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8.1. Summary of the Results

Considering the increasing trend toward the hardware simulation of complex communication
systems on prototyping platforms, one of the goals of this thesis was to develop a hardware-
efficient wireless channel simulator with Doppler fading. The proposed architecture is very
scalable and requires very few resources on FPGA. Moreover, it has also been implemented
very efficiently in software and used for simulations throughout this thesis.

For modeling the channel we have used the WSSUS (wide-sense stationary with uncorrelated
scattering) assumption, the channel being modeled as a tapped delay line with time-varying
(fading) coefficients. The latter are narrow-band complex Gaussian processes and were imple-
mented using the white Gaussian noise filtering method. Our selected approach for Gaussian
noise generation relies on the central limit theorem, whereby a normally distributed variable can
be obtained by summing up a large number of independent uniform variables. The proposed
architecture sums a power-of-two number of uniform binary variables generated using LFSR’s
(linear feedback shift registers). An essential advantage is the flexibility of trading throughput
for silicon area, as the number of random bits per clock cycle and the number of clock cycles
per generated sample are configurable or parameterizable.

As the typical Doppler spreads are very small relative to the sampling rate, the resulting discrete
bandwidth of the fading processes is extremely small, in the order of 1/1000. This fact alone
renders a spectrum shaping by mere filtering unfeasible. Instead, a combination of filtering
and interpolation is preferred. Various Doppler spreads can be generated by using a fixed low-
pass filter followed by a polyphase interpolator with variable and typically large interpolation
factors. Existing interpolation solutions for large factors use a multi-stage approach with fixed
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interpolation factors. In our proposed solution, however, interpolation is performed in a single
stage and the interpolation factor is configurable and not restricted to integers alone.

Thus, the tap generator is a multi-rate system. The output is generated at the sampling rate,
which may or may not be the clock frequency. The rate at which the noise generator and the
filter operate is much lower, depending on the actual Doppler rate, its actual value being the
sampling rate divided by the interpolation factor. It is therefore natural to prefer a sequential
architecture for the generator and the filter, which results in a very low-area realization without
sacrificing performance.

In the field of channel estimation, we started with an overview of the main solutions proposed
in the literature. Most of them are either unrealistically complex or do not offer sufficient
performance. In this respect, the present thesis has two main contributions. On the one
hand we showed how the performance of the channel estimator, represented by its gain, affects
the overall receiver performance, expressed as the bit error rate. The analysis, performed
experimentally by simulating a DVB-T receiver with a multi-path channel model, shows that
an estimation gain of 6 dB is sufficient. Further increases of the gain, which can always be
achieved with increased hardware complexity, are no longer accompanied by a corresponding
increase in performance. The perfect estimator should achieve a gain of at least 6 dB over
various operating conditions, with the lowest possible computational complexity.

On the other hand, we proposed a generic channel estimation architecture consisting of two
separable polyphase filters. Their size and coefficients values depend on the operating conditions
and the required gain. In this work we also present the design of polyphase interpolation and
Wiener filters and a thorough analysis of their performance. For complexity reasons, the filter
along the time axis has to be kept as short as possible. I many practical scenarios, a 2-
tap linear interpolation filter will suffice. The entire gain will be achieved by the filter along
the frequency axis, which is a Wiener filter. For optimum performance at various operating
conditions (channel statistics) the coefficients should be selected adaptively from a precomputed
set.

Further on, we dealt with with power and area optimizations in the implementation of the
Viterbi algorithm for decoding convolutional codes. After a brief background on the Viterbi
algorithm, we introduced a high-throughput state-parallel decoder architecture with adjustable
trace-back length. The trace-back block is implemented as a pipeline whose length can be
changed during operation by switching off unused stages, thus saving power dynamically. We
also introduced an algorithm for selecting the minimum trace-back length which ensures a
desired performance. Post-synthesis power estimation for standard cell libraries demonstrated
power savings of up to 62%.

