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5.1. A Review of Previous Contributions

Prompted by the increasing popularity of the OFDM modulation for digital broadcasting and
wireless networking, the topic of coherent demodulation and channel estimation using pilots
received considerable attention with both academic and industrial research communities. First
results began to be published in the early 90’s.

The first explicit results were presented in 1991 in [35] for a wireless system with trellis-coded
modulation (TCM) and rate-compatible puncturing (RCP). The proposed channel estimation
strategy was to employ separable Wiener filters in the frequency domain, first along the s axis,
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then along the k axis, the aim being to reduce the complexity, the data and coefficients storage,
as well as the delay, compared to a 2D Wiener filter. An essential advantage of this solution
is that both interpolation and noise reduction is performed with the same polyphase Wiener
filter.

A similar technique is also reported in [10] for a rectangular pilot grid. In this case, the order
in which the interpolation/estimation is performed is not important, although in the paper the
estimation in time direction (s axis) is performed first. In addition to [35], this paper takes the
residual frequency shift and the asymmetric nature of the channel impulse response (CIR) into
account, which appear as additional incremental rotations in the frequency domain, along the
s and k axes respectively.

Unfortunately, both [35] and [10] lack an informative performance analysis with respect to filter
sizes and channel statistics. This would be highly useful in that it would enable designers to
quickly select the appropriate filter sizes and coefficients based on the desired performance and
the given channel properties. This present thesis also addresses these shortcoming and shows
how to optimally design the separable polyphase Wiener filters. The solution of using separable
Wiener filters in the frequency domain is very scalable and efficient, having also a complexity
which does not depend on the symbol size. With careful design and optimized coefficients, it
can achieve excellent performance and the lowest implementation cost.

A different approach is taken in [92], where the channel impulse response (CIR) is estimated in
time domain. The application scenario is also different, a symbol containing only pilots. A noisy
CIR is obtained by converting the pilot carriers to time domain through an inverse DFT. The
actual CIR estimation is performed by multiplying the noisy CIR with a special square matrix Q
of size N×N, whose elements depend on the channel statistics. The Q estimation matrix can be
derived for MMSE (minimum mean square error) or LS (least squares) estimation. The MMSE
estimator depends on the actual channel statistics (noise and delay profile) and achieves better
performance than the LS estimator. The latter is also equivalent to a zero-forcing estimator,
as it only performs interpolation between the pilot samples.

Furthermore, [92] proposes a reduced-complexity version of these estimators, which exploits the
fact that the CIR is limited to L samples, which reduces the size of the Q matrix from N×N
to L×L. In comparing the two estimators, the paper incorrectly states that the complexity of
the MMSE estimation is higher that that of the LS estimation. Although the expression of Q
in the case of MMSE is indeed more complex than for LS, this does not translate in a higher
hardware complexity since the matrix is computed only once at design time and its size is
the same for both MMSE and LS. There is one sense in which it can be said that the MMSE
estimation is more complex than LS, namely when different matrix coefficients are stored in
order to provide optimal accuracy for different delay profiles and noise variances. The latter
two have to be estimated and the appropriate coefficients selected from a look-up table.

In [79] channel estimation through interpolation between pilot carriers in frequency domain
is discussed. The channel delay is considered to have a negative exponential profile and the
analyzed interpolation types are zero-order hold and linear. As expected, the performance of
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these channel estimators are rather modest and the noise affecting the pilots is not attenuated
at all. Interpolation performance is given in terms of average symbol error probability (SEP)
versus oversampling factor for different QAM modulation types.

Another discussion of the 2D Wiener estimator in frequency domain is presented in [34]. The
general case of an arbitrary pilot grid is treated first from a theoretical point of view. For a
rectangular grid, the authors show that there is virtually no degradation when employing two
separable 1D filters. Estimation performance is given in terms of MSE versus pilots SNR with
the number of filter taps as a parameter.

In [18] the authors extend the idea in [92] by proposing a method for reducing the complexity of
the MMSE estimator. The complexity reduction is achieved through a low-rank approximation
using the singular value decomposition (SVD) of the channel autocorrelation matrix. This
approximation leads to an irreducible error floor of the estimator, which can be reduced by
increasing the estimator complexity.

Although the authors argue that this solution has a complexity which is comparable with
that of a time-domain-only estimator, they fail to mention that the most costly operation is
the multiplication with the matrix U of the singular vectors and its inverse. This matrix
is unitary, i.e. UHU = I. Unfortunately, the elements of the matrix depend on the actual
channel statistics, which requires the storage of a large number of coefficients in a practical
implementation. Moreover, the cost of the matrix multiplication is O(n2) with respect to the
symbol size. While arguably offering a lower performance, the solution presented in [92], being
based on using FFT and IFFT, has a complexity of O(n log n) and is independent on the
channel statistics. Moreover, the FFT of the OFDM demodulator can be reused for channel
estimation as well.

The problem of the pilot spacing in block-based estimators/interpolators is dealt with in [64].
The authors show that the best estimation results for Gaussian noise are obtained when the
pilots are equally spaced. When no noise is present, if the number of pilots is at least the
length of the channel impulse response, perfect estimation can be achieved regardless of the
pilots position. Assuming no a priori knowledge of the channel, the expression of the ML
estimator is derived for equally-spaced pilots. Moreover, the paper proves that the estimation
performance in the case of an invariant multi-path channel is the same for rectangular pilot
grids with Ds = 1 (pilots every Dk carriers in all symbols) or Dk = 1 (pilots in all carriers,
every Ds symbols).

Another channel estimation solution that relies on the singular value decomposition of the
channel correlation in frequency domain, similarly to [18], is presented in [55]. In addition to
[18], this estimator also exploits the correlation along the time axis in order to achieve better
performance through additional filtering. Knowing that in frequency domain the correlation
along the time axis s is independent of the correlation along the time axis k, the two estimation
problems can be separated. The additional filtering/estimation in time domain is performed in
[55] between the two matrix multiplications, the solution being straightforward.
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In [36] an estimator for a comb-type (rectangular pilot grid with Ds = 1) pilot arrangement is
considered. The channel estimation for the pilot positions and the interpolation are performed
in two separate steps, which is not the most efficient solution. In this chapter, we will also show
how to combine these into a single filtering operation. The estimation uses exactly the same
SVD like in [18], while the interpolation types are limited to linear and second-order. Before
and after interpolation, an incremental rotation of the complex samples is performed in order
to center the complex spectrum, which is the CIR in time domain, according to the duality
principle. Thus, the samples have a slower variation and the interpolation errors are reduced.

A solution for channel estimation using separable Wiener filters in the frequency domain is
presented in [80], with application to DBV-T. The filter in time direction has two taps and
is optimized for a single Doppler profile and guard interval. The filter in frequency direction
has 12 taps and is adaptive with respect to the channel power delay profile. As the latter
is asymmetrical, the resulting filters have complex coefficients, which increases the number of
multiplications by four. The estimator performance is expressed through BER-vs-SNR curves
for a DVB-T system in 2K mode with 1/2 code rate and QPSK modulation.

A very informative treatment of the block-based channel estimation in frequency direction
using windowed DFT estimation is found in [99]. The estimation is performed on a symbol-by-
symbol basis by interpolation between pilots using DFT. Rectangular, Hamming, and Hanning
window types are investigated, using a 5-tap channel with an exponential power delay profile.
The difference between the different window types is the achieved interpolation error floor, with
the Hanning window offering the best performance. The ultimate cause of the interpolation
error is the leakage of the channel taps energy into neighboring samples.

