on detecting errors in multithreaded code by being

property directed and by handling both memory safety and

assertion checking that can be further customized by the user.

SIFT can detect bugs that may or may not be due to data races,

and works in an iterative way. In each step, it explores the

state space using selective scheduling based on a set of thread

interleaving points that have been inferred in the previous step.

We have developed three partitioning strategies for improved

effectiveness and performance. We have implemented SIFT on

top of the KLEE symbolic execution engine [5] and applied it

to various real-world and academic benchmarks. SIFT could

detect more vulnerabilities than a state-of-the-art memory

vulnerability detector.

This paper makes the following contributions:

• We present a property guided selective symbolic execu-

tion technique that performs on-the-fly data-flow analysis

without relying on any offline analysis. The state space

search can be optimized using three different partitioning

strategies with different strengths.

• We have implemented the presented approach in a tool



called SIFT1 on top of the KLEE symbolic execution

engine.

• We have applied SIFT to a variety of real-world and aca-

demic benchmarks. Experimental results show that SIFT

is fast in detecting bugs and detects more vulnerabilities

than what could be detected by ConVul [7].

This paper is organized as follows. In Section II, we provide

motivating examples to demonstrate the underlying insights of

our approach. In Section III, we present the technical details

of our approach. In Section IV, we present an evaluation of

our approach on various benchmarks. In Section V, we discuss

our work within the context of related work. In Section VI,

we conclude with directions for future work.

II. A MOTIVATING EXAMPLE

In this section, we present a motivating real-world example

and demonstrate the salient features of our approach. Figure

2 shows a simplified code snippet from the security sub-

system of the Linux kernel. When two threads execute the

lookup_user_key and the install_user_keyrings
concurrently, a NULL pointer dereference may be encountered

as shown in Figure 1. This is because Thread 0, which

performs the key lookup, first finds out the session keyring

has not been created yet. So, it decides to install it by calling

install_user_keyrings, but before it actually attempts

to install the keyring, a context switch happens. When Thread

1 executes, it also realizes that the keyring is not created yet

and, so, it creates the keyring and starts installing it. However,

Thread 1 can only partially install the keyring as it can only

perform the update for the uid_keyring field at line 130

and a context switch happens before it can execute the line at

131 that sets the session_keyring. When Thread 0 con-

tinues executing, it checks only the uid_keyring field, and

assumes that the keyring must have been properly installed.

Accessing the not yet initialized session_keyring at line

174, leads to a kernel crash. An error revealing scheduling

scenario is depicted in Figure 1.

The manifestation of the vulnerability depends on whether

the context switches between the two threads happen at

some specific program locations. We call such locations the

interleaving points. For this example, the first interleaving

point is when the program counter of Thread 0 refers to the

read operation at line 114 and the second interleaving point

is when the program counter of Thread 1 refers to the write

operation at line 131. The context switch happens before the

instructions referred by the program counter gets executed.

Although this bug is due to a data race (see Section III for a

vulnerability not due to a data race), not all thread schedules

of this code would lead to the NULL pointer dereferencing

problem. So, our approach leverages the inherent capability of

a symbolic execution engine in detecting memory errors, and

performs on-the-fly data-flow analysis on a minimal number

of paths to infer the interleaving points. For instance, SIFT can

leverage even a seemingly useless thread scheduling scenario

1Available at https://github.com/sysrel/SIFT.

such as Thread 0 performing the keyring installation as part

of its lookup, followed by Thread 1 checking if the keyring

needs to be installed and finding that the keyring has actually

been installed, to glean information to identify interleaving

points. This is because in addition to using the data-flow facts

available on an execution trace, it also performs light-weight

on-the-fly static analysis to identify branches that may be error

relevant. Then, in an iterative way, SIFT generates additional

scheduling scenarios and performs data-flow analysis on the

new traces to enrich the set of interleaving points until it

detects the error.

III. APPROACH

In this section, we present the technical details of our prop-

erty directed symbolic execution approach for multithreaded

code using the running example provided in Figure 3, in which

each of the functions is executed by a separate thread. This

example contains a use-after-free at line 27 that is not due to

a data race and two memory overflows at lines 29 and 30 that

involve data races.

Section III-A presents the terminology related to multi-

threaded execution. Section III-B presents the inference rules

for identifying program locations that will be used as inter-

leaving points. Section III-C presents how dynamic symbolic

execution is extended to leverage the inferred interleaving

points in effective exploration of a multithreaded code with

the goal of detecting errors.

A. Preliminaries

We assume that the multithreaded code runs under a se-

quentially consistent memory model. In this work, we consider

memory safety and safety properties that can be checked using

assert statements or customized error checking functions. Our

approach can handle memory vulnerabilities such as memory

out of bounds, NULL pointer dereferencing, Use-After-Free,

and Double-Free. We abstract the semantics of an execution

path P in terms of the property relevant memory objects

accessed by the end of the path, O, and the property relevant

instructions that get executed on P , PR, and represent this

fact with P � O,PR.

Given an execution path P and an expression exp that got

evaluated on P , Mem(exp) denotes the set of memory objects

that are accessed while evaluating exp on P and Def(exp)
denotes all the instructions that define exp on P . For a

given address expression aexp, PointsTo(aexp) denotes the

memory object that aexp refers to. Note that aexp may refer to

multiple objects due to being a symbolic expression rather than

a concrete value. However, we assume that it gets resolved

into a single object by the time the instruction completes its

execution as in symbolic execution a separate path would be

generated for each candidate object that the pointer expression

refers to. Our approach assumes that each array and each

struct is modeled as a single memory object, and, therefore,

our points-to analysis maps address expressions that refer to

different elements of the same array to the memory object

that represents the array. Similarly, it maps address expressions



1 THREAD 0 (executing lookup_user_key) THREAD 1 (executing install_user_keyrings)
2 ============================================= ============================================
3 if (!cred->user->session_keyring) { // Line 166
4 // interleaving point at 114 in install_user_keyrings
5 ...
6 if (!user->uid_keyring) { // Line 114
7 user->uid_keyring = uid_keyring; // Line 130
8 // interleaving point at 131
9 { ... if (user->uid_keyring) return 0; } // Line 114

10 key = cred->user->session_keyring;
11 atomic_inc(&key->usage);[OOPS] // Line 174
12 user->session_keyring = session_keyring; //

Line 131↪→

Fig. 1: The erroneous thread interleaving scheduled produced by SIFT to detect the NULL pointer dereference at line 92

(accessed from line 174) within the code shown in Figure 2.

