TUG 2010 — program and information

g/lll?lr;dza g 8:00 am registration
8:55am Karl Berry, TEX Users Group Welcome
9:00am Ross Moore, Macquarie University TeEX + MathML for Tagged PDF, the next frontier in
mathematical typesetting
9:3bam Will Robertson, I#TEX3 Project Unicode mathematics in IATEX: Advantages and challenges
10:10am Johannes Kiister, Typoma Math never seen
10:45am break
11:00am Steve Grathwohl, Duke U. Press Implementing MathJax in Project Euclid
& David Ruddy, Cornell U. Library
11:35am William Hammond, SUNY Albany IATEX profiles as objects in the “category” of markup languages
12:15pm Boris Veytsman, George Mason U. Are virtual fonts obsolete?
12:50 pm lunch
2:00pm Alan Hoenig, Huntington, NY TEX helps you learn Chinese character meanings!
2:35pm William Cheswick, AT&T Ebooks: New challenges for beautiful typesetting
3:10pm Hans Hagen, Pragma ADE Just in time: Things we can do only with LuaTEX
3:45pm break
4:00pm Hans Hagen Building paragraphs with the help of Lua
4:35 pm Idris Hamid, Colorado State U. Oriental TgX: Culturally authentic typesetting of the Qur’an
5:10pm qd&a
}:;re;sed; g 9:00am Michael Doob, U. of Manitoba A web-based TEX previewer: Ecstasy and agony
9:35am Jonathan Kew, Mozilla Corp. TgXworks for newcomers —and what’s new for old hands

10:10am Kaveh Bazargan, River Valley Tech. Batch Commander: An interactive style writer for TEX
10:45am break
11:00am Boris Veytsman & Leyla Akhmadeeva, TgX in the GLAMP world: On-demand creation of

Bashkir State Medical University documents online
11:35am Pavneet Arora, Bolton, Canada Using IMTEX to generate dynamic mathematics worksheets
for the web
12:15pm Stephen Hicks, Google Inc. Improving margin paragraphs and float control
12:50 pm lunch
2:00 pm Herbert Voss, DANTE e.V. From PostScript to PDF
2:35pm Jim Hefferon, Saint Michael’s College Characterizing CTAN packages
3:10pm Didier Verna, EPITA / LRDE Classes, styles, conflicts: The biological realm of INTEX
3:45pm break
4:00 pm Walter Gander, ETH Writing the first IATEX book
4:35pm Chris Rowley, I#TEX3 Project A brief history of INTEX — with a prediction

5:10pm qd&za; TUG meeting

Wednesday 9:00 am

June 30 Uwe Ziegenhagen, Cologne, Germany Dynamic reporting with R/Sweave and IATEX

9:35am John Bowman, U. of Alberta Interactive TgX-aware 3D vector graphics
10:10 am Mathieu Bourgeois and Roger Introduction to drawing structured diagrams in SDDL
Villemaire, U. Québec a Montréal
10:45am break
11:00am Jean-luc Doumont, Principiae Quantum space: Designing pages on grids
11:35am Robert Rundell, Seattle, WA Using the Knuth-Plass algorithm to help control widow
and orphan lines
12:15am Bart Childs, College Station, TX Thirty years of literate programming and more?
12:50 pm lunch
1:45pm group photo
2:00pm John Hobby, Stanford TEX Project Is boxes.mp the right way to draw diagrams?

2:35pm Hans Hagen and Taco Hoekwater How TgX and Meta finally got married

3:10pm Frank Mittelbach, I#TEX3 Project Exhuming coffins from the last century

3:45pm break

4:00 pm Dave Walden, moderator panel: Don Knuth & Stanford TEX Project members
5:30pm Don Knuth, Stanford TEX Project A Special Announcement!

~6:00pm end
7:30pm banquet at Le Colonial (lecolonialSF.com)

Conference logistics

= Conference location: the Sir Francis Drake Hotel (http://www.sirfrancisdrake.com) in
the Union Square area, San Francisco, California. The sessions will take place in the Franciscan
Room on the mezzanine level, and breaks and lunches will take place in the same area. The
workshops on the first day will be taught in the adjacent Windsor Room. Mezzanine level floor
plan: http://www.sirfrancisdrake.com/meet-wed-celebrate/floor-plans.

= Opening reception: the Franciscan Room (mezzanine level), Sunday evening, 5-7 pm. Hors
d’oeuvres and nonalcoholic beverages will be served. You can purchase drinks from the lobby bar
to bring in to the Franciscan room if you wish.

= Registration: also the Franciscan Room, Sunday evening, 5-7 pm(during the opening reception),
and again Monday morning from 8-9am. Please check in at the registration table to pick up your
name tag, conference booklet, and other items.

» Internet access: Complimentary wireless is available to all conference participants in guest rooms
and public spaces. Be sure to ask for an access code upon check-in at the hotel. Wireless is also
available in the Franciscan Room, however, access may be spotty depending on usage. A business
center, open 24 hours a day, is located near the front desk.

= Hotel location: Maps, directions and parking information can be found on the hotel web site
http://www.sirfrancisdrake.com/sfdmapa/index.html.

= Public transportation: If you're flying into SFO or OAK you might consider taking Bay
Area Rapid Transit (BART) from the airport to the hotel. Trains run every 15-20 minutes. A
comprehensive list of stations is at http://www.bart.gov/stations. The train stop closest to
the hotel is Powell Street. If you're walking from the Powell Street station to the Sir Francis
Drake Hotel, start out going northeast on Market Street toward Powell Street. Turn left onto
Powell Street, travel 4-5 blocks. The hotel is located just past Union Square and just before Sutter
Street. It’s about a seven minute walk from the station. Alternatively, you can ride in a cable car
up Powell Street to the hotel.

TUG members meeting

After the regular session on Tuesday, we will hold a TUG user group meeting for anyone interested.
Several TUG board members will be present to report on TUG’s current status and future outlook.

We invite discussion of any TUG-related business at this time: ideas for outreach to additional
communities, additional initiatives to undertake, existing projects to support, or other topics.

Banquet & soapbox

The conference banquet will be held at Le Colonial restaurant (http://www.lecolonialsf.com) at
7pm on Wednesday, June 30. If you haven’t signed up for the banquet, it’s not too late. Just let us know.

The restaurant is located about 3 blocks from the hotel, at 20 Cosmos Place, San Francisco, 94109.
Dinner will be served family-style.

We will have a few door prizes at the banquet. In addition, we will hold a 32-128 second soapbox at
the banquet, where anyone can speak for a minimum of 32 seconds and a maximum of 128 seconds:

= You can reminisce about Stanford, TEX, Knuth, or hold forth on something else: report a success,
gripe about a problem, lament a failure, share an insight, ask a question, or explain a solution.

= No intros, no questions, no hacking on earlier speakers; just you, the mike, and the audience ...
= ... and a moderator with a timer who will cut you off when your time is up.

= No slides, overheads, whiteboards, blackboards, flipcharts, chalk, markers, or other props.

m Come prepared or make it up on the spur of the moment —no experience necessary.

<0

=
Hotel Rex
56 Sutter St
Y
The Cellar =5 % ’
| Nightclub Beresford % Chancellor§
Je _“_’ . ‘Iu‘
Iy
——
, g— z
A R :,‘Jﬂ”-’!ﬁ 1]
| e
= |

TUG 2010 =*

Pavneet Arora
Using TEX to generate dynamic mathematics
worksheets for the web

Mathematics worksheet generators abound on the
web. Many use static content and focus on graphics
and animation in order to package the material

in an appealing manner. This approach comes
across as a fight for eyeballs— all too common
when trying to attract the target audience on the
Internet. The emphasis on form often displaces

the basis of learning at the primary education

level, which is simple practise. Beginning with an
exploration on effective learning strategies for grade
school mathematics the use of IATEX to generate
dynamic mathematics worksheets —lots and lots of
them —is discussed.

Kaveh Bazargan

Batch Commander: An interactive style writer for TEX

Batch Commander is a general graphic user
interface for any batch system that runs a text file
as a batch job and creates an output. It allows
quick manipulation of parameters which it writes
to an external config file and which it then uses

to show the output. The latest incarnation of the
system will be shown, with a live demo.

Mathieu Bourgeois and Roger Villemaire
Introduction to drawing structured diagrams in SDDL

We present SDDL, a Structured Diagram De-
scription Language aimed at producing graphical
representations for discrete mathematics and com-
puter science. SDDL allows combining graphical
objects (circles, lines, arrows, ...) and I#TEX boxes
to produce diagrams representing discrete structures
such as graphs, trees, etc.

In SDDL, one adds objects to a canvas in order
to produce a drawing. Objects are either basic
building blocks such as circles, lines, arrows or even
already defined canvas. This allows reusing existing
representations by integrating them at various
positions in the main canvas. Furthermore, inner
objects can always be referred to. It is hence easy
to add linking objects, such as lines and arrows,
between inner objects.

SDDL uses an object-oriented inspired syntax,
using the dot to access attributes, such as specific
points (center, corner, etc.), in a natural way.
Diagrams are hence constructed by combining
existing parts and linking them in various ways.

Our tool is implemented in Java, but, since
SDDL offers its own simple syntax, no knowledge of
Java is required in order to learn SDDL. The tool
translates the SDDL input into Asymptote code and
uses the Asymptote engine to produce EPS output.

SDDL is hence a simple and clear language in
which one can combine graphical objects and IATEX
code in order to produce structured diagrams such

TUG 2010

as those used in discrete mathematics and computer
science.

John Bowman
Interactive TgX-aware 3D vector graphics

Asymptote is a powerful descriptive vector graphics
language for technical drawing recently developed
at the University of Alberta. It attempts to do
for figures what (IA)TEX does for equations. In
contrast to MetaPost, Asymptote features robust
floating-point numerics, high-order functions,

and a C++/Java-like syntax. It uses the simplex
linear programming method to resolve overall size
constraints for fixed-sized and scalable objects.
Asymptote understands affine transformations
and uses complex multiplication to rotate vectors.
Labels and equations are typeset with TEX,

for professional quality and overall document
consistency.

The feature of Asymptote that has caused the
greatest excitement in the mathematical typesetting
community is the ability to generate and embed
inline interactive 3D vector illustrations within
PDF files, using Adobe’s highly compressed PRC
format, which can describe smooth surfaces and
curves without polygonal tessellation. Three-
dimensional output can also be viewed directly
with Asymptote’s native OpenGL-based renderer.
Asymptote thus provides the scientific community
with a self-contained and powerful TEX-aware
facility for generating portable interactive three-
dimensional vector graphics.

William Cheswick
Ebooks: New challenges for beautiful typesetting

TEX and other traditional text layout markup
languages are predicated on the assumption that
the final output format would be known to the
nanometer. Extensive computation and clever
algorithms let us optimize the presentation for

a high standard of quality. But ebooks are here.
The iPad has sold more than two million units

in under three months, and, combined with other
book readers, offers a new way to store and read
documents. While these readers offer hope to
newspapers (and perhaps doom to many physical
bookstores), they are an increasing challenge

to high quality text layout. Ebook users are
accustomed to selecting text size (for aged eyes and
varied reading conditions) and reader orientation.
We can’t run TEX over a document every time

a reader shifts position. Do we precompute and
download layouts for various devices, orientations,
and text sizes? Do we compromise our standards
of quality to use HTML- and XML-based solutions?
These are new challenges to the TEX community.

Bart Childs
Thirty years of literate programming and more?

Don Knuth created Literate Programming about
thirty years ago. It could be called a methodology,
discipline, paradigm, ... Bentley’s “Programming
Pearls” article about Knuth’s book, TEX: The
Program, caused a huge stir in the computing
professions. Soon there was announcement of a
Literate Programming section for the CACM. There
then appeared a number of “Literate Programming
systems”.

The use of the term Literate Programming
is often applied to systems that have few of the
characteristics of Knuth’s WEB. There are at least
two systems that are still in use that are quite
faithful to the philosophy that Knuth elucidated
in his original Pascal based WEB system: CWEB and
FWEB. These support at least three languages each.
Most other systems are relatively independent of
language.