Without leakage, i.e. when the tap delays are exact multiples of the sampling period, no
interpolation error would occur. In [99], performance is assessed using MSE-vs-SNR and SER-
vs-SNR curves. Comparisons with a robust Wiener interpolator show only minimal performance
degradations. The Wiener interpolator was designed in the assumption that all channel taps in
the guard interval have the same power (shifted rectangular spectrum of the frequency-domain
CTF).

In [54] another solution for robust channel estimation is presented. By robust it is understood
that the estimator is insensitive to channel statistics (power delay profile and Doppler spread).
Using a 2D pilot grid, the interpolation is performed block-wise using 2D FFT, filtering, and
IFFT. Unlike, previous solutions, the processing is done block-wise along the continuous time
axis also, not only along frequency axis. Regardless of the achieved estimation performance,
the inherent complexity of a 2D FFT transform renders this solution impractical for actual
implementations. Moreover, due to the block nature of the processing, the estimates for the
OFDM cells at the margins of the block will have a larger error.

An interesting comparison between the LS and the MMSE estimators for block-based interpo-
lation/estimation is offered in [63]. In this approach, the time-domain channel impulse response
(CIR) is estimated. The LS estimate views the CIR as a deterministic but unknown vector,
whereas the MMSE estimate views it as a random vector whose particular realization is to be
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estimated. The MMSE estimator adopts a Bayesian approach and relies on prior information
regarding the channel statistics, i.e. power delay profile and noise.

The estimates are first obtained for arbitrary pilot positions. If the pilots are equally spaced, the
expression of the ML estimator is reduced to that obtained in [64], which is essentially a DFT
of the pilots. The paper provides also complexity and performance analyses. As expected, the
performance analysis shows that the estimation performance is reduced at the block margins.
A solution suggested by the authors is to decrease the pilot spacing at the margins in order to
compensate for the performance loss. This solution, however, leads to an increase in complexity,
while offering only a marginal improvement in the overall BER.

In [13] the problem of block-based estimation/interpolation is revisited. The estimation and
the interpolation are performed in separate steps. Both LS and MMSE methods are considered
for the estimation. The interpolation is performed either in frequency domain, using linear,
second-order, low-pass, and spline interpolation, or in time domain using DFT interpolation.
Low-pass interpolation is shown to offer the lowest interpolation error. However, no complexity
analysis is performed.

The topic of performance evaluation of channel estimation algorithms is also dealt with in [16] in
the context of 4G systems. The cases analyzed are limited to estimation through interpolation
using separable 1D filtering. Three interpolation techniques are considered: linear, cubic spline,
and FFT interpolation. The performance is expressed through BER-vs-SNR plots.

In [83] the CIR is estimated by filtering the FFT of the pilot cells using adaptive Wiener filters.
The number of filters is exactly the length of the estimated CIR or channel taps, which are
assumed uncorrelated. The paper discusses first the performance of MMSE estimators for finite
and infinite filter length, which have the disadvantage that they require the channel statistics.
For the adaptive estimators using the NLMS or the RLS algorithm, these statistics are not
required and their performance exceeds the performance of an ML estimator, coming close to
a matched MMSE one.

5.2. Performance Requirements

In the following, we intend to evaluate how the estimation performance affects the overall
decoding performance, expressed as BER vs. SNR. The accuracy of the channel estimate is
expressed as the estimate noise variance (power), denoted by σ2

H . We also denote the noise
power of the received signal by σ2

N . The performance of the channel estimator is given by two
factors. First, assuming that the received signal is noiseless, the channel estimate will still have
a residual error, which is caused by imperfect interpolation. We denote this error by σ2

N,min.
Second, the estimator can be designed so that σ2

H is less than σ2
N . We denote by G the noise

attenuation of the estimate: G = σ2
N/σ

2
H .

As the average signal power is one, the noise variance can be also expressed as the inverse of the
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signal-to-noise ratio SNR. Thus, we have that σ2
H = 1/SNRH and σ2

N = 1/SNRN . Moreover,
the noise variance can be also thought of as the mean square error (MSE) of the estimate:
σ2
H = MSEH .

Considering the interpolation error MSEH,min and the estimator gain G, the plot of the MSEH
against SNRN have a shape like in Figure 5.1. It is worth mentioning that the estimator
gain depends on the estimator design alone, whereas the interpolation error depends also on
the spectrum of the bi-dimensional channel transfer function. The latter will be higher for high
Doppler spreads and long channel impulse responses.
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Figure 5.1.: Typical MSEH vs. SNRN profile

In order to asses the influence of the estimation error quantitatively, the simulation test bench
in Figure 5.2 has been set up. The entire chain has been coded in object-oriented Matlab and
implements the 2K and 8K modes of the DVB-T standard. The test bench has a user data
path and a reference data path, with independent AWGN sources on each, which allows to
evaluate the effects of data noise and channel estimate error separately. It is essential that the
two multi-path channel models are identical, so that the user data and the references experience
identical time-variant multi-path delays.

For the following simulations we consider a multi-path channel with 8 consecutive discrete taps
having the same average power and a spacing equal with the sampling period. The Doppler
profile is Jakes, with a discrete symbol Doppler rate of 1/64. We define the symbol Doppler
rate as the Doppler rate normalized to the symbol period, i.e. T = TU + TG. The DVB-T
chain operates in the 2K mode, with a relative guard interval length of 1/32. All three QAM
modulation types are considered. For each parameter combination, 1024 (210) OFDM symbols
are simulated. It is important that the number of symbols per simulation is significantly larger
than the Doppler symbol period. In our case this number is 64 (26), therefore there are 16 (24)
Doppler symbol periods per simulation.

As a first step in our analysis, we investigate the effect of noise on the data samples and the
channel estimate independently. First, we assume an ideal (noiseless) channel estimate. The
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Figure 5.2.: Simulation test bench for evaluating the influence of the channel estimation per-
formance on the overall BER

results are shown in Figure 5.3 for 4-QAM, 16-QAM, and 64-QAM and an SNR range from -2
dB to 26 dB. Considering a QEF (quasi-error-free) limit at a BER of 10−4, the corresponding
SNR thresholds are 12.5 dB, 18 dB, and 23 dB respectively.
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Figure 5.3.: BER vs. data SNR for noisless channel estimation

Second, we assume that the data samples are not affected by noise and that the channel estimate
is affected by errors which are modeled as noise. If the received data and pilot samples are not
affected by noise, the channel estimation errors occur only because of non-ideal interpolation.
The results, shown in Figure 5.4, are almost identical to those in Figure 5.3. If we consider
a QEF limit of 10−4, the results show that the SNR of the channel estimate must be at least
24 dB. If this condition is met, any BER degradation above 10−4 will be caused by the data
noise rather than the channel estimate.

