
Chapter 8.

Conclusions

Contents
8.1. Summary of the Results . 181

8.2. Future Work . 183

8.1. Summary of the Results

Considering the increasing trend toward the hardware simulation of complex communication
systems on prototyping platforms, one of the goals of this thesis was to develop a hardware-
efficient wireless channel simulator with Doppler fading. The proposed architecture is very
scalable and requires very few resources on FPGA. Moreover, it has also been implemented
very efficiently in software and used for simulations throughout this thesis.

For modeling the channel we have used the WSSUS (wide-sense stationary with uncorrelated
scattering) assumption, the channel being modeled as a tapped delay line with time-varying
(fading) coefficients. The latter are narrow-band complex Gaussian processes and were imple-
mented using the white Gaussian noise filtering method. Our selected approach for Gaussian
noise generation relies on the central limit theorem, whereby a normally distributed variable can
be obtained by summing up a large number of independent uniform variables. The proposed
architecture sums a power-of-two number of uniform binary variables generated using LFSR’s
(linear feedback shift registers). An essential advantage is the flexibility of trading throughput
for silicon area, as the number of random bits per clock cycle and the number of clock cycles
per generated sample are configurable or parameterizable.

As the typical Doppler spreads are very small relative to the sampling rate, the resulting discrete
bandwidth of the fading processes is extremely small, in the order of 1/1000. This fact alone
renders a spectrum shaping by mere filtering unfeasible. Instead, a combination of filtering
and interpolation is preferred. Various Doppler spreads can be generated by using a fixed low-
pass filter followed by a polyphase interpolator with variable and typically large interpolation
factors. Existing interpolation solutions for large factors use a multi-stage approach with fixed

181

182 Chapter 8 Conclusions

interpolation factors. In our proposed solution, however, interpolation is performed in a single
stage and the interpolation factor is configurable and not restricted to integers alone.

Thus, the tap generator is a multi-rate system. The output is generated at the sampling rate,
which may or may not be the clock frequency. The rate at which the noise generator and the
filter operate is much lower, depending on the actual Doppler rate, its actual value being the
sampling rate divided by the interpolation factor. It is therefore natural to prefer a sequential
architecture for the generator and the filter, which results in a very low-area realization without
sacrificing performance.

In the field of channel estimation, we started with an overview of the main solutions proposed
in the literature. Most of them are either unrealistically complex or do not offer sufficient
performance. In this respect, the present thesis has two main contributions. On the one
hand we showed how the performance of the channel estimator, represented by its gain, affects
the overall receiver performance, expressed as the bit error rate. The analysis, performed
experimentally by simulating a DVB-T receiver with a multi-path channel model, shows that
an estimation gain of 6 dB is sufficient. Further increases of the gain, which can always be
achieved with increased hardware complexity, are no longer accompanied by a corresponding
increase in performance. The perfect estimator should achieve a gain of at least 6 dB over
various operating conditions, with the lowest possible computational complexity.

On the other hand, we proposed a generic channel estimation architecture consisting of two
separable polyphase filters. Their size and coefficients values depend on the operating conditions
and the required gain. In this work we also present the design of polyphase interpolation and
Wiener filters and a thorough analysis of their performance. For complexity reasons, the filter
along the time axis has to be kept as short as possible. I many practical scenarios, a 2-
tap linear interpolation filter will suffice. The entire gain will be achieved by the filter along
the frequency axis, which is a Wiener filter. For optimum performance at various operating
conditions (channel statistics) the coefficients should be selected adaptively from a precomputed
set.

Further on, we dealt with with power and area optimizations in the implementation of the
Viterbi algorithm for decoding convolutional codes. After a brief background on the Viterbi
algorithm, we introduced a high-throughput state-parallel decoder architecture with adjustable
trace-back length. The trace-back block is implemented as a pipeline whose length can be
changed during operation by switching off unused stages, thus saving power dynamically. We
also introduced an algorithm for selecting the minimum trace-back length which ensures a
desired performance. Post-synthesis power estimation for standard cell libraries demonstrated
power savings of up to 62%.

The other Viterbi decoder approach focused on minimizing the area, with emphasis on FPGA
implementation. We proposed a lower-area state-serial architecture, for which we optimized
all three building blocks of the decoder: the branch-metrics unit, the add-compare-select unit,
and the trace-back unit. By exploiting architectural features of new FPGA’s, particularly block
RAM’s and shift registers, we managed to develop a very area-efficient architecture. The design

8.2 Future Work 183

is completely generic has been described in VHDL and synthesized using the Xilinx Spartan-3
FPGA family, using the convolutional code employed in the DAB and DRM standards. At a
target clock frequency of around 150 MHz, the throughput exceeds the requirements of both
standards. The whole design occupies less than 1/5 of the smallest FPGA device in the family.
We argue that this is the most compact Viterbi decoder presented so far.

The next chapter dealt with the simulation and design of OFDM receivers. For simulation
we employed untimed dataflow modeling in SystemC, with control tags accompanying data
tokens. As a test case we considered a receiver for the IEEE 802.11a OFDM-based wireless
LAN standard. Both individual samples and entire OFDM symbols were used as tokens, each
solution having its advantages and disadvantages. The purpose of the above modeling is only
algorithmic and architectural exploration. No high-level synthesis was envisaged.

On the design side, we considered the Fast Fourier Transform, which is the heart of any
OFDM system. Various architectures were compared with respect to their area requirements
and suitability for various OFDM standards. We showed that sequential architectures offer
sufficient performance for implementing most OFDM broadcasting standards, even on FPGA.
On the other hand, pipelined architectures offer a higher throughput, but at the cost of in-
creased hardware resources. Of either family we implemented one architecture: a single-RAM
sequential architecture and a R22SDF pipelined one. The designs have all parameters generic,
e.g. data width and block size, and rely on VHDL features that promote reusability, such
as static functions for computing the ROM twiddle factors. Moreover, we took advantage of
the embedded RAM’s and multipliers in the modern FPGA’s. Implementation results were
provided for the Xilinx Spartan-3 FPGA family.

8.2. Future Work

In the field of wireless channel simulators for hardware prototyping platforms, no significant
improvements can be imagined for the solution proposed in this thesis, except for some opti-
mizations. For instance, the design time of the spectrum-shaping filter cascade could be reduced
by improving the filter design algorithm. The current algorithm becomes very slow when the
spectrum is discretized into more than 512 points. A further point worth investigating is the
optimal sizing of various parameters of the fading generators, depending on the desired simu-
lation precision. Since the proposed design is completely generic, it can be used without any
change for various parameter values.

For the proposed channel estimator architecture, a very promising direction for further research
is the estimation of the Doppler and delay spreads. Once these estimates are known, the
optimal sets of coefficients can be selected from a precomputed look-up table. Thus, the channel
estimator gain is maximized by matching the estimator to the actual channel statistics, which
is clearly superior to using a fixed set of coefficients. The challenge consists in performing the
estimation in both directions (time and frequency) and selecting the best update rate for the

184 Chapter 8 Conclusions

coefficients.

Likewise, the principle of estimation for dynamic configuration must also be applied in the
case of the proposed Viterbi decoder architecture with variable decoding window length. In
this case, the estimate is the bit error rate, the difference from the desired rate being used for
adjusting the decoding window to the minimum length which still ensures an acceptable BER.
The challenge is how to estimate the BER and how often to adjust the trace-back length. The
solution of dynamically adjusting the decoding window has been proposed for a high-throughput
state-parallel architecture, but it can be applied to the lower-area state-serial architecture as
well.