1 void atomic_inc(atomic_t * v) { (v->counter)++; }
// Line 92↪→

2 int install_user_keyrings(int thread_num) {
3 user = cred->user;
4 if (user->uid_keyring) return 0; // Line 114
5 mutex_lock(&key_user_keyring_mutex);
6 if (!user->uid_keyring) { // Line 122
7 uid_keyring = (key *)malloc(sizeof (struct

key));↪→
8 session_keyring = (key *)malloc(sizeof

(struct key));↪→
9 user->uid_keyring = uid_keyring; // Line

130↪→
10 user->session_keyring = session_keyring; //

Line 131↪→
11 }
12 mutex_unlock(&key_user_keyring_mutex);
13 return 0;
14 }
15

16 key_ref_t lookup_user_key(...) {
17 if (!cred->user->session_keyring) { // Line

166↪→
18 printf("thread 1: session_keyring not

exist\n");↪→
19 ret = install_user_keyrings(1);
20 if (ret < 0) goto error;
21 }
22 key = cred->user->session_keyring;
23 atomic_inc(&key->usage); // Line 174
24 ...
25 }

Fig. 2: A simplified multithreaded code segment related to

CVE-2013-1792 [1] that involves a NULL pointer dereference.

that refer to different fields of the same struct object to the

memory object that represents the struct object.

We abstract the load instructions by ignoring the offset

value and represent them with read operations, read x, where

x refers to a memory object. In a similar way, we abstract

the store instructions by ignoring the written value and by

representing them with write operations as write x.

We distinguish memory objects with a global scope us-

ing the predicate isGlobal. We consider a local variable as

escaping if the address of the local variable is stored into

a global memory object or if it is directly or indirectly

passed as an argument to the thread creation API function.

We distinguish local variables that escape the local scope

from those that do not with the predicate localEscapes(x),

1 pthread_mutex_t mutex;
2 int data = 0;
3 char *name = NULL;
4 char *address = "1000NW10thSt";
5 char letter;
6 char *zipcode = "66666";
7 int ind=4;
8

9 void *thread1(void *arg) {
10 pthread_mutex_lock(&mutex);
11 if (data > 0)
12 free(name);
13 pthread_mutex_unlock(&mutex);
14 return 0;
15 }
16

17 void *thread2(void *arg) {
18 pthread_mutex_lock(&mutex);
19 data++;
20 pthread_mutex_unlock(&mutex);
21 ind++;
22 return 0;
23 }
24

25 void *thread3(void *arg) {
26 pthread_mutex_lock(&mutex);
27 letter = name[10];
28 pthread_mutex_unlock(&mutex);
29 letter = address[12+data];
30 zipcode[ind] = '1';
31 return 0;
32 }
33

34 int main()
35 {
36 name = malloc(20);
37 pthread_mutex_init(&mutex, 0);
38 pthread_t t1, t2, t3;
39 pthread_create(&t1, 0, thread1, 0);
40 pthread_create(&t2, 0, thread2, 0);
41 pthread_create(&t3, 0, thread3, 0);
42 pthread_join(t1, 0);
43 pthread_join(t2, 0);
44 pthread_join(t3, 0);
45 printf("Letter %d\n", letter);
46 return 0;
47 }

Fig. 3: An example multithreaded application with three

threads.

where x is the locally defined memory object. We consider

a memory object as globally visible if it is a global variable

or it is an escaping local variable and denote this fact with

the globallyV isible predicate, i.e., globallyV isible(x) ≡



isGlobal(x) ∨ localEscapes(x).
The instructions in a multithreaded program are related to

each other according to the happens-before relation [15]. There

is a happens-before relationship between two instructions i1
and i2 that get executed on the same path P , denoted by i1

hb−→
P

i2 if one of the following holds:

• i1 and i2 are executed by the same thread and i1 gets

executed before i2 according to the program order.

• i1 gets executed by a thread tk before tk creates thread

tj that executes i2.

• i1 gets executed by a thread tk after tk joins thread tj
that executes i2.

• i1 is a release operation on a lock object o and i2 is an

acquire operation on o and i1 and i2 gets executed by

different threads.

• There exists i3 such that i1
hb−→
P

i3 and i3
hb−→
P

i2.

B. Inferring Interleaving Points

Our goal is to analyze an execution trace of a multithreaded

program and to identify the program locations at which a

thread interleaving, i.e., context switch, may lead to a failure of

a correctness property such as memory safety or an invariant

that must hold at a specific program location. We call such

program locations interleaving points. In our approach, the

process of inferring interleaving points works in three steps for

each execution path: 1) Collecting data-flow and control-flow

facts about the instructions executed on that path, 2) Creating

thread access information for each property relevant object

discovered in Step 1), and 3) Filtering out accesses that must

not happen in parallel. Below, we present the details about

each step.

1) Step 1: Collecting data-flow and control-flow facts:
Figure 4 shows the inference rules that are applied to the

instructions that get executed on an execution path P . All

the rules are applied on the instructions executed on a path P
until a fixpoint is reached for the property relevant memory

objects O and the property relevant instructions PR.

Rule ARRAY ACCESS analyzes expressions that are used

in array element accesses. We analyze the trace to find

instructions that get involved in defining the expression as

well as the objects that are accessed in the construction of

the expression. Such objects and instructions are included in

the error relevant object and instruction sets, respectively. For

example, the array index expression at line 27 in Figure 3 is a

constant, and, hence, it would not yield any memory objects

or instructions whereas the array access at line 29 would mark

the global variable data and the write operation at line 19 as

property relevant depending on the order of scheduling, i.e.,

if line 19 gets executed before line 29 on the analyzed path.

Rule DEALLOC analyzes the pointer expressions that

are passed to deallocation functions, which we denote with

free(x). As long as the pointer expression x refers to a

globally visible object, the object and the deallocation instruc-

tions are included in the error relevant object and instruction

sets, respectively. An important detail to consider is that, we

record the deallocation instruction as a write operation as it

deallocates the object and interferes with any subsequent read

operation. For example, both the deallocation operation on line

12 as well as the read operation at line 27 that depends on

line 12 are marked as property relevant.