I will propose a definition for Literate Pro-
gramming that will be used in my comments about
some of these systems. I will also discuss some
items from my archives (or memory) about this
and related subjects. Some come from teaching the
freshman year of computer science using literate
programiing.

I believe that this style of program development
is a great contribution to the goal of creating
excellent and maintainable programs. I have often
wondered how many of the errors that Knuth has
rewarded us for would have even been found if
the program had been in the style of Unix “pretty
printing”. In spite of this, it is referenced too little.
I will offer my opinions as to why this tragedy
persists, what I/we should have done— based on
my humble view from my faulty crystal ball.

Michael Doob
A web-based TpX previewer: Ecstasy and agony

The appeal of a web-based combined TEX editor
and previewer is instantaneous. It allows not only
the easy testing of snippets of code, the writing
of short abstracts and even of short papers, but
also allows sharing of the results over the web.
Unfortunately, even a benign program like TEX
presents serious security risks, and care must be
used when exposing such an application.
This presentation includes a web-based viewer of
the type just described. It will be used to:
= [llustrate how remarkably easy it is, using tools
readily available, to construct a previewer,

m give examples of potential security problems, and

= indicate some solutions to these problems.

The context of this talk is a LAMP (Linux,
Apache, MySQL, PHP) environment, but the
basic ideas can be applied to any of the common
operating systems.

TUG 2010

Jean-luc Doumont
Quantum space: Designing pages on grids

Most (IA)TEX documents are vertical scrolls:
essentially, they place content elements under each
other, possibly running the scroll in two columns,
but hardly more. With the exception of floats,
they basically place items on the page in the order
in which these are encountered in the source file:
that is, they construct pages by piling up boxes
horizontally and vertically, gluing them carefully
together to achieve the desired (elastic) spacing.

Effective page design, in contrast, often benefits
from a more global approach to the page or spread,
one that replaces the scroll paradigm by a true
two-dimensional layout. Pages are then usually
constructed on an underlying grid, in reference
to which the items can be positioned flexibly
yet harmoniously. To produce all the documents
created by our company (Principiae), I have
developed such an approach in TEX. The session
will present the ideas behind both grid designs in
general and the corresponding TEX macros, and
illustrate these ideas with a variety of examples
(flyers, brochures, slides, etc.).

Our grid approach works in two steps: first
create all the items that will appear on a page
or spread (text blocks, illustrations, etc.), then
place them in the desired locations on the grid, in
any order. In a sense, the macro allow the user
to specify, “this block of text goes there, that
figure goes here, this title goes there, etc.” —not
unlike what page layout software allows, but
with the infinitely superior accuracy that TEX
allows. The macros I created to this end are
simple, they have worked well for me for many
years now, and the resulting documents very often
surprise people (“This was done with TEX?!7”).
The grid approach in TEX is best exemplified
with my recent book (sample pages available at
http://www.treesmapsandtheorems.com), in
which grid alignments are pushed to an extreme,
but it is behind all our documents, notably slides.

Walter Gander
Writing the first INTEX book

In 1984 I wanted to write a German textbook
called Computermathematik using the typesetting
system TEX developed by Don Knuth, which I had
always admired and which I had been aware of
since my first sabbatical year in Stanford in 1977.
Mark Kent, a graduate student at Stanford in 1984,
pointed out to me that Leslie Lamport had just
finished a new typesetting system called IATEX
which I might want to use instead. I did, and in
Fall 1984 T had finished the (at least I think) first
book written in IATEX. In this historical talk I
will present some reminiscences how the book was
produced.

Steve Grathwohl and David Ruddy
Math on the Web: Implementing MathJax in
Project Euclid

Project Euclid, a collaboration between Cornell
University Library and Duke University Press,
provides an online repository and publishing envi-
ronment for independent mathematics and statistics
journals. We discuss the issues surrounding the on-
line display of mathematics at Project Euclid and,
more specifically, the implementation of MathJax,
an open-source, Ajax-based math display solution
supporting both TEX and MathML notation.

Hans Hagen
Just in time: Things we can do only with LuaTEX

All the time that I've been using TEX, I've been
lucky enough to stumble into a solution just in time
to save my day (or some project). In most cases it
involved starting from scratch with the strong belief
that TEX can do everything. After a while you
reach a state where you can predict if something
can be done or not.

An extreme example of operating on the edge is
backgrounds that span paragraphs and pages, adapt
to paragraph characteristics, and can be nested.
Another mechanism that made some projects
possible was HTML-like table building. Imagine
combining these two mechanisms.

Such traditional solutions already benefit a
lot from LuaTgX for instance because MetaPost
is integrated. Although we could stretch TEX’s
lifespan in for instance the font arena it is no fun to
stay eight bit among the Unicoders and OpenType
lovers. But it can get worse. The last couple of
years I started running into designers’ demands
that simply are not possible in traditional TEX.
Especially in automated typesetting you need tricks
that are (with good reason) beyond standard TEX
engines. Here we need to really adapt or extend the
engine to get things done.

In this talk I will show a few examples and
solutions. These also show the MkIV approach
to solve such nasty problems. I will discuss some
experiments with providing Lua based variants of
internal functions that we can use in exceptional
situations where performance (in terms of speed) is
not an issue.

Hans Hagen
Building paragraphs with the help of Lua

In the Oriental TEX project we use a combined
approach to get nicely typeset paragraphs. We use
a font with so many features that it drives font
programs crazy but it works out well. We combine
that with a special paragraph optimizer that
improves the quality using different feature sets.
This is a typical example of a local optimization
that only kicks in on demand.

TUG 2010

In this talk I will show how input is converted
into nice looking output and how the already
acceptable output can be further improved. I will
also show how we visualize the process.

A byproduct of this effort is the TEX parara-
graph builder rewritten in Lua. I will discuss a few
issues that showed up when converting the original
code into Lua and some of the outcomes that will
be fed back into the LuaTgX code base.

Hans Hagen and Taco Hoekwater
How TgX and Meta finally got married

MetaPost 2.000 is planned for release in the summer
of 2010. This presentation is a short report on

the project history and current status. MetaPost
version 1.500 was released around BachoTEX 2010,
and in that release all memory arrays will have been
replaced by dynamic memory allocation.

Idris Hamid
Oriental TEX: Culturally authentic typesetting of
the Qur’an

After years of research, the Oriental TEX Project
can proudly announce that it is closing in on the
holy grail of paragraph-based Arabic typography.
We illustrate this by demonstrating the typesetting
of the Qur’an in LuaTEX and ConTEXt MKIV.

William Hammond
IATEX profiles as objects in the “category” of
markup languages

The mathematical notion of “category” in the
context of markup languages raises the idea of
widespread use of reliable automatic translations
between markup languages.

IATEX profiles, which are dialects of IATEX
with a fixed command vocabulary where all macro
expansions must be effective in that vocabulary,
are suitable domains for defining translations to
other profiles and, where sensible, to other markup
languages.

The construction of reliable translators from
several journal-neutral IXTEX profiles to many
journal-specific IATEX profiles would eliminate the
need for technical editing in the production flow for
academic journals.

[1] William F. Hammond, “GELLMU: A Bridge for
Authors from IATEX to XML”, TUGboat, vol. 22
(2001), no. 3, pp. 204-207; also available online
at http://www.tug.org/TUGboat/Contents/
contents22-3.html.

[2] William F. Hammond, “Dual presentation
with math from one source using GELLMU”,
TUGboat, vol. 28 (2007), no. 3, pp. 306-311;
also available online at http://www.tug.org/
TUGboat/Contents/contents28-3.html. A
video recording of the presentation at TUG 2007,
July 2007, in San Diego is available at http:

//www.river-valley.tv/conferences/tex/
tug2007/.

[3] William F. Hammond, “Multipurpose IATEX-like
markup for math”, talk given in the AMS-MAA
Special Session Putting Math on the Web the
Correct Way at the Joint Mathematics Meetings
in San Diego in January 2008. This has not
been published, but HTML slides that link
to many examples are available on the web
at http://math.albany.edu/math/pers/
hammond/Presen/JMMO8/Putting/.

Jim Hefferon
Characterizing CTAN packages

CTAN has many packages that solve many prob-
lems, but users can have trouble finding the package
that solves the problem that they are having today.
We now support text-based searches of the package
descriptions. Here we will demonstrate keyword and
tree-based characterizations of packages.

Stephen Hicks
Improving margin paragraphs and float control

Authors using IATEX to typeset books with signif-
icant margin material often run into the problem
of long notes running off the bottom of the page.
A typical workaround is to insert vertical shifts
by hand, but this is a tedious process that is
invalidated when pagination changes. Another
workaround is memoir’s sidebar function, but this
can be unsatisfying for short textual notes, and
standard marginpars cannot be mixed with side-
bars. I will discuss a solution I put together to
make marginpars ”just work” by keeping a list of
floating inserts and placing them intelligently in
the output routine. Time permitting, I will also
discuss some thoughts on improving IATEX’s float
placement specifiers.

John Hobby
Is boxes.mp the right way to draw diagrams?

This talk explains the motivation behind boxes.mp
and discusses some alternatives. Automatic graph
layout can be combined with MetaPost in various
ways, but this technology is somewhat hard to
control.

Alan Hoenig
TEX helps you learn Chinese character meanings!

I’'ve recently used XHIEX to typeset and maintain a
manuscript which develops a mnemonic technique
for remembering the meanings for the 2000 most
common Chinese characters. Following a brief
introduction to this method, I discuss how painless
XATEX makes it to typeset Chinese and English
together, and how TEX makes it (relatively) simple
to implement this memory method in a handbook
such as this. Some concluding comments emphasize

TUG 2010

aspects that are familiar to old TEX-hands, but
may be overlooked by newer users. Because TEX
source is ASCII text (or its Unicode extension), it’s
easy to manage and maintain the information in
these source files in a straightforward way via Perl
or any other scripting language. TEX coding often
becomes simpler, as it’s possible for Perl to make
some decisions (not typesetting ones, to be sure) for
you, so your TEX macros have less work to do.

Jonathan Kew

TrXworks for newcomers — and what’s new for
old hands

This presentation introduces TEXworks, a simple
TEX environment based on modern standards —
including Unicode text encoding, and PDF output
by default — with an uncluttered interface that
does not overwhelm the newcomer. It is built using
cross-platform, open-source tools and libraries, so
as to be available on all today’s major operating
systems, with a native “look and feel” for each.

First conceived during discussions at the time
of TUG’07 in San Diego, TEXworks is now widely
available, being included in both TEX Live and
MiKTgX for Windows, MacTEX for Mac OS X, and
in packages for various GNU/Linux, *BSD, and
similar systems.

Following the first “stable” release (v0.2) in
September 2009, the most significant new feature
added to the application is a scripting interface.
This allows users to extend and enhance the basic
program in several ways, both by adding custom
menu commands and by providing “hook” scripts
that are automatically run at specific times, such
as when a file is opened or after a typesetting run
finishes. We will look at examples of how TEXworks
can thus be extended using any of several available
scripting languages.

The TEX community is invited to participate in
the ongoing development of this environment, either
at the level of actual code or in any supporting
area, such as document templates or interface
localization.

Johannes Kiister
Math never seen

Why have certain symbols and notations gained
general acceptance, while others fell into oblivion?
And why did mathematicians happily adopt TEX as
a standard, while they hardly ever used METAFONT
(or other tools) to develop new notations?

In this presentation I will give quality criteria
for mathematical symbols. I will show many
unknown, little-known or little-used notations, some
of which deserve to be much more widely used.

Also I will show new symbols and ideas for new
notations, especially for some well known notions
which lack a good notation (e.g., ged and lem,
Stirling numbers, and more).

Frank Mittelbach
Ezhuming coffins from the last century

In The TgXbook Don Knuth poses the following
exercise: “Why do you think the author of TEX
didn’t make boxes more symmetrical between
horizontal and vertical, by allowing reference points
to be inside the boundary instead of insisting that
the reference point must appear at the left edge

of each box?” and gives the following answer:

“No applications of such symmetrical boxes to
English-language printing were apparent; it seemed
pointless to carry extra generality as useless
baggage that would rarely if ever be used, merely
for the sake of symmetry. In other words, the
author wore a computer science cap instead of a
mathematician’s mantle on the day that TEX’s
boxes were born. Time will tell whether or not this
was a fundamental error!”

