
Chapter 6.

Optimized Viterbi Decoder Architectures

Contents
6.1. Viterbi Decoding Background . 146

6.1.1. The Trace-Back Unit . 148

6.2. State-Parallel Architecture with Adjustable Trace-Back Unit 150

6.2.1. Area and Power Consumption of the Trace-Back Unit 150

6.2.2. Adjustable Trace-Back Architecture . 150

6.2.3. Finding the Optimum Window Length . 152

6.3. Low-Area State-Serial Architecture . 154

6.3.1. Implementation Results . 158

With the ever increasing demand for low-power battery-powered devices, power reduction
techniques become more and more necessary throughout the design flow. One of the solutions
to the problem of power reduction is to create new algorithms or to modify existing ones to take
advantage of the run-time changes in the operating conditions or performance requirement, and
adjust their behavior accordingly in order to lower their power consumption. Some applications
in this direction can be found in [48] and [26].

In this chapter we address the Viterbi algorithm, proposing an architecture for the trace-back
unit, whose size can be adjusted dynamically by adapting itself to the run-time variations
in channel quality and performance requirements, together with an algorithm for finding the
optimum trace-back length. Another interesting solution for dynamic power reduction in a
Viterbi decoder can be found in [32].

As part of our research efforts regarding the realizability of low-cost digital radio receivers on
a single FPGA, we also present a very low-area solution, in light of the new features offered
by modern devices. For such low-rate applications, speed is not usually the main concern,
the main goal being rather to minimize the necessary FPGA resources (or silicon area for
ASIC’s). Together with the FFT, the Viterbi decoder is the most computationally intensive

145

146 Chapter 6 Optimized Viterbi Decoder Architectures

DD DD

clk

in data

out data A

out data B

generator polynomial g0 = 1011011 (1338)

generator polynomial g1 = 1111001 (1718)

S4S3S2S1S0 S5

encoder state S = {S5... S0}

constraint length K = 7

DDDDDDDD

Figure 6.1.: Convolutional encoder for the DAB & DRM standards

block in an OFDM receiver and requires the most resources, being therefore a natural candidate
for optimizations. In this thesis, we propose a low-complexity Viterbi decoder architecture
optimized for FPGA that takes advantage of the embedded RAM blocks. The design has been
implemented in VHDL as a completely generic RTL description. FPGA implementation results
show that the proposed architecture requires extremely few hardware resources, while meeting
the throughput requirements of the DAB and DRM standards.

6.1. Viterbi Decoding Background

Proposed in 1967 [93], the Viterbi algorithm rapidly became the solution of choice for decoding
convolutional codes. It consists in finding the most likely state sequence through the trellis
obtained by unrolling the state transition diagram of the encoder. The convolutional encoder
is a state machine that generates a multi-bit output symbol based on the current input and
the current state. Figure 6.1 shows the schematic of the encoder for the DAB and DRM
standards. Both standards use the same convolutional code. The octal forms of the four
generator polynomials are: 133, 171, 145 and 133.

The two main parameters of such a convolutional encoder are the constraint length K and the
number of branches or generator polynomials N . The number of states of the encoder is thus
S = 2K−1, increasing exponentially with the constraint length. For example, the convolutional
code for DAB and DRM has a constraint length of 7, which results in 64 possible states. Every
input bit determines the transition to another state, while generating an N-bit symbol. A state
transition diagram (trellis) for K = 3 is shown in Figure 6.2 for six successive symbols.

From any given state, two other states that differ only in their LSB can be reached (an odd/even
pair). Each state pair can be reached from another pair, whose states differ only in MSB. Such
a state transition butterfly is shown in Figure 6.3 for K = 7. One important remark is
that although there are four different transitions, only two different output combinations are
produced, out0 and out1, which allows for simplifications in the decoder.

