Chapter 7.

Simulation and Design of OFDM
Receivers
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7.1. Simulation of OFDM Systems

This section presents a systematic approach to modeling and simulating an OFDM physical
layer (PHY) transceiver using SystemC. On the one hand, it shows the problems associated
with using pure untimed dataflow models, suggesting different solutions for circumventing them
and add run-time control features to modules. On the other hand, it proposes a method for
modeling latency (add timing information) with minimal overhead on the model complexity.
For both the timed and the untimed dataflow models, two approaches to transferring data
between modules are presented: sample-based and symbol-based, which results in four possible
modeling scenarios.

In order to illustrate our ideas, we have chosen a real application, a transceiver for the OFDM-
based IEEE 802.11a wireless LAN standard. However, the insights presented here are also
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Figure 7.1.: Structure of an IEEE 802.11a transmitter

applicable to other standards employing OFDM, either for wireless networking or for broad-
casting. As modeling language we have selected SystemC [67, 68] because it is free, it simulates
relatively fast and allows modules described at different levels of abstraction to coexist, which
makes it ideal for architectural exploration and refinement.

The section begins with a short overview of the IEEE 802.11a standard, with emphasis on those
features which are of special interest for modeling the transceiver chain. We then describe the
modeling of the chain using a sample-based untimed dataflow approach. A special attention is
given to embedding control information in a pure dataflow simulation using control flags that
accompany data tokens, targeted specifically to OFDM systems. A discussion on functional
modeling for maximum reusability is presented next, by separating the functionality of a module
from the communication with other modules.

We then go on to present a flexible method for adding clocks and timing information to the
modules (latencies), with minimal impact on the model complexity. If the modeling style from
the previous section is used, most of the code from the untimed models can be reused. Further-
more, in order to increase the simulation speed, a symbol-based approach (both untimed and
timed) is presented in the next section, which complements the classic sample-based approach.

7.1.1. An Overview of the IEEE 802.11a Standard

The IEEE 802.11a standard [38] defines an OFDM-based wireless LAN that supports raw data
rates between 6 and 54 Mbps in the 5 GHz band. The block structure of the transmitter is
shown in Figure 7.1. Multiple data rates are achieved by employing two puncturing patterns
(of rate 2/3 and 3/4) in addition to the basic convolutional code of rate 1/2, as well as by using
four different modulation schemes (BPSK, QPSK, 16-QAM, 64-QAM). Of the twelve possible
combinations, only eight are defined by the standard.

As with any OFDM system, the data stream is organized in symbols, which are converted to
time domain using IFFT, then appended a cyclic prefix. The adjacent time-domain cyclic-
prefixed symbols are passed through a shaping filter and sent to the up-converter for the 5 GHz
band. In 802.11a, a symbol has 64 samples, while the cyclic prefix is 1/4 of the symbol length.
The sampling period is 50 ns, resulting in a data rate of 16 Msps for the IFFT, which is a
characterizing parameter for an OFDM system.

The payload data to be transmitted (max. 4096 bytes) is received from the upper MAC layer,
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together with the desired data rate and transmission power. Each transmitted packet starts
with two short training symbols (STS), followed by two long training symbols (LTS). The
packet builder block appends a SIGNAL field to the payload, which contains the data rate used
for encoding the payload and the length thereof. The SIGNAL field is always encoded using
the lowest rate, regardless of the selected rate for the payload. Figure 7.2 shows the structure
of the packet.
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Figure 7.2.: IEEE 802.11a packet structure

The receiver will first detect the packet start, perform time and frequency synchronization, and
extract the symbols from the received data stream by using STS and LTS. After converting
the symbols back to frequency domain using FFT, a channel estimation and equalization is
performed to compensate for the channel frequency selectivity. Further processing steps are
inverses of the corresponding operations in the transmitter. The structure of the implemented
receiver is shown in Figure 7.3.

The fact that different data rates have to be supported makes the flow control between mod-
ules an important implementation issue. Using multiple clock domains and inter-module asyn-
chronous FIFQ’s is one of the possible solutions. On the receiver side, the complete SIGNAL
symbol has to be decoded in order to know the data rate with which the following symbols
are encoded. Since the first data-rate-dependent block is the soft demodulator, a large FIFO
will be required at its input to buffer the incoming data until the rate has been decoded. The
size of this FIFO will depend on the latency of the data path between demodulator and packet
extractor.

