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This chapter presents the most important aspects of OFDM wireless communications. It
starts in Section 2.1 with a general presentation of the time-variant multipath radio channels
and the modeling of various effects. We discuss the WSSUS assumption and show how this is
applied to baseband discrete channel modeling. We also show how the multipath components
and their time-variant nature affect the channel properties, leading to frequency selectivity and
Doppler spread. The channel estimation unit in the receiver must estimate these variations in
time and frequency and compensate for them accordingly.
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Section 2.2 introduces the principles of OFDM, including the signal model and its main
parameters, such as the guard interval and the guard subcarriers. We then go on in Section 2.3
to analyze the influence of channel Doppler variations on the received OFDM signal, for both
slow-varying and fast-varying channels. In Section 2.4 we discuss how other impairments
affect the reception, such as timing and frequency errors, sampling clock frequency offset and
additive noise.

2.1. Time-Variant Multipath Radio Channels

Mobile radio channels are essentially time-varying multipath channels. Multipath propagation
occurs through scattering, reflection, and refraction, and strongly affects the quality of the
reception. In order to compensate these impairments in the receiver, we need to understand
their statistical properties and model them through an appropriate stochastic model.

2.1.1. The WSSUS Model

A very popular radio channel model is the “wide-sense stationary with uncorrelated scattering”
(WSSUS) model introduced by Bello [1]. Assuming wide-sense stationarity, the channel is
modeled as a linear superposition of uncorrelated echoes, as shown in (2.1). Each echo path p
is characterized by a fixed delay τp and a time-varying gain γp(t).

h(τ, t) =
P∑
p=1

γp(t)δ(τ − τp) (2.1)

A stationary analog channel model is fully characterized by a two-dimensional scattering func-
tion. In time domain, it is the time-variant impulse response h(τ, t). We can also characterize
the channel through the time-variant transfer function, Doppler-variant impulse response, or the
Doppler-variant transfer function. All these two-dimensional functions, shown in Figure 2.1
as Fourier pairs, carry the same information.

If the number of uncorrelated paths is assumed sufficiently large, the two quadrature compo-
nents of the complex impulse response have a Gaussian distribution, according to the central
limit theorem. The distribution of the phase and amplitude is uniform and Rayleigh respec-
tively. It has been experimentally shown that a Gaussian model with zero mean fits many radio
channels of practical interest: land mobile, HF ionospheric, indoor channels, and many others.

The wide-sense stationarity of the WSSUS model implies that the autocorrelation function ϕ(τ)
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Figure 2.1.: Channel characterization functions

of the tap gains γ(t) depends only on the difference between observation times τ .

ϕ(τ) = E{γ(t)γ∗(t− τ)} (2.2)

The autocorrelation ϕ(τ) and the power spectral density Φ(f) of γ(t) are Fourier pairs, accord-
ing to the Wiener-Khinchin theorem:

Φ(f) =

∫ ∞
−∞

ϕ(τ)e−j2πfτdτ (2.3)

Φ(f) is also called Doppler spectrum and characterizes the fading rate of an echo path. The
Doppler spectrum depends on the type of propagation.

2.1.2. Doppler Spectrum Types

Each received echo has a different Doppler shift corresponding to the cosine of the angle α
between the velocity vector of the receiver and the ray’s direction of arrival.

fDsh =
v

λc
cosα =

vfc
c0

cosα (2.4)

where λc is the wavelength of the carrier frequency fc and c0 is the propagation speed in the
free space. It can be seen that the Doppler shift increases linearly with the velocity and the
carrier frequency.
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For land mobile channels, a very large number of rays arrive at the receiver uniformly
distributed in azimuth and with zero elevation. If the directivity of the receiver antenna is the
same in all angles, the resulting normalized Doppler spectrum is given by the following formula:

ΦJ(f) =


1

πfD

1√
1−

(
f
fD

)2
if |f | < fD

0 otherwise

(2.5)

In this equation, fD is the maximum Doppler shift, equal to vfc/c0. This Doppler spectrum is
referred to as Jakes spectrum, although it has been introduced first by Clark [8] then popularized
by Jakes [43]. The autocorrelation function is:

ϕ(τ) = J0(2πfDτ) (2.6)

where J0(·) is the zero-order Bessel function of the first kind.

Usually, the channel is modeled so that all taps have the same Doppler spread fD regardless of
delay.

For indoor channels, a very large number of rays arrive at the receiver uniformly distributed
in elevation and azimuth. If the antenna is assumed to be either a short or a half-wave dipole,
the resulting Doppler spectrum is flat in the (−fD, fD) range, as shown by the following formula:

ΦU(f) =


1

2fD
if |f | < fD

0 otherwise
(2.7)

For HF channels, between 2 and 30 MHz, propagation occurs through ionospheric reflections.
This band is used primarily for maritime, military, and aeronautical systems, as well as for
long-distance broadcasting (AM). The multipath effect is caused by reflections of the radio
signal on different layers of the ionosphere. In addition, multiple reflections can occur between
ionosphere and the earth’s surface.

Thus, the received signal is spread in time, containing several echoes or modes separated by a
matter of milliseconds. The signal also experiences a frequency spread, as each mode fades due
to the specifics of the ionospheric reflections.

The delay spread can range up to 6 ms, while the fading rate (Doppler spread) can be as high
as 5 Hz [24]. More typical values are 2 ms and 1 Hz respectively. Northern trans-auroral paths
can exhibit up to 10 ms of delay spread and 50 Hz of Doppler spread.