6.1 Viterbi Decoding Background 147

2 2 22 22 2

1 1 11 11 1

0 0 00 00 0

5 5 55 55 5

4 4 44 44 4

3 3 33 33 3

7 7 77 77 7

6 6 66 66 6

Stage n Stage n+1 Stage n+5Stage n+2 Stage n+6Stage n+4 Stage n+7

Figure 6.2.: State transition graph

1 1

0 0

s5 s5

s5 s5

s4 s4

s4 s4

s3 s3

s3 s3

s2 s2

s2 s2

s1 s1

s1 s1

1/out0

0/out0

0/out11/out1

State nState n-1

Figure 6.3.: Possible state transitions

On the receiver side, the decoder’s task is to reconstruct the state sequence of the encoder, thus
obtaining the original bit sequence as decoded output. The decoder only finds the maximum
likelihood sequence of states that could have produced the received data stream. Each state
transition is associated a branch metric, which is an indicator of the likelihood of the transition
for the current received symbol. Since the current state is not known, all possible branch metrics
have to be computed, based on the received probabilities (soft bits). In our implementation,
the soft bits are positive integers, encoding probabilities between 0 and 1. Complementing a
probability is obtained by negating all bits (one’s complement). The decoder receives N soft
bits per symbol and computes 2N branch metrics. The parallel computation of all possible
branch metrics is shown in Figure 6.4 for N = 4 (DAB and DRM).

SB0

SB1

SB2

SB3

BM0BM15

Figure 6.4.: Parallel branch metric computation

148 Chapter 6 Optimized Viterbi Decoder Architectures

The decoder maintains a path metric for each state, which is a measure of the likelihood of
that state to be the actual encoder state that produced the received symbol. Whenever a new
symbol is received, new path metrics are computed for each state, based on the previous path
metrics and the current branch metrics. Since two possible paths converge to each state, a
decision is made by retaining only the more likely path, i.e. the path with a better metric,
while the other is discarded. In our design, the convention is that lower metrics are better.
This binary decision is all that is needed for determining the previous state from the current
state (shift right and append decision bit as MSB). For each state, the path metrics of the
two candidate states are calculated by adding the appropriate branch metrics to the previous
path metrics. Only the best metric is selected and stored in the path metric memory, while the
decision bit is stored in the trace-back unit. A number of 2K−1 such add-compare-select (ACS)
operations have to be performed for every received symbol.

Depending on how the ACS operations are scheduled, Viterbi decoder architectures can be
roughly divided into state-parallel and state-serial. In state-parallel architectures, there is an
ACS block for every state and all path metrics are computed simultaneously, which makes
this architecture suitable for very high data rates. The resulting area is very large, growing
exponentially with the constraint K. At the other end of the spectrum, state-serial architectures
compute the path metrics sequentially using a constant number of ACS blocks, usually one or
two (butterfly). However, the execution time grows exponentially with K. Thus, they are
suitable only for medium-to-low data rates.

For each received symbol, all path metrics are updated and the 2K−1 decision bits are stored in
the trace-back memory. As soon as a given number of symbols have been received, we start from
the best current state and go back the trellis on the most likely path, producing one output
bit for every state traversed. This operation is referred to as trace-back and reconstructs
the original bit stream, albeit in reverse order. The longer the trace-back, the higher the
likelihood that a bit is decoded correctly. By increasing the trace-back depth, the bit-error-rate
asymptotically reaches a lower limit. Figure 6.8 shows the dependence of BER on channel
noise and trace-back depth.

In practical implementations, trace-back depth is limited by the available hardware and by
the decoding latency. Unlike wireless LAN, latency is not an issue in digital broadcasting.
Moreover, since broadcast data is usually organized as a continuous stream, trellis termination
circuitry is not needed. These considerations relax the requirements imposed on the trace-back
unit and allow for very efficient implementations. In our sequential design, a trace-back is
performed every T received symbols, each trace-back operation producing T decoded bits.

6.1.1. The Trace-Back Unit

As part of a Viterbi decoder, the trace-back unit stores the decision bits (or survivors) computed
by the ACS unit for every received symbol and generates the decoded output by performing
a trace-back cycle on a predefined number of steps. The number of steps used to perform the

6.1 Viterbi Decoding Background 149

trace-back

start state

d
e

c
is

io
n

b
it
s

(2
K

-1
)

out

MUXMUX

K-1

K-1 K-2

1

LSB

K-1

K-1 K-2

1

LSB

K-1

K-1

1

trace-back cell 1

R
E

G
R

E
G

clk
R

E
G

R
E

G
clk

MUXMUX

R
E

G
R

E
G

clk

MUXMUX

trace-back cell 2 trace-back cell L

Figure 6.5.: Schematic of a parallel trace-back decoding window

trace-back is also referred to as the trace-back window length and will be denoted by L in the
following.