In this talk we will show how multiple reference
points on boxes allow for a completely different
approach to design specification and what can
be done to successfully overcome the limitations
resulting from Don’s cap worn that day.

Ross Moore

TEX + MathML for Tagged PDF, the next frontier in
mathematical typesetting

This talk will be a follow-on to the introduction to
“Tagged PDF” given at last year’s TUG meeting.
Here I'll present several examples of tagged PDF
documents containing real-world mathematical
layouts, which demonstrate the advantages that tag-
ging provides, in terms of long-term Archivability
(PDF/A) and Accessibility (PDF/UA) and sharing
of content and markup via export to XML.

A script, written in Perl, is under continuing
development. This script combines the MathML
presentational description of a piece of mathematics
with corresponding IATEX source for its visual
appearance, creating a detailed TEX coding using
new primitives that are processed by an enhanced
version of pdfTEX to produce fully tagged PDF
documents. If time permits we can discuss some
of the complications that arise due to differences
in the way mathematical structures are handled by
TEX and for MathML.

This is joint work with Han Thé Thanh (River
Valley Technologies), author of pdfTEX.

Will Robertson
Unicode mathematics in ITEX: Advantages
and challenges

Over the last few years I've been tinkering with
Unicode mathematics in XgIEX. In late 2009 I
spent a few weeks ironing out the significant bugs
and think I've got a pretty good handle on the
whole system now. In this presentation, I'll discuss
the advantages Unicode maths brings to IATEX,

TUG 2010 =*

challenges faced dealing with Unicode, challenges
with maths fonts (including the STIX fonts),
challenges with compatibility with amsmath and/or
MathML, and assorted related remarks. In future
plans, I hope to use this system as the basis for
equivalent development in LuaTEX as well.

Chris Rowley

A brief history of INTEX — with a prediction

Not only brief, but very brief and with a lot of
personal bias! History with attitude!! Left as
unpredictable until the last minute will be both of
these: What I mean by IATEX; and of course the
prediction!

Robert Rundell

Using the Knuth-Plass algorithm to help control
widow and orphan lines

The Knuth-Plass line-breaking algorithm is one

of the many exceptional features of TEX, taking a
paragraph of text and converting it to a vertical

list of well-proportioned lines. Through glue and
penalty markers TEX gives the user almost complete
control over the spacing and look of the paragraph.

However, in some instances TEX does not
provide the user quite as rich a set of options
to control the vertical list as in other areas. In
particular, eliminating widow and orphan lines can
require inserting forced break points into the text,
break points that can only be found from previous
passes of TEX. Subsequent changes to the document
can require changes to some or all of these manually
inserted line or page breaks.

In AML, an experimental typesetting program
under development, the Knuth-Plass algorithm is
enhanced to find not only the optimal line-break
points for a paragraph, but also to give alternate
mappings of the paragraph into different numbers
of lines (where possible). AML stores these different
sets of break points and uses this information, along
with natural page break points, to automatically
eliminate widow and orphan lines in many cases.
Once a bad page break point is detected, AML
will backtrack and adjust previous paragraphs to
create better page breaks. With far greater memory
and processing capabilities than were available at
TEX’s creation, multiple pages can be examined
and processed before a final page break needs to be
finalized, allowing the overall document layout to
be improved. The combination of keeping multiple
pages and also keeping alternative paragraph line-
breaking sets in memory allows AML to automate
and improve this aspect of document typesetting.

Didier Verna
Classes, styles, conflicts: The biological realm of IMTEX
Every IATEX user faces the “compatibility night-

mare” one day. With so much intercession capa-
bilities at hand (I#TEX code being able to redefine

itself at will), a time comes inevitably when the
compilation of a document fails, due to a class/style
conflict. In an ideal world, class/style conflicts
should only be a concern for package maintainers,
not end-users of I4TEX. Unfortunately, the world is
real, not ideal, and end-user document compilation
does break.

As both a class/style maintainer and a docu-
ment author, I tried several times to come up with
some general principles or a systematic approach to
handling class/style cross-compatibility in a smooth
and gentle manner, but I ultimately failed. Instead,
one Monday morning, I woke up with this vision of
the IATEX biotope, an emergent phenomenon whose
global behavior cannot be comprehended, because
it is in fact the result of a myriad of “macro”-
interactions between small entities, themselves in
perpetual evolution.

In this presentation, I would like to draw bridges
between IATEX and biology, by viewing documents,
classes and styles as living beings constantly
mutating their geneTEX code in order to survive
\renewcommand attacks.

Boris Veytsman, Leila Akhmadeeva
TEX in the GLAMP world: On-demand creation of
documents online

The acronym GLAMP is used to denote a combi-
nation of GNU/Linux, Apache, MySQL and Perl,
Python or PHP, which now is one of the most
common technologies for dynamic creation of Web
pages [2,6]. In this talk we describe the use of
this technology for automatic creation of medical
pedigrees [1,3,4,5].

To make the drawing of pedigrees easy for
medical professionals, we put TEX and PostScript
processing of their input on a Web site (http:
//pedigree.varphi.com). In this talk we cover
both technical aspects of this (integration of TEX
with GLAMP) and the preliminary results of using
this site in the education environment.

[1] Leila Akhmadeeva. Using a new package for
drawing pedigrees for teaching medical genetics.
Eur. J. Hum. Gen., 15(Suppl. 1):338, 2007.

[2] Richard M. Stallman. Some confusing or
loaded words and phrases to avoid (or use with
care). http://www.gnu.org/philosophy/
words-to-avoid.html, February 2010.

[3] Boris Veytsman and Leila Akhmadeeva.
Drawing medical pedigree trees with TEX and
PSTricks. TUGboat, 28(1):100-109, 2007.
http://www.tug.org/TUGboat/Articles/
tb28-1/tb88veytsman-pedigree.pdf.

[4] Boris Veytsman and Leila Akhmadeeva. Medical
pedigrees with TEX and PSTricks: New advances
and challenges. TUGboat, 29(3):484, 2008.

TUG 2010

http://www.tug.org/TUGboat/Articles/
tb29-3/tb93abstracts.pdf.

[5] Boris Veytsman and Leila Akhmadeeva.
Medical pedigrees: Typography and interfaces.
TUGboat, 30(2):227-235, 2009. http://
www.tug.org/TUGboat/Articles/tb30-2/
tb95veytsman-pedigree.pdf.

[6] Wikipedia. LAMP (software bundle). http:
//en.wikipedia.org/wiki/LAMP_(software_
bundle), February 2010.

Boris Veytsman
Are virtual fonts obsolete?

Virtual fonts (VF) were created to address a
shortcoming of TEX fonts: each slot address
occupied exactly one byte, so there were no more
than 256 different characters per font. Later, when
PostScript fonts got popular, VF became the way of
choice for integration of these fonts with TEX [2,3].
Today new font formats (OTF, TTF, etc.) can be
directly read by the modern TEX engines, and, for
example, XfTEX can directly work with system
fonts. There is a temptation to declare VF obsolete.

In this talk we show that there is much more
functionality in VF than just making PostScript
fonts available for TEX. There are various tricks
developed over the years, that use VF technology
to achieve new striking effects. Some of these tricks
are described in Alan Hoenig’s great book [1], and
some are used by the author [4].

The aim of this presentation is to convince the
users to learn how to employ VF, and to convince
the programmers of the new engines to provide the
interface for font manipulation comparable to VF.

[1] Alan Hoenig. TgX Unbound: IMTEX and TEX
Strategies for Fonts, Graphics, and More.
Oxford University Press, USA, 1998.

[2] Alan Jeffrey, Rowland McDonnell, and Lars
Hellstroom. Fontinst. Font Installation Software
for TEX, December 2004. http://mirrors.
ctan.org/fonts/utilities/fontinst.

[3] Philipp Lehman. The Font Installation Guide,
December 2004. http://mirrors.ctan.org/
info/Typelfonts/fontinstallationguide.

[4] Boris Veytsman. IATEX Support for Microsoft
Georgia and ITC Franklin Gothic In Text and
Math, July 2009. http://mirrors.ctan.org/
fonts/mathgifg/.

Herbert Voss
From PostScript to PDF

There are still several reasons to use the “tra-
ditional” way of creating PDF output, namely
the sequence latex — dvips — ps2pdf. Using
pdfIATEX is only possible when the PostScript

related code is handled before the pdfIATEX run.
Thus, several packages and/or scripts have been
developed which supports EPS images, or general
PostScript-related code, in a document which is
compiled at least one time with pdfIATEX: pst-pdf,
auto-pst-pdf, pdftricks, epstopdf, pst2pdf,
pstools, ... All have the same general goal, but
each works in a different way. We will demonstrate
with several examples.

TUG 2010

Uwe Ziegenhagen
Dynamic reporting with R/Sweave and IATEX

R is a sophisticated statistical programming
language available on various platforms. Since

its initial development in 1992 it has become a
major tool for many scientists all over the world.
For the integration with IATEX it provides various
tools allowing a dynamic creation of reports. In
my presentation I am going to present a hands-on
demonstration of how to work with R and generate
impressive reports using the packages Sweave,
xtable and tikzdevice.

A web-based TEX previewer: the ecstasy and the agony

Michael Doob

Department of Mathematics

The University of Manitoba

Winnipeg, Manitoba, Canada R3N 2T2
mdoob@ccu.umanitoba.ca

Abstract

The appeal of a web-based combined TEX editor and previewer is instantaneous.
It allows not only the easy testing of snippets of code, the writing of short ab-
stracts and even of short papers, but also allows sharing of the results over the
web. Unfortunately, even a benign program like TEX presents serious security

risks, and care must be used when exposing such an application.
This presentation includes a web-based viewer of the type just described. It

will be used to:

e [llustrate how remarkably easy it is, using tools readily available, to con-

struct a previewer,

e give examples of potential security problems, and

e indicate some solutions to these problems.

The context of this talk is a LAMP (Linux, Apache, MySQL, PHP) envi-
ronment, but the basic ideas can be applied to any of the common operating

systems.

1 Ecstasy

The appeal of a web-based TEX previewer is imme-
diate. There are many possible reasons for this. We
start with some of the them.

1.1 Motivation
1.1.1 Remote Access

We at the Publications Office of the Canadian Math-
ematical Society receive papers accepted for publi-
cation (sometimes called a sow’s ear) in many differ-
ent levels of quality of TEX. They must all be made
to conform to our publication standards (sometimes
called a silk purse), and significant manpower is used
for this purpose. We have a number of editors who
work both at our office and at home. There is no
problem putting TEX on a home computer. We have
our own style file, and that can be put on the home
computers too (although it does change from time
to time). However, there is a significant problem
with our fonts. We have a number of proprietary
(Adobe) fonts, and the license restricts their distri-
bution. The TFM files are no problem and can be
put on the home computers; the only problem is
with the previewing since that uses the proprietary
information. Hence a web page previewer with a
one-button upload of the TEX file followed by run-

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting
TUG 2010 =

ning IXTEX with our class file and then displaying
the resulting pages is just what we need.

1.1.2 Abstract Submissions

The Canadian Mathematical Society has semiannual
meetings in June and December. There are several
hundred abstracts for each meeting which need to
be in KTEX format compatible with the style of our
proceedings. Our traditional method was to allow
presenters to submit their (purported) KTIEX files
by email. Changing these sows’ ears into silk purses
uses significant resources. With a web page the au-
thor can edit the IXTEX file until it works properly
with our style file.

We now provide a window into which the ab-
stract may be loaded. It can be run though the
appropriate version of KTEX and, if needed, can be
further edited and rerun within the same window.
This transfers the editing efforts from our person-
nel to the author. There is, of course, a resulting
decrease in quality due to author inability to use
BTEX optimally. The abstracts are ephemeral (they
are used for the one meeting only), and so this is an
acceptable cost.

1.1.3 Snippet Testing

Sometime it’s desirable to try out a new definition
that may take a few tries to get it right. If the web

1001

10

Michael Doob

server is on a local machine, the turnaround time
is instantaneous. It’s easy to incrementally improve
the code until it is perfect.

