
X ETEX, the Multilingual Lion:
TEX meets Unicode and smart font technologies

Jonathan Kew
SIL International
Horsleys Green
High Wycombe HP14 3XL
England
jonathan_kew@sil.org

Abstract
Professor Donald Knuth’s TEX is a typesetting system with a wide
user community, and a range of supporting packages and en-
hancements available for many types of publishing work. How-
ever, it dates back to the 1980s and is tightly wedded to 8-bit
character data and custom-encoded fonts, making it difficult to
configure TEX for many complex-script languages.

"is paper will introduce X ETEX, a system that extends TEX
with direct support for modern OpenType and AAT (Apple Ad-
vanced Typography) fonts and the Unicode character set. "is
makes it possible to typeset almost any script and language with
the same power and flexibility as TEX has traditionally offered in
the 8-bit, simple-script world of European languages. X ETEX (cur-
rently available on MacOSX, but possibly on other platforms in
the future) integrates the TEX formatting engine with technolo-
gies from both the host operating system (Apple Type Services,
CoreGraphics, QuickTime) and auxiliary libraries (ICU, TECkit),
to provide a simple yet powerful system for multilingual and mul-
tiscript typesetting.

"emost significant extensions X ETEX provides are its native
support for the Unicode character set, replacing the myriad of 8-
bit encodings traditionally used in TEX with a single standard for
both input text encoding and font access; and an extended \font
command that provides direct access by name to all the fonts
installed in the user’s computer. It also provides a mechanism to
access many of the advanced layout features of modern fonts.

Additional features that will also be discussed include built-
in support for a wide variety of graphic file formats, and an ex-
tended line-breaking mechanism that supports Asian languages
such as Chinese or "ai that are written without word spaces.

Finally, we look briefly at some user-contributed packages
that help integrate the features of X ETEX with the established
LTEX system. Will Robertson’s fontspec.sty provides a sim-
ple, consistent user interface in LTEX for loading both AAT and
OpenType fonts, and accessing virtually all of the advanced fea-
tures these fonts offer; Ross Moore’s xunicode.sty is a package
that allows legacy LTEX documents to be typeset using native
MacOSX fonts without converting the input text entirely to Uni-
code, by supporting traditional TEX input conventions for accents
and other “special” (non-ASCII) characters.

− − ∗ − −

Editor’s note: "is article is typeset in Adobe Garamond, with Andale
Mono for the code examples, and processed on the author’s MacOSX
machine with X ETEX, as Unicode support was needed in several places.

What is X ETEX?

X ETEX1 is an extension of the TEX processor, designed to
integrate TEX’s “typesetting language” and document for-
matting capabilities with the Unicode/ISO 10646 universal
character encoding for all the world’s scripts, and with the
font technologies available on today’s computer systems,
including fonts that support complex non-Latin writing
systems.

X ETEX is in fact based on ε-TEX, and therefore in-
cludes a number of well-established extensions to TEX.
"ese include additional registers (\count, \dimen, \box,
etc.) beyond the 256 of each that TEX provides; various
new conditional commands, tracing features, etc.; and of
particular significance for multilingual work, the TEX–XET
extension for bidirectional layout.

"e TEX extensions inherited from ε-TEX are not dis-
cussed further here, as they are already described in the
ε-TEX documentation2, except to note that for right-to-
left scripts in X ETEX, it is necessary to set \TeXXeTstate=1
and make proper use of the direction-changing commands
\beginR, \endR, etc. Without these, there will still be some
right-to-left behavior due to the inherent directionality de-
fined by the Unicode standard for characters belonging to
Hebrew, Arabic and similar scripts, but overall layout will
not be correct.

X ETEX was created in order to typeset materials—
literacy and educational books, translated Scriptures, lin-
guistic studies, dictionaries, etc.— in a wide range of lan-
guages and scripts, including lesser-known ones that are
not adequately supported in most existing products. It in-
herits ideas, and even some code, from an earlier system
called TEXGX that integrated TEX with the QuickDraw GX
graphics system on older Macintosh operating systems.

1 "e name X ETEX was inspired by the idea of a MacOSX extension
(hence the ‘X’ prefix) to ε-TEX; and as one of its intended uses is for
bidirectional scripts such as Hebrew and Arabic, the name was designed to
be reversible. "e second letter should ideally be U+018E LATIN CAPITAL
LETTER REVERSED E, but as few current fonts support this character, it
is normal to use a reflected ‘E’ glyph."e name is pronounced as if it were
written zee-TEX.

2 E.g., !e ε-TEX Short Reference Manual, http://www.staff.
uni-mainz.de/knappen/etex_ref.html.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 115

Jonathan Kew

\font\Hoefler = "Hoefler Text" at 10pt
\Hoefler This is the Hoefler Text font.

This is the Hoefler Text font.
\font\VerdanaItal = "Verdana Italic" at 9pt
\VerdanaItal And this is Verdana Italic.

And this is Verdana Italic.

Figure 1: Accessing fonts installed natively on the host
platform

Host platform fonts

For many users, one of the most significant features of
X ETEX is that it makes use of the fonts installed in the oper-
ating system, just likemainstreamGUIword processing and
page layout programs. On MacOSX, fonts in a number of
major formats— in particular, TrueType (.ttf) fonts, and
bothTrueType- andCFF-flavored3 OpenType (.otf) fonts,
as well as legacy Macintosh resource file formats— can be
installed in any of several Library/Fonts folders (system-
wide, or per-user), and users expect these fonts to be avail-
able in all applications.