We investigate now the effect of the channel estimate gain G on the overall BER. The resulting
BER vs. SNR plots are show in Figure 5.5 for four values of G: 0 dB (no gain), 3 dB, 6 dB,
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Figure 5.4.: BER vs. channel estimate SNR for noiseless received data

and noiseless estimate (infinite gain), for 64-QAM modulation only. These plots show that the
optimization of the channel estimation can lead to a a tenfold improvement of BER compared
to the case in which channel estimation is performed by interpolation only (zero gain).
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Figure 5.5.: BER improvement for various SNR gains of the channel estimate

The actual dependence of BER on the estimator gain G is shown in Figure 5.6 for SNR
values from 19 dB to 22 dB. The results indicate that for high estimation gains the BER can
be improved by up to 10 times, as it can also be seen in Figure 5.5. The improvement is
roughly the same for all SNR values. The most significant BER improvements are achieved for
gains up to 6 dB (4 times). Increasing the estimation gain further incurs a higher estimation
complexity and achieves only a minor performance improvement. This is exactly the reason
why the reference pilots are transmitted with a boosted power (16/9 for DVB-T and 2 for
DRM). Increasing the pilot power by 2 directly improves the estimate SNR with 3 dB, which
in turn results in a BER improvement by approx. 2.5 times.
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In OFDM systems, one significant source of errors is the ICI (inter-carrier interference) due
to Doppler spread. We have shown in Section 2.3 that the amount of ICI depends on the
discrete symbol Doppler rate (discrete Doppler rate divided by the total symbol period T ). For
the same discrete Doppler rate, larger OFDM symbols will exhibit larger ICI values. For lower
values, the errors resulting from ICI can be treated as additive noise. Figure 5.7 shows the
BER versus the symbol Doppler rate. For a QEF BER of 10−4, the maximum symbol Doppler
rate lies below 1/32. For a pilot spacing Ds = 4, the resulting oversampling factor is at least
32/(2 · Ds) = 4. This insights can be exploited in order to increase the gain of the channel
estimator in the time direction.
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5.3. Estimation Algorithms and Architectures

The channel estimator produces estimates of the bi-dimensional channel transfer function
H̃(s, k) based on the received values of the scattered reference pilots. For all existing OFDM
broadcasting applications with coherent demodulation, the tilted pilot pattern shown in Fig-
ure 3.2b is preferred, with the spacing parameters Ds and Dk. The bi-dimensional pilot grid
is used for sampling the time-variant CTF:

Ĥ(s, k) =
zs,k
ps,k

(5.1)

where zs,k is the noisy received value and ps,k is the known pilot value for OFDM cell (s, k),
i.e. at symbol s and carrier k.

5.3.1. Estimation through 2D Filtering

The ideal solution for channel estimation is to employ a 2D Wiener filter directly in frequency
domain and perform interpolation/smoothing between pilots, as shown in Figure 5.8a. The
filter size is of course finite in the s and k direction. If we denote the number of taps along the
two axes by Ms and Mk, both even, the expression of the channel estimate can be written as:

H̃(s, k) =

Ms/2−1∑
i=−Ms/2

Mk/2−1∑
j=−Mk/2

hs,k(i, j)Ĥ

((⌊
s

Ds

⌋
− i
)
Ds,

(⌊
k

Dk

⌋
− j
)
Dk

)
(5.2)

A number of NsNk snapshots are used for computing the estimate H̃(s, k) for each cell. Obvi-
ously, the filter coefficients depend on the relative position of the cell on the sampling grid. It
can be seen that for such a grid there are DsDk distinct relative positions, therefore an equal
number of coefficients sets will be needed. Figure 5.8b shows the grouping of the OFDM cells
according to the coefficients sets used for their computation. Such a rectangular group contains
DsDk cells for which distinct coefficients sets are used. Altogether, the number of coefficients
that need to be stored is:

Ncoeff = Ns ·Nk ·Ds ·Dk (5.3)

In the case of DVB-T, where Ds = 4 and Dk = 3, if we consider a relatively modest filter
with 4 × 4 coefficients, the total number of coefficients is 192. Depending on the actual
hardware architecture and required throughput, such a large number of coefficients may not
be realizable. If a sequential architecture is used, the coefficients can be stored in a ROM and
accessed sequentially. A more serious disadvantage of a 2D estimator is the number of complex
MAC operations required for computing an estimate sample, which is NsNk in this case.

The complexity and the number of coefficients can be reduced if the 2D filter is replaced with
two separable filters, for the s and k axis respectively. Since there is no correlation between the
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Figure 5.8.: 2D channel estimation in frequency domain

variations along the two axes, there will not be any performance degradation. Indeed, since
the causes of two variations are completely independent, the associated statistical processes are
completely uncorrelated. In this case, the 2D autocorrelation function can be expressed as the
product of the autocorrelation functions in the s and k axes.

5.3.2. Estimation through 1D Filtering

If a rectangular pilot grid (Figure 3.2a) is used, the order of the two estimation steps is
irrelevant. For a tilted grid (Figure 3.2b), however, the interpolation in the s axis must
be performed first in order to reduce the pilot spacing in the k axis from DsDk to Dk. The
original DsDk spacing is usually not sufficient to fulfill the sampling theorem along the k axis.
The interpolation process for a tilted pilot grid, using two separable 1D filters is shown in
Figure 5.9.

From an estimation/filtering point of view, there is an important difference between the han-
dling of the two axes. Along the s axis the estimation is performed continuously as symbols are
received, whereas along the k axis the number of carriers is limited. Thus, estimation in k axis
is performed block-wise using either a filter, like for estimation in the s axis, or a block-based
estimator. In this work, we consider only separable filter-based estimation.

A good overview of various block-based interpolation methods is presented in [63]. The two
main classes of estimators are the ML (maximum likelihood), which considers the CTF a de-
terministic but unknown vector, and the MMS (minimum mean square), which treats the CTF
as the realization of a random process with known statistics. Essentially, the ML estimation
performs just interpolation. For equally-spaced pilots this is equivalent to an DFT interpo-
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Figure 5.9.: Channel estimation using separable filters

lator. The MMS estimators, however, also perform noise reduction and thus estimation gain.
Their drawback is that the optimum solution depends on the channel SNR and auto-correlation
function, the latter being the Fourier transform of the power-delay profile.

The principle of 1D estimation through filtering is shown in Figure 5.10 for a pilot spacing of
3 and a filter size of 4. Much like for the 2D case, the estimate has a similar expression:

H̃(s) =

Ms/2−1∑
i=−Ms/2

hs(i)Ĥ

((⌊
s

Ds

⌋
− i
)
Ds

)
(5.4)

The same expression applies to the estimation along the k axis, by simply replacing Ds with
Dk and Ms with Mk. This equation is equivalent to a polyphase implementation of an inter-
polation filter. For each of the Ds possible phases there is an optimized set of coefficients. The
theory behind polyphase interpolation and its adaptation for channel estimation, i.e. Wiener
interpolators, is presented in Section 5.4. Instead of estimate the channel at the pilot position
and then interpolate, it is more convenient to perform both operation in one step. The theory
of Wiener interpolators shows that the polyphase coefficients can be obtained as solutions of a
set of Wiener-Hopf equations.

It must be mentioned here that since the pilot samples and the CTF are complex functions, the
estimators will also have complex coefficients in the most general case. However, if the signal
spectrum is symmetrical, the imaginary part of the autocorrelation function is zero and the
resulting coefficients will be real. This is desirable since the number of stored coefficients and
MAC operations is reduced by half.
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Figure 5.10.: Stream-based estimation using polyphase filters

5.3.3. Estimation along the Symbol Axis

The CTF variations along the s axis are produced by the Doppler fading of the multi-path
channel taps, which are in turn caused by the movement of the receiver or the ionospheric
layers. Depending on the propagation conditions, various spectral profiles of these variations
result, as introduced in Subsection 2.1.2: Gaussian, Jakes, or flat band-limited (rectangular).
All these idealized profiles are symmetrical, although additional frequency shifts may destroy
this symmetry.