7.1.2. Untimed Dataflow Modeling

The first step in modeling a system is usually to start with a first order untimed description of
the system, based on the initial specifications. A very general solution is to use Kahn process

channel
estimation

frequency symbol
ey H syl extractor

A A

channel pilot rotation 3 soft 3 § | Viterbi packet
correction extract compensation|[”:| demod |nterleaver puncturer decoder decode g
packet B i e e
detector -

rotation
=

Figure 7.3.: Structure of an IEEE 802.11a receiver



164 CHAPTER 7 SIMULATION AND DESIGN OF OFDM RECEIVERS

networks (KPN) [47], which is an effective method for modeling signal processing algorithms for
communication applications. In this model of computation (MOC), processes execute concur-
rently and communicate through infinite FIFO channels, using atomic data units called tokens.
Processes write to and read tokens from FIFO’s using blocking functions. Moreover, there is
no concept of time. The functionality in each process is separated into three stages: reading a
number of input tokens, processing them, then writing the resulting tokens to the output. The
Ptolemy framework [76] is an example of a modeling environment which supports this MOC
natively.

In SystemC, we can use sc_fifo channels and SC_THREAD processes to model KPN. SystemC
does not support infinite FIFO’s, therefore explicit upper bounds of the FIFO sizes have to
be specified. This particular case of KPN is known as untimed dataflow modeling. If token
generation and consumption are not balanced on average, FIFO’s can become full and/or empty
and the blocking read/write operations can lead to simulation stalls through starvation (lack
of events) [27]. More information about dataflow modeling can be found in [53] and [47].

Untimed dataflow modeling is also used by Synopsys CoCentric System Studio, when using
PRIM models. In fact, an initial implementation of our 802.11a chain has been done using
this environment. Unfortunately, a number of limitations have led us to abandon it in favor
of the free SystemC reference solution [67]. System Studio supports both static and dynamic
dataflow modeling. If the number of tokens that a process will read and write each time is
known at compile time, the model is said to be static. Upon compilation, the tool will analyze
the network and create static execution schedules for processes. Moreover, FIFO sizes can be
computed at compile-time. The simulation will execute much faster since dynamic scheduling
is avoided.

In SystemC, the scheduler is not aware and does not take advantage of the fact that some
modules may employ static dataflow. The processes are independent threads which access
FIFO’s using blocking read and write methods. Synchronization is implicit, threads being
automatically suspended and resumed, depending on the status of the FIFO channels. This
guarantees that no tokens get lost.

As long as a pure dataflow simulation is all that is needed, modeling is straightforward. A
number of tokens are read from the input FIFO, processed, then the resulting tokens written
to the output FIFO. As soon as we want to add some control capabilities, the limitations of
this modeling methodology become evident. In the 802.11a transmitter for instance, at least
the puncturer, the interleaver, and the modulator need to know the data rate with which each
symbol is encoded, in order to select the appropriate mode of operation. In order to determine
the data rate of each symbol, these modules consume first a token from the control channel.
Once they have this information, they know how many samples have to be read from the input
data FIFO for the current symbol, using a look-up table. We will denote the data-rate token
with RATE.

For each module, care must be taken to ensure that the number of control tokens is equal to the
number of symbols, or else the simulation will stall. We have experimented with two solutions
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Figure 7.4.: Distributing controls tokens through a fork module
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Figure 7.5.: Point-to-point forwarding of controls tokens

to this problem. In both approaches, the control tokens are generated by the packet builder
block. Since this is where the symbols are created, it is easy to ensure that a control sample is
produced for each symbol. In the first approach, the control tokens (data-rates) are distributed
to all modules that require to know the data-rate using a fork module, as shown in Figure 7.4.
A parameterizable fork module has been created, which takes the number of replicated output
streams and the token type as template parameters.

In the second approach, the control tokens are passed from one module to the following, in
the same manner as the data tokens. This resembles the synchronous piggy-backed dataflow
(SPBD) model proposed in [69] and has the advantage of maintaining the point-to-point nature
of the chain. Besides data token processing, each module is now responsible of forwarding the
control token to the next module. The disadvantage is that even the most simple modules, e.g.
convolutional encoder, need to be aware of the symbol-oriented nature of the data flow and
keep a table with the symbol sizes for all possible data rates, which adds unwanted complexity
to the modules. The principle is illustrated in Figure 7.5. Besides data rates, other control
tokens are flags like first-symbol (FSYM) and last-symbol (LSYM). FSYM is used to control
the training symbol multiplexer, while LSYM can be used by the modules to know when they
can enter a low-power mode.