With a traditional TEX system, this is not the case. Be-
cause of its portable, platform-independent heritage, TEX
knows nothing about the fonts installed in a particular op-
erating system, or even about today’s major font formats;
it relies instead on .tfm files (an alien concept to the typ-
ical modern font user) to provide the metrics information
needed for typesetting, and on output drivers that locate
and use the actual font files containing glyph images. All
these are specifically installed for TEX and associated tools,
quite separately from font installation for the operating sys-
tem or other applications. Many users find this a challenge,
and do not feel confident to use fonts other than those pro-
vided with their TEX distribution. So there is a perception
that TEX supports a very limited range of fonts. X ETEX aims
to change this.

Font access in X ETEX Within a X ETEX document, it is
trivial for users to typeset using whatever fonts they have on
their computer system. If a MacOSX user buys or down-
loads a .ttf or .otf font and installs it in the standard way
with FontBook or by placing the file in ~/Library/Fonts,
the font can be used by just specifying it by name with a
\font command, as in figure 1. No conversions, no auxil-
iary files, no TEX-specific installation or configuration; just
tell X ETEX to use the font, and there it is. (Note that fig-
ure 1, like most examples in this paper, uses simple “plain
TEX”-level commands; in the context of packages such as
LTEX or ConTEXt there would be higher-level commands
designed to interact properly with the overall package.)

3 CFF: Compact Font Format, the table type that holds PostScript
glyph data in an OpenType font container.

When X ETEX is using “native” fonts from the operat-
ing system, it handles text in a slightly different way than
standardTEX. Rather than treating each character individu-
ally, looking up its metrics (in a .tfm file), it collects “runs”
(typically, but not always, complete words) and passes them
to the font rendering subsystem as complete chunks of text.
"is is necessary in order to allow the font to implement
features such as ligatures, cursive connections, contextual
character substitutions or reordering, etc., which may be
defined in AAT or OpenType fonts (see below). Such fea-
tures may represent optional typographic refinements in
Latin-based scripts, but in many Asian scripts they are es-
sential for correct rendering.

Output device support Selecting fonts by name within
the source document, and having the typesetting process
find and use them when building paragraphs, is only half
the story. Drivers that render TEX output onto a partic-
ular device also need to locate fonts— and in the tradi-
tional TEX world, the two stages rely on separate files, with
typesetting requiring only .tfm files, and output requiring
“real” fonts of some kind, e.g., .pk or .pfb files.

"e current implementation of X ETEX creates output
in an “extended DVI” format (.xdv), and this is then con-
verted to PDF by a second process, xdv2pdf.4 To generate
PDF, xdv2pdf relies on the user’s installed fonts in exactly
the same way as the typesetting process. "ere is no sepa-
ration between fonts as used during typesetting and those
used for output.

Because the output format is effectively PDF (as the
.xdv .pdf→ conversion is automatically executed), X ETEX
output can then be viewed or printed on any system or
device where PDF is supported, using standard viewers and
printer drivers.

Support for legacy TEX fonts In addition to using fonts
installed natively in the operating system, X ETEX continues
to support the use of existing fonts in the texmf tree, using
.tfm files (for metrics) and .pfb fonts (Type 1 outlines, for
rendering). When using such .tfm-based fonts, the results
should be identical to those produced by standard TEX.

Note that the current xdv2pdf driver supports such
legacy fonts only in .pfb format; there is no support, in
particular, for .pk or other METAFONT-derived bitmap
formats. "ere is also no .vf support at present.

"e use of .tfm-based fonts is important partly for
compatibility with existing documents that use these fonts,
where a user might wish to take advantage of some X ETEX
features without changing the overall look of the document.
Perhaps more important, .tfm-based fonts are required for
mathmode, as TEX’s math formattingmakes use of detailed

4 "e default behavior is for the xetex process to automatically pipe
its .xdv output through xdv2pdf, so that the default output format ap-
pears to be PDF.

116 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

metric information that comes from theMETAFONT fonts
and cannot readily be generated for the system’s native
fonts. "is means that math typesetting continues to work
unchanged in X ETEX; however, it also means that for math,
the range of fonts available remains very limited.

Unicode support

TEX was originally designed for English typesetting, with
characters needed for other (primarily European) languages
supported via the \accent command and additional char-
acters (such as ß and æ) provided in the Computer Modern
fonts and accessed via control sequences, to escape the lim-
itations of the ASCII character set. Many other languages
and scripts have also been handled, using a variety of tech-
niques including custom codepages and fonts, macros and
“active” characters, and even preprocessors that implement
specific complex scripts such as Devanagari.

"e variety of TEX programming tricks available, to-
gether with the use of non-standard input and font en-
codings and similar techniques, have allowed many scripts
to be typeset; however, they have also meant that the input
text used for typesetting is often encoded in a non-standard
way, unique to the particular TEX package in use, making
for problems of data interchange with other systems. And
the use of preprocessors and/or TEX macros to implement
script behavior can easily conflict with other levels of macro
programming (document markup and formatting control),
making for complex and fragile systems.

"e Unicode standard offers the possibility of a much
simpler, cleaner multilingual system. In Unicode, every
character needed for any script has (in principle) its own
code, so there is no longer any need for multiple codepages,
where the meaning of a particular character code depends
on the input encoding or font in use. Nor is there any need
for escape sequences or preprocessors to access characters
that cannot be entered directly in the input; text in any
language can be represented as simple character data. So
X ETEX aims to extend TEX such that the standard charac-
ter encoding used throughout the typesetting process, from
text input to accessing glyphs in fonts, is Unicode.