Another research direction stems from the necessity of using a behavioral bit-true model for
both system performance simulation and functional verification of the final HDL design. Two
aspects are essential here. On the one hand, we need a standard interface for various processing
blocks in order to be able to use a black box approach. The behavioral reference model, writ-
ten in SystemC, should deal only with the actual data being transferred, without implementing
any timing and protocol details. On the other hand, a generic mechanism is needed for passing
parameters to the reference model and read status information from it. Access to parameters
should be performed through names instead of actual addresses. A possible solution for de-
veloping a reusable framework is to use the transaction-level modeling (TLM 2.0) guidelines
proposed by the Open SystemC Initiative industry group.

Appendix A.

LFSR Generator Polynomials

Table A.1 shows LFSR XOR taps that generate a maximum-length sequence, for LFSR sizes
N between 2 and 168, using a Fibonacci configuration. The N and 0 taps have not been
shown, since they are always present and require no XOR gates. Also note that the number
of taps is always odd. The generator polynomials have the following form: for e.g. N = 16,
P (x) = x16 + x15 + x13 + x4 + 1.

Table A.1.: LFSR XOR taps for maximum sequence lengths

Size Taps Size Taps Size Taps Size Taps

2 1 3 2 4 3 5 3

6 5 7 6 8 6, 5, 4 9 5

10 7 11 9 12 6, 4, 1 13 4, 3, 1

14 5, 3, 1 15 14 16 15, 13, 4 17 14

18 11 19 6, 2, 1 20 17 21 19

22 21 23 18 24 23, 22, 17 25 22

26 6, 2, 1 27 5, 2, 1 28 25 29 27

30 6, 4, 1 31 28 32 22, 2, 1 33 20

34 27, 2, 1 35 33 36 25 37 5, 4, 3, 2, 1

38 6, 5, 1 39 35 40 38, 21, 19 41 38

42 41, 20, 19 43 42, 38, 37 44 43, 18, 17 45 44, 42, 41

46 45, 26, 25 47 42 48 47, 21, 20 49 40

50 49, 24, 23 51 53, 36, 35 52 49 53 52, 38, 37

54 53, 18, 17 55 31 56 55, 35, 34 57 50

58 39 59 58, 38, 37 60 59 61 60, 46, 45

62 61, 6, 5 63 62 64 63, 61, 60 65 47

66 65, 57, 56 67 66, 58, 57 68 59 69 67, 42, 40

70 69, 55, 54 71 65 72 66, 25, 19 73 48

74 73, 59, 58 75 74, 65, 64 76 75, 41, 40 77 76, 47, 46

Continued on next page

185

186 Appendix A LFSR Generator Polynomials

Size Taps Size Taps Size Taps Size Taps

78 77, 59, 58 79 70 80 79, 43, 42 81 77

82 79, 47, 44 83 82, 38, 37 84 71 85 84, 58, 57

86 85, 74, 73 87 74 88 87, 17, 16 89 51

90 89, 72, 71 91 90, 8, 7 92 91, 80, 79 93 91

94 73 95 84 96 94, 49, 47 97 91

98 87 99 97, 54, 52 100 63 101 100, 95, 94

102 101, 36, 35 103 94 104 103, 94, 93 105 89

106 91 107 105, 44, 42 108 77 109 108, 103, 102

110 109, 98, 97 111 101 112 110, 69, 67 113 104

114 113, 33, 32 115 114, 101, 100 116 115, 46, 45 117 115, 99, 97

118 85 119 111 120 113, 9, 2 121 103

122 121, 63, 62 123 121 124 87 125 124, 18, 17

126 125, 90, 89 127 126 128 126, 101, 99 129 124

130 127 131 130, 84, 83 132 103 133 132, 82, 81

134 77 135 124 136 135, 11, 10 137 116

138 137, 131, 130 139 136, 134, 131 140 111 141 140, 110, 109

142 121 143 142, 123, 122 144 143, 75, 74 145 93

146 145, 87, 86 147 146, 110, 109 148 121 149 148, 40, 39

150 97 151 148 152 151, 87, 86 153 152

154 152, 27, 25 155 154, 124, 123 156 155, 41, 40 157 156, 131, 130

158 157, 132, 131 159 128 160 159, 142, 141 161 143

162 161, 75, 74 163 162, 104, 103 164 163, 151, 150 165 164, 135, 134

166 165, 128, 127 167 161 168 166, 153, 151

Appendix B.

Doppler Shaping Filter Coefficients

Table B.1 lists the coefficients of the second-order sections (SOS) for the Doppler spectrum
shaping filters designed in Chapter 4.

187

188 Appendix B Doppler Shaping Filter Coefficients

Jakes Doppler filter with fD = 0.25

SOS
stage

numerator coefficients denominator coefficients

b1 b2 a1 a2

1 −1.35413771459409600 0.99841658177586590 −1.33857691521792140 0.75947473474759186

2 1.26747105260715510 0.78930450430435106 −1.39863709399956340 0.95531470097521487

3 −1.19866280663418420 0.99543248662376516 −1.40922791079687440 0.98532355397444626

4 −1.40515195731594190 0.99969218430916440 −1.16419423413520210 0.35943110404353640

5 −1.39133075718634310 0.99982725668539552 −1.41494205593041200 0.99942021194681541

6 −0.43676993048605334 0.80739524558126341 −1.37815037370731660 0.88972270416275967

7 −1.03573956156185280 0.95640749452201779 −1.26341848363859710 0.55436619990680991

Multiplicative constant K for normalized power: 0.00483235231292577

Flat Doppler filter with fD = 0.25

SOS
stage

numerator coefficients denominator coefficients

b1 b2 a1 a2

1 −0.44457315808425180 0.91931225902709734 −1.16343308439212060 0.54647747776787436

2 −0.77446078634358861 0.98981368816063675 −1.35900986133933130 0.81085827290596257

3 −1.29047650959471660 0.99937410279524796 −1.40217900879071420 0.92768253583182181

4 −1.39310108524647510 0.99804262273733535 −0.98336636868427774 0.25196904166531714

5 1.45327883765238750 0.98785427545955384 −1.41698479882818010 0.97717524280876300

6 −1.28573046642038900 0.99400928613098838 −1.42328488912234350 0.99849382257743036

7 −1.41338687347567740 0.99983684800114370 −1.08072148362884970 0.45127169621342850

Multiplicative constant K for normalized power: 0.00530785604999349

Gaussian Doppler filter with σD = 0.25

SOS
stage

numerator coefficients denominator coefficients

b1 b2 a1 a2

1 1.65217016762262100 0.68633648261507685 −0.24847595973217060 0.06329494952095784

2 0.92873120055548264 0.29183328855866075 −0.41240362650379853 0.04470150937539093

Multiplicative constant K for normalized power: 0.14764710448880353

Table B.1.: Biquad coefficients for the designed Doppler filters

Appendix C.

Polyphase Filters Design

Listing C.1 and Listing C.2 show the Matlab source code of the functions used for designing
Lagrange and windowed sinc interpolation filters respectively. Both functions take the number
of polyphase filter taps and the number of phases as parameters. When the filters perform
interpolation, the first parameter can be also regarded as the interpolation factor.

Listing C.1: Matlab function for computing Lagrange coefficients
1 function h = lagrangefilt(l,m)

2 % This function designs a Lagrange interpolation filter.