For HF channels, the WSSUS model has been experimentally validated by Watterson with
on-air measurements [94]. The power spectrum of the taps has been determined to have a
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Gaussian shape. Its normalized profile is given by:

ΦU(f) =
1√

2πσ2
D

exp

(
−(f − fDsh)2

2σ2
D

)
(2.8)

The Doppler spread Dsp is specified as the two-sided bandwidth that contains 68% of the
power, i.e. Dsp = 2σD. Moreover, each path can exhibit an additional frequency shift fDsh,
also denoted by Dsh. For a more in-depth treatment of the theory behind HF propagation with
application to channel modeling, refer to the CCIR Report 549-2 [42] and Recommendation
520-1 [41].

2.1.3. Baseband Discrete Channel Modeling

The received continuous-time signal is down-converted to complex base-band and sampled with
the sampling period T . We assume the A/D converter contains an ideal low-pass filter with
bandwidth 1/T . For the continuous-time channel in (2.1) at a certain time instant, the channel
impulse response can be written:

h(τ) =
∑
p

γp · δ(τ − τpT ) (2.9)

where γp are the amplitudes of the incoming multipath components at that time instant, and
τp are the path delays normalized to the sampling period T .

After sampling, the observed discrete channel impulse response becomes:

hk =
∑
p

γp ·
sin(π(k − τp))
π(k − τp)

(2.10)

where hk is the response at lag k, i.e. for delay kT .

If τp is an integer, all the energy of path p is mapped to tap hτp . In the general case when
τp is not an integer, its energy will leak to all taps hk. The actual leakage profile depends
on the fractional part of τp, i.e. the inter-sample position of path p. Figure 2.2 shows the
contribution of a single path with γp = 0.9 to the discrete (sampled) impulse response, for three
different inter-sample phases φ. As intuitively expected, the highest amount of leakage occurs
for φ = 0.5, when the path delay falls exactly in the middle between two sampling instants.
The taps are complex and Figure 2.2 shows their amplitudes only.

Equation (2.10) shows that a discrete channel can be modeled as a tapped delay line (FIR
filter) with time-varying coefficients hk, as shown in Figure 2.3. In general, the FIR filter is
of infinite length even for finite-length echo delays and the tap gains are correlated even under
the assumption of uncorrelated scattering [33]. In actual simulations, however, the length of
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Figure 2.2.: Sampled channel impulse response for a single path

the channel impulse response can be considered finite. The length of the impulse response is
denoted by L, so that the number of discrete taps including the first one h0 is L+ 1. Moreover,
the discrete taps can be assumed to be statistically independent in some simulation scenarios.

D Ddin D

h0(t)

dout

h1(t) h2(t) hL-1(t) hL(t)

Figure 2.3.: Tapped delay line modeling of a WSSUS multipath channel

The time-varying taps hk are discrete complex Gaussian processes, therefore their amplitude
has a Rayleigh distribution and the phase is uniformly distributed in range [0 . . . 2π). The
discretization affects the continuous time-variant impulse response h(τ, t) in the τ and t direction
at the same time. The discrete time-variant CIR is now denoted by hk(n).

As mentioned in the previous section, the time-varying behavior of a discrete taps depend on
its Doppler fading, which is characterized by three parameters: spectral profile type, spread,
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and shift. The Doppler rate is usually much lower than the sampling rate. We define the
normalized Doppler rate as the ratio between the actual Doppler rate and half the sampling
rate (Nyquist limit) and we consider two examples to determine typical values thereof.

In the case of a DRM [21] receiver with a sampling frequency of 24 kHZ and a typical iono-
spheric HF channel with a Doppler spread of 2 HZ, the resulting discrete Doppler frequency
is 2/12000 ≈ 1.67 · 10−4. For a DVB-T [20] receiver with a sampling frequency of 64/7 MHz,
moving with 100 km/h, and receiving on a carrier frequency of 540 MHz, the maximum Doppler
frequency is approx. 1.1 · 10−5. In both cases, the discrete Doppler frequency is much smaller
than the Nyquist limit 1.

2.1.4. Multipath Channel Delay Profiles

In order to provide different simulation scenarios and a consistent basis for performance com-
parison, various channel profiles have been proposed. For land mobile channels, power delay
profiles have been proposed within the COST 207 working group [17], as well as by ITU for
testing of various communication standards.

The COST 207 working group originally developed the proposed channel models in view of
the emerging GSM mobile communication standard. Four families of channels were defined,
corresponding to the four categories of propagation environments:

• Areas with rural character (Rural Area)

• Areas typical for cities and suburbs (Typical Urban)

• Urban areas with high building densities (Bad Urban)

• Hilly terrains (Hilly Terrain)

The COST 207 models are based on the WSSUS assumption. Another assumption is that the
delay profile, or power density function, can be represented by one or more exponential decay
functions. The delay power spectral density has the following expressions, for each of the four
propagation environment. The delay τ is expressed in ns. Figure 2.4 shows the four delay
profiles graphically, for a delay τ of up to 20 µs.

Rural Area (AR):

Pd(τ) = e−9.2τ (2.11)

Typical Urban (TU):

Pd(τ) = e−τ (2.12)
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Bad Urban (BU):

Pd(τ) =

{
e−τ 0 ≤ τ < 5µs

0.5 · e5−τ 5µs ≤ τ
(2.13)

Hilly Terrain (HT):

Pd(τ) =

{
e−3.5τ 0 ≤ τ < 15µs

0.1 · e15−τ 15µs ≤ τ
(2.14)

For convenience, Figure 2.4 shows the logarithmic representation of these four delay profiles.
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Figure 2.4.: Delay profiles according to COST 207

COST 207 also provides discretized versions of the four power delay profiles. For each profile,
two models with different complexities (number of taps) are proposed. All eight discretized
models are listed in Table 2.1.

Discrete power delay profiles are also specified by ITU. Three profiles are proposed, each with
two variants: ‘indoor office’, ‘pedestrian’, and ‘vehicular’. The six discrete profiles are listed in
Table 2.2.