We propose therefore to pass control information locally, without the need of a central state
machine. Figure 7.6 shows the symbol sizes for all FIFO channels in the sender, for all possible
data rates. An additional benefit of such a table is that it presents a clear overview on the
inter-module communication requirements requirements in all stages of the design. The peak
and average data rate is an important parameter in selecting an appropriate IP core. Using
the values in the table, the absolute data rates can be determined by a multiplication with the
symbol rate, which is a fixed parameter defined in the standard. For 802.11a, the symbol rate
is 250 KSym/s.

The above solutions tend to complicate the design and are prone to simulation stalls if the num-
ber of control tokens does not match the number of symbols. The models are also complicated
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Figure 7.6.: Symbol sizes for various blocks of the transmitter

due to the fact that each module has to keep track of the symbol sizes for the data it processes.
A better solution is to have control information accompany each data token (sample). This
can be modeled by creating a new structure type like the one shown in Listing 7.1, which
encapsulates the data token type together with an integer and a vector of Boolean flags. Such
structures will be transmitted as tokens between modules. In order for the new data type to
be used as tokens in SystemC, at least the << streaming operator and the sc_trace function
had to be overloaded.

Listing 7.1: Tagged data class

enum flag_t {
s0s = 0,
EOS,
FSYM,
LSYM,
EN,
MAX_BITS

};

template <class T, int BITS = MAX_BITS> class tagged
{
public:

tagged () ;

tagged (T value);

tagged(const tagged<T>& value);

bool operator==(const tagged& rhs) const;
tagged& operator=(const tagged& rhs);

public:
T data;
bitset <BITS> bits;
int tag;
string text;
};

This resembles more closely the way real hardware operates, as the additional control informa-
tion can be thought of as tags to the data samples. The modules will no longer have to keep
track of the symbol size, but instead the symbol boundary samples will have to be marked
accordingly. For this purpose, we added the start-of-symbol (SOS) and end-of-symbol (EOS)
tags, which qualify individual samples. On the other hand, FSYM, LSYM, and RATE qualify
a symbol and will not change throughout the symbol. The modules will now have to parse the
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token stream to identify symbol boundaries.

A problem we encountered here was to devise a way to parse the input stream to identify symbol
boundaries. The most efficient solution was to use a one-token look-ahead in the input stream,
i.e. we need to be able to read the first token available, without extracting it from the stream.
Unfortunately, the existing sc_fifo channels in SystemC do not provide such a feature. That
is why we had to extend the interface of the sc_fifo class with a peek() function, which
supplies the missing feature. At this point we also extended the sc_fifo class to write every
sample to a data dump file, which is extremely useful for debugging purposes. This feature is
only active when the program is compiled with the DEBUG option.

7.1.3. Functionality Embedding and Inter-Module Communication

In order to increase the reusability factor, the approach is to separate the functionality of
a module from the inter-module communication. The natural solution offered by the object
oriented nature of C++ is to encapsulate the functionality of the modules in classes, which can
then be reused among modules that employ different inter-module communication strategies.
The behavior of a class is accessed through member functions, which can be roughly divided
into three categories: 1) data input/output, 2) computation, and 3) (re)configuration.

If properly designed, the same class can be instantiated in the SystemC modules as they evolve
through the communication refinement process. Furthermore, a class can be even reused when
designing a new communication chain for another standard, if enough configuration parameters
are provided. For example, the Viterbi decoder class we designed is completely configurable,
supporting different constraint lengths, polynomials, trace-back window lengths, as well as
different operating modes, such as stream or block mode.

In general, there are three methods for configuring a class: template parameters, constructor
parameters, and configuration functions. Using template parameters, the class is parameterized
upon instantiation at compile-time. Using constructor parameters, the configuration is defined
at run-time. However, once simulation started, it cannot be changed anymore. If full run-
time configuration is desired (reconfiguration), the class should provide a special configuration
function to be called during simulation.

From an inter-module communication point of view, modules belong to different categories:
sample-based with memory (convolutional encoder, filters) or without memory (CORDIC),
block-based (FFT, channel estimation), or mixed (symbol extractor, channel correction, Viterbi
decoder). This is a very important aspect that has to be considered when designing the com-
munication profiles.

The first step towards refinement is to create a timed functional model, or performance model,
obtained by annotating the initial untimed functional model with delays, which can take any
desired value. We have therefore a concept of time, but still no clocks. In our modeling, we
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Figure 7.7.: Three-process clocked model

will skip this step and go directly to the next, which is to consider the system sequential by
adding clocks. In order to ensure the generality of the discussion, each module is provided with
a separate clock. The latency will now be expressed in clock cycles.

In the case of the untimed models, the input read, processing, and output write tasks were
preformed sequentially, which is reasonable as long as there is no concept of time. In a real
circuit, however, these three processes (read, processing, and write) normally execute in
parallel. All modules that have a clock will need to model this parallelism. Our approach is
to use three SystemC processes which communicate through events and share common data
through semaphores, as shown in Figure 7.7.