3 % Syntax:

4 % H = LAGRANGEFILT(L,M)

5 % where:

6 % L: interpolation factor (number of phases)

7 % M: filter size (number of taps , must be even!)

8 % H: polyphase coefficients vector (L*M-1)

9

10 t = 0:(m-1)*l+1;

11 l = ones(m,length(t));

12 for i = 0:m-1

13 for j = 0:m-1

14 if j ~= i

15 l(i+1,:) = l(i+1,:) .* (t/l-j)/(i-j);

16 end;

17 end;

18 end;

19

20 h = zeros(1,m*l);

21 for i = 0:l-1

22 for j = 0:m-1

23 h(j*l+i+1) = l((m-j), l*(m -2)/2+i+1);

24 end;

25 end;

Listing C.2: Matlab function for windowed sinc interpolation filters, e.g. Lanczos
1 function h = winsincfilt(l,m,w)

2 % This function designs a windowed sinc interpolation filter.

3 % Syntax:

4 % H = WINSINCFILT(L,M,W)

5 % where:

6 % L: interpolation factor (number of phases)

7 % M: filter size (number of taps = 2*M)

8 % W: window type (’lanczos ’,’sinc ’)

9 % H: polyphase coefficients vector (2*L*M-1)

10

11 % Generate vector of phases (2*l*m-1)

189

190 Appendix C Polyphase Filters Design

12 x = -m:1/l:+m;

13 x = x(2:end -1);

14 % Compute sinc coefficients

15 sincvec = sinc(x);

16 % Compute window

17 switch lower(w)

18 case ’lanczos ’

19 win = sinc(x/m);

20 case ’sinc’

21 win = ones(size(x));

22 otherwise

23 error(’Undefined window type’);

24 end

25 % Apply window

26 h = sincvec .* win;

Listing C.3 shows the Matlab source code of the function used for designing interpolating and
regular Wiener filters. The first parameter represents the number of phases and the the second
one the filter size. For regular (non-interpolating) symmetrical Wiener filters, the number of
phases must be one and the filter size odd. For interpolating Wiener filters, however, the
number of taps must be even. The third parameter is either the signal bandwidth, assuming a
rectangular spectrum, or the one-sided autocorrelation vector for which the filter is optimized.
The forth parameter is optional and represents the variance of the additive noise for which the
filter is optimized. If set to zero, a signal-matched interpolation filter will be designed. The
computed coefficients are returned in a polyphase array.

Listing C.3: Matlab function for designing interpolating Wiener filters
1 function [h,gd] = wienerintfilt(varargin)

2 % This function designs an optimal polyphase interpolating Wiener filter.

3 % Syntax:

4 % [H,GD] = WIENERINTFILT(L,M,BW)

5 % [H,GD] = WIENERINTFILT(L,M,AC)

6 % [H,GD] = WIENERINTFILT(L,M,BW ,VAR)

7 % [H,GD] = WIENERINTFILT(L,M,AC ,VAR)

8 % where:

9 % L: interpolation factor (number of phases)

10 % M: filter size (number of taps)

11 % BW: signal bandwidth (real 0...1)

12 % AC: signal autocorrelation vector (of size M/2)

13 % VAR: noise variance

14 % H: polyphase coefficients array (L x M)

15 % GD: group delay of the filter (samples)

16

17 if nargin == 3 || nargin == 4

18 l = varargin {1};

19 m = varargin {2};

20 r = varargin {3};

21 if nargin == 4

22 var = varargin {4};

23 else

24 var = 0;

25 end

26 else

27 error(’Wrong number of arguments.’);

28 end

29

30 % Compute autocorrelation vector

31 if length(r) == 1 % scalar

32 % parameter 3 is the signal bandwidth

33 r = sinc ((0:(m-1)*l)*r/l); % autocorrelation of a rectangular spectrum

34 else % vector

191

Table C.1.: Coefficients of a 4-tap Lagrange polyphase interpolation filter

Coeff
Phases

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

C0 0.0000 -0.0342 -0.0547 -0.0635 -0.0625 -0.0537 -0.0391 -0.0205 0.0000

C1 1.0000 0.9229 0.8203 0.6982 0.5625 0.4189 0.2734 0.1318 0.0000

C2 0.0000 0.1318 0.2734 0.4189 0.5625 0.6982 0.8203 0.9229 1.0000

C3 0.0000 -0.0205 -0.0391 -0.0537 -0.0625 -0.0635 -0.0547 -0.0342 0.0000

35 % parameter 3 is the signal autocorrelation vector

36 % check if vector has exactly L*(M -1)+1 elements

37 r = r(:)’;

38 if length(r) < l*(m-1)+1 % append 0’s if less

39 r = [r(:) zeros(l*(m-1)+1 - length(r),1)];

40 else % truncate if more

41 r = r(1:l*m);

42 end

43 end

44

45 % Sample autocorrelation vector

46 r_vec_pos_idx = l*(0:m-1);

47 r_vec_pos = r(1+ r_vec_pos_idx);

48 % Compute autocorrelation matrix

49 r_mat = toeplitz(r_vec_pos) + var*eye(m);

50

51 r_vec_sym_idx = -l*(m-1):l*(m-1);

52 r_vec_sym = [r(end :-1:2) r(1: end)];

53 gd = floor ((l*m -1)/2); % group delay

54 r0_idx = l*(0:m-1)-gd; % indices of first slice

55 mid = length(r);

56

57 % compute polyphase coefficients

58 for phi = 0:l-1; % L phases

59 r_vec_sym_phi(phi+1,:) = r_vec_sym(mid+r0_idx+phi);

60 h(phi+1,:) = r_mat \ r_vec_sym_phi(phi+1,:)’;

61 end

Table C.1, Table C.2, and Table C.3 show the computed polyphase coefficients of an 8-
phase Lagrange interpolation filter for 4, 6, and 8 taps respectively. It can be observed that the
coefficients for phase n/8 are the coefficients for phase (8-n)/8 reversed and that the coefficients
for phase 4/8 are symmetrical. Besides, the coefficients for phases 0/8 and 8/8 are degenerated
so that the current and the next sample are produced.

Figure C.1 plots of the coefficients of an 8-tap 8-phase Lagrange filter (see Table C.3), as
computed using the function in Listing C.1.

Listing C.4 shows the MEX C function which implements a multi-channel resampling routine.
The function is compiled as a dynamic library and is subsequently called from Matlab. This
reduce the simulation time significantly compared to interpreted Matlab code.