Knowing the current state Sn and the decision bit associated with it, bSn , the previous state
Sn−1 can be found using the following formula:

Sn−1 =
Sn
2

+ bSn · 2K−2 (6.1)

From an implementation point of view, the previous state is obtained by shifting the current
state to the right and appending the decision bit as the MSB, requiring therefore no hardware
resources. However, a multiplexer is needed to select the decision bit associated with the current
state from the set of 2K−1 decision bits generated by the ACS unit.

A solution for the trace-back unit is presented in Figure 6.5, based on an idea found in [90],
which implements directly (6.1). The shift register array is needed to store the decision bits
for a number of L previous cycles. The most area will be taken by the multiplexors, whose size
increases very fast with the constraint length:

SIZEMUX = O(K · 2K) (6.2)

Since a full length trace-back operation is performed every clock cycle on a purely combinational
path, the operating frequency is seriously limited, even for low values of L. As there is no
feedback loop, the circuit can be pipelined, by grouping the trace-back cells into stages and
inserting register in between. For details about the optimum sizing of the pipeline, refer to our
previous paper [121]

150 Chapter 6 Optimized Viterbi Decoder Architectures

4902

1523

740

734

267

117

16

6

3

0 1000 2000 3000 4000 5000 6000

BMU

ACSU

TBUU
M

C
 0

.1
8

 u
U

M
C

 0
.2

5
 u

A
M

S
 0

.3
5

 u

(a) Area (103 µm2)

260

83

53

24

0 50 100 150 200 250 300

ACSU

TBU

U
M

C
 0

.1
8

 u
U

M
C

 0
.2

5
 u

(b) Power consumption @ 54MHz (mW)

Figure 6.6.: Standard cells synthesis results for the parallel Viterbi decoder

6.2. State-Parallel Architecture with Adjustable Trace-Back
Unit

6.2.1. Area and Power Consumption of the Trace-Back Unit

In order to have a realistic image of the power consumption and area required by the trace-back
unit compared to the rest of the Viterbi decoder, we have developed a fully parameterizable
VHDL model and generated a specialized implementation for the IEEE 802.11a wireless LAN
standard, with K = 7 and a pipelined trace-back unit with 16 stages and 5 cells per stage. It
operates at 54 MHz, corresponding to the highest data rate specified by the standard (54 Mbps).

The VHDL description has been synthesized using three standard cell CMOS libraries, with
feature sizes of 0.35, 0.25, and 0.18 µm respectively. The area and the power consumption are
reported in Figure 6.6. Power consumption is not reported for the 0.35 µm library because
the power characterization provided by the manufacturer was not accurate enough.

The results show clearly that the most area and highest percentage of the power consumption in
a Viterbi decoder goes to the trace-back unit. In the following section we propose an architecture
that allows the trace-back length to be adjusted dynamically, saving power by disabling the
unused stages.

6.2.2. Adjustable Trace-Back Architecture

By analyzing Figure 6.7, it can be seen that if we need a lower decoding length L, all we have
to do is to take the output from an earlier trace-back stage. Some stages will therefore remain
unused and can be disabled in order to save power.

One solution is to use the enable signal for the registers to turn off any switching activity on the
data path. A better one consists in applying clock gating to those stages we want to disable.
This will reduce the power consumption to negligible levels, given only by the leakage current.

6.2 State-Parallel Architecture with Adjustable Trace-Back Unit 151
d
e
c
is

io
n

b
it
s

fr
o
m

 A
C

S

s
ta

rt
 s

ta
te

clk

P
IP

E
L
IN

E
 R

E
G

R
E

G
M

U
X

R
E

G
M

U
X

R
E

G
M

U
X

R
E

G
M

U
X

P
IP

E
L
IN

E
 R

E
G

R
E

G
M

U
X

R
E

G
M

U
X

R
E

G
M

U
X

R
E

G
M

U
X

P
IP

E
L
IN

E
 R

E
G

R
E

G
M

U
X

R
E

G
M

U
X

R
E

G
M

U
X

R
E

G
M

U
X4 4 4 4

LSB

1
6
:1

M
U

X out

EN EN EN

C
O

D
E

C
O

N
V

E
R

T
E

R

C
O

D
E

C
O

N
V

E
R

T
E

R

4
:1

6

D
E

C
O

D
E

R

4
:1

6

D
E

C
O

D
E

R

5 clk delay

5*14 clk delay
5*15 clk delay

window

length

LSB LSB

Figure 6.7.: Schematic of the proposed adjustable trace-back unit

The schematic of the proposed architecture is shown in Figure 6.5 and allows using any of the
above techniques. Each stage in the pipeline can be turned on and off using a generic enable
signal.