Rule ALLOC analyzes the addresses that are returned by

allocation functions such as malloc, which we denote with

x ← malloc(size). As long as the pointer expression x refers

to a globally visible object, the object and the allocation

instruction are included in the error relevant object and in-

struction sets, respectively. An important detail to consider is

that, we record the allocation instruction as a write operation

as it creates the object and interferes with any subsequent read

and write operations. For example, because of the deallocation

operation at line 12, the dynamic memory operation and the

memory object created at line 36 are both marked as property

relevant.

Rule READ and WRITE analyze the load instructions and

the store instructions, respectively. As long as the accessed

object is globally visible, the object and the access instruction

are included in the error relevant object and instruction sets,

respectively. For example, the read operations at lines 11, 12,

19, 21, 27, 29, and 45 and the write operations at lines 19, 21,

30, and 36 would be marked as property relevant. Similarly,

the variables mutex, data, name, address, letter, ind, and

zipcode would be marked as property relevant.

Rule TARGET incorporates functions that are deemed im-

portant by the user. Target denotes the set of function names

provided by the user as property relevant, and we will refer

to it as the target list. At callsites of these functions, the

expressions that correspond to the arguments are analyzed

and the instructions that define these expressions and memory

objects accessed during the computations of these expressions

are included in the error relevant instruction and object sets,

respectively. In our approach, by default we consider the

assert and abort functions as part of the target list.

However, the user can specify additional function names to

be used as targets.

Rule CNTFLOW1 analyzes the branch instructions with

multiple targets. If the segment of the execution trace that

gets executed after the branch instruction have error relevant

instructions recorded, we also include the instructions that

define the branch condition and the memory objects that are

accessed during the computation of the expressions in the

error relevant instruction and object sets, respectively. For

example, consider the if statement at line 11. Assume that

the condition evaluates to false and the instructions that get

executed under the false branch condition includes a property

relevant instruction, e.g., the read operation at line 29. This

makes any objects accessed for evaluating the loop condition,

i.e., data, also property relevant.

Rule CNTFLOW2 also analyzes the branch instructions

with multiple targets. However, the goal of this rule is to

statically analyze the instructions that are reachable by the

branch target, t2, that was not executed on the current path.

Since we do not have runtime information about such in-



[ARRAY ACCESS]
P ≡ P ′;A[exp] P ′ � O′, PR′

P � O′ ∪Mem(exp), PR′ ∪Def(exp)
[DEALLOC]

P ≡ P ′; free(x) globallyV isible(PointsTo(x)) P ′ � O′, PR′

P � O′ ∪ {PointsTo(x)}, PR′ ∪ {write x}

[ALLOC]
P ≡ P ′;x ← malloc(size) globallyV isible(PointsTo(x)) P ′ � O′, PR′

P � O′ ∪ {PointsTo(x)}, PR′ ∪ {write x} [READ]
P ≡ P ′; read x globallyV isible(x) P ′ � O′, PR′

P � O′ ∪ {x}, PR′ ∪ {read x}

[WRITE]
P ≡ P ′;write x globallyV isible(x) P ′ � O′, PR′

P � O′ ∪ {x}, PR′ ∪ {write x} [TARGET]
P ≡ P ′; f(args) f ∈ Target P ′ � O′, PR′

P � O′ ∪⋃
a∈args Mem(a), PR′ ∪Def(a)

[CNTFLOW1]
P ≡ P1; branch exp, t1, t2;P2 P1 � O1, PR1 P2 � O2, PR2 PR2 �= ∅

P � O1 ∪O2 ∪Mem(exp), PR1 ∪ PR2 ∪Def(exp)

[CNTFLOW2]
P ≡ P1; branch exp, t1, t2;P2 t1 executed in P2 isTargetRelevant(t2) P1 � O1, PR1 P2 � O2, PR2

P � O1 ∪O2 ∪Mem(exp), PR1 ∪ PR2 ∪Def(exp)

Fig. 4: The rules used by ComputeDFCFFacts for the collection of data-flow and control-flow facts for error relevant

instructions.

P � {x} ∪O, {writei x} ∪ PR tid(writei x) = tk

{(tk, writei x)} ⊆ WM [x]

P � {x} ∪O, {readi x} ∪ PR tid(readi x) = tk

{(tk, readi x)} ⊆ RM [x]

Fig. 5: The rules used by ComputeWriteReadMaps for

constructing the write (WM ) and read (RM ) maps for each

error relevant memory object.

structions, we determine the relevance based on whether there

are any reachable memory allocation/deallocation instructions

and any callsites that involve functions from the target list.

We use the predicate isTargetRelevant(t) to refer to the

result of this static analysis stage, which is performed intra-

procedurally and can be configured with respect to the depth

of the search that is expressed in terms of the number of basic

blocks analyzed. We use a default value of 1, which means the

immediate basic block that was not executed, t, is analyzed

only. If so, we include the instructions that define the branch

condition expression and the memory objects that are accessed

during the computation of the expression in the error relevant

instruction and object sets, respectively. For example, if the if

statement at line 9 evaluates to false, with the CNTFLOW2

rule, the global variable data would be considered as property

relevant as there is a callsite of the free function in the

branch that was not executed. However, we would not be able

to reason about the objects that get accessed at that callsite.

We record each instruction along with the context infor-

mation. This is because an instruction of a function may be

property relevant in one calling context but it may not be

property relevant in others. So, we capture the stack trace

to represent the calling context of each instruction. However,

since the property relevant instructions will be eventually used

as interleaving points in other paths, we scrub path specific

information such as the actual arguments of the functions from

the stack traces that we use as context information.

2) Step 2: Creating thread access maps on property relevant
objects: Recall that in Step 1, we record each property relevant

instruction as either a write operation or a read operation. In

Step 2, for a given execution path P we create thread access

maps, WM and RM , for the write accesses and the read

accesses, respectively, based on the property relevant objects

that have been collected in Step 1. Figure 5 shows the rules for

creating these maps. Once each instruction gets executed on

P , we record the thread that executes it. We use the notation

ti to refer to a thread instance with the unique identification

number i and the function tid(inst) to refer to the thread

instance that executes the instruction inst on P .