Listing C.4: C-MEX multichannel interpolation function for Matlab simulations
1 #include "mex.h"

2 #include <stdlib.h>

3 #include <string.h>

192 Appendix C Polyphase Filters Design

Table C.2.: Coefficients of a 6-tap Lagrange polyphase interpolation filter

Coeff
Phases

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

C0 0.0000 0.0055 0.0094 0.0115 0.0117 0.0104 0.0077 0.0041 0.0000

C1 0.0000 -0.0522 -0.0846 -0.0989 -0.0977 -0.0837 -0.0604 -0.0313 0.0000

C2 1.0000 0.9397 0.8459 0.7255 0.5859 0.4353 0.2820 0.1342 0.0000

C3 0.0000 0.1342 0.2820 0.4353 0.5859 0.7255 0.8459 0.9397 1.0000

C4 0.0000 -0.0313 -0.0604 -0.0837 -0.0977 -0.0989 -0.0846 -0.0522 0.0000

C5 0.0000 0.0041 0.0077 0.0104 0.0117 0.0115 0.0094 0.0055 0.0000

Table C.3.: Coefficients of an 8-tap Lagrange polyphase interpolation filter

Coeff
Phases

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

C0 0.0000 -0.0011 -0.0019 -0.0023 -0.0024 -0.0022 -0.0016 -0.0009 0.0000

C1 0.0000 0.0112 0.0191 0.0234 0.0239 0.0211 0.0156 0.0082 0.0000

C2 0.0000 -0.0632 -0.1031 -0.1210 -0.1196 -0.1024 -0.0736 -0.0379 0.0000

C3 1.0000 0.9482 0.8592 0.7397 0.5981 0.4438 0.2864 0.1355 0.0000

C4 0.0000 0.1355 0.2864 0.4438 0.5981 0.7397 0.8592 0.9482 1.0000

C5 0.0000 -0.0379 -0.0736 -0.1024 -0.1196 -0.1210 -0.1031 -0.0632 0.0000

C6 0.0000 0.0082 0.0156 0.0211 0.0239 0.0234 0.0191 0.0112 0.0000

C7 0.0000 -0.0009 -0.0016 -0.0022 -0.0024 -0.0023 -0.0019 -0.0011 0.0000

0 8 16 24 32 40 48 56
−0.2

0

0.2

0.4

0.6

0.8

1

Figure C.1.: Coefficients of an 8-tap 8-phase Lagrange interpolation filter

193

4 #include <math.h>

5

6 void resample(

7 double *din , /* input samples vector */

8 int nis , /* number of input samples */

9 int nch , /* number of parallel data channels */

10 double *dout , /* output samples vector */

11 int nos , /* number of output samples */

12 double *coeff , /* coefficients array (nph+1 x nft) */

13 int nph , /* number of phases */

14 int nft , /* number of filter taps */

15 double step , /* resampler step */

16 double *state , /* initial and final state */

17 double *phase) /* initial and intermediate state */

18 {

19 int i, j, k; /* iterators */

20 int iidx; /* input data index */

21 double currPhase; /* current phase */

22 double nextPhase; /* next output sample phase */

23 double subsPhase; /* sub -sample phase */

24 int segmIndex; /* segment index */

25 double segmPhase; /* segment phase (within a phase segment) */

26 double* intCoeff; /* interpolated filter coefficient */

27 int coeffIdx; /* linear index in the coefficients table */

28 int inSamInc; /* input samples increment */

29

30 intCoeff = calloc(nft , sizeof(double));

31

32 iidx = 0;

33 for (i = 0; i < nos; i = i+1) {

34 currPhase = phase [0] + step*i;

35 nextPhase = phase [0] + step*(i+1);

36 subsPhase = currPhase - floor(currPhase);

37 segmIndex = (int)floor(subsPhase*nph);

38 segmPhase = subsPhase*nph - segmIndex;

39 /* compute coefficients by linear interpolation */

40 /* compute interpolated sample */

41 for (j = 0; j < nft; j = j+1) {

42 coeffIdx = j*(nph +1)+ segmIndex;

43 intCoeff[j] = coeff[coeffIdx] + segmPhase * (coeff[coeffIdx +1] - coeff[coeffIdx]);

44 }

45 /* perform interpolation , for all data channels */

46 for (k = 0; k < nch; k = k+1) {

47 dout[k*nos+i] = 0;

48 for (j = 0; j < nft; j = j+1) {

49 dout[k*nos+i] += intCoeff[j] * state[k*nft+j];

50 }

51 }

52 /* update states and input index if necessary */

53 inSamInc = floor(nextPhase)-floor(currPhase);

54 while (inSamInc --) {

55 /* for all data channels */

56 for (k = 0; k < nch; k = k+1) {

57 for (j = nft -1; j > 0; j = j-1) {

58 state[k*nft+j] = state[k*nft+j-1];

59 }

60 /* pad with zeros if we exceed input vector */

61 state[k*nft +0] = (iidx < nis) ? din[k*nis+iidx] : 0;

62 }

63 iidx = iidx +1;

64 }

65 }

66 phase [0] = (phase [0] + nos*step) - floor(phase [0] + nos*step);

67

68 free(intCoeff);

69 }

70

194 Appendix C Polyphase Filters Design

71 /* The gateway routine */

72 void mexFunction(

73 int nlhs ,

74 mxArray *plhs[],

75 int nrhs ,

76 const mxArray *prhs [])

77 {

78 double *din; /* input samples vector */

79 int nis; /* number of input samples */

80 int nch; /* number of parallel data channels */

81 int nos; /* number of output samples */

82 double *coeff; /* coefficients array */

83 int nph; /* number of phases */

84 int nft; /* number of filter taps */

85 double step; /* resampling step */

86 double *istate; /* initial filter state */

87 double *iphase; /* initial phase */

88

89 double *dout; /* output data */

90 double *state; /* final filter state */

91 double *phase; /* final phase */

92

93 int mSize , nSize; /* size of the input vector */

94 int i; /* iterator */

95

96 if (nrhs < 4 || nrhs > 6) {

97 mexErrMsgTxt("This function accepts 4 to 6 inputs");

98 }

99 if (nlhs < 1 || nlhs > 3) {

100 mexErrMsgTxt("This function accepts 1 to 3 outputs");

101 }

102 /* Input 1: input samples array */

103 if (! mxIsDouble(prhs [0]) || mxIsComplex(prhs [0]))

104 mexErrMsgTxt("Input 1 (input samples) must be an array of double.");

105 din = mxGetPr(prhs [0]);

106 nis = mxGetM(prhs [0]);

107 nch = mxGetN(prhs [0]);

108 /* Input 2: number of output samples */

109 if (! mxIsDouble(prhs [1]) || mxIsComplex(prhs [1]) || mxGetM(prhs [1])* mxGetN(prhs [1]) != 1)

110 mexErrMsgTxt("Input 2 (number of output samples) must be a real scalar.");

111 nos = (int)floor(mxGetScalar(prhs [1]));

112 /* Input 3: coefficients array */

113 if (! mxIsDouble(prhs [2]) || mxIsComplex(prhs [2]) || mxGetM(prhs [2]) == 1)

114 mexErrMsgTxt("Input 3 (coefficients array) must be an array of double.");

115 coeff = mxGetPr(prhs [2]);

116 nph = mxGetM(prhs [2]) -1;

117 nft = mxGetN(prhs [2]);

118 /* Input 4: resampling step */

119 if (! mxIsDouble(prhs [3]) || mxIsComplex(prhs [3]) || mxGetM(prhs [3])* mxGetN(prhs [3]) != 1)

120 mexErrMsgTxt("Input 4 (resampling step) must be a real scalar.");

121 step = mxGetScalar(prhs [3]);

122 /* Input 5: filter state */

123 if (nrhs > 4) {

124 if (! mxIsDouble(prhs [4]) || mxIsComplex(prhs [4]))

125 mexErrMsgTxt("Input 5 (filter state) must be an array of double.");

126 if (nft != mxGetM(prhs [4]))

127 mexErrMsgTxt("Number of rows in state array must be equal with the number of taps");

128 if (nch != mxGetN(prhs [4]))

129 mexErrMsgTxt("Number of columns in state array must be equal with the number of channels");

130 istate = mxGetPr(prhs [4]);

131 }

132 /* Input 6: initial phase */

133 if (nrhs > 5) {

134 if (! mxIsDouble(prhs [5]) || mxIsComplex(prhs [5]) || mxGetM(prhs [5])* mxGetN(prhs [5]) != 1)