Character codes "e first step towards Unicode support
in TEX is to expand the character set beyond the original
256-character limit. At the lowest level, this means chang-
ing internal data structures throughout, wherever charac-
ters were stored as 8-bit values. As Unicode scalar values
may be up to U+10FFFF, an obvious modification would
be to make “characters” 32 bits wide, and treat Unicode
characters as the basic units of text.

However, in X ETEX a pragmatic decision was made
to work internally with UTF-16 as the encoding form,
making “characters” in the engine 16 bits wide, and han-
dling supplementary-plane characters using UTF-16 surro-
gate pairs. "is choice was made for a number of reasons:

• "e operating-systemAPIs that X ETEX uses in working
with Unicode text require UTF-16, so working with
this encoding form avoids the need for conversion.

• A number of internal arrays in TEX are indexed by
character codes. Enlarging these from 256 elements
each to 65,536 elements seems reasonable; enlarging
them to a million-plus elements each would dramat-
ically increase the memory footprint of the system.
To avoid this, a sparse array implementation might be
used, but this would be significantly more complex
to develop and test, and might well have a negative
impact on typesetting performance.

• It seems unlikely, in any case, that there will be much
need to customize these properties (see next section)
for characters beyond Plane 0.
In view of these factors, X ETEX works with UTF-16

code units. Unicode characters beyond U+FFFF can still be
included in documents, however, and will render correctly
(given appropriate fonts) as the UTF-16 surrogate pairs will
be passed to the font system.

Another possible route would have been to use UTF-8
as the internal encoding form, retaining the existing 8-bit
code units used in TEX as characters. However, this would
have made it impossible (without major revisions) to pro-
vide properties such as character category (letter, other
printing character, escape, grouping delimiter, comment
character, etc.), case mappings, and so on to any characters
beyond the basic ASCII set; and it would also require con-
version when Unicode text is to be passed to system APIs.
Overall, therefore, UTF-16 was felt to be the most practi-
cal choice, and the appropriate TEX data structures were
systematically widened.

Extended TEX code tables Along with widening charac-
ter codes from 8 to 16 bits, the TEX code tables that pro-
vide per-character properties were enlarged to cover the
range 0…65,535. "is means that X ETEX has \catcode,
\sfcode, \mathcode, \delcode, \lccode and \uccode
values for each of the characters in Unicode’s Basic Multi-
lingual Plane."e default format files provided with X ETEX
initialize the \lccode and \uccode arrays based on case
mapping properties from the Unicode Character Database,
so that the \uppercase and \lowercase primitives will be-
have as expected. Figure 2 shows how these extended code
tables might be used.

Because these arrays are indexed by the individual
code units of the UTF-16 data used in X ETEX, it is not pos-
sible to set these properties for characters beyond Plane 0.
However, as these are mainly either CJK ideographs or
characters of relatively obscure archaic scripts, it seems
unlikely that there will be much need to change their
\catcode values or apply case-changing commands.5

5 Full use of math characters from Plane 1 is a separate issue, as math
mode requires additional font and character properties.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 117

Jonathan Kew

\lowercase{DŽIN}

džin
\uppercase{Esi eyama klɔ míaƒe nuvɔwo ɖa vɔ la}

ESI EYAMA KLƆ MÍAƑE NUVƆWO ƉA VƆ LA
\catcode`王=\active \def王{...}

% defines an individual Chinese character as a macro

Figure 2: Per-character code tables in X ETEX support
Unicode

Input encodings While X ETEX is designed to work with
Unicode throughout the typesetting process, users may well
wish to typeset text that is in a different encoding. By de-
fault, X ETEX interprets input text as being UTF-8, convert-
ing multi-byte sequences to Unicode character codes ap-
propriately, unless inspection of the file suggests that the
text is UTF-16 (identified by a Byte Order Mark code, or
by null high-order bytes in the initial 16-bit code units).
Either way, the input is assumed to be valid Unicode.

Existing TEX documents that use purely 7-bit ASCII
are of course also valid Unicode (UTF-8); but documents
in 8-bit encodings such as Windows Latin or Cyrillic code-
pages, legacy Mac OS character sets, or East Asian double-
byte encodings cannot be interpreted this way. "ey will
typically contain byte sequences that are not legal in UTF-8;
but even if the bytes are not ill-formed when read as UTF-8,
they will not result in the intended characters.

To address this problem, X ETEX provides two com-
mands that allow the input to be converted from a different
encoding into Unicode:
\XeTeXinputencoding "codepage-name"

changes the codepage for the current input file, begin-
ning with the next line of text

\XeTeXdefaultencoding "codepage-name"
sets the initial codepage for subsequently-opened in-
put files (does not affect files already open for reading)

"ese commands allow input text in a non-Unicode en-
coding to be converted (using the converters from the ICU
library6) into Unicode as it is read. "us, text in Latin-1 or
Big5 or Shift-JIS or many other encodings can be typeset
directly using Unicode-compliant fonts.

Note that output text, whether in the transcript file
or files written using \openout and \write, will always
be UTF-8 Unicode, regardless of the codepage or encoding
form of the input text.

Hyphenation support Along with other character-code-
oriented parts of TEX, the hyphenation tables in X ETEX
have been extended to support 16-bit Unicode characters.
"is means that it is possible to write hyphenation patterns

6 http://www.ibm.com/software/globalization/icu/

\patterns{
% break before or after any full vowel
1अ1
1आ1
1इ1
1ई1
1उ1
1ऊ1
1ऋ1
1ॠ1
% ...etc...
% break after vowel matra, but never before
2ा1
2ि1
2ी1
2ु1
2ू1
2ृ1
2ॄ1
2ॢ1
2ॣ1
% ...etc...
}

Figure 3: Hyphenation patterns using Devanagari letters

that use any (Plane 0) Unicode letters, including non-Latin
scripts as well as extended Latin (accented characters, etc.)
Figure 3 shows a fragment from a Sanskrit hyphenation file
created by a X ETEX user.With the traditional TEX approach
to such scripts, using complex macros and preprocessing,
it would be much more difficult to support hyphenation
patterns.