Perfect channel estimation requires the exact knowledge of the Doppler spectrum. In order to
maximize the estimator gain, the coefficients need to be optimized for the actual Doppler spread
and SNR. It is therefore recommended to have a Doppler frequency and an SNR estimator,
whose outputs can be used to select the appropriate set of coefficients from among different
sets optimized for different Doppler frequencies and SNR’s. Although an interesting topic in
itself, adaptive estimators are outside the scope of this thesis.

Due to the algorithmic group delay of the filter, Gs = MsDs/2 − 1, the same number of data
symbols must be buffered so that they remain aligned with the channel estimates. This is the
toughest constraint in a channel estimator since the amount of memory needed to store Gs

symbols can be very large. More exactly, the number of stored complex samples is GsNact,
where Nact is the number of active carriers per OFDM symbol. Memory is also needed for
the taps of the multiple parallel filters, i.e. for storing the pilots for each carrier that contains
pilots. The number of complex samples to be stored is the number of carriers with scattered
pilots multiplied by the number of taps Ms.

In the case of DVB-T in 8K mode, Nact = 6816 and Ds = 4. Assuming a 4-tap filter, the
resulting size for the group delay compensation memory is 6816 × 7 = 47712 complex samples.
The size of the pilots memory is 2272 × 4 = 9088, which is significantly less than what is
required for group delay compensation.

Having established the fact that the number of filter taps must be kept to a minimum, we
can now also regard linear interpolation and zero-order hold as worthwhile alternatives to
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real channel estimation. In order to minimize memory requirements we can only perform
interpolation at this stage, with no noise reduction. The latter will be implemented in the
subsequent estimation stage only, i.e. along the k axis. In Figure 5.11 we show how the
process of zero-order hold and linear interpolation between pilots for a signal with a bandwidth
of 1/8 and a pilot spacing Ds = 4.

0 4 8 12 16 20 24 28 32
−1.5

−1

−0.5

0

0.5

1

1.5

2

Sample

 

 
Band−limited signal
Pilot samples
Interpolated samples
Interpolation error

(a) Zero-order hold

0 4 8 12 16 20 24 28 32
−1.5

−1

−0.5

0

0.5

1

1.5

2

Sample

 

 
Band−limited signal
Pilot samples
Interpolated samples
Interpolation error

(b) Linear interpolation

Figure 5.11.: Interpolation between pilots

In deciding which of the two interpolation types is the acceptable minimum, the interpolation
error has to be compared with the error caused by the inter-carrier interference due to the
Doppler effect itself, so that the former will not exceed the latter. From the plot in Figure 5.7,
which show the BER versus symbol Doppler rate, one can see that a quasi error free BER of
10−4 can be achieved only for symbol Doppler rates below 1/32. Form Figure 5.4 it can be
seen that the same BER can be achieved if the channel estimate SNR (-MSE in dB) lies below
25 dB. Interpolation error has been evaluated in Figure 5.37 for various type of interpolation
filters. At a symbol Doppler rate of 1/32, the interpolation MSE is -30 dB for zero-order hold
and -70 dB for linear interpolation. It can now be seen that even in the case of a zero-order
hold interpolation the effect on the BER are lower than that of the ICI caused by the same
Doppler fading.

We can therefore safely state that increasing the number of taps of the interpolation filter
along the s axis does not achieve any BER improvement. However, if a Wiener interpolator
is used instead of a regular interpolator, an estimation gain can be achieved. According to
Figure 5.28, the latter does increase with the number of taps and will contribute to a lower
BER, as shown Figure 5.5.

The possibility to increase the number of taps can be easily exploited in various OFDM stan-
dards, which specify various symbol sizes, for instance 2K and 8K in DVB-T. In this case,
the number of taps and the delay compensation memory will be sized for the largest symbol.
For smaller symbol sizes, the same memory can be used to compensate a proportionally larger
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Figure 5.12.: Centering the CTF spectrum before estimation

group delay, which allows the use of an estimation filter with more taps at no extra cost. For
instance, a linear interpolation filter in the 8K mode can be replaced with an 8-tap Wiener
estimator in the 2K mode, which can easily achieve an estimation gain of at least 6 dB and
maximally 9 dB, especially at the relatively low bandwidths (¡ 1/32) at which it operates.

5.3.4. Estimation along the Carrier Axis

The CTF variations along the k axis result from the multi-path profile of the channel. It
has been shown in Subsection 2.1.5 that the complex CTF (channel transfer function) in
frequency domain is the Fourier transform of the complex CIR (channel impulse response) in
time domain. According to the duality principle, if the CTF is considered as the signal of
interest, the multipath power delay profile is its power spectral density. Intuitively, the shorter
the CIR, the smoother the CTF. If the CIR consists of two peaks with a spacing of L samples,
the CTF is a sine with L periods in the whole symbol.

In order to avoid ISI (inter-symbol interferences), the guard interval NG must be chosen larger
than the CIR length L and the timing synchronization circuit has to ensure that the entire CIR
falls between 0 and NG, as shown in Figure 5.12. Since all CIR samples have positive delays,
the spectrum of the CTF will be asymmetrical. Thus, the bandwidth seen by the estimator is
2NG/N in the worst case. In order to reduce the requirements for the estimator, the spectrum
can be easily shifted, as shown in Figure 5.12, the most straightforward solution being to shift
with exactly NG/2, which reduces the worst-case bandwidth by two.

The amount of shifting can be either fixed, with half of the guard interval length NG, or
adaptive, depending on the actual CIR profile. Adaptive shifting is especially attractive when
the CIR is significantly shorter than the guard interval, i.e. L << NG. Figure 5.13 shows an
example where L = NG/4 and NG = N/4. With adaptive shifting the estimator sees a much
lower signal bandwidth compared with fixed shifting with NG/2, which can be used to improve
the estimator gain. Adaptive shifting can be also achieved by using fixed shifting and designing
the timing synchronization block so that the CIR is centered within the [0;NG] interval.

Frequency shift is performed by incrementally rotating the complex samples, the rotation an-
gle/phase is generated by a phase accumulator, as shown in Figure 5.14. If the symbol size N
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Figure 5.14.: Channel estimation including spectrum shifting

is a power of two, i.e. N = 2B, the phase accumulator is exactly B-bit wide and the increment
is the number of samples with which the spectrum is shifted. After estimation, exactly the
same rotation needs to be performed in the opposite direction in order to shift the spectrum
back to its original position

As it contains two CORDIC rotators, the solution is relatively complex. Considering that the
channel estimate needs to be converted to polar coordinate for performing channel correction,
the circuit can be simplified by processing the CTF in polar coordinates from the beginning.
Thus, the configuration in Figure 5.14 can be simplified as in Figure 5.15. Note that the
amplitude is not affected by the frequency shift and therefore no additional processing is needed.
The incremental rotation is applied to the phase part only, and consists in a simple subtraction
of the accumulator phase. However, the phase has to be unwrapped before estimation to avoid
wrong results, since the phase takes only values in range [−π; π). The unwrapping process
relies on the fact that the phase jumps cannot exceed π, according to the sampling theorem.
The unwrapping is trivial and consists only in discarding a number of MSB’s.