The other Viterbi decoder approach focused on minimizing the area, with emphasis on FPGA
implementation. We proposed a lower-area state-serial architecture, for which we optimized
all three building blocks of the decoder: the branch-metrics unit, the add-compare-select unit,
and the trace-back unit. By exploiting architectural features of new FPGA’s, particularly block
RAM’s and shift registers, we managed to develop a very area-efficient architecture. The design
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is completely generic has been described in VHDL and synthesized using the Xilinx Spartan-3
FPGA family, using the convolutional code employed in the DAB and DRM standards. At a
target clock frequency of around 150 MHz, the throughput exceeds the requirements of both
standards. The whole design occupies less than 1/5 of the smallest FPGA device in the family.
We argue that this is the most compact Viterbi decoder presented so far.

The next chapter dealt with the simulation and design of OFDM receivers. For simulation
we employed untimed dataflow modeling in SystemC, with control tags accompanying data
tokens. As a test case we considered a receiver for the IEEE 802.11a OFDM-based wireless
LAN standard. Both individual samples and entire OFDM symbols were used as tokens, each
solution having its advantages and disadvantages. The purpose of the above modeling is only
algorithmic and architectural exploration. No high-level synthesis was envisaged.

On the design side, we considered the Fast Fourier Transform, which is the heart of any
OFDM system. Various architectures were compared with respect to their area requirements
and suitability for various OFDM standards. We showed that sequential architectures offer
sufficient performance for implementing most OFDM broadcasting standards, even on FPGA.
On the other hand, pipelined architectures offer a higher throughput, but at the cost of in-
creased hardware resources. Of either family we implemented one architecture: a single-RAM
sequential architecture and a R22SDF pipelined one. The designs have all parameters generic,
e.g. data width and block size, and rely on VHDL features that promote reusability, such
as static functions for computing the ROM twiddle factors. Moreover, we took advantage of
the embedded RAM’s and multipliers in the modern FPGA’s. Implementation results were
provided for the Xilinx Spartan-3 FPGA family.

8.2. Future Work

In the field of wireless channel simulators for hardware prototyping platforms, no significant
improvements can be imagined for the solution proposed in this thesis, except for some opti-
mizations. For instance, the design time of the spectrum-shaping filter cascade could be reduced
by improving the filter design algorithm. The current algorithm becomes very slow when the
spectrum is discretized into more than 512 points. A further point worth investigating is the
optimal sizing of various parameters of the fading generators, depending on the desired simu-
lation precision. Since the proposed design is completely generic, it can be used without any
change for various parameter values.

For the proposed channel estimator architecture, a very promising direction for further research
is the estimation of the Doppler and delay spreads. Once these estimates are known, the
optimal sets of coefficients can be selected from a precomputed look-up table. Thus, the channel
estimator gain is maximized by matching the estimator to the actual channel statistics, which
is clearly superior to using a fixed set of coefficients. The challenge consists in performing the
estimation in both directions (time and frequency) and selecting the best update rate for the
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coefficients.

Likewise, the principle of estimation for dynamic configuration must also be applied in the
case of the proposed Viterbi decoder architecture with variable decoding window length. In
this case, the estimate is the bit error rate, the difference from the desired rate being used for
adjusting the decoding window to the minimum length which still ensures an acceptable BER.
The challenge is how to estimate the BER and how often to adjust the trace-back length. The
solution of dynamically adjusting the decoding window has been proposed for a high-throughput
state-parallel architecture, but it can be applied to the lower-area state-serial architecture as
well.

Another research direction stems from the necessity of using a behavioral bit-true model for
both system performance simulation and functional verification of the final HDL design. Two
aspects are essential here. On the one hand, we need a standard interface for various processing
blocks in order to be able to use a black box approach. The behavioral reference model, writ-
ten in SystemC, should deal only with the actual data being transferred, without implementing
any timing and protocol details. On the other hand, a generic mechanism is needed for passing
parameters to the reference model and read status information from it. Access to parameters
should be performed through names instead of actual addresses. A possible solution for de-
veloping a reusable framework is to use the transaction-level modeling (TLM 2.0) guidelines
proposed by the Open SystemC Initiative industry group.



Appendix A.