135 mexErrMsgTxt("Input 5 (initial phase) must be a real scalar.");

136 iphase = mxGetPr(prhs [5]);

137 }

195

138

139 /* Output 1: output samples array */

140 plhs [0] = mxCreateDoubleMatrix(nos , nch , mxREAL);

141 dout = mxGetPr(plhs [0]);

142 /* Output 2: final state vector */

143 plhs [1] = mxCreateDoubleMatrix(nft , nch , mxREAL);

144 state = mxGetPr(plhs [1]);

145 /* Output 3: final phase */

146 plhs [2] = mxCreateDoubleMatrix (1, 1, mxREAL);

147 phase = mxGetPr(plhs [2]);

148

149 /* Copy state and phase */

150 for (i = 0; i < nft*nch; i = i+1) {

151 state[i] = (nrhs > 4) ? istate[i] : 0;

152 }

153 phase [0] = (nrhs > 5) ? iphase [0] : 0;

154

155 /* call the actual resampling routine */

156 resample(din , nis , nch , dout , nos , coeff , nph , nft , step , state , phase);

157 }

Appendix D.

Disk Contents

This appendix describes the contents of the disk that accompanies the present dissertation.
The disk contains the following directories:

• Biblio: cited articles, in PDF format, including the referenced IEEE and ETSI standards

• Code: C/C++/SystemC, Matlab, and VHDL code produced during this research work

• Papers: published conference papers

• Thesis: publication version of the thesis in PDF format and defense presentation in
Powerpoint format

• Students: supervised student theses

• Visio: drawings for the dissertation in Visio format

The subdirectory directory Code/C contains the following: 1) C++ code for the modeling of
the Doppler taps generators used in the channel simulator Channel simulator, and 2) SystemC
code for the simulation of the Viterbi decoder. The subdirectory Code/Matlab contains classes
and functions used for various simulations throughout this dissertation. Because of the object-
oriented features employed, at least Matlab 2007a is required in order to execute the code.
The subdirectory Code/VHDL contains VHDL code for the hardware modeling of the following
blocks: CORDIC rotator, FFT (pipelined and sequential), and Viterbi decoder (state serial
and parallel), as well as various other small blocks, such as LFSR, FIFO, sine ROM, etc.

197

References

[1] P. A. Bello. Characterization of randomly time-variant linear channels. IEEE Trans. on
Communications, 11:360–393, Dec. 1963.

[2] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn. A fast single-chip implementation of 8192
complex point FFT. IEEE Journal of Solid-State Circuits, 30(3):300–305, Mar. 1995.

[3] J. A. C. Bingham. Multicarrier modulation for data transmission: An idea whose time has
come. IEEE Communications Magazine, 28(5):5–14, May 1990.

[4] E. Boutillon, J.-L. Danger, and A. Ghazel. Design of high speed AWGN communication
channel emulator. Analog Integrated Circuits and Signal Processing, 34(2):133–142, Feb. 2003.

[5] G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates. Annals
Math. and Statistics, 29:610–611, 1958.

[6] P. P. Chu and R. E. Jones. Design techniques of FPGA based random number generator. In
Proc. Military and Aerospace Applications of Programming Devices and Techniques Conf., 1999.

[7] L. J. Cimini Jr. Analysis and simulation of a digital mobile channel using orthogonal frequency
division multiplexing. IEEE Trans. on Communications, COMM-33(7):665–675, July 1985.

[8] R. H. Clark. A statistical theory of mobile reception. BSJT, 49:957–1000, 1968.
[9] F. Claßen. Systemkomponenten für eine terrestrische digitale mobile Breitbandübertragung.

PhD dissertation, RWTH-Aachen, Germany, 1996. In German.
[10] F. Classen, M. Classen, and H. Meyr. Channel estimation units for an OFDM system suitable

for mobile communication. In ITG-Fachbericht: Mobile Kommunikation, 1995.
[11] F. Classen and H. Meyr. Frequency synchronization algorithms for OFDM systems suitable for

communications over frequency selective fading channels. In Proc. Vehicular Technology Conf.
(VTC), volume 3, pages 1655–1659, 1994.

[12] D. Cohen. Simplified control of FFT hardware. IEEE Trans. on Acoustics, Speech, and Signal
Processing, 24(6):577–579, Dec. 1976.

[13] S. Coleri, M. Ergen, A. Puri, and A. Bahai. Channel estimation techniques based on pilot
arrangement in ofdm systems. IEEE Trans. on Broadcasting, 48(3):223–229, Sept. 2002.

[14] R. E. Crochiere and L. R. Rabiner. Interpolation and decimation of digital signals - a tutorial
review. Proceedings of the IEEE, 69(3):300–331, 1981.

[15] P. Dent, G. E. Bottomley, and T. Croft. Jakes fading model revisited. Electronics Letters,
29(13):1162–1163, June 1993.

[16] A. Dowler, A. Doufexi, and A. Nix. Performance evaluation of channel estimation techniques
for a mobile fourth generation wide area OFDM system. In Proc. Vehicular Technology Conf.
(VTC), volume 4, pages 2036–2040, 2002.

[17] M. F. (ed.). COST 207: Digital land mobile radio communications, final report. Technical
report, European Commision, Brussels, Belgium, 1989.

199

200 References

[18] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. Börjesson. OFDM channel
estimation by singular value decomposition. IEEE Trans. on Communications, 46(7):931–939,
July 1998.

[19] ETSI. EN 300 401 v.1.3.3. Digital Audio Broadcasting (DAB) to mobile, portable and fixed
receivers, May 2001.

[20] ETSI. EN 300 744 v.1.5.1. Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for digital terrestrial television, Nov. 2004.

[21] ETSI. ES 201 980 v.2.1.1. Digital Radio Mondiale (DRM); System specifications, Apr. 2004.
[22] C. W. Farrow. A continuously variable digital delay element. In Proc. Intl. Symp. on Circuits

and Systems (ISCAS), pages 2641–2645, 1988.
[23] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):218–278, Mar. 1973.
[24] W. N. Furman and J. W. Nieto. Understanding HF channel simulator requirements in order

to reduce HF modem performance measurement variability. In Proc. Nordic Shortwave Conf.
Harris Corporation, 2001.

[25] A. Ghazel, E. Boutillon, J. Danger, G. Gulak, and H. Laamari. Design and performance
analysis of high speed AWGN communication channel emulator. In Proc. IEEE Pacific Rim
Conf. on Communications, Computers and Signal Processing (PACRIM), Victoria, B.C., Aug.
2001.

[26] M. Goel and N. R. Shanbhag. Low-power channel coding via dynamic reconfiguration. In Proc.
Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASP), pages 1893–1896, 1999.

[27] T. Groetker, S. Liao, G. Martin, and S. Swan. System Dessign with SystemC. Kluwer
Academic Publishers, 2003.

[28] M. Hasan and T. Arslan. Scheme for reducing size of coefficient memory in FFT processor.
IEEE Electronics Letters, 38(4):163–164, Feb. 2002.

[29] S. He and M. Torkelson. A new approach to pipeline FFT processor. In Proc. Intl. Parallel
Processing Symp. (IPPS), pages 766–770, 1996.

[30] S. He and M. Torkelson. Designing pipeline FFT processor for OFDM (de)modulation. In
Proc. URSI Intl. Symp. on Signals, Systems, and Electronics (ISSSE), pages 257–262, 1998.