3) Step 3: Filtering out accesses that must not happen in
parallel: In this step, we use the read and write access maps

that were created in Step 2 to identify conflicting accesses,

i.e., the write-write and write-read accesses that are performed

on common memory objects. Our goal is to identify those

pairs of accesses that may be subject to a different order

of execution on some alternative schedule. In this step, we

generate a set of shared objects, Shared, that may be accessed

by different threads in a different order in some alternative

schedule and a map from these shared memory objects to the

set of instructions that may be reordered, IPM . So, IPM [x]
denotes the set of conflicting instructions that access shared

object x and may be used as interleaving points. If we identify

that the two conflicting accesses do have only one possible

ordering, which was realized on the current execution path

P , we ignore these access pairs as they would not happen

in parallel in any execution path that satisfies the same data

constraints that hold on P . So, a memory access a is only

filtered out if there are no other conflicting memory accesses

on P that may happen in parallel with a.

We define two rules: INSYNC and NOTINSYNC. In both

rules, for conflicting operations, aj x and ai x, we check if



[INSYNC]

P � O,PR x ∈ O (tk, aj x) ∈ WM [x] (tm, ai x) ∈ WM [x] ∪RM [x] tk �= tm inCommonSync(ai x, aj x)

ai x � hb−→
P

create tk term tm � hb−→
P

aj x aj x � hb−→
P

create tm term tk � hb−→
P

ai x

{aj x, ai x} ∪ Sync(aj x) ∪ Sync(ai x) ⊆ IPM [x], x ∈ Shared

[NOTINSYNC]

P � O,PR x ∈ O (tk, aj x) ∈ WM [x] (tm, ai x) ∈ WM [x] ∪RM [x]tk �= tm ¬inCommonSync(ai x, aj x)

ai x � hb−→
P

create tk term tm � hb−→
P

aj x aj x � hb−→
P

create tm term tk � hb−→
P

ai x

{aj x, ai x} ⊆ IPM [x], , x ∈ Shared

Fig. 6: The rules used by UpdateInterleavingPoints for inferring interleaving points that may create error revealing schedules.

there are any happens-before ordering between them due to

thread creation or thread join operations. If so, we continue

checking for other pairs of accesses. Otherwise, we consider

the pair of accesses as interleaving relevant. However, we need

to do an additional check on whether these two accesses are

embedded within synchronization blocks that access the same

lock object. This is because switching from one thread to the

other when the former is holding a lock that the latter may

try to acquire may create unnecessary switching overhead. As

once the latter one gets blocked another thread will need to

be scheduled. So, if the two conflicting instructions are within

related synchronization blocks, in rule INSYNC, we find all

the acquire instructions that precede the memory accesses

without a matching release operation that also comes before

the memory access. Similarly, we find the matching release

operations for those acquire instructions. Let Sync(i) denote

the acquire and release pairs that enclose instruction i. We

include Sync(aj x) and Sync(aji x) in IPM [x] along with

the conflicting instructions. Otherwise, in rule NOTINSYNC,

only the conflicting instructions, aj x and ai x, are included

in IPM [x]. In both cases, we include x in Shared.

For example, lines 10, 13, 18, and 20 would be marked as

property relevant due to the conflicting accesses on lines 11

and 19. On the other hand, since the conflicting instructions

on lines 21 and 30 are not enclosed by the acquire and release

operations of a common lock, lines 21 and 30 would be

marked as property relevant.

C. Selective Symbolic Execution

In this section, we present the technical details of per-

forming selective symbolic execution for multithreaded code.

Our goal is to direct symbolic execution to select thread

schedules that are likely to reach some error over those

that may not. Below, first we provide some background on

symbolic execution, and then present how we adopt baseline

symbolic execution to achieve our goal of detecting errors in

multithreaded code faster.
1) Background on Dynamic Symbolic Execution: Dynamic

symbolic execution is a static program analysis technique

that can reason about symbolic inputs. The word “dynamic”

refers to the fact that concrete and symbolic values can be

mixed on an execution path. Dynamic symbolic execution

has two major flavors: concolic and execution-tree generation

based. A symbolic execution engine typically interprets the

instructions of an intermediate language, such as the LLVM

IR [16], so that expressions that involve symbolic values are

manipulated according to the semantics of the instruction. In

this paper, we focus on the execution-tree generation based

approach. When interpreting conditional branch instructions

with symbolic branch conditions, a symbolic execution engine

checks the satisfiability of the branch condition for each target

using an SMT solver and to simulate each feasible target

it generates a separate path. On each path it conjoins the

symbolic branch conditions to generate the path constraint. So,

the symbolic execution engine generates a tree of symbolic ex-

ecution paths or states, where the internal nodes with multiple

children denote branching points and each leaf node denotes a

completed execution corresponding to an equivalence class of

the input space. A challenge in symbolic execution is the well-

known path explosion problem as the tree of executions may

grow exponentially with the increasing number of branching

instructions. So, symbolic execution is typically configured to

run up to some timeout value.

Algorithm 1 The main algorithm as implemented by the SIFT

tool.
1: SIFT(Prog: Multi-threaded Program, pmode: SINGLETONS, COM-

MON, ONE, timeout: Real, N : Natural)
2: (IP, Shared) ← (∅, ∅)
3: partitions ← {∅}
4: for i: 1 to N do
5: for each p ∈ partitions do
6: (TIP, TShared) ← ExploreInferSelective(Prog, p, timeout)
7: IP ← IP ∪ TIP
8: Shared ← Shared ∪ TShared
9: end for

10: if pmode is COMMON then
11: partitions ← {IPM [x] | x ∈ Shared} � Initialize partitions
12: while exists s1, s2 ∈ partitions s.t. s1 ∩ s2 �= ∅ do �

Common int. points
13: partitions ← partitions∪{s1 ∪ s2} \ {s1, s2} � Merge
14: end while
15: partitions ← sortNonDecreasing(partitions)
16: else
17: if i = N − 1 and pmode is SINGLETONS then � Apply each

int. point separately
18: partitions ← ⋃

x∈Shared{{ip} | ip ∈ IPM [x}]
19: else � pmode is ONE or earlier steps for SINGLETONS
20: partitions ← {⋃x∈Shared IPM [x]}
21: end if
22: end if
23: end for



2) The main algorithm: SIFT: Algorithm 1 shows our

approach at a high-level. It takes as input a multithreaded

program, Prog, the mode of partitioning the interleaving

points, pmode, a timeout value, timeout, and the number of

steps, N . In each step, SIFT performs symbolic execution

on the given multithreaded program by selectively generating

alternative scheduling of the threads based on the current set

of interleaving points and generates new interleaving points to

be considered for the next step.