Similarly, it is useful to use the picture envi-
ronment incrementally to create figures that will be
usable with any implementation of IXTEX.

If you subscribe to texhax <texhax@tug.org>,
then lots of little problems that arise from that list
can be checked and/or debugged on the spot.

1.1.4 Because We Can

The improvements in the speed of software applica-
tions used with web browsers over the past few years
have been breathtaking. We have long been able to
run TEX on a local machine and view the output
immediately on a previewer. It is interesting that
we can replicate that experience using a reasonable
web connection.

1.2 LAMP Implementation
1.2.1 Environment

Our environment used for this application is some-
times called LAMP: the Linux operating system, the
Apache web server, the MySQL database manage-
ment system (unused in this application) and PHP
(sometimes the “P” is Perl or Python; indeed, either
could be used instead of PHP). No extra modules
are used with Apache, and no additional packages
are loaded into PHP.

1.2.2 Desired Elements

The minimum implementation would allow input
(an input window using direct typing, cut-and-paste
or file upload) as well as output that is dependent on
the success or failure of the TEX job. It’s also easy
to have only file uploads and to display (portions of)
the log file.

Additionally, it’s also possible to preload TEX
input or specific packages. For example, it could be
more convenient to have the material in the input
window inserted between the lines:

\documentclass{article}
\begin{document}

\end{document}

Similarly, it’s also easy to preload either document
classes of packages using pulldown menus. Examples
are given in the documentation.

1.2.3 Browser Peculiarities

Ideally simple output should be rendered identically
by different browsers. This ideal, unfortunately, is
not met. For example, the output from rerunning

1002

TEX should reflect the content in the current input
window. In fact, there is an html metacommand for
exactly this purpose:

<META HTTP-EQUIV="CACHE-CONTROL"
CONTENT="NO-CACHE">

Alas, some browsers will ignore this command, but
these shortcomings can be overcome in a LAMP en-
vironment. It’s always possible to generate unique
names with each call to TEXto avoid the cache prob-
lem. It’s also possible to use freely available software
to generate graphics (png, jpg, pdf or svg) whose
renderings will be (more or less) browser indepen-
dent.

2 Agony

As can be seen in the accompanying documenta-
tion, it’s easy to set up a web-based TEX previewer
within a LAMP environment. Alas, as with any web
application that may be accessed widely, there are
certain concerns and possible exploits that must be
addressed. At first blush, TEX is pretty robust and
locks out the most dangerous threats. For exam-
ple, there are no system calls available. Nonetheless,
there are precautions that must be taken.

2.1 Need to know

Clearly, the more widespread the audience is for
a web application, the less is the information that
should be disclosed about the the operating environ-
ment. There are two options: control the access to
the web pages or control the amount of information
disclosed. In a LAMP environment this is easy.

It is a standard configuration command for the
Apache server to restrict access to some (or even all)
directories to clients with specific internet addresses,
so the access, if desired, may be localized.

On the other hand, the log file, even when there
is only one line of input, will reveal information
about the operating system:

This is TeX, Version 3.14159 (Web2C 7.4.5)
/usr/share/texmf/tex/latex/base/sizel0.clo

Loading more packages and fonts generates similar
messages concerning the versions running and the
structure of the file system. These may and should
be filtered out when the log file is requested. This
same is true for error messages.

2.2 Denial of Service

Denial of Service (DOS) attacks are designed to uti-
lize all of the resources available on a particular com-
puter and thus deny access by others. There are
several methods by which this may be done.

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting

TUG 2010 * 11

A web-based TEX previewer: the ecstasy and the agony

2.2.1 CPU hogging

Consider what happens with the following IXTEX in-
put:

\newcounter{cnt}

\loop
\thecnt\newpage \stepcounter{cnt}
\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with one in-
teger (actually two if you include the page number)
on each page. Suppose the \stepcounter{cnt} is
left out. Then the loop is infinite, and TEX happily
runs until it reaches its memory limit and then halts.
Now suppose that \thecnt\newpage is also omitted.
Then no memory is used, and TEX will run indefi-
nitely using up any cpu resources available. There
are two solutions for this:

e Any standard implementations of Linux comes
with the pam (pluggable authentication mod-
ule) software. This module uses a file called
limits.conf to control, among other things,
the amount of cpu time any process can use.

e For operating systems without pam there is a
program called cpulimit which may be used
to control the percentage of available cpu re-
sources that may be allocated to a given pro-
cess.

2.2.2 Disk hogging
Now consider the following ITEX input:

\newcounter{cnt}

\loop
\leavevmode\newpage \stepcounter{cnt}
\ifnum \value{cnt}<10000

\repeat

This produces a 10,000 page document with only the
page numbers on each page (of course, the use of
\pagestyle{empty} will make the page completely
blank). If we delete the \stepcounter{cnt} from
the input, then TEX runs indefinitely using no mem-
ory, but the dvi file will (apparently) grow without
limit.

This problem is easy to address. The file men-
tioned above, 1limits.conf, can also control disk
usage. Alternatively, disk quotas, turned off by de-
fault, may be enabled.

2.2.3 Server hogging

Any web application is subject to attack through the
server. A distributed DOS attack, that is, one from
a botnet of clients is really impossible to stop. Even
with web pages, the mouse clicks can be spoofed, so

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting
12

TUG 2010 =*

it is important to keep the web applications isolated
from the rest of the computer environment.

2.3 Isolation

Putting any application on the web, as we have seen,
has inherent dangers. While these can not be elimi-
nated, they can be somewhat mitigated by isolating
the web application, inasmuch as possible, from the
rest of the computer environment. There are three
possible approaches.

2.3.1 Chroot Jail

The chroot command is available on all UNIX im-
plementations. All the software (binaries and li-
braries) needed for the application are put on one
directory, and the chroot command then limits the
operating system access to that directory (and its
subdirectories) only. We say that the operating sys-
tem is in chroot jail. This makes the rest of the
computer environment safe even if the application
is broken.

2.3.2 Software isolation of the Operating
System

It is now fairly easy to set up virtual computers
within a UNIX environment. It’s possible to take a
snapshot of the original setup, and then refresh the
installation regularly. This means that any damage
can be instantly repaired.

2.3.3 Hardware isolation of the Operating
System

The most extreme measure is to put the application
on its own platform. This is in effect running the
web application as an embedded device. Since a web
browser can be run headless, the costs are actually
quite modest. It is possible, for example, to set up a
mini-ITX board with an enclose, RAM and storage
for less than $200.

3 Documentation

Finally, we want the actual PHP code that imple-
ments the web-based previewer. This is included
in the attached TEX file. Running the file through
ITEX prints the documentation along with instruc-
tions for extracting the PHP code.

1003

Writing the first M TEX-Book

Walter Gander, ETH Zurich
June 10, 2010

Abstract

In 1984 I wanted to write a German text-book called “Comput-
ermathematik” using the typesetting system TEX developed by Don
Knuth, which I have always admired and which I have been aware of
since my first sabbatical year in Stanford in 1977. Mark Kent, a gradu-
ate student at Stanford in 1984, pointed out to me that Leslie Lamport
had just finished a new typesetting system called ITEX which I might
want to use instead. I did and in Fall 1984 T had finished the (at least I
think) first book written in KTEX. In this historical talk I will present
some reminiscences how the book was produced.

1 First Encounter with TEX

In 1977/78 1 spent a year at Stanford as postdoc writing my Habilitation. It
was still the time where technical typists were writing papers or books for
their professors. I was very lucky to have had my Stanford Report typed
by Phyllis Winkler, the technical typist of Don Knuth, probably the best
in Stanford. I gave her my hand-written manuscript and she typed it very
efficiently using an electric typewriter. An excerpt is shown in Figure 1.

One day in the printer room, when I was retrieving some program output,
I was really amazed to see a page of a printed book coming out of the printer.
I could not really understand what this was, the only thing I could imagine
was a photocopy of a page of a mathematical book. However, no, it was not
that — it was some TEX-output which Don had sent to the printer.

I returned home to Switzerland in Fall 1978 and continued my job as
professor at the University of Applied Sciences in Buchs in the Rhine-Valley.

TUG 2010 % 13

Finally (P2E) and (F3E) will be the corresponding problems with equality

sign in the constraint.
The solution of (Pl) is a stationary point of the Lagrange function

(with the Lagrange multiplier X)

2 \ 2 2
L) = |l -pl|" + Mijjex-d" - o7}
and therefore a solution of g—}c’ =0 and g—i‘ = 0 , which are the "normal
equations':
o S R (1.3)
lox-af = & . .4

If the matrix 1}T5+ N (_ZT(_} is nonsingular, then we can define
. 2 (1.5)
£0) == |l¢ 200 - ¢l 5

where x(M) is the solution of (1.3). We will call f the "length
Figure 1: Mathematical Typing: State of the Art 1977 in Stanford

From Stanford I began to receive beautifully printed mathematical docu-
ments, not typeset in the traditional way but generated with TEX. One of
those early ones was the PhD thesis of Nick Trefethen (see Figure 2)

2 Writing the book

A few years later I was due for a sabbatical and I decided to use it to write a
German textbook with the title “Computermathematik” which would teach
algorithms written in Pascal, mostly focussed on topics in numerical analysis.
Of course I was determined to learn TEX and write my book using this new
text-processing system.

So I went with my two daughters of 9 and 11 years and a suitcase full of
hand written notes to Stanford. My wife Heidi had just started a new job
and had to stay in Switzerland but would visit us in the vacations.

At the beginning I had to learn to use the computer (a UNIX VAX) on
which TEX was installed. Mark Kent, a graduate student in the Computer
Science Department, working in Numerical Analysis with Gene Golub, helped
me a lot to get me going. I learned to use the Emacs editor to write TEX
source files. When Mark realized that I was going to write a book he pointed

TUG 2010 % 14

This amounts to two rcal equations to be satisfied.

Denote by Ty, ...,I"y, the distinct connected components of P, numbered
in counterclockwise order. For each ¢ > 2, impose one more complex con-
dition: if z, is the last vertex of I'¢ in the counterclockwise direction, then
(real equations 3,4,...,2m)

—w, = C / ™ H(l - —)_ﬁ' (2.40)

Finally, N — 2m — 1 conditions of side length are imposed. For each
pair (2, 2x+1) beginning at £ = 1 and moving counterclockwise, where both
vertices are finite, we require (real equations 2m + 1,...,.N — 1)

[we1 — we| = ,C' / " (1 — —)—ﬁ! (2.4¢)

=1

Figure 2: Part of Nick Trefethen’s PhD Thesis

out to me that just a few weeks earlier Leslie Lamport had published a
manual in which he described his system IXTEX, a collection of TEX macros
which would help a book writer a lot since it would take him to a higher book-
producing abstraction level. Simply write \chapter{ } and forget about the
actual size of fonts, distance to text, numbering etc. It sounded good to me
and since I had to learn anyway either TEX or IXTEX I decided to go for
ETRX.

The first chapter I started to write was Chapter 4 of the book with the
title “Polynome”. This was already quite a challenge. Showing how to divide
a polynomial by some factor in the form that one would write it up when
doing it by hand is quite demanding for a BTEX-beginner. The first page of
this chapter is displayed in Figure 3.

Including graphics was not yet as convenient as it is today. Nowadays we
use \includegraphics to include all possible graphical material in various
formats. In 1984 I used basic graphic commands provided by KTEX to, for
example, produce Figure 4:

TUG 2010 = 15

0T0Z ONL

91

Kapitel 4
Polynome

Eine héufig verwendete Klasse von Funktionen bilden die Polynome.

Definition 4.1 Seien ap,a1,...,a, mit a, # 0 gegebene Zahlen. Es

st dann
Po(z) = agp + a1z + -+ + apa"

emn Polynom vom Grade n. Die Zahlen a; heissen die Koeffizienten

von P,.