One semaphore is associated with the input data and one with the output data. When the
read process is reading data, it takes ownership of the input semaphore. In the case of the
64-sample FFT used in the 802.11a standard, the read process will read 64 data samples from
the input data stream and call the set_input function of the FFT class for each sample read.
Once the 64 samples have been read, the read process issues an event to notify the processing
process that new data is available, at the same time releasing the semaphore.

When the processing process is triggered by that event, it will take the ownership of both
semaphores and call the processing function of the class, which executes in zero time from a
simulation point of view. Then, in order to model the latency, it waits for a number of clock
cycles, given as a parameter. Once completed, the process releases the semaphores and issues
an event to notify both the read and the write process. When notified, the write process will
claim the output semaphore and write the FFT results to the output, releasing the semaphore
after completion.

Modeling the latency accurately is crucial, since the latency of the receiver/transmitter pair is
an important performance metric of a wireless LAN, affecting the response time to a received
packet. The main contributors to the latency in an OFDM receiver are the FFT and the Viterbi
decoder, which are also the most computationally intensive and take up most of the silicon area.
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7.1.4. Symbol-Based Token Transfers

When modeling a communication chain, there are usually two directions of interest: com-
munication refinement or functional simulation only. Consequently, there are two different
strategies to pursue. For refinement purposes, we need to model the control information as
accurately as possible, while for functional simulation only, the simulation speed is the param-
eter of concern. As we already dealt with optimizing the chain for communication refinement
in Subsection 7.1.2; we will now show how the simulation efficiency can be increased.

In SystemC, transferring data through a channel, such as sc_fifo, involves two assignment
operators (one at the producer for writing, one at the consumer for reading) and a copy con-
structor (inside the channel). Moreover, if the FIFO is full when a blocking write occurs, the
producer task the write function has been called from will be suspended (context switch) until
data is read from the FIFO by the consumer. The same happens if the FIFO is empty on a
blocking read. Suspending and resuming a task incurs an execution time penalty, which can
affect the simulation speed significantly if context switches occur too often.

In order to increase the simulation speed, the number of tokens to be transferred has to be
minimized. Since data in OFDM systems is organized in symbols, it is therefore more efficient
to transfer whole OFDM symbols as tokens instead of transferring individual samples. Thus,
the number of tokens in the system is decreased significantly. The more samples in an OFDM
symbol, the less symbols are needed for a given data rate. The simulation speed-up can be
significant for systems featuring large symbols, such as DVB-T (2048 or 8192 samples/symbol)
[20].

As with the sample-based approach, each token is a tagged data structure. In this case, the data
member of the structure is a vector of dynamically allocated data samples. However, unlike the
sample-based approach, where each data sample is accompanied by its own tag vector, only one
tag vector is now required for the whole symbol. This reduction in data size further contributes
to reducing the simulation time. The sample-level SOS and EOS tags are not needed anymore,
only FSYM, LSYM, and RATE need to be kept.

A further solution for accelerating the simulation is to transfer pointers to the symbol data
structure instead of transferring the structure itself. Thus, a symbol is dynamically allocated
and its elements populated by the producer process, then the pointer to the symbol is sent
through the FIFO channel. The consumer process receives the pointer, reads the data and
ultimately frees the allocated memory to prevent leaks. This technique poses some serious
risks. For instance, if we have a fork module which duplicates the data flow, both consumers
connected at its output would attempt to deallocate the same memory region, which results in
crashing the simulation. If such a technique is to be employed, the designer has to avoid using
fork modules, i.e. communication must be point-to-point.

An additional benefit of the symbol-based approach is that the modules no longer need to parse
the incoming data stream to identify the symbol boundaries. Their design and maintenance
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is thus simplified. Timing information can still be added, as presented in the previous sec-
tion. One disadvantage is, however, that the resulting chain no longer lends itself to further
communication refinement. Depending on the particular application, the system designer can
choose between the sample-based approach, which is more suitable for refinement, and the
symbol-based approach, which simulates faster.

7.2. Design of an FFT Block for OFDM Systems

The FFT is the core of any OFDM system, accounting together with the Viterbi FEC decoder
for the highest percentage of area and power consumption in an OFDM receiver. In this section
we examine four OFDM standards with regard to their FFT computational requirements and
investigate various FF'T architectures with emphasis on their complexity and throughput. For a
specified standard, the goal is to select the most area-efficient architecture for a target technol-
ogy. We focus here on FPGA implementations, in light of the new features offered by modern
devices, such as embedded RAM blocks, multipliers, and shift registers. Two architectures have
been selected and implemented, a pipelined and a sequential one, each being optimized for the
smallest area in their class.

