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I 

Summary 

 

This PhD thesis deals with the investigation of polymer-melt viscosity from 

coarse-grained simulations and with the development of a backmapping method from 

coarse-grained nonequilibrium systems. These studies involve both atomistic and 

coarse-grained (CG) descriptions. Besides these theoretical studies, efforts are also 

pursued on programming a code, which is designed for molecular dynamics simulations 

of coarse-grained polymer systems.  

Chapter 1 gives a short overview of polymer properties which can be 

investigated by means of coarse-grained simulations as well as the algorithms for 

viscosity calculations via molecular dynamics.  

Chapter 2 focuses on the study of the viscosity and the structural alteration of a 

coarse-grained model of polystyrene under steady shear flow via the reverse 

nonequilibrium molecular dynamics (RNEMD) method. The applicability of the 

RNEMD algorithm in predicting the viscosity of polymers is investigated. The 

viscometric functions predicted by the RNEMD are compared to previous studies of 

similar models where conventional nonequilibrium molecular dynamics (NEMD) 

methods have been used. The performance of the dynamics of the CG model, which has 

been developed taking only structural information into account, is investigated. For the 

shortest polymer chain, the zero-shear viscosity is compared to recent experimental 

results. The material functions (namely the first and second normal stress difference) are 

discussed. Structural alteration (the average chain dimension, shear-induced alignment) 

under a steady shear flow is also quantitatively characterized. 

In Chapter 3, the problems in backmapping coarse-grained polymer models, on 

which a nonequilibrium shear flow has been imposed, are discussed. Backmapping is 

the procedure, by which the atomistic description is re-inserted into a coarse-grained 

configuration. Some strategies and a new backmapping protocol are proposed. In this 
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method, the deformed conformations are maintained globally during backmapping by 

applying position restraints. The local optimization of the atomistic structure is 

performed in the presence of these restraints. The artefact of segment isolation 

introduced by position restraints is minimized by applying different restraint patterns 

iteratively. The procedure is demonstrated on the test case of atactic polystyrene under a 

steady shear flow.  

Chapter 4 reports in detail the implementation of the RNMED algorithm and the 

dissipative particle dynamics (DPD) methodology used as a thermostat into a 

numerical-potential molecular dynamics program (Ibisco). The program is partially 

redesigned in order to meet the requirements of these new algorithms. The developed 

code provides a reliable tool for investigating the rheological behaviour of CG models. 

Finally, Chapter 5 outlines some perspectives of future research. 
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Zusammenfassung 

 

Diese Doktorarbeit beschäftigt sich mit der Untersuchung von Scherviskosität 

mittels Simulationen von “Coarse-Grained” (CG) vergröberten Modellen und der 

Entwicklung einer Methode zur Wiedereinführung von atomistischen Details in Nicht-

Gleichgewichts-CG-Systemen. Diese Arbeit umfasst sowohl vollständig atomistische 

als auch CG Beschreibungen von polymeren Systemen. Zusätzlich zu diesen beiden 

theoretischen Studien wurde ein Computercode zur molekulardynamischen Simulation 

von CG Systemen geschrieben 

Kapitel 1 verschafft einen kurzen Überblick über jene Eigenschaften von 

Polymeren, die durch CG Simulationen untersucht werden können, und zeigt einige der 

konventionellen Algorithmen zur Bestimmung von Scherviskositäten mittels 

molekulardynamischen Simulationen auf. 

Kapitel 2 konzentriert sich auf die Untersuchung der Scherviskosität und der 

Strukturänderungen in einem CG Modellsystem von Polystyrol unter konstantem 

Scherfluss, welcher durch “Reverse nonequilibrium molecular dynamics” (RNEMD) 

Algorithmus induziert wurde. Die Anwendbarkeit der RNEMD Methode auf die 

Scherviskosität von Polymeren wurde hierbei getestet, und die durch RNEMD 

vorhergesagten viskometrischen Funktionen wurden mit bereits durch konventionelle 

Nichtgleichgewichtssimulationen (NEMD) errechneten Literaturwerten verglichen. 

Ebenso wurde die Effizienz des CG Models, welches ausschliesslich Strukturdaten 

verwendet, untersucht. Für die kürzeste Polymerkette wird die Nullscherviskosität mit 

aktuellen experimentellen Daten verglichen. Die Materialfunktionen (explizit die erste 

und die zweite Normaldruckdifferenz) werden genauso diskutiert, wie die 

Strukturveränderung (durchschnittliches Kettenvolumen und scherinduziertes 

Ausrichten) unter konstantem Scherfluss. 
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Kapitel 3 behandelt die Probleme der Wiedereinführung atomistischer Details in 

CG Polymerkonfigurationen, die einem Nichtgleichgewichts-Scherfluss unterworfen 

wurden. Das entsprechende Verfahren heisst “Reverse Mapping”. Hier werden einige 

Strategien zur Wiedereinführung aufgezeigt und ein neues Reverse Mapping Protokoll 

vorgeschlagen. In dieser Methode werden die deformierten Polymerkonformationen 

während des Reverse Mapping Prozesses durch Anwendung äusserer Kräfte 

beibehalten. Die dadurch eingeführten Artefakte der Isolierung einzelner Segmente wird 

minimiert, indem verschiedene Fixierungsmuster iterativ angewendet werden. Das 

Verfahren wird anhand von ataktischem Polystyrol unter konstantem Scherfluss 

demonstriert. 

Kapitel 4 behandelt detailliert die Impementierung des RNEMD Algorithmus 

und die Implementierung der “Dissipative Particle Dynamics” (DPD) Methode in ein 

mit numerischen Potentialen arbeitendes Molekulardynamik-Programm (IBIsco). Das 

Programm wurde teilweise überarbeitet, um die richtigen Voraussetzungen für obige 

Algorithmen zu schaffen. Der hierbei entwickelte Code ist ein verlässliches Instrument 

zur Untersuchung von rheologischem Verhalten von CG Modellen. 

Kapitel 5 zeigt schliesslich einige Perspektiven und Ansätze für zukünftige 

Forschungsarbeiten auf diesem Gebiet auf. 
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1. Introduction  

1.1. Motivation 

Viscosity is an important characteristic for all materials, especially polymers. 

Among several viscosity calculation algorithms, the reverse nonequilibrium molecular 

dynamics (RNEMD) shows its fundamental and technical advantages over previous 

equilibrium and non-equilibrium techniques. Although RNEMD has successfully 

predicted the viscosity of simple liquid whose relaxation time is very short, it encounters 

the typical limitations dictated by inherent time scales when it is implemented on 

viscosity prediction of polymeric systems. As shear flow in polymer melt involves slow 

process on the mesoscopic scale, question rises that the feasibility and applicability of 

this method with fully atomistic model, the huge number of degree of freedom in fully 

atomistic approach narrows down the applicable range only to very short chain. One 

way to circumvent this problem is to reduce the number of degrees of freedom in the 

cost of losing some irrelevant details of molecular structure, so called coarse-grained 

(CG) model. Following this consideration, an attempt of extending RNEMD 

methodology to polymeric system has been carried out, the applicability of RNEMD to 

the prediction of the polymer viscosity is investigated. 

Coarse-grained simulations prevail on reproducing the structural and 

thermodynamical properties. A coarse-graining scheme for reproducing the dynamic and 

transport properties is not still well-established. It is not clear that the existing CG 

model can produce reliable melt viscosity. In this study, the rheological behaviour of an 

existing CG model, which has been successfully tested against structural properties, is 

explored. This study provides an understanding on the dynamical performance of a 

structure-optimized CG model.  

The relaxation of long chains at the atomistic level is computationally 

unfeasible. An important purpose of coarse-grained model is generating the well-

equilibrated polymer structure. A good CG method also allows the reverse process, i.e. 

going back to the atomistic description, this process is called reverse-mapping or 
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backmapping. Currently, the backmapping technique is pursued on equilibrium system. 

However, dynamic properties, in particular melt viscosities under shear or elongational 

flow which are of great interest to the polymer manufacturing and processing, only can 

be investigated under nonequilibrium conditions. The present study intends to develop a 

backmapping method from coarse-grained nonequilibrium systems. 

1.2. Polymer properties from coarse-grained 

simulations 

Polymers exhibit physical properties in a broad range of length and time scales. 

Many efforts have been made in studying polymer properties through a hierarchical 

approach.1,2 Computational basic degrees of freedom are electrons (quantum chemistry), 

atoms (force field), monomers or groups of monomers (mesoscopic models), entire 

polymer chains (soft fluids) or volume elements (finite elements)3. Any one of these 

computer simulation techniques, individually, is restricted to a much narrower range. 

Therefore, one needs to simulate polymers with models of several different scales, in 

order to have a complete picture of their properties. This thesis involves two methods: 

the atomistic force field and the coarse-grained model (CG). In the atomistic force field, 

every atom is modelled as a separate interaction site. In the CG model, every interaction 

centre (also referred to as “bead” or “superatom”) contains of the order of 10 non-

hydrogen atoms or approximately one chemical repeating unit.3 Both methods have one 

common features of retaining the material-specific information, which is neglected in 

the generic models and is not computational affordable through quantum chemistry 

approach. Here, term “material-specific information” can be comprehended as chemical 

composition, tacticity, sequence, and topology. Comparing to the atomistic force field, 

CG models have been proven to be very efficient in studying the complicated behaviour 

of polymers. This efficiency comes from the fact that the CG model only takes into 

account those degrees of freedom deemed relevant for the particular properties studied. 

Coarse-grained models are parameterised reproducing structural and 

thermodynamics properties of polymers.4-6 Very recently, dynamic properties have been 

a simulation target in some CG simulations.7,8 
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1.2.1. Structural properties 

The structural properties of polymer chains are most conveniently described by 

distributions of geometric quantities, which can be intramolecular or intermolecular. 

The intramolecular properties can be distances between two adjacent superatoms, angles 

between three subsequent superatoms, dihedral angles between four subsequent 

superatoms, principal values of the radius of gyration tensor and so forth. The 

intermolecular properties involves distances between the superatoms belonging to 

different chains, distance between the centres of mass of different chains or chain 

fragments. All these properties have to be reproduced by the coarse-grained simulations. 

If the goal of the coarse-grained model is to reproduce structural distribution 

from atomistic reference simulation, several computation procedures are available.14 In 

particular, iterative Boltzmann inversion14 is readily adapted to the problem of coarse-

graining polymer. This procedure is demonstrated with the example of deriving an 

effective nonbonded potential from a given radial distribution function as following: If a 

target radial distribution function )(rRDFtartet  is available, one starts the zeroth 

simulation with a guessed tabulated pair potential )(0 rV . Its simulation yields radial 

distribution function )(0 rRDF , which is different from )(rRDFtartet . Afterwards, 

potential is improved by adding to )(0 rV  the correction term 
)(

)(
ln

arg

0

rRDF

rRDF
kT

ett

− . This 

step can be iterated,  

)(

)(
ln)()(

arg

1
rRDF

rRDF
kTrVrV

ett

j

jj +=+                                     (1) 

until 

[ ] drrRDFrRDFrf ettj

cutoff

ett

2

arg

0

arg )()()( −= ∫ ω                       (2) 

falls below an initially specified threshold. )(rω is weighting function in order to 

specifically penalize deviations at small distance. 
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1.2.2. Thermodynamic properties  

Thermodynamic properties like the cohesive-energy density, the density (in NPT 

ensemble) or the pressure (in NVT ensemble) are also reproduced in the coarse-grained 

simulations. The simplex method, which was originally developed to adjust atomistic 

force field parameters to experimental thermodynamics properties of molecular liquids, 

is brought into CG simulation to reproduce the thermodynamics data.14 The pressure 

information can be introduced into polymer systems by the so-called ramp correction: 

Since the initially optimized structure yield a pressure different from the one at which 

the atomistic simulation are performed, a weak linear potential term V∆ is added to the 

attractive long-range part of )(rV j , then the structure is post-optimized according to the 

iterative Boltzmann inversion until also the pressure matches the atomistic system. The 

form of ramp correction can be taken as Eqn 3. 









−=∆

cut

j
r

r
VrV 1)(                                                                   (3) 

It vanishes at the cutoff )0)(( =∆ cutoffrV and jVV ∆=∆ )0( =r  is the only parameter. 

1.2.3. Dynamics and transport properties 

So far, there are but few explicit studies of dynamic properties by means of 

coarse-grained simulations. Most investigations are limited to an analysis of self-

diffusion coefficients. The self-diffusion coefficient of the CG model depends on the 

parameterization of CG force field. There are two different approaches for developing 

the CG force field: 

1. In the first approach, both static and dynamics properties are used to develop 

the CG force field. The dynamics in the CG model is matched with atomistic one by an 

appropriate selection of friction constants appearing in Langevin’s equations of motion. 

Following this approach, Padding and Briels5 proposed a method to define the friction 

within the CG model using underlying short atomistic simulation. Moreover, they 

introduced an uncrossability constraint into their CG equation of motion to prevent 
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unphysical bond crossing. They proved that the dynamics and the zero-shear viscosity of 

their CG model agree with experimental findings.6 

2. In the second approach, only static properties are utilized in the force field 

parameterization, and Newton’s equation of motion is used to evolve the system. The 

CG model developed from this approach can accurately describe the static properties, 

while on the other hand, the dynamics is generally too fast. Depa and Maranas7 have 

proven that there is a robust scaling factor in the CG dynamics by mapping the self-

diffusion coefficient of the CG model to the one of underlying atomistic model. 

1.3. Back to the atomistic description: backmapping 

As the way of coarse-graining an atomistic model into mesoscopic one is not 

unique, it is much more complicated to refine a CG model back to an atomistic one. 

Santangelo8 et al introduced a systematic procedure to obtain well-relaxed atomistic 

melt structures from mesoscale models of vinyl polymers based on sequence of diad. 

This method is based on a fully geometrical approach and does not involve expensive 

potential energy and force evaluations. Kotelyanskii13 et al proposed a refining 

procedure in order to introduce atoms into their lattice model of polystyrene. They used 

a coordinate template of the building block, and place it on top of the lattice site 

(equivalent to a super-atom) which they wanted to refine. Then, they rotated it by taking 

into account the orientation with respect to its two nearest neighbours along the chain. 

1.4. Algorithms used to compute the viscosity 

One aspect of this thesis is investigating the viscosities of polymers. The 

algorithms used to compute the viscosity are briefly reviewed here. 

1.4.1 Equilibrium molecular dynamics: the Green-Kubo method 

The Green-Kubo method simply consists of simulating an equilibrium fluid 

under periodic boundary conditions and making the appropriate analysis of the time-

dependent stress fluctuations.11 The Kubo relation predicting the viscosity is given by 

Eqn. 4 
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( ) ( )∫
∞

=
0

0 tPPdtV xyxyβη                                                (4) 

where, β = 1 / (kT) with the Boltzmann constant k and V is the system volume. The 

integral is over the equilibrium time autocorrelation function of the xy component of the 

pressure tensor xyP . The Green-Kubo technique is restricted to only linear transport 

coefficients. 

1.4.2. Nonequilibrium molecular dynamics 

The non-Newtonian character of most complex fluids and their resulting unique 

properties manifest themselves only beyond the linear response regime. To study these, 

nonequilibrium molecular dynamics (NEMD) simulations are necessary. The 

conventional NEMD methods are similar in spirit to real experiments: the cause is an 

appropriate field or gradient which is imposed on the system, then the ensemble average 

of the effect, the resulting flux, is measure and the ratio of flux and field gives the 

viscosity. In the NEMD simulations, one has to tackle two problems: First, one must 

mechanically impose the shear. Second, the shear is enforced by constantly pumping 

energy into the system. Hence one must get rid of the heat by applying an appropriate 

thermostat. One exception is the reverse nonequilibrium molecular dynamics 

(RNEMD). 

Surface-driven method. The most direct way of imposing a shear is to confine the 

system between two rough walls, and either move one of them (for Couette flow), or 

apply a pressure gradient (for Poiseuille flow). The virtue of this method is of being 

physical: Strain is enforced physically, and the heat can be removed in a physical way by 

coupling a thermostat to the walls. On the other hand, the system contains two surfaces, 

and depending on the material under consideration, one may encounter strong surface 

effects.10Varnik and Binder9 have shown that surface-driven methods can be used to 

measure the shear viscosity in polymer melts.  

Homogenous shear method An alternative way to generate planar Couette flow is to 

use moving periodic boundary conditions as illustrated in Fig. 1.1 (Lees-Edwards 
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boundary condition). In order to enforce the shear flow ( )0,0,xuu =
r

 with an average 

strain rate yu x ∂∂= /γ& , one proceeds as follows: One replicates the particles in the x and 

the z direction like in regular periodic boundary conditions. In the y-direction, the 

replicated particles acquire an additional velocity yx Lv γ&= . One particularly popular 

algorithm of this kind is the SLLOD11 algorithm. For the imposed flow eyru
r

&
rr

γ=)( , the 

SSLOD equations of motion for atom i  is  

xi

i

ii ey
m

p

dt

rd r
&

rr

γ+=                                                         (5) 

xii
i eyF
dt

pd r
&

r
r

′−= γ                                                       (6) 

where, ))(( iiii ruvmp
rrrr

−=  is the momentum of atom i  in a reference frame moving 

with the local flow velocity )( iru
rr

, and iF
r

is the regular force acting on the atom i . The 

equations of motion can be integrated with standard techniques.  

 
 

Figure 1.1. Schematic view of Lees Edwards periodic boundary condition (reproduce 

from ref.12). 

