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Abstract

Networks have become a general concept to model the structure of arbitrary rela-

tionships among entities. The framework of a network introduces a fundamentally

new approach apart from ‘classical’ structures found in physics to model the topol-

ogy of a system. In the context of networks fundamentally new topological effects

can emerge and lead to a class of topologies which are termed ‘complex networks’.

The concept of a network successfully models the static topology of an empirical

system, an arbitrary model, and a physical system. Generally networks serve as a

host for some dynamics running on it in order to fulfill a function. The question of

the reciprocal relationship among a dynamical process on a network and its topology

is the context of this Thesis.

This context is studied in both directions. The network topology constrains or

enhances the dynamics running on it, while the reciprocal interaction is of the same

importance. Networks are commonly the result of an evolutionary process, e.g.

protein interaction networks from biology. Within such an evolution the dynamics

shapes the underlying network topology with respect to an optimal achievement

of the function to perform. Answering the question what the influence on a dy-

namics of a particular topological property has requires the accurate control over

the topological properties in question. In this Thesis the degree distribution, two-

point correlations, and clustering are the studied topological properties. These are

motivated by the ubiquitous presence and importance within almost all empirical

networks. An analytical framework to measure and to control such quantities of

networks along with numerical algorithms to generate them is developed in a first

step. Networks with the examined topological properties are then used to reveal

their impact on two rather general dynamics on networks. Finally, an evolution of

networks is studied to shed light on the influence the dynamics has on the network

topology.



Zusammenfassung

Netzwerke stellen einen allgemeinen Ansatz dar, die Struktur von beliebig miteinan-

der verknüpften Einheiten zu modellieren. Das Konzept eines Netzwerkes ermöglicht

die Abbildung von Strukturen, die sich grundlegend von ,klassischen‘ Strukturen

aus der Physik unterscheiden. So können durch Netzwerke neue topologische Ef-

fekte entstehen, welche eine besondere Klasse von Netzwerken darstellen und auch

,komplexe Netzwerke‘ genannt werden. Im Allgemeinen modelliert ein Netzwerk die

statische Topologie eines empirischen Systems, eines beliebigen Modells und eines

physikalischen Systems. Im Gegensatz dazu ist eine auf dem Netzwerk ablaufende

Dynamik verantwortlich für die Verrichtung einer Funktion des Netzwerkes. Der

Zusammenhang von Topologie und Dynamik eines Netzwerkes ist Thema dieser Ar-

beit.

Die Topologie eines Netzwerkes bedingt die Eigenschaften einer darauf ablaufen

Dynamik. Gleichzeitig aber beeinflusst die Dynamik die zugrunde liegende Topolo-

gie, da Netzwerke wie z.B. biologische Protein-Interaktionsnetzwerke das Resultat

eines evolutionären Prozesses darstellen. Eine solche Netzwerkevolution wirkt auf die

Topologie des Netzwerkes durch Selektion auf Basis der Dynamik. Die aufgeworfene

Fragestellung bedingt folglich auch eine reziproke Untersuchung. Voraussetzung

für eine Analyse des Einflusses von topologischen Eigenschaften auf einen dynamis-

chen Prozess ist die präzise Kontrolle über die untersuchten Eigenschaft der Netz-

werktopologie. In dieser Arbeit wird der Einfluss der Gradverteilung, Zweipunkt-

korrelationen und Clustering studiert. Diese Netzwerkeigenschaften sind durch die

Präsenz in praktisch allen empirischen Netzwerken motiviert. Zunächst wird eine

analystische Beschreibung dieser topologischen Eigenschaften eingeführt, sowie nu-

merische Verfahren zur Erzeugung solcher Netzwerke vorgestellt. Daraufhin werden

Netzwerke mit den fraglichen Eigenschaften genutzt, um ihre Wirkung auf zwei

generische Dynamiken zu verstehen. Zur Analyse der Einflußnahme der Dynamik

auf die Topologie eines Netzwerkes, wird eine durch die Dynamik getriebene Netzw-

erkevolution untersucht.
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1 Introduction

Motivation Networks have become an integral part of almost all areas of today’s

modern societies. With the growing dependence of our very being on networks, the

need to maintain them is a vital task for ourselves. One of the most obvious and

prominent examples is the Internet [Albert et al., 1999, Barabási & Albert, 1999,

Pastor-Satorras & Vespignani, 2004]. It is designed to maintain functioning under

attacks against participating computers. Cohen et al. [2000] have shown that a fail-

ure of almost all computers is necessary to disintegrate the Internet in case these

are attacked by random targeting. If, on the other hand, these attacks are targeted

against the most important computers, those which have the most connections, a

fraction of only a few percent is sufficient to disintegrate the Internet, revealing the