LFSR Generator Polynomials

Table A.1 shows LFSR XOR taps that generate a maximum-length sequence, for LFSR sizes
N between 2 and 168, using a Fibonacci configuration. The N and 0 taps have not been
shown, since they are always present and require no XOR gates. Also note that the number
of taps is always odd. The generator polynomials have the following form: for e.g. N = 16,
P (x) = x16 + x15 + x13 + x4 + 1.

Table A.1.: LFSR XOR taps for maximum sequence lengths

Size Taps Size Taps Size Taps Size Taps

2 1 3 2 4 3 5 3

6 5 7 6 8 6, 5, 4 9 5

10 7 11 9 12 6, 4, 1 13 4, 3, 1

14 5, 3, 1 15 14 16 15, 13, 4 17 14

18 11 19 6, 2, 1 20 17 21 19

22 21 23 18 24 23, 22, 17 25 22

26 6, 2, 1 27 5, 2, 1 28 25 29 27

30 6, 4, 1 31 28 32 22, 2, 1 33 20

34 27, 2, 1 35 33 36 25 37 5, 4, 3, 2, 1

38 6, 5, 1 39 35 40 38, 21, 19 41 38

42 41, 20, 19 43 42, 38, 37 44 43, 18, 17 45 44, 42, 41

46 45, 26, 25 47 42 48 47, 21, 20 49 40

50 49, 24, 23 51 53, 36, 35 52 49 53 52, 38, 37

54 53, 18, 17 55 31 56 55, 35, 34 57 50

58 39 59 58, 38, 37 60 59 61 60, 46, 45

62 61, 6, 5 63 62 64 63, 61, 60 65 47

66 65, 57, 56 67 66, 58, 57 68 59 69 67, 42, 40

70 69, 55, 54 71 65 72 66, 25, 19 73 48

74 73, 59, 58 75 74, 65, 64 76 75, 41, 40 77 76, 47, 46

Continued on next page
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Size Taps Size Taps Size Taps Size Taps

78 77, 59, 58 79 70 80 79, 43, 42 81 77

82 79, 47, 44 83 82, 38, 37 84 71 85 84, 58, 57

86 85, 74, 73 87 74 88 87, 17, 16 89 51

90 89, 72, 71 91 90, 8, 7 92 91, 80, 79 93 91

94 73 95 84 96 94, 49, 47 97 91

98 87 99 97, 54, 52 100 63 101 100, 95, 94

102 101, 36, 35 103 94 104 103, 94, 93 105 89

106 91 107 105, 44, 42 108 77 109 108, 103, 102

110 109, 98, 97 111 101 112 110, 69, 67 113 104

114 113, 33, 32 115 114, 101, 100 116 115, 46, 45 117 115, 99, 97

118 85 119 111 120 113, 9, 2 121 103

122 121, 63, 62 123 121 124 87 125 124, 18, 17

126 125, 90, 89 127 126 128 126, 101, 99 129 124

130 127 131 130, 84, 83 132 103 133 132, 82, 81

134 77 135 124 136 135, 11, 10 137 116

138 137, 131, 130 139 136, 134, 131 140 111 141 140, 110, 109

142 121 143 142, 123, 122 144 143, 75, 74 145 93

146 145, 87, 86 147 146, 110, 109 148 121 149 148, 40, 39

150 97 151 148 152 151, 87, 86 153 152

154 152, 27, 25 155 154, 124, 123 156 155, 41, 40 157 156, 131, 130

158 157, 132, 131 159 128 160 159, 142, 141 161 143

162 161, 75, 74 163 162, 104, 103 164 163, 151, 150 165 164, 135, 134

166 165, 128, 127 167 161 168 166, 153, 151



Appendix B.