 Reverse nonequilibrium molecular dynamics The shear algorithm used in this study 

is the reverse nonequilibrium molecular dynamics (RNEMD) method.15 The RNEMD 

method reverses the experimental cause-and-effect picture: the effect (momentum flux 

or stress) is imposed, whereas the cause (velocity gradient or shear rate) is obtained 

from simulation. The details of RNEMD are elucidated in Chapter 2.  
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2. Viscosity and structure alteration of a coarse-

grained model of polystyrene under steady shear 

flow studied by reverse nonequilibrium 

molecular dynamics 

2.1. Introduction 

In the last two decades, several simulation methods for the prediction of shear 

viscosities have been proposed. In equilibrium molecular dynamics (EMD), the shear 

viscosity is obtained from pressure or momentum fluctuations based on the Einstein and 

Green-Kubo relations;1 In conventional non-equilibrium molecular dynamics (NEMD),2 

the shear viscosity can be calculated by reproducing the experimental setup; i.e., an 

appropriate perturbation is applied, the ensemble averages of the resulting flux and the 

corresponding field are measured, the ratio of flux and field gives the shear viscosity. 

The most widely used NEMD methods are homogeneous shear (HS) and surface-driven 

shear methods (SD). In HS method, the shear flow is imposed by modifying the 

equation of motion of the molecules and using sliding-wall periodic boundary 

conditions. In SD method, the shear is imparted on the fluid through the actual motion 

of the confining walls. A comparison of the applicability, accuracy and efficiency for 

these methods can be found in ref. 3.  

A more recent alternative is the reverse nonequilibrium molecular dynamics 

(RNEMD) method,4,5 which is used here. It reverses the experimental cause-and-effect 

picture: the momentum flux (stress) is imposed by a Maxwell daemon and the 

corresponding field (velocity gradient) is measured. Compared to the more traditional 

NEMD techniques, RNEMD offers certain advantages, but also has its shortcomings. 

They have been discussed in more detail elsewhere.5 Its chief advantage is the fact, that 

no energy is deposited into the simulation, in contrast to other NEMD methods, and 
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hence no energy need be removed by an external thermostat. As most thermostats 

interfere with the linear momentum, they are a potential error source in viscosity 

calculations. Further advantages are the absence of boundary regions (as in SD method), 

the ease of implementation and analysis, and parallelisability.6 The major shortcoming 

of RNEMD is that the temperature in the system is not uniform but develops a 

stationary quadratic profile.4 As a consequence, the density is also not uniform, so that 

the calculated viscosity is an average over different temperatures and densities. This 

aspect requires great care in designing the perturbation to be small enough for these 

variations to be numerically irrelevant. As one usually attempts anyway in NEMD to 

make the perturbation as small as possible, in order to have linear-response conditions, 

this is not a serious restriction, but more a point to be watched. RNEMD has been very 

successfully applied to predict the viscosity of Lennard-Jones liquids,4 atomistic models 

of molecular liquids7, simplified models of amphiphiles8, liquid crystals9 and Yukawa 

liquids.10 In particular, ref 10 shows that for small shear rates the viscosity values 

calculated via RNEMD and NEMD simulations are mutually consistent and also in 

agreement with equilibrium MD calculations. So far, the RNEMD method has not been 

tried for the calculation of polymer viscosities.  

The viscosities of polymer melts and structural changes under shear flow are of 

great practical importance in manufacturing and processing of polymers. Viscosity and 

structure of polymer melts under shear were intensively studied by conventional NEMD 

in previous work. Among these studies, some simple and general models have 

successfully captured the rheological properties and contributed to the understanding of 

their physical origin.11-15 A detailed review on simple models for complex non-

equilibrium fluids can be found in ref. 16. However, the generic models have not been 

designed to provide quantitative properties of specific polymer melts. Some studies on 

specific macromolecules, which were based on realistic models, have also been carried 

out.17-19 The presence of many different time and length scales and the associated 

computational costs usually preclude the use of fully atomistic force fields. One, 

therefore, tries to find a coarse-grained (CG) model at a level between atomistic and 

generic. It should be detailed enough to be material-specific and simple enough to be 



 

11 

computationally viable. One way to approach the problem is to reduce the degrees of 

freedom by coarsening the models, keeping only those degrees of freedom deemed 

relevant for the particular properties of interest. Parameterization of coarse-grained force 

fields can be roughly classified into two different approaches.  In the first, both static 

and dynamics properties are used to develop the force field and the dynamics is matched 

by an appropriate selection of friction constant appearing in Langevin’s equations of 

motion at the coarse-grained scale.20,21 In the second approach, only static properties are 

utilized in the force field parameterization and Newton’s equations of motion are used 

to evolve the system.22,23 The coarse-grained models developed from this approach can 

accurately describe the static properties, while on the other hand the dynamics is 

generally too fast.24 In some cases it was possible to recover the dynamical properties by 

appropriate time scaling.25 The dynamical properties predicted by such CG model are 

based on the philosophy that the same basic mechanisms are still operative at a different 

time rate when the molecular mobility changes. Therefore, the accelerated dynamics is 

expected to retain some reality of the motion in the system. Ideally, one would like 

structurally optimised models to also be able to predict polymer viscosities without any 

further calibration. Finding out whether this is possible is one aspect of the current 

investigation.  

The aim of this study is therefore twofold. First, the applicability of the RNEMD 

algorithm to the prediction of the viscosity of polymers is investigated. We compare the 

shear behaviour to previous studies of similar models, where conventional NEMD 

methods have been used. Second, we study the rheological behaviour of the specific, 

realistic coarse-grained model of polystyrene, which has been developed taking only 

structural information into account. For the shortest polymer chain the zero-shear 

viscosity is compared to recent experimental results. The material functions (first and 

second normal stress difference) are briefly discussed and structural properties of 

polystyrene under shear are also quantitatively characterized in this work. 
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2.2. Reverse nonequilibrium molecular dynamics 

The RNEMD method for calculating shear viscosity is briefly reviewed in this 

section, for details, see ref. 4 and ref. 5. The shear viscosity η  relates the transverse 

momentum flux ( )xz pj  and the flow velocity gradient zvx ∂∂ via Eq. (1). 

z

v
pj x

xz ∂

∂
−= η)(                                                                            (1) 

The magnitude of momentum flux ( )xz pj  is equal to the off-diagonal )(xz  component 

of the stress tensor xzτ , and zvx ∂∂  is also called the shear rateγ& . The momentum flux 

( )xz pj  can be described as a transport through a surface perpendicular to its direction 

within a certain time. In RNEMD, ( )xz pj  is imposed in an unphysical way, and the 

flow field corresponds to two symmetric planar Couette flows, with a  shear flow in the 

x  direction and the velocity gradient in the z  direction, as illustrated in Fig. 2.1. 

 

 
 

Figure 2.1. Sketch of the RNEMD method for calculating the shear viscosity. The flow 

field imposed on the system corresponds to two symmetric planar Couette flows, which 

have the shear flow in the x  direction, and the velocity gradient is in z  direction. 

Horizontal arrows in the simulation cell indicate the velocity field. The periodic 
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orthorhombic simulation cell with size of xL , yL , and zL  (
3/zyx LLL ==
) in periodic 

system is partitioned into 20 slabs in z  direction. For details, see text. 

 

The orthorhombic simulation cell with size of xL , yL , zL  in the periodic system is 

partitioned into an even number of slabs, here 20 , in z  direction. One selects in slab 1 

the atom with the largest negative x component of momentum ( 1xmv ) and in the central 

slab (slab 11) the atom with the largest positive x  component of momentum )( 2xmv . 

These two atoms must have the same massm . One exchanges the x  component of the 

velocity vector between these two atoms. As the two atoms have the same massm , the 

unphysical momentum swap conserves both the total linear momentum and the total 

kinetic energy. The exchanged quantity xp∆  is the x  component of the momentum, 

21 xxx mvmvp −=∆                                                            (2) 

By such velocity swap, momentum ( xp∆ ) is transferred unphysically across the system. 

The velocity swap is performed every W  time steps; so the time elapsed between two 

velocity swaps is tW ∆⋅ , with ∆t being the lengths of the time step.  The total 

transferred momentum during the simulation is given by xx pp Σ∆= . The response of the 

system to this nonequilibrium perturbation is a momentum flux ( )xz pj  in the opposite 

direction via a physical mechanism, the friction. In the steady state, the unphysical and 

the physical momentum flux are balanced, and ( )xz pj  can be evaluated by Eq. (3) 

yx

x

xz
LtL

p
pj

2
)( =                                                         (3) 

The factor 2 arises because of the periodicity of the system, and t  is the duration of the 

simulation. The momentum flux ( )xz pj  leads to a continuous velocity gradient 

zvx ∂∂ in the fluid except slab 1 and slab 11 where velocities are not differentiable. The 

local flow velocity in slabn , )(nvx  is determined by averaging over the particles in this 

slab. 
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ixx vnv ,)( = ,   ∈i  slab n                                       (4) 

The velocity profile is linear and it slope zv ∂∂  can be extracted by a linear least-

squares fit. The local temperature in slab n, T(n), is evaluated from peculiar velocities, 

i.e. the difference between the actual velocities and the local flow velocities, as Eq(5).  

 

]))([(
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)( 2

,
2
,

2
,

1
iziyxix

N

iBbead

vvnvv
kN

nT
bead

++−= ∑
=

 ,    ∈i  slab n                 (5) 

 

where, Bk  is Boltzmann’s constant, beadN  is total number of beads in slab n, im  and iv  

denote the mass and actual velocity of thi bead.  The temperature profile is parabolic in 

both upper and lower halves of simulation cell, with cooling in the exchange slabs 1 and 

11 and heating in between.6,  As the transport of momentum xp is exactly known, the 

shear viscosity η  at a given shear rate zv ∂∂=γ&  can be calculated by Eq. (6). 

 

zvLtL

p

xyx

x

∂∂
=

2
η                                                        (6) 

The momentum flux ( )xz pj  is controlled by adjusting the time elapsed between two 

velocity swaps tW ∆⋅ . As a result, different shear rates γ&  are achieved. 

It is worth considering the influence of the thermostat. As the total linear 

momentum and total energy are conserved, the RNEMD method, in contrast to other 

NEMD methods, does not need any external thermostat. However, calculations on 

realistic systems often necessitate a thermostat for reasons unrelated to the RNEMD 

scheme, because either NVT conditions are explicitly required, or temperature shifts due 

to round-off or cutoff noise need to be corrected. As any thermostat introduces an 

artificial dissipation of momentum, the calculated viscosities may carry an intrinsic 

error. We use an atomic version of Berendsen’s thermostat,26 i.e. the actual temperature 

is calculated from atomic velocities, rather than centre-of-mass velocities, and the 

atomic velocities are being rescaled. An atom-based thermostat is dictated by the system 
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being a melt of long, flexible and entwined polymer chains. Firstly, in contrast to fluids 

of small rigid molecules, they create no problems from rotational motion, as they 

reorient much slower than they thermalise. Secondly, confining the temperature analysis 

and control only to the centre-of-mass velocities (one hundredth of all degrees of 

freedom for chain of 100 beads, namely PS-100, see Section 3) would lead to large 

statistical uncertainties. Finally, we need the thermostat only to counteract a very slow 

drift due to round-off errors. The usual main source of spurious heat generation, namely 

cutoff noise, plays a minor role here, since our cutoff is long and the nonbonded 

potentials have a finite range. As the Berendsen thermostat applies a uniform scaling to 

all velocities, it may change velocity profiles only uniformly and only by a small 

amount, avoiding local artefacts. In this sense, it might have an advantage over 

alternative thermostats, which perform velocity scaling on an individual-atom basis.27 In 

Figure 2.2, we report the rate of energy input into or removal from the system by the 

thermostat in the simulation of the biggest system (PS-100, Section 3) at the highest 

shear rate. It is evident that, in the steady state, the average kinetic energy 

added/removed by the thermostat is zero.  

 

Figure 2.2. Evolution of the rate of heat energy ( dtdQ / ) input to the system by the 

thermostat during the simulation for PS-100 system at the highest shear rate 

1101006.5 −× s .  
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2.3. Model and computational technique 

References 24 and 28 report, respectively, the CG model of atactic polystyrene 

and the corresponding force field parameters used in this work. The most important 

characteristics of this model are: the polystyrene diad is coarse-grained as a superatom 

in the mesoscale effective force field; the center of the superatom is placed at the 

methylene carbon; two different types of superatoms can be designated according to the 

configuration of two adjacent pseudoasymmetric –CHR– methyne groups, either meso 

(same configurations RR or SS) or racemo (opposite configurations RS or SR), as shown 

in Fig. 2.3; the corresponding force-field contains three different bonds, six angles and 

three nonbonded terms. This model has been successfully tested against structural 

properties of polystyrene melts with different chain lengths, the dynamical behaviour 

can be properly evaluated by taking into account the time scale. 

 

 
 

Figure 2.3. Illustration of the coarse-grained model of atactic polystyrene: (a) the meso 

(m) and racemo (r) of diads in transplanar conformation (hydrogen atoms on phenyl 

rings are omitted for clarity) (b) one superatom corresponding to a diadic m or r unit. 
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The centres of these superatoms, as indicated by filled squares, are the methylene 

carbons. Reproduced from ref. 24. 

 

The RNEMD simulations of monodisperse polystyrene melts are performed for 

four different chain lengths. Every system consists of chainN  polystyrene chains of beadN  

beads, where beadN  is taken to be 9, 20, 30 and 100. These systems are referred to as 

PS-9, PS-20, PS-30, and PS-100, respectively. They are all unentangled systems. The 

densities of the systems are obtained from equilibrium simulations at constant 

temperature 500 K and constant pressure 1 atm. The relaxation time of a chain τ  is 

obtained by time integration of the autocorrelation function for the end-to-end vector s , 

as given by Eq. (7). 

    tstttC d )()0(d)(

0

2

0

∫∫
∞∞

⋅== ssτ                                                        (7) 

The correlation function is noisy, so the long-time behaviour is hard to take into 

account. To arrive at practical estimates for comparing the dynamics, we have integrated 

C(t) until it reaches zero for the first time. The parameters of these systems are 

summarised in Table 2.1. These well-equilibrated systems are used as initial 

configurations of the RNEMD calculations. 
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All RNEMD simulations are carried out with the modified GMQ_num code, the 

numerical version of the molecular dynamics simulation software package GMQ.29,30 In 

this modified code, orthorhombic periodic boundary conditions are applied. The 

simulation cells are elongated in the z  direction ( 3zyx LLL == ), in which the 

momentum flux is imposed. The equations of motion are numerically integrated by the 

Verlet algorithm, the loose-coupling method of Berendsen26 is used to control the 

temperature of the system, and neighbour lists1 are used to speed up the computation of 

the nonbonded potential. The cutoff for the nonbonded potential is 5.1=cr  nm. The 

simulations are performed at constant temperature 500=T  K. The momentum flux is 

imposed by exchanging the x  component of the velocity of beads as described in the 

section 2. In order to cover a wide shear rate window, different velocity swap intervals 

tW ∆⋅  are applied: t∆  is taken in the range of 1–7 fs, W  in the range of every 60 to 500 

time steps. The velocity profile sampling rate 1+=′ WW  is in the range of every 61–

501 time steps for the production runs. The velocity profiles are sampled only in those 

time steps in which no velocity swap is performed. Table 2 lists all the RNEMD control 

parameters. The system takes a certain time to reach the steady state after the 

perturbation is applied; this time depends on the chain length and perturbation strength. 

The steady state can be monitored from the time evolution of the momentum flux during 

the simulation, which decays to a stable average. The initial transient stage has been 

excluded when calculating viscosity and analyzing structural changes. The resulting 

shear rates for different systems are: PS-9 in the range of 11110 103.1107.1 −×−× s , PS-20 

in the range of 11010 106.6100.1 −×−× s , PS-30 in the range of 1109 107.5103.5 −×−× s , 

PS-100 in the range of 1109 101.5102.1 −×−× s .  

It should be pointed out that the shear rates used in this work are very large 

compared to experiment. This results from (i) a short simulation time, compared to 

experimental time, and (ii) the requirement of a reasonable signal-to-noise ratio during 

the accessible simulation time. Lower shear rates, could, in principle, be achieved by 

increasing the velocity swap interval tW ∆⋅  at the expense of a less well defined 

temperature gradient.4 The same is true for the algorithmic alternative of more often 

selecting an atom pair for exchange with a smaller velocity difference.5 As a 
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consequence, some of the simulations are beyond the Newtonian regime. The shear rate 

where shear thinning sets in can be roughly estimated as the inverse of the chain 

relaxation time 1−τ ,17,18,31 for PS-9 101 107.6~ ×−τ , for PS-20 101 104.1~ ×−τ  s-1, for 

PS-30 91 103.6~ ×−τ s-1, for PS-100 81 100.5~ ×−τ  s-1. Thus, it drastically decreases 

with increasing molecular weight. This is a problem common to all non-equilibrium 

simulations. With any method, one has to simulate long enough for polymer chains to 

move past each other, and one has to accumulate enough such events for a well-

converged viscosity. Methods, such as the use of non-linear response theory and 

transient time correlation functions have been used recently for molecular fluids such as 

n-decane, 32, but are still waiting to be tried on high-molecular-weight polymers. 

Therefore, there are but few reports on molecular dynamics simulation of direct 

observation of the shear thinning onset for realistic polymer models, with one exception 

being the work on polyethylene chains by Padding and Briels.18  

The error bar of the shear viscosity is calculated according to Eq. (7). 