Achilles heel of empirical networks. The current bank crisis demonstrates the devas-

tating consequences to the financial contacts network if major banks fail or abandon

contacts towards others due to distrust. This fragility and robustness emerges simul-

taneously from the topology of networks, which is captured by statistical measures of

the network structure. Defining a network as a set of nodes with connections among

these nodes, then every node in the network has a distinct number of connections

it is assigned to. This number is called the degree k of a node and is statistically

described by the degree distribution P (k). This distribution gives the probability

to draw a random node from a network with a particular degree k. Analytically,

it turns out that the fraction of nodes required to disintegrate a network under

random attacks, scales with the second moment of the degree distribution. In the

case of the Internet, the functional form of the degree distribution P (k) follows a

power-law, P (k) ∝ k−γ , with a scaling exponent γ in the range of 2 − 3, mean-

ing a diverging second moment. Networks with a degree distribution following a

power-law are termed ‘scale-free networks’. In recent years, networks have become a

general concept across many scientific fields to model relationships among entities.

To the very surprise, most of these networks share the scale-free property. Networks

as different as social networks like the collaboration networks of scientists or actors,

technological networks such as power grids, Internet and transportation networks,

and even biological systems such as protein interaction patterns [Albert & Barabási,

2002, Newman, 2003b] fall into the category of scale-free networks. Along with the

ever increasing size and number of networks identified, the need to understand the

1



1 Introduction

topology of networks is becoming indispensable. Nevertheless, in general a network

has to fulfill some function as it serves as a host for some dynamics taking place on

the network. The inter-relationship of the topology of a network and a dynamical

process taking place on it, which only rather recently became the focus of scientific

interest, is the guiding question of this Thesis.

Complex Networks The striking importance of a particular topology of a physi-

cal system manifests in the existence of critical exponents, grouping vastly different

physical systems into universality classes. These depend in general on the dimen-

sionality, symmetries and very few further system properties. The idea of a network

dramatically enhances the classical concept of topologies found in physics. Regu-

lar lattices and even fractal topologies can naturally be mapped onto a network.

However, the concept of a network is much more general and can even produce com-

plex dynamics solely due to its topology. A fundamentally new feature especially

of scale-free networks is the absence of a characteristic scale for the degree of each

node. Another remarkable property, inherent to many empirical networks, is the

small-world characteristic [Watts & Strogatz, 1998]. It refers to the fact that the

average distance from any node to any other node in a network scales as lnN , with

N being the number of nodes in the network. In the case of scale-free networks

with a scaling exponent γ < 3, Cohen & Havlin [2003] even proved a scaling of the

average node to node distance of ln lnN .

Altogether, the concept of networks includes complex topologies which display

fundamentally new features. As these features emerge from the interplay of many

simple entities, a fingerprint of complex behavior, the term complex networks has

formed. The strong consequences of complex network topologies for dynamics taking

place on such a complex network are subject to current research [Albert & Barabási,

2002, Dorogovtsev & Mendes, 2002, Newman, 2003b].

One of the first analytical results was obtained for dynamics on a network with an

arbitrary degree distribution for the much celebrated Ising model [Dorogovtsev et al.,

2002, 2005b]. The major observation is a diverging critical magnetization temper-

ature Tc if the second moment of the degree distribution diverges. This divergent

second moment of the degree distribution causes a strong heterogeneity in the distri-

bution of degrees and seems to be the cause for many features of complex networks.

It is as well the reason for the absence of an epidemic threshold in case of disease

spreading [Ahn et al., 2006, Boguñá et al., 2003, Boguñá et al., 2003, Gross et al.,

2006], which means that a disease will always persist on a scale-free network. Many

further examples of the strong impact by the degree distribution of a complex net-

work on dynamical processes are known to date [Gomez-Gardenes et al., 2007a,b,

Newman, 2003b, Nowak et al., 2004, Watts & Strogatz, 1998].

2



Current Research In 1999 Barabási & Albert studied the topology of the Inter-

net and observed the power-law form of its degree distribution, forming the term

‘scale-free network’. Along with this observation, the authors proposed the famous

mechanism of preferential attachment as an explanation for the scale-free network

topology. The mechanism is based on the idea that a network is constantly grow-

ing such that new nodes are added to the existing network by preferentially link-

ing to existing nodes with a high degree in each time-step. Analytical results by

Dorogovtsev et al. [2001] prove that the resulting degree distribution is stationary

and has a power-law form with a scaling exponent γ = 3. Barabási & Albert were

not the first to discover this basic principle of preferential attachment published in

1999. Yule [1925] introduced this concept already in much earlier. Even though,

Barabási & Albert triggered an avalanche of following papers. Initially, the scientific

community focused on a better description of networks, resulting in a much improved

characterization of large-scale networks. The new observables introduced unraveled

many abnormalities of empirical networks in comparison to random networks. Be-

sides the degree distribution and the small-world feature, empirical networks display

two-point degree-degree correlations [Newman, 2002], and have a high density of tri-

angles [Newman, 2003a] which are loops of length 3. The two-point degree-degree

correlations are defined by the edges of a network which associate vertices of differ-

ent degrees. While many empirical networks share the scale-free property, two-point

correlations are capable to group networks into distinct classes [Newman, 2003b].