Doppler Shaping Filter Coefficients

Table B.1 lists the coefficients of the second-order sections (SOS) for the Doppler spectrum
shaping filters designed in Chapter 4.
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Jakes Doppler filter with fD = 0.25

SOS
stage

numerator coefficients denominator coefficients

b1 b2 a1 a2

1 −1.35413771459409600 0.99841658177586590 −1.33857691521792140 0.75947473474759186

2 1.26747105260715510 0.78930450430435106 −1.39863709399956340 0.95531470097521487

3 −1.19866280663418420 0.99543248662376516 −1.40922791079687440 0.98532355397444626

4 −1.40515195731594190 0.99969218430916440 −1.16419423413520210 0.35943110404353640

5 −1.39133075718634310 0.99982725668539552 −1.41494205593041200 0.99942021194681541

6 −0.43676993048605334 0.80739524558126341 −1.37815037370731660 0.88972270416275967

7 −1.03573956156185280 0.95640749452201779 −1.26341848363859710 0.55436619990680991

Multiplicative constant K for normalized power: 0.00483235231292577

Flat Doppler filter with fD = 0.25

SOS
stage

numerator coefficients denominator coefficients

b1 b2 a1 a2

1 −0.44457315808425180 0.91931225902709734 −1.16343308439212060 0.54647747776787436

2 −0.77446078634358861 0.98981368816063675 −1.35900986133933130 0.81085827290596257

3 −1.29047650959471660 0.99937410279524796 −1.40217900879071420 0.92768253583182181

4 −1.39310108524647510 0.99804262273733535 −0.98336636868427774 0.25196904166531714

5 1.45327883765238750 0.98785427545955384 −1.41698479882818010 0.97717524280876300

6 −1.28573046642038900 0.99400928613098838 −1.42328488912234350 0.99849382257743036

7 −1.41338687347567740 0.99983684800114370 −1.08072148362884970 0.45127169621342850

Multiplicative constant K for normalized power: 0.00530785604999349

Gaussian Doppler filter with σD = 0.25

SOS
stage

numerator coefficients denominator coefficients

b1 b2 a1 a2

1 1.65217016762262100 0.68633648261507685 −0.24847595973217060 0.06329494952095784

2 0.92873120055548264 0.29183328855866075 −0.41240362650379853 0.04470150937539093

Multiplicative constant K for normalized power: 0.14764710448880353

Table B.1.: Biquad coefficients for the designed Doppler filters



Appendix C.

Polyphase Filters Design

Listing C.1 and Listing C.2 show the Matlab source code of the functions used for designing
Lagrange and windowed sinc interpolation filters respectively. Both functions take the number
of polyphase filter taps and the number of phases as parameters. When the filters perform
interpolation, the first parameter can be also regarded as the interpolation factor.

Listing C.1: Matlab function for computing Lagrange coefficients
1 function h = lagrangefilt(l,m)

2 % This function designs a Lagrange interpolation filter.

3 % Syntax:

4 % H = LAGRANGEFILT(L,M)

5 % where:

6 % L: interpolation factor (number of phases)

7 % M: filter size (number of taps , must be even!)

8 % H: polyphase coefficients vector (L*M-1)

9

10 t = 0:(m-1)*l+1;

11 l = ones(m,length(t));

12 for i = 0:m-1

13 for j = 0:m-1

14 if j ~= i

15 l(i+1,:) = l(i+1,:) .* (t/l-j)/(i-j);

16 end;

17 end;

18 end;

19

20 h = zeros(1,m*l);

21 for i = 0:l-1

22 for j = 0:m-1

23 h(j*l+i+1) = l((m-j), l*(m -2)/2+i+1);

24 end;

25 end;

Listing C.2: Matlab function for windowed sinc interpolation filters, e.g. Lanczos
1 function h = winsincfilt(l,m,w)

2 % This function designs a windowed sinc interpolation filter.