SIFT can be configured to use the interleaving points

according to one of the three modes of partitioning, which

can be ONE, SINGLETONS, or COMMON . In the

ONE mode, all interleaving points are combined in a single

partition. Although this mode provides the most exhaustive

exploration of the thread schedulings with respect to the

interleaving points, it is the most costly one due to the number

combinations. In the SINGLETONS mode, SIFT generates

as many partitions as the number of interleaving points so that

each of them can be considered as the only interleaving point

during symbolic execution. This mode can be more efficient

than the ONE mode. However, it can only be effective for

generating error paths that require only a single voluntary

context switch, i.e., one that is not due to a blocking operation,

at a specific program location. In the COMMON mode, a

separate partition is created for each shared object. However,

if two partitions somehow have common interleaving points

then they get merged into one.

For example, for our running example in Figure 3, the set of

shared objects that are used to identify the partitions consists

of data, name, and ind. The read operation at line 21 and

the write operation at line 30 are included in one partition due

to the shared object ind and the remaining property relevant

instructions, lines 10, 13, 18, 20,, 26, 28, 29, 36, end up

being placed in another partition due to the shared objects

data and name. The reason instructions that access data and

those that access name get merged in one partition is due to

being enclosed by common acquire and release instructions.

The COMMON mode can have better coverage than the

SINGLETONS mode and if multiple partitions can be gen-

erated, it can achieve better performance than the ONE mode.

In this mode, we also sort the partitions in nondecreasing order

of their sizes.

So, at every step SIFT goes through each partition and uses

the interleaving points in that partition to reach the error state

and at the same time it generates the interleaving points for

the next state. The SINGLETONS mode is different from

the ONE and COMMON modes as it only gets applied

in the last mode. This means that when configured in the

SINGLETONS mode, SIFT works in the ONE mode in

all steps except the last one.

3) Selective Scheduling Exploration: It is intractable to

generate all possible thread interleavings during the analysis

of a multithreaded program. Algorithm 2, instead, uses the

given set of interleaving points, IP , to explore the thread

interleaving space of the given program Prog. Similar to

baseline symbolic execution, it first creates an initial symbolic

Algorithm 2 An algorithm for inferring thread interleaving

points from the symbolic execution of a program until a bound

is reached.
1: ExploreInferSelective(Prog: Multi-threaded Program, IP : Set of Inter-

leaving Points, timeout: Real): (Set of Interleaving Points, Set of Shared
Objects)

2: state ← init(Prog)
3: States ← {state}
4: Let IP ← ∅
5: while States not empty and timeout not reached do
6: cur ← ChooseNext(States)
7: if s.thread is blocked then
8: succs ← ExecuteNextInstConservative(s, s.thread)
9: else

10: succs ← ExecuteNextInstInterleave(s, s.thread, IP )
11: end if
12: for each suc ∈ succs do
13: if bug manifested in suc then
14: Report bug
15: else
16: if suc terminated then
17: Term ← Term ∪ {suc}
18: else
19: States ← States \ {cur} ∪ {suc}
20: end if
21: end if
22: end for
23: end while
24: (IP ′, Shared′) ← (λx. ∅, ∅)
25: for each state ∈ States ∪ Term do
26: (O,PR) ← ComputeDFCFFacts(state.Path)
27: (WM,RM) ← ComputeWriteReadMaps(state.Path,O, PR)
28: (TIP, TShared) ← UpdateInterleavingPoints(Prog,

state.Path,WM ,RM )
29: (IP ′, Shared′) ← (λx.IP ′[x ← IP ′[x] ∪ TIP [x]], Shared′ ∪

TShared)
30: end for
31: return (IP ′, Shared′)

Algorithm 3 The algorithm that symbolically executes an

instruction for a multi-threaded program and keeps executing

the same thread until it gets blocked.

1: ExecuteNextInstConservative(s: Execution State, t: Thread): set of
Execution States

2: if isEnabled(s, t) is false then
3: i ← 0
4: while i < s.queue.size() do
5: t′ ← s.queue.remove()
6: if isEnabled(s, t′) is true then
7: break
8: else
9: s.queue.add(t′)

10: t′ ← t
11: end if
12: i ← i+ 1
13: end while
14: if t′ = t then
15: Report deadlock and terminate path
16: else
17: s.queue.add(t)
18: s.thread ← t′
19: end if
20: end if
21: return ExecuteNextInst(s, s.thread.stack, s.thread.pc)

execution state, in which the global variables with initializers

have been initialized, the stack frame has the stack frame for

the main function, the program counter, pc, is initialized to the



first instruction of the main function, and the path constraint

, PC, is initialized to true. We have extended a symbolic

execution state to accommodate multiple threads. Each thread,

including the main thread, has its own stack and the program

counter and is identified by a unique integer. The state keeps

track of the id of the current thread that is in execution. It

keeps other threads in a queue and records whether a thread is

enabled or not. It keeps track of the symbolic execution states

in States and in each iteration of the main loop, it chooses

one state according to some scheduling policy, executes the

next instruction for the current thread.

Algorithm 4 The algorithm that symbolically executes an

instruction for a multi-threaded program and creates alternative

thread schedules at the interleaving points.

1: ExecuteNextInstInterleave(s: Execution State, t: Thread,
IP :Interleaving Points): set of Execution States

2: if s.thread.pc ∈ IP is true then � An interleaving point
3: succ ← ∅
4: for each thread t′ �= s.thread do � Schedule every other enabled

thread
5: if isEnabled(s, t′) then
6: s′ ← s.copy()
7: s′.queue.remove(t′)
8: s′.queue.add(s′.thread)
9: s′.thread ← t′

10: succ ← succ ∪ {s′}
11: end if
12: end for
13: return succ ∪ ExecuteNextInst(s, s.thread.stack, s.thread.pc)
14: else � Do not schedule any other thread and keep executing the current

one
15: return ExecuteNextInst(s, s.thread.stack, s.thread.pc)
16: end if

The execution of an instruction involves thread scheduling,

which depends on two factors: 1) whether the current thread is

enabled or not, and 2) whether the instruction to be executed

is an interleaving point. If the current thread is not enabled,

Algorithm 2 calls Algorithm 3 to choose the next enabled

thread from the queue and executes the instruction mostly like

baseline symbolic execution except the fact that any updates to

the local variables are performed on the relevant thread’s stack.