We begin with an FFT overview and a comparative analysis of various architectures regarding
their hardware complexity and throughput. The next point considers four OFDM standards
and shows how the specifications affect the FFT requirements, providing also concrete im-
plementation figures. We then go on to discuss the new advances in FPGA architectures and
synthesis and how they facilitate the implementation of FF'T cores. Finally, the implementation
of the selected architectures is addressed, showing through concrete figures that all considered
standards can be implemented in FPGA.

7.2.1. FFT Architectures Review

The discrete Fourier transform X (k) of an N-point sequence x(n) is by definition:

N—

H

z(n k=01,...,N—1 (7.1)
n=0

where W¥ = e 72mk/N are the complex roots of —j, equally spaced on the unit circle, also known
as ‘twiddle factors’.

FFT is an algorithm for computing the discrete Fourier transform, which reduces the compu-
tational complexity from O(N?) to O(N log N) by successive decompositions. Each decom-
position step produces two (radix-2) or four (radix-4) smaller transforms. Depending on the
decomposition direction, the FFT algorithm is said to be with decimation-in-time (DIT) or
decimation-in-frequency (DIF). We use only the DIF variant for our analysis, both for radix-2
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and radix-4. The graph of a radix-2 DIF 16-point FFT is shown in Figure 7.8. At the output,
the values are arranged in ‘bit reverse’ order.
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Figure 7.8.: Radix-2 DIF graph for the 16-point FFT

The basic operation in FFT is known as a butterfly. For radix-2 and radix-4 type, the main
properties are summarized in Table 7.1. The number of radix-4 butterflies is 1/4 of the number
of radix-2 butterflies for the same FFT size. However, radix-4 butterflies contain three times
more multiplications and five times more additions, and the FFT size must be a power-of-4 for
a pure radix-4 decomposition. If this is not the case, radix-4 and radix-2 stages can be mixed.

Radix-2 butterfly Radix-4 butterfly
# Butterflies/stage N/2 N/4
# Stages logy N logy N
# Butterflies (N/2)logy N (N/4)log, N
. 2 2-input additions 4 4-input additions
Operations (complex)
1 multiplication 3 multiplications
6 add 30 add
Building blocks adcers adcers
4 multipliers 12 multipliers

Table 7.1.: Properties of radix-2 and radix-4 FFT butterflies

Various FF'T architectures that provide different trade-offs between throughput and hardware
complexity have been proposed in the literature. Depending on the degree of parallelism, they
can be roughly divided into three main classes: systolic, pipelined, and sequential. Their com-
plexity and timing properties are shown in Table 7.2, using the O(-) notation. O(1) signifies
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constant order, i.e. independent of N. Systolic architectures offer the highest throughput by
exploiting the highly parallel structure of the FFT, but require considerable hardware resources.
Sequential architectures have the smallest area but the lowest throughput, since a fixed number
of butterflies is used. Pipelined architectures offer higher throughput at the cost of increased
hardware complexity.

Complexity Timing
Architecture Storage Processing Throughput Latency
Systolic 0 O(NlogN) O(N) O(log N)
Pipelined O(N) O(log N) 0(1) O(N)
Sequential O(N) o(1) O(1/log N) O(Nlog N)

Table 7.2.: Properties of FFT architecture families

Pipelined FFT architectures fall into two main classes: delay commutator and delay feedback.
The delay commutator solutions are usually multi-path and achieve a higher throughput, 2x
for radix-2 and 4x for radix-4, as they process multiple data streams in parallel. On the other
hand, delay feedback architectures are single-path (SDF), three variants thereof being shown
in Figure 7.9: radix-2 (R2SDF), radix-4 (R4SDF), and radix-2? (R2?SDF).

BF4 BF4 BF4 BF4

BF2

Figure 7.9.: Pipelined SDF FFT architectures (data-path only)

All these architectures use a single clock and offer the same throughput at a given operating
frequency. Their hardware requirements are summarized in Table 7.3. The R22SDF archi-
tecture, proposed by He [29], combines the reduced number of multipliers of the radix-4 with
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the simplified butterfly structure of the radix-2 solution. All SDF architectures have exactly
the same memory requirements, although the number of delay lines is 50% larger for radix-4.
These considerations lead us to select the R22SDF architecture for implementation as optimal
in its class. FPGA implementation results are presented in Subsection 7.2.4.