3 % Syntax:

4 % H = WINSINCFILT(L,M,W)

5 % where:

6 % L: interpolation factor (number of phases)

7 % M: filter size (number of taps = 2*M)

8 % W: window type (’lanczos ’,’sinc ’)

9 % H: polyphase coefficients vector (2*L*M-1)

10

11 % Generate vector of phases (2*l*m-1)
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12 x = -m:1/l:+m;

13 x = x(2:end -1);

14 % Compute sinc coefficients

15 sincvec = sinc(x);

16 % Compute window

17 switch lower(w)

18 case ’lanczos ’

19 win = sinc(x/m);

20 case ’sinc’

21 win = ones(size(x));

22 otherwise

23 error(’Undefined window type’);

24 end

25 % Apply window

26 h = sincvec .* win;

Listing C.3 shows the Matlab source code of the function used for designing interpolating and
regular Wiener filters. The first parameter represents the number of phases and the the second
one the filter size. For regular (non-interpolating) symmetrical Wiener filters, the number of
phases must be one and the filter size odd. For interpolating Wiener filters, however, the
number of taps must be even. The third parameter is either the signal bandwidth, assuming a
rectangular spectrum, or the one-sided autocorrelation vector for which the filter is optimized.
The forth parameter is optional and represents the variance of the additive noise for which the
filter is optimized. If set to zero, a signal-matched interpolation filter will be designed. The
computed coefficients are returned in a polyphase array.

Listing C.3: Matlab function for designing interpolating Wiener filters
1 function [h,gd] = wienerintfilt(varargin)

2 % This function designs an optimal polyphase interpolating Wiener filter.

3 % Syntax:

4 % [H,GD] = WIENERINTFILT(L,M,BW)

5 % [H,GD] = WIENERINTFILT(L,M,AC)

6 % [H,GD] = WIENERINTFILT(L,M,BW ,VAR)

7 % [H,GD] = WIENERINTFILT(L,M,AC ,VAR)

8 % where:

9 % L: interpolation factor (number of phases)

10 % M: filter size (number of taps)

11 % BW: signal bandwidth (real 0...1)

12 % AC: signal autocorrelation vector (of size M/2)

13 % VAR: noise variance

14 % H: polyphase coefficients array (L x M)

15 % GD: group delay of the filter (samples)

16

17 if nargin == 3 || nargin == 4

18 l = varargin {1};

19 m = varargin {2};

20 r = varargin {3};

21 if nargin == 4

22 var = varargin {4};

23 else

24 var = 0;

25 end

26 else

27 error(’Wrong number of arguments.’);

28 end

29

30 % Compute autocorrelation vector

31 if length(r) == 1 % scalar

32 % parameter 3 is the signal bandwidth

33 r = sinc ((0:(m-1)*l)*r/l); % autocorrelation of a rectangular spectrum

34 else % vector
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Table C.1.: Coefficients of a 4-tap Lagrange polyphase interpolation filter

Coeff
Phases

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

C0 0.0000 -0.0342 -0.0547 -0.0635 -0.0625 -0.0537 -0.0391 -0.0205 0.0000

C1 1.0000 0.9229 0.8203 0.6982 0.5625 0.4189 0.2734 0.1318 0.0000

C2 0.0000 0.1318 0.2734 0.4189 0.5625 0.6982 0.8203 0.9229 1.0000

C3 0.0000 -0.0205 -0.0391 -0.0537 -0.0625 -0.0635 -0.0547 -0.0342 0.0000

35 % parameter 3 is the signal autocorrelation vector

36 % check if vector has exactly L*(M -1)+1 elements

37 r = r(:)’;

38 if length(r) < l*(m-1)+1 % append 0’s if less

39 r = [r(:) zeros(l*(m-1)+1 - length(r),1)];

40 else % truncate if more

41 r = r(1:l*m);

42 end

43 end

44

45 % Sample autocorrelation vector

46 r_vec_pos_idx = l*(0:m-1);

47 r_vec_pos = r(1+ r_vec_pos_idx );

48 % Compute autocorrelation matrix

49 r_mat = toeplitz(r_vec_pos) + var*eye(m);

50

51 r_vec_sym_idx = -l*(m-1):l*(m-1);

52 r_vec_sym = [r(end :-1:2) r(1: end)];

53 gd = floor ((l*m -1)/2); % group delay

54 r0_idx = l*(0:m-1)-gd; % indices of first slice

55 mid = length(r);

56

57 % compute polyphase coefficients

58 for phi = 0:l-1; % L phases

59 r_vec_sym_phi(phi+1,:) = r_vec_sym(mid+r0_idx+phi);

60 h(phi+1,:) = r_mat \ r_vec_sym_phi(phi+1,:)’;

61 end

Table C.1, Table C.2, and Table C.3 show the computed polyphase coefficients of an 8-
phase Lagrange interpolation filter for 4, 6, and 8 taps respectively. It can be observed that the
coefficients for phase n/8 are the coefficients for phase (8-n)/8 reversed and that the coefficients
for phase 4/8 are symmetrical. Besides, the coefficients for phases 0/8 and 8/8 are degenerated
so that the current and the next sample are produced.