For example, most biological networks have negative two-point correlations, tech-

nological networks are almost free of two-point correlations, and social networks

usually display a strong positive two-point correlation structure. This categoriza-

tion is an unexplained fact up to date. Apart from correlations Song et al. [2005]

were able to apply renormalization to networks, showing that some networks have

a fractal topology.

With the increasing knowledge about the topology of networks and the defini-

tion of topological measures, the interest in the impact of these mostly statistical

measures on dynamics on networks increased. So far analytical results are almost

exclusively available for the case of an uncorrelated network topology, which is a

first step. Numerical methods are used far more frequent in the literature. However,

as the field of complex networks is a very young discipline, there are no common

standards yet and some results assumed to be correct at publication time turned

out to have flaws. A major source of shortcomings roots in the loose definition of a

scale-free network. Many publications use some variant of the preferential attach-

ment scheme proposed by Barabási & Albert to investigate the effects of a scale-free

degree distribution on some dynamics. This class of network is referred to in the

literature as Barabási-Albert networks and has for a long time been the defacto stan-

3



1 Introduction

dard network for the investigation of scale-free networks. A closer look at this class

of networks reveals that preferential attachment produces very particular networks

with very specific topological features, having non-trivial side-effects. An alternative

construction scheme for networks is the configuration model. It is based on the idea

to construct a network from a random degree sequence following a desired degree

distribution [Bollobas, 1980, Molloy & Reed, 1995]. This method is limited to gen-

erate uncorrelated networks and even though it seems very obvious to implement, it

is rather involved to generate uncorrelated networks correctly, especially in the most

interesting case of scale-free networks. The problem of intrinsic degree correlations

arises if one does not limit the maximal degree in the degree distribution one wants

to attain within the finite network to construct.

Studied Questions The central question of this Thesis is the influence of a complex

network topology on a dynamical process on such a network. In general, empirical

networks have to fulfill functions, realized by some dynamics running on the network.

Assuming that these networks have evolved over time into their current state while

optimizing their topology with respect to their function, it is important to note that

the dynamical process also influences the topology of a network. To shed light on

this general inter-relationship, it is, as a first step, necessary to understand in detail

a dynamical process running on a network. In view of the special features scale-free

networks exhibit and their frequent observation in empirical networks, it is apparent

to study this class of networks. As two-point correlations are very important for

empirical networks and even seem to be a general measure to categorize them, I

systematically investigated the influence of two-point correlations on the dynamical

processes. While these investigations are performed to some extent analytically for

uncorrelated networks, I have done these with the help of numerical simulations in

the case of correlated networks. There was no reliable method available to systemat-

ically study the influence of two-point correlated scale-free networks in a controlled

manner. To do so, I introduced an analytical framework along with an algorithm to

generate such two-point correlated networks, which was required as an initial step.

To study further the influence of dynamics on a topology, I performed as a second

step an evolution with respect to a suitable fitness criteria bound to some aspects

of the dynamics.

The first dynamical system investigated here belongs to the class of reaction-

diffusion processes. These have a stochastic and a deterministic part, capturing

the principle characteristics of a large class of dynamically equivalent processes. In

particular the diffusion-annihilation process of two species has been studied. It is

described by the stoichometric reaction equation A + B → ∅. A second dynam-

ical process from game theory, the Prisoner’s Dilemma game, is examined. This

4



dynamical process is ruled by much stronger deterministic mechanisms. Besides, it

captures the fascinating question of how cooperation can sustain in a society. As

this dynamical process is known to have a property similar to frustration in Ising

spin systems of antiferromagnets, the influence of the triangle density is considered

as well for this process.

Thesis Outline This Thesis is organized in three major chapters. Every chapter

starts with a short overview and ends with a conclusion, summarizing the results

obtained.

The following chapter introduces the analytical description of networks, including

observables used to measure topological properties. The subsequent section presents

the analytical framework along with a short description of the algorithms used to

generate the networks for the numerical investigations. These include a method-

ology to generate two-point correlated networks which is already published by us,

Weber & Porto [2007], and further work by Andreas Pusch, who collaborated with

me as a diploma student and developed an algorithm to control the triangle density

within a network on top of two-point correlations, appeared as Pusch et al. [2008a].

This is followed by a thorough discussion of finite networks, since finite-size effects

are of great importance for the study of scale-free networks.