# Adders Delay storage
Architecture # Multipliers In cmult. In butt. # Blocks Samples
R2SDF 4(logy N — 2) 2(logy N — 2) 4logy N logo N — 1 N -1
R4SDF 4(logy N — 1) 2(logy N — 1) 24logy N log, N —1 N -1
R22SDF 4(logy N — 1) 2(log, N — 1) 4logy N logo, N — 1 N-1

Table 7.3.: Hardware requirements of various SDF FFT architectures

Unlike pipelined architectures, sequential architectures reuse one physical butterfly to perform
all the operations in the FFT graph. They require a minimum of hardware resources, at the
cost of a decreased throughput. The amount of storage required is the same as for the pipelined
version (N complex samples). However, instead of multiple delay lines of sizes in geometrical
progression, they require only a memory block of size N. This memory block can be partitioned
into one, two, or four banks, depending on the architecture employed.

For radix-2 butterflies, the memory is divided into two banks, which are actually two distinct
memories of size N/2. Every clock cycle, two samples are read and other two samples are
written, one from/to each bank. Memory read, butterfly computation, and memory write form
a 3-cycle pipeline. In order to minimize the memory size, butterfly outputs are written to the
same addresses from which the inputs have been read. The computation is said to be in-place.
If two memory banks are used, the two operands must be located in distinct banks so that they
can be read at the same time. If radix-4 butterflies are used, four memory banks are needed.

Butterfly scheduling and memory allocation have made the object of extensive research in the
past. Cohen [12] and Johnson [45] were the first to propose efficient hardware implementations
for radix-2 and radix-4 respectively, an arguably improved memory access scheme being also
proposed by Ma [58]. All solutions rely on the fact that the addresses of the butterfly operands
differ in parity, as shown by Pease [73].

In some situations where the number of available memory blocks is limited, e.g. FPGA, it
might be convenient to use a single memory block and read the butterfly operands sequentially.
In this case, butterfly utilization decreases to 50% for radix-2 and to 25% for radix-4, with
processing time increasing accordingly. This solution has been selected for our case study since
it is the most efficient in terms of hardware resources. Table 7.4 shows the execution times
of various sequential architectures. It can be seen that the radix-4 butterfly with one RAM
block is equivalent with the radix-2 butterfly with two RAM blocks, which allows for a trade-off
between the number of RAM blocks and the number of multipliers.
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RAM blocks
1 2 4
Radix-2 Nlogy, N (N/2)logy N —

Radix-4 (N/2)logy N (N/4)logy N (N/8)logy N

Table 7.4.: Processing time for sequential FF'T architectures

OFDM standard fs Ny Ng Comments

IEEE 802.11a 20 MHz 64 16

DVB-T 64/7 MHz 8192 256 8K mode, 1/32 prefix
DAB 2.048 MHz 2048 504 Mode I

DRM 24 KHz 512 128 Mode B

Table 7.5.: FFT requirements for various OFDM standards

7.2.2. FFT in OFDM Applications

FFT is an essential component of any OFDM receiver, being used for extracting the orthogonal
subcarriers from the time-domain signal. Together with the Viterbi decoder, it accounts for the
highest area and power consumption in an OFDM receiver, as they are very computationally
intensive. In this section, we investigate the relationship between the OFDM parameters and
the FFT requirements. As an example, we have chosen four mainstream OFDM standards,
one for wireless LAN (IEEE 802.11a), and three for broadcasting (DVB-T, DAB, and DRM).
The parameters that affect the FFT requirements are listed in Table 7.5. Ny and Ng are the
number of samples in the useful part of the OFDM symbol and the guard interval respectively,
while f, represents the sampling frequency of the baseband OFDM signal.

The raw data rate depends directly on the sampling frequency and the relative length of the
guard interval. The absolute length thereof is chosen to be slightly longer than the channel
impulse response in the environment for which the system is designed. The useful symbol size
is then chosen as the lowest power-of-two that ensures an acceptable efficiency. The longer the
symbol, the higher the efficiency, but at the cost of increased receiver complexity and decreased
robustness against Doppler effects. Ultimately, the symbol size is directly proportional to the
channel delay spread and the desired data rate.

Where a standard defines more than one mode, only the most demanding for the FFT core
has been considered, which is the mode with the longest useful symbol and the shortest guard
interval. For instance, DVB-T has a 2K and a 8K symbol mode, each with a choice of four
different cyclic prefixes. The worst case occurs for 8K symbols and a 1/32 cyclic prefix. For
DAB, four modes are specified, with symbol sizes of 2048, 512, 256, and 1024 respectively.