4.1 Division durch einen Linearfaktor

Oft stellt sich die Aufgabe, ein Polynom P, (z) durch den Linearfaktor
(z — 2) zu dividieren. Man erhilt dabei ein Polynom vom Grade n—1

und, falls die Division nicht aufgeht, eine Zahl r als Rest:

r

Po(x) =P y(2)+

xr—z ==z

Beispiel 4.1 P3(z) =32° + 22 — 5z +1, 2 =2

(Bz*+ 2 — 5z + 1):(z—2) =32+ T2 +9

—32% + 622 Ps(z)
722 — 5z
— 7% + 14z
9z + 1
— 9z + 18
199=r

Somit lautet fiir dieses Beispiel die Gleichung (4.1)

38+ 2% -5z +1
r—2

1
=324 Ts 49+ 10
£—2

91

(41)

(4.2)

\chapter{Polynome}
Eine h\"aufig verwendete Klasse von Funktionen bilden die {\em
~{Polynome}}.

{\defi \it Seien a_0, a_1, \ldots, a_n mit $a_n\ne 0$ gegebene
Zahlen. Es ist dann

P_n(x) = a_0 + a_1 x +\cdots +a_nx"n

ein Polynom vom Grade n. Die Zahlen a_i heissen die Koeffizienten
von P_n.}
\section{Division durch einen Linearfaktor}
0ft stellt sich die Aufgabe, ein Polynom $P_n(x)$ durch den {\em
“{Linearfaktor} } $(x-z)$ zu dividieren. Man erh\"alt dabei ein

Polynom vom Grade $n-1$ und, falls die Division nicht aufgeht, eine
Zahl r als Rest:
\begin{equation}

\label{44.2}

\frac{P_n(x)} {x-z} = P_{n-1}(x) + \frac{r}{x-z}
\end{equation}

\begin{bsp}\label{41}
$P_3(x)=3x"3+x"2-5bx+1$, $z=29%
\end{bsp}

\medskip

\begin{equation} \label{44.x*}
\arraycolsep 2pt
\begin{array}{rcrcrcrlc}
(3x"3 &+& x"2 &-& 5x &+& 1) & :(x-2) & = \underbrace{3x"2+7x+9}\\
-3x"3 &+& 6x72 & & & & & & P_2(x)
\\[-2\smallskipamount]
\multicolumn{3}{c}\hrulefill&&&&&&\\
& & 7x72 &-& 5x & & & & A\
&-& 7x"2 &+&14x & & & &
\\[-2\smallskipamount]
&\multicolumn{4}{c}\hrulefill&&&&\\
& & & & 9x &t+& 1 & & \\
& & &-& 9x &+& 18 & &
\\[-2\smallskipamount]
&&&\multicolumn{4}{c}\ hrulefill&&\\
& & & & & & 19 & =r &
\end{array}
\end{equation}
Somit lautet f\"ur dieses Beispiel die Gleichung (\ref{44.2})
\[\frac{3x"3+x"2-5x+1}{x-2}=3x"2+7x+9+\frac{19}{x-2}.\]

Figure 3: First page typeset

Rechenplan auf

‘/////////// gelochtem Film

Zahlenspeicher fiir
Zwischenergebnisse

Rechenwerk

Figure 4: Erste Computer

\begin{figure} [htb]
\begin{center}
{\setlength{\unitlength}{8mm}
\begin{picture}(13,7)(0,0)
\put (0,3) {\framebox (4,2){Rechenwerk}}
\put (4,2){\vector(2,-1){1.8}}
\put (4,2){\vector(-2,1){1.8}}
\put (6,0) {\framebox(5,2){
\shortstack{Zahlenspeicher f\"ur\\
Zwischenergebnissel}}}
\put (7,5) {\framebox (5,2){
\shortstack{Rechenplan auf\\
gelochtem Film}}}
\put (6.8,6){\vector(-3,-2){2.6}}
\end{picture}
}
\end{center}
\caption{Erste Computer} \label{1F1}
\end{figure}

Again today the situation has completely changed. We have tools to convert
formats, e.g. from eps to pdf and tools for graphical construction, most
notably METAPOST.

TUG 2010 % 17

Another challenge was to typeset Pascal programs. Today most of us
do not bother too much. We simply use \verbatim or \verbatiminput to
include programs. I had the idea to write the reserved words like begin, end,
for, etc in boldface and to indent always by three spaces after a begin or
when using for-loops or if-statements. Of course I did not want to retype the
Pascal programs, this would be to much a source of errors. So I finally asked
Leslie Lamport by e-mail what he would recommend. He suggested using
the tabbing environment. My Pascal programs were written with capitalized
reserved words. As an example consider the Pascal function to compute a
square-root:

FUNCTION quadratwurzel(a:real):real;
VAR xneu,xalt:real;
BEGIN
xneu:=(1+a)/2;
REPEAT
xalt:=xneu; xneu:=(xalt+a/xalt)/2
UNTIL xneu>=xalt;
quadratwurzel :=xneu
END;

A pragmatic way was to replace a capitalized reserve word like BEGIN by
\BEGIN where I had defined \newcommand{\BEGIN}{{\bf begin }\+}. The
characters \+ would cause the next line to be indented in the tabbing envi-
ronment. More changes like writing $ to use math-mode and re-indenting I
did by hand using Emacs. Defining the KTEX-command

\newcommand{\SETTABS}
{123\=456\=789\=123\=456\=789\=123\=456\=789\=123\=\kill
A>\>\>\+\+\+}

and using Emacs I transformed it to

\begin{alg} \label{3wurzel} \it
\begin{tabbing} \SETTABS \\
\FUNCTION quadratwurzel(a:real):real;\\
\VAR xneu, xalt : real ; \\
\BEGIN \\

$ xneu := (1+a)/2;$ \\

\REPEAT \\

TUG 2010 % 18

$xalt:=xneu; xneu:=(xalt+a/xalt)/2$% \\
\< \- \UNTIL $xneu \ge xalt;$\\
quadratwurzel := xneu \\
\END
\end{tabbing}
\end{alg}

After processing with IXTEX the result looked quite satisfactory:

function quadratwurzel(a:real):real;
var zneu, zalt : real ;
begin
zneu := (1 +a)/2;
repeat
zalt := xneu; xneu = (zalt + a/xalt)/2
until zneu > zalt;
quadratwurzel := xneu
end

I typed the whole summer, the children were busy attending Escondido
School on campus. In summer vacations Heidi came to visit us and look
after our daughters. Finally in Fall the book was finished. Voy and Gio
Wiederhold invited us all to a party at their house to celebrate this event.
Don Knuth was also with us and said: “Finally it is proved that BTEX is
useful!”

3 Book Revision

The book was written. But of course I still needed to proofread it carefully.
Back in Switzerland I offered the book to publishers for German textbooks
among them Birkhauser in Switzerland, Springer and Oldenburg in Germany.
All the publishers were amazed about the quality of typing and all of them
accepted the book and made me an offer. For patriotic reasons I then chose
Birkhauser.

When proofreading I found of course typos and other minor things which
needed to be fixed. There was no way to process IfTEX in Switzerland, I did
not even know of a TEX installation. So I decided to fly back in the winter

TUG 2010 % 19

break at beginning of January 1985 to do the changes in Stanford and print
the final camera ready version of the book on the best available printer, the
AlphaType machine in the basement. This rather expensive way of doing
changes was the only possibility that I had at that time. Switzerland was
not yet connected to the Internet. So I spent a week in Stanford, produced a
new corrected version of the book and wanted to print the final copy for the
publisher. However, I did not succeed because the AlphaType printer was
down. I discussed with Mark Kent what to do and we decided that I would
return to Switzerland and that he would print the book when the printer was
operating again and send me the manuscript by ordinary mail. Indeed this
worked fine, two weeks later I received a beautifully typed manuscript.

Looking it through I was terrified: at some place the page break was
different than what I had printed in Stanford before. One table was moved
and there was a half page empty. Fix it and have Mark printed it again using
this expensive printer and paper? I finally decided for a pragmatic solution.
I took a scissor and glue and copy pasted the few pages by hand as I expected
them to look in my first output.

What was the reason for this new page-break? Well in my absence Leslie
Lamport made some small changes IXTEX and installed a new version. We
did not notice this and thus the different page break occurred.

4 Epilogue

I had to write a second volume of my book which includes the solutions of
all exercises which are mostly programming assignment. I bought a desktop
computer Olivetti M24 for some $ 6’000 with a 10 MB Hard-disk. There was
a company called Micro-TEX who had ported TEX on a IBM PC. I bought
their floppy disk and installed TEX on my Olivetti. It used up half of my disk-
space! IXTEX was not available. So I wrote in 1985 my solution book using
plain TEX on my own PC at home. Printing on the dot matrix printer did
not look so nice as with Dover and furthermore was terribly slow. When the
book was finished, I looked around to find a TEX installation in Switzerland.
I found one in the Institute of Astronomy at ETH. Professor Jan Olof Stenflo
was one of the first to have TEX and ITEX installed in Switzerland. So I
processed the final version of the second book written in plain TEX on his
computer in Switzerland.

The first ETEXbook is no longer in print, it had a second edition in 1992.

TUG 2010 % 20

The publisher Birkhéauser has returned the copyrights to me. So I decided to
give the book for free distribution to Google. This seems to be a very long
procedure. Therefore I also made it available on http://www.educ.ethz.
ch/unt/um/inf/ad/cm.

[wanted to produce a pdf file of the book for the web page. Now the amaz-
ing result: without any major changes the book compiled using pdflatex!!
I do not know of any other typesetting system that is as stable over more
than 25 years.

TUG 2010 = 21

Grouping

Hans Hagen
PRAGMA ADE, Ridderstraat 27, 8061GH Hasselt NL
pragma@wxs.nl

Abstract

In this article I will discuss a few things that are hard to do in traditional TEX, but reasonable well in

LuaTgX.

1 Variants

After using TEX for a while you get accustomed to
one of its interesting concepts: grouping. Program-
ming languages like Pascal and Modula have key-
words begin and end. So, one can say:

if test then begin
print_bold("test 1")
print_bold("test 2")
end

Other languages provide a syntax like:

if test {
print_bold("test 1")
print_bold("test 2")
}

So, in those languages the begin and end and/or
the curly braces define a ‘group’ of statements. In
TEX on the other hand we have:

test \begingroup \bf test \endgroup test

Here the second test comes out in a bold font and
the switch to bold (basically a different font is se-
lected) is reverted after the group is closed. So, in
TEX grouping deals with scope and not with group-
ing things together.

In other languages it depends on the language of
locally defined variables are visible afterwards but
in TEX they’re really local unless a \global prefix
(or one of the shortcuts) is used.

In languages like Lua we have constructs like:

for i=1,100 do
local j =1 + 20

end

Here j is visible after the loop ends unless prefixed
by local. Yet another example is METAPOST:

begingroup ;
save n ; numeric n ; n := 10 ;

endgroup ;

Here all variables are global unless they are explic-
itly saved inside a group. This makes perfect sense
as the resulting graphic also has a global (accumu-
lated) property. In practice one will rarely needs
grouping, contrary to TEX where one really wants
to keep changes local, if only because document con-
tent is so unpredictable that one never knows when
some change in state happens.

In principle it is possible to carry over information
across a group boundary. Consider this somewhat
unrealistic example:

\begingroup
\leftskip 10pt
\begingroup
\advance\leftskip 10pt
\endgroup
\endgroup
How do we carry the advanced leftskip over the
group boundary without using a global assignment
which could have more drastic side effects? Here is
the trick:
\begingroup
\leftskip 10pt
\begingroup
\advance\leftskip 10pt

\expandafter

Hans Hagen

TUG 2010 % 22

100

\endgroup
\expandafter \leftskip \the\leftskip
\endgroup

This is typical the kind of code that gives new users
the creeps but normally they never have to do that
kind of coding. Also, that kind of tricks assumes
that one knows how many groups are involved.

2 Implication

What does this all have to do with LuaTgX and
MEKIV? The user interface of ConTEXt provide lots
of commands like:

\setupthis[style=bold]
\setupthat [color=green]

Most of them obey grouping. However, consider
a situation where we use Lua code to deal with
some aspect of typesetting, for instance numbering
lines or adding ornamental elements to the text. In
ConTEXt we flag such actions with attributes and
often the real action takes place a bit later, for in-
stance when a paragraph or page becomes available.
A comparable pure TEX example is the following:

{test test \bf test \leftskiplOpt test}
Here the switch to bold happens as expected but
no leftskip of 10pt is applied. This is because the
set value is already forgotten when the paragraph is
actually typeset. So in fact we’d need:

{test test \bf test \leftskiplOpt test \par}

Now, say that we have:

TUGboat, Volume 99 (2010), No. 9

associate it somehow in the attribute’s value. Of
course, as we never know in advance when this in-
formation is used, this might result in quite some
states being stored persistently.