( ) 











 ∆
+

∆
≤∆

γ
γ

ηη
&

&

xz

xz

pj

pj )(
                                                          (7) 

where, η  is the average viscosity; ( )xz pj is the momentum flux averaged over the 

production run and ( )xz pj∆  is the standard deviation of the average ( )xz pj ; γ&  is 

the shear rate averaged over the production run and γ&∆ is the standard deviation of the 

average γ& .  

2.4. Results and discussion 

2.4.1. Shear viscosity and material functions. 

  Here we briefly give the definition of some quantities used to analyze the results 

of our simulations. The apparent viscosity is calculated according to Eq. (1). The first 

and second normal stress differences )(1 γ&N  and )(2 γ&N  are calculated from diagonal 

elements of the stress tensor using the following equation: 

xxzz PPN −=1                                                                    (8) 
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zzyy PPN −=2                                                                    (9) 

),,( zyxP =ααα  is calculated from the atomic implementation of virial-theorem 

expression:  
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where, V  is the volume of the simulation cell, N  is the total number of beads, im  and 

iv  denote the mass and actual velocity of  thi bead, ijr  denotes the distance between 

bead i  and j , ijF  is the force exerted on bead i  by bead j , α  refers to x , y , 

z components in the Cartesian coordinate system,  iv  is the local flow velocity of 

thi bead, which is given by )0,0,( ,ixi vv = . The first and second normal stress 

differences )(1 γ&N  and )(2 γ&N are presented here, rather than the first and the second 

normal stress coefficients )(1 γ&Ψ  and )(2 γ&Ψ  ( 2
11 / γ&N=Ψ , 2

22 / γ&N=Ψ ), which are 

sometimes reported, because 1N and 2N  obtained from the simulations are associated 

with their relative errors (particularly at low shear rate) and the division of 1N  and 2N  

by a very small shear rate( 0→γ& ) leads to large uncertainties in 1Ψ  and 2Ψ . In 

addition, the hydrostatic pressureP  is computed from the normal stresses by Eq. (11).  

( ) ( )zzyyxx PPPP ++=
3

1
γ&                                                                  (11) 

Viscosity. Fig. 2.4 shows the shear viscosity as a function of the shear rate for 

polymer melts with different chain lengths. For PS-9, PS-20 and PS-30, the shear 

viscosity functions exhibit two distinct regimes: a visible plateau at lower shear rates 

and a shear-thinning regime at higher shear rates. For PS-100, the shear-thinning region 

is dominant and the Newtonian regime is inaccessible in the given shear rate window.  

The viscosity dependence on shear rate in the shear-thinning regime is often 

empirically described as a power-law relation, in the form n−∝ γη & .33 The exponent n  

of the power-law can be obtained from the linear region in the log-log plot of the 

viscosity versus the shear rate. For comparison, the exponents obtained from this work 

and from some previous simulations on modelled polymers are collected in Table 2.3. 
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Figure 2.4. Shear-rate dependence of the shear viscosity for PS-9, PS-20, PS-30, and 

PS-100. Error bars are approximately the same size as the symbols and have been 

omitted for clarity. 
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Table 2.2. The RNEMD control parameters: the length of the time step t∆ , the velocity 

swap interval W for PS-9, PS-20, PS-30, and PS-100.  

PS-9 PS-20 PS-30 PS-100 

t∆  

(fs) 

W  
t∆  

(fs) 

W  
t∆  

(fs) 

W  

t∆  

(fs) 

W  

1 60 1 60 1 60 1 60 

2 60 2 60 2 60 2 60 

4 60 3 60 3 60 3 60 

7 60 7 60 7 60 5 60 

7 75 7 90 7 90 5 90 

7 90 7 120 7 120 5 120 

7 120 7 180 7 180 5 180 

7 180 7 240 7 240 5 240 

7 240 7 400 7 300 5 300 

    7 347 5 330 

      5 360 

      5 500 
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Our results suggest that the exponent n  increases with molecular weight. This 

dependence is more pronounced for the shorter chains (PS-9 and PS-20) than for larger 

molecular weights. The data qualitatively agree with Xu et al.15, Bosko et al.14, while 

Kröger and Hess13 and Daivis et al.12 found invariant exponents, and a weak shear 

dilatancy is detected for short chain (N< 20) in the work of Kröger and Hess.13 In 

particular, Kröger et al.11 show a tiny dependence on short chain-lengths and almost the 

same exponent for longer chains. One should anyway be aware that these simulations 

were performed at different conditions and using different models. Moreover, the 

determination of the exponents is extremely sensitive to where on the shear rate curve 

one assumes the power law to be valid.14 The exponent n  for PS-100 lies within the 

experimental values reported for polymeric liquids (n  in the range 0.4–0.9).34 The 

exponent derived by Doi and Edwards35 from reptation dynamics is much higher 

( 5.1≅n ). Exponents reported from simulations are generally in the range of 0.20–0.74, 

which are much lower than that predicted by reptation theory. The basic assumption of 

reptation theory in an entangled network of polymer chains, whereas chain lengths used 

in simulations are often too short to form entanglements. This could be one reason for 

the discrepancy. 

The zero-shear viscosity 0η   is of both theoretical and industrial interest. It is 

defined as the melt viscosity in the limit of 0→γ& and it is a function of temperature 

and molecular weight. Since in molecular dynamics simulation very low shear rates are 

not accessible for complex liquids, the way to extrapolate the data to low shear rates 

becomes a key issue when estimating the 0η . The extrapolation schemes used in 

previous simulation are not entirely consistent. Cummings et al.36 evaluated the 0η  for 

liquid rubidium by using the scheme 2/1
0 γηη &A−= , which is based on the mode-

coupling theory of Kawasaki and Gunton.37 Evans and Morriss2 confirm this theoretical 

prediction via NEMD simulation for the triple-point Lennard-Jones fluid. However, this 

21γ&  dependence of shear viscosity has not been confirmed for complex molecular 

fluids. Moreover, recent work questions such dependence.38-40 Daivis et al.12 evaluated 
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the 0η for the modeled polymer by the extrapolation scheme 2
0 γηη &A−= , which is 

based on the retarded motion expansion (RME) for a third-order fluid. Bosko et al. 

determined the 0η for dendrimer by taking the average of several extrapolation 

schemes.14 As RME offers a systematic and model-independent description of an 

arbitrary viscoelastic fluid at low shear rates,41 it would be reasonable to evaluate the 

0η of polymer by 2
0 γηη &A−=  scheme. The 0η  value of polymers  has also been 

obtained from experimental work by the extrapolation scheme 

xzAτηη −= −− )log()log( 1

0
1 ,42-44 where xzτ is the off-diagonal component ( xz ) of the 

stress tensor. In this work, the 0η  is determined as an average of values by using 2 

different extrapolation schemes, as demonstrated for the case of PS-9 in Fig. 2.5: (1) 

2
0 γηη &A−=  and (2) xzAτηη −= −− )log()log( 1

0
1 . For the latter extrapolation, we use 

the momentum flux )( xz pj  instead of the shear stress xzτ .The 0η determined for all 

systems are summarized in table 4, except for PS-100, because the given shear rate 

window for PS-100 is unable to reach the Newtonian regime. The 0η  determined by 

these 2 extrapolation schemes agree well with each other in the uncertainty limit. The 

dependence of 0η  on the molecular weight is linear ( M∝0η ) for short chains.45 Such 

dependence on the molecular weight is predicted by the Rouse model. As shown in Fig. 

2.6, one observes an almost linear dependence of 0η on the molecular weight with the 

slopes of 0.98 and 1.10 obtained from both extrapolation schemes.  

Experiment46 indicates that the zero shear viscosity for polystyrene of molecular 

weight ~1000g/mol at 500 K is around sPa1015 3 ⋅× −
. Comparing the 0η  for the 

similar molecular weight of PS-9 in this work, the simulation result (~ sPa1006.0 3 ⋅× −
) 

is much lower than the experiment, by a factor of ~250. As predicted by 

hydrodynamics, the zero-shear viscosity and the self-diffusion coefficient are 

approximately reciprocal.47 The self-diffusion coefficient of the coarse-grained model 

used in this work is, indeed, found to be a factor of ~200 higher than that of the fully 

atomistic model of the PS-9 system.24 Therefore, the difference of the zero-shear 
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viscosity between simulation and experiment can be traced mainly to the fast dynamics 

of the coarse-grained model used. There could be two possible explanations: (1). The 

reduction of the number of degrees of freedom upon coarse-graining eliminates the 

fluctuating force associated with those missing molecular degrees of freedom.48 (2). 

The coarse-grained force field is generally very soft. This leads to the reduction of 

nearest-neighbor interactions, particularly of their repulsion, and thereby atoms can 

more easily escape from the local cages formed by their neighbors.25 According to 

Boltzmann’s superposition principle, the zero-shear viscosity can be deduced from the 

time dependent shear modulus )(tG ,49 i.e., 

dttG )(
0

0 ∫
∞

=η                                                           (12) 

Hence, the fast dynamics of the coarse-grained model can effect 0η  through the shear 

modulus. Two parts contribute to the shear modulus in an unentangled system 49 

)()()( tGtGtG Rousemic +=                                                      (13) 

The first term )(tGmic  accounts for the short-time behavior, which is controlled by the 

internal degrees of freedom or microstructure. This contribution cannot be reproduced 

well by a coarse-grained model, because short-time degrees have been eliminated in 

order to improve the computational efficiency. The second term )(tGRouse  accounts for 

the generic Rouse dynamics, which can be reproduced by the coarse-grained model 

taking into account a time scale factor. Both terms complicate the viscosity prediction 

in coarse-grained model, and for details a further study is required. Still, the agreement 

of 0η with Rouse theory and experiment is encouraging when the time scale factor is 

taken into account. 

Normal stress difference. As in experimental33 and previous NEMD simulation 

data,15,19 the first normal stress difference 1N  predicted from this work is positive for 

all cases, as shown in Fig. 2.7, This validates the theoretical prediction that simple shear 

is accompanied by a non-vanishing normal stress difference.49 Physically, this 

corresponds to a compressing force perpendicular to the plane in which shear flow take 
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place. As the shear rate increases, 1N  increases significantly, following a power law in 

the shear-thinning region in the form: αγ&∝1N  (For PS-9, 20, 30, 100, =α 1.0,  0.72, 

0.66, 0.53 ). A similar behavior has been observed for polyethylene by Jabbarazadeh et 

al. in their NEMD simulation.19 Concerning the second normal stress difference 2N , 

both experimental and simulation work provide only limited data. However, it is has 

been pointed out33 based on experimental findings, that 2N  is negative for 

homogeneous polymer liquids, that 12 NN−  typically lies in the range 0.2~ 0.3, and 

that it is insensitive to the shear rate. Fig. 2.8 indicates that 2N  is negative for nearly all 

the systems and it increases with the shear rate in the shear-thinning region.  The values 

of 12 NN− in the shear-thinning region for PS-9, 20, 30 are in the range of 0.2~ 0.3, 

for PS-100 is 0.1~0.2.  

Hydrostatic pressure. Fig. 2.9 shows the dependence of the hydrostatic pressure on the 

shear rate. Two different regimes are visible. At higher shear rate, the hydrostatic 

pressure increases with the shear rate, and it seems again to follow the power 

law βγ&+= 0PP  . Similar behavior was found for polyethylene17,19 and dendrimers.14 At 

lower shear rate, there is a small, if any, increase of the hydrostatic pressure, and it is 

close to the equilibrium value. Moore et al.17 have found a minimum of the hydrostatic 

pressure before a rapid increase, and this pressure minimum occurs at the same shear 

rate in which the intermolecular LJ potential energy has a minimum. Due to uncertainty 

at the low shear rate in our result, the existence of such a minimum can neither be 

confirmed nor ruled out. 

 

 

 

 

 

 



 30 

Table 2.4. Estimated values of the zero-shear viscosity ( 0η ) by the different 

extrapolation scheme (1) 
2

0 γηη &A−=  ,(2) 
( )xz pjA−= −− )log()log( 1

0
1 ηη

. 

Extrapolation 

scheme 

PS-9 

)( smPa ⋅  

PS-20 

)( smPa ⋅  

PS-30 

)( smPa ⋅  

1 %3.0060.0 ±  %5.0122.0 ±  %2182.0 ±  

2 %0.8061.0 ±  %10148.0 ±  %12208.0 ±  
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Figure 2.5. Demonstration of the extrapolation schemes used to obtain the zero-shear 

viscosity from simulation for the PS-9 system. (a) Scheme 1: 2
0 γηη &A−= (b) scheme 

2: ( )xz pjA−= −− )log()log( 1

0
1 ηη . 
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Figure 2.6. Zero-shear viscosity versus molecular weight. Data used from extrapolation 

scheme (1) 2
0 γηη &A−= , (2) ( )xz pjA−= −− )log()log( 1

0
1 ηη . The slopes of linear fits 

for these data are %1.098.0 ± , %3.010.1 ± , respectively. Solid lines are used to guide 

eyes. 

 
 

Figure 2.7. First normal stress difference 1N  versus shear rateγ&  for polystyrene melts 

of PS-9, PS-20, PS-30, and PS-100.   
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Figure 2.8. Second normal stress difference 2N versus shear rate γ&   for polystyrene 

melts of PS-9, PS-20, PS-30, and PS-100.  

 

 
Figure 2.9. Hydrostatic pressure difference )0()( PPP −=∆ γ&  versus shear rate for 

polystyrene melts of PS-9, PS-20, PS-30, and PS-100.  

2.4.2. Structural alteration under shear 

The dependence of the molecular configurations and alignment on the shear rate 

is covered in this section. In the following analyses, the molecules, whose centres of 

mass are in the velocity-exchange slabs (slab1 and slab 11), have been excluded. 
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Average chain dimension. Fig. 2.10. shows the root mean-squared gyration radius 

212R  as a function of the shear rate for different chain lengths. Fig. 2.11 shows the 

configurations of a single chain of PS-100 under different shear rate. At low shear rates, 

212R  approaches its equilibrium value. As the shear rate increases, the shear field 

deforms the configuration and elongates the chain. These changes are more marked for 

the long chains.  

Shear-induced alignment. Shear-induced alignment is investigated in term of 

birefringence extinction angle χ . As in RNEMD, the flow field imposed on the system 

corresponds to two symmetric planar Couette flows, the momentum fluxes ( )xz pj  in 

the upper and lower halves are equal in magnitude but opposite in direction. Both half 

cells have the same shear rate, but the velocity profiles are symmetric. As a 

consequence, polymer chains are aligned symmetrically in the two halves of the 

simulation cell. This is found, indeed, in the distribution of the single-molecule 

alignment angle θ , the angle between the end to end vector  and the flow direction x , 

as shown for the case of PS-30 in Fig. 2.12. Therefore, the birefringence extinction 

angle χ should be calculated from both halves of cell separately. One can take the 

average of χ  from both half cells to improve the statistics. To describe the shear-

induced alignment, we calculate an order tensor S defined in Eq. (14). 

∑
=








 −⊗=
N

i

ii  
N 1 3

11
IuuS                                                               (14) 

Where, iu  is unit vector along the end-to-end direction of the molecule i , I is the unit 

tensor. The angle brackets indicate an ensemble average. The birefringence extinction 

angle χ  is calculated as the angle between the eigenvector of S corresponding to the 

largest eigenvalue of the order tensor and the shear flow direction x . As shown in Fig. 

2.13, the birefringence extinction angle decreases as the shear rate increases. These 

changes describe quantitatively the alignment of the system with respect to the flow 

direction. The process of chain alignment, in combination with chain stretching, leads 

to a macroscopic anisotropy of the material. It is expected that the birefringence 
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extinction angle converges to 450 in the Newtonian regime.35 The birefringence 

extinction angles of PS-9 and PS-20 system at low shear rates are close to 450, but the 

birefringence extinction angle of PS-100 is still far from 450. This indicates again that 

the shear rates used in this work are not low enough to reach the Newtonian regime for 

the long chains. Note that, for PS-100 at the highest shear rate of 1101006.5 −×= sγ& , the 

root mean-squared gyration radius
212R  is larger than the half length of the simulation 

cell ( 2/xL  and 2/yL ), and the finite box size limits the minimum flow alignment 

angle to around 50. 

2.5. Summary 

The RNEMD method has been used to calculate the viscosity of a coarse-

grained model of short-chain polystyrene. The simulations were performed at constant 

temperature and constant volume. The viscometric functions obtained in this paper can 

be summarized as follows: 1. The zero-shear viscosity is linearly dependent on the 

molecular weight for PS-9, PS-20, and PS-30 systems; this agrees with experiments and 

the theoretical prediction of the Rouse model. 2. The shear-thinning behaviour for all 

studied systems follows a power law. The exponent of the power law increases with the 

molecular weight, and this dependence is more pronounced for short chains (PS-9 and 

PS-20). 3. The first normal stress difference is positive and the second normal stress is 

negative for all systems. The first normal stress difference follows the power law of 

form of αγ&∝1N at higher shear rates. 4. The hydrostatic pressure increases at higher 

shear rates. The structural changes under shear are quantitatively investigated. The 

analysis of these effects indicates that the process of chain alignment, in combination 

with chain stretching, leads to a macroscopic anisotropy of the material. The reverse 

non-equilibrium molecular dynamics method gives reliable results in the Newtonian 

regime, and a still reasonable agreement with homogeneous-shear NEMD methods at 

higher shear rates. As other methods, it has problems when the shear rates are extremely 

high.  
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             The extrapolated zero shear viscosity is linearly dependent on the molecular 

weight, even though its absolute value is lower than the experiments by a factor of ~200 

for the shortest chain length. This scaling factor is probably due to the well-known 

intrinsic speed up of the coarse-grained model. The scaling factor found for the 

viscosity is close to that of the diffusion coefficient calculated from equilibrium MD 

simulations of the same model. This result indicates the CG model which has been 

developed taking only structural information into account can reproduce the generic 

Rouse behaviour, and those short-time degrees which have been actively removed in 

the CG model are responsible for the larger difference of zero-shear viscosity between 

simulation and experiment. 
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Figure 2.10. Root mean-squared gyration radius,
212R , versus shear rate for PS-9, 

PS-20, PS-30, and PS-100. 
212R  is normalized by its equilibrium value 

212

eq
R  (no 

shear) . 