Figure C.1 plots of the coefficients of an 8-tap 8-phase Lagrange filter (see Table C.3), as
computed using the function in Listing C.1.

Listing C.4 shows the MEX C function which implements a multi-channel resampling routine.
The function is compiled as a dynamic library and is subsequently called from Matlab. This
reduce the simulation time significantly compared to interpreted Matlab code.

Listing C.4: C-MEX multichannel interpolation function for Matlab simulations
1 #include "mex.h"

2 #include <stdlib.h>

3 #include <string.h>
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Table C.2.: Coefficients of a 6-tap Lagrange polyphase interpolation filter

Coeff
Phases

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

C0 0.0000 0.0055 0.0094 0.0115 0.0117 0.0104 0.0077 0.0041 0.0000

C1 0.0000 -0.0522 -0.0846 -0.0989 -0.0977 -0.0837 -0.0604 -0.0313 0.0000

C2 1.0000 0.9397 0.8459 0.7255 0.5859 0.4353 0.2820 0.1342 0.0000

C3 0.0000 0.1342 0.2820 0.4353 0.5859 0.7255 0.8459 0.9397 1.0000

C4 0.0000 -0.0313 -0.0604 -0.0837 -0.0977 -0.0989 -0.0846 -0.0522 0.0000

C5 0.0000 0.0041 0.0077 0.0104 0.0117 0.0115 0.0094 0.0055 0.0000

Table C.3.: Coefficients of an 8-tap Lagrange polyphase interpolation filter

Coeff
Phases

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

C0 0.0000 -0.0011 -0.0019 -0.0023 -0.0024 -0.0022 -0.0016 -0.0009 0.0000

C1 0.0000 0.0112 0.0191 0.0234 0.0239 0.0211 0.0156 0.0082 0.0000

C2 0.0000 -0.0632 -0.1031 -0.1210 -0.1196 -0.1024 -0.0736 -0.0379 0.0000

C3 1.0000 0.9482 0.8592 0.7397 0.5981 0.4438 0.2864 0.1355 0.0000

C4 0.0000 0.1355 0.2864 0.4438 0.5981 0.7397 0.8592 0.9482 1.0000

C5 0.0000 -0.0379 -0.0736 -0.1024 -0.1196 -0.1210 -0.1031 -0.0632 0.0000

C6 0.0000 0.0082 0.0156 0.0211 0.0239 0.0234 0.0191 0.0112 0.0000

C7 0.0000 -0.0009 -0.0016 -0.0022 -0.0024 -0.0023 -0.0019 -0.0011 0.0000

0 8 16 24 32 40 48 56
−0.2

0

0.2

0.4
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Figure C.1.: Coefficients of an 8-tap 8-phase Lagrange interpolation filter
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4 #include <math.h>

5

6 void resample(

7 double *din , /* input samples vector */

8 int nis , /* number of input samples */

9 int nch , /* number of parallel data channels */

10 double *dout , /* output samples vector */

11 int nos , /* number of output samples */

12 double *coeff , /* coefficients array (nph+1 x nft) */

13 int nph , /* number of phases */

14 int nft , /* number of filter taps */

15 double step , /* resampler step */

16 double *state , /* initial and final state */

17 double *phase) /* initial and intermediate state */

18 {

19 int i, j, k; /* iterators */

20 int iidx; /* input data index */

21 double currPhase; /* current phase */

22 double nextPhase; /* next output sample phase */

23 double subsPhase; /* sub -sample phase */

24 int segmIndex; /* segment index */

25 double segmPhase; /* segment phase (within a phase segment) */

26 double* intCoeff; /* interpolated filter coefficient */

27 int coeffIdx; /* linear index in the coefficients table */

28 int inSamInc; /* input samples increment */

29

30 intCoeff = calloc(nft , sizeof(double ));