"e implementation of native Unicode font support
in X ETEX, treating each word as a “black box” measured as
a unit by the font subsystem, made it easy to form para-
graphs of such “boxes” without extensive changes to the
overall algorithms. However, TEX’s automatic hyphenation
mechanism, which comes into effect if it is unable to find
satisfactory line-break positions for a paragraph on the ini-
tial attempt, applies to lists of character nodes representing
runs of text within a paragraph to be broken into lines. But
when using Unicode fonts in X ETEX, the line-break process
sees “word nodes” as indivisible, rigid chunks.

Explicit discretionary hyphens may of course be in-
cluded in TEX input, and these continue to work in X ETEX,
as they become discretionary break nodes in the list of items
making up the paragraph. "e word fragments on either
side, then, would become separate nodes in the list, and
a line-break can occur at the discretionary node between
them.

118 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

In order to provide automatic hyphenation support,
however, it was necessary to extend the hyphenation rou-
tine so as to be able to extract the text from a word node,
use TEX’s pattern-based algorithm (and exception list) to
find possible hyphenation positions within the word, and
then replace the original word node with a sequence of
nodes representing the (possibly) hyphenated fragments,
with discretionary nodes in between.

One more refinement proved necessary here: once the
line-breaks have been chosen, and the lines of text are being
“packaged” for final justification to the desired width, any
unused hyphenation points are removed and the adjacent
word (fragment) nodes re-merged. "is is required in or-
der to allow rendering behavior such as character reordering
and ligatures, implemented at the smart-font level, to occur
across unused hyphenation points. With an early release of
X ETEX, a user reported that OpenType ligatures in certain
words such as different would intermittently fail (appear-
ing as different, without the ff ligature). "is was occurring
when automatic hyphenation came into effect and a dis-
cretionary break was inserted, breaking the word node into
sub-words that were being rendered separately.

Typographic features

Beyond simply allowing the use of any font on the user’s
system, X ETEX also provides access to various advanced ty-
pographic features of AAT and OpenType fonts, so that
users can take advantage of the full richness of these fonts.

AAT font features AAT (Apple Advanced Typography) is
the native MacOSX technology for advanced fonts that
provide typographic layout information (besides simple
glyph metrics). An AAT font may contain tables that de-
fine layout features such as ligatures, alternate glyph forms,
swashes, etc. "ese features may be specified by the font as
being enabled by default, in which case X ETEX will auto-
matically use them; or they may be optional features that
are only used when explicitly turned on.

"e font designer provides names, stored in the font
itself, for any features that are intended to be controlled
by the user. While there is a registry of known features,
designers are free to implement and name new behaviors
in their fonts, so the possible set of features and settings is
open-ended.

"e extended \font command in X ETEX allows AAT
font feature settings to be specified as a list of feature = setting
pairs appended to the name of the font. Feature settings that
are enabled by default can also be turned off, by prefixing
the setting name with ‘!’. Figure 4 illustrates a few optional
features available in the Apple Chancery font.

Vertical text with AAT fonts An additional attribute that
can be specified for AAT fonts in X ETEX is vertical. "is
causes the text rendering system to use vertical text-layout

\font\x="Apple Chancery" at 10pt
\x The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.
\font\x="Apple Chancery:
Design Complexity=Simple Design Level;
Letter Case=Small Caps" at 10pt

\x The quick brown fox jumps over the lazy dog.

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
\font\x="Apple Chancery:
Design Complexity=Flourishes Set A" at 10pt

\x The quick brown fox jumps over the lazy dog.

The Quick brown fox jumps over the lazy dog.

Figure 4: Selecting optional AAT font features

techniques, although it does not in itself re-orient the over-
all layout. Typically, glyphs will be rotated 90° counter-
clockwise, l i k e t h i s, and laid out according to their
vertical rather than horizontal metrics.

If this capability is combined with macros that rotate
the text block as a whole, which is readily achieved through
graphic transformations in the output driver (see figure 5),
it becomes possible to typeset languages such as Chinese
using a traditional vertical layout. Figures 6 and 7 show the
same text formatted in horizontal and vertical styles. Note
how certain glyphs such as the brackets do not undergo the
same rotation as the rest of the text; the vertical attribute
automatically gives the correct behavior here.

OpenType: optional features Like AAT fonts, OpenType
fonts may also include layout features that can be en-
abled or disabled to affect the rendering of the text. Un-
like AAT, there are no feature names provided in the font,
only four-character “tags” (which are generally somewhat
mnemonic). "e expectation in OpenType is that all fea-
tures will be officially registered withMicrosoft and Adobe,
and applications can then provide whatever user interface
and names are needed for the features they choose to sup-
port.

