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Summary

This PhD thesis deals with the investigation of polymer-melt viscosity from
coarse-grained simulations and with the development of a backmapping method from
coarse-grained nonequilibrium systems. These studies involve both atomistic and
coarse-grained (CG) descriptions. Besides these theoretical studies, efforts are also
pursued on programming a code, which is designed for molecular dynamics simulations

of coarse-grained polymer systems.

Chapter 1 gives a short overview of polymer properties which can be
investigated by means of coarse-grained simulations as well as the algorithms for

viscosity calculations via molecular dynamics.

Chapter 2 focuses on the study of the viscosity and the structural alteration of a
coarse-grained model of polystyrene under steady shear flow via the reverse
nonequilibrium molecular dynamics (RNEMD) method. The applicability of the
RNEMD algorithm in predicting the viscosity of polymers is investigated. The
viscometric functions predicted by the RNEMD are compared to previous studies of
similar models where conventional nonequilibrium molecular dynamics (NEMD)
methods have been used. The performance of the dynamics of the CG model, which has
been developed taking only structural information into account, is investigated. For the
shortest polymer chain, the zero-shear viscosity is compared to recent experimental
results. The material functions (namely the first and second normal stress difference) are
discussed. Structural alteration (the average chain dimension, shear-induced alignment)

under a steady shear flow is also quantitatively characterized.

In Chapter 3, the problems in backmapping coarse-grained polymer models, on
which a nonequilibrium shear flow has been imposed, are discussed. Backmapping is
the procedure, by which the atomistic description is re-inserted into a coarse-grained

configuration. Some strategies and a new backmapping protocol are proposed. In this



method, the deformed conformations are maintained globally during backmapping by
applying position restraints. The local optimization of the atomistic structure is
performed in the presence of these restraints. The artefact of segment isolation
introduced by position restraints is minimized by applying different restraint patterns
iteratively. The procedure i1s demonstrated on the test case of atactic polystyrene under a
steady shear flow.

Chapter 4 reports in detail the implementation of the RNMED algorithm and the
dissipative particle dynamics (DPD) methodology used as a thermostat into a
numerical-potential molecular dynamics program (Ibisco). The program is partially
redesigned in order to meet the requirements of these new algorithms. The developed

code provides a reliable tool for investigating the rheological behaviour of CG models.

Finally, Chapter 5 outlines some perspectives of future research.
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Zusammenfassung

Diese Doktorarbeit beschéftigt sich mit der Untersuchung von Scherviskositit
mittels Simulationen von “Coarse-Grained” (CG) vergroberten Modellen und der
Entwicklung einer Methode zur Wiedereinfiihrung von atomistischen Details in Nicht-
Gleichgewichts-CG-Systemen. Diese Arbeit umfasst sowohl vollstindig atomistische
als auch CG Beschreibungen von polymeren Systemen. Zusétzlich zu diesen beiden
theoretischen Studien wurde ein Computercode zur molekulardynamischen Simulation

von CG Systemen geschrieben

Kapitel 1 verschafft einen kurzen Uberblick iiber jene Eigenschaften von
Polymeren, die durch CG Simulationen untersucht werden koénnen, und zeigt einige der
konventionellen Algorithmen zur Bestimmung von Scherviskosititen mittels

molekulardynamischen Simulationen auf.

Kapitel 2 konzentriert sich auf die Untersuchung der Scherviskositit und der
Strukturdnderungen in einem CG Modellsystem von Polystyrol unter konstantem
Scherfluss, welcher durch “Reverse nonequilibrium molecular dynamics” (RNEMD)
Algorithmus induziert wurde. Die Anwendbarkeit der RNEMD Methode auf die
Scherviskositdt von Polymeren wurde hierbei getestet, und die durch RNEMD
vorhergesagten viskometrischen Funktionen wurden mit bereits durch konventionelle
Nichtgleichgewichtssimulationen (NEMD) errechneten Literaturwerten verglichen.
Ebenso wurde die Effizienz des CG Models, welches ausschliesslich Strukturdaten
verwendet, untersucht. Fiir die kiirzeste Polymerkette wird die Nullscherviskositdt mit
aktuellen experimentellen Daten verglichen. Die Materialfunktionen (explizit die erste
und die zweite Normaldruckdifferenz) werden genauso diskutiert, wie die
Strukturverdnderung  (durchschnittliches  Kettenvolumen und scherinduziertes

Ausrichten) unter konstantem Scherfluss.
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Kapitel 3 behandelt die Probleme der Wiedereinfiihrung atomistischer Details in
CG Polymerkonfigurationen, die einem Nichtgleichgewichts-Scherfluss unterworfen
wurden. Das entsprechende Verfahren heisst “Reverse Mapping”. Hier werden einige
Strategien zur Wiedereinfilhrung aufgezeigt und ein neues Reverse Mapping Protokoll
vorgeschlagen. In dieser Methode werden die deformierten Polymerkonformationen
wihrend des Reverse Mapping Prozesses durch Anwendung &dusserer Krifte
beibehalten. Die dadurch eingefiihrten Artefakte der Isolierung einzelner Segmente wird
minimiert, indem verschiedene Fixierungsmuster iterativ angewendet werden. Das
Verfahren wird anhand von ataktischem Polystyrol unter konstantem Scherfluss
demonstriert.

Kapitel 4 behandelt detailliert die Impementierung des RNEMD Algorithmus
und die Implementierung der “Dissipative Particle Dynamics” (DPD) Methode in ein
mit numerischen Potentialen arbeitendes Molekulardynamik-Programm (IBIsco). Das
Programm wurde teilweise iiberarbeitet, um die richtigen Voraussetzungen fiir obige
Algorithmen zu schaffen. Der hierbei entwickelte Code ist ein verldssliches Instrument

zur Untersuchung von rheologischem Verhalten von CG Modellen.

Kapitel 5 zeigt schliesslich einige Perspektiven und Ansitze fiir zukiinftige

Forschungsarbeiten auf diesem Gebiet auf.
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1. Introduction

1.1. Motivation

Viscosity is an important characteristic for all materials, especially polymers.
Among several viscosity calculation algorithms, the reverse nonequilibrium molecular
dynamics (RNEMD) shows its fundamental and technical advantages over previous
equilibrium and non-equilibrium techniques. Although RNEMD has successfully
predicted the viscosity of simple liquid whose relaxation time is very short, it encounters
the typical limitations dictated by inherent time scales when it is implemented on
viscosity prediction of polymeric systems. As shear flow in polymer melt involves slow
process on the mesoscopic scale, question rises that the feasibility and applicability of
this method with fully atomistic model, the huge number of degree of freedom in fully
atomistic approach narrows down the applicable range only to very short chain. One
way to circumvent this problem is to reduce the number of degrees of freedom in the
cost of losing some irrelevant details of molecular structure, so called coarse-grained
(CG) model. Following this consideration, an attempt of extending RNEMD
methodology to polymeric system has been carried out, the applicability of RNEMD to
the prediction of the polymer viscosity is investigated.

Coarse-grained simulations prevail on reproducing the structural and
thermodynamical properties. A coarse-graining scheme for reproducing the dynamic and
transport properties is not still well-established. It is not clear that the existing CG
model can produce reliable melt viscosity. In this study, the rheological behaviour of an
existing CG model, which has been successfully tested against structural properties, is
explored. This study provides an understanding on the dynamical performance of a
structure-optimized CG model.

The relaxation of long chains at the atomistic level is computationally
unfeasible. An important purpose of coarse-grained model is generating the well-
equilibrated polymer structure. A good CG method also allows the reverse process, i.e.

going back to the atomistic description, this process is called reverse-mapping or



backmapping. Currently, the backmapping technique is pursued on equilibrium system.
However, dynamic properties, in particular melt viscosities under shear or elongational
flow which are of great interest to the polymer manufacturing and processing, only can
be investigated under nonequilibrium conditions. The present study intends to develop a

backmapping method from coarse-grained nonequilibrium systems.

1.2. Polymer properties from coarse-grained
simulations

Polymers exhibit physical properties in a broad range of length and time scales.
Many efforts have been made in studying polymer properties through a hierarchical
approach.'” Computational basic degrees of freedom are electrons (quantum chemistry),
atoms (force field), monomers or groups of monomers (mesoscopic models), entire
polymer chains (soft fluids) or volume elements (finite elements)’. Any one of these
computer simulation techniques, individually, is restricted to a much narrower range.
Therefore, one needs to simulate polymers with models of several different scales, in
order to have a complete picture of their properties. This thesis involves two methods:
the atomistic force field and the coarse-grained model (CG). In the atomistic force field,
every atom is modelled as a separate interaction site. In the CG model, every interaction
centre (also referred to as “bead” or “superatom”) contains of the order of 10 non-
hydrogen atoms or approximately one chemical repeating unit.> Both methods have one
common features of retaining the material-specific information, which is neglected in
the generic models and is not computational affordable through quantum chemistry
approach. Here, term “material-specific information” can be comprehended as chemical
composition, tacticity, sequence, and topology. Comparing to the atomistic force field,
CG models have been proven to be very efficient in studying the complicated behaviour
of polymers. This efficiency comes from the fact that the CG model only takes into
account those degrees of freedom deemed relevant for the particular properties studied.

Coarse-grained models are parameterised reproducing structural and
thermodynamics properties of polymers.*® Very recently, dynamic properties have been

a simulation target in some CG simulations.”®



1.2.1. Structural properties

The structural properties of polymer chains are most conveniently described by
distributions of geometric quantities, which can be intramolecular or intermolecular.
The intramolecular properties can be distances between two adjacent superatoms, angles
between three subsequent superatoms, dihedral angles between four subsequent
superatoms, principal values of the radius of gyration tensor and so forth. The
intermolecular properties involves distances between the superatoms belonging to
different chains, distance between the centres of mass of different chains or chain
fragments. All these properties have to be reproduced by the coarse-grained simulations.

If the goal of the coarse-grained model is to reproduce structural distribution
from atomistic reference simulation, several computation procedures are available.'* In
particular, iterative Boltzmann inversion'* is readily adapted to the problem of coarse-
graining polymer. This procedure is demonstrated with the example of deriving an
effective nonbonded potential from a given radial distribution function as following: If a

target radial distribution function RDF,  (r) 1is available, one starts the zeroth
simulation with a guessed tabulated pair potential ¥V (r). Its simulation yields radial

distribution function RDF,(r), which is different from RDF,

tartet

(r). Afterwards,

RDF,
potential is improved by adding to V,(r) the correction term — kT ln—o(r). This
DE arget (7’)
step can be iterated,
V() =V, () + KT — 2 ) (1)
(M =V.(r)+kTIn
e F e ()
until
cutoff ,
f;arget = J. a)(r)[RDF] (7") _RDF;arget (l")] dr (2)

0

falls below an initially specified threshold. @(r)is weighting function in order to

specifically penalize deviations at small distance.



1.2.2. Thermodynamic properties

Thermodynamic properties like the cohesive-energy density, the density (in NPT
ensemble) or the pressure (in NV'T ensemble) are also reproduced in the coarse-grained
simulations. The simplex method, which was originally developed to adjust atomistic
force field parameters to experimental thermodynamics properties of molecular liquids,
is brought into CG simulation to reproduce the thermodynamics data.'"* The pressure
information can be introduced into polymer systems by the so-called ramp correction:
Since the initially optimized structure yield a pressure different from the one at which
the atomistic simulation are performed, a weak linear potential term AV} is added to the

attractive long-range part of V,(r), then the structure is post-optimized according to the

iterative Boltzmann inversion until also the pressure matches the atomistic system. The
form of ramp correction can be taken as Eqn 3.

AV (r) = V_/.(l —Lj 3)

cut

It vanishes at the cutoff (AV (r,,,, ) =0)and AV = AV, (r =0) is the only parameter.

1.2.3. Dynamics and transport properties

So far, there are but few explicit studies of dynamic properties by means of
coarse-grained simulations. Most investigations are limited to an analysis of self-
diffusion coefficients. The self-diffusion coefficient of the CG model depends on the
parameterization of CG force field. There are two different approaches for developing
the CG force field:

1. In the first approach, both static and dynamics properties are used to develop
the CG force field. The dynamics in the CG model is matched with atomistic one by an
appropriate selection of friction constants appearing in Langevin’s equations of motion.
Following this approach, Padding and Briels® proposed a method to define the friction
within the CG model using underlying short atomistic simulation. Moreover, they

introduced an uncrossability constraint into their CG equation of motion to prevent



unphysical bond crossing. They proved that the dynamics and the zero-shear viscosity of
their CG model agree with experimental findings.®

2. In the second approach, only static properties are utilized in the force field
parameterization, and Newton’s equation of motion is used to evolve the system. The
CG model developed from this approach can accurately describe the static properties,
while on the other hand, the dynamics is generally too fast. Depa and Maranas’ have
proven that there is a robust scaling factor in the CG dynamics by mapping the self-

diffusion coefficient of the CG model to the one of underlying atomistic model.

1.3. Back to the atomistic description: backmapping

As the way of coarse-graining an atomistic model into mesoscopic one is not
unique, it is much more complicated to refine a CG model back to an atomistic one.
Santangelo® et al introduced a systematic procedure to obtain well-relaxed atomistic
melt structures from mesoscale models of vinyl polymers based on sequence of diad.
This method is based on a fully geometrical approach and does not involve expensive
potential energy and force evaluations. Kotelyanskii'> et al proposed a refining
procedure in order to introduce atoms into their lattice model of polystyrene. They used
a coordinate template of the building block, and place it on top of the lattice site
(equivalent to a super-atom) which they wanted to refine. Then, they rotated it by taking

into account the orientation with respect to its two nearest neighbours along the chain.

1.4. Algorithms used to compute the viscosity

One aspect of this thesis is investigating the viscosities of polymers. The

algorithms used to compute the viscosity are briefly reviewed here.

1.4.1 Equilibrium molecular dynamics: the Green-Kubo method

The Green-Kubo method simply consists of simulating an equilibrium fluid
under periodic boundary conditions and making the appropriate analysis of the time-
dependent stress fluctuations.'’ The Kubo relation predicting the viscosity is given by

Eqgn. 4



n=pv [P, 0P, () @

where, B = 1 / (kT) with the Boltzmann constant k£ and V" is the system volume. The

integral is over the equilibrium time autocorrelation function of the xy component of the

pressure tensor P, . The Green-Kubo technique is restricted to only linear transport

coefficients.

1.4.2. Nonequilibrium molecular dynamics

The non-Newtonian character of most complex fluids and their resulting unique
properties manifest themselves only beyond the linear response regime. To study these,
nonequilibrium molecular dynamics (NEMD) simulations are necessary. The
conventional NEMD methods are similar in spirit to real experiments: the cause is an
appropriate field or gradient which is imposed on the system, then the ensemble average
of the effect, the resulting flux, is measure and the ratio of flux and field gives the
viscosity. In the NEMD simulations, one has to tackle two problems: First, one must
mechanically impose the shear. Second, the shear is enforced by constantly pumping
energy into the system. Hence one must get rid of the heat by applying an appropriate
thermostat. One exception is the reverse nonequilibrium molecular dynamics
(RNEMD).

Surface-driven method. The most direct way of imposing a shear is to confine the
system between two rough walls, and either move one of them (for Couette flow), or
apply a pressure gradient (for Poiseuille flow). The virtue of this method is of being
physical: Strain is enforced physically, and the heat can be removed in a physical way by
coupling a thermostat to the walls. On the other hand, the system contains two surfaces,
and depending on the material under consideration, one may encounter strong surface
effects.'”Varnik and Binder’ have shown that surface-driven methods can be used to
measure the shear viscosity in polymer melts.

Homogenous shear method An alternative way to generate planar Couette flow is to

use moving periodic boundary conditions as illustrated in Fig. 1.1 (Lees-Edwards



boundary condition). In order to enforce the shear flow i = (u,,0,0) with an average
strain rate y = ou _ /0y, one proceeds as follows: One replicates the particles in the x and
the z direction like in regular periodic boundary conditions. In the y-direction, the
replicated particles acquire an additional velocityv, =L . One particularly popular

algorithm of this kind is the SLLOD'" algorithm. For the imposed flow #(F) = j»é , the

SSLOD equations of motion for atom i is

a7, P, .
Rk R < S 5
i m wie, (5)
dp, - ..
_’:FA_ fe 6
dt 1 Wl X ()

where, p, =m,; (v, —u(r,)) 1s the momentum of atom i in a reference frame moving
with the local flow velocity #(7,) , and 131 is the regular force acting on the atom i. The

equations of motion can be integrated with standard techniques.
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Figure 1.1. Schematic view of Lees Edwards periodic boundary condition (reproduce

from ref.12).

Reverse nonequilibrium molecular dynamics The shear algorithm used in this study
is the reverse nonequilibrium molecular dynamics (RNEMD) method."” The RNEMD
method reverses the experimental cause-and-effect picture: the effect (momentum flux
or stress) is imposed, whereas the cause (velocity gradient or shear rate) is obtained

from simulation. The details of RNEMD are elucidated in Chapter 2.
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2. Viscosity and structure alteration of a coarse-
grained model of polystyrene under steady shear
flow studied by reverse nonequilibrium

molecular dynamics

2.1. Introduction

In the last two decades, several simulation methods for the prediction of shear
viscosities have been proposed. In equilibrium molecular dynamics (EMD), the shear
viscosity is obtained from pressure or momentum fluctuations based on the Einstein and
Green-Kubo relations;' In conventional non-equilibrium molecular dynamics (NEMD),”
the shear viscosity can be calculated by reproducing the experimental setup; i.e., an
appropriate perturbation is applied, the ensemble averages of the resulting flux and the
corresponding field are measured, the ratio of flux and field gives the shear viscosity.
The most widely used NEMD methods are homogeneous shear (HS) and surface-driven
shear methods (SD). In HS method, the shear flow is imposed by modifying the
equation of motion of the molecules and using sliding-wall periodic boundary
conditions. In SD method, the shear is imparted on the fluid through the actual motion
of the confining walls. A comparison of the applicability, accuracy and efficiency for
these methods can be found in ref. 3.

A more recent alternative is the reverse nonequilibrium molecular dynamics
(RNEMD) method,*” which is used here. It reverses the experimental cause-and-effect
picture: the momentum flux (stress) is imposed by a Maxwell daemon and the
corresponding field (velocity gradient) is measured. Compared to the more traditional
NEMD techniques, RNEMD offers certain advantages, but also has its shortcomings.
They have been discussed in more detail elsewhere.’ Its chief advantage is the fact, that

no energy is deposited into the simulation, in contrast to other NEMD methods, and



hence no energy need be removed by an external thermostat. As most thermostats
interfere with the linear momentum, they are a potential error source in viscosity
calculations. Further advantages are the absence of boundary regions (as in SD method),
the ease of implementation and analysis, and parallelisability.” The major shortcoming
of RNEMD is that the temperature in the system is not uniform but develops a
stationary quadratic profile.* As a consequence, the density is also not uniform, so that
the calculated viscosity is an average over different temperatures and densities. This
aspect requires great care in designing the perturbation to be small enough for these
variations to be numerically irrelevant. As one usually attempts anyway in NEMD to
make the perturbation as small as possible, in order to have linear-response conditions,
this is not a serious restriction, but more a point to be watched. RNEMD has been very
successfully applied to predict the viscosity of Lennard-Jones liquids,* atomistic models
of molecular liquids’, simplified models of amphiphiles®, liquid crystals’ and Yukawa
liquids."® In particular, ref 10 shows that for small shear rates the viscosity values
calculated via RNEMD and NEMD simulations are mutually consistent and also in
agreement with equilibrium MD calculations. So far, the RNEMD method has not been
tried for the calculation of polymer viscosities.