A side effect of this ‘problem’ is that new commands
might get suboptimal user interfaces (especially in-
heritance or cloning of constructs) that are some-
what driven by these ‘limitations’. Of course we
may wonder if the end user will notice this.

To summarize this far, we have three sorts of group-
ing to deal with:

e TEX'’s normal grouping model limits its scope
to the local situation and normally has only
direct and local consequences. We cannot
carry information over groups.

e Some of TEX’s properties are applied later,
for instance when a paragraph or page is
typeset and in order to make ‘local’ changes
effective, the user needs to add explicit para-
graph ending commands (like \par or \page).

e Features dealt with asynchronously by Lua
are at that time unaware of grouping and
variables set that were active at the time
the feature was triggered so there we need
to make sure that our settings travel with the
feature. There is not much that a user can do
about it as this kind of management has to
be done by the feature itself.

It is the third case that we will give an example of
in the next section. We leave it up to the user if it
gets noticed on the user interface.

3 An example

A group of commands that has been reimplemented
using a hybrid solution is underlining or more

{test test test \setupflagl[option=1] \flagnextwexwtric: bars. Just take a look at the following ex-

test}

We flag some text (using an attribute) and expect it
to get a treatment where option 1 is used. However,
the real action might take place when TEX deals
with the paragraph or page and by that time the
specific option is already forgotten or it might have
gotten another value. So, the rather natural TEX
grouping does not work out that well in a hybrid
situation.

As the user interface assumes a consistent behaviour
we cannot simply make these settings global even if
this makes much sense in practice. One solution is
to carry the information with the flagged text i.e.

Grouping

TUG 2010

amples and try to get an idea on how to deal with
grouping. Keep in mind that:

e Colors are attributes and are resolved in the
backend, so way after the paragraph has been
typesetting.

e Overstrike is also handled by an attribute and
gets applied in the backend as well, before
colors are applied.

e Nested overstrikes might have different set-
tings.

e An overstrike rule either inherits from the
text or has its own color setting.

* 23

TUGboat, Volume 99 (2010), No. 9 101

First an example where we inherit color from the
text:

\definecolor [mygreen] [g=.75]

\definebar [myoverstrike] [overstrike] [max=1,dy=0,0ffset=.5
\definebar [myoverstrike:1] [myoverstrike] [color=myblue]
\definebar [myoverstrike:2] [myoverstrike] [color=myred]
\definebar [myoverstrike:3] [myoverstrike] [color=mygreen]

\definecolor [myblue] [b=.75]
\definebar [myoverstrike] [overstrike] [color=]

Test \myoverstrike{%
Test \myoverstrike{\myblue
Test \myoverstrike{Test}
Test}
Test}
Test

Test Test Fest Fast Fest Test Test

Because color is also implemented using attributes
and processed later on we can access that informa-
tion when we deal with the bar.

The following example has its own color setting:

\definecolor [myblue] [b=.75]
\definecolor [myred] [r=.75]

Test \myoverstrike{%
Test \myoverstrike{’
Test \myoverstrike{Test}
Test}
Test}
Test

Test Test Test Test Test Test Test

It this the perfect user interface? Probably not, but
at least it keeps the implementation quite simple.
The behaviour of the MKIV implementation is
roughly the same as in MKII, although now we spec-
ify the dimensions and placement in terms of the
ratio of the x-height of the current font.

\definebar [myoverstrike] [overstrike] [color=myred]

Test \myoverstrike{%
Test \myoverstrike{\myblue
Test \myoverstrike{Test}
Test}
Test}
Test

Test Test Test Fast Fest Test Test
See how can we color the levels differently:

\definecolor [myblue] [b=.75]
\definecolor[myred] [r=.75]
\definecolor [mygreen] [g=.75]

Test \overstrike{Test \overstrike{Test \overstrike{Test}

Test} Test} Test \blank

Test \underbar {Test \underbar
{Test} Test} Test} Test \blank
Test \overbar {Test \overbar
{Test} Test} Test} Test \blank
Test \underbar {Test \overbar
Test} Test} Test \blank

Test Fest Test Fast Test Tost Test

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test

\definebar [myoverstrike:1] [overstrike] [color=mjlsktuclest Test Fest Test Test Test
\definebar [myoverstrike:2] [overstrike] [color=myred]
\definebar [myoverstrike:3] [overstrike] [color=mygreandxtra this mechanism can also provide simple

Test \myoverstrike{%
Test \myoverstrike{%
Test \myoverstrike{Test}
Test}
Test}
Test

Test Fest Fest Fest Test Test Test
Watch this:

\definecolor [myblue] [b=.75]
\definecolor[myred] [r=.75]

TUG 2010

backgrounds. The normal background mechanism
uses METAPOST and the advantage is that we can
use arbitrary shapes but it also carries some limi-
tations. When the development of LuaTgX is a bit
further along the road I will add the possibility to
use METAPOST shapes in this mechanism.

Before we come to backgrounds, first take a look at
these examples:

\startbar [underbar]

Coming back to the use of typefaces in electronic

Hans Hagen

* 24

{Test \underbar
{Test \overbar

{Test \overstrike{Test}

\input zapf \stopbar \blank
\startbar [underbars] \input zapf \stopbar \blank

102

publishing: many of the new typographers receive
their knowledge and information about the rules of

typography from books, from computer magazines
or the instruction manuals which they get with the
purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old
days, showing the differences between good and bad
typographic design. Many people are just fascinated

by their PC’s tricks, and think that a widely—praised
program, called up on the screen, will make every-

thing automatic from now on.

publishing: many of the new typographers receive
their knowledge and information about the rules of
typography from books. from computer magazines
or the instruction manuals which they get with the

basic instruction, as of now, as there was in the old
days. showing the differences between good and bad
typographic design. Many people are just fascinated
by their PC’s tricks. and think that a widely—praised
program, called up on the screen. will make every-
thing automatic from now on.

First notice that it is no problem to span multiple
lines and that hyphenation is not influenced at all.
Second you can see that continuous rules are also
possible. From such a continuous rule to a back-
ground is a small step:

\definebar
[backbar]
[offset=1.5,rulethickness=2.8,color=blue,
continue=yes,order=background]

\definebar
[forebar]
[offset=1.5,rulethickness=2.8,color=blue,
continue=yes,order=foreground]

The following example code looks messy but this has
to do with the fact that we want properly spaced
sample injection.

from here
\startcolor [whitel¥
\startbar [backbarl
\input zapf
\removeunwantedspaces
\stopbar
\stopcolor
\space till here

Grouping

TUG 2010 =*

TUGboat, Volume 99 (2010), No. 9

\blank
from here
\startbar [forebar]¥
\input zapf
\removeunwantedspaces
\stopbar
\space till here

iggEv g Coming back to the use of typefaces inl
electronic publishing: many of the new typogra-
phers receive their knowledge and information about,
the rules of typography from books, from computer

magazines or the instruction manuals which they get
with the purchase of a PC or software. There is not

so much basic instruction, as of now, as there was ir

showing the differences between good
and bad typographic design. Many people are just]
fascinated by their PC’s tricks, and think that a
widely—praised program, called up on the screen,
will make everything automatic from now on,
here

from here

till

here

Watch how we can use the order to hide content. By
default rules are drawn on top of the text.

Nice effects can be accomplished with transparen-
cies:

\definecolor [tblue] [b=.5,t=.25,a=1]
\setupbars [backbar] [color=tblue]
\setupbars [forebar] [color=tblue]

We use as example:

from here {\white \backbar{test test}
\backbar {nested nested} \backbar{also alsol}}
till here
from here {\white \backbar{test test
\backbar {nested nested}
till here
from here {\white \backbar{test test

also alsol}}

25

TUGboat, Volume 99 (2010), No. 9

\backbar {nested nested}
till here
from here till here
from here till here
from here till here

The darker nested variant is just the result of two
transparent bars on top of each other. We can limit
stacking, for instance:

103

also also}} e =

We started this chapter with some words on group-
ing. In the examples you see no difference between
adding bars and for instance applying color. How-
ever you need to keep in mind that this is only be-
cause behind the screens we keep the current set-
tings along with the attribute. In practice this is
only noticeable when you do lots of (local) changes

to the settings. Take:
\setupbars [backbar] [max=1]

\setupbars [forebar] [max=1] {test test test \setupbars[color=red] \underbar{test}

test}
This gives
from here till here This results in a local change in settings, which in
from here till here turn will associate a new attribute to \underbar.
from here till here So, in fact the following underbar becomes a differ-

There are currently some limitations that are mostly
due to the fact that we use only one attribute for
this feature and a change in value triggers another
handling. So, we have no real nesting here.

The default commands are defined as follows:

ent one that previous underbars. When the page
is prepared, the unique attribute value will relate to
those settings. Of course there are more mechanisms
where such associations take place.

4 M
[method=0,dy= 0.4,o0ffsep=" Or¢ to come

Is this all there is? No, as usual the underlying
[method=1,dy=-0.4, of fselecltulims can be used for other purposes as well.
[method=1,dy= 0.4,offsdiske for instance inline notes:

\definebar [overstrike]
0.5]
\definebar [underbar]
\definebar [overbar]
1.8]

According to the wikipedia this is the longest
\definebar [overstrikes] [overstrike] [continue®pgilish word:
\definebar [underbars] [underbar] [continueppesinonoultramicroscopicsilicovolcanoconiosis~\shiftup
\definebar [overbars] [overbar] [continueX{pehkr long
words are pseudopseudohypoparathyroidism and
flocci-nauci-nihili-pili-fication}. 0Of course
in languags like Dutch and
German we can make arbitrary long words by pasting
words together.

As the implementation is rather non-intrusive you
can use bars almost everywhere. You can underbar
a whole document but equally well you can stick to
fooling around with for instance formulas.

\definecolor [tred] [r=.5,t=.25,a=1]
\definecolor [tgreen] [g=.5,t=.25,a=1]
\definecolor [tblue] [b=.5,t=.25,a=1]

This will produce:

According to the wikipedia this is the longest
English word: pneumonoultramicroscopicsilicovol-
CanOCOHiOSiS other long words are pseudopseudohypoparathy-
\definebar [mathred] [backbar] [color=tred] reidism and floccinaucinihilipilification Qf course in languags
\definebar [mathgreen] [backbar] [color=tgreenlike Dutch and German we can make arbitrary long
\definebar [mathblue] [backbar] [color=tblue] words by pasting words together.

I wonder when users really start using such features.

\startformula
\mathred{e} = \mathgreen{\white mc} ~ {\ma?bég%}rvlagrite
e}t Y
\stopformula Although under the hood the MkIV bar commands
are quite different from their MKII counterparts
We get: users probably won’t notice much difference at first

sight. However, the new implementation does not

Hans Hagen

TUG 2010 % 26

104

interfere with the par builder and other mechanisms.
Plus, it configurable and it offers more functional-
ity. However, as it is processed rather delayed, side
effects might occur that are not foreseen.

So, if you ever notice such unexpected side effects,
you know where it might result from: what you
asked for is processed much later and by then the cir-

Grouping

TUGboat, Volume 99 (2010), No. 9

cumstances might have changed. If you suspect that
it relates to grouping there is a simple remedy: de-
fine a new bar command in the document preamble
instead of changing properties mid-document. Af-
ter all, you are supposed to separate rendering and
content in the first place.

TUG 2010 % 27

1 Building paragraphs

1.1 Introduction

You enter the den of the Lion when you start messing around with the par-
builder. Actually, as TgX does a pretty good job on breaking paragrphs into
lines I never really looked in the code that does it all. However, the Oriental
TEX project kind of forced it upon me. In the chapter about font goodies an
optimizer is described that works per line. This method is somewhat simular
to expansion level one support in the sense that it acts independent of the par
builder: the split off (best) lines are postprocessed. Where expansion involves
horizontal scaling, the goodies approach does with (Arabic) words what the
original HZ approach does with glyphs.