[31] A. P. Hekstra. An alternative to metric rescaling in Viterbi decoders. IEEE Trans. on Com-
munications, 37(3):1220–1222, Nov. 1989.

[32] R. Henning and C. Chakrabarti. Low-power approach for decoding convolutional codes with
adaptive Viterbi algorithm approximations. In Proc. Intl. Symp. on Low Power Electronics and
Design (ISLPED), pages 68–71, 2002.

[33] P. Hoeher. A statistical discrete-time model for the WSSUS multipath channel. IEEE Trans.
on Vehicular Technology, 41(4):461–468, 1992.

[34] P. Hoeher, S. Kaiser, and P. Robertson. Two-dimensional pilot-symbol-aided channel esti-
mation by wiener filtering. In Proc. Intl. Conf. on Acoustics, Speech, and Signal Processing
(ICASP), volume 3, pages 1845–1848, 1997.

[35] P. Höher. TCM on frequency-selective land-mobile fading channel. In Proc. of Tirrenia Int.
Workshop on Digital Communications, 1991.

[36] M.-H. Hsieh and C.-H. Wei. Channel estimation for OFDM systems based on comb-type pilot
arrangement in frequency-selective fading channels. IEEE Trans. on Consumer Electronics,
44(1):217–225, Feb. 1998.

References 201

[37] C.-P. Hung, S.-G. Chen, and K.-L. Chen. Design of an efficient variable-length FFT processor.
In Proc. Intl. Symp. on Circuits and Systems (ISCAS), volume 2, pages 833–836, 2004.

[38] IEEE. Wireless LAN Medium Access Control and Physical Layer Specifications; High-Speed
Physical Layer in the 5 GHz Band, 1999.

[39] IEEE. Wireless MAN Air Interface for Fixed Broadband Wireless Access Systems, 2004.
[40] M. Isaka and H. Imai. On the iterative decoding of multilevel codes. IEEE Journal on Selected

Areas in Communications, 19(5):935–943, May 2001.
[41] ITU. CCIR recommendation 520-1, use of HF ionospheric channel simulators. Recommendations

and Reports of the CCIR, 3:57–58, 1986.
[42] ITU. CCIR report 549-2, HF ionospheric channel simulators. Recommendations and Reports of

the CCIR, 3:59–67, 1986.
[43] W. C. Jakes, ed. Microwave Mobile Communications. John Wiley Sons, 1974.
[44] A. Jantsch. Modeling Embedded Systems and SOC’s. Morgan Kaufmann Publishers, 2004.
[45] L. Johnson. Conflict free memory addressing for dedicated FFT hardware. IEEE Trans. on

Circuits and Systems II: Analog and Digital Signal Processing, 39(5):312–316, May 1992.
[46] Y. Jung, H. Yoon, and J. Kim. New efficient FFT algorithm and pipeline implementation results

for OFDM/DMT applications. IEEE Trans. on Consumer Electronics, 49(1):14–20, Feb. 2003.
[47] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,

ed., Information Processing, pages 46–77. North-Holland Publishing Company, 1974.
[48] I. Kang and A. N. Willson. Low-power viterbi decoder for CDMA mobile terminals. IEEE

Journal of Solid-State Circuits, 33(3):473–482, Mar. 1998.
[49] W. R. Knight and R. Kaiser. A simple fixed-point error bound for the fast Fourier transform.

IEEE Trans. on Acoustics, Speech, and Signal Processing, 27(6):615–620, Dec. 1979.
[50] D. E. Knuth. The Art of Computer Programming, volume 2, chapter Seminumerical Algorithms.

Addison-Wesley, 3 edition, 1997.
[51] C. Komninakis. A fast and accurate rayleigh fading simulator. Proc. IEEE Global Telecommu-

nications Conf. (GLOBECOM), 6:3306–3310, Dec. 2003.
[52] D.-U. Lee, W. Luk, J. D. Villasenor, and P. Y. K. Cheung. A gaussian noise generator for

hardware-based simulations. IEEE Trans. on Computers, 53(12):1523–1534, Dec. 2004.
[53] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. In Proceedings of the IEEE,

volume 75, pages 1235–1245, Sept. 1987.
[54] Y. Li. Pilot-symbol-aided channel estimation for OFDM in wireless systems. IEEE Trans. on

Vehicular Technology, 49(4):1207–1215, July 2000.
[55] Y. Li, L. J. Cimini Jr., and N. R. Sollenberger. Robust channel estimation for OFDM systems

with rapid dispersive fading channels. IEEE Trans. on Communications, 46(7):902–915, July
1998.

[56] H. Lim and E. E. Swartzlander. Multidimensional systolic arrays for the implementation of dis-
crete Fourier transforms. IEEE Trans. on Acoustics, Speech, and Signal Processing, 47(5):1359–
1370, May 1999.

[57] H.-F. Lo, M.-D. Shieh, and C.-M. Wu. Design of an efficient FFT processor for DAB system.
In Proc. Intl. Symp. on Circuits and Systems (ISCAS), volume 4, pages 654–657, 2001.

[58] Y. Ma. A VLSI-oriented parallel FFT algorithm. IEEE Trans. on Signal Processing, 44(2):445–

202 References

448, Feb. 1996.
[59] Y. Ma. An effective memory addressing scheme for FFT processors. IEEE Trans. on Signal

Processing, 47(3):907–911, Mar. 1999.
[60] Y. Ma and L. Wanhammar. A hardware efficient control of memory addressing for high-

performance FFT processors. IEEE Trans. on Signal Processing, 48(3):917–921, Mar. 2000.
[61] G. Marsaglia and W. W. Tsang. The ziggurat method for generating random variables. Journal

of Statistical Software, 5(8):1–7, 2000.
[62] R. M. Mersereau and T. C. Speake. The processing of periodically sampled multidimensional

signals. IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-31(1):188–194, Feb.
1983.

[63] M. Morelli and U. Mengali. A comparison of pilot-aided channel estimation methods for
OFDM systems. IEEE Trans. on Signal Processing, 49(12):3065–3073, Dec. 2001.

[64] R. Negi and J. Cioffi. Pilot tone selection for channel estimation in a mobile OFDM system.
IEEE Trans. on Consumer Electronics, 44(3):1122–1128, Aug. 1998.

[65] A. M. Obeid, A. Garcia, M. Petrov, and M. Glesner. A multi-path high speed Viterbi
decoder. In Proc. Intl. Conf. on Electronics, Circuits, and Systams (ICECS), volume 3, pages
1160– 1163, Dec. 2003.

[66] G. Oetken, T. W. Parks, and H. W. Schüssler. New results in the design of digital interpo-
lators. IEEE Trans. on Acoustics, Speech, and Signal Processing, 23(3):301–309, June 1975.

[67] OSCI. Functional Specification for SystemC 2.0, Apr. 2002.
[68] OSCI. SystemC 2.0, User’s Guide, Apr. 2002.
[69] C. Park, J. Jung, and S. Ha. Extended synchronous dataflow for efficient DSP system pro-

totyping. In Proc. Design Automation and Test in Europe (DATE), volume 6, pages 295–322,
Mar. 2002.

[70] M.-Y. Park, W.-C. Lee, J.-H. Kwak, C.-H. Cho, and H.-M. Park. A demapping method using
the pilots in COFDM system. IEEE Trans. on Consumer Electronics, 44(3):1150–153, Aug.
1998.