For HF ionospheric propagation, the CCIR recommendation 520-1 [41] defines the well-known
‘good’, ‘moderate’, and ‘poor’ channel profiles. Each profile is defined by the number of taps,
their delays, and the relative amplitudes, as well as by their Doppler spread Dsp and Doppler
shift Dsh. Table 2.3 shows the five multipath channels used in the specifications of the DRM
standard [21].
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Rural area (RA) Typical urban (TU) Bad urban (BU) Hilly terrain (HT)

4 taps 6 taps 6 taps 12 taps 6 taps 12 taps 6 taps 12 taps

Del ; Pow Del ; Pow Del ; Pow Del ; Pow Del ; Pow Del ; Pow Del ; Pow Del ; Pow

0 ; 0 0 ; 0 0 ; -3 0 ; -4 0 ; -3 0 ; -7 0 ; 0 0 ; -10

0.2 ; -2 0.1 ; -4 0.2 ; 0 0.2 ; -3 0.4 ; 0 0.2 ; -3 0.2 ; -2 0.2 ; -8

0.4 ; -10 0.2 ; -8 0.6 ; -2 0.4 ; 0 1.0 ; -3 0.4 ; -1 0.4 ; -4 0.4 ; -6

0.6 ; -20 0.3 ; -12 1.6 ; -6 0.6 ; -2 1.6 ; -5 0.8 ; 0 0.6 ; -7 0.6 ; -4

; 0.4 ; -16 2.4 ; -8 0.8 ; -3 5.0 ; -2 1.6 ; -2 1.5 ; -6 0.8 ; 0

; 0.5 ; -20 5.0 ; -10 1.2 ; -5 6.6 ; -4 2.2 ; -6 17.2 ; -12 2.0 ; 0

; ; ; 1.4 ; -7 ; 3.2 ; -7 ; 2.4 ; -4

; ; ; 1.8 ; -5 ; 5.0 ; -1 ; 15.0 ; -8

; ; ; 2.4 ; -6 ; 6.0 ; -2 ; 15.2 ; -9

; ; ; 3.0 ; -9 ; 7.2 ; -7 ; 15.8 ; -10

; ; ; 3.2 ; -11 ; 8.2 ; -10 ; 17.2 ; -12

; ; ; 5.0 ; -10 ; 10.0 ; -15 ; 20.0 ; -14

Table 2.1.: COST 207 land mobile channel delay profiles (delay in us, power in dB)

Indoor office Pedestrian Vehicular

A B A B A B

Del ; Pow Del ; Pow Del ; Pow Del ; Pow Del ; Pow Del ; Pow

0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; -2.5

0.05 ; -3.0 0.10 ; -3.6 0.11 ; -9.7 0.20 ; -0.9 0.31 ; -1 0.30 ; 0.0

0.11 ; -10.0 0.20 ; -7.2 0.19 ; -19.2 0.80 ; -4.9 0.71 ; -9 8.90 ; -12.8

0.17 ; -18.0 0.30 ; -10.8 0.41 ; -22.8 1.20 ; -8.0 1.09 ; -10 12.9 ; -10.0

0.29 ; -26.0 0.50 ; -18.0 ; 2.30 ; -7.8 1.73 ; -15 17.1 ; -25.2

0.31 ; -32.0 0.70 ; -25.2 ; 3.70 ; -23.9 2.51 ; -20 20.0 ; -16.0

Table 2.2.: ITU land mobile channel delay profiles (delay in us, power in dB)
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Channel Path Delay Gain (rms) Doppler shift Doppler spread

τk ρk Dsh Dsp

#1 1 0 1 0 0.1 Hz

CCIR good 2 0.5 ms 1 0 0.1 Hz

#2 1 0 1 0.1 Hz 0.1 Hz

US consortium 2 0.7 ms 0.7 0.2 Hz 0.5 Hz

3 1.5 ms 0.5 0.5 Hz 1.0 Hz

4 2.2 ms 0.25 1.0 Hz 2.0 Hz

#3 1 0 1 0 1 Hz

CCIR poor 2 2 ms 1 0 1 Hz

#4 1 0 1 0 2 Hz

2 4 ms 1 0 2 Hz

#5 1 0 0.5 0 0.1 Hz

2 2 ms 1 1.2 Hz 2.4 Hz

3 4 ms 0.25 2.4 Hz 4.8 Hz

4 6 ms 0.0625 3.6 Hz 7.2 Hz

Table 2.3.: HF channel power delay profiles

Besides the above real-life channel delay profiles, it is desirable to introduce other delay profiles
that help to evaluate the receiver performance with a finer granularity. Three of these pro-
files widely used in literature are: exponential decay profile, time-limited flat profile, and two
multipath components with identical amplitudes.

The exponential decay profile has a single parameter, the real decay factor τ . The power of
each channel tap hk is computed as: Pk = eτ/k. The power decays very fast, therefore only
a limited number of taps needs to be considered in simulation. In our simulations, we have
set the threshold to -30 dB relative to the first tap. Only the taps whose power is above this
threshold are considered. An example is shown in Figure 2.5a for τ = 3.

The time-limited flat profile consists of L taps of constant power, as shown in Figure 2.5b for
L = 4. The third profile consists of only two multipath components having the same power,
with a delay difference of L sampling periods. Figure 2.5c shows this profile for L = 4

The discretized delay components define the discretized channel impulse response. The delay
of the last multipath component is also referred to as the total delay spread of the channel. As
the channel delay profile can have various shapes, the total delay spread alone does not carry
much information about the channel delay profile. A better characterization thereof is provided
by the RMS delay spread TRMS, which is computed according to the formula:

TRMS = T · lRMS = T

√√√√ 1

L+ 1

L∑
l=0

Pll2 (2.15)
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Figure 2.5.: Discrete channel delay profiles for simulation

where the channel taps are normalized, i.e. the channel has an unity power gain:
∑L

l=0 Pl = 1.