It would be quite some challenge (at least for me) to come up with solutions
that looks at the whole paragraph and as the per-line approach works quite
well, there is no real need for an alternative. However, in September 2008,
when we were exploring solutions for Arabic par building, Taco converted the
parbuilder into Lua code and stripped away all code related to hyphenation,
protrusion, expansion, last line fitting, and some more. As we had enough on
our plate at that time, we never came to really testing it. There was even less
reason to explore this route because in the Oriental TgX project we decided to
follow the “use advanced OpenType features” route which in turn lead to the
‘replace words in lines by narrower of wider variants’ appeoach.

However, as the code was laying around and as we want to explore futher I
decided to pick up the parbuilder thread. In this chapter some experiences wil
be discussed. The following story is as much Taco’s as mine.

1.2 Cleaning up

In retrospect, we should not have been too surprised that the first approxi-
mation was broken in many places, and for good reason. The first version of
the code was a conversion of the C code that in turn was a conversion from
the original interwoven Pascal code. That first conversion still looked quite C—
ish and carried interesting bit and pieces of C—macros, C-like pointer tests,
interesting magic constants and more.

When I took the code and Lua-fied it nearly every line was changed and it took
Taco and me a bit of reverse engineering to sort out all problems (thank you
Skype). Why was it not an easy task? There are good reasons for this.

Building paragraphs 1
TUG 2010 # 28

e The parbuilder (and related hpacking) code is derived from traditional TgX
and has bits of pdfTEX, Aleph (Omega), and of course LuaTiX.

e The advocated approach to extending TgX has been to use change files which
means that a coder does not see the whole picture.

e Originally the code is programmed in the literate way which means that
the resulting functions are build stepwise. However, the final functions can
(and have) become quite large. Because LuaTlEX uses the woven (merged)
code indeed we have large functions. Of course this relates to the fact that
succesive TgX engines have added functionality. Eventually the source will
be webbed again, but in a more sequential way.

e This is normally no big deal, but the Aleph (Omega) code has added a level
of complexity due to directional processing and additional begin and end
related boxes.

e Also the ¢-TgX extension that deals with last line fitting is interwoven and
uses goto’s for the control flow. Fortunately the extensions are driven by
parameters which makes the related code sections easy to recognize.

e The pdfIgX protrusion extension adds code to glyph handling and discre-
tionary handling. The expansion feature does that too and in addition also
messes around with kerns. Extra parameters are introduced (and adapted)
that influence the decisions for breaking lines. There is also code originat-
ing in pdfTEX which deals with poor mans grid snapping although that is
quite isolated and not interwoven.

e Because it uses a slightly different way to deal with hyphenation, LuaTgX
itself also adds some code.

e Tracing is sort of interwoven in the code. As it uses goto’s to share code
instead of functions, one needs to keep a good eye on what gets skipped or
not.

I'm pretty sure that the code that we started with looks quite different from
the original TigX code if it had been trasnslated into C. Actually in modern TEX
compiling involves a translation into C first but the intermediate form is not
meant for human eyes. As the LuaTgX project started from that merged code,
Taco and Hartmut already spend quite some time on making it more readable.
Of course the original comments are still there.

Cleaning up such code takes a while. Because both languages are similar but
also quite different it took some time to get compatible output. Because the C

2 Building paragraphs
TUG 2010 # 29

code uses macros, careful checking was needed. Of course Lua’s table model
and local variables brought some work as well. And still the code looks a bit
C—ish. We could not divert too much from the original model simply because
it’s well documented.

When moving around code redundant tests and orphan code has been re-
moved. Future versions (or variants) might as well look much different as
I want more hooks, clearly split stages, and convert some linked list based
mechanism to Lua tables. On the other hand, as already much code has been
written for ConTXt MKIV, making it all reasonable fast was no big deal.

1.3 Expansion

The original C—code related to protrusion and expansion is not that efficient
as many (redundant) function calls take place in the linebreaker and packer.
As most work related to fonts is done in the backend, we can simply stick to
width calculations here. Also, it is no problem at all that we use floating point
calculations (as Lua has only floats). The final result will look okay as the
original hpack routine will nicely compensate for rounding errors as it will nor-
mally distribute the content well enough. We are currently compatible with the
regular par builder and protrusion code, but expansion gives different results
(actually not worse).

The Lua hpacker follows a different approach. And let’s admit it: most TgXies
won't see the difference anyway. As long as we're cross platform compatible it’s
fine.

It is a well known fact that character expansion slows down the parbuilder.
There are good reasons for this in the pdfTigX approach. Each glyph and in-
tercharacter kern is checked a few times for stretch or shrink using a function
call. Also each font reference is checked. This is a side effect of the way pdfTEX
backend works as there each variant has its own font. However, in LuaTgX, we
scale inline and therefore don’t really need the fonts. Even better, we can get
rid of all that testing and only need to pass the eventual expansion_ratio so
that the backend can do the right scaling. We will prototype this in the Lua
version' and we feel confident about this approach it will be backported into
the C code base. So eventually the C might become a bit more readable and
efficient.

Intercharacter kerning is dealt with somewhat strange. When a kern of subtype

For this Hartmuts has adapted the backend code has to honour this field in the glyph and
kern nodes.

Building paragraphs 3
TUG 2010 #* 30

zero is seen, and when it’'s neighbours are glyphs from the same font, the kern
gets replaced by a scaled one looked up in the font’s kerning table. In the
parbuilder no real replacement takes place but as each line ends up in the
hpack routine (where all work is simply duplicated and done again) it really
gets replaced there. When discussing the current aproach we decided that
manipulating intercharacter kerns while leaving regular spacing untouched is
not really a good idea so there will be an extra level of configuration added to
LuaTeX:?

0 no character and kern expansion

1 character and kern expansion applied to complete lines
2 character and kern expansion as part of the par builder
3 only character expansion as part of the par builder (new)

You might wonder what happens when you unbox such a list: the original font
references have been replaced as are the kerns. However, when repackaged
again, the kerns are replaced again. In traditional TgX, indeed rekerning might
happen when a paragraph is repackaged (as different hyphenation points might
be chosen and ligature rebuilding etc. has taken place) but in LuaTgX we have
clearly separated stages. An interesting side effect of the conversion is if that
we really have to wonder what certain code does and if it’s still needed.

1.4 Performance

We had already noticed that the Lua variant was not that slow so after the first
cleanup it was time to do some tests. We used our regular tufte.tex test file.
This happens to be a worst case example because each broken line ends with
a comma or hyphen and these will hang into the margin when protruding is
enabled. So the solution space is rather large (an example will be shown later).

Here are some timings of the March 26, 2010 version. The test is typeset in a
box so no shipout takes place. We're talking of 1000 typeset paragraphs. The
times are in seconds an between parentheses the speed relative to the regular
parbuilder is mentioned.

native lua lua + hpack
normal 1.6 8.4 (5.3) 9.8 (6.1)
protruding 1.7 14.2 (8.4) 15.6 (9.2)
expansion 2.3 11.4 (5.0 13.3 (5.8)
both 2.9 19.1 (6.6) 21.5 (7.4)

As I more and more run into books typeset (not by TigX) with a combination of character expan-
sion and additional intercharacter kerning I've been seriously thinking of removing support for
expansion from ConTEXt MKIV. Not all is progress especially if it can be abused.

4 Building paragraphs
TUG 2010 * 31

For a regular paragraph the Lua variant (currently) is 5 times slower and about
6 times when we use the Lua hpacker, which is not that bad given that it’s in-
terpreted code and that each access to a field in a node involves a function
call. Actually, we can make a dedicated hpacker as soem code can be omitted,
The reason why the protruding is relative slow is that we have quite some pro-
truding characters in the test text (many commas and potential hyphens) and
therefore we have quite some lookups and calculations. In the C variant much
of that is inlined by macros.

Will things get faster? I'm sure that I can boost the protrusion code and proba-
bly the rest as well but it will always be slower than the built in function. This
is no problem as we will only use the Lua variant for experiments and special
purposes. For that reason more MKIV like tracing will be added (some is al-
ready present) and more hooks will be provides once that the builder is more
compartimized. Also, future versions of LuaTEX will pass around paragrapgh
related parameters differently so that will have impact on the code as well.

1.5 Usage

The basic parbuilder is enabled and disabled as follows:*

\definefontfeature [example] [default] [protrusion=pure]
\definedfont [Serif*example]
\setupalign[hanging]

\startparbuilder[basic]
\startcolor[bluel
\input tufte
\stopcolor
\stopparbuilder

This results in:

We thrive in information—thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cate-
gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the

I'm not sure yet if the parbuilder has to do automatic grouping.

Building paragraphs 5
TUG 2010 * 32

chaff and separate the sheep from the goats.

There are a few tracing options in the parbuilders namespace but these are
not stable yet.

1.6 Conclusion

The module started working quiet well around the time that Peter Gabriels
“Scratch My Back” ended up in my Squeezecenter: modern classical interpre-
tations of some of his favourite songs. I must admit that I scratched the back
of my head a couple of times when looking at the code below. It made me
realize that a new implementation of a known problem indeed can come out
quite different but at the same time has much in common. As with music it’s
a matter of taste which variant a user likes most.

At the time of this writing there is still work to do. For instance the large
functions need to be broken into smaller steps. And of course more testing is
needed.

6 Building paragraphs
TUG 2010 #* 33

Unicode mathematics in ETEX: advantages and challenges

Will Robertson

School of Mechanical Engineering
University of Adelaide, SA, Australia
will.robertson@latex-project.org

Abstract

Over the last few years I’ve been tinkering with unicode mathematics in X{IEX.
Late-2009 I spent a few weeks ironing out the significant bugs and think I've got
a pretty good handle on the whole system now. In this presentation, I'd like to
discuss the advantages unicode maths brings to KTEX, challenges faced dealing
with unicode, challenges with maths fonts (including the STIX fonts), challenges
with compatibility with amsmath and/or MathML, and assorted related remarks.
In future plans, I hope to use this system as the basis for equivalent development

in LuaTEX as well.

1 Introduction

XATEX was the first widely-used unicode extension
to TEX. Several years ago Jonathan Kew [4] added
OpenType maths support to XHITEX following from
Microsoft’s addition to the OpenType spec for Mi-
crosoft Word 2007. Around that time I built a pro-
totype implementation of a unicode maths engine
for ITEX, but with very few OpenType maths fonts
available, and other projects consuming my time,
the project lost momentum and I never managed to
get the package on CTAN.

Although the font situation has improved little
since then, the STIX fonts have at least been shown
in beta form and can be used to some degree. By the
time you are reading this, an experimental version of
the unicode-math package will hopefully have been
released on CTAN. This extended abstract is a brief
explanation of what it does and what it’s good for.

2 What is unicode maths?

Barbara Beeton [1] has said it all much better than
I could. In short: every known symbol to be used in
technical writing has been included in the unicode
specification. We now have a formal description of
(some many thousand) exactly what glyphs a maths
font should contain and the particulars of how they
should behave [2]. (Contrast with maths fonts used
with TEX documents that all contain a different set
of glyphs.)

Since then, Microsoft has extended the Open-
Type specification to include tables of structured in-
formation for mathematics typesetting, essentially
parameterising Knuth’s original algorithms in TEX.
For more context in this area, the historical devel-

TUGDboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting
TUG 2010 =

opment of unicode maths was summarised well by
Ulrik Vieth [6].

Any unicode variant of TEX could always access
the unicode maths glyphs. But typesetting them
well is only possible with explicit layout intructions
based on the Math OpenType specification.

2.1 So what does the package do?

After loading the package, users can write
\setmathfont{Cambria Math}
to select Cambria Math or any other OpenType font
that has mathematics support. This can happen
at any time during the document, not just in the
preamble as with current IXTEX math font selection.
Control sequences are provided to access every
defined unicode maths glyph, and literal input of
all such characters in the source is also supported.
Maths can be copied from another source (such as
a web page or PDF document) and pasted directly
into the BTEX document and the content will be
retained, albeit with some loss of its presentational
aspects (most notably subscripts and superscripts).
With some minor exceptions, no changes to the
mathematical document source should be necessary
to be able to switch fonts using unicode maths.