X ETEX takes a low-level approach, allowing feature
tags to be used directly in the \font command in a sim-
ilar way to AAT names; individual features can be turned
on or off for any given font definition, using + or - with
the four-character tag. "erefore, any features defined in
the font can be used, even if not defined in the OpenType
feature registry. (Macro packages could be used to provide
more meaningful names; for example, the fontspec package
for LTEX provides a unified interface for many registered
features across both AAT and OpenType fonts.) Figure 8
shows a few examples of the use of OpenType feature tags
to select alternate renderings of a font.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 119

Jonathan Kew

\newif\ifVertical \Verticaltrue % \Verticalfalse gives horizontal layout
\vsize=7in \hsize=4.5in \def\Vert{} % set up page size
\ifVertical % set parameters for vertical layout
\hsize=7in \vsize=4.5in \def\Vert{:vertical} % attribute used in font defs
% macro to rotate a box of Chinese text set with the "vertical" font attribute
\def\ChineseBox#1{\setbox0=\vbox{\boxmaxdepth=0pt #1}\dimen0=\wd0 \dimen2=\ht0
\vbox to \dimen0{\hbox to \dimen2{\hfil\special{x:gsave}\special{x:rotate -90}\rlap

{\vbox to 0pt{\box0\vss}}\special{x:grestore}}\vss}}
\def\ChineseOutput{\shipout \vbox{\ChineseBox{\makeheadline \pagebody \makefootline }}

\advancepageno \ifnum \outputpenalty >-20000 \else \dosupereject \fi}
\output={\ChineseOutput} \fi

\font\body="STKaiti\Vert" at 12pt \body
\font\bold="STHeiti\Vert" at 12pt \font\title="STHeiti\Vert" at 18pt
\centerline{\title 三　国　演　义}
\bigskip \centerline{\bold〔明〕罗贯中}
% ...etc...

Figure 5: Using an AAT font attribute and graphic transformations to implement vertical typesetting

三　国　演　义

〔明〕罗贯中

词曰：

滚滚长江东逝水，浪花淘尽英雄。是非成败转头空：青山

依旧在，几度夕阳红。

白发渔樵江渚上，惯看秋月春风。一壶浊酒喜相逢：古今

多少事，都付笑谈中。

第一回

宴桃园豪杰三结义　斩黄巾英雄首立功

话说天下大势，分久必合，合久必分：周末七国分争，并

入于秦；及秦灭之后， 楚、汉分争，又并入于汉；汉朝自高祖

斩白蛇而起义，一统天下，后来光武中兴，传 至献帝，遂分为

三国。推其致乱之由，殆始于桓、灵二帝。桓帝禁锢善类，崇信

宦官 。及桓帝崩，灵帝即位，大将军窦武、太傅陈蕃，共相辅

佐；时有宦官曹节等弄权， 窦武、陈蕃谋诛之，机事不密，反

为所害，中涓自此愈横。

Figure 6: Chinese text in horizontal format

OpenType: optical sizing Some OpenType font families
include multiple faces designed for use at different sizes; for
example, the Adobe Brioso Pro family includes Caption,
Text, Subhead, Display, and Poster faces, each optimized
for a different range of point sizes. If the full collection
of fonts has been installed, X ETEX will use the OpenType
“size” feature to automatically select the appropriate face
for the point size used, as shown in figure 9. Generally, this
automatic behavior is helpful; however, it can be overrid-
den if necessary by using a /S=optical-size modifier on the
font name. Figure 10 shows several different optical sizes

三　

国　

演　

义

︹
明
︺
罗
贯
中

词
曰
：

滚
滚
长
江
东
逝
水
，
浪
花
淘
尽
英
雄
。
是
非
成
败
转
头
空
：
青

山
依
旧
在
，
几
度
夕
阳
红
。

白
发
渔
樵
江
渚
上
，
惯
看
秋
月
春
风
。
一
壶
浊
酒
喜
相
逢
：
古

今
多
少
事
，
都
付
笑
谈
中
。

第
一
回

宴
桃
园
豪
杰
三
结
义　

斩
黄
巾
英
雄
首
立
功

话
说
天
下
大
势
，
分
久
必
合
，
合
久
必
分
：
周
末
七
国
分
争
，

并
入
于
秦
；
及
秦
灭
之
后
，

楚
、
汉
分
争
，
又
并
入
于
汉
；
汉
朝
自

高
祖
斩
白
蛇
而
起
义
，
一
统
天
下
，
后
来
光
武
中
兴
，
传

至
献
帝
，

遂
分
为
三
国
。
推
其
致
乱
之
由
，
殆
始
于
桓
、
灵
二
帝
。
桓
帝
禁
锢
善

类
，
崇
信
宦
官

。
及
桓
帝
崩
，
灵
帝
即
位
，
大
将
军
窦
武
、
太
傅
陈

蕃
，
共
相
辅
佐
；
时
有
宦
官
曹
节
等
弄
权
，

窦
武
、
陈
蕃
谋
诛
之
，

机
事
不
密
，
反
为
所
害
，
中
涓
自
此
愈
横
。

Figure 7: Chinese text in vertical format

of Brioso used at the same physical size, making the design
difference between the faces more apparent to the eye.

OpenType: script and language In addition to optional
typographic features, OpenType fonts may include layout
features that are necessary for the correct rendering of com-
plex writing systems such as Arabic or Indic scripts. To
apply these features, it is necessary to have a “shaping en-
gine” that applies the appropriate feature tags to individual
characters of the text. "ere are specific rules for each sup-
ported script, and complex scripts will only render properly

120 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

\font\x="Brioso Pro" \x Hello World! 0123456789

HelloWorld! 0123456789
\font\x="Brioso Pro:+smcp" \x Hello World! 0...

HelloWorld! 0123456789
\font\x="Brioso Pro:+sups" \x Hello World! 0...

Hello World! 0123456789
\font\x="Brioso Pro Italic:+onum" \x Hello W...

He!oWorld! 0123456789
\font\x="Brioso Pro Italic:+swsh,+zero" \x H...