The viscosities of polymer melts and structural changes under shear flow are of
great practical importance in manufacturing and processing of polymers. Viscosity and
structure of polymer melts under shear were intensively studied by conventional NEMD
in previous work. Among these studies, some simple and general models have
successfully captured the rheological properties and contributed to the understanding of
their physical origin.''""> A detailed review on simple models for complex non-
equilibrium fluids can be found in ref. 16. However, the generic models have not been
designed to provide quantitative properties of specific polymer melts. Some studies on
specific macromolecules, which were based on realistic models, have also been carried

1Y The presence of many different time and length scales and the associated

out
computational costs usually preclude the use of fully atomistic force fields. One,
therefore, tries to find a coarse-grained (CG) model at a level between atomistic and

generic. It should be detailed enough to be material-specific and simple enough to be
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computationally viable. One way to approach the problem is to reduce the degrees of
freedom by coarsening the models, keeping only those degrees of freedom deemed
relevant for the particular properties of interest. Parameterization of coarse-grained force
fields can be roughly classified into two different approaches. In the first, both static
and dynamics properties are used to develop the force field and the dynamics is matched
by an appropriate selection of friction constant appearing in Langevin’s equations of

20,21

motion at the coarse-grained scale. In the second approach, only static properties are

utilized in the force field parameterization and Newton’s equations of motion are used

to evolve the system.”*

The coarse-grained models developed from this approach can
accurately describe the static properties, while on the other hand the dynamics is
generally too fast.** In some cases it was possible to recover the dynamical properties by
appropriate time scaling.”> The dynamical properties predicted by such CG model are
based on the philosophy that the same basic mechanisms are still operative at a different
time rate when the molecular mobility changes. Therefore, the accelerated dynamics is
expected to retain some reality of the motion in the system. Ideally, one would like
structurally optimised models to also be able to predict polymer viscosities without any
further calibration. Finding out whether this is possible is one aspect of the current
investigation.

The aim of this study is therefore twofold. First, the applicability of the RNEMD
algorithm to the prediction of the viscosity of polymers is investigated. We compare the
shear behaviour to previous studies of similar models, where conventional NEMD
methods have been used. Second, we study the rheological behaviour of the specific,
realistic coarse-grained model of polystyrene, which has been developed taking only
structural information into account. For the shortest polymer chain the zero-shear
viscosity is compared to recent experimental results. The material functions (first and
second normal stress difference) are briefly discussed and structural properties of

polystyrene under shear are also quantitatively characterized in this work.
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2.2. Reverse nonequilibrium molecular dynamics

The RNEMD method for calculating shear viscosity is briefly reviewed in this
section, for details, see ref. 4 and ref. 5. The shear viscosity 7 relates the transverse
momentum flux ;. ( px) and the flow velocity gradient ov,_ /0z via Eq. (1).
ov,
oz

J(p)==n (1

The magnitude of momentum flux |;, ( px1 is equal to the off-diagonal (xz) component

of the stress tensor 7_, anddv, /0z is also called the shear rate 7 . The momentum flux

J. (px) can be described as a transport through a surface perpendicular to its direction
within a certain time. In RNEMD, ;. (px) is imposed in an unphysical way, and the

flow field corresponds to two symmetric planar Couette flows, with a shear flow in the

x direction and the velocity gradient in the z direction, as illustrated in Fig. 2.1.

L, &=

X
A SlabplT —— 1
T ———— |
Momentum — 4 Momentum flux
Transferred = (physical)
(unphysical) 4 jz @x) /2
PX — I
1 - L
! Slab 11 A
L] 1
\IN < Momentum flux
A (physical)
A J: () /2
X — 1
Vi slabT 1
’ ——

Figure 2.1. Sketch of the RNEMD method for calculating the shear viscosity. The flow
field imposed on the system corresponds to two symmetric planar Couette flows, which
have the shear flow in the x direction, and the velocity gradient is in z direction.

Horizontal arrows in the simulation cell indicate the velocity field. The periodic
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L =L =L/

orthorhombic simulation cell with size of L, , L, , and L, (™ 3) in periodic

system is partitioned into 20 slabs in Z direction. For details, see text.

The orthorhombic simulation cell with size of L , L, , L. in the periodic system is
partitioned into an even number of slabs, here 20 , inz direction. One selects in slab 1
the atom with the largest negative x component of momentum (v, ) and in the central
slab (slab 11) the atom with the largest positive x component of momentum (mv,,).
These two atoms must have the same massm . One exchanges the x component of the
velocity vector between these two atoms. As the two atoms have the same massm , the
unphysical momentum swap conserves both the total linear momentum and the total
kinetic energy. The exchanged quantity Ap_ is the x component of the momentum,
Ap,=my  —mv,, 2)
By such velocity swap, momentum (Ap ) is transferred unphysically across the system.
The velocity swap is performed every W time steps; so the time elapsed between two
velocity swaps is W -A¢, with Ar being the lengths of the time step. The total
transferred momentum during the simulation is given by p = XAp . The response of the
system to this nonequilibrium perturbation is a momentum flux j, ( px) in the opposite

direction via a physical mechanism, the friction. In the steady state, the unphysical and

the physical momentum flux are balanced, and ( px) can be evaluated by Eq. (3)

. p
=_f£x 3
J:(py) uLL, 3)

The factor 2 arises because of the periodicity of the system, and ¢ is the duration of the
simulation. The momentum flux j, ( px) leads to a continuous velocity gradient

0v, /0z in the fluid except slab 1 and slab 11 where velocities are not differentiable. The

local flow velocity in slabn,v (n) is determined by averaging over the particles in this

slab.
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v.(n)= <vx,l.> , ieslabn 4)
The velocity profile is linear and it slope <8\7/ 6Z> can be extracted by a linear least-

squares fit. The local temperature in slab n, T(n), is evaluated from peculiar velocities,

1.e. the difference between the actual velocities and the local flow velocities, as Eq(5).

Nl)ead
T(n)=— 3 [, ~7.(m)* +v2, +12,], ieshbn (5)
3NbeadkB i=1 ’ ’ ’

where, k, is Boltzmann’s constant, N, , is total number of beads in slab n, m, and v,

denote the mass and actual velocity of ith bead. The temperature profile is parabolic in
both upper and lower halves of simulation cell, with cooling in the exchange slabs 1 and

11 and heating in between. As the transport of momentum p, is exactly known, the

shear viscosity 7 at a given shear rate y = <8\7/ 82> can be calculated by Eq. (6).

— px
2tL L (v, /0z)

n (6)

The momentum flux ;. (px) is controlled by adjusting the time elapsed between two
velocity swaps W - At. As a result, different shear rates y are achieved.

It is worth considering the influence of the thermostat. As the total linear
momentum and total energy are conserved, the RNEMD method, in contrast to other
NEMD methods, does not need any external thermostat. However, calculations on
realistic systems often necessitate a thermostat for reasons unrelated to the RNEMD
scheme, because either NV'T conditions are explicitly required, or temperature shifts due
to round-off or cutoff noise need to be corrected. As any thermostat introduces an
artificial dissipation of momentum, the calculated viscosities may carry an intrinsic
error. We use an atomic version of Berendsen’s thermostat,” i.e. the actual temperature
is calculated from atomic velocities, rather than centre-of-mass velocities, and the

atomic velocities are being rescaled. An atom-based thermostat is dictated by the system
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being a melt of long, flexible and entwined polymer chains. Firstly, in contrast to fluids
of small rigid molecules, they create no problems from rotational motion, as they
reorient much slower than they thermalise. Secondly, confining the temperature analysis
and control only to the centre-of-mass velocities (one hundredth of all degrees of
freedom for chain of 100 beads, namely PS-100, see Section 3) would lead to large
statistical uncertainties. Finally, we need the thermostat only to counteract a very slow
drift due to round-off errors. The usual main source of spurious heat generation, namely
cutoff noise, plays a minor role here, since our cutoff is long and the nonbonded
potentials have a finite range. As the Berendsen thermostat applies a uniform scaling to
all velocities, it may change velocity profiles only uniformly and only by a small
amount, avoiding local artefacts. In this sense, it might have an advantage over
alternative thermostats, which perform velocity scaling on an individual-atom basis.”” In
Figure 2.2, we report the rate of energy input into or removal from the system by the
thermostat in the simulation of the biggest system (PS-100, Section 3) at the highest
shear rate. It is evident that, in the steady state, the average kinetic energy

added/removed by the thermostat is zero.

transient Steady
- 1:3 state | state
T 60] | |
8 0] | ;4 0
5 ng ;w W%J
—EJ -20 1" V;M"}l,‘: .
2
T 60
g -801
T -100 | | .
00 02 04 06 08 1.0
Time (ns)
dQ/dt

Figure 2.2. Evolution of the rate of heat energy ( ) input to the system by the
thermostat during the simulation for PS-100 system at the highest shear rate

5.06x10"s™"
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2.3. Model and computational technique

References 24 and 28 report, respectively, the CG model of atactic polystyrene
and the corresponding force field parameters used in this work. The most important
characteristics of this model are: the polystyrene diad is coarse-grained as a superatom
in the mesoscale effective force field; the center of the superatom is placed at the
methylene carbon; two different types of superatoms can be designated according to the
configuration of two adjacent pseudoasymmetric -CHR— methyne groups, either meso
(same configurations RR or SS) or racemo (opposite configurations RS or SR), as shown
in Fig. 2.3; the corresponding force-field contains three different bonds, six angles and
three nonbonded terms. This model has been successfully tested against structural
properties of polystyrene melts with different chain lengths, the dynamical behaviour

can be properly evaluated by taking into account the time scale.
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Figure 2.3. Illustration of the coarse-grained model of atactic polystyrene: (a) the meso
(m) and racemo (r) of diads in transplanar conformation (hydrogen atoms on phenyl

rings are omitted for clarity) (b) one superatom corresponding to a diadic m or  unit.
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The centres of these superatoms, as indicated by filled squares, are the methylene

carbons. Reproduced from ref. 24.

The RNEMD simulations of monodisperse polystyrene melts are performed for

four different chain lengths. Every system consists of N, , polystyrene chains of N, ,
beads, where N, , is taken to be 9, 20, 30 and 100. These systems are referred to as

PS-9, PS-20, PS-30, and PS-100, respectively. They are all unentangled systems. The
densities of the systems are obtained from equilibrium simulations at constant
temperature 500 K and constant pressure 1 atm. The relaxation time of a chain 7 is
obtained by time integration of the autocorrelation function for the end-to-end vector s,
as given by Eq. (7).

o0

r= j C(t)dt = j (s(0)-s())/(s”)dt (7)

0
The correlation function is noisy, so the long-time behaviour is hard to take into
account. To arrive at practical estimates for comparing the dynamics, we have integrated
C(#) until it reaches zero for the first time. The parameters of these systems are
summarised in Table 2.1. These well-equilibrated systems are used as initial

configurations of the RNEMD calculations.
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All RNEMD simulations are carried out with the modified GMQ num code, the

numerical version of the molecular dynamics simulation software package GMQ.*"° I

n
this modified code, orthorhombic periodic boundary conditions are applied. The

simulation cells are elongated in the z direction (L, =1L, =L_/3), in which the

momentum flux is imposed. The equations of motion are numerically integrated by the
Verlet algorithm, the loose-coupling method of Berendsen®® is used to control the
temperature of the system, and neighbour lists' are used to speed up the computation of

the nonbonded potential. The cutoff for the nonbonded potential is », =1.5 nm. The

simulations are performed at constant temperature 7' =500 K. The momentum flux is
imposed by exchanging the x component of the velocity of beads as described in the
section 2. In order to cover a wide shear rate window, different velocity swap intervals
W - At are applied: At is taken in the range of 1-7 fs, W in the range of every 60 to 500
time steps. The velocity profile sampling rate W' =W +1 is in the range of every 61—
501 time steps for the production runs. The velocity profiles are sampled only in those
time steps in which no velocity swap is performed. Table 2 lists all the RNEMD control
parameters. The system takes a certain time to reach the steady state after the
perturbation is applied; this time depends on the chain length and perturbation strength.
The steady state can be monitored from the time evolution of the momentum flux during
the simulation, which decays to a stable average. The initial transient stage has been

excluded when calculating viscosity and analyzing structural changes. The resulting
shear rates for different systems are: PS-9 in the range of 1.7x10" —1.3x10"'s™", PS-20
in the range of 1.0x10" —6.6x10""s™", PS-30 in the range of 5.3x10° —5.7x10"s™",
PS-100 in the range of 1.2x10° —=5.1x10"s~".

It should be pointed out that the shear rates used in this work are very large
compared to experiment. This results from (i) a short simulation time, compared to
experimental time, and (ii) the requirement of a reasonable signal-to-noise ratio during
the accessible simulation time. Lower shear rates, could, in principle, be achieved by
increasing the velocity swap interval W -A¢ at the expense of a less well defined
temperature gradient.* The same is true for the algorithmic alternative of more often

selecting an atom pair for exchange with a smaller velocity difference.’ As a



consequence, some of the simulations are beyond the Newtonian regime. The shear rate

where shear thinning sets in can be roughly estimated as the inverse of the chain
relaxation time r’1,17’18’31 for PS-9 77" ~6.7x10", for PS-20 7' ~1.4x10" s'l, for
PS-30 7' ~ 6.3><1095'1, for PS-100 7' ~5.0x10% s Thus, it drastically decreases
with increasing molecular weight. This is a problem common to all non-equilibrium
simulations. With any method, one has to simulate long enough for polymer chains to
move past each other, and one has to accumulate enough such events for a well-
converged viscosity. Methods, such as the use of non-linear response theory and
transient time correlation functions have been used recently for molecular fluids such as
n-decane, *?, but are still waiting to be tried on high-molecular-weight polymers.
Therefore, there are but few reports on molecular dynamics simulation of direct
observation of the shear thinning onset for realistic polymer models, with one exception
being the work on polyethylene chains by Padding and Briels.'®
The error bar of the shear viscosity is calculated according to Eq. (7).

BURIESAN *MJ
L it ?

where, <77> is the average viscosity; < J. (p)C )> is the momentum flux averaged over the

production run and Aj, (px) is the standard deviation of the average < J. (p)C )>, <7/> is

the shear rate averaged over the production run and Ay is the standard deviation of the

average <7/>
2.4. Results and discussion

2.4.1. Shear viscosity and material functions.

Here we briefly give the definition of some quantities used to analyze the results
of our simulations. The apparent viscosity is calculated according to Eq. (1). The first
and second normal stress differences NV,(y) and N,(y) are calculated from diagonal

elements of the stress tensor using the following equation:

NIZPZZ_Pxx (8)
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N,=P, —P )

zz

P (a=x,y,z) is calculated from the atomic implementation of virial-theorem
expression:
N 5 N N
F,, :; z mi(via_via) +Z Zrquzja (10)
i i J>i
where, V' is the volume of the simulation cell, N is the total number of beads, m, and

v, denote the mass and actual velocity of ith bead, r; denotes the distance between

bead i and j, F, is the force exerted on bead i by bead j, a refers tox,y,

y

z components in the Cartesian coordinate system, v, is the local flow velocity of

1

ith bead, which is given by v, =(v_,,0,0). The first and second normal stress

differences N,(y) and N,(y)are presented here, rather than the first and the second
normal stress coefficients W, (7) and W,(y) (¥, =N,/y*,¥, =N, /y?), which are
sometimes reported, because N, and N, obtained from the simulations are associated
with their relative errors (particularly at low shear rate) and the division of N, and N,

by a very small shear rate(y — 0) leads to large uncertainties in ¥, and¥,. In

addition, the hydrostatic pressure P is computed from the normal stresses by Eq. (11).

P(y‘)%(& +P +P.) (11)

Viscosity. Fig. 2.4 shows the shear viscosity as a function of the shear rate for
polymer melts with different chain lengths. For PS-9, PS-20 and PS-30, the shear
viscosity functions exhibit two distinct regimes: a visible plateau at lower shear rates
and a shear-thinning regime at higher shear rates. For PS-100, the shear-thinning region
i1s dominant and the Newtonian regime is inaccessible in the given shear rate window.

The viscosity dependence on shear rate in the shear-thinning regime is often

empirically described as a power-law relation, in the form 7 o« 7. The exponent n

of the power-law can be obtained from the linear region in the log-log plot of the
viscosity versus the shear rate. For comparison, the exponents obtained from this work

and from some previous simulations on modelled polymers are collected in Table 2.3.
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Figure 2.4. Shear-rate dependence of the shear viscosity for PS-9, PS-20, PS-30, and
PS-100. Error bars are approximately the same size as the symbols and have been

omitted for clarity.

22



Table 2.2. The RNEMD control parameters: the length of the time step A7, the velocity

swap interval W for PS-9, PS-20, PS-30, and PS-100.

PS-9 PS-20 PS-30 PS-100
At At At At
w /4 w w
(fs) (fs) (fs) (fs)
1 60 1 60 1 60 1 60
2 60 2 60 2 60 2 60
4 60 3 60 3 60 3 60
7 60 7 60 7 60 5 60
7 75 7 90 7 90 5 90
7 90 7 120 7 120 5 120
7 120 7 180 7 180 5 180
7 180 7 240 7 240 5 240
7 240 7 400 7 300 5 300
7 347 5 330
5 360
5 500
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Our results suggest that the exponent n increases with molecular weight. This
dependence is more pronounced for the shorter chains (PS-9 and PS-20) than for larger

A 1" while

molecular weights. The data qualitatively agree with Xu et al.””, Bosko et a
Kroger and Hess' and Daivis e al.'? found invariant exponents, and a weak shear
dilatancy is detected for short chain (N< 20) in the work of Krdger and Hess." In
particular, Kroger ef al.'' show a tiny dependence on short chain-lengths and almost the
same exponent for longer chains. One should anyway be aware that these simulations
were performed at different conditions and using different models. Moreover, the
determination of the exponents is extremely sensitive to where on the shear rate curve
one assumes the power law to be valid."* The exponent n for PS-100 lies within the
experimental values reported for polymeric liquids (n in the range 0.4-0.9).** The
exponent derived by Doi and Edwards®™ from reptation dynamics is much higher
(n=1.5). Exponents reported from simulations are generally in the range of 0.20-0.74,
which are much lower than that predicted by reptation theory. The basic assumption of
reptation theory in an entangled network of polymer chains, whereas chain lengths used
in simulations are often too short to form entanglements. This could be one reason for

the discrepancy.