 
 

Figure 2.11. Typical configurations of individual chains of PS-100 under different 

shear rates. 
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Figure 2.12. Distributions of the single molecule alignment angle θ  at various shear 

ratesγ&  for the PS-30 system. The solid lines are from the upper half of the simulation 

cell, the dashed lines from the lower half. The distribution is weighted by a factor of 

θsin1 . For (a) shear rate 
101082.1 ×=γ& s-1, the distribution maxima obtained from the 

upper and lower halves of the simulation cell are 
09.22  and

00.22− , respectively. For 

(b) shear rate 
101034.3 ×=γ& s-1, the maxima are 

05.16 and 
01.16− , respectively. 

 
Figure 2.13. Birefringence extinction angle χ  as a function of the shear rate for PS-9, 

PS-20, PS-30, and PS-100.
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3. Backmapping coarse-grained polymer models 

under sheared nonequilibrium conditions 

3.1. Introduction 

Polymers exhibit physical properties in a broad range of length and time scale, 

and these properties cannot be viewed on one length scale alone. However, any 

individual molecular simulation technique is restricted to much narrower range. In 

order to have a complete picture of the polymers, much effort has been made to study 

them by means of molecular simulation through a hierarchical approach.1,2-5 Multiscale 

simulation is a neither unique nor trivial path from one scale to another. Coarse-

graining is the process of “zooming-out”: the “forward-mapping” process, passes from 

a detailed model to a simpler one. Often, the terms “coarse-grained” (CG) and 

“mesoscopic” are used indiscriminately and can mean different things. In this paper, we 

define the term “coarse-grained” following ref. 5: One interaction centre (also referred 

to as “bead” or “superatom”) contains of the order of 10 real non-hydrogen atoms or 

approximately one chemical repeating unit. CG models employed here retain some 

chemical individualities. Therefore, they are not generic models, but material-specific. 

CG models have been proven to be very efficient in studying the complicated behaviour 

of polymers. This efficiency comes from the fact that CG models only take into account 

those degrees of freedom deemed relevant for the particular properties studied.6,7,8 On 

the other hand, the amount of detailed information lumped in one single CG bead can 

obscure some fundamental aspects, and it can preclude the calculation of polymer 

properties, which depend on the positions of atoms. Therefore, one also needs a “zoom-

in” procedure which restores the atomistic features to a CG model. Indeed, the chemical 

details discarded in the CG model can be reproduced by reinserting the atoms. This 

method is called fine-graining, reverse-mapping or backmapping. The main 

applications of backmapping are listed below:  
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(1) Making different kinds of analyses at different levels7. Refining a CG model 

is a reliable method to generate atomistic structures, at least as probed by neutrons, 

positronium and small penetrants3,9,10. By tracing the CG model, which depends on the 

properties of entire chain, back to atomistic level, the “atomistic” properties, which 

depend on the behaviour of individual atoms, can be also calculated.   For example, the 

structure factor calculated from backmapped bisphenol-A polycarbonate melt agrees 

with neutron scattering,3 the properties probed by atomic motion agree with the 

diffusion of penetrants through polymer.9  

(2) Generating equilibrated ensembles with atomistic details for conducting 

further atomistic simulation or predicting properties for which atomistic details are 

important. In this case, CG model plays a role as means of relaxing the atomistic 

structure.  By refining CG structure from a CG trajectory which has already undergone 

relaxation, a great computation cost is saved. 

As most CG simulation studies focus on reproducing static structural properties, 

such as distributions of geometric quantities, and thermodynamic properties, like 

cohesive-energy, density and pressure, the simulations are performed under equilibrium 

conditions. Accordingly, efforts in developing backmapping method are pursued on 

equilibrium systems. Early attempts at the backmapping method have been made by 

Tschöp et al. 3 and Kotelyanskii et al.11 In particular the latter proposed a specific fine-

graining procedure in order to introduce atoms into their lattice model of polystyrene. 

Presently, backmapping has been widely used to generate atomistic structures from CG 

equilibrium ensembles.2,12,13 On the other hand, dynamic properties, in particular melt 

viscosities under shear or elongational flow, are of great interest to the polymer 

manufacturing and processing. Recently, these dynamic properties have been a 

simulation target in some CG simulations1,14, which were performed under 

nonequilibrium conditions. To the best of our knowledge, so far no attempts have been 

made to develop backmapping methods for the nonequilibrium situations. Thus, a 

robust backmapping method for nonequilibrium systems is still needed. 

In a typical protocol, backmapping an equilibrium system involves two steps:  



 44 

(1). Each CG bead is reconstructed in atomistic detail.  To do this, templates of 

many possible atomistic structures are set up and the CG beads are replaced by a proper 

selection from one of these templates which fits the contour of the underlying CG 

chain. The template library is generally extracted from a (preceding) atomistic 

equilibrium simulation. If several atomistic configurations fit one CG bead, the 

atomistic structure is chosen, which allows the best superposition also for the bead’s 

neighbourhood. The construction of the other monomers continues until the end of the 

chain. In this step, only geometric criteria are used, no force and potential energy 

calculations are involved, which leads to a high backmapping efficiency. If a CG bead 

contains a complex atomic structure with bulky side groups, a straightforward 

reinsertion of atomistic details often leads to artificial interlocks of side groups, for 

example, the catenation or spearing of phenyl rings. In this case, a strategy is needed to 

avoid interlocking. In ref 13, the catenation of phenyl ring is removed in the following 

way: add fictitious Lennard-Jones particles centred in the phenyl rings; the non-bonded 

interactions are gradually introduced on both fictions and genuine atoms until to their 

full values: afterwards, the fictitious particles are removed.  In this stage, avoiding 

interlocking of side groups needs force and potential energy calculations. We refer to 

this preparatory stage as a pre-process for the structural optimization.  

(2). Collective and local relaxation are performed with energy minimization, 

molecular dynamics or Monte Carlo optimization.  The atomistic configuration 

generated in step (1) is not the most ‘comfortable’ one in its local environment. Atom 

overlaps may have been generated. The reason is that the CG force field is derived from 

average atomic distributions.  The cross dependence between different distributions in 

the atomistic description is generally neglected. Harmandaris et al 12 have pointed out 

that this approximation may lead to conformations, which do not exist in the atomistic 

description, still being sampled in the CG model. When atomistic details are re-inserted 

into such CG conformation, strong overlaps may result. This happens more often in 

coarser CG models. Therefore, relaxation by energy minimization (EM), molecular 

dynamics (MD) or Monte Carlo (MC) is required to eliminate such artefacts. Generally, 

EM leads to the nearest local energy minimum, while MD and MC can, in principle, 
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reach the global energy minimum. Further relaxation of the atomistic structure is 

achieved post-processing it with atomistic MD run or sometimes a combination of EM 

and MD,  or even MC11.  

There are two additional requirements in backmapping a nonequilibrium CG 

system: (1) The deformed CG configurations need to be retained in the atomistic 

picture. Usually, stretched and sheared polymer configurations in nonequilibrium 

systems are different from equilibrium ones. The backmapped atomistic configurations 

should be able to reflect these features. The backmapping process must therefore relax 

the polymer locally but not its global structure. (2) The deformation energy stored in the 

chain of the CG model should be passed to the atomistic level. In an atomistic 

molecular mechanics model15,16 of a deformed chain, three types of valence coordinates 

(bond length ir , bending angle iα  and torsional angle iϕ  ) deviate from the equilibrium 

values and the deformation energy stored in the chain is dissipated in them. These 

deformations have been recorded in the CG structure during the nonequilibrium 

process, and a proper backmapping method should be able to translate these CG 

coordinates into atomistic ones. Obviously, the common backmapping methods cannot 

meet these requirements for two main reasons: (1) During EM or equilibrium MD or 

MC runs applied to the system after remapping (step 1), the conformation generated 

from the nonequilibrium CG simulation is unstable and relaxes quickly toward 

energetically more favourable structures, which are no longer stretched. (2) The 

atomistic coordinates ir , iα  and iϕ , which are obtained by reinserting the atomistic 

equilibrium templates, do not correspond to the parent deformed CG conformation. In 

this paper, we propose three strategies and a new backmapping procedure to meet the 

above mentioned requirements. An application to atactic polystyrene melts under steady 

shear flow is demonstrated.  
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3.2. Strategies and procedure 

3.2.1. Strategy 1: Preserving globally sheared configurations in the 

backmapping procedure by applying position restraints. 

 To meet the first requirement, i.e. to retain the global stretched configuration 

from the CG simulation, we apply position restraints to all those atoms which coincide 

with locations of CG beads. The position restraint potential prV  is given by  

 ( )2
2

1
iiprpr kV Rr −=                                                                          (1) 

where, prk  is the force constant, ir  is the coordinate of particle i , iR  is its fixed 

reference position. Two remarks are necessary here: (1) In this study, the force constant 

prk  is taken as 10000 kJ mol -1 nm -2 , which is sufficiently stiff to preserve the 

configuration from the CG run while its contribution to total energy is fairly small (see 

below). This values, however, is probably not transferable to other CG models. It, in 

principle, may depend on polymer stiffness, nonequilibrium conditions, mapping 

scheme and other system peculiarities. (2) In the present study, the CG beads are 

located on real atoms. Therefore, the CG coordinates can be directly used as reference 

positions.  Depending on the CG mapping scheme, the CG coordinates may be located 

on the centre of geometry or centre of mass of the group of atoms and not coincide with 

any real atoms. In this case, the reference positions need to be recalculated and the 

method elaborated here is still adaptable. 

3.2.2. Strategy 2: Achieving a globally deformed, but locally relaxed 

atomistic structure through a molecular mechanics approach. 

 In the molecular mechanics force field, the total potential energy V  of 

deformed molecules can be decomposed into two terms:  

 excon VUV +=                                                                          (2) 

where, exV ,  is  the imposed external field, conU  is the conformational energies of 

chains, 17.  i.e.  



 47 

∑ ∑∑∑ +++=
ϕα

ϕα
lr

lUUUrUU )()()()(                                       (3) 

The first two terms )(rU and )(αU express the contributions to the potential energy of 

the molecules due to the deviation of bond lengths and valence angles from the 

reference (relaxed) values ir  and iα  respectively. The third term )(ϕU is the torsional 

potential and )(lU  is the nonbonded interaction between particle pairs i  and j as the 

function of distance ijl . The structure of the deformed molecules can be generated by 

minimizing the conformational energy in the presence of an applied external force. This 

procedure has been adapted in generating deformed polymers 16,17. We borrow this idea 

to generate the deformed local atomistic structures out of template structures from an 

equilibrium (undeformed) simulation. Here, the external potential is the position 

restraint potential. The procedure is illustrated in Fig. 3.1: we insert atomistic 

equilibrium templates in place of the CG beads and restrain all atoms coinciding with 

bead locations. Then we energy-minimise in the presence of the position restraints until 

the total energy converges. If one neglects the weak energy contribution from the 

position restraints, the conformational energy is approximately the total energy. This 

approximation is reasonable, as in this study, the contribution from position restraints to 

the total energy is less than 4% in the first EM step and less than 1% in the final step. 
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Figure 3.1. llustration of rebuilding the atomistic details for coarse-grained (CG) beads 

within a deformed chain conformation. For simplicity, one CG bead is assumed to 

contain a 3-carbon paraffin-like structure. One CG bead is indicated by one circle. (a) 

Atomistic equilibrium templates (dashed line) are inserted in places of their 

corresponding CG beads. (b) Atomistic structure before structure optimization (dashed 

line). (c) Atomistic structure after optimization with applying position restraints (solid 

line); arrows indicate the position restraints applied. For comparison, the atomistic 

structure before optimization (dashed line) is also shown in (c).  
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3.2.3. Strategy 3: Minimizing the isolation of segments introduced by the 

position restraints via an iterative procedure. 

An additional problem arises when one attempts to meet both requirements 

simultaneously: One needs more position restraints to preserve the global configuration 

as precisely as possible, and at the same time as few as possible for optimizing the 

deformed atomistic structure, because they hinder also the local rearrangement of chain 

segments. The atomistic structure so generated (via strategy 2) is only locally 

optimized. i.e. stresses within the chains are not transmitted across a restrained atom 

and the local conformation does not feel that it is part of a long chain; we refer to this 

effect as segment isolation. Therefore, we attempt to find a compromise between the 

two requirements. We are interested in the average properties of the nonequilibrium 

system, which are not seriously be affected by the local conformation of an individual 

segment. Based on this consideration, we use fewer position restraints and distribute 

them evenly over the whole polymer chain.  In this way, the global conformation is still 

preserved although not all atomistic segments are fixed precisely to the positions of 

their parent CG beads. We optimize the structure until the energy converges. The 

conformation so generated still suffers from segment isolation but to a smaller extent. A 

remedy is to shift the restraints and repeat the energy minimisation: We use same 

number of position restraints but move them to those atoms, which were free in the 

previous EM run, and optimise again until the energy converges. We repeat the EM 

runs until the energy is converged in the presence of various position restraints. The 

final conformations can be regarded as independent of the locations of position 

restraints.  

3.2.4. Backmapping procedure 

Our backmapping procedure for a nonequilibrium system involves three steps, 

as is outlined in Fig. 3.2. In the first step, each bead of the CG model is replaced by an 

atomistic segment, whose conformation is extracted from the library of average 

equilibrium conformations. A pre-processing for avoiding interlocking of bulky side 
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groups is also included in this step. At this step, the usual recipe for backmapping is 

followed. In the second step, the atomistic structure is energy-minimised while applying 

position restraints to all atoms coinciding with the locations of their parent CG beads 

(in the example of polystyrene, these are all methylene carbons). In the third step, the 

atomistic structure is re-optimized with fewer position restraints. Several position 

restraint schemes can be alternated during the structure optimization. The conformation 

whose energy converges in the presence of various position restraint schemes is 

accepted as the final one. This procedure can have problems at the chain end, since a 

chain end has more freedom and a behaviour different from the central segments. The 

longer the chain length is, the less important these problems become. In this study, no 

position restraints are applied to the chain ends.  
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Figure 3.2. The workflow of the backmapping procedure of a coarse-grained sheared 

nonequilibrium conformation. The position restraint schemes are explained in Figure 

3.3. 
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3.3. Mesoscale models of vinyl polymers and the 

structural alteration under steady shear flow studied by 

reverse nonequilibrium molecular dynamics 

This section is intended to guide readers quickly to the earlier work that is 

essential for understanding the present investigation. Extensive details can be found in 

ref. 18 and ref. 1.  

A systematic procedure to coarse-grain atomistic models of vinyl polymers into 

off-lattice mesoscopic models was developed in our earlier work.18 This model is able 

to keep informations about the polymer’s stereosequence. A diad is considered as the 

shortest distinguishing piece of a stereosequence. If a diad contains two consecutive 

same absolute configurations (RR or SS), the diad is labelled as meso (m diad); if they 

are different (RS or SR), it is labelled as racemo (r diad).  The basic idea of this 

mapping scheme is to consider a diad as a superatom. Accordingly, a CG bead of 

polystyrene corresponds to a diadic m or r unit, and the centre of this CG bead is the 

methylene carbon, as illustrated in Fig. 3.3. The force field of this CG model has two 

types of particles (m and r), three different bond types (mm, rr, mr), six angle types 

(mmm, mmr, mrm, mrr, rmr, rrr). Bonds and angle distributions and intermolecular 

radial distribution functions extracted from atomistic simulation are considered as 

target distribution. The CG bond and angle potentials were obtained via direct 

Boltzmann inversion of their multi-peaked distributions, which, for computational 

convenience, were approximated as sums of several Gaussian functions.19 The CG 

nonbonded pair potentials of each pair of beads are obtained by iterative Boltzmann 

inversion of the corresponding radial distribution functions, the pressure information is 

incorporated into the optimization of nonbonded potential by means of a so-called ramp 

correction.18 For ease of reference, the parameters of CG force field used in this work 

are reproduced in Appendix 3.  
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Figure 3.3. Illustration of the atomistic-to-coarse-grained mapping scheme for atactic 

polystyrene and the position restraint scheme used during energy minimization of a 

backmapped sheared nonequilibrium system. Coarse-grained beads are indicated by 

ovals corresponding to meso (m) or racemo (r) diads. The centres of these superatoms, 

indicated by filled squares, are the methylene carbons. The arrows along the dashed 

lines indicate the position restraints used in the successive EM runs. For details, see 

text.  
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The reverse nonequilibrium molecular dynamics (RNEMD)20 was used to 

investigate the rheological behaviour of the CG model of polystyrene under steady 

shear flow. The RNEMD algorithm for shear flow by is illustrated in Fig. 3.4. The 

simulation box is partitioned into an even number of slabs along the z direction. One 

periodically searches in the first slab for the atom with largest negative x component of 

the momentum, and in the central slab for the atom with largest positive x component. 