31

32 iidx = 0;

33 for (i = 0; i < nos; i = i+1) {

34 currPhase = phase [0] + step*i;

35 nextPhase = phase [0] + step*(i+1);

36 subsPhase = currPhase - floor(currPhase );

37 segmIndex = (int)floor(subsPhase*nph);

38 segmPhase = subsPhase*nph - segmIndex;

39 /* compute coefficients by linear interpolation */

40 /* compute interpolated sample */

41 for (j = 0; j < nft; j = j+1) {

42 coeffIdx = j*(nph +1)+ segmIndex;

43 intCoeff[j] = coeff[coeffIdx] + segmPhase * (coeff[coeffIdx +1] - coeff[coeffIdx ]);

44 }

45 /* perform interpolation , for all data channels */

46 for (k = 0; k < nch; k = k+1) {

47 dout[k*nos+i] = 0;

48 for (j = 0; j < nft; j = j+1) {

49 dout[k*nos+i] += intCoeff[j] * state[k*nft+j];

50 }

51 }

52 /* update states and input index if necessary */

53 inSamInc = floor(nextPhase)-floor(currPhase );

54 while (inSamInc --) {

55 /* for all data channels */

56 for (k = 0; k < nch; k = k+1) {

57 for (j = nft -1; j > 0; j = j-1) {

58 state[k*nft+j] = state[k*nft+j-1];

59 }

60 /* pad with zeros if we exceed input vector */

61 state[k*nft +0] = (iidx < nis) ? din[k*nis+iidx] : 0;

62 }

63 iidx = iidx +1;

64 }

65 }

66 phase [0] = (phase [0] + nos*step) - floor(phase [0] + nos*step);

67

68 free(intCoeff );

69 }

70
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71 /* The gateway routine */

72 void mexFunction(

73 int nlhs ,

74 mxArray *plhs[],

75 int nrhs ,

76 const mxArray *prhs [])

77 {

78 double *din; /* input samples vector */

79 int nis; /* number of input samples */

80 int nch; /* number of parallel data channels */

81 int nos; /* number of output samples */

82 double *coeff; /* coefficients array */

83 int nph; /* number of phases */

84 int nft; /* number of filter taps */

85 double step; /* resampling step */

86 double *istate; /* initial filter state */

87 double *iphase; /* initial phase */

88

89 double *dout; /* output data */

90 double *state; /* final filter state */

91 double *phase; /* final phase */

92

93 int mSize , nSize; /* size of the input vector */

94 int i; /* iterator */

95

96 if (nrhs < 4 || nrhs > 6) {

97 mexErrMsgTxt("This function accepts 4 to 6 inputs");

98 }

99 if (nlhs < 1 || nlhs > 3) {

100 mexErrMsgTxt("This function accepts 1 to 3 outputs");

101 }

102 /* Input 1: input samples array */

103 if (! mxIsDouble(prhs [0]) || mxIsComplex(prhs [0]))

104 mexErrMsgTxt("Input 1 (input samples) must be an array of double.");

105 din = mxGetPr(prhs [0]);

106 nis = mxGetM(prhs [0]);

107 nch = mxGetN(prhs [0]);

108 /* Input 2: number of output samples */

109 if (! mxIsDouble(prhs [1]) || mxIsComplex(prhs [1]) || mxGetM(prhs [1])* mxGetN(prhs [1]) != 1)

110 mexErrMsgTxt("Input 2 (number of output samples) must be a real scalar.");

111 nos = (int)floor(mxGetScalar(prhs [1]));

112 /* Input 3: coefficients array */

113 if (! mxIsDouble(prhs [2]) || mxIsComplex(prhs [2]) || mxGetM(prhs [2]) == 1)

114 mexErrMsgTxt("Input 3 (coefficients array) must be an array of double.");