The zero-shear viscosity 7, is of both theoretical and industrial interest. It is
defined as the melt viscosity in the limit of y — 0 and it is a function of temperature

and molecular weight. Since in molecular dynamics simulation very low shear rates are

not accessible for complex liquids, the way to extrapolate the data to low shear rates

becomes a key issue when estimating the 7,. The extrapolation schemes used in
previous simulation are not entirely consistent. Cummings et al.*® evaluated the n, for

liquid rubidium by using the scheme 7 =7, —Ay"?, which is based on the mode-

coupling theory of Kawasaki and Gunton.’” Evans and Morriss® confirm this theoretical

prediction via NEMD simulation for the triple-point Lennard-Jones fluid. However, this

. 1/2

7'~ dependence of shear viscosity has not been confirmed for complex molecular

fluids. Moreover, recent work questions such dependence.’®* Daivis ef al.'? evaluated
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the 7, for the modeled polymer by the extrapolation scheme 7 =7, — 47>, which is

based on the retarded motion expansion (RME) for a third-order fluid. Bosko et al.

determined the 7,for dendrimer by taking the average of several extrapolation

schemes."* As RME offers a systematic and model-independent description of an

arbitrary viscoelastic fluid at low shear rates,*' it would be reasonable to evaluate the
1, of polymer by 7=n,—Ay> scheme. The 7, value of polymers has also been
obtained  from  experimental = work by the  extrapolation  scheme
log(n™') = log(nofl)—Arxz 24 where 7 1s the off-diagonal component (xz) of the
stress tensor. In this work, the 77, is determined as an average of values by using 2
different extrapolation schemes, as demonstrated for the case of PS-9 in Fig. 2.5: (1)

n=n,—-Ay’ and (2) log(n™') = log(nofl)— Az . For the latter extrapolation, we use

the momentum flux | J.(p,)| instead of the shear stressz _.Ther determined for all

systems are summarized in table 4, except for PS-100, because the given shear rate

window for PS-100 is unable to reach the Newtonian regime. The 77, determined by

these 2 extrapolation schemes agree well with each other in the uncertainty limit. The

dependence of 77, on the molecular weight is linear (7, «c M ) for short chains.* Such

dependence on the molecular weight is predicted by the Rouse model. As shown in Fig.

2.6, one observes an almost linear dependence of 7,0n the molecular weight with the

slopes of 0.98 and 1.10 obtained from both extrapolation schemes.

Experiment*® indicates that the zero shear viscosity for polystyrene of molecular

weight ~1000g/mol at 500 K is around 15x107Pa-s Comparing the 7, for the

similar molecular weight of PS-9 in this work, the simulation result (~0-06x 10~ Pa- $)
is much lower than the experiment, by a factor of ~250. As predicted by
hydrodynamics, the zero-shear viscosity and the self-diffusion coefficient are

approximately reciprocal.*’

The self-diffusion coefficient of the coarse-grained model
used in this work is, indeed, found to be a factor of ~200 higher than that of the fully

atomistic model of the PS-9 system.”* Therefore, the difference of the zero-shear

27



viscosity between simulation and experiment can be traced mainly to the fast dynamics
of the coarse-grained model used. There could be two possible explanations: (1). The
reduction of the number of degrees of freedom upon coarse-graining eliminates the
fluctuating force associated with those missing molecular degrees of freedom.* (2).
The coarse-grained force field is generally very soft. This leads to the reduction of
nearest-neighbor interactions, particularly of their repulsion, and thereby atoms can
more easily escape from the local cages formed by their neighbors.”> According to
Boltzmann’s superposition principle, the zero-shear viscosity can be deduced from the

time dependent shear modulus G(¢),” i.e.,

o0

m = [ Godr (12)

0

Hence, the fast dynamics of the coarse-grained model can effect 77, through the shear

modulus. Two parts contribute to the shear modulus in an unentangled system *
G(t) = Gmic (t) + GR(mse (t) (1 3)

The first term G, . (¢) accounts for the short-time behavior, which is controlled by the

internal degrees of freedom or microstructure. This contribution cannot be reproduced
well by a coarse-grained model, because short-time degrees have been eliminated in

order to improve the computational efficiency. The second term G, (¢) accounts for

Rouse
the generic Rouse dynamics, which can be reproduced by the coarse-grained model
taking into account a time scale factor. Both terms complicate the viscosity prediction
in coarse-grained model, and for details a further study is required. Still, the agreement

of 7, with Rouse theory and experiment is encouraging when the time scale factor is

taken into account.
Normal stress difference. As in experimental® and previous NEMD simulation

15,19
data, ™

the first normal stress difference N, predicted from this work is positive for
all cases, as shown in Fig. 2.7, This validates the theoretical prediction that simple shear
is accompanied by a non-vanishing normal stress difference.”” Physically, this

corresponds to a compressing force perpendicular to the plane in which shear flow take
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place. As the shear rate increases, N, increases significantly, following a power law in
the shear-thinning region in the form: N, oc y* (For PS-9, 20, 30, 100, « =1.0, 0.72,
0.66, 0.53 ). A similar behavior has been observed for polyethylene by Jabbarazadeh et
al. in their NEMD simulation."” Concerning the second normal stress difference N,,
both experimental and simulation work provide only limited data. However, it is has
been pointed out based on experimental findings, that N , 1s negative for
homogeneous polymer liquids, that— N, /N, typically lies in the range 0.2~ 0.3, and
that it is insensitive to the shear rate. Fig. 2.8 indicates that N, is negative for nearly all
the systems and it increases with the shear rate in the shear-thinning region. The values
of = N, /N, in the shear-thinning region for PS-9, 20, 30 are in the range of 0.2~ 0.3,
for PS-100 is 0.1~0.2.

Hydrostatic pressure. Fig. 2.9 shows the dependence of the hydrostatic pressure on the
shear rate. Two different regimes are visible. At higher shear rate, the hydrostatic

pressure increases with the shear rate, and it seems again to follow the power

17,19

law P = P, + 77 . Similar behavior was found for polyethylene' """ and dendrimers.'* At

lower shear rate, there is a small, if any, increase of the hydrostatic pressure, and it is
close to the equilibrium value. Moore ef al.'” have found a minimum of the hydrostatic
pressure before a rapid increase, and this pressure minimum occurs at the same shear
rate in which the intermolecular LJ potential energy has a minimum. Due to uncertainty
at the low shear rate in our result, the existence of such a minimum can neither be

confirmed nor ruled out.
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Table 2.4. Estimated values of the zero-shear viscosity (770) by the different

—47" log(n™) =log(, )~ 4j.(p,)

extrapolation scheme (1) "7 = 7o

Extrapolation PS-9 PS-20 PS-30
scheme (mPa-s) (mPa - s) (mPa - s)
1 0.060+0.3% 0.122+0.5% 0.182+2%
2 0.061+8.0% 0.148£10% 0.208 £12%
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Figure 2.5. Demonstration of the extrapolation schemes used to obtain the zero-shear

viscosity from simulation for the PS-9 system. (a) Scheme 1: 7 =17, — Ay*(b) scheme
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2.4.2. Structural alteration under shear

The dependence of the molecular configurations and alignment on the shear rate
is covered in this section. In the following analyses, the molecules, whose centres of

mass are in the velocity-exchange slabs (slabl and slab 11), have been excluded.
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Average chain dimension. Fig. 2.10. shows the root mean-squared gyration radius
<R2>1/2 as a function of the shear rate for different chain lengths. Fig. 2.11 shows the
configurations of a single chain of PS-100 under different shear rate. At low shear rates,
<R2>1/2 approaches its equilibrium value. As the shear rate increases, the shear field

deforms the configuration and elongates the chain. These changes are more marked for
the long chains.
Shear-induced alignment. Shear-induced alignment is investigated in term of

birefringence extinction angle y . As in RNEMD, the flow field imposed on the system
corresponds to two symmetric planar Couette flows, the momentum fluxes ;. ( px) in

the upper and lower halves are equal in magnitude but opposite in direction. Both half
cells have the same shear rate, but the velocity profiles are symmetric. As a
consequence, polymer chains are aligned symmetrically in the two halves of the
simulation cell. This is found, indeed, in the distribution of the single-molecule
alignment angle &, the angle between the end to end vector and the flow direction x,
as shown for the case of PS-30 in Fig. 2.12. Therefore, the birefringence extinction

angle y should be calculated from both halves of cell separately. One can take the
average of y from both half cells to improve the statistics. To describe the shear-
induced alignment, we calculate an order tensor S defined in Eq. (14).

S:i<i(ui Qu, —llj> (14)

N\S 3

Where, u, is unit vector along the end-to-end direction of the molecule i, I is the unit
tensor. The angle brackets indicate an ensemble average. The birefringence extinction
angle y is calculated as the angle between the eigenvector of S corresponding to the

largest eigenvalue of the order tensor and the shear flow direction x. As shown in Fig.
2.13, the birefringence extinction angle decreases as the shear rate increases. These
changes describe quantitatively the alignment of the system with respect to the flow
direction. The process of chain alignment, in combination with chain stretching, leads

to a macroscopic anisotropy of the material. It is expected that the birefringence

34



extinction angle converges to 45° in the Newtonian regime.” The birefringence
extinction angles of PS-9 and PS-20 system at low shear rates are close to 45°, but the
birefringence extinction angle of PS-100 is still far from 45°. This indicates again that

the shear rates used in this work are not low enough to reach the Newtonian regime for

the long chains. Note that, for PS-100 at the highest shear rate of 7 = 5.06x10'°s™", the

root mean-squared gyration radius <R2 >1/2 is larger than the half length of the simulation

cell (L,/2 and L,/2), and the finite box size limits the minimum flow alignment

angle to around 5°.

2.5. Summary

The RNEMD method has been used to calculate the viscosity of a coarse-
grained model of short-chain polystyrene. The simulations were performed at constant
temperature and constant volume. The viscometric functions obtained in this paper can
be summarized as follows: 1. The zero-shear viscosity is linearly dependent on the
molecular weight for PS-9, PS-20, and PS-30 systems; this agrees with experiments and
the theoretical prediction of the Rouse model. 2. The shear-thinning behaviour for all
studied systems follows a power law. The exponent of the power law increases with the
molecular weight, and this dependence is more pronounced for short chains (PS-9 and
PS-20). 3. The first normal stress difference is positive and the second normal stress is

negative for all systems. The first normal stress difference follows the power law of
form of N, oc y“at higher shear rates. 4. The hydrostatic pressure increases at higher

shear rates. The structural changes under shear are quantitatively investigated. The
analysis of these effects indicates that the process of chain alignment, in combination
with chain stretching, leads to a macroscopic anisotropy of the material. The reverse
non-equilibrium molecular dynamics method gives reliable results in the Newtonian
regime, and a still reasonable agreement with homogeneous-shear NEMD methods at
higher shear rates. As other methods, it has problems when the shear rates are extremely

high.
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The extrapolated zero shear viscosity is linearly dependent on the molecular
weight, even though its absolute value is lower than the experiments by a factor of ~200
for the shortest chain length. This scaling factor is probably due to the well-known
intrinsic speed up of the coarse-grained model. The scaling factor found for the
viscosity is close to that of the diffusion coefficient calculated from equilibrium MD
simulations of the same model. This result indicates the CG model which has been
developed taking only structural information into account can reproduce the generic
Rouse behaviour, and those short-time degrees which have been actively removed in
the CG model are responsible for the larger difference of zero-shear viscosity between

simulation and experiment.
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3. Backmapping coarse-grained polymer models

under sheared nonequilibrium conditions

3.1. Introduction

Polymers exhibit physical properties in a broad range of length and time scale,
and these properties cannot be viewed on one length scale alone. However, any
individual molecular simulation technique is restricted to much narrower range. In
order to have a complete picture of the polymers, much effort has been made to study
them by means of molecular simulation through a hierarchical approach.'?” Multiscale
simulation is a neither unique nor trivial path from one scale to another. Coarse-
graining is the process of “zooming-out”: the “forward-mapping” process, passes from
a detailed model to a simpler one. Often, the terms “coarse-grained” (CG) and
“mesoscopic” are used indiscriminately and can mean different things. In this paper, we
define the term “coarse-grained” following ref. 5: One interaction centre (also referred
to as “bead” or “superatom’) contains of the order of 10 real non-hydrogen atoms or
approximately one chemical repeating unit. CG models employed here retain some
chemical individualities. Therefore, they are not generic models, but material-specific.
CG models have been proven to be very efficient in studying the complicated behaviour
of polymers. This efficiency comes from the fact that CG models only take into account
those degrees of freedom deemed relevant for the particular properties studied.*™ On
the other hand, the amount of detailed information lumped in one single CG bead can
obscure some fundamental aspects, and it can preclude the calculation of polymer
properties, which depend on the positions of atoms. Therefore, one also needs a “zoom-
in” procedure which restores the atomistic features to a CG model. Indeed, the chemical
details discarded in the CG model can be reproduced by reinserting the atoms. This
method is called fine-graining, reverse-mapping or backmapping. The main

applications of backmapping are listed below:
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(1) Making different kinds of analyses at different levels’. Refining a CG model
is a reliable method to generate atomistic structures, at least as probed by neutrons,

positronium and small penetrants™*'

. By tracing the CG model, which depends on the
properties of entire chain, back to atomistic level, the “atomistic” properties, which
depend on the behaviour of individual atoms, can be also calculated. For example, the
structure factor calculated from backmapped bisphenol-A polycarbonate melt agrees
with neutron scattering,” the properties probed by atomic motion agree with the
diffusion of penetrants through polymer.’

(2) Generating equilibrated ensembles with atomistic details for conducting
further atomistic simulation or predicting properties for which atomistic details are
important. In this case, CG model plays a role as means of relaxing the atomistic
structure. By refining CG structure from a CG trajectory which has already undergone
relaxation, a great computation cost is saved.

As most CG simulation studies focus on reproducing static structural properties,
such as distributions of geometric quantities, and thermodynamic properties, like
cohesive-energy, density and pressure, the simulations are performed under equilibrium
conditions. Accordingly, efforts in developing backmapping method are pursued on
equilibrium systems. Early attempts at the backmapping method have been made by
Tschép et al. * and Kotelyanskii et al.'' In particular the latter proposed a specific fine-
graining procedure in order to introduce atoms into their lattice model of polystyrene.
Presently, backmapping has been widely used to generate atomistic structures from CG
equilibrium ensembles.”'*!*> On the other hand, dynamic properties, in particular melt
viscosities under shear or elongational flow, are of great interest to the polymer
manufacturing and processing. Recently, these dynamic properties have been a
simulation target in some CG simulations"', which were performed under
nonequilibrium conditions. To the best of our knowledge, so far no attempts have been
made to develop backmapping methods for the nonequilibrium situations. Thus, a
robust backmapping method for nonequilibrium systems is still needed.

In a typical protocol, backmapping an equilibrium system involves two steps:
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(1). Each CG bead is reconstructed in atomistic detail. To do this, templates of
many possible atomistic structures are set up and the CG beads are replaced by a proper
selection from one of these templates which fits the contour of the underlying CG
chain. The template library is generally extracted from a (preceding) atomistic
equilibrium simulation. If several atomistic configurations fit one CG bead, the
atomistic structure is chosen, which allows the best superposition also for the bead’s
neighbourhood. The construction of the other monomers continues until the end of the
chain. In this step, only geometric criteria are used, no force and potential energy
calculations are involved, which leads to a high backmapping efficiency. If a CG bead
contains a complex atomic structure with bulky side groups, a straightforward
reinsertion of atomistic details often leads to artificial interlocks of side groups, for
example, the catenation or spearing of phenyl rings. In this case, a strategy is needed to
avoid interlocking. In ref 13, the catenation of phenyl ring is removed in the following
way: add fictitious Lennard-Jones particles centred in the phenyl rings; the non-bonded
interactions are gradually introduced on both fictions and genuine atoms until to their
full values: afterwards, the fictitious particles are removed. In this stage, avoiding
interlocking of side groups needs force and potential energy calculations. We refer to
this preparatory stage as a pre-process for the structural optimization.

(2). Collective and local relaxation are performed with energy minimization,
molecular dynamics or Monte Carlo optimization. The atomistic configuration
generated in step (1) is not the most ‘comfortable’ one in its local environment. Atom
overlaps may have been generated. The reason is that the CG force field is derived from
average atomic distributions. The cross dependence between different distributions in
the atomistic description is generally neglected. Harmandaris et al '* have pointed out
that this approximation may lead to conformations, which do not exist in the atomistic
description, still being sampled in the CG model. When atomistic details are re-inserted
into such CG conformation, strong overlaps may result. This happens more often in
coarser CG models. Therefore, relaxation by energy minimization (EM), molecular
dynamics (MD) or Monte Carlo (MC) is required to eliminate such artefacts. Generally,

EM leads to the nearest local energy minimum, while MD and MC can, in principle,
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reach the global energy minimum. Further relaxation of the atomistic structure is
achieved post-processing it with atomistic MD run or sometimes a combination of EM
and MD, or even Mmc!,

There are two additional requirements in backmapping a nonequilibrium CG
system: (1) The deformed CG configurations need to be retained in the atomistic
picture. Usually, stretched and sheared polymer configurations in nonequilibrium
systems are different from equilibrium ones. The backmapped atomistic configurations
should be able to reflect these features. The backmapping process must therefore relax
the polymer locally but not its global structure. (2) The deformation energy stored in the
chain of the CG model should be passed to the atomistic level. In an atomistic

15,16
1 5

molecular mechanics mode of a deformed chain, three types of valence coordinates

(bond lengthr,, bending angle ¢, and torsional angle ¢, ) deviate from the equilibrium

values and the deformation energy stored in the chain is dissipated in them. These
deformations have been recorded in the CG structure during the nonequilibrium
process, and a proper backmapping method should be able to translate these CG
coordinates into atomistic ones. Obviously, the common backmapping methods cannot
meet these requirements for two main reasons: (1) During EM or equilibrium MD or
MC runs applied to the system after remapping (step 1), the conformation generated
from the nonequilibrium CG simulation is unstable and relaxes quickly toward
energetically more favourable structures, which are no longer stretched. (2) The
atomistic coordinates r,, o, and ¢,, which are obtained by reinserting the atomistic
equilibrium templates, do not correspond to the parent deformed CG conformation. In
this paper, we propose three strategies and a new backmapping procedure to meet the
above mentioned requirements. An application to atactic polystyrene melts under steady

shear flow is demonstrated.
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3.2. Strategies and procedure

3.2.1. Strategy 1: Preserving globally sheared configurations in the

backmapping procedure by applying position restraints.

To meet the first requirement, i.e. to retain the global stretched configuration
from the CG simulation, we apply position restraints to all those atoms which coincide

with locations of CG beads. The position restraint potential V', is given by

V :%kpr(ri_R')z (1)

pr i
where, &, is the force constant, r, is the coordinate of particlei, R, is its fixed

reference position. Two remarks are necessary here: (1) In this study, the force constant

k,. 1s taken as 10000 kJ mol 'nm ? | which is sufficiently stiff to preserve the

configuration from the CG run while its contribution to total energy is fairly small (see
below). This values, however, is probably not transferable to other CG models. It, in
principle, may depend on polymer stiffness, nonequilibrium conditions, mapping
scheme and other system peculiarities. (2) In the present study, the CG beads are
located on real atoms. Therefore, the CG coordinates can be directly used as reference
positions. Depending on the CG mapping scheme, the CG coordinates may be located
on the centre of geometry or centre of mass of the group of atoms and not coincide with
any real atoms. In this case, the reference positions need to be recalculated and the

method elaborated here is still adaptable.