The next chapter presents the dynamical processes studied here, a reaction-

diffusion and the Prisoner’s Dilemma. The major results for the diffusion-annihilation

process concerning the analytical part on uncorrelated networks [Weber & Porto,

2006], and regarding the numerical analysis of two-point correlations [Weber et al.,

2008], are already published in the literature. The findings about the cumulative

payoff version of the Prisoner’s Dilemma game were worked out by Andreas Pusch in

collaboration with me and are likewise published by Pusch et al. [2008b]. A publi-

cation concerning the efficiency ruled Prisoner’s Dilemma is currently in preparation

[Weber & Porto, 2008a].

The subsequent chapter treats the question, how dynamics interact with a topol-

ogy. Performing this in the framework of evolution, network mutation schemes and

fitness measures are introduced as a first step. The results regarding the network

mutation schemes are arranged for a publication in the near future [Weber & Porto,

2008b]. Consequently, the mutation schemes are applied to an evolution of the two

dynamical processes considered here.

The Thesis closes with an overall conclusion and discussion. The Appendix covers

details about analytical derivations, the numerical algorithms used to generate the

networks and the simulation schemes of the dynamical processes.

5
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2 Structure of Complex Networks

In mathematics graph theory describes the structure and properties of networks.

Within this framework, graphs are defined as a set of vertices and a set of edges.

Each edge connects two vertices and may be directed or undirected, depending on

the type of graph. The seminal work in this field by Erdős & Rényi [Erdős & Rényi,

1959, 1960, 1961] concentrated on graphs which are random in the sense that two

vertices were connected by an edge with a certain probability p, resulting in graphs

with a Poissonian degree distribution. Since then, many further models of random

graphs have been proposed [Barabási & Albert, 1999, Dorogovtsev & Mendes, 2002,

Watts & Strogatz, 1998, Xulvi-Brunet & Sokolov, 2004].

This Thesis focuses on networks with a scale-free degree distribution with con-

trolled two-point correlations. If applicable, the density of triangles is being adjusted

as well. In view of the dynamics to perform, these networks must fulfill a few physi-

cal requirements such that they are undirected (i), do not have neither any multiple

connections among two distinct vertices (ii) nor any self-connections (iii) and have

to consist of only one connected component (iv).

Within the first section, an analytical description of networks is introduced along

with measures used in this Thesis which statistically describe large-scale networks.

The subsequent section provides the theoretical framework along with the principle

ideas behind the algorithms used to generate the networks within the numerical

simulations. This is followed by a discussion of finite-size effects which are very

important in the context of scale-free networks. Numerical simulations and every

empirical network are affected by their inherent finite size, limiting every power-law

degree distribution to some cut-off scale.

2.1 Network Description

An undirected network consisting of N nodes or vertices is defined by its N × N
adjacency matrix aij . Requiring the absence of multiple- and self-connections, this

7



2 Structure of Complex Networks

matrix is a traceless, symmetric matrix and defined by

aij =







1 vertex i is connected to vertex j

0 otherwise
. (2.1)

Statistical observables concerning the topology of networks and some of their most

important properties used throughout this Thesis are presented below.

Degree k. The number of edges leaving a vertex is called its degree k.

Degree distribution P (k). The distribution of all degrees found in a network is

termed the degree distribution P (k). It represents the probability to select a

random vertex with a given degree k. Averages calculated with respect to the

degree distribution P (k) will be noted by · such that the mean degree of a

network is given by k =
∑

k k P (k).

Edge end distribution Pe(k). Each edge in a network can be thought of being as-

sembled by two edge ends which are themselves assigned to distinct vertices.

Drawing an edge end is equivalent to randomly select an edge and then select

at random one of the two vertices which are connected by the drawn edge. A

vertex of degree k therefore has exactly k edge ends connected to it. From

this it follows that the degree distribution P (k) and the edge end distribution

Pe(k) are related such that

Pe(k) = P (k)
k

k
. (2.2)

Averages with respect to the edge end distribution Pe(k) are denoted by 〈 · 〉
and have to be carefully distinguished from former averages with respect to

the degree distribution.

Joint degree distribution P (j, k). Two-point correlations are statistically encoded

by the joint degree distribution P (j, k). It measures the probability to draw a

random edge from a network with edge ends of degree j and degree k simulta-

neously. Important properties are the symmetry under arguments exchange,

P (j, k) = P (k, j), and the relation

Pe(k) =
∑

j

P (j, k) (2.3)

to the edge end distribution. In the special case of no correlations, the joint

degree distribution Puc(j, k) function factorizes into a product of the edge end

distributions

Puc(j, k) ≡ Pe(j)Pe(k). (2.4)

8



2.1 Network Description

Closely related to the joint degree distribution is the conditional degree distri-

bution P (j|k) which is derived straightforward from the joint degree distribu-

tion,

P (j|k) =
P (j, k)

Pe(k)
. (2.5)

Two-point correlation function f(j, k). A convenient, alternative representation

of two-point correlations is given by the correlation function [Song et al., 2006]

f(j, k) ≡
P (j, k)

Puc(j, k)
, (2.6)

relating the joint degree distribution to the uncorrelated case. Values different

from 1 indicate the presence of two-point correlations.