He-oWorld! 0123456789

Figure 8: Selecting OpenType feature tags

\font\x="Brioso Pro" at 7pt \x Hello World!

HelloWorld! (Brioso Pro Caption)

\font\x="Brioso Pro" at 10pt \x Hello World!

HelloWorld! (Brioso Pro Text)
\font\x="Brioso Pro" at 16pt \x Hello World!

HelloWorld! (Brioso Pro Subhead)

Figure 9: Automatic optical sizing

if the correct engine is specified in the \font command, as
illustrated in figure 11. (Note that this is different from
the situation with AAT fonts, where complex rendering be-
havior is programmed entirely in the font tables, and no
script-specific engine is needed.)

OpenType fonts may also support multiple “language
systems” to handle differences in the appropriate rendering
for different languages. For example, many serifed Latin
fonts include an fi ligature, and this will normally be en-
abled by default. However, Turkish makes a distinction
between i and ı (dotless i). Using an fi ligature typically
causes this distinction to be lost, and therefore this liga-
ture must be disabled in the Turkish language system. An-
other example of language-specific behavior occurs in Viet-
namese, where the positioning of multiple diacritics on a
base character differs from the default vertically-stacked be-

\font\x="Brioso Pro/S=7" at 12pt\x Hello World!

HelloWorld! (Brioso Pro Caption)
\font\x="Brioso Pro/S=10" at 12pt\x Hello World!

HelloWorld! (Brioso Pro Text)
\font\x="Brioso Pro/S=16" at 12pt\x Hello World!

HelloWorld! (Brioso Pro Subhead)

Figure 10: Overriding normal optical sizing

\font\x="Code2000" \x العربي हिन्दी

العربي हिन्दी default (Latin) features only; incor-
rect rendering of both scripts

\font\x="Code2000:script=arab" \x العربي

العربي correct Arabic script rendering

\font\x="Code2000:script=deva" \x हिन्दी

िहदी correct Devanagari script rendering

Figure 11: Specifying OpenType shaping engines using
the script=... feature

\font\Brioso="Brioso Pro"
\Brioso …gelen firmaları…tarafından…

…gelen @rmaları…tarafından…
\font\BriosoTrk="Brioso Pro:language=TRK"
\BriosoTrk …gelen firmaları…tarafından…

…gelen firmaları…tarafından…
Turkish requires the i/ı distinction maintained

\font\D="Doulos SIL/ICU"
\D cung cấp một con số duy nhất cho mỗi ký tự
cung cấp một con số duy nhất cho mỗi ký tự

\font\V="Doulos SIL/ICU:language=VIT"
\V cung cấp một con số duy nhất cho mỗi ký tự
cung c'p một con s(duy nh't cho m)i ký tự
Vietnamese uses different diacritic positioning

Figure 12: Using alternate language systems in
OpenType fonts to achieve correct rendering

havior that would be expected elsewhere. When loading an
OpenType font in X ETEX, the desired language tag can be
included in the \font command to control the behavior,
as shown in figure 12.

Font mappings In addition to the font-specific AAT and
OpenType features that can be included in a \font com-
mand, X ETEX has a general-purpose mechanism known as
“font mappings” that can be applied to any native font.

To understand the purpose of font mappings, con-
sider TEX input conventions such as ---, which normally
generates an em-dash, or ``, which generates an opening
double quote. "ese conventions are not built into TEX,
nor are they generally implemented in TEX macros (like
most other “extended” characters); rather, they are imple-
mented as ligatures in the Computer Modern fonts, and
similar ligature rules have been created in most other fonts
configured for use with TEX.

However, these ligatures, unlike standard typographic
ligatures such as fi, are not generally known or used

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 121

Jonathan Kew

LHSName "TeX-text"
RHSName "UNICODE"

pass(Unicode)
U+002D U+002D <> U+2013 ; -- -> en dash
U+002D U+002D U+002D <> U+2014 ; --- -> em dash

U+0027 <> U+2019 ; ' -> right single quote
U+0027 U+0027 <> U+201D ; '' -> right dbl quote
U+0022 > U+201D ; " -> right double quote

U+0060 <> U+2018 ; ` -> left single quote
U+0060 U+0060 <> U+201C ; `` -> left dbl quote

U+0021 U+0060 <> U+00A1 ; !` -> inv. exclam
U+003F U+0060 <> U+00BF ; ?` -> inv. question

Figure 13: "e tex-text font mapping

outside the TEX world. "ey were designed as a conve-
nient workaround for limitations of the character set that
could be entered on typical keyboards. But we cannot ex-
pect general-purpose fonts from outside the TEX world
to implement these ligatures. "erefore, if a X ETEX user
working with a standard Unicode font enters ``Help---
I'm stuck!'', the result is likely to be something like
``Help---I'm stuck!'', which is not what was intended.

One solution is to convert the input text to directly
use the desired Unicode characters for quote marks, dashes,
etc., but this may not be convenient where there are large
amounts of pre-existing text. Even for new text, experienced
TEX typists may be more comfortable continuing to use
these conventions rather than learning new key sequences,
or document portability between X ETEX and standard TEX
may require that they be used.

X ETEX’s font mappings can solve this issue. A font
mapping is a transformation, expressed as mapping rules
that convert Unicode characters or sequences from an “in-
put” form (that found in the document text) to an “out-
put” (the character or characters to be rendered from
the font). Such mappings are written in the TECkit
mapping language.7 A \font command may include a
mapping=filename qualifier, and X ETEX will then apply the
given mapping as part of the text rendering process when
using that font. An example tex-textmapping is included
with X ETEX to implement the common ligatures found
in Computer Modern fonts; figure 13 shows the TECkit
source of this mapping file. If this mapping is loaded along
with a standard Unicode font, then the TEX-style input text
``Help---I'm stuck!'' will render as expected: “Help—
I’m stuck!”.