3.2.2. Strategy 2: Achieving a globally deformed, but locally relaxed

atomistic structure through a molecular mechanics approach.

In the molecular mechanics force field, the total potential energy V of
deformed molecules can be decomposed into two terms:

V=U_ +V
con ex (2)

where, V,, 1is the imposed external field, U, is the conformational energies of

ex

. 1 .
chains, 7. i.e.
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U=>Y U@+ U@+ U@+ >.U() (3)

The first two terms U(7)and U(a)express the contributions to the potential energy of
the molecules due to the deviation of bond lengths and valence angles from the

reference (relaxed) values », and «; respectively. The third term U(¢)is the torsional
potential and U(/) is the nonbonded interaction between particle pairs i and jas the
function of distance /. The structure of the deformed molecules can be generated by

minimizing the conformational energy in the presence of an applied external force. This
procedure has been adapted in generating deformed polymers '®'7. We borrow this idea
to generate the deformed local atomistic structures out of template structures from an
equilibrium (undeformed) simulation. Here, the external potential is the position
restraint potential. The procedure is illustrated in Fig. 3.1: we insert atomistic
equilibrium templates in place of the CG beads and restrain all atoms coinciding with
bead locations. Then we energy-minimise in the presence of the position restraints until
the total energy converges. If one neglects the weak energy contribution from the
position restraints, the conformational energy is approximately the total energy. This
approximation is reasonable, as in this study, the contribution from position restraints to

the total energy is less than 4% in the first EM step and less than 1% in the final step.
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Position restraint Position restraint
Figure 3.1. llustration of rebuilding the atomistic details for coarse-grained (CG) beads
within a deformed chain conformation. For simplicity, one CG bead is assumed to
contain a 3-carbon paraffin-like structure. One CG bead is indicated by one circle. (a)
Atomistic equilibrium templates (dashed line) are inserted in places of their
corresponding CG beads. (b) Atomistic structure before structure optimization (dashed
line). (c) Atomistic structure after optimization with applying position restraints (solid
line); arrows indicate the position restraints applied. For comparison, the atomistic

structure before optimization (dashed line) is also shown in (c).
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3.2.3. Strategy 3: Minimizing the isolation of segments introduced by the

position restraints via an iterative procedure.

An additional problem arises when one attempts to meet both requirements
simultaneously: One needs more position restraints to preserve the global configuration
as precisely as possible, and at the same time as few as possible for optimizing the
deformed atomistic structure, because they hinder also the /ocal rearrangement of chain
segments. The atomistic structure so generated (via strategy 2) is only locally
optimized. i.e. stresses within the chains are not transmitted across a restrained atom
and the local conformation does not feel that it is part of a long chain; we refer to this
effect as segment isolation. Therefore, we attempt to find a compromise between the
two requirements. We are interested in the average properties of the nonequilibrium
system, which are not seriously be affected by the local conformation of an individual
segment. Based on this consideration, we use fewer position restraints and distribute
them evenly over the whole polymer chain. In this way, the global conformation is still
preserved although not all atomistic segments are fixed precisely to the positions of
their parent CG beads. We optimize the structure until the energy converges. The
conformation so generated still suffers from segment isolation but to a smaller extent. A
remedy is to shift the restraints and repeat the energy minimisation: We use same
number of position restraints but move them to those atoms, which were free in the
previous EM run, and optimise again until the energy converges. We repeat the EM
runs until the energy is converged in the presence of various position restraints. The
final conformations can be regarded as independent of the locations of position

restraints.

3.2.4. Backmapping procedure

Our backmapping procedure for a nonequilibrium system involves three steps,
as is outlined in Fig. 3.2. In the first step, each bead of the CG model is replaced by an
atomistic segment, whose conformation is extracted from the library of average

equilibrium conformations. A pre-processing for avoiding interlocking of bulky side
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groups is also included in this step. At this step, the usual recipe for backmapping is
followed. In the second step, the atomistic structure is energy-minimised while applying
position restraints to all atoms coinciding with the locations of their parent CG beads
(in the example of polystyrene, these are all methylene carbons). In the third step, the
atomistic structure is re-optimized with fewer position restraints. Several position
restraint schemes can be alternated during the structure optimization. The conformation
whose energy converges in the presence of various position restraint schemes is
accepted as the final one. This procedure can have problems at the chain end, since a
chain end has more freedom and a behaviour different from the central segments. The
longer the chain length is, the less important these problems become. In this study, no

position restraints are applied to the chain ends.
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Reinsert the atomics details and eliminate the
artificial interlock of bulk side groups Step 1

EM run ( full-position-restraint scheme )

Step 2

Energy converges
with full-position
restraint scheme 7

Yes

EM run { partial-position-restraint scheme 1)

nergy converges with
partialposition-restraint
scheme 17

Step 3

EM run {partial-position-restraint scheme 2)

Energy converges with
partial-position-restraint
scheme 27

Energy converges with partial-
position-restraint scheme1?

End
Figure 3.2. The workflow of the backmapping procedure of a coarse-grained sheared

nonequilibrium conformation. The position restraint schemes are explained in Figure
3.3.
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3.3. Mesoscale models of vinyl polymers and the
structural alteration under steady shear flow studied by
reverse nonequilibrium molecular dynamics

This section is intended to guide readers quickly to the earlier work that is
essential for understanding the present investigation. Extensive details can be found in
ref. 18 and ref. 1.

A systematic procedure to coarse-grain atomistic models of vinyl polymers into
off-lattice mesoscopic models was developed in our earlier work.'® This model is able
to keep informations about the polymer’s stereosequence. A diad is considered as the
shortest distinguishing piece of a stereosequence. If a diad contains two consecutive
same absolute configurations (RR or SS), the diad is labelled as meso (m diad); if they
are different (RS or SR), it is labelled as racemo (r diad). The basic idea of this
mapping scheme is to consider a diad as a superatom. Accordingly, a CG bead of
polystyrene corresponds to a diadic m or r unit, and the centre of this CG bead is the
methylene carbon, as illustrated in Fig. 3.3. The force field of this CG model has two
types of particles (m and r), three different bond types (mm, rr, mr), six angle types
(mmm, mmr, mrm, mrr, rmr, rrr). Bonds and angle distributions and intermolecular
radial distribution functions extracted from atomistic simulation are considered as
target distribution. The CG bond and angle potentials were obtained via direct
Boltzmann inversion of their multi-peaked distributions, which, for computational
convenience, were approximated as sums of several Gaussian functions."” The CG
nonbonded pair potentials of each pair of beads are obtained by iterative Boltzmann
inversion of the corresponding radial distribution functions, the pressure information is
incorporated into the optimization of nonbonded potential by means of a so-called ramp
correction.'® For ease of reference, the parameters of CG force field used in this work

are reproduced in Appendix 3.
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1St EM run
(Full-position-restraint scheme )

2nd EM run 4 ; 4 4
(Partial-position-restraint scheme 1) | | ; : :

3rdEM run f +
(Partial-position-restraint scheme 2) | : ' ’

4t EM run "‘ f "‘

5th EM run

Figure 3.3. Illustration of the atomistic-to-coarse-grained mapping scheme for atactic
polystyrene and the position restraint scheme used during energy minimization of a
backmapped sheared nonequilibrium system. Coarse-grained beads are indicated by
ovals corresponding to meso (m) or racemo (r) diads. The centres of these superatoms,
indicated by filled squares, are the methylene carbons. The arrows along the dashed
lines indicate the position restraints used in the successive EM runs. For details, see

text.
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The reverse nonequilibrium molecular dynamics (RNEMD)* was used to
investigate the rheological behaviour of the CG model of polystyrene under steady
shear flow. The RNEMD algorithm for shear flow by is illustrated in Fig. 3.4. The
simulation box is partitioned into an even number of slabs along the z direction. One
periodically searches in the first slab for the atom with largest negative x component of
the momentum, and in the central slab for the atom with largest positive x component.
If these two atoms have same mass, one exchanges their momenta. By repeating this
procedure periodically, an unphysical momentum flux is imposed and a velocity
gradient or shear field results.

In RNEMD, the flow field imposed on the system corresponds to two symmetric
planar Couette flows, the momentum fluxes in the upper and lower halves are equal in
magnitude but opposite in direction. Both half cells have the same shear rate, but the
velocity profile is symmetric. As a consequence, polymer chains are aligned
symmetrically in the two halves of the simulation cell. We have quantitatively
characterized the structural alteration of a CG model under steady shear flow. The
average chain dimension was characterized by the root mean-square gyration radius and

the shear-induced alignment by the birefringence extinction angle .' . In order to

obtain y , we first calculate an order tensor S

e oo
S=—(>|u, ®u, ——I
N\S 3 (4)

where u,; is the unit vector along the end-to-end direction of molecule i, and I is the

unit tensor. The angle brackets indicate an ensemble average. The birefringence

extinction angle y is calculated as the angle between the eigenvector of S

corresponding to the largest eigenvalue of the order tensor and the shear flow direction

X. The birefringence extinction angle y gives the preferred alignment direction
respective to the flow. In ref. 1, y was calculated from both the upper and lower halves

of cell separately, the reported values were the average of y from both half cells.
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Figure 3.4. Sketch of the RNEMD method for calculating the shear viscosity. The flow
field imposed on the system corresponds to two symmetric planar Couette flows, which
have the shear flow in the x direction, and the velocity gradient is in z direction.
Horizontal arrows in the simulation cell indicate the velocity field. The periodic
orthorhombic simulation cell is partitioned into 20 slabs in the z direction. Reproduced

from ref. 1.

3.4. Model and computational details

3.4.1. Coarse-grained potential and generation CG configurations under

steady shear flow

References 18 and 2 report, respectively, the CG model of atactic polystyrene
and the corresponding force field parameters used in this work. In this CG model, the
bond stretching and the bond bending potential were parameterized to reproduce the
corresponding distribution functions (bonds, bond angles and radial distribution
functions) of an atomistic melt of short chains. The nonbonded potentials were derived
by iterative Boltzmann inversion to reproduce the chain packing of the short chain melt.
The most important characteristics of this model are: the polystyrene diad is coarse-
grained as a superatom (bead) in the mesoscale effective force field; the center of the
superatom is placed at the methylene carbon; two different types of superatoms are

designated according to the configuration of two adjacent pseudoasymmetric -CHR—
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methyne groups, either meso (same configurations RR or SS) or racemo (opposite
configurations RS or SR), as shown in Fig. 3.3; the corresponding force-field contains
three different bonds, six angles and three nonbonded terms. This CG model retains the
tacticity of polystyrene, so we are in a comfortable situation of being able to map the
CG monomers back onto the different groups of the underlying atomistic structure.

The deformed CG conformations were generated by reverse nonequilibrium
molecular dynamics (RNEMD) simulations.”” Ref. 1 gives the details about how we
generate the CG conformations under a steady shear flow by RNEMD simulation. The
RNEMD simulations were performed at constant temperature (T= 500 K) and constant
volume. The global features of the deformed CG system such as the root mean-square
gyration radius and the birefringence extinction angles followed the expected trends.'
Two sheared nonequilibrium systems are selected to be studied. We refer as PS-30 and
PS100 to these systems containing 30 and 100 CG beads per chain, respectively,
corresponding to molecular weights of 3.23 kDa and 10.52 kDa. For the sheared PS-30
and PS-100 systems studied here, the momentum fluxes are imposed in RNEMD by
velocity swapping every 60 time steps with the time step length of 1 fs. All CG
calculations were carried out with the modified GMQ num code. The final CG
configurations, deformed by a steady shear flow of 1 ns, are selected to be backmapped.
For comparison, the unperturbed CG structures from an equilibrium run of 2.4 ns are

also backmapped. The backmappep systems are characterised in Table 3.1.
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3.4.2. Technical details of energy minimization run for the backmapped
nonequilibrium structures and molecular dynamics run for the backmapped

unperturbed ensembles.

The molecular simulation package GROMACS *'** is used for both EM and MD
under constant volume and constant temperature (500 K). All bond lengths are kept
rigid by the SHAKE procedure®. The cutoff for Coulombic and Lennard-Jones
interaction is 1.35 nm with a Verlet neighbour list **cutoff of 1.38 nm. The atomistic
force field used here is the one reported in reference 13. For ease of reference, the
parameters of atomistic force field used in this work are reproduced in Appendix 2. For
energy minimisation, the steepest descent method® is used for finding a local potential-
energy minimum. The convergence threshold for the maximum force is set as 100 kJ
mol " nm . The force constant for the position restraint potential is 10000 kJ mol "' nm
2 Since the bond-stretching potential is much stiffer than the ones of angle bending and
torsions, the dominating changes of coordinates in the deformed atomistic structure are

expected in the torsional angle ¢ and the bending angle « . The changes of bond

coordinates are negligible; therefore the use of bond constraints is justified. For MD
runs for the unperturbed PS-30 and PS-100 systems, simulation lengths are over 2.4 ns,
the Berendsen thermostat®® is used to control the temperature of the system, with a

temperature coupling time of 0.2 ps at a time step of 2 fs.

3.5. Backmapping procedure for atactic polystyrene

under shear flow

3.5.1. Reconstructing the atomistic details using equilibrium structural

templates

Here we follow the same strategy as ref. 13 to rebuild the atomistic details. We

use quaternions to dock atomistic diads into the coarse-grained conformations. First, the



absolute chirality of one end group is chosen as R or S with equal probability, since this
is not determined by the CG model. Once the chirality of the end group is fixed, the
chirality of the other repeating units can be established by the sequence of superatoms
in the CG model. This chirality can be translated into an atomistic structure according
to the mapping rules, which defines the sequence of three successive atomistic
chiralities when backmapping two successive CG beads, as given as Table 3.3 in ref.
13. Second, the atomistic end group is rebuilt by superposing the three superatom
centers with the corresponding three methylene groups (indicated by filled squares in
Fig. 3.3). In a similar way, the following CG diads are replaced by the three methylene
groups of the atomistic diad model. The replacement continues until the end of the
chain. Afterwards, according to the mapping rule above, atomistic diads of different
chiralities and different dihedral conformations are selected from a library containing
possible structures. Each atomistic structure in the library is in the minimum-energy
geometry for the given dihedral conformation of the isolated diad.

Some catenations of phenyl rings occur after reconstruction of atomistic details
as described above. They are eliminated in the following way: We introduce the
additional fictitious Lennard-Jones particles centered in the phenyl ring. The nonbonded
interaction is turned on for both fictitious and genuine atoms sites. EM runs perform
with gradually increasing the nonbonded parameters epsilon and sigma of these atoms
sites until the catenations of phenyl rings disappear. Afterwards, the nonbonded
interactions on the fictitious atoms are turned off, the nonbonded interactions on
genuine atoms sites (including the genuine atoms on the phenyl ring) are left on. EM
runs are repeated with gradually increasing the epsilon and sigma parameters until they
reach the full values as reported in Table 3.1 of reference 13. Finally, the fictitious
particles are removed. Note that during this preprocessing for eliminating phenyl ring
catenations, the positions of all backbone atoms (methylene and methyne carbons) are

fixed by position restraints.
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3.5.2. Structure optimization by energy minimization

The EM run procedure is illustrated in Fig. 3.3. In the first EM run, position
restraints are applied to all methylene carbons, which correspond to the centres of CG
beads, except the methylene carbons at the chain ends. The aim of the first EM run is to
regularize local structures which come from equilibrium structural templates. One can
speculate that the motion of phenyl side groups is decoupled from the motion of the
backbone by the presence of the position restraints, which isolate the motions of
neighbouring segments from each other. It has been demonstrated by Lyulin et al *’ that
there is a strong coupling between motions of the backbone and the pendant phenyl
groups even at high temperature (650 K). We minimize the segment isolation effect by
several EM run, each EM run being characterized by one of two different types of
restraint schemes. In the second EM run, position restraints are still apply to methylene
carbons but only of every other unit. In the third EM run, position restraints are shifted
by one repeating unit to those atoms which were free in the previous EM run. This
process is iterated until the energy converges under both partial-position-restraint
schemes. In our test, 10 EM runs are sufficient to reach energy convergence with two
partial-position-restraint schemes for both PS30 and PS100 systems. An atomistic

chain, backmapped from the sheared CG PS100 system, is illustrated in Fig. 3.5.
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Figure 3.5. A backmapped chain (bottom) from a corresponding coarse-grained chain
of 100 repeating units (top). The red beads are the meso and the yellow ones the racemo

superatoms.

In order to demonstrate the influence of an initial EM run on the dynamics of
polymer chains, we perform stress relaxation by molecular dynamics over a short period
of 300 ps for two different NV'T ensembles: one has the initial configurations optimized
by the proposed method; the second one has the initial conformations generated by
simply reinserting the atomistic details without any EM run. We analyze the
reorientation dynamics of local chain segments and the end-to-end vector for both

simulations by means of the autocorrelation function of the second Legendre

B of chain segment vectors.

polynomial
Cpor (1) = <% B, (0, (0)7 - 1]> ~ (B[, )i, (0)) (5)

As chain segment vector u,, we take the normalized vector connecting two atoms

along backbone.
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— i Timd (6)

where, 7, denotes the coordinate of atom i, the subscriptd denotes the number of atoms

from atom i. Here, we take d as 1 and 4, the chain segment vectors u, and u, are

illustrated in Fig. 3.6.

Figure 3.6. Atom labelling and orientational vectors for polystyrene used in this work.

The influence of the protocol used to prepare the initial structure on the short-

time reorientation dynamics is shown in Fig. 3.7. The reorientation dynamics deviates

—tlt

from a simple exponential decay (C,,, (f)~e "'"). Nonetheless, we use an

exponential fit to obtain very rough estimates of the reorientation times 7 (Table 3.2).
For all chain vectors investigated, the 7 values of those conformations generated with
optimization are longer than the one without optimization. It is evident that the pre-
optimized conformation has a higher relative conformational stability, in other words, a

large fraction of the local relaxation has already taken place during the EM runs.
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Figure 3.7. Chain segment autocorrelation function of the chain vector (a)u,, (b) u,
and (c) end-to-end vector for different polystyrene-30 systems under NVT conditions
(T=500K): initial conformations optimized by EM runs with the proposed method
(solid line) and initial conformation generated by simply reinserting the atomistic

details without any EM runs (dashed line).
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Table 3.2. orientation relaxation times 7 (ps) obtained by fitting an exponential

(C.... (1)~ e to the curves in Fig. 3.7 between 150 ps and 300 ps.

System u, U, End-to-end
backmapped without
o 175 294 1615
energy minimisation
backmapped followed
by the energy 244 399 1828
minimization protocol

3.6. Local characterization of the backmapped

structure

The root mean-square gyration radius obtained from the backmapped structure
for PS-30 system is 13.9+0.2 nm, the CG value 13.8£0.1 nm, the difference being
negligible. The perfect agreement comes from the fact that the backmapping method
preserves all global features of the CG structure; therefore, here the only interesting
characterization involves the local structure of the sheared polymer chains.