[71] S. Y. Park, N. I. Cho, S. U. Lee, K. Kim, and J. Oh. Design of 2k/4k/8k-point FFT pro-
cessor based on CORDIC algorithm in OFDM receiver. In Proc. IEEE Pacific Rim Conf. on
Communications, Computers and Signal Processing (PACRIM), volume 2, pages 457–460, 2001.

[72] M. Pätzold, ed. Mobile Fading Channels. John Wiley Sons, 2002.
[73] M. C. Pease. Organization of large scale Fourier processors. Journal of the ACM, 16(3):474–482,

July 1969.
[74] M. Petrov, A. Obeid, and T. Murgan. An adaptive trace-back solution for state-parallel viterbi

decoders. In Proc. IFIP Intl. Conf. on VLSI (VLSI-SOC), 2003.
[75] M. F. Pop and N. C. Beaulieu. Design of wide-sense stationary sum-of-sinusoids fading channel

simulators. In Proc. IEEE Intl. Conf. on Communications (ICC), volume 2, pages 709–716,
Apr. 2002.

[76] ptolemy.eecs.berkeley.edu. The Ptolemy Project Website. UC Berkeley, EECS, Last visited
in 2006.

[77] R. Pyndiah, A. Picart, and A. Glavieux. Performance of block turbo coded 16-QAM and 64-
QAM modulations. In Proc. IEEE Global Telecommunications Conf. (GLOBECOM), volume 2,
pages 1039–1043, 1995.

References 203

[78] C. M. Rader. Memory management in a Viterbi decoder. IEEE Trans. on Communications,
29(9):1399–1401, Sept. 1981.

[79] J. Rinne and M. Renfors. Pilot spacing in orthogonal frequency division multiplexing systems
on practical channels. IEEE Trans. on Consumer Electronics, 42(4):959–962, Nov. 1996.

[80] F. Sanzi and J. Speidel. An adaptive two-dimensional channel estimator for wireless OFDM
with application to mobile DVB-T. IEEE Trans. on Broadcasting, 46(2):128–133, June 2000.

[81] H. Sari, G. Karam, and I. Jeanclaude. Transmission techniques for digital terrestrial tv
broadcasting. IEEE Communications Magazine, 33(2):100–109, Feb. 1995.

[82] D. Schafhuber, G. Matz, and F. Hlawatsch. Simulation of wideband mobile radio channels us-
ing subsampled ARMA models and multistage interpolation. IEEE-SP Workshop on Statistical
Signal Processing, 6:571–574, Aug. 2001.

[83] D. Schafhuber, G. Matz, and F. Hlawatsch. Adaptive prediction of time-varying channels
for coded OFDM systems. In Proc. Intl. Conf. on Acoustics, Speech, and Signal Processing
(ICASP), volume 3, pages 2549–2552, 2002.

[84] C. Sgraja and J. Lindner. Estimation of rapid time-variant channels for OFDM using wiener
filtering. In Proc. IEEE Intl. Conf. on Communications (ICC), volume 4, pages 2390–2395,
May 2003.

[85] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr. Optimum receiver design for wireless broad-
band systems using OFDM - part 1. IEEE Trans. on Communications, 47(11):1668–1677, Nov.
1999.

[86] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr. Optimum receiver design for wireless broad-
band systems using OFDM - part 2. IEEE Trans. on Communications, 49(4):571–578, Apr.
2001.

[87] B. Stantchev and G. Fettweis. Time-variant distortions in OFDM. IEEE Communications
Letters, 4(10):312–314, Oct. 2000.

[88] K. Steiglitz. Computer-aided design of recursive digital filters. IEEE Trans. on Audio and
Electroacoustics, 18:123–129, June 1970.

[89] F. Tosato and P. Bisaglia. Simplified soft-output demapper for binary interleaved COFDM
with application to HIPERLAN/2. In Proc. IEEE Intl. Conf. on Communications (ICC),
volume 2, pages 664– 668, 2002.

[90] T. K. Truong, M. Shih, I. S. Reed, and E. H. Satorius. A VLSI design for a trace-back Viterbi
decoder. IEEE Trans. on Communications, 40(3):616–624, Mar. 1992.

[91] P. P. Vaidyanathan. Handbook for Digital Signal Processing, editors S. K. Mitra and J. F.
Kaiser, chapter Robust Digital Filter Structures. John Wiley & Sons, 1993.

[92] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Boerjesson. On channel
estimation in OFDM systems. In Proc. Vehicular Technology Conf. (VTC), volume 2, pages
815–819, July 1995.

[93] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Trans. on Information Theory, 13(2):260– 269, Apr. 1967.

[94] C. C. Watterson, J. R. Juroshek, and W. D. Bensema. Experimental confirmation of an HF
channel model. IEEE Trans. on Communications, COMM-18(6):792–803, Dec. 1970.

[95] S. Weinstein and P. M. Ebert. Data transmission by frequency-division multiplexing using
the discrete Fourier transform. IEEE Trans. on Communications, COMM-19(5):628–634, Oct.

204 References

1971.
[96] P. D. Welch. The use of fast fourier transform for the estimation of power spectra: A method

based on time averaging over short, modified periodograms. IEEE Trans. on Audio and Elec-
troacoustics, 15:70–73, June 1967.

[97] Xilinx, Inc. Additive White Gaussian Noise (AWGN) Core, Oct. 2002. Product Specification.
[98] Xilinx, Inc. Linear Feedback Shift Register v3.0, Mar. 2003. Product Specification.
[99] B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao. Windowed DFT based pilot-symbol-

aided channel estimation for OFDM systems in multipath fading channels. In Proc. Vehicular
Technology Conf. (VTC), volume 2, pages 1480–1484, 2000.

[100] B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao. Channel estimation for OFDM trans-
mission in multipath fading channels based on parametric channel modeling. IEEE Trans. on
Communications, 49(3):467–479, Mar. 2001.

[101] D. J. Young and N. C. Beaulieu. On the generation of correlated rayleigh random variables by
inverse discrete fourier transform. In Proc. of the Intl. Conf. on Universal Personal Communi-
cations (ICUPC), volume 1, pages 231–235, Cambridge, MA, Sept. 1996.

[102] Y. R. Zheng and C. Xiao. Simulation models with correct statistical properties for rayleigh
fading channels. IEEE Trans. on Communications, 51(6):920–928, June 2003.

List of Publications

[103] T. Murgan, A. Garćıa Ortiz, M. Petrov, and M. Glesner. A stochastic framework for
communication architecture evaluation in networks-on-chip. In Proc. IEEE Intl. Symp. on
Signal, Circuit and Systems (ISSCS), volume 1, pages 253–256, Iasi, Romania, July 2003.

[104] T. Murgan, A. Garćıa Ortiz, M. Petrov, and M. Glesner. A linear model for high-level
delay estimation in VDSM on-chip interconnects. In Proc. Intl. Symp. on Circuits and Systems
(ISCAS), Kobe, Japan, May 2005.

[105] T. Murgan, A. Garćıa Ortiz, C. Schlachta, H. Zimmer, M. Petrov, and M. Glesner. On
timing and power consumption in inductively coupled on-chip interconnects. In Proc. Intl.
Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), volume
3254, pages 819–828, Santorini, Greece, Sept. 2004.

[106] T. Murgan, M. Petrov, A. Garćıa Ortiz, R. Ludewig, P. Zipf, T. Hollstein, M. Glesner,

B. Oelkrug, and J. Brakensiek. Evaluation and run-time optimisation of on-chip communi-
cation structures in reconfigurable architectures. In Proc. Intl. Conf. on Field Programmable
Logic and Applications (FPLA), pages 1111–1114, Lisbon, Portugal, Sept. 2003.