7 http://scripts.sil.org/teckit/

\def\SampleText{Unicode - это уникальный
код для любого символа, независимо от платформы,
независимо от программы, независимо от языка.}
\font\gen="Gentium"
\gen\SampleText\par

Unicode - это уникальный код для любого
символа, независимо от платформы, независимо
от программы, независимо от языка.

\font\gentrans="Gentium:mapping=cyr-lat-iso9"
\gentrans\SampleText\par

Unicode - èto unikal'nyj kod dlâ lûbogo simvola,
nezavisimo ot platformy, nezavisimo ot programmy,
nezavisimo ot âzyka.

Figure 14: Using a font mapping to render the same
text in its native script and transliterated

While font mappings were originally implemented to
provide compatibility with TEX typing conventions, they
can be used in other ways, too; figure 14 shows an exam-
ple where the same input text is printed both in its origi-
nal form and in Latin transliteration, using a Cyrillic/Latin
transliteration mapping associated with the font.

Asian-language linebreaking

A number of east and south-east Asian languages, such as
Chinese, Japanese, "ai, and others, are normally written
without word spaces."e only spaces in the text may be be-
tween phrases or sentences, or even entire paragraphs may
be lacking any space characters. Hyphenation is also not
used in many of these languages. "is presents a problem
for line-breaking, as TEX normally expects to find inter-
word glue where line-breaks can be attempted.

Line-break positions To support typesetting text in such
languages, X ETEX includes a feature known as “locale-
based line-breaking”, based on the Unicode line-break al-
gorithm implemented in the ICU library. "e command
\XeTeXlinebreaklocale="locale-code", where the locale-
code is a standard locale (language/region) code, tells X ETEX
to look for possible line-break positions according to the
rules of the given locale; the paragraph can then be broken
at these places despite the lack of spaces or hyphenation
rules.

Justification In addition to the problem of finding legiti-
mate line-break positions, the lack of inter-word glue also
makes it difficult for TEX to justify the lines. One op-
tion, of course, is ragged-right typesetting, and this may
be the appropriate solution if a rigid character grid (as
sometimes seen in Chinese, for example) is to be main-
tained. However, another option is to set the parameter
\XeTeXlinebreakskip to a slightly stretchable glue value.

122 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

\def\thaitext{%
โดยพ้ืนฐานแล้ว, คอมพิวเตอร์จะเก่ียวข้องกับเร่ืองของตัวเลข.
คอมพิวเตอร์จัดเก็บตัวอักษรและอักขระอ่ืนๆ
โดยการกำหนดหมายเลขให้สำหรับแต่ละตัว.
ก่อนหน้าท๊่ี Unicode จะถูกสร้างข้ึน, ได้มีระบบ encoding
อยู่หลายร้อยระบบสำหรับการกำหนดหมายเลขเหล่าน้ี.}
\font\thai="Thonburi" at 10pt
\thai \thaitext

โดยพื้นฐานแล,ว, คอมพิวเตอร5จะเกี่ยวข,องกับเรื่องของตัวเลข.
คอมพิวเตอร5จัดเก็บตัวอักษรและอักขระอ่ืนๆ
โดยการกำหนดหมายเลขให,สำหรับแตFละตัว. กFอนหน,าที่ ๊
Unicode จะถูกสร,างขึ ้น, ได,มีระบบ encoding
อยูFหลายร,อยระบบสำหรับการกำหนดหมายเลขเหลFาน้ี.
!ai text with spaces only between phrases

\XeTeXlinebreaklocale "th"
\XeTeXlinebreakskip=0pt plus 1pt
\thai \thaitext

โดยพ้ืนฐานแล,ว, คอมพิวเตอร5จะเก่ียวข,องกับเร่ืองของตัวเลข.
คอมพิวเตอร5 จัดเก็บตัวอักษรและอักขระอื่นๆ โดยการกำหนด
หมาย เลข ให, สำหรับ แตF ละ ตัว. กFอนหน,าที่๊ Unicode จะ ถูก
สร,างขึ้น, ได, มี ระบบ encoding อยูF หลายร,อยระบบสำหรับ
การกำหนดหมายเลขเหลFาน้ี.
Using locale-based line-breaking to improve results

Figure 15: Line-breaking and justification without word
spaces

X ETEX will then insert this glue at each potential break po-
sition found by the line-break algorithm, which makes the
overall text slightly stretchable and allows fully justified set-
ting. Figure 15 illustrates the use of the Asian line-breaking
parameters.

"ere is also a parameter \XeTeXlinebreakpenalty
that can be set to control the desirability of inter-character
breaks found by the Unicode algorithm, as compared to
normal breaks at other penalties and glue.

Built-in graphics support

TEX traditionally knows nothing about graphics, leaving
this to output drivers andmerely passing along information
from \special commands. It is left to macro packages and
users to determine the amount of space that an included
image occupies; the \special that causes the image to be
included by the driver does not itself take any space during
the typesetting process.

X ETEX provides an alternative approach, adding prim-
itive commands that actually load graphic files during type-
setting. "e advantage of this is that the typesetting process
can know the size of the image; typically, it is loaded into
an \hbox, and macros can then examine the \wd and \ht
of that box to make decisions about layout, or to re-load
the image with different scaling, etc.