One possibility to validate the ability of the backmapping method is to compare
the so-called reduced intensity function (or interference function) calculated from
simulation with that from wide angle X-ray scattering (WAXS). The experimental
reduced intensity function is defined by Eqn. (7)**

1(q) = Kl.,,(q) - z @ =1,(9) (7
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where, /. (g) is the fully corrected intensity, k is a normalization factor needed to

corr

place the intensity on an absolute scale (in electron units per atom). Z S /.2 (q) 1s the
J

independent atomic scattering. /_ (q) is the Compton scattering. Unoriented high-

comp
molecular-weight atactic polystyrene X-ray structures are characterized by a diffuse

halo (referred to as the polymerization peak) at around ¢ = 7.5 nm™" and a ubiquitous

“amorphous halo” at ¢ =14 nm™". It has been pointed out that the X-ray density profile

of oriented atactic polystyrene is anisotropic:®’ Intrachain peaks intensify in the
extension direction (meridian), and interchain peaks intensify perpendicular to the
extension direction (equator). Fig. 3.8 shows the g-weight reduced WAXS intensities
(q-] (q)) in equatorial and meridional sections for atactic polystyrene, which was
oriented at 358 K with an extension rate 3 by extrusion in a channel die. The
experimental data indicate that the polymerization peak (g = 7.5 nm™") is intensified in
the equatorial section.”® Ayyagari et al. *' quantitatively analyzed the intramolecular and
intermolecular contributions to the X-ray structure factor of unorientedatactic
polystyrene by means of molecular dynamics simulation. They concluded that there are
important intramolecular and intermolecular contributions to the high-q peak, while the
structure in the low-q peak region appears to be primarily of intermolecular origin.
Therefore, we may infer that the intensification of the polymerization peak in the
equatorial section indicates intermolecular packing in the direction normal to the chain

extension.
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Figure 3.8. Experimental WAXS data for atactic polystyrene oriented at 358K by

extrusion in a channel die. Rproduced with permission from ref. 28.) (b) g-weighted
reduced intensity function (q 1 (Q)). The dashed contours represent negative values. (c¢)

plot of meridional (& = 0% solid line) and equatorial (& = 90” | dashed line) sections of
Fig. 3.8 (b). The X-ray scattering intensity was measured using a symmetrical
transmission diffractometer, as shown in Fig. 3.8 (a). (Reproduced with permission

from ref. 29).
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The X-ray intensity can be also calculated by Fourier-transforming pair
distribution functions obtained from simulations. For oriented polymers, this intensity

is explicitly dependent on the direction of the vector ¢ in reciprocal space, or
equivalently the vector 7 in real space. In order to compare with the experimental data,
we need to calculate the X-ray intensity profile along the planes parallel (a =07,
meridian) and perpendicular (a =90°, equator) to the chain extension direction. As we
have mentioned in section 3, the polymer chains are aligned symmetrically in the two
halves of the simulation cell and the birefringence extinction angle y gives the
preferred alignment direction with respective to the flow. For the sheared PS-30 system

studied here, the y averaged from the upper and lower halves of simulation cell is

11.5° . It is convenient to define the alignment direction as X axis of a new coordinate
system ()N( ,17 ,Z ), as shown in Fig. 3.9, then the XY and YZ planes correspond the
planes parallel and perpendicular to the chain extension direction. We compute the X-
ray intensities for both planes from all-carbon atom sites. For both planes, the
calculation of the radial distribution functions is done in an angle of 5 degree above and
below the plane. Fig. 3.9 shows the calculated scattering intensities profiles parallel and
perpendicular to the chain extension. It indicates an intensification of polymerization

peak normal to chain extension, which agrees well with the experimental findings.
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Figure 3.9. Calculated g-weighted reduced scattering intensity profile for a melt of

backmapped chains of PS-30 at 500 K under a steady shear flow. The lower part of

the plot shows the two section: meridion (& :Oi)_, dashed line) and equator

(= 90° | solid line). The laboratory coordinate system (X.Y.Z) is indicated as the
right side of the upper part: The X axis denotes the shear flow direction, Z axis

denotes the velocity gradient direction. The birefringence extinction angle
&4 =115 U) gives the preferred alignment direction with respect to the flow. The

rotated coordinate system ((X Y.Z ) is illustrated in the upper left side, X is the

direction of the chain alignment.
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The pair distribution function can offer the structural information more directly

than the X-ray scattering patterns. The chain configurations under steady shear flow
are highly anisotropic. Thus, the pair distribution function& (F) s also anisotropic.

Fig. 3.10 reports & () for interchain backbone-backbone, phenyl-phenyl and
backbone-phenyl carbon along the vector perpendicular and parallel to the chain
preferred alignment (orientation). For comparison, the corresponding distributions
for an unperturbed system (no shear) are also shown. Fig. 3.10 clearly shows a
noticeable increase of interchain neighbors in the direction perpendicular to chain
orientation and a decrease in the direction parallel to the orientation. These features

manifest a strong packing effect introduced by shear flow.
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Figure 3.10. Interchain carbon-carbon pair distribution functions (backbone-backbone,
phenyl-phenyl, backbone-phenyl) along the directions parallel (dotted line) and
perpendicular (dash-dotted line) to the chain orientation direction for the sheared PS-30
system. For comparison, the isotropic distribution of the unperturbed system

(equilibrium, no shear) is also shown (solid line).
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After backmapping, it is possible to take a closer look at the mutual orientation
of phenyl side groups under strong shear flow. We define this orientation by measuring
the cosine of the angle between the phenyl ring normals mj3. The orientational vectors
used are illustrated in Fig. 3.6: The unit vector m; is the in-plane vector from C; to Cq,
the other in-plane vector m; is perpendicular to m;, the orientation vector mj is the ring
normal. The average of the scalar product between two unit vectors m;3 ; and ms_;

describes the dominating angle between different ring normals.

m m
cosf=(| .- ) (8)
m m
Here, we use the absolute value of the scalar product of ‘ 30 3, j‘ since we do not

distinguish between symmetrically equivalent orientations (one ring turned by 180°).
This value is 1 for coplanar rings, 0 for a T-shape arrangement, and 0.5 for a random
arrangement. The orientation distribution functions (ODF) are shown in Fig. 3.11 as a
function of ring-ring (centre of mass) distance for the unperturbed and the sheared
systems. The curve of the unperturbed polystyrene agrees well with the finding in ref.
32: The orientation correlation is quickly lost with increasing distance and no structure
is visible beyond 0.9 nm. The first strong peak occurs at around 0.27 nm and the second
weak peak occurs at around 0.7 nm. Within the short distance of 0.5 nm, the dominant
arrangement of phenyl rings is coplanar due to steric constraints (note that there are
very few pairs of rings at this short distance.). As a general observation, the shape of the
sheared curve is very similar to the unperturbed one; however, subtle differences are
still visible. There is a distinct although small shift of the first peak for the
nonequilibrium system (at 0.30 nm) compared to the unperturbed one (at 0.27 nm). If
one makes the reasonable assumption that the normal of a phenyl ring is parallel to the
direction of chain backbone of each repeating unit™, then this peak shift indicates the
elongation of backbone. The unperturbed ODF converges to 0.5 for distances beyond
0.9 nm, indicating that beyond this distance the mutual orientations are completely
random in amorphous polystyrene. The sheared system shows an ODF above 0.5 at all

distances (see the inset of Fig. 3.11), indicating that shear flow introduces mutual
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orientation of phenyl ring within a larger range, and that there is a small prevalence of

coplanarity.
1.0
0.8 | under shear flow
----- unperturbed
A 06}
E._h 04k : 0.60 '.
E [ ! 0.55} .
v 92f . .
0.50
0.0
0'4%.4 06 08 1.0 1.2 1.4
-0.2 1 1

02 04 06 08 10 12 14
average distance (nm)

Figure 3.11. Orientation distribution function (ODF) describing the mutual orientation
of the phenyl rings obtained from the unperturbed (dotted line) and nonequilibrium
systems (solid line), respectively. The inset shows ODF in the average distance domain
between 0.4 nm and 1.5 nm. A value of 0 corresponds to perpendicular orientation (T-

shape), a value of 0.5 to a random distribution, a value of 1 to a coplanar arrangement.

Capturing the correct backbone torsional angle distribution is a stringent test for
the backmapping method. Robyr e al.** have compared NMR measurements with
atomistic simulations of atactic polystyrene and found out noticeable deviations
between experimental findings and predictions from atomistic models of bulk
structures. As the purpose of this study is to develop a backmapping method instead of
examining the atomistic force field, we mainly compare the torsional distributions
between the reverse mapped unperturbed and backmapped sheared structures. The
convention used to define the torsional angle follows refs. 35 and 36, a right-hand
reference frame is used for bond i and a left-hand one for bond i+1, and the cis

conformation corresponds to 180°. Accordingly, ¢, is measured in the right-handed
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sense and ¢,,, in the left-handed sense.”® Fig. 3.12 shows an all-trans meso diad of

polystyrene where all torsion angles are zero. The state relative frequencies of torsional
angles in the unperturbed and the nonequilibrium structures are listed together with the

integrated areas in Table 3.3, the definitions of the integrated areas follows reference

33. The calculated trans fraction is (57 £ 5)% in the nonequilibrium structure, which

is equal within the errors bar with the value in the unperturbed structure ((59 £5)% ).

Fig. 3.13 gives the distributions of backbone torsional angles. The coalescence of the

trans, gauche (+) and gauche (-) states occurs for both the unperturbed and the

nonequilibrium structures, and the distributions are symmetric around 0" . Compared to

the unperturbed distribution, the nonequilibrium distribution is intensified around
0° (pure trans conformation), which again indicates the elongation of polymer chain;
simultaneously, the gauche states in the range of —180° ~ —120° and the range of

+120° ~ +180° are also enriched. It should be noted, however, that conformational

differences between unperturbed and sheared structures are small.
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Figure 3.12. Meso diad of polystyrene in the all trans-trans conformation.

(9 =0, =90, =¢,,, =0).
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Figure 3.13. Distribution of backbone torsional angles for the PS-30 NVT ensembles
(T=500K): under the unperturbed (equilibrium, no shear) condition (solid line) and the

sheared nonequilibrium condition (dotted line).

75



Fig. 3.14 and Fig. 3.15 show the distributions of backbone torsional angle pairs

(¢, ¢@,,,) for the meso and racemo diads in the unperturbed and the nonequilibrium

system, respectively. As a general observation for both cases, the distributions of
racemo and meso diads are very similar. This analogy can be attributed to the strong
inter-molecular packing effect over those dictated by the local intramolecular

interaction>>**

. However, compared to the corresponding unperturbed ensemble, the
distribution of torsional angle pairs of backmapped sheared structures is more diffuse. It
has been found through rotational-isomeric-state (RIS) ‘[heory36 that the three main
energy minima are tg, gt, and gg for the meso diad and the two important states are tt
and gg for racemo diad. In the backmapped nonequilibrium ensemble, many diad angle

pairs fall outside the region of low energy. Especially, the gg population becomes
abundant in the nonequilibrium ensemble, despite its high intramolecular energy. As
experimental observations of torsional angle pairs in nonequilibrium ensembles are
lacking, it is not clear whether this observation is due to (physical) conformational
defects induced by strong shear flow, or to deficiencies of the atomistic force field used,
or to artifacts of the backmapping procedure. It still remains to be clarified in further

investigations. For the time being, we report it as a phenomenon.
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Figure 3.14. Torsional angles pairs (¢,, ¢,,,) distribution of meso (upper) and racemo

(lower) diad in the backmapped unperturbed ensemble of PS-30.
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3.7. Conclusions

The backmapping method has been extended to the situation of a
nonequilibrium mesoscale polymer model, on which a nonequilibrium shear flow is
imposed. Two basic requirements in backmapping non-equilibrium system need to be
fulfilled: (1). The sheared CG configurations need to be retained in the atomistic
picture. (2).The deformation energy stored in the chain of CG model should be passed
on to the atomistic level. In order to meet the above two requirements, we propose three
strategies: (1) Preserving globally sheared configurations by applying position
restraints. We apply position restraints to all those atoms which coincide with the
locations of CG beads. Thus, the global configuration of every individual chain is
preserved. (2) Achieving the locally relaxed atomistic structures through a molecular
mechanics approach. The structure of the deformed molecules is generated by
minimizing the conformational energy in the presence of an applied external force. This
approach is transferred here in generating the deformed atomistic structures out of
template structures from an equilibrium (undeformed) simulation. (3) Minimization of
the artificial segment isolation introduced by the position restraints via an iterative
procedure. Position restraints hinder the rearrangements of chain segments when
optimizing deformed atomistic structure also at a local level; the segments become
“isolated” from each other. This effect is counteracted by performing several EM runs
with shifting position restraint schemes. This process is iterated until the energy
converges under different partial-position-restraint schemes. We presume that the final
configuration is independent on the locations of position restraints. Based on the
strategies above, we propose a new workflow for backmapping nonequilibrium CG
system.

The proposed new procedure is demonstrated on atactic polystyrene melts under
steady shear flow. The backmapped local structures are structurally characterized and
compared to experimental data where available. The calculated X-ray scattering profiles

parallel and perpendicular to the chain-extension direction compare well with
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experiment. Parallel packing induced by the shear flow manifests itself in the
intensification of the polymerization peak in the parallel direction. The shear flow also
introduces elongation of the backbone and, as a consequence, a longer range of the
mutual orientation of phenyl rings as well as a small prevalence of coplanarity. The
backbone torsional angle distribution of the sheared structure has an equivalent
integrated distribution of trans and gauche states as the unperturbed one. A more
detailed investigation of the distribution, however, reveals a sharpening of the trans

peak and a blurring of the gauche distributions.
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4. Developing a simulation tool for coarse-

grained polymeric system

4.1. Implementation of the reverse nonequilibrium

molecular dynamics (RNEMD)

Before extending the RNMED method to polymeric and other complex system,
one needs a reliable simulation tool. The RNMED method has implemented in
molecular dynamics package YASP', which works on analytical potentials. YASP is a
reliable and efficient tool for atomistic MD simulation, but not designed for CG
simulations. In atomistic simulations, apart the cases of very complex systems, particle
interactions have a very regular behaviour and can be well reproduced by simple
analytical potentials. However, at mesoscale level, potentials have a very complicated
form and in most cases it is not easy to find a simple function to describe these
potentials. The CG molecular dynamics code IBIsCo” is designed to meet such need. In
this code, the potential is described in a flexible tabulated numerical form. As part of
this work, the RNEMD algorithm has been embedded into IBIsCo.

The fundamentals of RNEMD are elucidated in Chapter 2. The basic workflow
of RNEMD for shear works as follows:

1. Search in the first slab for the atom with largest negative x component of the
momentum, and in the central slab for the super-atom with largest positive x
component.

2. Swap the velocities between the atom in the first slab and atom in the central
slabs.

3. Record the mean velocity, temperature, and density in every slab (the output
file is called md.prf ); Record the trajectory of momentum flux, velocity gradient,
viscosity. (the output file is called md.rj ).

4. Repeat the 1-3 steps according to the requested exchange frequency.
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Appendix 1.1 gives the outline of the RNEMD algorithm in the serial and
parallel versions of IBIsCo. Appendix 1.3 gives the details of the input and output files
for conducting the RNEMD simulation.

4.2. Implementation of the standard and the transverse
dissipative particle dynamics (DPD) for use as a
thermostat

In molecular dynamics, the algorithm for controlling the temperature to the
required value is called thermostat. Temperature control is commonly achieved by

adjusting the kinetic energy. In a flowing fluid with flow velocity #(7), the kinetic

energy has a flow contribution and a thermal contribution. Therefore, thermostat is

requested to be defined in a frame that moves with the fluid, i.e., to couple it to the

“peculiar” velocities v, =V, —(7,), rather than to the absolute velocities v, . However,

most thermostats don’t take this request into account automatically, and one has to put
in the flow profile manually. The dissipative particle dynamics (DPD) thermostat has
been developed to cure this problem.” DPD is a very useful thermostat for molecular
dynamics, which should be used whenever momentum transport is important, since it

does not screen the hydrodynamic correlations.

4.2.1. The standard DPD for use as a thermostat

In DPD, the time evolution of a set of interacting particles is governed by
Newton’s equation of motion. The force acting on a particle has three parts:
conservative force, drag force and random force. Drag force represented as a Brownian
dash-pot, which damps out the relative approaching velocity, and random force
introduces a noise term that keeps the system at constant temperature. The DPD

equations of motion for used as a thermostat are then given by ref. 3

V=

(1)

s |~
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and

p=F +F’+FF" )

where, £, F,” , F" denote the conservative force, drag force and random force on i-

th particle, respectively. The drag force and random force are sum of particle-pair forces

as

EP =3 Ff (3)
Ff = Ff 4)

where, F;” and F" force compute as

D D Ao A
Fij 2—4’60 (ry)(ry'vy ry‘ (5)

E} = 00" (r,)6,7, (6)

where, v, is relative velocity between particle i and particle j, v, =v, —

) ;» 'y denotes

the unit vector of the interatomic axis 7 ,=7, —7;, ¢ and o are the friction constant and

the noise strength. @®and " are r-dependent weighting functions. The Gaussian

white noise 6, is symmetric in the particle indices (6, = 6,) and satisfies the

following equation.
(6,)=0 (7)

and the second moment,

( 0,00,(t) =2(6,8,+5,6,)5(~1) 8)

According to the fluctuation-dissipation theorem, the following relation between ¢ and

o, o*and »” must fulfilled eqn. 9 and eqn 10.
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(0) =k,T¢ (9)

(@ ()] =" (r) (10)

4.2.2. The transverse DPD for use as a thermostat

It turns out, however, the DPD thermostat in its standard form is not capable of
controlling liquid properties such as viscosity and diffusion coefficient.’ Junghans et al
* extended the DPD equations in a way that these quantities can be tuned by changing
the parameters of the so-called transverse thermostat. The standard DPD thermostat acts
only on a relative velocity along the interatomic axis, while the transverse DPD
includes the damping of the perpendicular component of the relative velocity. The basic
assumption in the transverse DPD thermostat in contrast to the standard DPD is that the
viscosity is very sensitive to the drag force which is perpendicular to the interatomic
axis. This drag force mimics the shear on the particle pairs. The random force acts in
the same direction as the drag force. Junghans et al * have demonstrated that the shear
viscosity in a simulation with the transverse DPD thermostat is always higher than that
with standard DPD, this is also the case in our test simulation. However, a theoretical
approach for explaining higher viscosity with the transverse DPD thermostat is still
lacking.

The drag force and random force in DPD can be generalized as Eqn. 11 and 12.*
D D D (7 \3

Fy =—co™ (r)F; (7 )V, (1D
R R D (7 \A

Ej =00 (r;)F,(r ;)0 (12)

¢ and o are the friction constant and the noise strength. P, (7; ) is a projection operator ,

—

6, is a noise vector. For the case where one chooses projector along the interatomic
axis between particle i and j ,

PF)=F ®F (13)
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the standard DPD thermostat is recovered. One chooses projector on the plane

perpendicular to the interactomic axis,
Py =17, ®F, (14)
the space defined by the projector (14) is orthogonal to the case of the standard DPD,

and this formulizes the transverse DPD. In the transverse DPD, random force }T“f and

the drag force Ff are calculated by eqn 11 and 12 with applying Eqn 14 to define the

projection operator.
Appendix 1.2 gives the implementatory details of the standard and the

transverse DPD for use as a thermostat algorithm in the serial version of IBIsCo.