If the thread is enabled then Algorithm 2 calls Algorithm 4,

which generates an alternative schedule in a copy of the current

execution state if the executed instruction is an interleaving

point. An alternative schedule based on an interleaving point

is generated before the interleaving point gets executed as

shown in Algorithm 4. However, there is an exception to this

rule: the release operations. This is because scheduling another

thread while the lock is held by the current thread would just

incur extra overhead in terms of extra context switching if

the scheduled thread would attempt to acquire the same lock.

We abstract away this implementation detail in Algorithm 4

to keep it concise. If the instruction to be executed is not an

interleaving point then the instruction gets executed similar to

the baseline symbolic execution while updating thread related

data structures properly.
After generating the symbolic execution states, Algorithm

2 goes over each state and analyzes the execution path to

perform data-flow analysis as explained in Section III-B.

TABLE I: Comparing partitioning modes of SIFT on SV-

COMP and CVE benchmarks in terms of the number of times

yielding the minimum detection time within a timeout of 500

secs.

.

N S PI SINGLETONS COMMON ONE
2 RC 10 13 4 1
2 RC 100 13 2 5
2 D 10 5 5 11
2 D 100 4 9 6
3 RC 10 3 11 6
3 RC 100 6 10 4
3 D 10 6 11 11
3 D 100 10 10 3

Total 60 62 47

Finally, it returns the interleaving point map and the set of

shared objects to be used in the next step in Algorithm 1.

IV. EVALUATION

We have implemented our approach on top of the KLEE

symbolic execution engine [5]. SIFT currently works on the

LLVM 3.8 bitcode. We have run our experiments on an

Intel Xeon CPU 2.30GHz with 256 GB memory. We have

applied SIFT to the Linux device driver benchmarks from

SV-COMP [3] and to the CVE benchmarks that were used

to evaluate ConVul [7], [2]. For each mode of partitioning the

interleaving points, SINGLETONS, COMMON, and ONE, we

have explored various configurations in terms of the number

of steps (see the input to Algorithm 1), N , the path scheduling

algorithms, S, as provided by the symbolic execution engine

(D for Depth-First Search and RC fr Random and coverage

based), and the maximum number of paths analyzed to in-

fer the interleaving points, PI . Motivated by the empirical

evidence [20], [19], [18] that only few thread interleavings

manifest concurrency bugs, we bounded the maximum number

of context switches to 3 on each symbolic execution path. For

each configuration and benchmark combination, we ran SIFT

three times and computed the average time to detect the error.

While Table I shows a summary of overall results, Tables

II and III show the lowest average error detection times in

seconds for each benchmark, for N = 2 and N = 3, respec-

tively, along with the configuration that yielded those times.

Among the SV-COMP benchmarks, race-1_1-join and

race-4_1-thr are known not to have any bugs. Therefore,

SIFT does not report any errors for these benchmarks as

denoted by “-”. In the following subsections, we evaluate our

approach with regards to various research questions.

A. In which partitioning mode SIFT detects the errors the
fastest?

Table I shows the number of times each partitioning strategy

yields the fastest detection for each configuration. as well as

the total numbers across all configurations. Comparing the to-

tal number of cases, the COMMON and SINGLETONS modes

perform better than the ONE mode. Also, as shown in Table

III.a, for the SV-COMP benchmark race-4_2-thr, SIFT

could detect the error within 500 secs only in the COMMON

mode. Although, the SINGLETONS mode, perform close to



TABLE II: Comparing various configurations that yield the lowest average error detection times for the three modes of SIFT.

Timeout=500 secs. N=2. ET , S, and PI denote the error detection time in seconds, the path scheduling algorithm, and the

number of paths analyzed to infer interleaving points, respectively. RC denotes random + coverage based scheduling and D
denotes depth-first search. - means the error could not be detected.

a) Error detection for SV-COMP benchmarks.

Benchmark SINGLETONS COMMON ONE
ET (s) S PI ET (s) S PI ET (s) S PI

race-1 1-join - - - - - - - - -

race-1 2-join 0.19 D 100 0.07 D 100 0.06 D 10

race-1 3-join 0.19 D 100 0.06 D 100 0.06 D 10

race-2 1-con. 0.87 D 10 0.22 D 100 0.22 D 10

race-2 2-con. 0.18 D 100 0.19 D 100 0.18 D 10

race-2 3-con. 0.21 D 100 0.18 D 100 0.18 D 10

race-2 4-con. 0.21 D 100 0.19 D 100 0.19 D 10

race-2 5-con. 0.21 D 100 0.22 D 100 0.22 D 10

race-3 1-con. 0.90 D 100 0.63 D 100 0.21 D 10

race-3 2-con. 0.35 D 100 0.58 D 100 0.20 D 10
race-4 1-thr. - - - - - - - - -
race-4 2-thr. - - - - - - - - -

b) Error detection for real world CVE benchmarks
.

Benchmark SINGLETONS COMMON ONE
ET (s) S PI ET (s) S PI ET (s) S PI

CVE 2009 3547 0.20 D 100 0.14 D 100 0.14 D 100

CVE 2011 2183 8.32 D 10 6.20 D 100 16.14 D 100
CVE 2013 1792 - - - - - - - - -

CVE 2015 7550 0.72 RC 100 0.42 D 10 0.44 D 100
CVE 2016 1972 - - - - - - - - -

CVE 2016 1973 19.96 D 10 4.31 RC 100 4.99 D 10

CVE 2016 7911 0.38 D 10 0.28 D 100 0.16 D 100

CVE 2016-9806 0.56 D 100 2.07 D 10 0.55 D 10

CVE 2017 15265 2.98 D 10 5.29 D 10 - - -

CVE 2017-6346 1.40 D 100 1.36 D 100 1.49 D 100

TABLE III: Comparing various configurations that yield the lowest average error detection times for the three modes of SIFT.

Timeout=500 secs. N=3.

a) Error detection for SV-COMP benchmarks.