The delay lines at the output of each stage prevent the loss of data when switching between dif-
ferent window lengths and ensure a constant latency regardless of the selected length. Moreover,
only one delay line can be enabled at a time, in order to further reduce the power consumption.

The number of pipeline stages depends on the desired granularity for the adjustment. Let the
number of stages be M and the number of cells in a stage P . In our example implementation,
P = 5 and M = 16.

The controller generates the signals for enabling the trace-back stages (TBSEN) and the delay
lines (DLEN), as well as for selecting the correct output through a multiplexer (OUTS). The
sequence of these control signals depends on the direction of the adjustment and is shown below
for both cases. IDX is the index of the length, with values between 1 . . .M .

When IDX is increased (IDX : i→ j, i < j):

• enable TBSi+1 . . . TBSj (TBSEN ← j) and also DLj (DLENj ← 1)

• wait for D(M − j) clock cycles, so that valid data appears at the output of DLj

152 Chapter 6 Optimized Viterbi Decoder Architectures

• switch output multiplexer from DLi to DLj and disable DLi (DLENi ← 0)

When IDX is decreased (IDX : i→ j, i > j):

• enable DLj

• wait for D(M − j) clock cycles, so that valid data appears at the output of DLj

• switch output multiplexer from DLi to DLj, disable TBSi+1 . . . TBSj (TBSEN ← j) and
also DLi (DLENi ← 0)

Simulations have shown that the smallest practically usable trace-back length for our imple-
mentation is 20, corresponding to 4 pipeline stages. For this case, the power consumption is
1/4 of the power for the full-size window (16 stages), corresponding to a power reduction of
75% for the trace-back window. Post synthesis simulations show that the controller accounts
for less than 1% of the power and can be neglected. This results in an overall power reduction
of 58% for the UMC 0.18 µm and 62% for the 0.25 µtechnology.

6.2.3. Finding the Optimum Window Length

The goal here consists in finding the smallest window length that ensures a target bit error rate
(BER) of the decoded output, for an estimated value of the SNR of the channel and a certain
puncturing pattern. The process consists of two distinct steps.

The first step is performed only once, when a new decoder is designed. This involves building
a look-up table with the optimum values for the window length, which has two entries: the
desired BER of the decoded stream and the SNR of the channel. One such look-up table is
built for every puncturing pattern. The IEEE 802.11a for instance, specifies a unpunctured
mother code of rate 1/2 and two punctured codes of rate 2/3 and 3/4 respectively.

Extensive fixed-point simulations were performed on an exact model of the decoder, in order
to determine the BER as a function of the SNR and the window length. For our investigation,
we analyzed and simulated the decoder for the IEEE 802.11a standard [38] using a model
and a simulation environment written in SystemC. The essential advantage of SystemC over
VHDL or Verilog is a much higher simulation speed and flexibility. The results are presented
in Figure 6.8. For details about the simulations refer to our paper [121]. I still need to add
the contribution from this paper.

Based on these results, we obtain curves of constant BER. We have chosen four possible values
for the target BER, which cover a wide range of requirements: 10−2, 10−3, 10−4 and 10−5. The
resulting curves are shown in Figure 6.9.

The curves of constant BER are discretized for the available window lengths (5, 10, 15, etc.),
thus obtaining the optimum length for an estimated range of SNR. These discretized values are

6.2 State-Parallel Architecture with Adjustable Trace-Back Unit 153

02468101214161820

10
20

30
40

50
60

70
80

90
100

10
−5

10
0

SNR (dB)trace−back length

B
E

R

(a) no puncturing

02468101214161820

10
20

30
40

50
60

70
80

90
100

10
−5

10
0

SNR (dB)trace−back length

B
E

R

(b) puncturing p1

Figure 6.8.: BER as a function of window length and channel SNR

0 5 10 15 20
10

20

30

40

50

60

70

80

90

100

SNR (dB)

tr
ac

e−
ba

ck
 w

in
do

w
 le

ng
th

(a) no puncturing

0 5 10 15 20
10

20

30

40

50

60

70

80

90

100

SNR (dB)

tr
ac

e−
ba

ck
 w

in
do

w
 le

ng
th

(b) puncturing p1

Figure 6.9.: Lines of constant BER

154 Chapter 6 Optimized Viterbi Decoder Architectures

then used to build the look-up tables.