4.2.3. Temperature and diffusion coefficient controlled by a DPD thermostat

To check whether DPD thermostat works, molecular dynamics simulations on

argon system, which has a Lennard-Jones potential (Eqn. 15), are performed.

o=s(2f (7))

The system contains 2592 atoms, the argon parameters are: m =39.95g/mol,

£=0.99707kJ/mol and o =0.340 nm. The simulation box size is L x L x3L where
L =3.425nm, the mass density is 1426.621kg/m’. The temperature is 86.5 K, the

cutoff is 1.0215 nm, and the time step is 2 fs.

Temperature. Fig. 4.2. and 4.3. show the temperature controlled by the standard and
the transverse DPD thermostat with different noise-strengths. For comparison, the

temperature controlled by Berendsen thermostat is also shown in Fig.4.1
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Figure 4.1. Temperature controlled by Berendsen thermostat with a temperature

coupling time 0.2 ps.
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Figure 4.2. Temperature controlled by the standard DPD thermostat with noise strength
sigma = 1 (top) and sigma=2 (bottom).
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Figure 4.3. Temperature controlled by the transverse DPD thermostat with sigma = 1

(top) and sigma=2 (bottom).

Diffusion coefficient The diffusion coefficient is computed from the mean-square

displacement according to the Einstein relation:

D———<‘R(t) R(O)‘>

(16)

Fig. 4.4 shows the diffusion coefficient over time for different thermostats. Our results

are consistent with the finding in ref. 4: the diffusion coefficient decreases with

increasing noise strength for both types of DPD thermostats, compare to the standard

one, the transverse DPD thermostat is more sensitive to the noise strength.
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Figure 4.4. The diffusion coefficient over time for different thermostats.
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5. Outlook

5.1. Viscosities of polymers from coarse-grained
simulations

Our results indicate that besides reproducing the structural properties, coarse-
grained models have some capabilities in predicting the viscosity of polymers. What are
the field’s unsolved problems and future challenges?

1. Is the viscosity scaling factor predicted from the shortest chain still valid

for longer chain?

In chapter 2, CG simulations show that the extrapolated zero-shear viscosity is
linearly dependent on the molecular weight, which agrees with the theoretical
prediction. However, its absolute value is lower than the experiment by a factor of ~
200 for the shortest chain length PS-9. This scaling factor is probably due to the well-
known intrinsic speed up of the coarse-grained model. The question remains here: is
this scaling factor constant for all unentangled systems studied? This question can be
answered, in principle, by comparing to the viscosities of CG models with those of the
parent atomistic models. The obstacle is that viscosity calculation with a full-atom
model is a very tedious and time-consuming work. The system of PS-9, which is the
shortest chain length in all systems studied, it contains 60120 atoms. For calculating a
viscosity at a given shear rate, it needs a simulation length beyond 1 ns. Elapsing time
on calculation with a parallelized molecular dynamics code, roughly estimated by
experience, is beyond two months. For the system of PS-100, the elapsing time is
unpredictable. Therefore, the feasible solution needs to be figured out in the future.

2. Can experimental viscosities be reproduced by CG models and RNEMD

simulations?

The fast dynamics of CG models leads to much lower viscosities in simulations in
contrast to experiments. The fast dynamics of CG model is due to the softness of CG

potentials. For large degrees of coarse-graining, they become so soft that essential
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polymer physics is lost and must be reintroduced via the equations of motions.' Izvekov
and Voth> matched real dynamics adding friction to the CG system. Their theoretical
formalism is base on the generalized Langevin equation and its simpler Langevin
equation limit. The friction coefficient is determined in a multiscale fashion from the
underlying fully atomistic molecular dynamics simulations using force-velocity and
velocity-velocity correlation functions for the CG sites. The self-diffusion and time
dependence of the velocity autocorrelation function are reproduced in their resulting
CG Brownian dynamics. However, the method they proposed is not applicable in
predicting viscosities via the RNEMD method: a fundamental limitation of RNEMD
lies in the assumption that, in steady state, the unphysical transfer is balanced by a
physical flow. This means that only flows of conserved momentum can be set up in this
way. While in their approach, friction is induced deliberately and energy and
momentum are not conserved any more. Naturally, one would like to introduce friction
to slow down the fast dynamics in the CG model and simultaneously momentum is still
conserved. The straightforward choice is dissipative particle dynamics (DPD) as a
thermostat in CG simulations. Some efforts have been pursued on this approach. In our
preliminary tests, the standard DPD thermostat can slow down the fast dynamics of CG
models and the viscosity increases with the noise strength. However, the magnitude of
noise strength is restricted in some range: the temperature becomes unstable as
increasing noise strength and beyond the certain range the temperature is out of control.
Comparing to the standard DPD thermostat, the transverse DPD thermostat can slow
down the fast dynamics more efficiently. The problem in the transverse DPD thermostat
is that simulation is only stable when a very small time step is applied. A detailed
understanding of the time-step-dependent viscosity in the transverse DPD thermostat is

required further study and the process is ongoing.
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5.2. Backmapping a coarse-grained model under
nonequilibrium conditions

As it has been pointed out in Chapter 3, the origin of the diffuse distribution of
torsional angle pairs in the nonequilibrium system is still not clear. One possible reason
is poor statistics of the backmapped configurations. To clarify the possible origin, one
needs to perform more atomistic simulations under nonequilibrium condition to collect
abundant configurations. Exactly as the viscosity calculation from fully atomistic
model, the main obstacle is a very expensive computational cost.

The backmapping method paves the way for conducting further atomistic
simulations involving nonequilibrium process. More information in which atomistic
details is important, for example bond orientation decay, can be obtained from this
process. The direct application of the reverse-mapped structures is to observe structural

changes of the polymers in stress relaxation process.
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Appendix 1

A.1.1. Schematic representation of the RNEMD

algorithm in the serial and parallel version of IBlsCo
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Serial version

(IR R R R I S I S b I S I S S S I I S S S S S I S b b Sb b S b b Sb b b Sb S S b S b S S S R I S b Sh b b db b S db b S 2

SUBROUTINE VISC NEMD (TIMESTEP)
IF (IFIRST .EQ. 1) THEN
NCOUNTCALL = 0
NTRANSEF = 0.0D0O
TTRANSE = 0.0D0O
UTRANSFEF = 0.0DO0O
IFIRST = 0
DO I = 1, NUMSLAB
VXMEAN SLAB (I) = 0.0D0O
ENDDO
ENDIF
IF (ENSEMBLE == 2) THEN
SLAB_THICKNESS = BOXZ/ REAL( NUMSLAB)
ENDIF

IF (MOD (TIMESTEP, NEXCH)
CALL VISC ATOM

.EQ. 0) THEN

NTRANSF = NTRANSF + 1

TTRANSE = TTRANSFEF + TRANSFER

UTRANSFEF = UTRANSF + TRANSFER * TRANSFER

ENDIF

IF (MOD(TIMESTEP, NEMDPROF) .EQ. 0) THEN
IF (MOD(TIMESTEP, NEXCH) .NE. 0) THEN
CALL VISC PROFILE
ENDIF

ENDIF

IF (MOD(TIMESTEP, NEMDTRAJ) .EQ. 0) THEN

NCOUNTCALL = NCOUNTCALL + 1
CALL VISC TRAJ

'RNEMD

! Initialization

! Thickness of slab

! Searching the slowest particle
in first slab and the fast particle
in the central slab
! accumulating momentum

and energy transferred

!accumulating

seconded momentum transferred

!'recording mean velocity,
temperature, density in every slab

! recording momentum flux, velocity

gradient, viscosity

ENDIF

RETURN
END SUBROUTINE

(IR R R I S I S R A S I S SE S S I S b S S S S S b Sb b b Sh b b Sb b b Sb S S b S b S S S IR I S b Sh b S Sb b S db b S 2
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Parallel version

Ik khkhkhkkhhkhkhhhkhhhhkhdhhdhhdkhhhkhhkdhhrdhhrhkhrhkhhrhhdhhdhhdkhkhhhkhrkhhkhrhkhkrhhhrkhrxkx%

SUBROUTINE VISC NEMD (TIMESTEP) 'RNEMD

IF(MY ID .EQ. MASTER) THEN ! Initialization
IF (TIMESTEP .EQ. 1) THEN
NCOUNTCALL = 0
NTRANSEF = O
TTRANSE 0.0D00
UTRANSF 0.0DO00
DO I = 1, NUMSLAB
VXMEAN SLAB (I) = 0.0D0O
ENDDO
EDIF
ENDIF

IF (ENSEMBLE == 2) THEN
SLAB_THICKNESS = BOXZ/ REAL( NUMSLAB) ! Thickness of slab
ENDIF

IF(MOD(TIMESTEP, NEXCH) .EQ. 0) THEN
IF (MY ID .NE. MASTER) THEN
CALL VISC SLABFIRST ( ) ! Searching the slowest
particle in the first slab
ENDIF
CALL VISC SLABMIDDLE ( timestep) ! Searching the
fast
particle in the
central slab
IF(MY ID .EQ. MASTER) THEN
NTRANSF = NTRANSF + 1

TTRANSF = TTRANSF + TRANSFER ! accumulating momentum
and energy transferred
UTRANSF = UTRANSF + TRANSFER * TRANSFER ! accumulating
seconded momentum transferred
ENDIF
ENDIF

IF (MOD(TIMESTEP, NEMDPROF) .EQ. 0) THEN
IF (MOD(TIMESTEP, NEXCH) .NE. 0) THEN
CALL VISC PROFILE (TIMESTEP) ! recording mean velocity,
temperature, density in every slab
ENDIF
ENDIF

IF (MOD(TIMESTEP, NEMDTRAJ) .EQ. 0) THEN
NCOUNTCALL = NCOUNTCALL + 1
CALL VISC TRAJ (TIMESTEP) !'recording momentum flux, velocity
gradient, viscosity

ENDIF

RETURN
END SUBROUTINE

B e e e R R I I I I I I I I I 3
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A.1.2. Molecular dynamics simulation with the
dissipative particle dynamics (DPD) for use as a
thermostat

Both the standard and transverse DPD used as a thermostat are available in the
IBIsCo code. One can choose one of them or a combination of both. When any type of
DPD thermostat is chosen, Berendsen thermostat is switched off automatically. The
input control file for both types of DPD thermostat is demonstrated as Appendix .1.3
The main features of the DPD algorithm for use as a thermostat are listed below:

1. Making the DPD neighbour list. The neighbour list for searching the
interacting atom pairs in the random force and drag force is independent from the
neighbour list for the common nonbonded interaction; therefore one has more flexible
choice in the DPD cutoff. If the size of the box is bigger than three times the DPD-
neighbour-list cut off, the link cell algorithm is used to make the DPD neighbour list.
The simulation box is divided into cubic cells with the neighbour list cut off length, and
searching is restricted to the DPD neighbour cells instead of the whole box. If the box
size is smaller than three times the DPD-neighbour-list cut off, updating DPD

neighbour list is performed by searching all possible atom pairs.

2. Calculation of the random force F,and drag force F,” in the DPD
thermostat. The random force and drag force are calculated by looping over the DPD
neighbour list. In the standard DPD thermostat, random force F,*and drag force F,”

)

are calculated by

=D D A = A

Ej = _é/a) (rg)(rg'vzj)rzj (1)
R R ~
Ef = 00" (r))0,f, @)
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where ¢ and o are the friction constant and the scalar noise strength. In the transverse

DPD thermostat, the random force ﬁif and drag force FU.D are calculated by

)

EP ==o” (r)P(7 )V,
(4)

Sx R .
F; =o0"(r,)P(r )0,

where P is the projection operator and él.j is the noise vector.
3. r-dependent weighting function for random force ®”. There are two
options available in IBIsCo code: If the linear weighting function is chosen (key words:

Weigh type = L for the standard DPD and Tran weigh type = L for the transverse

DPD), the weighting function is defined as
()

R _
o =1-rlr, r<r,

cut

a)R = 0 rz rcut
If the step weighting function is chosen (key words: Weigh type = S for the standard
DPD and Weigh type =S for the transverse DPD), the weighting function is defined as
r<r ©6)

cut

ot =1
R _
w =0 rzr,

4. r-dependent weighting function for drag force o”. @” s calculated

according to the Eqn. 7.
(@ ()] = 0" (r) )
5. Integration scheme. A modified DPD velocity-Verlet integration scheme

(reference: J. Phys. Chem. 1997 107, 4423) is used to update the position and velocity.

Integration for one single time step can be described as following:

1+ Aty = 1, (1) + A, (t)+%(At)2f,-(t) ,

V.(t+ At) = v, (1) + AL, (1),
[+ A = f.(r(t+ A1), v(t + At)), ()

v, (t+At) :vi(t)+%At(fi(t)+fl.(t+At)).
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where, A is the so-called fudge factor. The actual velocity-Verlet algorithm for a
conventional MD is represented with A= 0.5. In DPD, the drag force is velocity
dependent, which is not consistent with the formulation of the velocity-Verlet
algorithm. One makes prediction for a new velocity v and later be corrected in the last
step. The properties which are depending on the coordinate differences can be

calculated after step 2. and temperature are calculated after last step. The algorithm
would be exact to O(At*)at A= 0.5 if there were no random and drag force. The

numerical order for the proposed algorithm is undefined.

A.1.3. Sample files for conducting a RNEMD
simulations and using DPD as a thermostat

The shear viscosity is calculated by the reverse nonequilibrium molecular
dynamics (RNEMD) method. In the RNEMD method, the simulation box is partitioned
into an even number of slabs along the z direction, one periodically searches in the first
slab for the particle with largest negative x component of the momentum, and in the
central slab for the particle with largest positive x component. If these two atoms have
same mass, one exchanges their momenta. By repeating this procedure periodically, an
unphysical momentum flux is imposed and a velocity gradient or shear field results.
The momentum flux can be achieved by two different approaches: either by swapping
the velocities of atoms or by swapping the centre-of-mass velocities of molecules. At
this stage, only the first approach is available in the IBIsCo code. Note that only even
number of slabs is suitable for the RNEMD simulation, the shear flow direction is along
the X axis and the velocity gradient is along the Z axis.

Four input parameters are required: 1) the number of slabs, 2) the number of
time steps between velocity swaps, 3) the number of time steps between two successive
samplings of velocity, temperature, and density profile, 4) the number of time steps
between two successive frames in the RNEMD trajectory file. Two output files are

produced during the RNEMD simulation. One is called md.prf, which records velocity,
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temperature, and density profiles, the other is called md.trj, which records trajectory of
momentum flux, velocity gradient and viscosity.

Sample Input Control file

The input control file contains the general parameters for the simulation (time
step, ensemble, thermodynamic conditions and so on). The key words in bold are used
to conduct the RNEMD simulation and the standard and the transverse dissipative

particle dynamics (DPD) thermostat.
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Notes for keywords

1.

A A L

11

12.
13.
14.
15.
16.

17.

18.

Ensemble: specify which ensemble you want to use for simulation. Current
option include three types: microcanonical (NVE), canonical (NVT) and
isobaric-isothermal (NPT) ensemble.

Temperature: target temperature in Kelvin. This temperature is used for
thermostat and also for calculating the potentials by Boltzmann inversion in the
case that one use the Gaussian file for the nonbonded interactions).

Pressure: target pressure in kPa (in NPT ensemble).

Natoms: the total number of atoms included in the system

Nsteps: the total number of time steps of the simulation

DT: the simulation time step in fs

TAUT: thermostat coupling time in ps

TAUP: pressure relaxation time in ps

BETA: isothermal compressibility (1/kPa)

. Cutoff: the cutoff distance for the nonbonded interactions in nm

. Neighbor list cutoff: the distance in nm up to where the pairs of particles are

included in the neighbor list

Update neighbor _list: the interval of time step for updating the neighbor list
Nsampling: the number of time steps between printing the instantaneous values
Ntrajectory: number of time steps between writing the trajectory file

Halt Drift: number of time steps between resetting the net momentum to zero
Naverage: number of time steps between calculating the averages as well as
printing the restart files

Non-Bonded: two possible definitions of nonbonded pairs within same
molecule: atoms separated by more than three bonds (‘1..5” interactions and
above) or atoms separated by more than two bonds (‘1..4° interactions and
above).

Interaction: two options to define the bond and bend interactions. One can

prepare Gaussian file, which specifies the Gaussian functions that are fitting to
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19.

20.

21.

22,
23.

24,

25.

26.

27.

28.

29.

30.
31.

the bond length and angles distributions, or one can prepare the potential tables
for bond and bend interactions.

Reset velocities: by this option one specifies the initial velocity. Option “NO”
tells program must use the velocities which are given in the initial coordinate
file. Option “YES” tells program initialize the particle velocities according to an
Maxwell-Boltzmann distribution.

Standard DPD: this option is to define the dissipative particle (DPD) dynamics
in the standard form as thermostat. When this option is chosen, the Berendsen is
automatically switched off.

Lambda: the parameter for velocity integration when DPD thermostat is chosen.
If Lambda = 0.5, the Verlet velocity integration scheme retains.

DPD_cutoff: the cutoff in nm for DPD force.

DPD_Neighbour list cutoff: distance in nm, up to where the pairs of particles
are included in the neighbor list used in DPD theomstat)

Sigma: noise strength for standard DPD thermostat.

Weight type: the type of weighting function for standard DPD thermostat. Two
options are available, liner weighting function (L) and step weighting function
(S).

Tran_DPD: this option is to define the transverse DPD dynamics as a
thermostat. When this option is chosen, Berendsen thermostat is automatically
switched off. The transverse DPD can be used in combination with the standard
one.

Tran_sigma: noise strength for transverse DPD thermostat.

Tran_weight type: the type of weighting function for transverse DPD
thermostat. Two options are available, liner weighting function (L) and step
weighting function (S).

Shear viscosity: Viscosity is calculated by the RNEMD when this option is
chosen.

Num RNEMD slab: number of slabs in RNEMD simulation.

Num_ RNEMD exchange: velocity swap interval in RNEMD simulation.
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32. Num_RNEMD prof: number of time steps between sampling velocity,
temperature, and density profile in the RNEMD simulation.

33. Num_RNEMD trj: number of time steps between writing the RNEMD
trajectory file.

34. END: terminate the input control file.
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Appendix 2 Parameters of the atomistic force

field for polystyrene

The parameters of the atomic force field used in this work were reported in the

following references:
1). Miiller-Plathe, F. Macromolecules 1995, 28, 1049-4791
2) Milano, G.; Guerra, G.;Miiller-Plathe, F. Chem. Mater. 2002, 14,2977-2982

Table A.2.1, A.2.2, A.2.3 A.2.4 and A.2.5 report nonbonded interaction, bond

stretching, bond bending, torsion potentials and harmonic dihedrals, respectively.