Average nearest neighbor degree knn(k). The last two measures are rather com-

plex functional objects and not very intuitive. A coarse-grained view is given

by the average nearest neighbor function

knn(k) ≡
∑

j

j P (j|k). (2.7)

This function represents the average degree a vertex with fixed degree k has in

its neighborhood. An interesting property to note is the relation arising from

averaging Eq. (2.7) with respect to Pe(k),

〈knn(k)〉 = 〈k〉, (2.8)

which is a generally valid relation. A network is said to have (dis-)assortative

two-point correlations if the average nearest neighbor function knn(k) is a

monotonously (de-)increasing function.

Newman factor r. Newman [Newman, 2002] found a way to quantify the overall

two-point correlations in a network with a scalar value. The Newman factor

r ≡
1

σ2
e

∑

j,k

jk [P (j, k)− Pe(j)Pe(k)] (2.9)

is the Pearson correlation coefficient of degrees from vertices connected by

edges. The Newman factor is normalized to fall in the range of [−1, 1]. A pos-

itive (negative) value corresponds to an (dis-)assortative two-point correlation

structure.
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2 Structure of Complex Networks

Clustering c. A general treatment of three-point correlations is rather involved.

Instead, it is common to concentrate on triangles which are a special form of

three-point correlations. A triangle is made up of 3 vertices which are mutually

connected to form a loop. Clustering refers to this special form of loop. The

clustering coefficient

ci ≡
2 Ti

ki (ki − 1)
(2.10)

for vertex i was originally defined by Watts & Strogatz [1998]. Here, Ti de-

notes the number of triangles passing through vertex i which is normalized to

the maximal number of possible triangles. It is common use to average this

quantity over the set V(k) of vertices with the same degree k, yielding the

degree dependent clustering coefficient

c(k) ≡
2

k (k − 1)P (k)N

∑

i∈V(k)

Ti. (2.11)

2.2 Randomized Networks

This Thesis concentrates on scale-free networks which have a power-law degree dis-

tribution

P (k) ∝ k−γ (2.12)

and are random with respect to all other properties besides two-point correlations

and clustering which are controlled by tunable parameters.

Random networks consist in general out of multiple components which are dis-

connected and of varying size. If the degree distribution fulfills the condition

k2 − 2 k > 0⇔
k2

2 k
> 1, (2.13)

a largest component forms [Molloy & Reed, 1995]. The largest component scales

with the system size N and contains usually the major fraction of nodes within a

network. For the case of scale-free networks the condition (2.13) translates into

k2

2 k
=

1

2

∣
∣
∣
∣
∣

γ − 2

γ − 3

∣
∣
∣
∣
∣
×







N 1 < γ < 2

kγ−2
min N

3−γ 2 < γ < 3

kmin γ > 3

. (2.14)

Throughout this Thesis the scaling parameter γ has been set within the range [2, 4],

motivated by real-world networks. To ensure that the largest component always

spans almost the whole network, the minimal degree kmin is set to 2 in all numerical

simulations.
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2.2 Randomized Networks

2.2.1 Uncorrelated Networks

This class of networks is widely used for analytical calculations as it allows for many

simplifications within analytics. The key property of an uncorrelated network is the

product form of the joint degree distribution

P (j, k) = Puc(j, k) = Pe(j)Pe(k). (2.15)

As a consequence, the average nearest neighbor function knn(k) becomes independent

of k (by Eq. (2.8) equal to 〈k〉) and the Newman factor r vanishes. The configura-

tion model (CM) [Bollobas, 1980, Molloy & Reed, 1998] is the standard algorithm

to generate networks with a fixed degree distribution. The idea is to construct a

network from an a priori given degree sequence which is drawn from the desired

degree distribution P (k). This degree sequence is then transformed into a discrete

representation of the edge end distribution Pe(k). Edges are formed by drawing

two edge ends from this set which are subsequently joined to connect the respective

vertices. Consecutively, the two edge ends are removed from the set. Since the

two draws of edge ends are independent, the resulting probability of a connection

being formed is exactly equal to Pe(k)Pe(j). However, due to the restriction of a

simple graph, meaning the absence of self- and multiple-connections, some of the

sampled edges have to be neglected, causing intrinsic degree correlations to arise.