2.1.5. Frequency Selectivity

For the sampled base-band signal, the channel behaves like a discrete FIR filter, whose time
spread introduces frequency selectivity. The longer the channel impulse response (CIR), the
less smooth the channel transfer function (CTF). CIR and CTF are Fourier pairs and are both
complex valued. Unlike a filter with real coefficients, the transfer function of a complex channel
is not symmetrical. Since CIR is discrete with sampling period T , CTF is periodical with period
1/T , the baseband ranging from −1/2T to 1/2T . In the following, the baseband is normalized
to −1 . . . 1, which makes the treatment of the problem independent of T .

Figure 2.6 shows the complex CIR and CTF for a realization of a Rayleigh channel having
a negative exponential power-delay profile with τ = 3. The channel has been normalized, so
that it has an average unity gain, i.e.

∑L
l=0 Pl = 1. Besides the complex CTF, the figure also

shows the power spectrum of the channel realization in dB, computed according to the following
formula:

HdB(f) = 10 log10 |H(f)|2 (2.16)

where H(f) is the complex CTF, i.e. Fourier transform of the CIR. We need to add at this
point that the autocorrelation of the CTF is the power-delay profile of the channel in time
domain. The inverse of the RMS delay of the latter is defined as the coherence bandwidth.

According to Parseval’s theorem, the power gain of the channel can be computed from either
its CIR or CTF according to the equation below. For a normalized channel, the average of the
power gain G over many realizations is 1.

G =
L∑
l=0

h[l]2 =
1

2π

∫ 1

−1

|H(f)|2df (2.17)

It has been shown (Figure 2.1) that the Doppler effect leads to a time-variant channel impulse
response h(τ, t). For an actual sampled system, h(τ, t) is discrete and limited along the τ axis.
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Figure 2.6.: CIR and CTF for an exponential channel realization

In this case, a more appropriate expression for CIR is hl(t) or h(l, t). The time-variant nature
of the CIR results in a time-variant CTF, which is also a function of two variables, H(f, t).

As an example, we consider a DVB-T signal with a carrier frequency of 540 MHz and a receiver
velocity of 100 km/h, which leads to a maximum Doppler spread of 50 Hz. The sampling
rate is 64/7 MHz, which is typical for DVB-T baseband processing. An exponential decay
power-delay profile of the multipath channel is assumed, with a decay constant τ of 3 taps.
At the sampling rate of 64/7 MHz, this is about 0.33 µs, which is a very optimistic scenario.
Even for the COST207 ‘Rural Area’ profile, the impulse response is about three times longer
(tau = 0.92µs).

The 3D representations of the time-variant CIR and CTF for this scenario are shown in Fig-
ure 2.7 and Figure 2.8 respectively, for a duration of 100 ms. Figure 2.7 shows the absolute
value of the complex CIR for the first 1+16 taps. Figure 2.8 shows the complex CTF as
power spectrum (in dB). It can be seen that various frequencies can briefly experience very
deep fading.

Figure 2.9 shows the amplitude of the same complex CTF in Figure 2.8 using an intensity
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map in 2D representation. Darker areas represent values close to zero. It must be mentioned
here that the CTF is strictly limited in frequency by the sampling frequency, but unlimited in
time. The example presented shows the CTF for a time window of 100 ms. It is now readily
apparent that the purpose of the channel estimator is the estimation of the two-dimensional
CTF. The actual process is presented in detail in Chapter 5.

For clarity, we also show in Figure 2.10 the CTF in Figure 2.8 at 6 time instances equally
spaced between 0 and 100 ms
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2.2. Principles of Orthogonal Frequency-Division
Multiplexing

Orthogonal frequency-division multiplexing (OFDM) [3] is a high-efficiency modulation scheme
in which the channel is divided into many narrower subchannels. In doing so, the symbol length
is increased significantly, which helps to avoid inter-symbol interferences (ISI) due to multipath
reflections. The subcarriers experience flat fading since the subchannel bandwidth is chosen
to be significantly lower than the coherence bandwidth of the channel. This ensures a robust
behavior in frequency-selective channels.

The essential advantages of the OFDM modulation are a high spectral efficiency, robustness
against multipath effects (ISI, frequency selectivity), and simplified channel equalization. Unlike
single-carrier systems, there is no need for complex adaptive equalizers in time domain. The
only notable disadvantage is the relative sensitivity to carrier frequency offset and Doppler
spread, which cause inter-carrier interferences (ICI).

The basic principle of OFDM, shown in Figure 2.11, is that the samples to be transmitted
are divided into N parallel streams, updated with a symbol period TS. The symbol index is
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denoted by s. Each stream modulates a separate subcarrier of frequency fk, where k is the
subcarrier index ∈ [0;N − 1]. The subcarrier frequencies obey the relationship fk = k · f0,
where f0 = 1/TS. This relationship (equal spacing) ensures their orthogonality, which enables
their perfect separation in the receiver, provided that no frequency shift occurs.

exp(j2 f0t)

Xs,0

exp(j2 f1t)

Xs,1

exp(j2 fN-1t)

Xs,N-1

•••

xs(t)

exp(j2 f2t)

Xs,2

•••

T

Figure 2.11.: OFDM modulation

2.2.1. Signal Model

The baseband signal is generated by weighting the complex unmodulated subcarriers exp(j2πfkt)
with the complex information-bearing samples Xs,k. For each symbol s, the resulting signal
xs(t) is

xs(t) =
N−1∑
k=0

Xs,ke
j2π(k/TS)t 0 ≤ t ≤ TS (2.18)