The run-time part of the process consists in obtaining an estimate of the channel SNR, which is
then used in conjunction with the target value for the BER and the current puncturing pattern
to find the optimum value for the window length in the look-up table. Updating the window
length to reflect changes in SNR or performance requirements is performed periodically.

Since estimating the SNR is a lengthy process, the look-up table and the look-up process can be
implemented on an external processor. As soon as an updated SNR estimate becomes available,
a new optimum value will be retrieved from the table at written to the trace-back controller.
Since the process has no feedback, no stability problems occur.

6.3. Low-Area State-Serial Architecture

Our main goal was to minimize the required hardware resources, while applying power saving
techniques where possible. We propose optimizations for all the blocks of a Viterbi decoder:
branch metrics unit (BMU), add-compare-select unit (ACSU), and the trace-back unit (TBU).
The architecture is mainly targeted for FPGA’s, in the light of the new features offered by
modern devices, such as embedded RAM and shift registers. Extremely low-area implemen-
tations are also possible for ASIC’s, provided that the foundry offers a memory compiler that
supports small RAM’s.

As a representative example, we have chosen the low-cost Spartan-3 FPGA family from Xilinx.
Spartan-3 devices feature between 4 and 96 true dual-port RAM blocks of 16Kbit each, which
can be configured for different aspect ratios data widths ranging between 1 and 32 (power-of-2
only). Their operation is fully synchronous, with independent clocks for each port. Besides,
the two LUT’s in a slice can be configured as addressable 16-bit shift registers (with selectable
output). Depending on the device, between 1536 and 66560 LUT’s are available.

The dedicated FPGA resources can be used in VHDL by hand-instantiating vendor-specific
primitives or by direct inference from VHDL constructs. Only the latter solution allows for
fully generic and platform-independent designs. The VHDL design of our proposed architecture
is completely generic, all parameters being definable upon the instantiation of the core, without
the need of a user package. Special attention has been paid to minimizing the number of RAM
blocks, as they are a scarce resource in FPGA.

Branch Metrics Unit. As it can be seen in Figure 6.4, the straightforward implementation
of the BMU requires a significant number of adders in order to compute every possible branch
metric. For the convolutional code specified by DAB and DRM, 16 branch metrics must be
computed in parallel, which requires 48 adders. The proposed BMU architecture, shown in
Figure 6.10, computes the metrics sequentially using three adders instead. The appropriate
soft-bits are selected through multiplexors controlled by a counter which counts from 0 to
15. As they are computed, the branch metrics are shifted into a shift register of length 16 to

6.3 Low-Area State-Serial Architecture 155

accommodate all metrics, from where they are selected by ACSU through the output MUX. The
SHREG/MUX combination is ideally implemented using the addressable 16-bit shift registers
available in Spartan-3 FPGA’s. These optimizations resulted in 70% reduction of the FPGA
slice count.

Counter

1
6

:1

S
O

F
T

B
IT

S

B
R

A
N

C
H

 M
E

T
R

IC

VALID_IN VALID_OUT

Shift register

Figure 6.10.: Sequential BMU architecture

Add-Compare-Select Unit. The proposed architecture uses synchronous dual-port memory
for metrics storage. In order to save memory, an in-place metric update scheme is employed.
The in-place algorithm requires that for each ACS butterfly, the two read addresses and the
two write addresses be the same. The natural trellis allocation in Figure 6.2 does not meet
this requirement. A modified version with reordered state addresses is shown in Figure 6.11.

One can see that the allocation of the metrics changes from stage to stage, the allocation pattern
repeating itself after K − 1 stages. It is worth observing that the resulting trellis resembles an
FFT graph, so that the insights from the in-place computation of the FFT [12] can be applied.
Table 6.1 shows the butterfly allocation for an eight-state decoder as an example. Metric
addresses can be easily obtained by rotating the state counter with the stage index [78].