If these two atoms have same mass, one exchanges their momenta. By repeating this 

procedure periodically, an unphysical momentum flux is imposed and a velocity 

gradient or shear field results.  

In RNEMD, the flow field imposed on the system corresponds to two symmetric 

planar Couette flows, the momentum fluxes in the upper and lower halves are equal in 

magnitude but opposite in direction. Both half cells have the same shear rate, but the 

velocity profile is symmetric. As a consequence, polymer chains are aligned 

symmetrically in the two halves of the simulation cell.  We have quantitatively 

characterized the structural alteration of a CG model under steady shear flow. The 

average chain dimension was characterized by the root mean-square gyration radius and 

the shear-induced alignment by the birefringence extinction angle χ .1 . In order to 

obtain χ , we first calculate an order tensor S  

∑
=








 −⊗=
N

i

ii  
N 1 3

11
IuuS

                                                     (4) 

where iu  is the unit vector along the end-to-end direction of molecule i , and I is the 

unit tensor. The angle brackets indicate an ensemble average. The birefringence 

extinction angle χ  is calculated as the angle between the eigenvector of S 

corresponding to the largest eigenvalue of the order tensor and the shear flow direction 

X. The birefringence extinction angle χ  gives the preferred alignment direction 

respective to the flow. In ref. 1, χ  was calculated from both the upper and lower halves 

of cell separately, the reported values were the average of χ  from both half cells.  
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Figure 3.4. Sketch of the RNEMD method for calculating the shear viscosity. The flow 

field imposed on the system corresponds to two symmetric planar Couette flows, which 

have the shear flow in the x  direction, and the velocity gradient is in z  direction. 

Horizontal arrows in the simulation cell indicate the velocity field. The periodic 

orthorhombic simulation cell is partitioned into 20 slabs in the z direction. Reproduced 

from ref. 1. 

3.4. Model and computational details  

3.4.1. Coarse-grained potential and generation CG configurations under 

steady shear flow  

References 18 and 2 report, respectively, the CG model of atactic polystyrene 

and the corresponding force field parameters used in this work. In this CG model, the 

bond stretching and the bond bending potential were parameterized to reproduce the 

corresponding distribution functions (bonds, bond angles and radial distribution 

functions) of an atomistic melt of short chains. The nonbonded potentials were derived 

by iterative Boltzmann inversion to reproduce the chain packing of the short chain melt. 

The most important characteristics of this model are: the polystyrene diad is coarse-

grained as a superatom (bead) in the mesoscale effective force field; the center of the 

superatom is placed at the methylene carbon; two different types of superatoms are 

designated according to the configuration of two adjacent pseudoasymmetric –CHR– 
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methyne groups, either meso (same configurations RR or SS) or racemo (opposite 

configurations RS or SR), as shown in Fig. 3.3; the corresponding force-field contains 

three different bonds, six angles and three nonbonded terms. This CG model retains the 

tacticity of polystyrene, so we are in a comfortable situation of being able to map the 

CG monomers back onto the different groups of the underlying atomistic structure.  

The deformed CG conformations were generated by reverse nonequilibrium 

molecular dynamics (RNEMD) simulations.20 Ref. 1 gives the details about how we 

generate the CG conformations under a steady shear flow by RNEMD simulation. The 

RNEMD simulations were performed at constant temperature (T= 500 K) and constant 

volume. The global features of the deformed CG system such as the root mean-square 

gyration radius and the birefringence extinction angles followed the expected trends.1  

Two sheared nonequilibrium systems are selected to be studied. We refer as PS-30 and 

PS100 to these systems containing 30 and 100 CG beads per chain, respectively, 

corresponding to molecular weights of 3.23 kDa and 10.52 kDa. For the sheared PS-30 

and PS-100 systems studied here, the momentum fluxes are imposed in RNEMD by 

velocity swapping every 60 time steps with the time step length of 1 fs. All CG 

calculations were carried out with the modified GMQ_num code. The final CG 

configurations, deformed by a steady shear flow of 1 ns, are selected to be backmapped. 

For comparison, the unperturbed CG structures from an equilibrium run of 2.4 ns are 

also backmapped. The backmappep systems are characterised in Table 3.1.  



 T
a
b
le
 3
.1
. 
C

ha
ra

ct
er

is
ti
cs

 o
f 

th
e 

co
ar

se
-g

ra
in

ed
 s

ys
te

m
s,
 w

hi
ch

 a
re

 b
ei

ng
 b

ac
km

ap
pe

d:
 n

um
be

r 
of

 b
ea

ds
 p

er
 c

ha
in

 
b
ea
d

N
, 
m

ol
ec

ul
ar

 

w
ei

gh
t 
M

W
, 
 n

um
be

r 
of

 c
ha

in
s

ch
a
in

N
, 
m

as
s 

de
ns

it
y 
ρ

, 
si

m
ul

at
io

n 
ce

ll
 s

iz
es

 
x
L

, 
y
L

, a
nd

z
L

 , 
ro

ot
 m

ea
n-

sq
ua

re
 g

yr
at

io
n 

ra
di

i 
of

 p
ol

ym
er

 

ch
ai

ns
 i
n 

 t
he

 u
np

er
tu

rb
ed

 s
ys

te
m

s 
  

2/
1

2

eq
R

  a
nd

 s
he

ar
ed

 n
on

eq
ui

li
br

iu
m

 s
ys

te
m

s 

2/
1

2

sh
ea
r

R
,  

av
er

ag
ed

  b
ir
ef

ri
ng

en
ce

 e
xt

in
ct

io
n 

an
gl

es
 χ

  

fr
om

 t
he

 u
pp

er
 a

nd
 l
ow

er
 h

al
ve

s 
of

  s
im

ul
at

io
n 

ce
ll
 i
n 

th
e 

sh
ea

re
d 

no
ne

qu
il
ib

ri
um

 s
ys

te
m

. 

S
ys

te
m

 
b
ea
d

N

 

M
W

 

(g
/m

ol
) 

ch
a
in

N
 

ρ
 

(k
g/

m
3 )

 

L
z

L
L

z
x

×
×

 

(n
m

) 

2/
1

2

eq
R

 

(n
m

) 

2
/

1
2

sh
ea
r

R
 

(n
m

) 

χ
 

(d
eg

re
e)

 

P
S
-3

0 
30

 
32

30
 

12
0 

94
5.

4 
29

7
.

18
09

9
.6

09
9

.6
×

×
 

1.
28

 
1.

38
 

o
5.

11
 

P
S
-1

00
 

10
0 

10
52

0 
60

 
95

1.
0 

48
3

.
21

16
1

.7
16

1
.7

×
×

 
2.

65
 

4.
08

 
o

9.5
 



 

3.4.2. Technical details of energy minimization run for the backmapped 

nonequilibrium structures and molecular dynamics run for the backmapped 

unperturbed ensembles.  

The molecular simulation package GROMACS 21,22 is used for both EM and MD 

under constant volume and constant temperature (500 K). All bond lengths are kept 

rigid by the SHAKE procedure23. The cutoff for Coulombic and Lennard-Jones 

interaction is 1.35 nm with a Verlet neighbour list 24cutoff of 1.38 nm. The atomistic 

force field used here is the one reported in reference 13. For ease of reference, the 

parameters of atomistic force field used in this work are reproduced in Appendix 2. For 

energy minimisation, the steepest descent method25 is used for finding a local potential-

energy minimum. The convergence threshold for the maximum force is set as 100 kJ 

mol -1 nm -1. The force constant for the position restraint potential is 10000 kJ mol -1 nm 
-2. Since the bond-stretching potential is much stiffer than the ones of angle bending and 

torsions, the dominating changes of coordinates in the deformed atomistic structure are 

expected in the torsional angle ϕ  and the bending angle α . The changes of bond 

coordinates are negligible; therefore the use of bond constraints is justified. For MD 

runs for the unperturbed PS-30 and PS-100 systems, simulation lengths are over 2.4 ns, 

the Berendsen thermostat26 is used to control the temperature of the system, with a 

temperature coupling time of 0.2 ps at a time step of 2 fs. 

3.5. Backmapping procedure for atactic polystyrene 

under shear flow  

3.5.1. Reconstructing the atomistic details using equilibrium structural 

templates 

Here we follow the same strategy as ref. 13 to rebuild the atomistic details. We 

use quaternions to dock atomistic diads into the coarse-grained conformations. First, the 
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absolute chirality of one end group is chosen as R or S with equal probability, since this 

is not determined by the CG model. Once the chirality of the end group is fixed, the 

chirality of the other repeating units can be established by the sequence of superatoms 

in the CG model. This chirality can be translated into an atomistic structure according 

to the mapping rules, which defines the sequence of three successive atomistic 

chiralities when backmapping two successive CG beads, as given as Table 3.3 in ref. 

13. Second, the atomistic end group is rebuilt by superposing the three superatom 

centers with the corresponding three methylene groups (indicated by filled squares in 

Fig. 3.3). In a similar way, the following CG diads are replaced by the three methylene 

groups of the atomistic diad model. The replacement continues until the end of the 

chain. Afterwards, according to the mapping rule above, atomistic diads of different 

chiralities and different dihedral conformations are selected from a library containing 

possible structures. Each atomistic structure in the library is in the minimum-energy 

geometry for the given dihedral conformation of the isolated diad.  

Some catenations of phenyl rings occur after reconstruction of atomistic details 

as described above. They are eliminated in the following way: We introduce the 

additional fictitious Lennard-Jones particles centered in the phenyl ring. The nonbonded 

interaction is turned on for both fictitious and genuine atoms sites. EM runs perform 

with gradually increasing the nonbonded parameters epsilon and sigma of these atoms 

sites until the catenations of phenyl rings disappear. Afterwards, the nonbonded 

interactions on the fictitious atoms are turned off, the nonbonded interactions on 

genuine atoms sites (including the genuine atoms on the phenyl ring) are left on. EM 

runs are repeated with gradually increasing the epsilon and sigma parameters until they 

reach the full values as reported in Table 3.1 of reference 13. Finally, the fictitious 

particles are removed. Note that during this preprocessing for eliminating phenyl ring 

catenations, the positions of all backbone atoms (methylene and methyne carbons) are 

fixed by position restraints. 
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3.5.2. Structure optimization by energy minimization 

The EM run procedure is illustrated in Fig. 3.3. In the first EM run, position 

restraints are applied to all methylene carbons, which correspond to the centres of CG 

beads, except the methylene carbons at the chain ends. The aim of the first EM run is to 

regularize local structures which come from equilibrium structural templates. One can 

speculate that the motion of phenyl side groups is decoupled from the motion of the 

backbone by the presence of the position restraints, which isolate the motions of 

neighbouring segments from each other. It has been demonstrated by Lyulin et al 27 that 

there is a strong coupling between motions of the backbone and the pendant phenyl 

groups even at high temperature (650 K). We minimize the segment isolation effect by 

several EM run, each EM run being characterized by one of two different types of 

restraint schemes. In the second EM run, position restraints are still apply to methylene 

carbons but only of every other unit. In the third EM run, position restraints are shifted 

by one repeating unit to those atoms which were free in the previous EM run. This 

process is iterated until the energy converges under both partial-position-restraint 

schemes. In our test, 10 EM runs are sufficient to reach energy convergence with two 

partial-position-restraint schemes for both PS30 and PS100 systems. An atomistic 

chain, backmapped from the sheared CG PS100 system, is illustrated in Fig. 3.5. 
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Figure 3.5. A backmapped chain (bottom) from a corresponding coarse-grained chain 

of 100 repeating units (top). The red beads are the meso and the yellow ones the racemo 

superatoms.  

 

In order to demonstrate the influence of an initial EM run on the dynamics of 

polymer chains, we perform stress relaxation by molecular dynamics over a short period 

of 300 ps for two different NVT ensembles: one has the initial configurations optimized 

by the proposed method; the second one has the initial conformations generated by 

simply reinserting the atomistic details without any EM run. We analyze the 

reorientation dynamics of local chain segments and the end-to-end vector for both 

simulations by means of the autocorrelation function of the second Legendre 

polynomial 2P of chain segment vectors.  

 ( )( )[ ] [ ])0()(10)(3
2

1
)( 2

2
ddddreor utuPututC
rrrr

=−=                                                (5) 

As chain segment vector du
r

, we take the normalized vector connecting two atoms 

along backbone.  



 62 

dii

dii

d
rr

rr
u

−

−

−

−
= rr

rr
r

                                                                         (6) 

where, ir
r
 denotes the coordinate of atom i , the subscript d denotes the number of atoms 

from atom i . Here, we take d as 1 and 4, the chain segment vectors 1u
r

 and 4u
r

 are 

illustrated in Fig. 3.6. 

 

 
Figure 3.6. Atom labelling and orientational vectors for polystyrene used in this work.  

 

The influence of the protocol used to prepare the initial structure on the short-

time reorientation dynamics is shown in Fig. 3.7. The reorientation dynamics deviates 

from a simple exponential decay (
τ/~)( t

reor etC −
). Nonetheless, we use an 

exponential fit to obtain very rough estimates of the reorientation times τ (Table 3.2). 

For all chain vectors investigated, the τ  values of those conformations generated with 

optimization are longer than the one without optimization. It is evident that the pre-

optimized conformation has a higher relative conformational stability, in other words, a 

large fraction of the local relaxation has already taken place during the EM runs. 
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Figure 3.7. Chain segment autocorrelation function of the chain vector (a) 1u

r
, (b) 4u

r
 

and (c) end-to-end vector for different polystyrene-30 systems under NVT conditions 

(T=500K): initial conformations optimized by EM runs with the proposed method 

(solid line) and initial conformation generated by simply reinserting the atomistic 

details without any EM runs (dashed line). 
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Table 3.2. orientation relaxation times τ  (ps) obtained by fitting an exponential 

(
τ/~)( t

reor etC −
) to the curves in Fig. 3.7 between 150 ps and 300 ps. 

System 1u
r

 4u
r

 End-to-end 

backmapped without 

energy minimisation 
175 294 1615 

backmapped followed 

by the energy 

minimization protocol 

244 399 1828 

 

3.6. Local characterization of the backmapped 

structure 

The root mean-square gyration radius obtained from the backmapped structure 

for PS-30 system is 2.09.13 ±  nm, the CG value 1.08.13 ±  nm, the difference being 

negligible. The perfect agreement comes from the fact that the backmapping method 

preserves all global features of the CG structure; therefore, here the only interesting 

characterization involves the local structure of the sheared polymer chains.  

One possibility to validate the ability of the backmapping method is to compare 

the so-called reduced intensity function (or interference function) calculated from 

simulation with that from wide angle X-ray scattering (WAXS). The experimental 

reduced intensity function is defined by Eqn. (7)28 

 )()()()( 2 qIqfqkIqI compj

j

corr −−= ∑                                                         (7)  
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where, )(qI corr  is the fully corrected intensity,  k  is a normalization factor needed to 

place the intensity on an absolute scale (in electron units per atom). ∑
j

j qf )(2  is the 

independent atomic scattering. )(qI comp  is the Compton scattering. Unoriented high-

molecular-weight atactic polystyrene X-ray structures are characterized by a diffuse 

halo (referred to as the polymerization peak) at around 5.7=q 1−nm   and a ubiquitous 

“amorphous halo” at 14=q 1−nm . It has been pointed out that the X-ray density profile 

of oriented atactic polystyrene is anisotropic:30 Intrachain peaks intensify in the 

extension direction (meridian),  and interchain peaks intensify perpendicular to the 

extension direction (equator). Fig. 3.8 shows the q-weight reduced WAXS intensities 

( ))(qIq ⋅  in equatorial and meridional sections for atactic polystyrene, which was 

oriented at 358 K with an extension rate 3 by extrusion in a channel die. The 

experimental data indicate that  the polymerization peak ( 5.7=q 1−nm ) is intensified in 

the equatorial section.28 Ayyagari et al. 31 quantitatively analyzed the intramolecular and 

intermolecular contributions to the X-ray structure factor of unorientedatactic 

polystyrene by means of molecular dynamics simulation. They concluded that there are 

important intramolecular and intermolecular contributions to the high-q peak, while the 

structure in the low-q peak region appears to be primarily of intermolecular origin. 