\centerline{%
\hbox{\XeTeXpicfile "unicode-book.jpg"
scaled 100}\quad

\hbox{\XeTeXpicfile "unicode-book.jpg"
scaled 100 xscaled 2000}\quad

\hbox{\XeTeXpicfile "unicode-book.jpg"
scaled 100 rotated 90}}

Figure 16: Including graphics in a X ETEX document

QuickTime-based graphics "e X ETEX primitive com-
mand \XeTeXpicfile "filename" locates and includes the
named graphic file, which may be in any format recog-
nized by theQuickTime library onMacOSX."is includes
common image formats such as .jpg, .bmp, .tiff, .png,
and many others. A number of keywords such as width,
height, scaled, and rotated may be used after the file-
name to transform the image. Figure 16 shows some simple
examples of image inclusion.

PDF documents One of the formats supported by the
\XeTeXpicfile command is .pdf; however, if a PDF
graphic is included in this way, it will be rendered as a
raster image at relatively low resolution. It is better to use
an alternative command, \XeTeXpdffile, which includes
the specified PDF in its native form, complete with vector
graphics, embedded fonts, etc. \XeTeXpdffile also sup-
ports an additional keyword page to select the required
page from a multi-page PDF document.

Note that there is a xetex.def driver available for the
standard LTEX graphics.sty and graphicx.sty pack-
ages; this driver will automatically use the X ETEX prim-
itives to implement the higher-level \includegraphics
command, and will choose the proper X ETEX function de-
pending on the type of graphic file.

LTEX packages

Many users like to combine the Unicode and font support
of the X ETEX engine with the document markup and for-
matting features of LTEX. Inmost cases, this works well; the
exceptions typically involve LTEX packages dealing with
input and font encodings (which are generally superfluous
in a Unicode-based process) or packages that depend on
the features of a particular output driver (such as draw-
ing packages that rely on dvips or dvipdfm \specials, or
on pdfTEX extensions). In some cases, such packages may
need to be adapted to work with the xdv2pdf driver; in
others, the output driver features needed may not currently
be available.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 123

Jonathan Kew

\usepackage{fontspec} % load fontspec.sty
\setmonofont[Scale=0.8]{Andale Mono WT J}
% use scaled Andale Mono for \tt

\defaultfontfeatures{Mapping=tex-text}
% load the tex-text font mapping by default

\setromanfont{Adobe Garamond Pro}
% use Garamond Pro as \rm, etc

Figure 17: Use of fontspec.sty, from the preamble of
this document

In addition to the xetex.def driver files for the stan-
dard LTEX graphics and color packages, allowing these to
be used with the X ETEX engine, two important packages
written specifically for X ETEX deserve mention.

fontspec "e fontspec.sty package, written by Will
Robertson, provides a high-level interface to native Uni-
code fonts in X ETEX, integrating them with the LTEX font
selection mechanism, and supporting a wide range of fea-
tures in both AAT and OpenType fonts. Extensive docu-
mentation is available with the package; figure 17 shows a
simple excerpt from the preamble of this document. "ese
few lines are sufficient to set up all the typefaces needed for
this document, except those used within figures to illustrate
specific points. Note that there are no auxiliary .tfm, .fd,
.sty, or other TEX-specific files associated with the fonts
used here; they are simply installed in the ~/Library/Fonts
folder in the standard MacOSX manner.

xunicode To improve support for standard LTEX docu-
ments when using Unicode fonts, Ross Moore has pro-
vided xunicode.sty. "is package reimplements many of
the control sequences used in LTEX for accents, symbols,
and other “special” characters, mapping them to the cor-
rect Unicode codepoints instead of to their locations in
traditional TEX fonts. "is allows documents that use these
symbols via their LTEX names to run unchanged under
X ETEX, with the correct Unicode characters being rendered
in the output.

X ETEX and ConTEXt

While LTEX is probably the macro package most com-
monly used with X ETEX, it is also possible to use ConTEXt.
My understanding is that the standard ConTEXt distribu-
tion includes an option to use the X ETEX engine in place
of the default pdfTEX. A brief example of how X ETEX font
support can be used in ConTEXt is shown in figure 18.
"ere is further information on the ConTEXt Wiki site,8
from which this example was copied.

8 See http://wiki.contextgarden.net/XeTeX and
http://wiki.contextgarden.net/Fonts_in_XeTeX.

\definedfont["Hoefler Text:mapping=tex-text;
Style Options=Engraved Text;
Letter Case=All Capitals" at 24pt]

Big Title

BIG TITL'
Figure 18: Loading a native Unicode font in ConTEXt

Future directions

In conclusion, a few comments on the possible future of
X ETEX."e system has been publicly available for about 18
months as of the time of writing, and has been used for
a wide range of document types and languages. While it
remains a “work in progress”, it appears to work reliably for
most users, within the limitations of its design.

Besides on-going bug fixes and minor features, there
are several major enhancements that could be undertaken
to further improve X ETEX:

• Enhanced PDF back-end, via one of several ap-
proaches:

– leverage improved PDF support in MacOSX
10.4

– new xdv2pdf driver based on dvipdfmx

– integration with pdfTEX output routine
• True Unicode math support:

– requires extensions to \mathchar etc., and un-
derlying structures

– also requires extended (at least 16-bit) font met-
ric format

– may be possible to make use of code from
Omega/Aleph

• X ETEX for non-MacOSX platforms:
– should include full integration with TEX Live
sources

Assistance towards implementing any and all of these
ideas, or others, is most welcome! "e X ETEX source code
is currently available in a Subversion repository at svn://
scripts.sil.org/xetex/TRUNK; this URLmay change at
some point, but the X ETEX web pages at http://scripts.
sil.org/xetex should always indicate where to look.

124 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