Benchmark SINGLETONS COMMON ONE
ET (s) S PI ET (s) S PI ET (s) S PI

race-1 1-join - - - - - - - - -

race-1 2-join 0.07 D 100 0.07 RC 10 0.07 D 100

race-1 3-join 0.07 D 100 0.06 D 10 0.07 D 100

race-2 1-con. 0.22 D 100 0.22 D 100 0.22 D 10

race-2 2-con. 0.19 D 100 0.18 D 100 0.19 D 100

race-2 3-con. 0.18 D 100 0.18 D 100 0.19 D 10

race-2 4-con. 0.19 D 100 0.19 D 100 0.19 D 10

race-2 5-con. 0.22 D 100 0.22 D 10 0.22 D 10

race-3 1-con. 0.21 D 100 0.65 D 100 0.22 D 10

race-3 2-con. 0.19 D 100 0.58 D 100 0.19 D 10
race-4 1-thr. - - - - - - - - -

race-4 2-thr. - - - 52.08 RC 10 - - -

b) Error detection for real world CVE benchmarks
.

Benchmark SINGLETONS COMMON ONE
ET (s) S PI ET (s) S PI ET (s) S PI

CVE 2009 3547 0.14 D 100 0.14 D 100 0.14 D 100

CVE 2011 2183 8.49 D 10 0.91 D 100 20.04 D 10

CVE 2013 1792 - - - 8.25 RC 100 24.62 D 100

CVE 2015 7550 0.44 D 100 0.37 D 100 0.37 D 100

CVE 2016 1972 7.70 D 10 13.46 D 10 7.72 D 10

CVE 2016 1973 5.36 D 10 4.20 RC 100 5.34 D 10

CVE 2016 7911 0.14 D 100 0.28 D 100 0.15 D 10

CVE 2016-9806 0.55 D 100 4.18 RC 100 0.56 D 10

CVE 2017 15265 5.29 D 100 1.69 D 10 - - -

CVE 2017-6346 1.47 D 100 1.39 D 100 1.48 D 100

the COMMON mode, SINGLETONS cannot detect errors that

require multiple context switches. An example for this case is

the CVE-2013-1792 benchmark that was presented in Section

II. As shown in Figure 1, it requires two context switches.

Therefore, as shown in Table II.b, SIFT cannot detect this error

in the SINGLETONS mode while it can in the COMMON

mode.

B. What is the impact of specific configurations on the parti-
tioning modes?

As shown in Tables II and III, the depth-first search path

scheduling yields the shortest error detection times. This can

be explained as having more states with completed executions,

and, hence, yielding a more complete picture of the dependen-

cies among program statements. Although one may think that

SIFT can be configured to use depth-first search, it should

be noted that there could be cases such as the SV-COMP

benchmark race-4 2-thr, where depth-first search algorithm

may miss the error within the given time bound.

Although SIFT could detect the errors when N = 2 for most

of the benchmarks, as shown in Tables II.b and III.b, SIFT

could detect the error for benchmark CVE-2016-1972 only

when N = 3. Similarly, as shown in II.a and III.a, SIFT could

detect the error for SV-COMP benchmark race-4_2-thr
only when N = 3.

C. What is the overhead of on-the-fly data-flow analysis in
SIFT?

We have computed the time spent for on-the-fly data-

flow analysis to infer the interleaving points, which includes

computation of data-flow facts, read/write maps, happens-

before analysis, and updating the partitions. We wanted to find

out what percentage of the time to error detection is spent on

the on-the-fly data-flow analysis.

It turns out that the overhead of on-the-fly data-flow analysis

is higher when depth-first search is used compared to the

path scheduling based on a combination of random and

coverage based. For the CVE benchmarks, the overheads for



the SINGLETONS, COMMON, and ONE modes with depth-

first search are 18.74%, 21.20%, and 21.12%, respectively,

and those with the random and coverage based scheduling

are 15.37%, 14.46%, and 7.59%, respectively. For the SV-

COMP benchmarks, the overheads for the SINGLETONS,

COMMON, and ONE modes with depth-first search are

19.49%, 24.36%, 28.91%, respectively, and those with the

random and coverage based scheduling are 16.94%, 8.82%,

6.61%, respectively. We think that the reason for the overhead

difference is due to having more complete paths and more

data-flow facts to glean and to process. While this increases

the processing time, it also improves error detection and leads

to faster detection.

Finally, SIFT could detect all the memory errors in these

benchmarks including CVE-2011-2183, which could not be

detected by ConVul as mentioned in [7]. We think that the

success of SIFT relies on its property guided exploration of

the search space. SIFT could detect this bug with all the

partitioning modes, while achieving the fastest detection with

the COMMON mode.

V. RELATED WORK

It is impractical to exercise all possible scheduling scenarios

to analyze multithreaded software. Previous work dealt with

this challenge by designing a Domain Specific Language for

developers to guide the exploration [8] and by synthesizing

thread schedules from sequential tests [21] or from concurrent

execution traces [10], [12]

Our approach is similar in spirit to all the approaches

that analyze an execution trace to derive data-flow and syn-

chronization dependencies among the events on an execution

trace including Partial Order Reduction [22] and others [21],

[12], [9]. However, SIFT’s exploration is guided by property

relevant interleaving points that are computed over the precise

memory model provided by symbolic execution.

Maximal Causality Reduction (MCR) generates an equiv-

alence class of traces with respect to happens-before rela-

tionship using constraint solving [10]. Although MCR avoids

redundancy in generating interleaving scenarios, it is not

property or failure directed. Maximal Path Causality (MPC)

is combined with symbolic execution in [23] to effectively

search the input and the schedule space. Our approach, on

the other hand, searches the state space of input and inter-

leaving scenarios in a systematic way by leveraging the path

scheduling algorithms implemented by the symbolic execution

engine. SIFT prioritizes scheduling relevant scenarios based on

the property relevance.

Concolic execution is used in [12] to find scheduling-

sensitive branches. The trace partitioning used in this work

is complementary to our interleaving point partitioning.

An assertion guided pruning strategy is used to symbolically

execute multithread programs in [9]. This approach uses an ap-

proximate weakest precondition computation for the explored

states to filter out execution paths that are guaranteed not to

reach the failure state. It also uses static slicing and dynamic

partial order reduction to reduce the exploration stage. Our

approach leverages the precise memory model of dynamic

symbolic execution for points-to analysis and, therefore, it

can handle non-standard pointer arithmetic that is found in

systems code more precisely than standard points-to analysis

techniques [24]. Also, our approach explores the state space

in an incremental fashion to reduce the overhead of on-the-fly

data-flow analysis.

Real execution traces, static analysis, and guided symbolic

execution are combined in [17] to generate failing variants

of the real execution traces and to identify root cause of the

failures via differential trace analysis.