Therefore, we may infer that the intensification of the polymerization peak in the 

equatorial section indicates intermolecular packing in the direction normal to the chain 

extension. 
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Figure 3.8. Experimental WAXS data for atactic polystyrene oriented at 358K by 

extrusion in a channel die. Rproduced with permission from ref. 28.) (b) q-weighted 

reduced intensity function ( ))(qIq ⋅ . The dashed contours represent negative values. (c) 

plot of meridional (
o0=α , solid line) and equatorial (

o90=α , dashed line) sections of 

Fig. 3.8 (b).  The X-ray scattering intensity was measured using a symmetrical 

transmission diffractometer, as shown in Fig. 3.8 (a). (Reproduced with permission 

from ref. 29).  
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The X-ray intensity can be also calculated by Fourier-transforming pair 

distribution functions obtained from simulations.  For oriented polymers, this intensity 

is explicitly dependent on the direction of the vector q
r
 in reciprocal space, or 

equivalently the vector r
r
 in real space. In order to compare with the experimental data, 

we need to calculate the X-ray intensity profile along the planes parallel ( o0=α , 

meridian) and perpendicular ( o90=α , equator) to the chain extension direction. As we 

have mentioned in section 3, the polymer chains are aligned symmetrically in the two 

halves of the simulation cell and the birefringence extinction angle χ  gives the 

preferred alignment direction with respective to the flow. For the sheared PS-30 system 

studied here, the χ  averaged from the upper and lower halves of simulation cell is 

05.11 . It is convenient to define the alignment direction as X
~

 axis of a new coordinate 

system ( )ZYX ~
,

~
,

~
, as shown in Fig. 3.9, then the YX

~~
 and ZY

~~
planes correspond the 

planes parallel and perpendicular to the chain extension direction. We compute the X-

ray intensities for both planes from all-carbon atom sites. For both planes, the 

calculation of the radial distribution functions is done in an angle of 5 degree above and 

below the plane. Fig. 3.9 shows the calculated scattering intensities profiles parallel and 

perpendicular to the chain extension. It indicates an intensification of polymerization 

peak normal to chain extension, which agrees well with the experimental findings.  
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Figure 3.9. Calculated q-weighted reduced scattering intensity profile for a melt of 

backmapped chains of PS-30 at 500 K under a steady shear flow. The lower part of 

the plot shows the two section: meridion (
o0=α , dashed line) and equator 

(
o90=α , solid line). The laboratory coordinate system ),,( ZYX  is indicated as the 

right side of the upper part: The X axis denotes the shear flow direction, Z axis 

denotes the velocity gradient direction. The birefringence extinction angle 

(
o5.11=χ ) gives the preferred alignment direction with respect to the flow. The 

rotated coordinate system ( ( )ZYX ~
,

~
,

~
 is illustrated in the upper left side, X

~
 is the 

direction of the chain alignment.  

. 
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The pair distribution function can offer the structural information more directly 

than the X-ray scattering patterns. The chain configurations under steady shear flow 

are highly anisotropic. Thus, the pair distribution function )(rg
r

 is also anisotropic. 

Fig. 3.10 reports )(rg
r

 for interchain backbone-backbone, phenyl-phenyl and 

backbone-phenyl carbon along the vector perpendicular and parallel to the chain 

preferred alignment (orientation). For comparison, the corresponding distributions 

for an unperturbed system (no shear) are also shown. Fig. 3.10 clearly shows a 

noticeable increase of interchain neighbors in the direction perpendicular to chain 

orientation and a decrease in the direction parallel to the orientation. These features 

manifest a strong packing effect introduced by shear flow.  
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Figure 3.10. Interchain carbon-carbon pair distribution functions (backbone-backbone, 

phenyl-phenyl, backbone-phenyl) along the directions parallel (dotted line) and 

perpendicular (dash-dotted line) to the chain orientation direction for the sheared PS-30 

system. For comparison, the isotropic distribution of the unperturbed system 

(equilibrium, no shear) is also shown (solid line).  
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After backmapping, it is possible to take a closer look at the mutual orientation 

of phenyl side groups under strong shear flow. We define this orientation by measuring 

the cosine of the angle between the phenyl ring normals m3. The orientational vectors 

used are illustrated in Fig. 3.6: The unit vector m1 is the in-plane vector from C1 to C4, 

the other in-plane vector m2 is perpendicular to m1, the orientation vector m3 is the ring 

normal.  The average of the scalar product between two unit vectors m3, i and m3, j 

describes the dominating angle between different ring normals.   

ji ,3,3cos
mmmmmmmm

⋅=β                                                                        (8) 

Here, we use the absolute value of the scalar product of ji ,3,3

mmmmmmmm
⋅  since we do not 

distinguish between symmetrically equivalent orientations (one ring turned by o180 ). 

This value is 1 for coplanar rings, 0 for a T-shape arrangement, and 0.5 for a random 

arrangement. The orientation distribution functions (ODF) are shown in Fig. 3.11 as a 

function of ring-ring (centre of mass) distance for the unperturbed and the sheared 

systems. The curve of the unperturbed polystyrene agrees well with the finding in ref. 

32: The orientation correlation is quickly lost with increasing distance and no structure 

is visible beyond 0.9 nm. The first strong peak occurs at around 0.27 nm and the second 

weak peak occurs at around 0.7 nm. Within the short distance of 0.5 nm, the dominant 

arrangement of phenyl rings is coplanar due to steric constraints (note that there are 

very few pairs of rings at this short distance.). As a general observation, the shape of the 

sheared curve is very similar to the unperturbed one; however, subtle differences are 

still visible. There is a distinct although small shift of the first peak for the 

nonequilibrium system (at 0.30 nm) compared to the unperturbed one (at 0.27 nm).  If 

one makes the reasonable assumption that the normal of a phenyl ring is parallel to the 

direction of chain backbone of each repeating unit33, then this peak shift indicates the  

elongation of backbone. The unperturbed ODF converges to 0.5 for distances beyond 

0.9 nm, indicating that beyond this distance the mutual orientations are completely 

random in amorphous polystyrene. The sheared system shows an ODF above 0.5 at all 

distances (see the inset of Fig. 3.11), indicating that shear flow introduces mutual 
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orientation of phenyl ring within a larger range, and that there is a small prevalence of 

coplanarity.  

 

 

Figure 3.11. Orientation distribution function (ODF) describing the mutual orientation 

of the phenyl rings obtained from the unperturbed (dotted line) and nonequilibrium 

systems (solid line), respectively. The inset shows ODF in the average distance domain 

between 0.4 nm and 1.5 nm. A value of 0 corresponds to perpendicular orientation (T-

shape), a value of 0.5 to a random distribution, a value of 1 to a coplanar arrangement.  

Capturing the correct backbone torsional angle distribution is a stringent test for 

the backmapping method. Robyr et al.34 have compared NMR measurements with 

atomistic simulations of atactic polystyrene and found out noticeable deviations 

between experimental findings and predictions from atomistic models of bulk 

structures. As the purpose of this study is to develop a backmapping method instead of 

examining the atomistic force field, we mainly compare the torsional distributions 

between the reverse mapped unperturbed and backmapped sheared structures.  The 

convention used to define the torsional angle follows refs. 35 and 36, a right-hand 

reference frame is used for bond i  and a left-hand one for bond 1+i , and the cis 

conformation corresponds to 180o. Accordingly, iϕ  is measured in the right-handed 
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sense and 1+iϕ  in the left-handed sense.36 Fig. 3.12 shows an all-trans meso diad of 

polystyrene where all torsion angles are zero. The state relative frequencies of torsional 

angles in the unperturbed and the nonequilibrium structures are listed together with the 

integrated areas in Table 3.3, the definitions of the integrated areas follows reference 

33. The calculated trans fraction is )%557( ±  in the nonequilibrium structure, which 

is equal within the errors bar with the value in the unperturbed structure ( )%559( ± ). 

Fig. 3.13 gives the distributions of backbone torsional angles. The coalescence of the 

trans, gauche (+) and gauche (-) states occurs for both the unperturbed and the 

nonequilibrium structures, and the distributions are symmetric around
00 . Compared to 

the unperturbed distribution, the nonequilibrium distribution is intensified around 

00 (pure trans conformation), which again indicates the elongation of polymer chain; 

simultaneously, the gauche states in the range of 
00 120~180 −−  and the range of 

00 180~120 ++  are also enriched. It should be noted, however, that conformational 

differences between unperturbed and sheared structures are small. 
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Figure 3.12. Meso diad of polystyrene in the all trans-trans conformation. 

( 0211 ==== ++− iiii ϕϕϕϕ ). 

 

 

 

Figure 3.13. Distribution of backbone torsional angles for the PS-30 NVT ensembles 

(T=500K): under the unperturbed (equilibrium, no shear) condition (solid line) and the 

sheared nonequilibrium condition (dotted line). 
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Fig. 3.14 and Fig. 3.15 show the distributions of backbone torsional angle pairs 

( iϕ , 1+iϕ ) for the meso and racemo diads in the unperturbed and the nonequilibrium 

system, respectively. As a general observation for both cases, the distributions of 

racemo and meso diads are very similar. This analogy can be attributed to the strong 

inter-molecular packing effect over those dictated by the local intramolecular 

interaction33,34. However, compared to the corresponding unperturbed ensemble, the 

distribution of torsional angle pairs of backmapped sheared structures is more diffuse. It 

has been found through rotational-isomeric-state (RIS) theory36 that the three main 

energy minima are tg, gt, and gg  for the meso diad and the two important states are tt 

and gg for racemo diad. In the backmapped nonequilibrium ensemble, many diad angle 

pairs fall outside the region of low energy. Especially, the gg  population becomes 

abundant in the nonequilibrium ensemble, despite its high intramolecular energy. As 

experimental observations of torsional angle pairs in nonequilibrium ensembles are 

lacking, it is not clear whether this observation is due to (physical) conformational 

defects induced by strong shear flow, or to deficiencies of the atomistic force field used, 

or to artifacts of the backmapping procedure. It still remains to be clarified in further 

investigations. For the time being, we report it as a phenomenon. 
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Figure 3.14. Torsional angles pairs ( iϕ , 1+iϕ ) distribution of meso (upper) and racemo 

(lower) diad in the backmapped unperturbed ensemble of PS-30.  
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Figure 3.15. Torsional angles  pairs ( iϕ , 1+iϕ ) distribution of meso (upper) and racemo 

(lower) diad in the backmapped nonequilibrium ensemble of PS-30.  
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3.7. Conclusions 

The backmapping method has been extended to the situation of a 

nonequilibrium mesoscale polymer model, on which a nonequilibrium shear flow is 

imposed. Two basic requirements in backmapping non-equilibrium system need to be 

fulfilled: (1). The sheared CG configurations need to be retained in the atomistic 

picture. (2).The deformation energy stored in the chain of CG model should be passed 

on to the atomistic level. In order to meet the above two requirements, we propose three 

strategies: (1) Preserving globally sheared configurations by applying position 

restraints. We apply position restraints to all those atoms which coincide with the 

locations of CG beads. Thus, the global configuration of every individual chain is 

preserved. (2) Achieving the locally relaxed atomistic structures through a molecular 

mechanics approach. The structure of the deformed molecules is generated by 

minimizing the conformational energy in the presence of an applied external force. This 

approach is transferred here in generating the deformed atomistic structures out of 

template structures from an equilibrium (undeformed) simulation. (3) Minimization of 

the artificial segment isolation introduced by the position restraints via an iterative 

procedure. Position restraints hinder the rearrangements of chain segments when 

optimizing deformed atomistic structure also at a local level; the segments become 

“isolated” from each other. This effect is counteracted by performing several EM runs 

with shifting position restraint schemes. This process is iterated until the energy 

converges under different partial-position-restraint schemes. We presume that the final 

configuration is independent on the locations of position restraints.  Based on the 

strategies above, we propose a new workflow for backmapping nonequilibrium CG 

system. 

The proposed new procedure is demonstrated on atactic polystyrene melts under 

steady shear flow. The backmapped local structures are structurally characterized and 

compared to experimental data where available. The calculated X-ray scattering profiles 

parallel and perpendicular to the chain-extension direction compare well with 
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experiment. Parallel packing induced by the shear flow manifests itself in the 

intensification of the polymerization peak in the parallel direction. The shear flow also 

introduces elongation of the backbone and, as a consequence, a longer range of the 

mutual orientation of phenyl rings as well as a small prevalence of coplanarity. The 

backbone torsional angle distribution of the sheared structure has an equivalent 

integrated distribution of trans and gauche states as the unperturbed one. A more 

detailed investigation of the distribution, however, reveals a sharpening of the trans 

peak and a blurring of the gauche distributions.  
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4. Developing a simulation tool for coarse-

grained polymeric system 

4.1. Implementation of the reverse nonequilibrium 

molecular dynamics (RNEMD)  

Before extending the RNMED method to polymeric and other complex system, 

one needs a reliable simulation tool. The RNMED method has implemented in 

molecular dynamics package YASP1, which works on analytical potentials. YASP is a 

reliable and efficient tool for atomistic MD simulation, but not designed for CG 

simulations. In atomistic simulations, apart the cases of very complex systems, particle 

interactions have a very regular behaviour and can be well reproduced by simple 

analytical potentials. However, at mesoscale level, potentials have a very complicated 

form and in most cases it is not easy to find a simple function to describe these 

potentials. The CG molecular dynamics code IBIsCo2 is designed to meet such need. In 

this code, the potential is described in a flexible tabulated numerical form. As part of 

this work, the RNEMD algorithm has been embedded into IBIsCo.  

The fundamentals of RNEMD are elucidated in Chapter 2. The basic workflow 

of RNEMD for shear works as follows:  

1. Search in the first slab for the atom with largest negative x component of the 

momentum, and in the central slab for the super-atom with largest positive x 

component.  

2. Swap the velocities between the atom in the first slab and atom in the central 

slabs. 

3. Record the mean velocity, temperature, and density in every slab (the output 

file is called md.prf ); Record the trajectory of momentum flux, velocity gradient, 

viscosity. (the output file is called md.trj ).  

4. Repeat the 1-3 steps according to the requested exchange frequency. 
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Appendix 1.1 gives the outline of the RNEMD algorithm in the serial and 

parallel versions of IBIsCo. Appendix 1.3 gives the details of the input and output files 

for conducting the RNEMD simulation. 

 

4.2. Implementation of the standard and the transverse 

dissipative particle dynamics (DPD) for use as a 

thermostat 

In molecular dynamics, the algorithm for controlling the temperature to the 

required value is called thermostat. Temperature control is commonly achieved by 

adjusting the kinetic energy. In a flowing fluid with flow velocity )(ru
rr

, the kinetic 

energy has a flow contribution and a thermal contribution. Therefore, thermostat is 

requested to be defined in a frame that moves with the fluid, i.e., to couple it to the 

“peculiar” velocities )( iii ruvv
rrrr

−=′ , rather than to the absolute velocities iv
r

. However, 

most thermostats don’t take this request into account automatically, and one has to put 

in the flow profile manually. The dissipative particle dynamics (DPD) thermostat has 

been developed to cure this problem.3 DPD is a very useful thermostat for molecular 

dynamics, which should be used whenever momentum transport is important, since it 

does not screen the hydrodynamic correlations. 

4.2.1. The standard DPD for use as a thermostat 

In DPD, the time evolution of a set of interacting particles is governed by 

Newton’s equation of motion. The force acting on a particle has three parts: 

conservative force, drag force and random force. Drag force represented as a Brownian 

dash-pot, which damps out the relative approaching velocity, and random force 

introduces a noise term that keeps the system at constant temperature. The DPD 

equations of motion for used as a thermostat are then given by ref. 3  

i

i

m

p
r

r

&r =                                                                            (1) 
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and  

R

i

D

i

C

i FFFp
rrr

&r ++=                                                              (2) 

where, C

iF
r

, D

iF
r

 , R

iF
r

 denote the conservative force, drag force and random force on i-

th particle, respectively. The drag force and random force are sum of particle-pair forces 

as  

∑
≠

=
ij

D

ij

D

i FF
vr

                                                                  (3) 

∑
≠

=
ij

R

ij

R

i FF
vr

                                                                      (4) 

where, D

ijF
r

 and R

ijF
r

 force compute as  

ijijijij

DD

ij rvrrF ˆ)ˆ)((
rr
⋅−= ζω                                                     (5) 

ijijij

RR

ij rrF ˆ)( θσω=
r

                                                           (6) 

where, ijv
r

 is relative velocity between particle i and particle j, jiij vvv
rrr

−= , ijr̂  denotes 

the unit vector of the interatomic axis jiij rrr
rrr

−= , ζ and σ are the friction constant and 

the noise strength. Rω and Dω  are r-dependent weighting functions. The Gaussian 

white noise ijθ  is symmetric in the particle indices ( ijθ  = jiθ ) and satisfies the 

following equation.  

0=ijθ                                                                   (7) 

and the second moment,  

( ) ( )tttt jkilijikkjij
′−+=′ δδδδδθθ 2)()(                                  (8) 

According to the fluctuation-dissipation theorem, the following relation between ζ and 

σ , Rω and Dω  must fulfilled eqn. 9 and eqn 10. 
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( ) ζσ TkB=2                                                                    (9)  

( )( ) ( )rr DR ωω =
2

                                                           (10) 

4.2.2. The transverse DPD for use as a thermostat 

It turns out, however, the DPD thermostat in its standard form is not capable of 

controlling liquid properties such as viscosity and diffusion coefficient.3 Junghans et al 
4 extended the DPD equations in a way that these quantities can be tuned by changing 

the parameters of the so-called transverse thermostat. The standard DPD thermostat acts 

only on a relative velocity along the interatomic axis, while the transverse DPD 

includes the damping of the perpendicular component of the relative velocity. The basic 

assumption in the transverse DPD thermostat in contrast to the standard DPD is that the 

viscosity is very sensitive to the drag force which is perpendicular to the interatomic 

axis. This drag force mimics the shear on the particle pairs. The random force acts in 

the same direction as the drag force. Junghans et al 4 have demonstrated that the shear 

viscosity in a simulation with the transverse DPD thermostat is always higher than that 

with standard DPD, this is also the case in our test simulation. However, a theoretical 

approach for explaining higher viscosity with the transverse DPD thermostat is still 

lacking. 

The drag force and random force in DPD can be generalized as Eqn. 11 and 12.4  

ijijijij

DD

ij vrPrF
rrtr

)()(ζω−=                                                       (11) 

ijijijij

RR

ij rPrF θσω
rrtr

)()(=                                                         (12) 

ζ and σ are the friction constant and the noise strength. )( ijij rP
rt

is a projection operator , 

ijθ
r

 is a noise vector. For the case where one chooses projector along the interatomic 

axis between particle i and j , 

ijijij rrrP ˆˆ)( ⊗=
rt

                                                                 (13) 
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the standard DPD thermostat is recovered. One chooses projector on the plane 

perpendicular to the interactomic axis,  

ijijij rrIrP ˆˆ)( ⊗−=
trt

                                                          (14)  

the space defined by the projector (14) is orthogonal to the case of the standard DPD, 

and this formulizes the transverse DPD. In the transverse DPD, random force R

ijF
r

and 

the drag force D

ijF
r

 are calculated by eqn 11 and 12 with applying Eqn 14 to define the 

projection operator.  