Table A.2.1. The Lennard-Jones parameters for polystyrene: the nonbonded
interactions are given as: V(rj) = 48[(0'/r,~j-)12—( o'rij )6]+q,-qj/4n80r,~j. A reaction-field
correction is applied for the Coulombic interactions. The effective dielectric constant is

taken to be 2.5.¢

Atoms g/kImol! | o/nm qle
Cai 0.3519 0.3207 0
H.ii 0.318 0.2318 0
Caro 0.294 0.355 -0.115"
H.ro 0.126 0.242 +0.115

“The subscripts ali and aro denote aliphatic and aromatic atoms, respectively. "The
charge on carbon 1 of the phenyl ring is 0 in the force field. Note here: nonbonded
interactions are excluded between first and second neighbors. In addition, nonbonded

between all atoms of a given phenyl group are excluded.
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Table A.2.2. Bond length and strength.

bonds ro/nm
Caii-Caii 0.153
Cai-Haii 0.11
Caro=Caro 0.139
Caro-Haro 0.108
Cati-Caro 0.151

Table A.2.3. Equilibrium bond angles and bond force constants. Angles are described

by: V(¢) = (kg/2)(¢-¢0)"

bond angle ¢o/deg ky/KJ mol 'rad™
H-C,i-H 109.45 306.4
Cai- Cai-H 109.45 366.9
Caro- Caii-H 109.45 366.9
Cali-Cali-Caro 109.45 482.3
Cali-Caro-Caro 120.0 376.6
Caro-Caro-Caro 120.0 376.6
Caro-Caro-H 120.0 418.8
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Table A.2.4. Proper dihedral (torsion) potentials which are described by V(1) =
(ke/2)[ 1—cos3(t—10)] cis at 0° .

V(1) = (k/2)[1—cos3(1—10)] cis at 0°
torsion angles ro/deg k. /kJ mol 'rad™
Caii -Caii- Caii- Caii 180 12.0
Caii- Ca1i-Caro -H (terminal methyl) 180 12.0

Table A.2.5. Harmonic dihedrals which are described by V(0) = (ks/2)(0 -0 o).

harmonic dihedral 5o/deg ks/kJ mol'rad™
angles
Caro~Caro-Caro~ Caro 0.0 167.4
Caro-Caro-Caro-H 0.0 167.4
Caro-Caro-Caro=Cai 0.0 167.4
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Appendix 3 Coarse-grained potentials of
polystyrene

The coarse-grained (CG) potentials used in this work follow the reference:
Milano, G.; Miiller-Plathe, F. J. Phys. Chem. B 2005, 109, 18609 -18619.

Bonded potentials The multi-peaked distribution of a structural parameter, say
a bond angle, can be approximated by a sum of n Gaussian functions characterized by

their centres (8,,), total area (4,), and width (w,):

n

A.
P0) = Z—w' _7’[/2 exp

2,2
—2(0-0,))> I W} (1)

i=1
Given a distribution P(#) of some structural parameter such as a bond or an

angle, say angle @, a first approximation of the corresponding potential can be derived
doing a simple Boltzmann inversion. The corresponding potential obtained by

Boltzmann inversion can be written as:

n A , ,
V(0)=—kT lnz—lexp—z(e—@,> I "
it WA/ 2

One defines g,(0) =4,/ w,\/(7/2) exp‘w—%)z/ w , the potential V() and

corresponding force F'(#)can be written:

V(0)=—kT In Z 2.0) 3)

i=1

- 0-6,
>0 0

F(0) = —4kT—— " (4)
pFA
i=1
Similar equations for bond potentials V' (/) and F(/):
V(l)=-kTIn) g.0) (5)

i=1
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3 g, k)
F(l) = -4k7-—— (6)

Zg,- 0))

Table A.3.1 and A.3.2 report the parameters for the CG bond and angle
potentials.

Table A.3.1. Parameters of the bond Potential

bond type n’ i A; w;i[A] li[A]
m-m 1 1 0.015 0.09 2.46
m-r 1 1 0.018 0.09 2.46

r-r 1 1 0.018 0.09 2.46

% n is the number of Gaussians used for each force field term.

Table A.3.2. Parameters of the angle potential

angle type A; w; [deg] Bei [deg]
m-m-m 0.861 13.7 147.7
0.078 8.9 161.5
m-r-m 0.042 11.0 142.8
1.283 13.0 165.0
r-r-m 0.047 18.0 99.6
0.255 14.2 144.1
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3 3.404 13.0 165.4
r-r-r 3 1 0.168 10.1 89.4
2 0.580 11.0 142.8
3 0.385 15.2 164.1
r-m-r 3 1 0.043 7.0 87.1
2 0913 13.5 136.0
3 0.167 10.9 158.8
m-m-r 2 1 0.800 12.0 136.2
2 0.192 13.0 155.0

Nonbonded potentials. Nonbonded potentials are obtained by iterative
Boltzmann inversion. The iterative Boltzmann inversion uses the difference in the
potential of mean force between the distribution functions generated from a trial
potential and the true distribution function to improve the effective potential
successively. The pressure information is incorporated into the optimization of
nonbonded potential by means of a so-called ramp correction. These techniques have
been described in Chapter 1.

The nonbonded tabulated potentials for rr, mm, mr. are listed in Table A.3.3.

Table A.3.3. The nonbonded tabulated potentials for rr, mm, mr.
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Distance [m]
0. DDODOO0
0. 3T 00000E-11
. T BabiHOE-11
0. 1131 0000E-10
0 1507 0000E-10
0. 1BB40DD0E-10
. 2261 0000E-10
0, ZEIR0ORDE-10
0, 201500DDE=10
0, 23320000E=10
0. 37 ERDOODE-10
0. 41 3EDDDDE-1D
0. 452 3D00ODE=-10
0 4 S000000E-10
0, B2 VE0000E-10
0, BESIODOOE-10
. GOIBHOHOE-10
O B4 0T O0OOE-10
0 BTHA00R0E-10
0. 71610000E=10
0, 75300000E-10
0. 791 EDODDE-1D
0. 82820000E-10
0. BEEBDOODE=-10
0, S0AS0000E-10
0. 542 30000E-10
0. SB0100DOE-10
0. 101 TR OBOE-DS

0, 10555000E-09

0.
.
0.
0.
o,

o,

0.
0.
0.
.

o,

e [J1

JBETTESEE-1D
IREATEVAE-1D
ARESTEEIE-1%
IPEOBEILE-1Y
IPELBEDTE-1%
IBEZASAEE-12
IB6IASGIE-1%
IREIRSAIE-1D
IREENE21E=1D
FRETDEO0E=1D
JBEE04TRE-1D
IPEFDMETE-1S
AT00EAEE~15
3B711414E-1%
IPT2LABOE-1%
IRTILIGRE-1D
IATA1347E-1%
3RTE1326E-1%
3BTEIIME-1%
3RTTIZAIE=1D
IRTEIZGLE-1D
JPTSIZA0DE~1S
JPE0IZ1BE~-1D
3BE13]134E~15
IPE241VIE-1Y
IPEI41EQE-1D
ANBAAIAEE-1D
IRBEI11AE-1%

IBBEE0I2E-15

mim [J1
0. 56302181 BOODE-15
0. BE311101 0ODOE-1%
0. BE320181 GODOE-1%
0. BE330181 0ODOE-1%
0. 56335101 0ODOE-1%
0. 563468101 0OOOE-19
. 56357181 GOOOE-19
o, 56367181 POPDE-19
0, 56377181 DODDE=19
0, 56306181 DODDE=19
0. 56355181 BODDE-15
0. EE404181 DODDE-15
0. BE413181 DODDE-15%
. BEQ23181 0OROE-19
0. BE4321081 0ODOE-1%
0. BE4a1181 OODOE-1%
@, 564 50181 GOLOE-19
0, EE4E0181 COBOE-19
0, 56470181 0OROE-19
0, 56479181 DODDE=19
&, 56488181 DODDE-15%
0. EE457181 DODDE-15
0. EEEDELE] DODDE-15
0. BES1E181 DODDE-15%
0. BEE2E181 0ODOE-1%
0. BEE3101 OODOE-1%
0. BEBa31481 OODOE-1%
0. BEEE3181 GODOE-1%

0, 56562181 0OROE-19

me [J]
0.4B8411421E-15%
0. 4BA22A00DE-]1 &
0. dBAAZATHE-1 %
0. 4BA423ETE-1 S
0. 4BAB2333E-1 0
0. 4Bd63312E-19
G ABdTAZH0E-15
0, ABIR4Z69E-1 %
0. 45394 Z4TE=1 8
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0. ABBASHIDE-1 &

0. ABGSH1BE-1%

Distancze [m]
0. 10320000E-DS
0. 11 J0E000E 0%
. 11682 DOOE -
0. 12060000E -0
0. 12337 000E -0
0. 12815000E =09
. 131 SODH0E - 0%
0, 13565000E -0%
0, 1394 3000E =03
0. 14320000E =03
0. 14E5B800DE-DS
0. 1507 E0DDE DS
0. 15452 000E -0
0. 158 30000E 0%
0. 1E207 000E -DS
0. 1EEAEODDE 0%
. 163G0000E 0%
0, 17335000E 0%
0 1771 3000E -0%
0. 1503000D0E =03
0, 184680008 -D%
0. 1884 500DE DS
0.19220000E-D5
0. 1 5555000E ~D5
0, 1597 3000E -0
0. 20AE000DE 0%
0, 2072 BOD0E 0%
. 21 1OEDHHE -

0, 2148 3000E -0

e [J1
0. 28BTVEDEEE-1D
O, 3HBAEOISE-1D
. BB SEOLHE-1%
0. 3B20E595E-15
0, 3B218577E-1%
0. 3HD26959E-19
. 3893693 7E-19
0, 3RPIER0EE-15
0, 30PSEREEE=15
0, 3BPGEREEE=15
0. 385TBE4EE-1D
D.3858BB2EE~-19
0. 38538B03E~-15%
0, 350087 84E-1%
0, 3S01ATE3E-1%
0, 350257 4E-1%
. 3%03%T1TE-19
0, 30AESLE-1%
0, 3POSHETIE-1%
0, 30GIES1IE=1
0, 3%081632E-1%
D.33081ELDE-1S
0. 35101 584E~-19
D.35%]111557E~-15
0. 35121 E38E-1%
0. 35131E17E-1%
0. 351320 50E-1%
. 351620 7BE-1%

0, 391624 50E-19

mm [J1
0. 5E572181000DE-15
0. EEEA11810000E-1%
0. BEES01 81 0000E-1%
0. EEESS1810000E-1%
0. BEE081810000E-1%
0. 56618181 0000E-19
0. 56627181 0000E-19
0, 56636181 00RDE-159
0, 56645181 D0DDE=15
0, 56655181 00DDE=15
D .5EEER1B1000DE-15
0. EEET41810000E-15
0. BEEBI1810000E-15
0. BEES2181 0000E-19
0. EET011810000E-1%
0. EE7111810000E-1%
. 56720181 0000E-19
0L EET281810000E-123
0. 56738181 0000E-19
0, 56748181 000DE=15
0. 56758181 0000E-15
0. EETET1810000E-15
0. EETTE1B100DDE-15
0. BETAE1810000E-15%
0. BEY341810000E-1%
0. EER041810000E-1%
0. EEB131810000E-1%
0. BEB221810000E-1%

0. 568311010000E-19

me  [J]
D.4B705732E-15
O 4BT1STEEE-1%
0. dBT2STAAE-1%
0. 4B A072E5E-1%
0. 4BV EOT0IE-1Y
0. 4B 7E0EEEE-19
B, dBTVGSEE-1%
0. 4B 7EREILE-1T
0. 4879261 2E=19
0. 45 B025PLIE=15
D.4BBL2ETIE-1%
D.4BB22EE1E~15
D.4BBA2EZSE~15
0. 4B BAIELDE-1%
0. 4B BEIQBSE-1Y
O 4B BEIATOE-1%
O dBBVIMA3IE-1%
G, dBBA34LTE-1%
G, 4B B353IFHE-1%
0. 48 B053ITTE=15
0,48 315358E-1%
D.48 92E33EE~-15
0.4 93E210E-15
D.4B245283E~-15%
0. 48 SEE2E4E-1Y
0,48 SEEZAIE-1%
0. 4B SVE22AE-19
0. 4B SAEZOZE-1%

0 AB $¥T104E-15
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Distansg [m]
0. 21BEDODDE-DS
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0. 2281 B000E-D%
0. 229%0000E-0%
0. 2A3EE000E-DS
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0, 244 7 OROE=-DF
0, 2487 50D0E=D%
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0. 25E3000DE-DS
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0, 2781 MOO0E-O%
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0. 293 35000E-05
0. 2977 300DE-0%
0. 201 5000DE-DS
0. 305 2B000E-DS
0. 30S0E0L0E-DS
0. 31283000E-0%
0. 31EE00D0E-DS
0. 32037 000E-D%

0. 32 1S000E-0%

EE [J]
0. 381724 36E-18
0. 33183217E-1%
0. 351%9356E-19
0. 39200369E-19
0. 3521a3Q3E-19
0. 39224321E-19
0. 39234302E-19
0, 39245281E-19
0., 39255262E=19
0, 39265241E=19
0. 38275322E-1%
0. 352BE300E-18
0. 38257181E-1%
0. 3530715EE-19
0. 383171 20E-15
0. 3932810%9E-1%
0. 39335080E-19
0. 3934T0G9E=19
0. 39358040E-19
0. 39368021E-19%
0, 393779%4E-15%
0. 383B757TEE-15
0. 35385554E-15
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mm [J]
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0, 39330891 SO00E-19
0, 33121866 2000E-15
0, 324848 307 DODE-15
0. 30254321 S00DE-19
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0. a03809EE-1 9
0. aS0aB0ESE-1 S
0. 4305%047E-1 9
0. 4306%020E-1 %
0, 420 EROTE-1 9
0. 420GRSERE=1 9
0. 432035267E=1 2
0.45110548E-15
0.4512082EE-15
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- 0. 851071 S00000E-20
- 0. 560731 SDOODOE-20
- 0. 548461 SOOOHOE-20
=0, B28081 S00000E-20
=0, 459841 S00000E-20
=0, Q89521 S00000E-20
=0, 479361 SO0000E-20

=0, d67551 SO0000E-20

mE [J]
0.20B53E85E-15
0. 20087 244E-12
0.18315536E-19
0.17182E81E-1%
0.15419843E-1%
0.,14242730E-1%
0.12831368%E-19
0. 12034364E-19
0. 110389 3E=19
0, 10342070E=153
0. 35584282E-20
0.3 1B532EEE-20
0.8 ESIESITE-20
0.8 29E6202E-20
0.7 BOSAITEE-20
0.7 34853 2E-20
0. ETSZ29TE-20
0,644 95346E=-20
0. 6047AL1A0E=20
0. 562TTESFE-20
0, 50867 206E-20
0. 50207 7TDE-20
0. 4 B9ZS504E-20
0. 7Ea5I3BE-20
0. 4 EEII0QSE-20
0. 4 ETB2B3EE-20
0. 4 BBEEE20E-20
0. aE2aBQAZE-20

¢, 45168243E-20
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Distance [m]
0. 423720000E-D5
0. 42057 000E-DS
0. A4 EODOE-DS
0. AQBEO0DOE-DS
0. 4522 5000E-0%
0, ASE0I000E-D
0, ASSB0000E-D
0, 46357 0DOE=DS
0., 467 35000E=D3
0., 47110000E=0%
0. 4748500DE-D5
0. 478E200DE-D2
0. 4824000DE-D5
0. ABELTODOE-DS
0. AR SHEODOE-DS
. A93FABHOE-D0S
0, 4575000 0E-0%
0, S0L127000E-0%
0, SOSOE000E-DY
0, S0ER0ODOE=DS
0, 51255000E=03
0. 51E32000E-D2
0. 5201 00ODE-D5
0. 52388 00DE-D5
0. B27BEOODE-DS
0. B3 A00DOE-D%
0. BAE1 BODOE-DS
0. 53852 000E-0%
0, 5427 0000E-0%

b.

e [J1

23831VESE-20

0. 23121EBE8E-20

0. 22E083EEE-20

0. 209201 00E-20

o,
o
o
o,
o,

o,

o,
0.
.
o
o
o
o,

o,

o,
0.
0.
o,
o

152 368 33E-20
1745764 5E-20
162154 31E-20
160452 16E=20
16733028E=20
17BETELE=20
182264 35E-20
1744E30VE-20
1E827D52E~-20
16812878E-20
1795580 53E-20
188 83B01E-20
13203206E-20
18%81072E-20
1882488 3E-20
1846RE1TE=20
18451 351E=20
181701 36E-20
18102248E-20
17472755E-20
1E087EQBE-20
1870127 5E-20
1724001 2E-20
172 %67 S8E-20
174 3B605E-20

mm [J]
=0. 456751 2 DODODE-20
=0, 4427415 00OODE-210
=0, 42 36819 0000DE-210
=0, 4153419 0000DE-210
=0, QULET LS D0DO0E-20
=0, IBSHZLF OOOOCE-20
=0, JEHSE L F OOOOCE-20
=0, 349201 5 DOOBDOE=20
=0, 3288319 000DOE=20
=0, 3084115 000D0E=20
=0.2%0021 5 00DODE-20
=0.271741500D0DE-20
-0.2511115%00D00E~-20
=0, 2255819 00000E-210
=0, 2071219 00000E-210
=0, 1883515 GOOOLE-210
=0, 172131 5 OOROCE-20
=0, 158331 5 0O000E-20
=0 143171 5 000 ROE-2 0
=0, 1298419 DOODOE=20
=0, 1180819 0OODOE=20
=0.108241 5 00D0ODE-20
=0. 2574420 DDDODE-2]
=0.8518%20 DDDODE-2]
=0, TR0 S0 GODODE-21
=0, TALEE S0 OOOODE-21
=0, ET082 S0 0000DE-21
=0, BELBGSD OODO0E-21
=0, 48187 S0 O0000E-21

me [J]

D.
0.
0.
0.

0.

o
o

o,
o,
o,
D.
D.
D.
0.
0.
.
o,
o,
o,
o,
o,
0.
D.
D.
0.
0.
0.
0.
o,

4561202 5E-20
44512818E-20
AQ0E2 E28E-20
A37HBAE0E-20
A91210%3E-20

45005E-20
4B75691E-20
45407 47EE=20
45743208E=20
45089021E=20
44EE2TERE-20D
44024 5ETE-20
440143E2E-20
A3114138E-20
4275054 %E- 20
A18a07E1E-20
41354 546E-20
d0038332E-20
32127143E-20
3ERIEVIE=20
3640BE11E=20
AEDTIISEE-20
33551208E-20
3233501 5E-20
3I0BE0B0EE-20
2518595356~ 20
2B0O0E2T2E-20
2ETEA0ERE-20
2EVEEHE0E-20