7.2 DESIGN OF AN FFT BLock FOR OFDM SYSTEMS 175

DRM specifies four modes: A, B, C, and D, all with very low data rates. The symbol size is
a power-of-two only for Mode B. For the other modes, the FFT algorithm cannot be applied
directly. Instead, a prime factor algorithm can be used.

In the following analysis, we intend to determine which architecture is best suited for the im-
plementation of a particular OFDM standard in FPGA. We consider only the two architectures
selected in Subsection 7.2.1, i.e. the pipelined R22SDF and the single-bank sequential radix-
2. While the pipelined architecture is able to process a continuous data stream, the sequential
one processes data symbol wise. The processing time of the sequential radix-2 architecture is
actually N (logy, N +2) if one RAM bank is used, and N/2(log, N +2) for two banks. The extra
cycles are required by the write in and read out phases.

Since the operation of the sequential architecture is not continuous, a symbol buffer is needed at
the input. Also, the clock frequency of the FFT, f., will have to be higher than the sampling
rate of the incoming OFDM stream f so that an FFT transform can be completed within one
symbol duration (T + T). Having only one clock domain, f.; will have to be a multiple of
fs. Our goal is to determine the lowest clock frequency that satisfies these conditions. The first
condition can be written as:

1 1
clk s

Thus, the integer fu/fs ratio will have the following expression, where [-] denotes rounding
to the next higher integer:

Jeik

The resulting clock frequencies are shown in Table 7.6. These results show that all OFDM
standards considered can be implemented using sequential FTT architectures. If higher data
rates are needed, pipeline architectures should be used instead, as they operate at the sampling
rate of the OFDM signal. Unlike sequential architectures, whose throughput decreases with
the FFT size (O(1/log N)), pipeline architectures are characterized by a constant throughput
given by the operating frequency alone. Hardware complexity, however, increases O(log N)
with FFT size. An important aspect in the design of such architectures is the pipelining, which
can be more or less aggressive depending on the target frequency.

Due to the guard interval between symbols, continuous operation is not possible. Therefore, the
pipeline cannot be controlled by a simple counter, as it is the case with most implementations.
Once a symbol started, it has to be processed through the pipeline regardless of the guard
interval. Our solution consists in using a distributed control scheme that employs a separate
counter for each pipeline stage. Because of the local 2*-cycle delays, each stage k is enabled for
at least NV + 2% cycles in a row to allow for the initial buffering.
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feik
OFDM standard fs FFT size radix-2 single-bank radix-2 dual-bank
IEEE 802.11a 20 MHz 64 140 MHz 80 MHz
DVB-T 64/7 MHz 8192 ~137 MHz ~73 MHz
DAB 2.048 MHz 2048 ~22.5 MHz ~12.3 MHz
DRM 24 KHz 512 216 KHz 120 KHz

Table 7.6.: Minimum clock frequencies for sequential FFT architectures

7.2.3. Advances in FPGA and Synthesis Technology

Modern FPGA’s offer enhanced functionality that can benefit DSP applications. On the one
hand, the elementary configurable logic blocks (CLB) have been extended and include now
carry and multiplexer logic, as well as shift registers. On the other hand, dedicated hardware
blocks have been provided on chip, such as multipliers, RAM blocks, and clock managers. As
an example, we have chosen Xilinx’s Spartan-3 and Altera’s Cyclonell low-cost FPGA’s.

Both FPGA families feature dedicated 18x18 multipliers, that can be used in DSP operations
like filtering or FFT. Depending on the device, Spartan-3 has between 4 and 104, while Cy-
clonell between 26 and 250. Besides, each multiplier in Cyclonell can be also used as two
independent 9x9 multipliers. Both families provide registers at the output of the multiplier
blocks (also at the input for Cyclonell) that can be taken advantage of for pipelining. For
example, our complex multiplier VHDL module has ‘generic’ parameters that controls register
insertion at the inputs, after multipliers, or at the outputs.

An essential resource is also the on-chip RAM. Spartan-3 features between 4 and 96 RAM
blocks of 16Kbit each, while Cyclonell between 26 and 250 blocks of 4Kbit each, depending on
the device. The actual sizes are slightly larger and accommodate extra parity bits. However,
their use is subject to many restrictions and the inference from HDL is not supported. Both
RAM blocks are true dual-port (two reads and two writes) and support variable aspect ratios,
with data widths between 1 and 32. Their operation is fully synchronous, with independent
clocks for each port.