These intrinsic correlations emerge in particular in the case of scale-free networks

as they are bound to finite-size effects due to the maximal degree kmax in a finite

scale-free network. The choice of the maximal degree kmax turns out to be quite pe-

culiar in the generation of a scale-free network [Catanzaro et al., 2005b]. Generated

networks become two-point correlated in an uncontrolled manner if the scaling of

the maximal degree kmax with the system size N is inappropriate. This makes an

in-depth treatment of finite-size effects necessary as presented in Sec. 2.3.

2.2.2 Two-Point Correlated Networks

In contrast to uncorrelated networks, two-point correlated networks have a joint

degree distribution deviating from the simple product form. An algorithm to gen-

erate networks numerically with an a priori fixed joint degree distribution P (j, k)

and being random in respect to all other properties has been introduced by my-

self [Weber & Porto, 2007]. The idea is to draw edges in a two-step sampling

scheme. The joint degree distribution fixes subsequent distributions (P (j|k), Pe(k),

and P (k)), such that some considerations, which are discussed below, have to be

made in order to specify a priori a scale-free degree distribution besides two-point

correlations. In analogy to the CM algorithm, an edge end is drawn at first with

11



2 Structure of Complex Networks

respect to the corresponding edge end distribution Pe(k) while the second edge end

is drawn with weights according to the conditional degree distribution P (j|k). This

results in a distribution of edges according to Pe(k)P (j|k) which is exactly equal to

the joint degree distribution P (j, k). The major challenges for a numerical imple-

mentation are the strong discretization effects and the extremely small probabilities

which arise especially in the case of scale-free networks. A detailed description of

the algorithm, which solves these problems, can be found in Appendix A.2.1. The

algorithm generates networks of arbitrary joint degree distribution P (j, k) with very

high accuracy and efficiency.

Controlling two-point correlations in a network while fixing the degree distribution

to a particular functional form has strong implications for the joint degree distri-

bution P (j, k) or equivalently for the correlation function f(j, k). A formalism to

allow the two-point correlations to be tuned by some parameter with an a priori

fixed degree distribution P (k) is required.

In a first step, inter-relationships among the introduced quantities from Sec. 2.1

are calculated. These help to find an adequate control parameter for the two-point

correlations. From the definition of the Newman factor (2.9) the relation to the

correlation function (2.6) follows directly to be

rσ2
e = 〈jk (f(j, k)− 1)〉j,k = 〈jk f(j, k)〉j,k − 〈k〉

2 . (2.16)

By the notation 〈·〉j,k the average with respect to Pe(k) is to be taken over the indices

j and k simultaneously. The correlation function f(j, k) is also tightly connected to

the average nearest neighbor function knn(k). Using that the conditional probability

P (j|k) is equal to P (j, k)/Pe(k) = Pe(j) f(j, k), the definition of Eq. (2.7) turns into

knn(k) = 〈j f(j, k)〉j . (2.17)

Multiplying the average nearest neighbor function knn(k) with k Pe(k) and summing

over all k, results in

〈k knn(k)〉 = 〈jk f(j, k)〉j,k , (2.18)

which yields, substituted into Eq. (2.16),

rσ2
e = 〈k knn(k)〉 − 〈k〉2 . (2.19)

From the constraint of a given degree distribution P (k) it follows that an integration

over either argument of the joint degree distribution P (j, k) has to be equal to the

corresponding edge end distribution Pe(j) (or Pe(k)). Thus, the correlation function

f(j, k) has to fulfill the condition,

Pe(k) =
∑

j

P (j, k) = Pe(k) 〈f(j, k)〉j , (2.20)

12



2.2 Randomized Networks

which means

〈f(j, k)〉j = 1 . (2.21)

The considerations so far are general. To control two-point correlations within the

network, an explicit correlation function f(j, k) is needed, which has the property

of Eq. (2.21), and produces a joint degree distribution which has a given average

nearest neighbor function knn(k). A simple ansatz for the correlation function is

f(j, k) = 1 + h(j) h(k) . (2.22)

This functional form may be understood as a series expansion of first order, fulfilling

the necessary symmetry property that the correlation function is constant under

exchange of indices j and k. Plugging this ansatz into Eq. (2.17) produces

knn(k) = 〈k〉+ 〈j h(j)〉 h(k) , (2.23)

which means that

h(k) =
knn(k)− 〈k〉

〈j h(j)〉
. (2.24)

The constant 〈j h(j)〉 can easily be calculated by multiplying Eq. (2.24) with k Pe(k)

and summing over all k. Rearranging the terms then yields

〈k h(k)〉 =
√

〈k knn(k)〉 − 〈k〉2 =
√

rσ2
e . (2.25)

Finally, the correlation function f(j, k) has the form

f(j, k) = 1 +
1

r

(knn(j)− 〈k〉) (knn(k)− 〈k〉)