Appendix 1.2 gives the implementatory details of the standard and the 

transverse DPD for use as a thermostat algorithm in the serial version of IBIsCo. 

4.2.3. Temperature and diffusion coefficient controlled by a DPD thermostat  

To check whether DPD thermostat works, molecular dynamics simulations on 

argon system, which has a Lennard-Jones potential (Eqn. 15), are performed.  



















−






=
612

4)(
rr

rV
σσ

ε                                                     (15) 

The system contains 2592 atoms, the argon parameters are: 95.39=m g/mol, 

99707.0=ε kJ/mol and 340.0=σ nm. The simulation box size is LLL 3×× where 

425.3=L nm, the mass density is 3/621.1426 mkg . The temperature is 86.5 K, the 

cutoff is 1.0215 nm, and the time step is 2 fs.  

Temperature. Fig. 4.2. and 4.3. show the temperature controlled by the standard and 

the transverse DPD thermostat with different noise-strengths. For comparison, the 

temperature controlled by Berendsen thermostat is also shown in Fig.4.1 
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Figure 4.1. Temperature controlled by Berendsen thermostat with a temperature 

coupling time 0.2 ps.  

 
 

 
Figure 4.2. Temperature controlled by the standard DPD thermostat with noise strength 

sigma = 1 (top) and sigma=2 (bottom).  
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Figure 4.3. Temperature controlled by the transverse DPD thermostat with sigma = 1 

(top) and sigma=2 (bottom).  

Diffusion coefficient The diffusion coefficient is computed from the mean-square 

displacement according to the Einstein relation: 

2

)0()(
6

1
RtR

dt

d
D

rr
−=                                              (16) 

Fig. 4.4 shows the diffusion coefficient over time for different thermostats. Our results 

are consistent with the finding in ref. 4: the diffusion coefficient decreases with 

increasing noise strength for both types of DPD thermostats, compare to the standard 

one, the transverse DPD thermostat is more sensitive to the noise strength.  
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Figure 4.4. The diffusion coefficient over time for different thermostats.  
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5. Outlook 

5.1. Viscosities of polymers from coarse-grained 

simulations 

Our results indicate that besides reproducing the structural properties, coarse-

grained models have some capabilities in predicting the viscosity of polymers. What are 

the field’s unsolved problems and future challenges? 

1. Is the viscosity scaling factor predicted from the shortest chain still valid 

for longer chain?  

In chapter 2, CG simulations show that the extrapolated zero-shear viscosity is 

linearly dependent on the molecular weight, which agrees with the theoretical 

prediction. However, its absolute value is lower than the experiment by a factor of ~ 

200 for the shortest chain length PS-9. This scaling factor is probably due to the well-

known intrinsic speed up of the coarse-grained model. The question remains here: is 

this scaling factor constant for all unentangled systems studied? This question can be 

answered, in principle, by comparing to the viscosities of CG models with those of the 

parent atomistic models. The obstacle is that viscosity calculation with a full-atom 

model is a very tedious and time-consuming work. The system of PS-9, which is the 

shortest chain length in all systems studied, it contains 60120 atoms. For calculating a 

viscosity at a given shear rate, it needs a simulation length beyond 1 ns. Elapsing time 

on calculation with a parallelized molecular dynamics code, roughly estimated by 

experience, is beyond two months. For the system of PS-100, the elapsing time is 

unpredictable. Therefore, the feasible solution needs to be figured out in the future. 

2. Can experimental viscosities be reproduced by CG models and RNEMD 

simulations?  

The fast dynamics of CG models leads to much lower viscosities in simulations in 

contrast to experiments. The fast dynamics of CG model is due to the softness of CG 

potentials. For large degrees of coarse-graining, they become so soft that essential 
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polymer physics is lost and must be reintroduced via the equations of motions.1 Izvekov 

and Voth2 matched real dynamics adding friction to the CG system. Their theoretical 

formalism is base on the generalized Langevin equation and its simpler Langevin 

equation limit. The friction coefficient is determined in a multiscale fashion from the 

underlying fully atomistic molecular dynamics simulations using force-velocity and 

velocity-velocity correlation functions for the CG sites. The self-diffusion and time 

dependence of the velocity autocorrelation function are reproduced in their resulting 

CG Brownian dynamics. However, the method they proposed is not applicable in 

predicting viscosities via the RNEMD method: a fundamental limitation of RNEMD 

lies in the assumption that, in steady state, the unphysical transfer is balanced by a 

physical flow. This means that only flows of conserved momentum can be set up in this 

way. While in their approach, friction is induced deliberately and energy and 

momentum are not conserved any more. Naturally, one would like to introduce friction 

to slow down the fast dynamics in the CG model and simultaneously momentum is still 

conserved. The straightforward choice is dissipative particle dynamics (DPD) as a 

thermostat in CG simulations. Some efforts have been pursued on this approach. In our 

preliminary tests, the standard DPD thermostat can slow down the fast dynamics of CG 

models and the viscosity increases with the noise strength. However, the magnitude of 

noise strength is restricted in some range: the temperature becomes unstable as 

increasing noise strength and beyond the certain range the temperature is out of control. 

Comparing to the standard DPD thermostat, the transverse DPD thermostat can slow 

down the fast dynamics more efficiently. The problem in the transverse DPD thermostat 

is that simulation is only stable when a very small time step is applied. A detailed 

understanding of the time-step-dependent viscosity in the transverse DPD thermostat is 

required further study and the process is ongoing. 
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5.2. Backmapping a coarse-grained model under 

nonequilibrium conditions 

As it has been pointed out in Chapter 3, the origin of the diffuse distribution of 

torsional angle pairs in the nonequilibrium system is still not clear. One possible reason 

is poor statistics of the backmapped configurations. To clarify the possible origin, one 

needs to perform more atomistic simulations under nonequilibrium condition to collect 

abundant configurations. Exactly as the viscosity calculation from fully atomistic 

model, the main obstacle is a very expensive computational cost. 

The backmapping method paves the way for conducting further atomistic 

simulations involving nonequilibrium process. More information in which atomistic 

details is important, for example bond orientation decay, can be obtained from this 

process. The direct application of the reverse-mapped structures is to observe structural 

changes of the polymers in stress relaxation process.  
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Appendix 1 

A.1.1. Schematic representation of the RNEMD 

algorithm in the serial and parallel version of IBIsCo  
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 Serial version 
!******************************************************************** 
   SUBROUTINE VISC_NEMD (TIMESTEP)                   !RNEMD 
 
IF (IFIRST .EQ. 1) THEN     !Initialization   
         NCOUNTCALL = 0 
         NTRANSF = 0.0D00 
         TTRANSF = 0.0D00 
         UTRANSF = 0.0D00 
         IFIRST = 0 
      DO I = 1, NUMSLAB 
         VXMEAN_SLAB (I) = 0.0D00 
      ENDDO 
ENDIF 
 
IF (ENSEMBLE == 2) THEN 
  SLAB_THICKNESS  =  BOXZ/ REAL( NUMSLAB)   !Thickness of slab  
ENDIF 
 
                
 
IF(MOD(TIMESTEP, NEXCH) .EQ. 0) THEN 
CALL VISC_ATOM                        ! Searching the slowest particle 

in first slab and the fast particle 
in the central slab  

NTRANSF = NTRANSF + 1                          ! accumulating momentum  
                                                                                                                       and energy transferred 

     
TTRANSF = TTRANSF + TRANSFER                        
UTRANSF = UTRANSF + TRANSFER * TRANSFER         !accumulating                       
                            seconded momentum  transferred   
ENDIF 
 
IF (MOD(TIMESTEP, NEMDPROF) .EQ. 0) THEN 
  IF (MOD(TIMESTEP, NEXCH) .NE. 0) THEN 
   CALL VISC_PROFILE     !recording mean velocity,   
              temperature, density in every slab  
 
  ENDIF 
ENDIF 
 
 
IF (MOD(TIMESTEP, NEMDTRAJ) .EQ. 0) THEN 
     NCOUNTCALL = NCOUNTCALL + 1 
      CALL VISC_TRAJ    !recording momentum flux, velocity 
      gradient, viscosity   
ENDIF 
 
RETURN 
END SUBROUTINE 
!********************************************************************  
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Parallel version 
!******************************************************************** 
       SUBROUTINE VISC_NEMD (TIMESTEP)          !RNEMD     
                             
 IF(MY_ID .EQ. MASTER) THEN                    !Initialization   
   IF (TIMESTEP .EQ. 1) THEN 
       NCOUNTCALL = 0 
     NTRANSF =  0 
  TTRANSF = 0.0D00 
  UTRANSF = 0.0D00 
  DO I = 1,  NUMSLAB 
       VXMEAN_SLAB (I) =  0.0D00       
  ENDDO 
     EDIF 
   ENDIF 
      
IF (ENSEMBLE == 2) THEN 
SLAB_THICKNESS = BOXZ/ REAL( NUMSLAB)     !Thickness of slab           
ENDIF   
             
IF(MOD(TIMESTEP, NEXCH) .EQ. 0) THEN 
   IF (MY_ID .NE. MASTER)  THEN               
       CALL VISC_SLABFIRST ( )    ! Searching  the slowest                                                      
          particle in the first slab 
   ENDIF 

CALL VISC_SLABMIDDLE ( timestep)      ! Searching  the 
fast                                                 
particle in the 
central slab 

   IF(MY_ID .EQ. MASTER) THEN  
       NTRANSF = NTRANSF + 1               
      TTRANSF = TTRANSF + TRANSFER         ! accumulating momentum  
                                                                                                                       and energy transferred 
 UTRANSF = UTRANSF + TRANSFER * TRANSFER    ! accumulating                       
              seconded momentum  transferred 
   ENDIF    
 ENDIF 
 
 IF (MOD(TIMESTEP, NEMDPROF) .EQ. 0) THEN 
     IF (MOD(TIMESTEP, NEXCH) .NE. 0) THEN 
      CALL VISC_PROFILE (TIMESTEP)             !recording mean velocity,  
       temperature, density in every slab 
      ENDIF 
  ENDIF 
 
 IF (MOD(TIMESTEP, NEMDTRAJ) .EQ. 0) THEN 
     NCOUNTCALL = NCOUNTCALL + 1 
     CALL VISC_TRAJ (TIMESTEP)     !recording momentum flux, velocity 
         gradient,  viscosity 
  ENDIF 
 
RETURN 
END SUBROUTINE 
!******************************************************************** 
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A.1.2. Molecular dynamics simulation with the 

dissipative particle dynamics (DPD) for use as a 

thermostat  

Both the standard and transverse DPD used as a thermostat are available in the 

IBIsCo code. One can choose one of them or a combination of both. When any type of 

DPD thermostat is chosen, Berendsen thermostat is switched off automatically. The 

input control file for both types of DPD thermostat is demonstrated as Appendix .1.3 

The main features of the DPD algorithm for use as a thermostat are listed below:  

1. Making the DPD neighbour list. The neighbour list for searching the 

interacting atom pairs in the random force and drag force is independent from the 

neighbour list for the common nonbonded interaction; therefore one has more flexible 

choice in the DPD cutoff. If the size of the box is bigger than three times the DPD-

neighbour-list cut off, the link cell algorithm is used to make the DPD neighbour list. 

The simulation box is divided into cubic cells with the neighbour list cut off length, and 

searching is restricted to the DPD neighbour cells instead of the whole box. If the box 

size is smaller than three times the DPD–neighbour-list cut off, updating DPD 

neighbour list is performed by searching all possible atom pairs. 

2. Calculation of the random force R

ijF
r
and drag force 

D

ijF
r

 in the DPD 

thermostat. The random force and drag force are calculated by looping over the DPD 

neighbour list. In the standard DPD thermostat, random force R

ijF
r

and drag force D

ijF
r

 

are calculated by 

ijijijij

DD

ij rvrrF ˆ)ˆ)((
rr
⋅−= ζω                                                     (1) 

ijijij

RR

ij rrF ˆ)( θσω=
r

                                                        (2) 
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where ζ and σ are the friction constant and the scalar noise strength. In the transverse 

DPD thermostat, the random force R

ijF
r

and drag force D

ijF
r

 are calculated by 

ijijij

DD

ij vrPrF
rrtr

)()(ζω−=                                                   (3) 

ijijij

RR

ij rPrF θσω
rrtr

)()(=                                                    (4) 

where P
t
is the projection operator and ijθ

r
 is the noise vector. 

3. r-dependent weighting function for random force 
Rω . There are two 

options available in IBIsCo code: If the linear weighting function is chosen (key words: 

Weigh_type = L for the standard DPD and Tran_weigh_type = L for the transverse 

DPD), the weighting function is defined as  

cut

R rr /1−=ω    cutrr <                                                               (5) 

                                    0=Rω                cutrr ≥                                                       

If the step weighting function is chosen (key words: Weigh_type = S for the standard 

DPD and Weigh_type = S for the transverse DPD), the weighting function is defined as 

1=Rω    cutrr <                                                              (6) 

                                                0=Rω     cutrr ≥  

4. r-dependent weighting function for drag force 
Dω . 

Dω  is calculated 

according to the Eqn. 7. 

( )( ) ( )rr DR ωω =
2

                                                                 (7) 

5. Integration scheme. A modified DPD velocity-Verlet integration scheme 

(reference: J. Phys. Chem. 1997 107, 4423) is used to update the position and velocity. 

Integration for one single time step can be described as following:  

                      )()(
2

1
)()()( 2 tftttvtrttr iiii ∆+∆+=∆+ ,  

                      ),()()(~ ttftvttv iii ∆+=∆+ λ  

                       ))(~),(()( ttvttrfttf ii ∆+∆+=∆+ ,                                                     (8) 

                       ))()((
2

1
)()( ttftfttvttv iiii ∆++∆+=∆+ . 
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where, λ  is the so-called fudge factor. The actual velocity-Verlet algorithm for a 

conventional MD is represented with λ = 0.5. In DPD, the drag force is velocity 

dependent, which is not consistent with the formulation of the velocity-Verlet 

algorithm. One makes prediction for a new velocity v~  and later be corrected in the last 

step. The properties which are depending on the coordinate differences can be 

calculated after step 2. and temperature are calculated after last step. The algorithm 

would be exact to )( 2t∆Ο at λ = 0.5 if there were no random and drag force. The 

numerical order for the proposed algorithm is undefined.  

A.1.3. Sample files for conducting a RNEMD 

simulations and using DPD as a thermostat  

The shear viscosity is calculated by the reverse nonequilibrium molecular 

dynamics (RNEMD) method. In the RNEMD method, the simulation box is partitioned 

into an even number of slabs along the z direction, one periodically searches in the first 

slab for the particle with largest negative x component of the momentum, and in the 

central slab for the particle with largest positive x component. If these two atoms have 

same mass, one exchanges their momenta. By repeating this procedure periodically, an 

unphysical momentum flux is imposed and a velocity gradient or shear field results. 

The momentum flux can be achieved by two different approaches: either by swapping 

the velocities of atoms or by swapping the centre-of-mass velocities of molecules. At 

this stage, only the first approach is available in the IBIsCo code. Note that only even 

number of slabs is suitable for the RNEMD simulation, the shear flow direction is along 

the X axis and the velocity gradient is along the Z axis.  

Four input parameters are required: 1) the number of slabs, 2) the number of 

time steps between velocity swaps, 3) the number of time steps between two successive 

samplings of velocity, temperature, and density profile, 4) the number of time steps 

between two successive frames in the RNEMD trajectory file. Two output files are 

produced during the RNEMD simulation. One is called md.prf, which records velocity, 
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temperature, and density profiles, the other is called md.trj, which records trajectory of 

momentum flux, velocity gradient and viscosity.  

Sample Input Control file 

The input control file contains the general parameters for the simulation (time 

step, ensemble, thermodynamic conditions and so on). The key words in bold are used 

to conduct the RNEMD simulation and the standard and the transverse dissipative 

particle dynamics (DPD) thermostat.  