3 Advantages

The main advantage to having a unicode maths en-
gine is that it becomes as easy to change maths fonts
as it is to change text fonts. Contrast this with
what packages such as euler must do to switch from
the Computer Modern Maths font. Standardising
around a common math font encoding was the origi-
nal goal of the Math Font Group when they invented
an 8-bit math font encoding but then realised that

1001

34

Will Robertson

unicode was the future. Unicode maths brings more
benefits than simply standardising the way maths
fonts are loaded, however.

3.1 Pragmatic

It’s never fun when typesetting mathematics to have
to go hunting for a specific symbol. (Scott Pakin’s
‘Symbols’ guide makes the task far easier, however.)
Which maths font glyph package to load? Which
control sequence to use? Does the glyph design even
match my document fonts?

I suspect the most directly useful aspect of uni-
code maths will be relieving (most of) the headache
around finding and using a particular math font
glyph. The STIX fonts— hopefully released by the
time you are reading this — will be extremely useful
as a fallback font for many symbols. After all, most
maths symbols are geometrically abstract enough
that they do not need to be directly matched with
the text font.

3.2 Readable source

Unicode maths provides the ability for maths sym-
bols and characters to be input in unicode directly in
the source file. It is now possible to write a literal «
instead of having to type longhand \alpha. This
actually doesn’t improve input speed, but makes
source documents far more readable and amenable
to casual editing.

Only small changes to the regular I TEX syntax
are required to approach the simplicity of Murray
Sargent’s ‘nearly plain-text encoding of mathemat-
ics’ [5].

3.3 Flexible output

Because there does not have to be a one-to-one map-
ping between the unicode characters in the source
and the unicode glyphs in the output, the semantic
differences between upright and italic Greek (and
other) letters in the input source can be abstracted
away. Asshown in Table 1, documents are able to be
typeset as per ISO standards or in a more classical
TEX-like format without changing the typed mathe-
matics. Similarly, the output style of bold characters
can also be adjusted.

As the package can load fonts for maths glyphs
dynamically, multiple fonts and multiple styles can
be used between various characters or families of
characters. Figure 1 shows an example in which the
maths was typed without presentational markup,
but the different characters were assigned fonts with
different shades of grey. This particular example
may not be very practical, but it illustrates that

1002
TUG 2010 =*

Example
Package option Latin Greek
math-style=ISO (a,z,B,X) (a,B,T,%)
math-style=TeX (a,z,B,X) (a,B,T,E)
math-style=french (a,2,B,X) (a,B,T,E)
math-style=upright (a,z,B,X) (o, B,T,E)

Table 1: Same source, different styles of output.

Fis —Lft SEEe dt

0

Figure 1: Hooks make it possible to use a variety of
fonts or styles—in this case, colours — for different
maths characters or families of maths characters.

the system is flexible enough to accomodate a wide
range of effects.

4 Challenges

The biggest problem I can see with the advent of
unicode maths, besides fonts—in their case I be-
lieve they’ll slowly start to appear now there are
tools and programs to support them —is educating
people into using them well.

4.1 Using the correct characters

Table 2 shows five different maths glyphs that are
all triangular. And Table 3 shows the eight different
slash-like glyphs; four in each direction.

Without careful documentation and good ed-
ucation, it may be hard for users to use the ‘cor-
rect’ glyphs in many occasions. The markup in TEX
and KTEX has generally steered towards presenta-
tional aspects. But, as an example, with five dif-
ferent choices for which triangle to choose, different
authors may choose different (but visually similar)
glyphs for the same meaning.

Slot Command Glyph Class
U+25B5 \vartriangle A binary
U+25B3 \bigtriangleup A binary
U+25B3 \triangle yAN ordinary
U+2206 \increment A ordinary
U+0394 \mathup\Delta A ordinary

Table 2: Four triangular glyphs with different
meanings but similar shapes.

TUGboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting
35

Unicode mathematics in BTEX: advantages and challenges

Slot Name Glyph Command
U+002F SOLIDUS / \slash
U+2044 FRACTION SLASH / \fracslash
U+2215 DIVISION SLASH / \divslash
U+29F8 BIG SOLIDUS / \xsol
U+005C REVERSE SOLIDUS \ \backslash
U+2216 SET MINUS N \smallsetminus
U+29F5 REVERSE SOLIDUS \ \setminus

OPERATOR

U+29F9 BIG REVERSE SOLIDUS ~ \ \xbsol

Table 3: The four slash-like glyphs in each direction.

My feelings are that new tools will be needed
to encode mathematics more semantically. But such
tools will need to be specific for each scientific field
that uses different notation. This is an open prob-
lem. On the other hand, in the end how much does
it really matter if my triangle is a different size to
yours if the meaning is clear? (I'm not endorsing
this line of thinking, just raising the question.)

4.2 Backwards compatibility vs. future
compatibility

The two ‘set minus’ characters in Table 3 inherit
their names from Plain TEX and the amssymb pack-
age, respectively. U+2216 is \smallsetminus and
U+29F5 is \setminus. However, MathML does it
differently: U+2216 is referred to by setminus as
well as smallsetminus (among other synonyms);
U+29F5 is as-yet unnamed [3]. This might make
it difficult to move between MathML and KTEX.
Luckily these sorts of conflicts are few.

5 Summary

This extended abstract is an introduction and short
summary of what I'll be talking about at TUG 2010.
I'm looking forward to seeing you here.

Bibliography

[1] Barbara Beeton. Unicode and math, a
combination whose time has come—Finally!
TUGboat, 21(3):176-185, September 2000. URL
http://tug.org/TUGboat/Articles/tb21-3/
tb68beet . pdf.

[2] Barbara Beeton, Asmus Freytag, and Murray
Sargent, III. Unicode support for mathemat-
ics. Unicode Technical Note 25 Version 9, Uni-
code, Inc., 2008. URL http://www.unicode.
org/reports/tr25.

[3] David Carlisle and Patrick Ion. XML entity def-
initions for characters. Technical Report W3C

TUGDboat, Volume 0 (2060), No. 0— Proceedings of the 2060 Annual Meeting
36

TUG 2010 =*

Working Draft 21, W3C, 2008. URL http:
//wuw.w3.org/TR/xml-entity-names/.
Jonathan Kew. XHgTgX live. TUGboat, 29
(1):146-150, 2007. URL http://tug.org/
TUGboat/Articles/tb29-1/tb91kew.pdf.
Murray Sargent, III. Unicode nearly plain-
text encoding of mathematics. Unicode techni-
cal note 28, Unicode, Inc., 2006. URL http:
//www.unicode.org/notes/tn28/.

Ulrik Vieth. Do we need a ‘cork’ math
font encoding? TUGboat, 29(3):426—
434, 2008. URL http://tug.org/TUGboat/
Articles/tb29-3/tb93vieth.pdf.

1003

TUGboat, Volume 0 (2060), No. 0

From PostScript to PDF
Herbert Voss

Abstract

There are still several reasons to use the “tradi-
tional” way of creating PDF output, namely the se-
quence latex — dvips — ps2pdf. Using pdfIATEX
is only possible when the PostScript related code
is handled before the pdfIATEX run. Thus, several
packages and/or scripts have been developed which
supports EPS images, or general PostScript-related
code, in a document which is compiled at least one
time with pdfIXTEX: pst-pdf, auto-pst-pdf, pdftricks,}i
epstopdf, pst2pdf, pstool, ... All have the same
general goal, but each works in a different way.

1 Introduction

The traditional way for running TEX is shown in the

following figure.
Binary format file Class file
-
pdfTEX compiler —‘

DVI file Auxiliary ﬁles] External programs |

(index,bibliography)
Fonts (Typel, DVI driver
Type3, bitmap)
PS file

ghostscript

PDF file

2 Demonstrations

The structure of a TgX system with
pdfTEX as compiler which can
generate an output as PDF or in the

driver independent DVI format.
PDF file

We will demonstrate with several examples how eps
images or any other PostScript related code can be
used within a pdflatex run:

e Using the program ps2pdf to generate a pdf
document

e Using eps images with pdflatex with Package
epstopdf

e Using zipped eps images with pdflatex

e Using other image types with pdflatex

e Using gif and png images with latex

e Using eps images with pdflatex with Package
pstool

e Using PSTricks with pdflatex and package pdftricksfi

e Using PSTricks with pdflatex and package pst-pdfl}

e Using PSTricks with pdflatex and package auto-pst-pdflj

e Using PSTricks with pdflatex and the pro-
gram pst2pdf

preliminary draft, May 21, 2010 22:29

TUG 2010 * 37

preliminary draft, May 21, 2010 22:29

o Herbert Voss
Wasgenstrasse 21
Berlin, 14129
Germany
hvoss@tug.org

liminary draft, Ma,
prefmmaty IE‘rom Po)slt

§

1001

1, 2010 22:2
cript to PD

NOW AVAILABLE from FRED BROOKS!

These new essays by legendary author

Fred Brooks contain extraordinary insights
for designers in every discipline. Brooks
pinpoints constants inherent in all design
projects and uncovers process and patterns
likely to lead to excellence. Throughout,
Brooks reveals keys to success that every
designer, design project manager, and
design researcher should know.

_ For more information please visit
FREDERIGK B BROOKS, JR. informit.com/title/9780201362985

9780201362985 (Paperback) v‘v AddiSOIl-WC sley

Safari Books Online
Also available in all major eBook formats Available wherever technical books are sold

VH&S VeRrOERNERGESULEER

SPACE e RESEARCH e INDUSTRY
Happily using pdfTEX, LuaTgX, MetaPost, & tools in our space projects.

Executive summaries - Parts approval documents - Experiment user manuals - Risk management plans - MGSE user manuals - End-
user statements - Parts count reliability predictions - Patent applications - Study reports - Progress reports - Failure mode, effects, and
criticality analyses - Contract change notices - Acceptance data packages - Code listings - Requests for approval - Payload test speci-
fication input - Top level drawings - Electrical interfaces verification reports - PA/QA plans - Schedules - Mating records - User man-
uals - Thermal analyses - Thermal test reports - Age-sensitive item records - System engineering plans - EMC test reports - Metrology
reports - Requirements documents - Document lists - Vibration test reports - Functional test reports - Transport, handling, and instal-
lation procedures - Fracture control plans - Approvals to ship - Final reports - Letters - Interface control documents - Software con-
figuration status lists - Structural analyses - Declared materials =

lists - Declared components lists - Handouts - Compliance matri-
ces - Lists of non-conformance reports - Declared processes lists -
Lists of waivers - Physical properties reports - Test reports - Tech-
nical notes - Product logbooks - EGSE user manuals - Conceptual
design reports - Design & development plans - Test & verification
plans - Non-conformance reports - Certificates of conformance -
Functional diagrams - Derating analyses - Instrument configura-
tion lists - Open items lists - Minutes of meetings - Grounding &
bonding diagrams - Connector mating records - Radiation control
plans - Viewgraphs - Lists of engineering change requests - Quota-
tions - Posters - Bench checkout procedures - Configuration draw-
ings - Test matrices - Project plans - Shipping documents - Red-
tag item tracking records - Qualification status lists - Christmas
cards - Structural test reports - Worst case analyses - ITAR com-
ponents lists - Calibration data records - Advertisements - Bills -
Detailed design reports. . .

von Hoerner & Sulger GmbH
SCthSSpla’tZ 8’ D-68723 SChwetZIngn’ Germa’ny Mars rover breadboard for ESA’s ExoMars mission 2018, built by
httpl//WWW.Vh—S.de vH&S with industry team (the flowers won’t be there then).

Do you need on-site training for ETEX?
Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

RIVER VALLEY

TECHNOLOGIES

113 . .
Awesome... groundbreaking... essential

IEEE Trans. Prof. Commun.

Trees, maps, and theorems

Effective communication for rational minds

p— Get your copy at the discounted rate of $72

J L (instead of $96) by ordering within two weeks

from site www.treesmapsandtheorems.com
and entering “special order” code TUGXX004.

University Science Books

Publishers of Chemistry, Physics, Astronomy, Biology and
Earth Environmental text and reference books.

Orders on their website, http://www.uscibooks. com, receive a 15% discount.