ConVul [7] analyzes dynamic execution traces to identify

exchangeable events that are either not ordered with respect

to a happens-before order or are transitively ordered through

a small number of close proximity events. Our approach

also analyzes access to shared objects when determining the

interleaving points. SIFT could detect the vulnerabilities in all

the CVE benchmarks that could be detected by ConVul and it

can even detect the one, CVE-2011-2183, that was missed

by ConVul. Furthermore, SIFT can support errors that are

manifested via assertion failures in addition to the three types

of memory vulnerabilities detected by ConVul.

UAF [11] analyzes dynamic execution traces to detect Use-

After-Free vulnerabilities. It considers allocation, deallocation,

and memory access operations as scheduling relevant and uses

the maximal causality model to infer error revealing schedules.

SIFT handles additional types of memory vulnerabilities as it

supports a more generic definition of error relevant events.

ConCrash analyzes the stack traces of crashes to reproduce

crash inducing thread interleavings [4]. SIFT, on the other

hand, analyzes a state space without prior knowledge of the

erronous behavior. Race detection approaches [14], [6], [13]

may miss memory vulnerabilities that are due to logical errors

and those that are not due to races.

VI. CONCLUSIONS

We have presented, SIFT, a property directed selective

scheduling approach for symbolic execution of multithreaded

code. SIFT leverages the precise memory model of symbolic

execution for precise detection of property relevant data-

flow and uses this information to identify interleaving points.

We have equipped SIFT with three partitioning techniques

to support a wide range of applications with different pat-

terns of error revealing scheduling scenarios. SIFT has been

implemented on top of the KLEE symbolic execution en-

gine. Experimental results show that SIFT can effectively sift

through a huge state space of scheduling scenarios and quickly

detects memory vulnerabilities and assertion failures. In future

work, we will extend SIFT with the handling of additional

synchronization primitives.

VII. ACKNOWLEDGEMENTS

This work was funded by the US National Science Foun-

dation under the CNS-1942235 award.



REFERENCES

[1] CVE-2013-1792. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2013-1792. Online; accessed 1 January 2021.

[2] Detecting Concurrency Memory Corruption Vulnerabilities. https://
github.com/mryancai/ConVul. Online accessed 1 January 2021.

[3] SV-COMP: Linux Device Driver Races. https://github.com/sosy-lab/sv-
benchmarks/tree/master/c/ldv-races. Online; accessed 1 January 2021.

[4] Francesco A. Bianchi, Mauro Pezzè, and Valerio Terragni. Reproducing
concurrency failures from crash stacks. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, pages 705–716. ACM,
2017.

[5] Cadar, Cristian and Dunbar, Daniel and Engler, Dawson. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI’08, page
209–224. USENIX Association, 2008.

[6] Yan Cai and Lingwei Cao. Effective and precise dynamic detection of
hidden races for java programs. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, page
450–461, 2015.

[7] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and
Bin Liang. Detecting concurrency memory corruption vulnerabilities.
In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, pages 706–717. ACM, 2019.

[8] Tayfun Elmas, Jacob Burnim, George C. Necula, and Koushik Sen.
CONCURRIT: a domain specific language for reproducing concurrency
bugs. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 153–
164. ACM, 2013.

[9] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti
Gupta. Assertion guided symbolic execution of multithreaded programs.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, pages 854–865. ACM, 2015.

[10] Jeff Huang. Stateless model checking concurrent programs with maxi-
mal causality reduction. In David Grove and Steve Blackburn, editors,
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, pages 165–174. ACM, 2015.

[11] Jeff Huang. UFO: predictive concurrency use-after-free detection. In
Proceedings of the 40th International Conference on Software Engi-
neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
pages 609–619. ACM, 2018.

[12] Jeff Huang and Lawrence Rauchwerger. Finding schedule-sensitive
branches. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, pages 439–449. ACM, 2015.

[13] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. Razzer:
Finding kernel race bugs through fuzzing. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 754–768, 2019.

[14] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta.
Fast and accurate static data-race detection for concurrent programs. In
Proceedings of the 19th International Conference on Computer Aided
Verification, CAV’07, page 226–239, Berlin, Heidelberg, 2007. Springer-
Verlag.

[15] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[16] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis and transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’04, page 75, USA,
2004.

[17] Nuno Machado, Brandon Lucia, and Luı́s E. T. Rodrigues. Production-
guided concurrency debugging. In Rafael Asenjo and Tim Harris, edi-
tors, Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain,
March 12-16, 2016, pages 29:1–29:12. ACM, 2016.

[18] Madan Musuvathi and Shaz Qadeer. CHESS: systematic stress testing
of concurrent software. In Germán Puebla, editor, Logic-Based Program

Synthesis and Transformation, 16th International Symposium, LOPSTR
2006, Venice, Italy, July 12-14, 2006, Revised Selected Papers, volume
4407 of Lecture Notes in Computer Science, pages 15–16. Springer,
2006.

[19] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of
concurrent software. In Nicolas Halbwachs and Lenore D. Zuck, editors,
Tools and Algorithms for the Construction and Analysis of Systems,
11th International Conference, TACAS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3440 of
Lecture Notes in Computer Science, pages 93–107. Springer, 2005.

[20] Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. In
William Pugh and Craig Chambers, editors, Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and
Implementation 2004, Washington, DC, USA, June 9-11, 2004, pages
14–24. ACM, 2004.

[21] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan.
Synthesizing racy tests. In David Grove and Steve Blackburn, editors,
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, pages 175–185. ACM, 2015.

[22] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby.
Efficient stateful dynamic partial order reduction. In Klaus Havelund,
Rupak Majumdar, and Jens Palsberg, editors, Model Checking Software,
15th International SPIN Workshop, Los Angeles, CA, USA, August 10-
12, 2008, Proceedings, volume 5156 of Lecture Notes in Computer
Science, pages 288–305. Springer, 2008.

[23] Qiuping Yi and Jeff Huang. Concurrency verification with maximal
path causality. In Gary T. Leavens, Alessandro Garcia, and Corina S.
Pasareanu, editors, Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018, pages 366–376. ACM,
2018.

[24] Suan Hsi Yong, Susan Horwitz, and Thomas Reps. Pointer analysis
for programs with structures and casting. In Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language Design and
Implementation, PLDI ’99, page 91–103, New York, NY, USA, 1999.
Association for Computing Machinery.