σ2
e

. (2.26)

Employing condition (2.21) to the ansatz in Eq. (2.22) gives

〈h(j)〉 = 0 . (2.27)

This property is consistent with the functional form of h(k) in Eq. (2.24), since the

average of h(k) over k with respect to the edge end distribution Pe(k) yields zero by

usage of Eq. (2.8) (〈knn(k)〉 = 〈k〉). Furthermore, Eq. (2.8) helps to construct valid

average nearest neighbor functions knn(k) with an arbitrary functional dependence

on the degree k. Taking a sufficiently smooth and positive weighting function g(k),

the corresponding knn(k) compatible with Eq. (2.8) is then

knn(k) =
〈k〉

〈g(k)〉
g(k) . (2.28)

However, the resulting correlation function f(j, k) is still constrained by even further

conditions [Boguñá et al., 2004, Dorogovtsev et al., 2005a, Lee et al., 2006]. For ex-

ample, the ratio rj,k as introduced by Boguñá et al. [2004] is defined as the actual

13



2 Structure of Complex Networks

number of connections Ej,k (= P (j, k)k̄N) divided by the maximal number of con-

nections mj,k among the degree classes j and k. For networks without multiple edges

this ratio is given by

rj,k =
Ej,k
mj,k

=
P (j, k)

min{Pe(j), Pe(k), k̄N Pe(j)Pe(k)/jk}
. (2.29)

This ratio must always be in the range between 0 and 1 for all valid degree classes

j and k present in the network,

0 ≤ rj,k ≤ 1 ∀ j, k ∈ [kmin, kmax]. (2.30)

From this condition the admissible degree range [kmin, kmax] becomes dependent on

the details of the correlation function f(j, k). An average nearest neighbor function

knn(k) suitable to easily tune two-point correlations and being compatible with the

above requirements, turns out to be

knn(k) ∝ exp

[

lnα
(

1 +
k

kmin

)]

. (2.31)

This functional form introduces the two-point correlation parameter α, making the

strength of two-point correlations tunable with a single scalar. A value of α = 0

corresponds to an uncorrelated two-point correlation structure while α > 0 (α < 0)

will result in (dis-)assortative network topologies.

2.2.3 Two-Point Correlated Networks with Clustering

The triangle densities within many empirical networks have been found to be much

larger than one would expect from random graph theory. Interestingly, Dorogovtsev

[2004] proved that clustering within random networks with a prescribed joint de-

gree distribution P (j, k) is a finite-size effect, disappearing in the thermodynamic

limit. Nevertheless, triangles are still important due to their relevance in empirical

networks. Since clustering is a special form of three-point correlations, it is ruled

by the two-point correlation structure of a network. This has been pointed out by

Serrano & Boguñá [2005], who published an algorithm being capable to generate

uncorrelated networks with a prescribed degree distribution and tunable degree de-

pendent clustering. Building on these ideas, the diploma student Andreas Pusch

implemented an enhanced algorithm in collaboration with me, allowing to fix a

priori the two-point correlations by the joint degree distribution P (j, k) and the

degree dependent clustering c(k). The rather involved algorithm is presented in

Appendix A.2.2.
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2.3 Finite Scale-Free Networks

Analytical calculations from Serrano & Boguñá show that the density of triangles

is limited by the joint degree distribution P (j, k) of a network, resulting in an upper

limit λ(k) for the degree dependent clustering function c(k). Since an edge which

connects vertices i and j with respective degrees ki and kj cannot be part of more

triangles than min(ki, kj)− 1, the number of triangles is constrained for any vertex

i in the network by

Ti ≤
∑

j

aij [min(ki, kj)− 1]. (2.32)

From this, the upper limit λ(k) is obtained by averaging Eq. (2.32) over vertices of

the same degree k, which yields

λ(k) = 1−
1

k − 1

k∑

j=1

(k − j)P (j|k) ≥ c(k). (2.33)

This function always decreases with increasing values of k and is strongly dependent

on the functional form of the average nearest neighbor function knn(k). With this

upper bound λ(k), the degree dependent clustering c(k) can be rewritten in terms

of an effective degree dependent clustering ceff(k),

c(k) = ceff(k)λ(k). (2.34)

The range of ceff(k) is bound to the interval [0, 1]. For simplicity, only clustered

networks with a constant effective degree independent clustering

ceff(k) = µ (2.35)

are considered in this Thesis.

2.3 Finite Scale-Free Networks

Analytical results on the impact of an arbitrary degree distribution, with special fo-

cus on a scale-free degree distribution, on some dynamical process on such a network

are commonly calculated in the thermodynamical limit (N →∞). In addition, it is

common use to assume some network ensemble on which the results are valid. This

discards the effects of discretization and finite-size, two major effects every finite

network is subject to.