The continuous-time OFDM signal xtx(t) is obtained by concatenating successive symbols xs(t):

xtx(t) =
∞∑

s=−∞

xs(t)u(t− sTS) =
∞∑

s=−∞

N−1∑
k=0

Xs,ke
j2π(k/TS)(t−sTS)u(t− sTS) (2.19)

where Xs,k is the complex data symbol transmitted on subcarrier k in the interval [sTS, (s+1)TS]
and u(t) is the symbol mask defined as:

u(t) =

{
1, 0 ≤ t < TS

0, otherwise
(2.20)

So far, it has been assumed that the processing is performed in the continuous-time analog
domain, which is convenient for illustrating the principles of OFDM. In practical systems,
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however, the entire baseband processing is performed in the discrete-time digital domain. The
sampling frequency f is exactly TS/N , so that the number of sampling periods per symbol is
N . Knowing that fk = k/TS and expressing Xs,k as Xs(k), (2.18) can be rewritten as:

xs(n) =
N−1∑
k=0

Xs(k)ej2πkn/N n = 0, 1, . . . , N − 1 (2.21)

The above equation shows that the discrete OFDM modulation is equivalent to an N-point
inverse discrete Fourier transform (IDFT). This greatly simplifies the hardware realization,
since the IDFT can be very efficiently implemented using the FFT algorithm when N is a
power-of-two. The number of complex multiplications per symbol is thus reduced from N2 to
N log2N , which is especially important for large symbol sizes.

Using matrix notation and dropping the s index, (2.21) can be written as:

x = F−1X (2.22)

where x and X are N-element vertical vectors of the values xs(n) and Xs(k) respectively, and
F is the N× N Fourier matrix with elements exp(j2πkn/N), where k, n ∈ [0, N − 1].

2.2.2. Guard Interval and Guard Subcarriers

Although the symbol period TS has been extended to N times the sampling rate, the OFDM
modulation by itself is still not immune to ISI, which occur because of the channel delay spread.
The solution consists in inserting a guard interval between the symbols, which eliminates ISI
completely if its length exceed the channel delay spread. The most popular solution is to insert
a copy of the last part of the OFDM symbol, as shown in Figure 2.12, referred to as cyclic
prefix (CP).

copy

OFDM symbol

NG NU

NS
time

useful partguard

CIR

Figure 2.12.: Cyclic prefix (guard interval) insertion

The guard interval results in a lower spectral efficiency because of the decreased symbol rate.
Therefore, its relative length must be kept low, e.g. 1/4. Another drawback is that additional
sender power is needed for the cyclic prefix. Moreover, this leads to a slight SNR loss in the
receiver.
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The two main design parameters of an OFDM system are the channel bandwidth and the
worst-case channel delay spread. The channel bandwidth determines the sampling rate, while
the channel delay spread imposes the lower limit for the cyclic prefix. The raw data rate
depends directly on the sampling frequency and the relative length of the guard interval. The
absolute length of the latter is chosen to be slightly longer than the worst-case delay spread in
the environment for which the system is designed. The useful symbol size is then chosen so as
to ensure an acceptable efficiency, e.g. at least 4 time longer. The longer the symbol, the higher
the efficiency, but at the cost of increased receiver complexity and decreased robustness against
Doppler effects. Ultimately, the useful symbol size is directly proportional to the channel delay
spread and the desired data rate.

The duration of the useful symbol is denoted by TU , and the duration of the guard interval by
TG. Thus, the total duration of a full symbol is TS = TU + TG. The corresponding number of
samples are NU (or N), NG, and NS. NU and NG are usually powers-of-two, as this simplifies
the implementation. One notable exception is Digital Radio Mondiale [21], where the symbol
length is a power-of-two only in one out of the four modes specified.

Modifying (2.19), the OFDM baseband signal in the continuous-time domain can be now
expressed as:

xtx(t) =
∞∑

s=−∞

N−1∑
k=0

Xs,ke
j2π(k/TU )(t−TG−sTS)u(t− sTS) (2.23)

In an OFDM system, the number of subcarriers N is equal with the number of samples in the
useful part of the symbol. The spectrum of the complex OFDM signal ranges from −f/2 to f/2,
where f is the sampling frequency. The N subcarriers have the same spacing ∆f = 1/TS = f/N .
Subcarrier spacing is an important property that determines the robustness of the system
against frequency offsets and Doppler variations. For a given sampling rate, the carrier spacing
decreases for large N , leading to an increased sensitivity to frequency errors.

In practical systems, in order to simplify the channel filtering and the rejection of adjacent
channels, a number of guard subcarriers at the margins of the spectrum are not transmitted.
The DC subcarrier is also suppressed, as the transmission of a DC level would worsen the
signal dynamic range. The indices of the active subcarriers at the margins of the spectrum are
denoted by kmin and kmax respectively. As an example, Figure 2.13 shows the active carriers
for the IEEE 802.11a wireless LAN standard [38], which has a symbol size of 64.

k = 0
(DC)

kmin = -24k = -32 kmax = 24 k = 31

Figure 2.13.: Guard subcarriers and DC suppression

Throughout this work, the DC-centered subcarrier range −N/2 . . . N/2−1 will be used instead
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of the 0 . . . N − 1 native DFT range. The mapping simply consists in rotating the index vector
with N/2.

In order to keep the analysis independent of actual durations and frequencies, e.g. sampling rate,
symbol duration, or Doppler frequency, only normalized quantities are considered throughout
this work. Durations are expressed in sampling periods ts = 1/fs, whereas frequencies are
normalized to the sampling frequency fs.