It must be mentioned here that channel correction is usually not implemented using a complex
division, as this would be much too complex. Instead, both the complex incoming data and
the channel estimate are first converted from cartesian to polar complex coordinates using
CORDIC blocks in vectoring mode. Thus, the complex division can be implemented using only
a real division stage and a subtractor, as shown in Figure 5.16. If the channel estimation is



5.3 Estimation Algorithms and Architectures 123

Channel
Estimation

Phase
accumulator

pilots estimate

amplitude

phase Phase
unwrap

Phase
wrap

inc

Figure 5.15.: Channel estimation using polar complex representation

Vectoring
CORDIC

re

imdata
/

Rotation
CORDIC

Vectoring
CORDIC

re

imestimate

amplitude

phase

amplitude

phase

amplitude

phase

re

im corrected

CSI

Figure 5.16.: Implementation solution for the channel correction stage

performed using a polar representation as well, the corresponding CORDIC stage can be saved.
Moreover, an additional benefit is that the CSI (channel state information) is obtained for free,
since the CSI can be approximated with the absolute value of the CTF estimate.

For OFDM systems that support different guard interval lengths, the incremental rotation for
spectrum shifting needs to be changed accordingly, i.e. exactly with NG/2. One example is
the DVB-T standard, which specifies four possible guard bands, of relative length 1/4, 1/8,
1/16, and 1/32. The pilot spacing Dk must never exceed the inverse thereof, so that the
sampling theorem along the k axis is fulfilled. In DVB-T for instance, this condition is fulfilled
for all guard bands since Dk = 3. It can be also shown that the maximum allowed discrete
bandwidth has in this case the following values: 3/4, 3/8, 3/16, 3/32. One needs to bear in
mind that the spectrum is usually asymmetrical. Knowledge of the maximum bandwidth allows
the optimization of the estimator, so that higher gains can be obtained even when no runtime
bandwidth estimate is available.

Potentially, very high estimation gains can be achieved, especially for lower bandwidths and a
large number of estimation filter taps. For each bandwidth there is a limit of the achievable
gain, as shown in Figure 5.40, after which any increase in the number of taps will not improve
the estimator gain. This maximum gain, however, increases for lower bandwidths. Practical
filter sizes are 8 and 16, since they can achieve very good estimation gains with reasonable
complexity. The design of such a filter is treated in more detail in Section 5.4, together with
a performance analysis under various conditions.
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5.3.5. Channel Estimation Architecture

In Figure 5.17 we present a generic sequential architecture for channel estimation. Note here
the striking similarity with the sequential bi-quad filter architecture presented in Figure 4.21.
The architecture consists of a single MAC (multiply accumulate) unit controlled by a state
machine and performs interpolation (estimation) first along the time axis, then along the fre-
quency axis, as shown in Figure 5.9, using polyphase filters. The filter coefficients are stored
in a ROM, which can be also a RAM programmable by a controller. The pilots and the inter-
mediate interpolation results are stored in RAM. The control state machine consists of counters
that keep track of the pilot positions and arithmetical blocks for computing the correct memory
addresses of data and coefficients.

The estimator block receives only the active OFDM cells, i.e. belonging to active subcarriers.
The protocol, shown in Figure 5.18, is unidirectional and consists of three additional signals:
valid, which qualifies cell data as valid and marks the availability of new data, symbol, which
marks the first cell in the symbol, and frame, which marks the first cell of the first symbol in
an OFDM frame.

In Figure 5.18, for illustration purposes, a new cell is transferred every four clock cycles, with
a dead interval at the end of the symbol, there are four active cells per symbol, and a frame
consists of three symbols. In a real case, the number of active cells per symbol is of the form
nDk + 1, i.e. the first and the last active subcarriers contain scattered pilots, and the number
of symbols per frame is of the form nDs, so that the pilot pattern is not disturbed at frame
boundaries.

The proposed channel estimation in Figure 5.17 generates a channel estimate for every input
cell. If the cell is a pilot, it is stored in memory and used for estimation, first along the time
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Figure 5.18.: Protocol for transferring OFDM cell data between modules
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axis s. This estimation is performed only for cells that belong to subcarriers which contain
scattered pilots, i.e. every Dk cells. The intermediate estimation results are stored back into
memory, in another region than the pilots.

Figure 5.19 shows the principle of operation of the channel estimator for the following case:
pilot grid with Ds = 4 and Dk = 3, and number of filter taps Ms = 4 and Mk = 6 respectively.
The coordinates of the current input cell are marked with triangles pointed towards the cell,
whereas the current output estimate is marked with triangles pointed towards outside. Thus,
the group delay in both directions can be clearly seen. Along the s axis, the group delay is
GDs = MsDs/2 − 1 symbols. Along the k axis, the group delay is GDk = MkDk/2 − 1 cells.
For each subcarrier with pilots, a number of Ms pilots have to be stored. The number of
intermediate estimates to be stored is always Mk, since the final estimation is only performed
for a single symbol. Memory locations are accessed in both cases as circular buffers. The overall
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memory requirements are relatively low compared with the group delay compensation, where
entire symbols have to be stored.

It is also important to determine the minimum required clock frequency for such a sequential
architecture. We need to bear in mind that the clock frequency should be a multiple of the
fundamental sampling rate of the OFDM system, which leads to a simplified implementation.
For the subcarriers with pilots, the number of clocks needed to compute a channel estimate
is Ms + Mk, which is the worst case timing, since both estimations have to be performed.
This is 10 clock cycles in our example, which for a sample period of 64/7 MHz in the case of
8 MHz channels leads to a clock frequency of about 90 MHz. This is easily attainable in any
technology, including FPGA.

Since the proposed channel estimation architecture uses separable polyphase filters for interpo-
lation/estimation in both directions, we also present here the principles of polyphase decompo-
sition. At the first glance, one would be tempted to use the textbook principle for interpolation,
i.e. inserting zeros followed by filtering using a low-pass FIR filter. Such a FIR filter is shown
in Figure 5.20, together with the samples with zeros in between. The filter size is 16, for an
interpolation factor of 4. One can readily seen that three fourths of the multiplications are with
zero and do not contribute to the final result. The efficiency is the inverse of the interpolation
factor, and thus becomes very low for large interpolation factors.

As an intermediate step towards the elimination of all trivial multiplications, the above FIR
filter is decomposed into 4 smaller filters of length 4, one for each interpolation phase. The
number of phases is equal with the interpolation factor. Each new input sample is fed to all
four filters, while the output is selected through a switch (multiplexor), synchronous with the
input switch. So far, only a rearrangement of the elements of the original FIR filter has been
performed, with no complexity reduction.

Figure 5.22 shows the first simplification, which consist in discarding the input switch and
using a single delay line for all 4 filters. This is possible since the 4 delay lines in Figure 5.21
have always the same content. Moreover, this enables the input rate to be reduced to the
original non-upsampled rate, while the output is still operated with the higher upsampled rate.

In Figure 5.22, the multipliers work with the slow input rate, therefore they are idle for 3
cycles out of 4. This leads to a further simplification, shown in Figure 5.23, whereby the same
4 multipliers are shared for all 4 phases. For each multiplier there is a coefficient multiplexor,
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which selects the appropriate coefficient for the desired phase. All coefficient multiplexor are
synchronous, being controlled by the same phase from a phase counter.