115 coeff = mxGetPr(prhs [2]);

116 nph = mxGetM(prhs [2]) -1;

117 nft = mxGetN(prhs [2]);

118 /* Input 4: resampling step */

119 if (! mxIsDouble(prhs [3]) || mxIsComplex(prhs [3]) || mxGetM(prhs [3])* mxGetN(prhs [3]) != 1)

120 mexErrMsgTxt("Input 4 (resampling step) must be a real scalar.");

121 step = mxGetScalar(prhs [3]);

122 /* Input 5: filter state */

123 if (nrhs > 4) {

124 if (! mxIsDouble(prhs [4]) || mxIsComplex(prhs [4]))

125 mexErrMsgTxt("Input 5 (filter state) must be an array of double.");

126 if (nft != mxGetM(prhs [4]))

127 mexErrMsgTxt("Number of rows in state array must be equal with the number of taps");

128 if (nch != mxGetN(prhs [4]))

129 mexErrMsgTxt("Number of columns in state array must be equal with the number of channels");

130 istate = mxGetPr(prhs [4]);

131 }

132 /* Input 6: initial phase */

133 if (nrhs > 5) {

134 if (! mxIsDouble(prhs [5]) || mxIsComplex(prhs [5]) || mxGetM(prhs [5])* mxGetN(prhs [5]) != 1)

135 mexErrMsgTxt("Input 5 (initial phase) must be a real scalar.");

136 iphase = mxGetPr(prhs [5]);

137 }
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138

139 /* Output 1: output samples array */

140 plhs [0] = mxCreateDoubleMatrix(nos , nch , mxREAL );

141 dout = mxGetPr(plhs [0]);

142 /* Output 2: final state vector */

143 plhs [1] = mxCreateDoubleMatrix(nft , nch , mxREAL );

144 state = mxGetPr(plhs [1]);

145 /* Output 3: final phase */

146 plhs [2] = mxCreateDoubleMatrix (1, 1, mxREAL );

147 phase = mxGetPr(plhs [2]);

148

149 /* Copy state and phase */

150 for (i = 0; i < nft*nch; i = i+1) {

151 state[i] = (nrhs > 4) ? istate[i] : 0;

152 }

153 phase [0] = (nrhs > 5) ? iphase [0] : 0;

154

155 /* call the actual resampling routine */

156 resample(din , nis , nch , dout , nos , coeff , nph , nft , step , state , phase);

157 }





Appendix D.

Disk Contents

This appendix describes the contents of the disk that accompanies the present dissertation.
The disk contains the following directories:

• Biblio: cited articles, in PDF format, including the referenced IEEE and ETSI standards

• Code: C/C++/SystemC, Matlab, and VHDL code produced during this research work

• Papers: published conference papers

• Thesis: publication version of the thesis in PDF format and defense presentation in
Powerpoint format

• Students: supervised student theses

• Visio: drawings for the dissertation in Visio format

The subdirectory directory Code/C contains the following: 1) C++ code for the modeling of
the Doppler taps generators used in the channel simulator Channel simulator, and 2) SystemC
code for the simulation of the Viterbi decoder. The subdirectory Code/Matlab contains classes
and functions used for various simulations throughout this dissertation. Because of the object-
oriented features employed, at least Matlab 2007a is required in order to execute the code.
The subdirectory Code/VHDL contains VHDL code for the hardware modeling of the following
blocks: CORDIC rotator, FFT (pipelined and sequential), and Viterbi decoder (state serial
and parallel), as well as various other small blocks, such as LFSR, FIFO, sine ROM, etc.
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[103] T. Murgan, A. Garćıa Ortiz, M. Petrov, and M. Glesner. A stochastic framework for
communication architecture evaluation in networks-on-chip. In Proc. IEEE Intl. Symp. on
Signal, Circuit and Systems (ISSCS), volume 1, pages 253–256, Iasi, Romania, July 2003.
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ubiquitäres Rechnen in der Informationstechnik”

11.2005 – 06.2007 Systemingenieur bei Micronas GmbH Villach, Österreich
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