2.3. The Influence of Channel Doppler Variations

The received continuous-time OFDM signal yrx(t) is the convolution of the transmitted signal
xtx(t) in (2.23) with the time-variant channel impulse response hi(t):

yrx(t) = hi(t) ∗ xtx(t) =
∑
i

hi(t)
∑
s

∑
k

Xs,ke
j2π(k/TU )(t−TG−sTS−τi)u(t− sTS − τi) (2.24)

In order to analyze the influence of the channel we consider an OFDM system that consists of a
modulator, a multipath channel, and a demodulator, assuming that the frequency and timing
synchronization in the receiver are perfect. The baseband model is shown in Figure 2.14.
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Figure 2.14.: OFDM system model for transmitter and receiver

The complex baseband-equivalent channel model is discrete and besides the actual time-variant
multipath wireless channel, it also includes various hardware elements in the transmitter and
receiver, as shown in Figure 2.15. For this analysis, the channel is first assumed to be noiseless.

The cyclic prefix transforms the convolution of the transmitted signal with the time-variant
channel impulse response into a circular convolution, according to the equation below.

yn = hk(n) ~ xn (2.25)

where hk(n) is the time-variant complex channel transfer function, in which k is the discrete
tap index and n is the sample index of the time-variant complex taps.
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Figure 2.15.: Discrete baseband channel model

Using matrix notations, the same equation can be expressed as:

y = M · x (2.26)

where x = [x0, x1, . . . , xN−1]
T and y = [y0, y1, . . . , yN−1]

T . The matrix M is referred to as
circular channel matrix and has the following expression:

M =



h0(0) 0 · · · 0 hG(0) · · · h2(0) h1(0)

h1(1) h0(1) 0
. . . 0 hG(1)

. . . h2(1)
... h1(2) h0(2) 0

. . . . . . . . .
...

...
. . . . . . . . . . . . . . . 0 hG(G− 1)

hG(G) · · · · · · h1(G) h0(G) 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . h0(N − 2) 0

0 · · · 0 hG(N − 1) · · · · · · h1(N − 1) h0(N − 1)


(2.27)

where the shorthand notation NG = G has been used.

2.3.1. Slow-Varying Channels

If the Doppler variation of the channel is slow enough, so that the channel impulse response
can be considered constant for the duration of one symbol (hk(n) ≈ hk(n + N)), the circular
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channel matrix M has constant diagonals.

M =



h0 0 · · · 0 hG · · · h2 h1

h1 h0 0
. . . 0 hG

. . . h2

... h1 h0 0
. . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0 hG

hG · · · · · · h1 h0 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . h0 0

0 · · · 0 hG · · · · · · h1 h0


(2.28)

A circular matrix is diagonalizable, i.e. it can be written in the form:

M = PDP−1 (2.29)

where D is a diagonal N×N matrix whose entries are the eigenvalues of M, and P is an
invertible N×N matrix whose columns are eigenvectors corresponding to the eigenvalues in D.
The necessary and sufficient condition for an N×N matrix to be diagonalizable is that it has N
linearly independent eigenvectors.

The N eigenvectors vk of matrix M in (2.28) are the normalized column vectors of the DFT
matrix:

vk =
1√
N

[
1, e−j

2π
N

1k, e−j
2π
N

2k, . . . , e−j
2π
N

(N−1)k
]T

k = 0, . . . , N − 1 (2.30)

The eigenvalues Dk in diagonal matrix D, corresponding to the eigenvectors vk, have the
following expression:

Dk =
N−1∑
n=0

hn · e−j
2π
N
kn k = 0, . . . , N − 1 (2.31)

It can be seen that the eigenvalues Dk are actually the DFT of the channel impulse response
hn. This means that the diagonal matrix D is actually the transfer matrix H of the OFDM
system in Figure 2.14.

H = F−1MF (2.32)

The conclusion is that for slow-varying channels, the OFDM transfer matrix is diagonal. There-
fore, no ICI occur and each subcarrier is affected only by a multiplicative constant, i.e. the
elements on the main diagonal. The transfer function can be simply written as:

Yk = Xk ·Hk (2.33)
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This allows for simple channel estimation and equalization, which is one of the main advantages
of OFDM. The equalization consists only in dividing the received data Yk by the channel
transfer function estimates H̃k, as shown in Figure 2.16. Channel estimation remains the
only challenging task.
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Figure 2.16.: Channel equalization in OFDM

2.3.2. Fast-Varying Channels

If the CIR varies significantly during a symbol, the diagonals of the circular channel matrix
M cannot be considered constant anymore and its eigenvectors are no longer the columns of
the DFT matrix. Therefore, the frequency-domain channel transfer matrix H = F−1MF is no
longer diagonal, which leads to inter-carrier interferences (ICI). The amount of ICI depends on
how much the channel changes during the useful part of a symbol, i.e. on the product fD · Tu.

The channel estimation involves now the estimation of all the elements of matrix H, not only
of its main diagonal. A mathematical apparatus for estimating this matrix is presented in [84],
but no implementation is suggested, as the complexity of the estimator would be prohibitive.
The equalization would be extremely complex as well, involving the division of a vector by
a matrix. This is a very important topic, as the ICI due to Doppler variations are the main
performance limiting factor at higher receiver velocities, as it can be observed in Figure 5.7.

According to [9] the normalized power of the ICI caused by a single fading multipath component
with average amplitude hi and a Jakes Doppler spectrum with frequency fD is given by:

σ2
ICI,i ≈

π2

6
|hi|2(fDTU)2 (2.34)

As the channel taps can be considered uncorrelated, the total fading ICI power can be obtained
by summing the contributions of all taps. Considering a normalized channel, with unity average
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power gain
∑

i |hi|2, the total Doppler fading ICI power becomes:

σ2
ICI ≈

π2

6
(fDnNU)2 (2.35)

where fDn is the normalized discrete Doppler rate.

The highest Doppler frequency that the system can handle is limited by the pilot spacing Ds in
time domain, according to the sampling theorem: fDmax = (2DsNs)

−1. The worst-case fading
ICI power, which corresponds to this frequency, is given by the equation:

σ2
ICI,max ≈

π2

24

[
1

Ds(1 +NG/NU)

]2

≈ π2

24D2
s

(2.36)

As an example we consider a DVB-T system with a symbol size of 2048 (2k mode) and a relative
cyclic prefix length of 1/32. Since the pilot spacing in time is Ds = 4, the maximum Doppler
frequency that the system can handle is approx. 2−14. From (2.36), the worst-case ICI noise
power is in this case σ2

ICI,max ≈ 0.008, which is also confirmed experimentally.