If the output upsampled rate is lower than the clock rate, a single MAC unit can be used for
performing all multiplications and additions, as shown in Figure 5.24. The only constraint
is that the ratio between the clock rate and the output sample rate must be larger than the
interpolation filter size.

5.4. Algorithms for One-Dimensional Estimation and
Interpolation

One-dimensional estimation consists of two main operations: noise reduction of the pilot sam-
ples followed by interpolation between these samples. The straightforward approach would be
to employ a Wiener filter followed by an interpolation filter. However, this solution requires
a large number of MAC operations, and also has a higher group delay. The latter issue is
especially inconvenient for estimation along the time axis, where any group delay has to be
compensated by an equal delay of all data samples, which requires extra memory. The solution
is to use an asymmetrical Wiener filters which perform both noise reduction and interpolation
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in one step.

This section starts with a short presentation of the Wiener filter theory and their performance
for different application scenarios. The second subsection introduces various interpolation types
and presents their performance, with emphasis on the signal-match interpolator, as presented
in [66]. Finally, we introduce the Wiener estimation filters and analyze their performance in
various scenarios. It is interesting to mention that when the noise is zero, the Wiener estimator
is reduced to a signal-matched interpolation filter. Likewise, when the interpolation factor is
one, the estimator is reduced to a regular Wiener filter.

5.4.1. Wiener Filters

Problem Formulation and Its Solution

We have a signal x(n) with known statistics, affected by additive white Gaussian noise w(n)
with known variance σ2

w. Thus, the received signal has the expression:

y(n) = x(n) + w(n) (5.5)

We need to design a FIR filter of size M that estimates the signal optimally, in the sense of
minimizing the mean-square error between the estimate x̃(n) and the transmitted signal x(n),
i.e. E{|x̃(n) − x(n)|2}. Designing the filter means to determine the filter coefficients cm, for
m = 0 . . .M − 1. According to the well-known Wiener theory, the optimal coefficients can be
determined by solving the Wiener-Hopf equation:

Ryyc = rxy (5.6)

where Ryy is the M×M autocorrelation matrix of the noisy signal y(n), c is the column vector
with the M coefficients to be determined, and rxy is the correlation vector between the original
signal x(n) and the one affected by noise y(n). We also denote with ryy the autocorrelation
vector of y(n).

ryy =
[
ryy(0), ryy(1), . . . , ryy(M − 1)

]T
(5.7)

rxy =
[
rxy(0), rxy(1), . . . , rxy(M − 1)

]T
(5.8)

The autocorrelation matrix Ryy is a Toeplitz matrix obtained from the ryy vector, each diagonal
having all its elements identical. For real signals, the matrix is symmetrical with respect to the
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main diagonal. In its expanded form, the Wiener-Hopf equation has the following expression:



ryy(0) ryy(1) ryy(2) · · · ryy(M − 1)

r∗yy(1) ryy(0) ryy(1)
. . .

...

r∗yy(2) r∗yy(1) ryy(0)
. . . ryy(2)

...
. . . . . . . . . ryy(1)

r∗yy(M − 1) · · · r∗yy(2) r∗yy(1) ryy(0)





c0

c1

c2
...

cM−1


=



rxy(0)

rxy(1)

rxy(2)
...

rxy(M − 1)


(5.9)

The above matrix equation represents a linear system of M equations with the M filter coeffi-
cients as unknowns. For a certain rxx and rxy, the Wiener theory guarantees that the resulting
filter is optimal for those conditions.

In our case, the channel only introduces noise, without affecting the signal spectrum through
frequency selectivity ((5.5)). The necessary information is represented by the signal statistics,
i.e. autocorrelation function or power density spectrum, and the variance of the additive white
Gaussian noise. Besides, the noise is uncorrelated with the signal, therefore rxw is almost null.
The autocorrelation vector ryy and the correlation vector rxy have the following expressions:

ryy = rxx + σ2
w[1, 0, . . . , 0]T (5.10)

rxy = rxx + rxw︸︷︷︸
≈0

(5.11)

where rxx is the autocorrelation of the original signal x(n) and σ2
w is the AWGN variance.

Figure 5.25 shows the elements of the correlation matrix and the correlation vector, as well
as the computed filter coefficients for a 11-tap symmetrical Wiener filter, considering a band-
limited signal with discrete bandwidth of 1/4 (Figure 5.25a) and 1/8 (Figure 5.25b). For
both filters an SNR = 10 dB has been considered. It can be seen that the autocorrelation of the
band-limited signal is a sinc function, whose main lobe has a width of 8 and 16 respectively.

Such a filter is optimal in that it minimizes the MSE of the estimate. However, this is true
only if the actual signal and channel statistics match those for which it has been designed. In
practice, this requires perfect knowledge of the signal autocorrelation and noise variance, which
is usually not possible. Robust filters should not exhibit too much performance degradation
when there is a parameter mismatch.

Matched Wiener Filter Performance

First, we investigate the performance of the Wiener filter when both the bandwidth and the
SNR are matched. Performance is expressed in terms of MSE of the filtered signal as a function
of the matched bandwidth and SNR, with the filter size M as the only parameter. In the
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Figure 5.25.: Coefficients computation for a 11-tap symmetrical Wiener filter

following we consider only symmetrical filters with an odd number of taps. Figure 5.26a and
Figure 5.26b show the MSE and the SNR gain of a 7-tap matched Wiener filter. The discrete
bandwidth covers four octaves, from 1/64 to 1/2, while SNR covers three decades, from 0 to
30 dB, the former being considered relative to the Nyquist limit of fs/2.

The only independent parameter of the filter is its length or the number of taps. Figure 5.27
shows the gain of a matched Wiener filter with sizes between 3 and 11 for an SNR of 10 dB
and 20 dB respectively. A few conclusions can be drawn. First, the filter gain increases with
decreasing bandwidths and saturates to a value which depends on the filter length. The more
taps the filter has, the higher the maximum gain. Second, the maximum gain depends on
the filter size alone. Only the bandwidth at which the gain saturates depends on the SNR.
Moreover, the gain itself tends to saturate with the number of filter taps.

In order to evaluate the maximum achievable filter gain as a function of the number of taps, we
performed a simulation where we chose a bandwidth of 1/256 and an SNR of 10 dB. The gain
vs. filter length plots are shown in Figure 5.28 for filter lengths between 3 and 23. It can be
clearly seen that the maximum gain depends linearly on the filter size. Doubling the number
of taps results in a doubling of the filter gain. However, as the number of taps increases the
maximum gain is achieved for increasingly lower bandwidths.
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Figure 5.26.: Output MSE and SNR gain for a 7-tap matched Wiener filter

Mismatched Wiener Filter Performance

In the following, we want to investigate how the filter performs if the actual signal statistics and
noise do not match those for which the filter has been designed. Like in the previous analysis,
we consider a band-limited random signal affected by additive white Gaussian noise. First, we
analyze the influence of the bandwidth mismatch on the filter performance, considering the
SNR is matched and treating the SNR and the filter size as parameters. In order to gain an
understanding of how the bandwidth mismatch affects the filter performance we simulated the
dependence of the MSE and filter gain on the designed filter bandwidth and the actual signal
bandwidth. The results are presented in Figure 5.29 for a 7-tap filter and an SNR of 10 dB.