Another interesting feature of Spartan-3 FPGAs is that the two LUTSs in a slice can be config-
ured as 16-bit shift registers. Depending on the device, between 1536 and 66560 are available.
These shift registers are ideally suited for implementing the delay lines in pipelined FFT ar-
chitectures. Alternatively, larger delay blocks can be implemented using RAM in conjunction
with an adder and a register. Our VHDL delay line design is completely generic with regard
to its depth and width, having an additional boolean parameter that selects between a register
and a RAM-based implementation.
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These dedicated FPGA resources can be readily used in VHDL, either by hand-instantiating
vendor-specific primitives or by direct inference from VHDL constructs. Hand-instantiation
has the advantage that all the features in a certain block can be used, but the resulting VHDL
code is vendor dependent and not parameterizable, which seriously restrict its reusability. A
much better approach is to let the synthesis tool infer these blocks automatically. Thus, the
design remains fully generic and platform independent.

Modern synthesis tools are able to infer RAM, ROM, shift registers, and multipliers automati-
cally and use the dedicated FPGA resources. Depending on the size and the aspect ratio of a
VHDL memory block, the optimal number of RAM blocks will be inferred and automatically
connected in the appropriate configuration. Also, if the operands of a multiplication exceed 18
bit, 4 multipliers will be used instead of one. If the design is completely generic, the designer
can choose the best parameters by taking the architectural features into account. Special at-
tention must be paid to minimizing the number of RAM blocks and multipliers, as they are a
scarce resource.

Besides the aforementioned inference capabilities, modern synthesis tools support an increasing
number of VHDL features and constructs that improve the reusability of the designs consider-
ably. Among them are the support for variable slices, recursive instantiation, or floating point
‘generics’ and intermediate results in static functions. One example where intermediate floating
point values are needed is the generation of a fully parameterizable sine table, among whose
applications is the storing of the FFT twiddle factors. As of this writing, only XST from Xilinx
supports this feature and is therefore the only tool able to synthesize a fully generic FFT design.

7.2.4. Implementation Details

As mentioned in Subsection 7.2.1, we have selected the R22SDF pipelined and the single-
bank sequential architectures for reference implementation. The designs have been described
in VHDL, and are completely parameterizable through ‘generics’, such as FFT size and the
input/internal /output word-lengths. Both architectures employ the same twiddle-factor gen-
eration scheme, using a ROM with the sin/cos values for the first quadrant, then exploiting

the symmetry to generate the values for the other quadrants. Depending on their size, the
twiddle-factor ROMs can be implemented with LUT or with block RAM.

Synthesis has been performed using Xilinx’s XST synthesis tool. After various tests with data-
path widths between 8 and 16 bits, we have seen that the resulting clock frequency only varies
within 10%. That is why only the results for a 12-bit data-path are given in Table 7.7. All
figures are shown as reported by the synthesis tool (before physical implementation), using a
fast-grade Spartan-3 part.

The pipelined architecture allows for different pipelining solutions. The default strategy is to
add a pipeline register every other stage, after each butterfly preceded by a j multiplication.
If higher clock frequencies are needed, more aggressive pipelining can be used. However, the
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Pipelined FFT Sequential FFT
Results 64 256 1024 4096 64 256 1024 4096
# Slices 631 1024 1854 4444 105 111 132 143
# Slice FF 359 491 632 789 119 125 131 135
# Block RAM 1 2 3 5 2 2 3 8
# Block MULT 8 12 16 20 4 4 4 4
feik 65 ...133 MHz 200 MHz

Table 7.7.: Synthesis results for Spartan-3 FPGA

maximum achievable value will be limited by the embedded block multiplier and by the FPGA
routing. For large FFT sizes, the shift registers in the feedback delays will use an increasingly
percentage of the slices. If needed, slices can be saved by implementing the delays with RAM,
starting from a threshold stage index. In our design, this threshold is given as a generic
parameter. For Spartan-3 FPGAs, the limiting factor for large FFTs is the number of available
block multipliers.

The proposed simplified sequential architecture is shown in Figure 7.10, while Figure 7.11
shows the controller. The synthesis results reveal a maximum clock frequency of about 200 Mhz,
due to pipelining and the absence of long routing delays. The number of slices grows with log N
(due to the controller logic), while the memory size grows linearly with N. For large FFT sizes,
the limiting factor becomes the number of available RAM blocks. This architecture exhibits
an excellent performance/area ratio for FPGAs, being able to meet the specifications of the
most demanding OFDM standards. For instance, an FF'T for the 8K mode of DVB-T can be
implemented in a low-cost XC35400 FPGA. All 16 RAM blocks are used, while 12 out of 16
block multipliers and 94% of the slices remain available.
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Figure 7.10.: Single-bank sequential FFT architecture
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Figure 7.11.: Simplified control logic for the sequential FFT architecture
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