Since only one memory bank is used for storing the metrics, the two path metrics for each
ACS operation are read sequentially, the first being stored in a temporary register. Moreover,
because each pair of path metrics is used to compute two new path metrics, extra registers
are necessary to keep both old path metrics unchanged for two clock cycles. In the first cycle

2 2 24 41 1

1 1 12 24 4

0 0 00 00 0

5 5 53 36 6

4 4 41 12 2

3 3 36 65 5

7 7 77 77 7

6 6 65 53 3

Stage n Stage n+1 Stage n+4Stage n+2 Stage n+5Stage n+3 Stage n+6

Figure 6.11.: State transition graph for in-place addressing

156 Chapter 6 Optimized Viterbi Decoder Architectures

Butterfly Stage

b1 b0 0 1 2

Low Addr →0 b1 b0 b0 0 b1 b1 b0 0

High Addr →1 b1 b0 b0 1 b1 b1 b0 1

0 0 (0;4) (0;2) (0;1)

0 1 (1;5) (4;6) (2;3)

1 0 (2;6) (1;3) (4;5)

1 1 (3;7) (5;7) (6;7)

Table 6.1.: Memory addressing for in-place metric computation

the ACS block produces the metric for the even state while in the second the metric for the
odd state. The branch metrics are selected from BMU based on the output produced by the
convolutional encoder for the transitions from the two candidate states, assuming a 0 at the
input (even current state). For odd current states, the branch metrics need only be swapped, as
the encoder outputs are the same (see Figure 6.3). The schematic of the proposed sequential
ACS architecture is shown in Figure 6.12.

The memory read, the temporary registers, ACS, and the write-back form a five-cycle pipeline.
That is why the write address is a delayed version of the read address. In order to save power,
the data path and the memory are disabled when the ACS unit is not active. The schematic
of the control unit is shown in Figure 6.13, where the state and the stage counters can be
seen, together with the barrel shifter for computing the memory address. An optimization we
propose is to implement the stage counter as one-hot, which results in a simplified and faster
shifter. Besides the address, the current state also needs to be delayed since it is needed for
iteratively determining of the state with the best path metrics (not shown). Also part of the
ACS unit, is the circuit (not shown) for detecting the normalization condition when all path
metrics exceed a predefined threshold.

Trace-Back Unit. For every received symbol, a set of 64 decision bits from the ACS unit
are saved in the trace-back memory. This would require a 64-bit wide memory, with a size
equal to the trace-back depth. In this case, two RAM blocks would have to be concatenated,
even for small trace-back depths, which leads to an inefficient implementation for FPGA, where
RAM blocks are maximum 32-bit wide. Our solution consists in splitting the 64-bit decision
vector into shorter segments, e.g. 16-bit. This enables the use a memory with a shorter data
bus, and thus implementable with only one RAM block on FPGA. An additional benefit is the
shortening of the decision-bit shift register in the ACS unit (Figure 6.12). The amount of
splitting is a generic parameter of the design.

The segment index is given directly by the MSBs of the state counter (Figure 6.13). At the
same time, it is used as the LSBs of the trace-back memory write address since the decision-bit
segments are stored at adjacent addresses in memory. The trace-back memory is used as a

6.3 Low-Area State-Serial Architecture 157

WR_EN

WR_ADDRRD_ADDR

RD_DATA WR_DATA

VALID_OUT

D
E

C
IS

IO
N

S

CONTROL
ENC

B
R

A
N

C
H

 M
E

T
R

IC

VALID_IN

RAM

Figure 6.12.: Proposed sequential ACS architecture

ROR

state counter stage counter (one-hot)

STATE
[5:0]

VALID_IN

RD_ADDR
[5:0]

WR_ADDR
[5:0]

!= VALID_OUT

SEGMENT

STATE_D4
[5:0]

Figure 6.13.: Control unit for the sequential ACS

158 Chapter 6 Optimized Viterbi Decoder Architectures

Parameter Description

NPOLYS Number of generator polynomials

CONSTR Constraint length

POLYS Generator polynomials concatenated in a vector

SBW Soft-bit width

BMW Branch-metric width

PMW Path-metric width

DVRF Decision vector reduction factor = 2DV RF

TBSZ Trace-back memory size = 2TBSZ

NDB Number of decoded bits in one TB = 2NDB

Table 6.2.: Generic parameters of the Viterbi decoder design

circular buffer with two running pointers. The write-pointer is incremented after a full set
of decision bits has been stored, whereas the read-pointer is initialized with the value of the
write-pointer at the beginning of a trace-back operation, then counts down through the entire
memory to access past decision bits.