Figure 2.17 shows the experimental channel transfer function and a few ICI contributions for
the above DVB-T system, considering a multipath channel with an exponential-decay profile
and a decay constant τ = 8. The ICI from four neighboring subcarrier pairs are considered.
As expected, the nearest 2 subcarriers produce the highest ICI, which is already some 20 dB
below the CTF, close to the theoretical 0.008 figure resulting from (2.36).
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Figure 2.17.: ICI caused by fast Doppler variations

The conclusion is that the errors introduced by the fading ICI have typically low levels and can
be treated as additive noise.
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2.4. The Influence of Various Channel Impairments

2.4.1. Timing Synchronization Errors

Assuming a quasi-static or slowly-varying multipath channel, we consider now that the the
timing synchronization is not perfect and introduce residual errors. Timing errors occur when
the cyclic prefix is not correctly detected, which causes the useful NU symbol samples to be
extracted either too early (negative timing error) or too late (positive error). Positive timing
errors result immediately in ISI with the next symbol, whereas negative errors lead only to
an incremental phase shift of the samples in frequency domain because of the cyclic prefix.
Therefore, if the timing synchronizer (guard interval removal) errs, it should err toward negative
errors. Nevertheless, if the negative error exceeds he difference between the length of the guard
interval and the length of the CIR, ISI with the previous symbol will occur.

The CIR length is denoted with L and must not exceed the guard interval length NG to avoid
ISI. Figure 2.18 shows different scenarios when extracting the useful samples of the symbol.

CP

OFDM symbol n

useful part

NG NU

NS

n-1

ideal extraction (OK)

positive timing error (ISI)

negative timing error (OK)

negative timing error (ISI)

n+1

L L

time

Figure 2.18.: Timing errors in useful symbol extraction

Provided that NG > L, the allowed range for the timing offset error nε is:

L−NG ≤ nε ≤ 0 (2.37)

As long as nε is in the allowed range no ISI occur. The timing error nε is equivalent with
delaying the CIR, which results in an incremental rotation of the CTF samples since CIR and
CTF are Fourier pairs. For each increment of nε, an additional incremental rotation of 2π/N
per subcarrier take place, or an overall rotation of 2π from subcarrier 0 to subcarrier N-1.
Mathematically, the rotation of the channel transfer function H(k) can be expressed as:

Hnε(k) = H0(k) · e−j2πknε/N k = 0 . . . N − 1 (2.38)
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where H0(k) is the CTF when no timing synchronization error occurs (nε = 0). The incremental
rotation is the same for all symbols and does not pose a problem for demodulation. In the case
of coherent modulation, the rotation can be easily compensated using reference pilots, whereas
for differential modulation it is irrelevant since it does not change from symbol to symbol.

If nε is outside the allowed range, the amount of ISI depends on the symbol length NU and on
the actual channel power delay profile [85]. For the same nε, the effect depends on the symbol
length. Larger symbols are less affected, as the relative overlap is lower. However, for a well
designed system, the ISI levels are low and the error introduced can be treated as additional
noise.

2.4.2. Carrier Frequency Offset

OFDM modulation is much more sensitive to frequency offsets than single-carrier modulation
types, especially when the large symbols are used.

A frequency mismatch in the carrier frequency oscillator of the frontend mixer leads to a
subcarrier frequency offset fε. The frequency error is directly translated to the baseband, so
that for the same relative error, the absolute error in the baseband increases with the carrier
frequency.

This frequency offset can be very large, but since it is constant it can be estimated and corrected
during the receiver acquisition phase. In normal operation (tracking mode), only small residual
offsets need to be considered.

The residual carrier frequency offset fε leads to an incremental rotation of the complex samples
in time domain. In the following, the notation fεn is used for the normalized frequency offset,
i.e. relative to the sampling frequency f . The received signal affected by frequency offset
becomes:

yrx(n) = ej2πnfεnyrx,ideal(n) (2.39)

Each sample, the complex signal suffers an incremental rotation of 2π fεn. If the offset is
correctly estimated, the compensation consists in rotating the signal with the same angle in
the opposite direction.

The frequency offset is equivalent with a constant Doppler shift on all channel taps. Assuming
correct symbol timing, the demodulated symbol s is given by the following equation [85]:

Ys,k =
N−1∑
i=0

ejπφi,kej2π((sNS+NG)/N)φi,k
sin(πφi,k)

πφi,k
Xs,iHi (2.40)

where Hi is the CTF at subcarrier i with no frequency offset, and φi,k = fεnN + i− k.
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The incremental rotation in time domain results in a shift of the subcarriers in frequency
domain, as shown in Figure 2.19, thus leading to a loss of orthogonality. This phenomenon
has two effects. On the one hand, the amplitude of each subcarrier is reduced, which affects
the SNR. On the other hand, the subcarriers will leak into their neighbors, which causes ICI.
The ICI components in (2.40) are obtained for ∀i 6= k.
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Figure 2.19.: Effects of the frequency offset on the subcarrier orthogonality

The amount of ICI is proportional with the product fεnN or fεTU , which is the frequency
shift relative to the subcarrier spacing ∆f = f/TU . If the frequency shift is small, the ICI
components can be treated as additive noise ws,k and the sinc approximated with 1. Therefore,
the expression of the demodulated symbol Ys,k becomes:

Ys,k = ejπfεnNej2π(sNS+NG)fεnXs,kHk + ws,k (2.41)

The time-invariant factor ejπfεnN cannot be distinguished from the complex subcarrier gain
Hk and is treated as part thereof. The remaining complex phasor ej2π(sNS+NG)fεn indicates
a rotation of all demodulated symbols Ys,k from one OFDM symbol to the next. The phase
increment ∆ϕ is the same for all subcarriers:

∆ϕ = 2π(N +NG)fεn (2.42)

This rotation and thus the frequency offset is estimated using continuous pilots, inserted at
certain subcarriers in all OFDM symbols. The estimate is used in a negative-feedback control
loop, usually a PLL, which adjusts the compensating frequency so that the frequency offset
and thus the incremental rotation become zero. With a careful design, the residual frequency
shift can be minimized so that the SNR loss due to ICI becomes negligible.