It can be seen that the minimum achievable MSE decreases with decreasing bandwidths. For
actual signal bandwidths below the designed value, the MSE remains almost constant and the
potential for even smaller MSE remains unexploited. However, if the designed bandwidth is
exceeded, a rapid degradation of the MSE can be observed. Therefore, when designing a Wiener
filter it is better to choose a larger bandwidth instead of a smaller one. In order to evaluate how
the bandwidth mismatch affects the filter gain for various filter sizes and SNR’s, we analyzed
a combination of two filter sizes (5 and 9 taps) and two SNR’s (10 and 20 dB). The gain plots
are shown in Figure 5.30 for all four cases.

For a given filter size, the mismatch problem is aggravated at higher SNR’s. The same deviation
from the designed bandwidth towards higher values will result in a higher gain loss. Moreover,
for the same designed bandwidth the gain is lower at higher SNR’s. In the case of channel
estimation for OFDM, an estimate gain of 6 dB is sufficient. Therefore, a rule of a thumb which
provides good results in most cases is that the Wiener designed bandwidth should lie between
1/4 and 1/8. Corner cases are the stationary reception, when the gain can be maximized using
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Figure 5.27.: Gain vs. bandwidth for a matched Wiener filter
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Figure 5.28.: Gain of a matched Wiener filter vs. filter size

a long filter designed with a very low bandwidth, or very high Doppler spreads, when the
designed bandwidth must be maximized, at the expense of a reduced estimation gain. It is
impossible to achieve a high estimate gain at a high Doppler spread.

Having investigated the effects of the bandwidth mismatch on the filter gain, we go on to
investigate the effects of SNR mismatch as well. The bandwidth is assumed perfectly matched.
First, we plot the dependence of the gain on the designed and actual SNR at a given bandwidth.
Figure 5.31 shows the 2D plots of the output MSE and SNR gain for a bandwidth of 1/8,
when the actual and the designed SNR’s vary from 0 to 40 dB.

In order to better evaluate the effects of the SNR mismatch on the filter gain, we analyze
the dependence of the gain on the actual signal SNR with the filter SNR as a parameter.
Figure 5.32 shows two such plots for a 7-tap Wiener filter, considering a matched bandwidth
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Figure 5.29.: Output MSE and SNR gain for a 7-tap Wiener filter with bandwidth mismatch
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Figure 5.31.: Output MSE and SNR gain for a 7-tap Wiener filter with SNR mismatch

of 1/4 and 1/16 respectively. From these plots, we can conclude that for typical SNR’s in range
10 . . . 20 dB, a very good trade-off is to choose a filter SNR of 10 dB. If an SNR estimator is
available, the best coefficients set can be selected dynamically during operation.

5.4.2. Signal-Matched Interpolation

We consider a sequence y(n) which has L−1 consecutive zeros every L samples, i.e. samples are
non-zero for n = mL, where m ∈ Z and L is an integer called interpolation factor. Practically,
y(n) is a sampled version of an unknown band-limited sequence x(n)

y(n) =

{
x(n) ∀n = mL

0 ∀n 6= mL
(5.12)

The task of the interpolation filter is to reconstruct the original sequence x(n) from the samples
of y(n). The filter must be designed so that the output sequence x̃(n) approximates x(n) as
close as possible in the sense of minimizing the mean-squared error E{|x̃(n) − x(n)|2}. We
denote with ∆x(n) the interpolation error x̃(n)− x(n). The block diagram of the system and
the associated signals are shown in Figure 5.33.

We assume a symmetrical FIR interpolation filter with a length N = 2ML + 1. The output
will be

x̃(n) =
+ML∑

k=−ML

h(k)y(n− k) (5.13)
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Figure 5.32.: Gain of a 7-tap Wiener filter with SNR mismatch
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where h(k) is the impulse response or the coefficient vector of the filter. In this form, the filter
performs 2ML multiply-accumulate operations per output cycle. As only 1/L of the samples
to be filtered are non-zero, most multiplications are trivial, which results in a very inefficient
solution if (5.13) is implemented directly.

Using a polyphase approach will increase the computation efficiency significantly by eliminating
the trivial multiplications. In the following, we show how the polyphase decomposition is
performed and how the optimal coefficients can be determined when we know the spectrum of
the initial sequence x(n). In doing this, we follow the approach presented in [66].

Knowing that y(n) = 0 for n 6= mL and considering the first and the last coefficient are zero,
h(−ML) = h(ML) = 0, we get for n = mL+ φ with φ = 0, . . . , L− 1

x̃(mL+ φ) =
M−1∑

m1=−M

h(m1L+ φ)y((m−m1)L) (5.14)

For each φ the output x̃(n) is obtained using 2M samples of y(n) and h(n). For simplification
we introduce the following notations:

xφ(n) =

{
x(n) n = mL+ φ

0 n 6= mL+ φ
(5.15a)

x̃φ(n) =

{
x̃(n) n = mL+ φ

0 n 6= mL+ φ
(5.15b)

where m is an integer and φ = 0, 1, . . . , L− 1 can be thought as a phase index.

Using the polyphase decomposition, x(n) and x̃(n) can be written as:

x(n) =
L−1∑
φ=0

xφ(n) (5.16a)

x̃(n) =
L−1∑
φ=0

x̃φ(n) (5.16b)

We define now the corresponding L error sequences as:

∆xφ(n) = x̃φ(n)− xφ(n) (5.17)

Likewise, the overall error can be written as:

∆x(n) =
L−1∑
φ=0

∆xφ(n) (5.18)
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Figure 5.34.: Polyphase decomposition of the impulse response for L = 4 and M = 2.

Each error sequence ∆xφ(n) depends only on a subset of the h(n), hereafter denoted with hφ(n).
Thus, the minimum of E{|∆x(n)|2} is obtained by minimizing each E{|∆xφ(n)|2} separately.
The decomposition of h(n) into its L polyphase subsets hφ(n) of length 2M is defined by the
equation below. Figure 5.34 shows such a decomposition for L = 4 and M = 2.

hφ(n) =

{
h(n) n = mL+ φ

0 n 6= mL+ φ
(5.19)

Thus, the final impulse response is the sum of its polyphase components.

h(n) =
L−1∑
φ=0

hφ(n) (5.20)

Using a polyphase decomposition, the design of an interpolating filter of degree 2ML with
impulse response h(n) has been split up into designing L subfilters of degree 2M with impulse
response hφ(n). Each subfilter calculates an estimate of x(mL+φ) using the samples of y(n) =
x(mL), as it can be seen in Figure 5.35. Besides reducing the order of the problem, the
polyphase decomposition led to a more efficient implementation since all L subfilters operate
now at the non-interpolated lower sampling rate. Thus, the number of MAC operations is
reduced by L.

In order to minimize E{|∆xφ|}, we write the sequence ∆xφ explicitly for those values of k
where the samples are non-zero. According to (5.14) and (5.15) we get

∆xφ(mL+ φ) =
M−1∑

m1=−M

hφ(mL+ φ)y((m−m1)L)− xφ(mL+ φ) (5.21)

=
M−1∑

m1=−M

hφ(mL+ φ)x((m−m1)L)− x(mL+ φ) (5.22)
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Figure 5.35.: Polyphase interpolator error model for L = 4 and M = 2.

It can be readily seen that ∆x0(n) = 0 if

h0(n) =

{
1 k = 0

0 k 6= 0
(5.23)

that is, the first filter leaves the signal unchanged.