Distance [m]
0. 54E4800DE-DS
0. 5502 EO0DE-0D
0. G402 000E—DS
0. BETAOODOE—DS
0. 56158 000E-0%
0, SEE3E000E-0%
0, SESLO0OOE-D
0, 57285000E =03
0., 576620DDE =03
0., 58040000E=0%
0. 5841800DE-DS
0. 587 25000E-DS
0. 55217 0000E-DS
0., 59EQEODOE—DS
0. 5992 AODOE—DS
. BOADOOOOE—DS
0, GOETTOOOE-D%
0, B1OSE000E-0%
0, B1433000E-0%
0. 618100D0E =D%
0. 6218B0DDE =03
0. E2EEEDDDE-DS
0. E2340000DE-DS
0. E3315%00DE-DS
0. BIESIDOOE-DD
0. Ba0POODOE—DS
0. B4 a7 ODOE~DS
0. B 82 5000E-0%
0, BEZOO0DOE-DS

e [J1
0. 1ET43421E-20
0., 18282207E-20
0. 16099 2E-20
0. 16352 A0AE-20
0 150 6561 BE-20
0. 158534 0LE-20
0151241 34E-20
0, 14223068E=20
0. 12562654E=20
0. 11281465E=20
0. 1050027 VE-20
0. 10023DE2E-20
0. 100857 SEE~-20
0. 98352 97E-21
0. 570881 3E-21
0. 51361 26AE-21
O B506312dE-21
O B30T 240E-21
0. B3I0E53E5E-21
0. B2783211E=21
0. B4511326E=21
0.B33E3182E-21
0. 2307651 3E-21
0. 25E7IBE5E-21
0. 580157 1E-21
0. SEES 582 EE-21
0. 6207 B8 2E-21
O $A5657 $8E-21
0321431 34E-21

mm [T
=0 407 022000D0DE-21
=0 3BTV 25000000E-21
=0, 29091 S000000E-21
=0, 22632 5000000E-21
=0, 167265 000000E-21
=0 8511 SO000G0HE-22
=0, 2BEASO000000E-22
0. 4514000D0DR0E=22
0.113471000000E=21
0. 181071000000E=21
0.2E1571000000E-21
0.2481E10D0DD0E-21
0.454B841000000E-21
0. EET021000000E-21
0. BE8701 0DO0MDE-21
0. 77 5201 DROGHOE-21
0, 885301 000000E-2]1
0, 10044 S100000E-20
0, 110508 L0000 0E-20
0.1198981D0ODODE=20
0.127378100000DE=2D0
0.134828100000E-20
0.142128100000E-20
0.1%0878100000E-20
0. 1588781 00000E-20
0. 1663081 00000E-20
0. 17044 81 00000E-20
0. 1765081 00000E-20
0. 1832581 00000E-20

me  [J]
0.2 45E4EB1E-2D
0.2 362 9487E-20
0. 2 2810262E-20
0. 2 186608AE-20
0. 2110087 5E-20
0, 20501661E-20
0,1 %821304E-20
0.19237128E=20
0.18836314E=20
0. 18489725E=20
0.1813B537E-20
0.17E45322E-20
0.17 1820EEE-20
0. 1B BL0TSOE-20
0. 167 33601E-20
0. 1B EEBARTE-20
0L 167017 2E-20
0. 165639B4E-20
0. 165507 95E-20
0. 1660ESE1E=20
0.16747393E=20
0.1EB3E1TEE-2D
0.1E731%12E-20
0.1EE52E4EE-2D
0. 1B 4d%4ETE-20
0.16265243E-20
0. 1687 302BE-20
0. 15878 RA0E-20
0. 1574787 3E-20
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pistanse [m]
0. E557 5000E-DS
. BESEILDLE-DE
1. BEIIDOOLE-DS
1. BE7 07 GOLE-DS
1, 67 BB EODUE-DS
0, 67 46 I0DIE-03
0. 67 B4 DODIE-DS
0. 68217 000E=0F
0, 6B5F500E-DF
. 68 FTOODE-DF
0. £33 500DDE~DS
0. E5722000E-DS
0. 701 0D00DDE-DS
1. 70877 GOLE-DS
1. 7 GABEGOLE-DS
1,71 233 0D0E- D
. 7161 D0DHE-D3
.71 367 OOHE-03
0,72 I65000E-03
0,727 4DORE-DF
0, 73115000E=05
0.73452000E-D3
0.72870000E-DS
0.74248000E-DS
1.7 462 BODUE-DS
1, T BOOUODLE-D S
1,7 E3T BLDLE- DS
1.7 BB GOLE-DS

0. 761 I0000E-0%

EE [J]
0. BEABDETIE-21
0. BETBASAEE-21
0. B7EEEA2E-21
0. BB2142%8E-21
0. B73624913E-21
@, BEBOGE2HE-21
0. B774H3B4E-2]
0, BT 26Z40E=21
0, #1704 356E-21
0, B0TELERIE-21
0. 5114%025E-21
0. BEZBESBERE-21
0. BT4EEDDDE-21
0. B7IE2AEBE-21
0. BT S30SVIE-21
0. 8432 %0ATE-21
0, 79897 M2E-21
0, TE32ATIEE-21
0, T6055%14E-21
0, 7528%250E-21
D, 74Z6EEATE=21
0. TDED3843E-21
0. EEAEDEEBE-21
0. BEED4ETIE-21
0. A9357629E-21
0. 415BQ868E-21
0. 37619203E-21
0. 312570E8E-21

0, 249481 7T4E-21

mm [J]
0. 12032810 0000E-20
£, 1838181 B BODLE-20
0. 1800701 D BODLE-20
0, 202 08810 BODOE-2 0
. 206 ABE1 D BOLLE-20
. 20536810 BOOOE-20
0. 201 38810 BOOOE-20
0. 19573810 D000E=20
0., 190E3R1 0 BODOE=20
0., 18624R L0 RODOE=20
0.182808100000E~-20
0. 17831810 0000E-20
0. 17304810 0DDDE-20
0. 16680810 BODOE-20
0. 1628301 D BODOE-2 0
. 1EBETHL D BODLE-20
0. 15479810 BOOOE-20
0. 14819810 0000E-20
. 14183010 BOOCE-20
0., 134008 1D BODOE= 20
0., 12626810 DOOOE=20
0.118408100000E-20
0.1111%8100000E-20
0. 10412810 0000DE-20
0, 87728100 BODHE-21
. $O875100 BODLE-21
. B4 488100 BODLE-21
0. 771 361 00 BODOE-21

0. 707 a7 100 0O00E-21

mE [J]
0. 154E7I0TE-2 0
fr,1E1081188-2 0
01, 15008 SO4E-2 &
{1, 15088 BHOE-2 &
fr, 14BEIE01E-2 &
14432313820
0, 14180088E-2 0
0. 1334 7RRE=20
0, 13743686E-2 0
13517429820
0.134759162E~-20
0. 1343E34BE-2 0
0. 1334E7EDE-2 D
01, 1320854682 O
1, 13057 35782 &
{12501 16522 &
0, 12707 954E-2 &
0, 124627 40E=-2 0
1, 12298551E-2
0, 120E5285E-20
0, 11751019E=2 0
0.113E5804E-2 0
0. 11054E1EE-2 0
0. 107 74427E-2 0
01, 1065021 3E-2 0
fr, LO3BESATE-2
tr, 101 BOEROE-2 &
0, 6773465082 1

0, 933227 74E=21

pistance  [m]
0. TES0BODDE-DS
0, T BEBOOE -0
0. 77262 HO0E -0
0. 77 BADBOLE -0
0, TEOLBBOOE -0
0, TR IFEOO0E ~0%
0. FE7TOOO0E -0 %
0. 791 45000E =0%
0, 79523000E -0 %
0, FSFOOOROE -0 %
0. 80278000DE~D%
0. 8DEEEDDDE-DS
0. 81030000E-DS
0. 81 OB HODE -0
0. 81782 HODE -0
0, 821 BOBOOE -0
0. 82537 DO0E ~0%
0. 8231 5000E ~0%
0, 832 930008 -0%
0, 8367 0000E -0 %
0., 84047 DOOE =05
0. 84425000E-DS
0. 84800000E-D%
0. 851 7E50DDE-DS
R LLLETY T
0, BESIGBOOE -0
0, BEIOBBOOE -0
0. BEEBEDOOE -0

0. BT OE0ROOE -0%

FE [J]
0. 1B1ED285E-21

£, 13382145821

0, G40 SOOOTE-22

0. 285811681822

—b, BES4TGREE-22
-0, 13280613821
-0, 18134176E-21
=0, 22322335821
-1, 261551 24E-21
-0, 30351266E-21
=0.34E74153E~2]1
=0, 35207297E-21
=0.413333E0E-21
—0. 43207624E-21
—b. 43633760E-21
—tn, 47 266EE3E-21
0. 45619797E-21
-0, 51%a7681E-21
-1, 5130ESEEE-21
-1, 521BET10E-21
=D, 52462854E=21
=0.52308725E~-21
-0.E15E1402E-21
-0.E1207DEEE-21
-0, B1308950E-21
b, B2ELOUSEE-21
—tn, B2ETESTSE-21
—0. B1670123E-21

=0 ABTLETATE-21

mm [J]
0. E25821000000DE-21
. BEE201 b DOHE-21
0. 464301 00OLONE-21
(1. 37 5451 ODOLOOE-21
. 302 451 BOLOLLE-21
. 221181 BOBOOOE-21
. 143121 000000E-21
0, 72657 00DOODOE=22
1, 12257 52000D0E-22
-0, SOOEERORODDOE-22
=0, 1287£5000000E~21
=0. 2031 25000000E-21
-0.272185000000E-21
—0, 32 B00SOLOOLOE-21
— . 37 2EEBOOOOLOE-21
— . 4221 S OLOOLOE-21
0. 475358000000E-21
-0, 532049000000E-21
-, 57487 SHB0000E-21
-0, 61282 B000000E-21
=0, E338EH000000E=21
=0. E5E745000000E~21
=0. EEE2250000D0E-21
-0, E8BEASDDODD0E-21
—00, 6874 IBOOOOLOE-21
— 0, T 1 SOLOOLOE-21
— i, BBEEL SOLOOLOE-21
—0, 67037 SOLOBHOE-21

=0 85071 9000000E-21

mE [J]
0.850Q0BESE~2]
.851437 85821
.79 BE0E01E-21
0.738227188-21
[, 67 SUBAILE-21
0. 62B52EETE-21
0.57264024E-21
0. 52315361E=21
0, 47436476E-21
. 42225332E-21
0. 3EE1S44TE~21
0. 21208202E-21
0. 2EBESE4DE-21
0. 2230497 6E-21
0. 18308832821
(. 1aa13847E-21
0. 10461803E-21
0. GOSOIIBEE-22
0y 1900034 0E-22
-0, 25331102E-22
=0, GOFZEEA4ER22
=0.10705535E~21
-0.13111042E-21
-0.151438EEE-21
-0, 18171050E-21
-0, LEALEEEEE-21
-0, 1657BETSE-21
-0, 10328423E-21

=0.18522387E-21
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Distan~a [m]
0. 87425000E-02
0. AT812000E-0%
0. 881 $0000E-0%
0. BB SEBOGOE~D%
0. BB SAEODOE-0%
0, 89323000E-0%
0, B9F00O0ODE-D%
0, 00T RR0E-DF
0, $0455000E-09
0, $0AIDOROE=DS
0. 51 205000E-05%
0. 21582 000E-D%
0. 91 3EDODDE-DS
0. 92 337 000E-0%
0. 5271 BOGOE-O%
0 S30%0000E-0%
0, $3465000E-0%
0, $3843000E-0%
0, S 220000E-0%
0, #45FEQ00E-0F
0, 843 S000E=03
0. 55352 000E-D%
0. 257 20000E-02
0. SE1DEODDE-DS
0. $EAREOOOE-DO%
0. SEAEOOOOE—D%
0. 572 3E000E-0%
0. $7812000E-0%

0, 87 350000E-0%

re [J]
=0. 4EEED4 5DE-21
—0.44831E59E-21
=0, d3ES9ATHE-21
=0, d10083E4E-21
—. 384 34E08E-21
=0, 35891392E-21
=0, 3440%537E-21
=0, 32861681E-21
=0, 3L02REEEE-21
=0, 2R1ER22IBE=T1
=0.27518852E~-2]1
=0.2701ED3IEE-21
=0, 2E47SS21E~2]
—0.250a1086E-21
=, 23536550E-21
—0. 232T0ELIE-21
=0, 2278%276E-21
=0, 23350161E-21
=0, 2363I0305E-21
=0, 238541 PE-21
=0, 23791334E=21
=0.2341547HE~-21
=0.23%883E3E-21
-0.24789248E-2]1
=0, 253703582E-21
— . 25558056E-21
—. 260277 1BE-21
—0.28EE30E3E-2]1

=0, 27399747E-21

mm [J]
-0. 37583 D00D00E-21
=0, E211 9% 000000E-21
=0, G017 S 000000E-21
=0, GAGEOS DOOOH0E-21
=0, EQB0T S O00000E-21
=0, 509463 000000E-21
=0, 475473 000000E-21
=0, 43811 % 000DD0E-21
=0, 2RE17FOOODOOE-2]
=0, 35054 2 00ODDDE=21
-0. 314015 BOOBOOE-21
-0. 278565 D00D00E-21
-0. 246535 D00DO0E-21
=0, 2033 59 000000E-21
=0, 156305 000000E-21
=0, 110385 000000E-21
=0, 67 I E0OO00D0E-22
=0, 2147 50000000E-22
. 25257 00 00000E-22
0, 6735700 DRODOE=22
0, 10331 2000000E=21
0. 1373810 00000E-21
0. 1766210 D0000E-21
0. 2118610 D0D00E-21
0. 28 30d 10 0D0DOE-21
0. 27064 10 OHODOE-21
0. 2987410000 00E-21
0. 32381 000000E-21

0, 34 64 LODOODDE-21

me [J]1
=0.18428850E-21
=0, 1E78A3SE-21
=0, 1624877 9E-21
=0, 141856 E-21
—0. 13582908 E-21
=0, 12764092E-21
=0.,12514637E-21
=0, 12521681 E=21
=0, 1278FRESE~21
=0,12728428E=21
=0.12123852E~21
=0.1112825%EE-21
=D.1D041181E~21
=0, $53276B1E-22
=0, $A0ETASAE-22
—0. $1348131E-22
=0, S0%54764E-22
=0, 83281110E-22
=0, 10173167E-21
=0, 11081690E =21
=0, 11837234E=21
=0.11%1747BE~-21
=0.115523E3E-21
-D.114BES4BE~-21
=0 11317282E-21
=0, 12080886E-21
—0.1328371BE-21
=0, 1521 3883E-21

=0, 162ET547E-21

Distance [m]
0. 38368 00DE-DS
0. ST AEODOE -0
0. 991 20000E 0%
0. 592 SEOGOE 0%
0. SSBEEODDE -0
0, 10024 DO0E -0
0, 10062 DOOE -0
&, 1E1BODR0E -0
0, LPL3BDROE -0
0, 1017 5D00E =0F
0. 1021 3000E - D08
0. 10250000E - DB
0. 1028E00DE DB
0. 1032 EOOOE —08
. 1OIEIOOOE —08
0. 1000 000E — 08
0, 104 0000E 08
0. 10aR0000E 08
@, 10518 DO0E -8
0, LRSEE000E -0
0, 10583000E =08
0. 10EADDODE ~ DB
0. 10EEBDODE - DB
0. 107 DEDDDE DB
0. 107 A 2000E ~08
0. 10T ROOHOE —08
0. 1081 B 000E —08
0. 10AEEOOOE —08

0, LOBSI000E -0

re [J1
=0.27535E32E-21
-0.281E60776E-21
-0, 2588 3435E-21
-0, 31185103E-21
—0. 31501 0EIE-21
=0, 32106727E-21
=0.31557083E-21
=0.31681450E-21
=0, 31625R24E-21
=0,32226785E=21
=0.31738]150E~-21
=0.20340112E-21
=0.28250477E~21
-0.28603438E-21
-0, 2763180AE-21
—0. 284107 6EE-21
=0, 25662935E-21
=0.25648113E-21
=0, 2601747 3E-21
=0, 2609244 0E-21
=0, 25376R05E=21
=0.243527E7E~21
=0.227BE132E-21
=0.22E35093E~-2]
=0, 23007 465E-21
=0, 23%31420E-21
-0, 2333778 5E-21
-0, 2380770 7E-21

=0.,22630112E-21

mm [J]
0. 366731 0000D0E-21
0. 352841 000000E-21
0. A 161 31 00D 0omOE-21
0. @ ad? a1 GG OnOE-21
0. 470381 000000E-21
0. 435301 000000E-21
0. S05VE1000000E-21
0. 515521 000000E-21
0, 531021 0000R0E=21
0, 5507 100D0OD0E=2]1
0. 561481 000000E-21
0. %EE381D000D0E-21
0. 566421 DD0ODDE-21
0. BEEAT 1 0000D0E-21
0. 671701 GO ODOE-21
0. EPEEIL000000E-21
0. 5?5R61000000E-21
0. 571011000000E-21
0. 5?0051 GOO0HIE-21
0, ST R1000OR0E=21
0, 5544 210000D0E=21
0. 538731 DOOOBOE-21
0. 522521 D0000DE-21
0. 507341 D00O0DE-21
0. Q87091 OODOmOE-21
0. ABHEL1 GODODOE-21
0. 454 EE1000000E-21
0. 43551 000000E-21

0., 427771 000000E-21

me  [J]

=0. 1820E322E-21
-0, 1878577 8E-21
=0, 1863303 5E-21
=, 18862503E-21
= 1360548QE-21
=0, 21000127E-21
=0, 22237493E-21
=, 23353050E~21
=0, 2434 5224E-21
=0, 25445185E=21
=0. 2EEIEEE0E~2]

-0, 28215512E-21

.. 2893087TE~-2]1
=0, 29320838E-21
=, 2A%B720QE-21
-, 250681 65E-21
=0, 30373339E-21
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Simulation tools

The molecular dynamics simulations reported in this PhD thesis were performed
on the cluster of the Theoretical Physical Chemistry group of Prof. Florian Miiller-
Plathe at the Technische Universitit Darmstadt. The cluster was supplied by the
company TRANSTEC. Additional molecular dynamics calculations were carried out on
IBM p575 machines of Hessisches Hochleistungrechner located at the Technische
Universitidt Darmstadt.

For carrying out the viscosity calculations using the reverse nonequilibrium
molecular dynamics (RNEMD) algorithm, the molecular dynamics package GMQ was
used. This package was originally developed by Prof. David Brown and Dr. Sévérine
Queyroy (Université de Savoie, France). The RNEMD algorithm was later embedded
into this code by Dr. Welchy L. Cavalcanti and myself. For simulating atomistic
polymers after backmapping, the molecular dynamics package GROMACS was used
for both energy minimization run and molecular dynamics run (reference: Berendsen,
H. J. C.; van der Spoel, D.; van Drunen, R. Comput. Phys.Commun. 1995, 91, 43-56.;
Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Model. 2001, 7, 306-317). Part of the
atomistic molecular dynamics used the YASP package, which was originally developed

by Prof. Florian Miiller-Plathe and later parallelized by Dr. Konstantin B. Tarmyshov.
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