   

10
3 

S
a
m
p
le
 c
o
n
tr
o
l 
fi
le
 

 

E
ns

em
bl

e 
 

N
V

E
 

 
(N

V
E
, N

P
T
, N

V
T
) 

T
em

pe
ra

tu
re

 
 

50
0 

 
(T

em
pe

ra
tu

re
/K

) 

P
re

ss
ur

e 
 

10
0 

 
 

(P
re

ss
ur

e/
kP

a)
 

N
at

om
s 
  

 
24

00
  

 
(N

um
be

r 
of

 a
to

m
s)

 

N
st

ep
s 

 
 

10
00

 
 

(N
um

be
r 
of

 t
im

e 
st

ep
s)

 

D
T
   

 
 

 
1 

 
(T

im
e 

st
ep

 i
n 

fs
) 

T
A

U
T
   

 
 

1 
 

(T
em

pe
ra

tu
re

 r
el

ax
at

io
n 

ti
m

e 
in

 f
s)

 

T
A

U
P
   

   
 

 
1 

 
(P

re
ss

ur
e 

re
la

xa
ti
on

 t
im

e 
in

 f
s)

 

C
ut

of
f 
   

   
   

   
 

1.
5 

 
(C

ut
of

f 
fo

r 
no

nb
on

de
d 

in
te

ra
ct

io
n 

in
 n

m
) 

N
ei

gh
bo

ur
_l

is
t_

cu
to

ff
  

 2
.3

  
(T

he
 d

is
ta

nc
e 

in
 n

m
, u

p 
to

 w
he

re
 t
he

 p
ai

rs
 o

f 
pa

rt
ic

le
s 
ar

e 
in

cl
ud

ed
 i
n 

th
e 

ne
ig

hb
or

 l
is

t)
 

U
pd

at
e_

ne
ig

hb
ou

r_
li
st

  
15

  
(T

he
 i
nt

er
va

l 
of

 t
im

e 
st

ep
 f
or

 u
pd

at
in

g 
ne

ig
hb

or
 l
is

t)
 

N
sa

m
pl

in
g 

 
1 

 
(N

um
be

r 
of

 t
im

e 
st

ep
s 
be

tw
ee

n 
pr

in
ti
ng

 t
he

 i
ns

ta
nt

an
eo

us
 v

al
ue

s)
 

N
tr
aj

ec
to

ry
   

 
 

20
0 

 
 

(T
he

 i
nt

er
va

l 
of

 t
im

e 
st

ep
 f
or

 s
to

ri
ng

 c
on

fi
gu

ra
ti
on

) 

H
al

t_
D

ri
ft
 

 
10

  
 

(T
he

 i
nt

er
va

l 
of

 t
im

e 
st

ep
 f
or

 r
es

et
ti
ng

 n
et

 m
om

en
tu

m
 o

f 
th

e 
sy

st
em

 t
o 

ze
ro

) 

N
av

er
ag

e 
 

10
0 

 
(N

um
be

r 
of

 t
im

e 
st

ep
s 
be

tw
ee

n 
st

or
in

g 
av

er
ag

e 
da

ta
 a

nd
 r
es

ta
rt
in

g 
fi
le

) 



   

10
4 

N
on

-B
on

de
d 

 
4 

 
(U

se
 n

on
bo

nd
ed

 p
ot

en
ti
al

 o
n 

1.
.4

 O
R

 1
..5

? 
4=

1.
.4

, 5
=
1.

.5
) 

In
te

ra
ct

io
n 

 
G

 
 

(O
pt

io
n 

fo
r 
bo

nd
 a

nd
 b

en
d 

in
te

ra
ct

io
ns

, G
 =

 G
ua

ss
ia

n,
 T

 =
 t
ab

le
) 
 

S
ta
n
d
a
rd
_
D
P
D
  
  

y
   

   
 

(y
=
 u

se
 s
ta

nd
ar

d 
D

P
D

, n
 =

 d
o 

no
t 
us

e 
it
) 

L
a
m
b
d
a
  
  
  
  
  
 

0
.6
5
 

 
(T

he
 p

ar
am

et
er

 f
or

 v
el

oc
it
y 

in
te

gr
at

io
n)

 

D
P
D
_
cu
to
ff
  
  
  
 

1
.5
  

 
(T

he
 c

ut
of

f 
di

st
an

ce
 f
or

 D
P
D

 f
or

ce
, i

n 
nm

) 
 

D
P
D
_
N
ei
g
h
b
o
u
r_
li
st
_
cu
to
ff
  

1
.6
 

(D
is

ta
nc

e 
in

 n
m

, u
p 

to
 w

he
re

 t
he

 p
ai

rs
 o

f 
pa

rt
ic

le
s 
ar

e 
in

cl
ud

ed
 i
n 

th
e 

ne
ig

hb
or

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  

li
st

 u
se

d 
in

 D
P
D

 t
he

rm
os

ta
t)
 

S
ig
m
a
  
  
  
  
  
  
   

3
  

 
(n

oi
se

 s
tr
en

gt
h 

fo
r 
st

an
da

rd
 D

P
D

 t
he

rm
os

ta
t)
 

W
ei
g
h
t_
ty
p
e 
   

L
  

 
(L

 =
 l
in

ea
r 
w

ei
gh

ti
ng

 f
un

ct
io

n,
 S

 =
 s
te

p 
w

ei
gh

ti
ng

 f
un

ct
io

n)
 

T
ra
n
_
D
P
D
  
 
 

y
  

 
(y

 =
 u

se
 t
ra

ns
ve

rs
e 

D
P
D

, n
 =

 d
o 

no
t 
us

e 
it
) 

T
ra
n
_
si
g
m
a
  
   

0
  

 
(N

oi
se

 s
tr
en

gt
h 

fo
r 
tr
an

sv
er

se
 D

P
D

, p
ar

am
et

er
 f
or

 d
ra

g 
fo

rc
e,

 S
ig

m
a=

0 
fo

r 
no

rm
al

 M
D

) 

T
ra
n
_
w
ei
g
h
t_
ty
p
e 
 
L
  

 
(L

 =
 l
in

ea
r 
w

ei
gh

ti
ng

 f
un

ct
io

n,
 S

 =
 s
te

p 
w

ei
gh

ti
ng

 f
un

ct
io

n)
 

S
h
ea
r_
v
is
co
si
ty
  
 

y
 

 
(N

 =
 n

o 
ca

lc
ul

at
io

n 
of

 s
he

ar
 v

is
co

si
ty

, Y
 =

 c
al

cu
la

te
 s
he

ar
 v

is
co

si
ty

 b
y 

R
N

E
M

D
) 

N
u
m
_
R
N
E
M
D
_
sl
a
b
   

 
2
0
  
  
 

(N
um

be
r 
of

 s
la

bs
 i
n 

R
N

E
M

D
 s
im

ul
at

io
n)
 

N
u
m
_
R
N
E
M
D
_
ex
ch
a
n
g
e 
 
 

6
0
  
 

(N
um

be
r 
of

 t
im

e 
st

ep
s 
be

tw
ee

n 
ve

lo
ci

ty
 s
w

ap
 i
n 

R
N

E
M

D
 s
im

ul
at

io
n)
 

N
u
m
_
R
N
E
M
D
_
p
ro
f 
  
  
  
  
  
  
  
  
  
  
  
 6
1
  

(N
um

be
r 
of

 t
im

e 
st

ep
s 
be

tw
ee

n 
sa

m
pl

in
g 

of
 v

el
oc

it
y,

 t
em

pe
ra

tu
re

, a
nd

 d
en

si
ty

 p
ro

fi
le

 i
n 

R
N

E
M

D
 

si
m

ul
at

io
n)

 

N
u
m
_
R
N
E
M
D
_
tr
j 
  
  
 

 
6
1
  
  
  
 (
N

um
be

r 
of

 t
im

e 
st

ep
s 
be

tw
ee

n 
w

ri
ti
ng

 s
uc

ce
ss

iv
el

y 
th

e 
R

N
E
M

D
 t
ra

je
ct

or
y 

fi
le

) 

E
N

D
 



 

 

 

105 

Notes for keywords  

1. Ensemble: specify which ensemble you want to use for simulation. Current 

option include three types: microcanonical (NVE), canonical (NVT) and 

isobaric-isothermal (NPT) ensemble.  

2. Temperature: target temperature in Kelvin.  This temperature is used for 

thermostat and also for calculating the potentials by Boltzmann inversion in the 

case that one use the Gaussian file for the nonbonded interactions). 

3. Pressure: target pressure in kPa (in NPT ensemble). 

4. Natoms: the total number of atoms included in the system 

5. Nsteps: the total number of time steps of the simulation 

6. DT: the simulation time step in fs 

7. TAUT: thermostat coupling time in ps 

8. TAUP: pressure relaxation time in ps 

9. BETA: isothermal compressibility (1/kPa)  

10. Cutoff: the cutoff distance for the nonbonded interactions in nm 

11. Neighbor_list_cutoff: the distance in nm up to where the pairs of particles are 

included in the neighbor list 

12. Update_neighbor_list: the interval of time step for updating the neighbor list 

13. Nsampling: the number of time steps between printing the instantaneous values 

14. Ntrajectory: number of time steps between writing the trajectory file  

15. Halt_Drift: number of time steps between resetting the net momentum to zero 

16. Naverage: number of time steps between calculating the averages as well as 

printing the restart files 

17. Non-Bonded: two possible definitions of nonbonded pairs within same 

molecule: atoms separated by more than three bonds (‘1..5’ interactions and 

above) or atoms separated by more than two bonds (‘1..4’ interactions and 

above). 

18. Interaction: two options to define the bond and bend interactions. One can 

prepare Gaussian file, which specifies the Gaussian functions that are fitting to 
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the bond length and angles distributions, or one can prepare the potential tables 

for bond and bend interactions. 

19. Reset_velocities: by this option one specifies the initial velocity. Option “NO” 

tells program must use the velocities which are given in the initial coordinate 

file. Option “YES” tells program initialize the particle velocities according to an 

Maxwell-Boltzmann distribution.  

20. Standard_DPD: this option is to define the dissipative particle (DPD) dynamics 

in the standard form as thermostat. When this option is chosen, the Berendsen is 

automatically switched off.   

21. Lambda: the parameter for velocity integration when DPD thermostat is chosen. 

If Lambda = 0.5, the Verlet velocity integration scheme retains. 

22. DPD_cutoff: the cutoff in nm for DPD force. 

23. DPD_Neighbour_list_cutoff: distance in nm, up to where the pairs of particles 

are included in the neighbor list used in DPD theomstat)  

24. Sigma: noise strength for standard DPD thermostat.  

25. Weight_type: the type of weighting function for standard DPD thermostat. Two 

options are available, liner weighting function (L) and step weighting function 

(S).  

26. Tran_DPD: this option is to define the transverse DPD dynamics as a 

thermostat. When this option is chosen, Berendsen thermostat is automatically 

switched off. The transverse DPD can be used in combination with the standard 

one.  

27. Tran_sigma:  noise strength for transverse DPD thermostat. 

28. Tran_weight_type: the type of weighting function for transverse DPD 

thermostat. Two options are available, liner weighting function (L) and step 

weighting function (S).  

29. Shear_viscosity: Viscosity is calculated by the RNEMD when this option is 

chosen.   

30. Num_RNEMD_slab: number of slabs in RNEMD simulation.  

31. Num_RNEMD_exchange: velocity swap interval in RNEMD simulation.  
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32. Num_RNEMD_prof: number of time steps between sampling velocity, 

temperature, and density profile in the RNEMD simulation. 

33. Num_RNEMD_trj: number of time steps between writing the RNEMD 

trajectory file.  

34. END: terminate the input control file.  
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Appendix 2 Parameters of the atomistic force 

field for polystyrene 

The parameters of the atomic force field used in this work were reported in the 

following references:  

1). Müller-Plathe, F. Macromolecules 1995, 28, 1049-4791 

2) Milano, G.; Guerra, G.;Müller-Plathe, F. Chem. Mater. 2002, 14, 2977-2982 

 

Table A.2.1, A.2.2, A.2.3 A.2.4 and A.2.5 report nonbonded interaction, bond 

stretching, bond bending, torsion potentials and harmonic dihedrals, respectively. 

 

Table A.2.1. The Lennard-Jones parameters for polystyrene: the nonbonded 

interactions are given as: V(rij) = 4ε[(σ/rij)12−( σ/rij )6]+qiqj/4πε0rij. A reaction-field 

correction is applied for the Coulombic interactions. The effective dielectric constant is 

taken to be 2.5. a 

Atoms  ε/kJ mol-1 σ/nm q/e 

Cali 0.3519 0.3207 0 

Hali 0.318 0.2318 0 

Caro 0.294 0.355 -0.115b 

Haro 0.126 0.242 +0.115 

 

aThe subscripts ali and aro denote aliphatic and aromatic atoms, respectively. bThe 

charge on carbon 1 of the phenyl ring is 0 in the force field. Note here: nonbonded 

interactions are excluded between first and second neighbors. In addition, nonbonded 

between all atoms of a given phenyl group are excluded.  
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Table A.2.2. Bond length and strength. 

bonds r0/nm 

Cali-Cali 0.153 

Cali-Hali 0.11 

Caro-Caro 0.139 

Caro-Haro 0.108 

Cali-Caro 0.151 

 

Table A.2.3. Equilibrium bond angles and bond force constants. Angles are described 

by: V(φ) = (kφ/2)(φ-φ 0)2. 

bond angle φ 0/deg kφ /kJ mol-1rad-2 

H-Cali-H 109.45 306.4 

Cali- Cali-H 109.45 366.9 

Caro- Cali-H 109.45 366.9 

Cali-Cali-Caro 109.45 482.3 

Cali-Caro-Caro 120.0 376.6 

Caro-Caro-Caro 120.0 376.6 

Caro-Caro-H 120.0 418.8 
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Table A.2.4. Proper dihedral (torsion) potentials which are described by V(τ) = 

(kτ/2)[1−cos3(τ−τ0)]  cis at 0
0 .    

V(τ) = (kτ/2)[1−cos3(τ−τ0)]  cis at 0
0  

torsion angles τ 0/deg kτ /kJ mol-1rad-2 

Cali -Cali- Cali- Cali 180 12.0 

Cali- Cali-Caro -H (terminal methyl) 180 12.0 

 

Table A.2.5. Harmonic dihedrals which are described by V(δ) = (kδ/2)(δ -δ 0)2 . 

harmonic dihedral 

angles 

δ 0/deg kδ /kJ mol-1rad-2 

Caro-Caro-Caro- Caro 0.0 167.4 

Caro-Caro-Caro-H 0.0 167.4 

Caro-Caro-Caro-Cali 0.0 167.4 
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Appendix 3 Coarse-grained potentials of 

polystyrene  

The coarse-grained (CG) potentials used in this work follow the reference: 

Milano, G.; Müller-Plathe, F. J. Phys. Chem. B 2005, 109, 18609 -18619. 

Bonded potentials The multi-peaked distribution of a structural parameter, say 

a bond angle, can be approximated by a sum of n Gaussian functions characterized by 

their centres )( ciθ , total area )( iA , and width )( iw :  

22 /)(2

1

exp
2/

)( ici w
n

i i

i

w

A
P

θθ

π
θ −−

=
∑=                                     (1) 

Given a distribution )(θP of some structural parameter such as a bond or an 

angle, say angle θ , a first approximation of  the corresponding potential can be derived 

doing a simple Boltzmann inversion. The corresponding potential obtained by 

Boltzmann inversion can be written as:  
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One defines 
22 /)(2exp)2/(/)( ici w

iii wAg
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Similar equations for bond potentials )(lV and )(lF :  

∑
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Table A.3.1 and A.3.2 report the parameters for the CG bond and angle 

potentials.  

Table A.3.1. Parameters of the bond Potential 

bond type n
a i Ai wi [Å] lci [Å] 

m-m 1 1 0.015 0.09 2.46 

m-r 1 1 0.018 0.09 2.46 

r-r 1 1 0.018 0.09 2.46 

a n is the number of Gaussians used for each force field term. 

Table A.3.2. Parameters of the angle potential 

angle type n i Ai wi [deg] ci [deg] 

m-m-m 2 1 0.861 13.7 147.7 

  2 0.078 8.9 161.5 

m-r-m 2 1 0.042 11.0 142.8 

  2 1.283 13.0 165.0 

r-r-m 3 1 0.047 18.0 99.6 

  2 0.255 14.2 144.1 
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  3 3.404 13.0 165.4 

r-r-r 3 1 0.168 10.1 89.4 

  2 0.580 11.0 142.8 

  3 0.385 15.2 164.1 

r-m-r 3 1 0.043 7.0 87.1 

  2 0.913 13.5 136.0 

  3 0.167 10.9 158.8 

m-m-r 2 1 0.800 12.0 136.2 

  2 0.192 13.0 155.0 

 

 

Nonbonded potentials. Nonbonded potentials are obtained by iterative 

Boltzmann inversion. The iterative Boltzmann inversion uses the difference in the 

potential of mean force between the distribution functions generated from a trial 

potential and the true distribution function to improve the effective potential 

successively. The pressure information is incorporated into the optimization of 

nonbonded potential by means of a so-called ramp correction. These techniques have 

been described in Chapter 1. 

The nonbonded tabulated potentials for rr, mm, mr. are listed in Table A.3.3. 

Table A.3.3. The nonbonded tabulated potentials for rr, mm, mr. 
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Simulation tools  

The molecular dynamics simulations reported in this PhD thesis were performed 

on the cluster of the Theoretical Physical Chemistry group of Prof. Florian Müller-

Plathe at the Technische Universität Darmstadt. The cluster was supplied by the 

company TRANSTEC. Additional molecular dynamics calculations were carried out on 

IBM p575 machines of Hessisches Hochleistungrechner located at the Technische 

Universität Darmstadt. 

For carrying out the viscosity calculations using the reverse nonequilibrium 

molecular dynamics (RNEMD) algorithm, the molecular dynamics package GMQ was 

used. This package was originally developed by Prof. David Brown and Dr. Sévérine 

Queyroy (Université de Savoie, France). The RNEMD algorithm was later embedded 

into this code by Dr. Welchy L. Cavalcanti and myself. For simulating atomistic 

polymers after backmapping, the molecular dynamics package GROMACS was used 

for both energy minimization run and molecular dynamics run (reference: Berendsen, 

H. J. C.; van der Spoel, D.; van Drunen, R. Comput. Phys.Commun. 1995, 91, 43-56.; 

Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Model. 2001, 7, 306-317). Part of the 

atomistic molecular dynamics used the YASP package, which was originally developed 

by Prof. Florian Müller-Plathe and later parallelized by Dr. Konstantin B. Tarmyshov.  
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