The minimization of the other E{|∆xφ|2} depends on the statistics of the input sequence x(n)
and has been presented in detail in [66]. If we denote with r(n) the autocorrelation function
of the original signal x(n), the condition for minimizing E{|∆xφ|2} resembles the Wiener-Hopf
equation in the Wiener filtering theory:

Rhφ = rφ (5.24)

where

M =



r(0) r(L) r(2L) · · · r((2M − 1)L)

r(L) r(0) r(L)
. . .

...

r(2L) r(L) r(0)
. . . r(2L)

...
. . . . . . . . . r(L)

r((2M − 1)L) · · · r(2L) r(L) r(0)


(5.25)

hφ =
[
h(−ML+ φ), h(−(M − 1)L+ φ), . . . , h(φ), . . . , h((M − 1)L+ φ)

]T
(5.26)

rφ =
[
r(−ML+ φ), r(−(M − 1)L+ φ), . . . , r(φ), . . . , r((M − 1)L+ φ)

]T
(5.27)
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For M = 4, the equation becomes:
r(0) r(L) r(2L) r(3L)

r(L) r(0) r(L) r(2L)

r(2L) r(L) r(0) r(L)

r(3L) r(2L) r(L) r(0)



h(−2L+ φ)

h(−L+ φ)

h(φ)

h(L+ φ)

 =


r(−2L+ φ)

r(−L+ φ)

r(φ)

r(L+ φ)

 (5.28)

The matrix R is the Toeplitz matrix of the sampled autocorrelation function h(mL) and does
not depend on φ. Since the signal is real, the autocorrelation function is symmetrical, i.e.
r(n) = r(−n). Equation (5.24) leads to:

hφ = R−1rφ (5.29)

The calculation of h(n) involves a one-time inversion of the R matrix of size 2L×2L and L−1
multiplications of the inverted matrix with the rφ vector. Further simplifications are possible
by exploiting the symmetry of the autocorrelation function [66]. However, since the coefficient
calculation is only done once at design time, these simplifications are not important in most
cases.

It suffices to say that for the impulse responses of the L subsystems, the following symmetry
relationship holds:

hφ(n) = hL−φ(−n) (5.30)

which reduces the number of vectors hφ(n) to be calculated by a factor of 2. Besides, it results
from (5.20) that the impulse response of the interpolating filter is symmetrical, h(n) = h(−n),
i.e. the ideal interpolator has linear phase.

Interpolation Performance Analysis

In investigating the performance of the signal-match interpolator, we adopt the same strategy
as in the case of the Wiener filter, considering a random signal with a band-limited rectangular
spectrum. The interpolation filter itself is also matched to such a signal, only the bandwidths
being different. Unlike for the Wiener filter, there is no SNR to be optimized. Instead, an
additional parameter is the interpolation factor, which in our analysis is fixed to four. The
following analysis is limited to three octaves, from 1/16 to 1/2, as shown in Figure 5.36a
where the interpolation MSE is plotted for a 4-tap filter. Note that the first diagonal in
Figure 5.36a is the MSE in the case of a perfect match, which is also shown in Figure 5.36b
as a thinner line that marks the MSE floor.

It can be seen that if the actual signal bandwidth is larger than the designed filter bandwidth,
the error tends to be some 10 dB above that of a matched filter. For lower signal bandwidths,
the error remains essentially constant. The interpolation error is low enough for all designed
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Figure 5.36.: Interpolation error in the presence of bandwidth mismatch for a signal-matched
interpolation filter with four taps

bandwidths. Even for a designed bandwidth of 1/2, the interpolation error lies below -40 dB,
which ensures that the performance is not affected even in the case of a 64-QAM modulation.
A low MSE can be modeled as an additive Gaussian noise, a value of -40 dB being equivalent
with an SNR of 40 dB. According to Figure 5.4, this will not affect the performance for any
QAM modulation type.

It is therefore readily apparent that adapting the filter coefficients to the signal bandwidth does
not bring any performance gain since the error floor is very low for any set of coefficients. That
is why, if only interpolation needs to be performed, it is recommended to use an interpolation
filter that does not depend on the signal statistics. For this purpose, we propose here the use of
Lagrange interpolation filters. In Figure 5.37 we present their interpolation errors for various
input signal bandwidths, i.e. before interpolation.

The particular case of the linear interpolation (2 taps) is also the degenerated Lagrange poly-
nomial of first degree. Besides the Lagrange interpolation filter with 2, 4, and 6 taps, we also
consider the zero-order hold interpolation. Although the latter has the worst performance of
all existing interpolators, it has one important advantage, the absence of a group delay. This
can make its choice appealing for interpolation along the time axis. When the Doppler spread
is low, the bandwidth of the interpolated signal is also low and the interpolation error is kept
to an acceptable level. Since the filter does not introduce group delay, no additional storage is
required for group delay compensation.

5.4.3. Wiener Interpolation

Intuitively, the estimation process can be better understood as a sequence of two operations.
First, the channel is estimated at the pilot positions using a classical Wiener filter for smoothing
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Figure 5.37.: Interpolation error for various interpolation filters

(noise reduction). Second, the estimates for all other positions are obtained through interpo-
lation. However, this approach involves a large number of computations and introduces a
significant group delay. The latter should be kept to a minimum, especially for estimation
along the time axis, since all data symbols need to be delayed accordingly.

The optimum strategy is to combine the two operations int a single one. The solution to this
problem can be derived by noting that the coefficients for the Wiener and the interpolation filters
result as solutions of a Wiener-Hopf equation. Compare for this purpose (5.6) for the Wiener
filter with (5.24) for the signal-matched interpolation filter. This is actually the reason why
we went on to present the theory behind the signal-matched interpolation filter, not especially
its interpolation performance, which is not essential.

Now (5.24) can be simply expanded by adding the noise variance σ2
w to the expression of rφ

in (5.27), the same like in (5.10), for each polyphase set. In the limit case when the noise
variance is zero, the Wiener interpolator is reduced to a signal-matched interpolator. The
computed polyphase coefficients for an 8-tap filter are shown in Figure 5.38a for an SNR of
10 dB and in Figure 5.38b for a noiseless signal (SNR =∞). In this example an interpolation
factor of 4 and a signal bandwidth of 1/4 have been considered.

The MSE of such a Wiener interpolation filter, optimized for a bandwidth of 1/4, is shown in
Figure 5.39a as a function of the SNR, together with the gain of Wiener filters optimized for
1/2 and 1/8 respectively. The thin diagonal designates the unity (0 dB) gain line. The SNR
gain of the filter, which is the distance to this line, must always be positive. Otherwise, if the
MSE vs. SNR characteristic crosses the unity gain line, the filter actually worsens the SNR
and it would be better to use a regular interpolator in this case. The MSE characteristic of
such an interpolator is shown in Figure 5.39b for the same SNR range. As expected, simple
interpolation achieves no SNR gain and the MSE curve is very close to the unity gain diagonal.
Actually, there is a slight gain, which is due to the fact that the interpolation is a low-pass
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Figure 5.38.: Coefficients computation for an 8-tap Wiener interpolator

filtering which slightly attenuates the high-frequency noise components.

In order to be able to choose the appropriate filter length for a specific scenario, we also present
the maximum gain of a Wiener interpolation filter as a function of the number of taps, at
various bandwidths. The results are shown in Figure 5.40 for all even number of taps from
4 to 32. It can be clearly seen that the gain saturates with the number of taps, with the
saturation value depending on the bandwidth.
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Figure 5.39.: Estimation MSE vs. received SNR
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