Another important parameter of the trace-back unit is the number of bits decoded in a trace-
back operation, which also gives the interval between two successive trace-backs. The longer
the interval, the more power can be saved, due to reduced memory activity. The problem of
obtaining the decoded bits in reverse order is solved by shifting them in a shift register, then
reading them in parallel. During trace-back, not all addresses are read, but only the needed
segment, which further contributes to reducing power.

6.3.1. Implementation Results

The proposed architecture has been modeled in VHDL at register-transfer level. The resulting
design is completely generic and technology independent, all parameters of the Viterbi decoder
being definable when the core is instantiated. Table 6.2 shows these generic parameters.
The first group define the convolutional code, while the others are implementation-related
parameters.

In order to demonstrate the suitability of the proposed architecture for FPGA implementation,
we have considered the Viterbi decoder for the DAB and DRM standards, which specify a
convolutional code with 4 generator polynomials of constraint 7. As an example we have chosen
the Spartan-3 FPGA family and the XST synthesis tool from Xilinx. The implementation
parameters have been assigned the following realistic values: SBW=3, BMW=5, PMW=8,
DVRF=2, TBSZ=6, and NDB=3. Thus, the branch metrics memory will be 64×8-bit and the
trace-back memory 256 × 16-bit. The results are shown in Table 6.3, where the last column
represents the number of logic elements available in the smallest Spartan-3 device, XC3s50.

6.3 Low-Area State-Serial Architecture 159

BMU ACSU TBU Top Available

Slices 25 91 27 128 768

Slice FF’s 11 131 34 176 1536

LUT’s 40 93 40 164 1536

Block RAM’s 0 1 1 2 4

Max. fclk 161 MHz 153 MHz 183 MHz 153 MHz

Table 6.3.: Synthesis results for Xilinx Spartan-3 FPGA

State-serial State-parallel

BMU ACSU TBU BMU ACSU TBU

Slices 25 91 27 88 1506 3354

Slice FFs 11 131 34 82 659 4204

LUTs 40 93 40 132 2456 1948

Table 6.4.: Comparison between state-serial and state-parallel implementations

Except for the two RAM blocks, only 16% of the slices are utilized, 50% thereof being used by
the ACS unit alone. The figures are as reported by the synthesizer before place & route.

The throughput is limited by the maximum clock frequency and by the constraint length. At
153 MHz and K=7, the throughput is 2.39 Mbps, which exceeds the specifications of the DAB
standard (max. 1728 kbps for data services and max. 384 kbps for audio streams). The lowest
clock frequency that satisfies these requirements is approx. 111 MHz, which is easily achieved
even for slower devices. The DRM specifications are also met since DRM offers lower data rates
than DAB.

In order to show the difference in hardware resources between the state-serial and the state-
parallel approach, we have compared the state-serial decoder with a well designed state-parallel
one for the same parameters, except for DVRF and NDB which are not applicable in this case.
The comparative results in terms of FPGA resources are shown in Table 6.4, where a significant
difference can be observed. Especially inefficient for FPGA is the trace-back unit, since it is
implemented using multiple shift-registers in parallel.

The proposed state-serial Viterbi decoder architecture requires a minimum of hardware re-
sources, targeted at digital radio applications. The architecture is especially suited for FPGA
implementations since both the ACS and the trace-back unit take advantage of the embedded
RAM blocks that have become standard in FPGA devices. Using DAB and DRM as exam-
ples, we have shown that an FPGA implementation can meet the throughput requirements for
modern digital radio standards. However, the proposed architecture is also suitable for other
communication applications with medium-to-low data rates.

160 Chapter 6 Optimized Viterbi Decoder Architectures

By combining the flexibility of DSP’s with the performance of ASIC’s, FPGA’s are becoming
a serious alternative for consumer applications. The architecture proposed here, together with
similar results we obtained for an area-optimal FFT core (Section 7.2), show that a complete
digital radio can be implemented in a single low-cost FPGA. The key strategies are to employ
area-efficient sequential architectures and to exploit the features offered by modern FPGA’s,
such as RAM, multipliers and shift registers.