[107] T. Murgan, M. Petrov, M. Majer, P. Zipf, M. Glesner, and U. Heinkel. Adaptive architec-
tures for an OTN processor: Reducing design costs through reconfigurability and multiprocess-
ing. In Proc. of the ACM Computing Frontiers Conference, pages 408–414, Ischia, Italy, Apr.
2004.

[108] T. Murgan, M. Petrov, M. Majer, P. Zipf, M. Glesner, and U. Heinkel. Flexible overhead
processing architectures for G.709 optical transport networks. In GI/ITG/GMM Workshop on
“Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen”, Kaiserslautern, Germany, Feb. 2004.

[109] T. Murgan, C. Schlachta, M. Petrov, L. I. A. Garćıa Ortiz, M. Glesner, and R. Reis. Ac-
curate capture of timing parameters in inductively-coupled on-chip interconnects. In Proc. Intl.
Symp. on Integrated Circuits and Systems Design (SBCCI), pages 117–122, Porto de Galinhas,
Pernambuco, Brazil, Sept. 2004.

[110] A. M. Obeid, A. Garćıa Ortiz, M. Petrov, and M. Glesner. A multi-path high speed Viterbi
decoder. In Proc. Intl. Conf. on Electronics, Circuits, and Systams (ICECS), volume 3, pages
1160–1163, Darmstadt, Germany, Dec. 2003.

[111] S. Pandey, P. Zipf, O. Soffke, M. Petrov, T. Murgan, and M. Glesner. An infrastructure
for distributed computing and context aware computing. In Proc. of Intl. Conf. on Ubiquitous
Computing, Seattle, USA, Oct. 2003.

[112] M. Petrov. A scalable delay element for efficient resampling. Accepted for publication to the
IEEE Global Communications Conf. (GLOBECOM), 2007.

[113] M. Petrov and M. Glesner. Optimal FFT architecture selection for OFDM receivers on FPGA.
In Proc. Conf. on Field Programmable Technology (FPT), pages 313–314, Singapore, Dec. 2005.

205

206 List of Publications

[114] M. Petrov and M. Glesner. A state-serial Viterbi decoder architecture for digital radio on
FPGA. In Proc. Conf. on Field Programmable Technology (FPT), pages 323–324, Singapore,
Dec. 2005.

[115] M. Petrov and M. Glesner. An efficient fractional-rate interpolation architecture. In Accepted
for publication to the IEEE Global Communications Conf. (GLOBECOM), 2007.

[116] M. Petrov and M. Glesner. Filter design for Doppler spectrum shaping. In Accepted for
publication at the IEEE Intl. Conf. on Communications (ICC), 2007.

[117] M. Petrov and M. Glesner. A scalable and hardware-efficient architecture for white Gaussian
noise generation. In Accepted for publication at the IEEE Intl. Conf. on Communications (ICC),
2007.

[118] M. Petrov, T. Murgan, F. May, M. Vorbach, P. Zipf, and M. Glesner. The XPP archi-
tecture and its co-simulation within the Simulink environment. In Proc. Intl. Conf. on Field
Programmable Logic and Applications (FPLA), pages 761–770, Antwerpen, Belgium, Aug. 2004.

[119] M. Petrov, T. Murgan, A. Obeid, C. Chiţu, P. Zipf, J. Brakensiek, and M. Glesner. Dy-
namic power optimization of the trace-back process for the Viterbi algorithm. In Proc. Intl.
Symp. on Circuits and Systems (ISCAS), volume 2, pages 721–724, Vancouver, Canada, May
2004.

[120] M. Petrov, T. Murgan, P. Zipf, and M. Glesner. Functional modeling techniques for a wireless
LAN OFDM transceiver. In Proc. Intl. Symp. on Circuits and Systems (ISCAS), Kobe, Japan,
May 2005.

[121] M. Petrov, A. Obeid, T. Murgan, P. Zipf, J. Brakensiek, B. Ölkrug, and M. Glesner. An
adaptive trace-back solution for state-parallel Viterbi decoders. In Proc. IFIP Intl. Conf. on
VLSI (VLSI-SOC), pages 167–172, Darmstadt, Germany, Dec. 2003.

Supervised Theses

[122] Z. Dai. Entwurf einer ATA-Schnittstelle für den Wishbone-Bus als synthetisierbares SystemC-
Modell. Studienarbeit, Technische Universität Darmstadt, Nov. 2003. In German.

[123] T. Geisbüsch. On-Chip-Bus Vergleich und parametrisierbare Beispiel-Anwendung. Studienar-
beit, Technische Universität Darmstadt, Jan. 2005. In German.

[124] J. Giegerich. Design, simulation and synthesis of a generic FFT processor. Studienarbeit,
Technische Universität Darmstadt, Oct. 2005. In German.

[125] M. Hicham. Untersuchung eines Kanal-Dekoders fr die OFDM-Übertragung. Studienarbeit,
Technische Universität Darmstadt, Feb. 2005. In German.

[126] R. Methuku. Design & FPGA implementation of a multi-core architecture for ITU-T G.709
overhead processing. Master’s thesis, Technische Universität Darmstadt, Dec. 2004.

[127] V. B. Nguyen. Algorythms for channel estimation in OFDM digital broadcasting receivers.
Master’s thesis, Technische Universität Darmstadt, Aug. 2005.

[128] M. J. Renczmin. Entwurf eines synthesefhigen MMC-Adapters in VHDL. Studienarbeit, Tech-
nische Universität Darmstadt, Feb. 2004. In German.

[129] A. Sonntag. Entwurf einer konfigurierbaren Interleaver-Architektur. Studienarbeit, Technische
Universität Darmstadt, Aug. 2004. In German.

[130] N. Tu. Processor-based overhead processing in optical transport networks. Diploma thesis,
Technische Universität Darmstadt, Oct. 2004.

[131] S. Wang. Modellierung eines 32-bit-Prozessor-Cores auf Transaktionsebene. Studienarbeit,
Technische Universität Darmstadt, Oct. 2003. In German.

207

Curriculum Vitae

Mihail PETROV

Zur Person:

Geburtsdatum: 27. Dezember 1977

Geburtsort: Constanta, Rumänien

Ausbildung und beruflicher Werdegang:

1984 – 1992 Besuch der Grundschule in Constanta, Rumänien

1992 – 1996 Besuch des Lyzeums für Elektrotechnik und Telekomunika-
tion in Constanta, Rumänien

Abschluss: Abitur (Bacalaureat)

1996 – 2001 Student an der Fakultät für Elektronik, Nachrichten-
technik und Informationstechnik, Universität ‘Politehnica’
Bukarest, Rumänien

Abschluss: Diplom Ingenieur (Inginer Diplomat)

11.2001 – 10.2005 Doktorand und wissenschaftlicher Mitarbeiter am Fachge-
biet Mikroelektronische Systeme der Technischen Univer-
sität Darmstadt

01.2002 – 12.2004 Stipendiat des Graduiertenkollegs “Systemintegration für
ubiquitäres Rechnen in der Informationstechnik”

11.2005 – 06.2007 Systemingenieur bei Micronas GmbH Villach, Österreich

seit dem 07.2007 Forschungsingenieur bei Panasonic R&D Center Langen,
Deutschland

209