The variance of the ICI noise σ2
ε can be approximated using the following relationship [11]:

σ2
ε ≈

π2

3
(fεnN)2 (2.43)
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2.4.3. Sampling Clock Frequency Offset

A frequency mismatch of the baseband sampling clock leads to a relative offset ζ = (T ′−T )/T ,
where T and T ′ are the sampling frequencies of the receiver and transmitter respectively.

This issue is especially of concern in consumer applications, where the crystal oscillators can
have large tolerances, like 100 ppm. As with the carrier frequency offset, large mismatches can
be corrected during the acquisition phase of the receiver, so that only small residual offsets
remain in tracking mode.

The immediate effect of the sampling frequency offset is a resampling of the symbol, which leads
to an accumulating timing error and thus a drift of the FFT window from the correct position.
The exact sub-sample timing error for one symbol is ζNS. A lower sampling frequency (ζ > 0)
leads to a positive timing error, i.e. the FFT window starts too late. The opposite is true for
higher sampling frequencies.

For a DVB-T system in 8k mode, NS ≈ 104. Considering a crystal with a frequency tolerance
of 100 ppm (ζ = ±10−4), the resulting timing error can be as high one sample per OFDM
symbol.

A second effect of the sampling frequency offset is an incremental subcarrier symbol rotation.
Unlike the case of the carrier frequency offset in (2.42), the phase increment between two
consecutive OFDM symbols ∆ϕ depends now on the carrier index k. Subcarriers at the margins
of the spectrum are affected the most. The new expression of ∆ϕ is [85]:

∆ϕk = 2π
NS

NU

(fεnN + ζk) (2.44)

This relationship is depicted graphically in Figure 2.20. The dependence of the phase incre-
ment ∆ϕ on the subcarrier index k is a line with offset 2πϕεnNS and slope 2πζNS/NU . The
offset depends linearly on the carrier frequency offset alone, while the slope depends linearly
on the sampling frequency offset alone.

kmin-N/2 0 kmax N/2-1

k

k

2 nNS

slope: 2 NS/NU

= continuous pilots

Figure 2.20.: Subcarrier symbol rotation in the presence of carrier and sampling clock offset

By using continuous pilots it is possible to estimate both the carrier and the sampling frequency
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offset. The estimation is performed by determining the rotation angles of the pilots between
two consecutive symbols, followed by a linear regression between these values.

The sampling frequency offset estimates are typically used in a delay-locked loop (DLL) to
incrementally adjust the sampling instants with sub-sample resolution. This function can be
implemented using a fractional rate converter (resampler) with a relatively wide phase accu-
mulator to ensure an extremely fine sub-sample resolution. The phase accumulator increment
is very close to unity. The small deviation from unity is adjusted by the DLL to that value
which minimizes the sampling rate offset.

2.4.4. Additive Noise

The received signal is affected only by various impairments of the channel, as well as by imper-
fect synchronization in the receiver. The most important sources of signal errors are:

• Additive white Gaussian noise of the channel, Wn

• ICI due to channel Doppler fading, Wd

• ISI due to imperfect timing synchronization (symbol detection), Wt

• ICI due to imperfect frequency synchronization (carrier & sampling), Wf

If the interference levels (ICI & ISI) are low, their contribution can be approximated by an
additive white noise. Considering the overall system noise, the demodulated FFT output Ys,k
for symbol s and subcarrier k has the following expression:

Ys,k = Xs,kHs,k +Ws,k (2.45)

where Xs,k is the transmitted value and Hs,k is the time-variant channel transfer function.

The noise term Ws,k contains all four error sources mentioned before. Dropping the k and s
indices, the expression of the overall noise contribution is:

W = Wn +Wd +Wt +Wf (2.46)

It is important to realize that unlike Wt and Wf , which can be minimized by careful design, the
Doppler Wd component is inevitable and cannot be minimized in the receiver. The synchro-
nization units should be designed in such a way that the additional noise Wt and Wf is small
compared to the thermal noise Wn. A rule of a thumb is that the remaining frequency offset
fε must be less than 1% of the subcarrier spacing ∆f = 1/TU and the timing error tε must be
less than 0.1% of the useful symbol duration TU [10]. Throughout this work, Wt and Wf are
neglected compared to the thermal noise.
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The real and the imaginary part of the noise are statistically independent (uncorrelated), with
variance σ2

W = 1/SNRW , where the average power of the data cells is one. Both σ2
W and SNRW

refer to the frequency domain. We also denote with σ2
w and SNRw the same quantities in time

domain before guard interval removal, which are a property of the channel. The relationship
between the two SNR’s can be determined by knowing that the symbol energy decreases after
guard interval removal, whereas the noise variance remains the same. The guard interval causes
therefore an effective SNR degradation that can be expressed as:

SNRW

SNRw

=
NU

NS

=
NS −NG

NS

(2.47)

The SNR degradation can also be expressed in dB as 10 log10(1−NG/NS). For a given channel
SNR, the noise variance in frequency domain increases linearly with the length of the guard
interval NG. These considerations are true only when the guard interval is a cyclic prefix.