To illustrate how strongly these two issues affect finite scale-free distributions,

Fig. 2.1 shows the frequency distribution of a sample with size N = 104 which

was drawn in respect to a scale-free degree distribution with a scaling exponent of

γ = 2.5. The frequency distribution is, in contrast to the degree distribution, not
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Figure 2.1: Sampled frequency distribution of a scale-free distribution with scaling

exponent γ = 2.5.
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Figure 2.2: Cumulative degree distribution of a sampled scale-free distribution with

a scaling exponent γ = 2.5 without limiting the maximal degree kmax

(square) and with a maximal degree of kmax = 102 (circle).
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2.3 Finite Scale-Free Networks

normalized to the total number of vertices N and is also referred to as a histogram.

If normalized and for infinite system size, the degree distribution and the frequency

distribution become equal. For finite systems, the minimal probability for the degree

distribution is 1/N while the minimal frequency is 1, making the latter better suited

to represent a single sample. The discretization effects are most visible for large

degrees k, since the minimal frequency is 1. However, by comparing to the reference

line with a slope of −2.5 in light gray, the deviations for small degrees k are apparent

as well. These discretization effects are introduced by the fact that degrees are

always integer numbers. It should be stressed that much of the literature uses

such a frequency plot to estimate the scaling parameter of an empirical network.

A least squares fit, also shown in Fig. 2.1 as solid black line, underestimates the

scaling parameter. This point has recently been brought up by Li et al. [2006].

Li et al. emphasize the importance of using a cumulative density distribution (CDD),

presented in Fig. 2.2,

P (j ≥ k) =
∞∑

k′=k

P (k′). (2.36)

The CDD does not suffer from most of the problems a frequency distribution is

inherently bound to. An estimation of the scaling parameter using the CDD is

much more reliable for various reasons. It is much more robust with respect to

variability and has the major advantage that no binning is necessary, a common

source of many mistakes. The light gray reference line in Fig. 2.2 demonstrates these

advantages as the observed discretization effects are much less apparent. However,

the sample shown by squares has been drawn without a restriction on the largest

possible degree kmax. This is, for various reasons, not applicable for the numerical

generation of scale-free networks with defined two-point correlations as explained

below. Limiting the range of drawn degrees within the sample to values lower than

102 (circle), reveals an exponential cut-off in the CDD which is apparently bound to

any finite system and can be observed for the sample with no upper limit (square) as

well, only much weaker. These considerations underline the use of large ensembles

and careful inspection of results with respect to variability.

Since the realization probability for large degrees k decreases quite rapidly even

for a scale-free degree distribution, it is necessary to limit the maximal degree kmax

within a finite network ensemble to prevent large fluctuations within the realized

degree sequences. Cohen et al. [2000] introduced such so-called natural cut-off

knatural

max ∝ N1/(γ−1), (2.37)

which is defined by the condition that the CDD of the scale-free degree distribution

is equal to 1/N . It is important to emphasize that this cut-off is by no means induced

by the topology of the complex network.
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Figure 2.3: Normalized average nearest neighbor function knn(k)/〈k〉 for an uncorre-

lated scale-free graph with a scaling exponent γ = 2.5 and the maximal

degrees kmax equals to knatural

max (circle), kstructural

max (square), and kensemble

max

(triangle). The size of the graph is N = 106 and the inset shows the

data for degrees k < 103 to increase sensitivity against the expected

value of 1 which is marked by a reference line.

Generating an uncorrelated scale-free network with such a cut-off for the maximal

degree k should yield an average nearest neighbor function which is for all degrees

k exactly equals to 〈k〉. Figure 2.3 shows the resulting average nearest neighbor

function knn(k) normalized to 〈k〉 for a scale-free network of size N = 106 with

a scaling exponent γ = 2.5 for different values of the maximal degree kmax. The

normalization is necessary to suitably compare the different average nearest neighbor

functions knn(k) since the constant 〈k〉 is dependent on the maximal degree kmax.

The natural cut-off is indicated by circles and reveals disassortativity within the

network which is confirmed by the Newman factor r = −0.01. It turns out that

in this regime of the scaling exponent γ, the natural cut-off is not compatible with

the condition of Eq. (2.30). The Eq. (2.30) can easily be used to determine the

so-called structural cut-off. In the case of scale-free networks, Eq. (2.29) reduces

for sufficiently large degrees j and k to rj,k = jk f(j, k)/kN and therefore defines

a maximal degree kmax at the upper bound for the ratio (rkmax,kmax
= 1). With

this criterion, one obtains, in the case of uncorrelated networks having a constant

correlation function f(j, k) = 1, the scale-parameter independent cut-off

kstructural

max ∝ N1/2. (2.38)
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2.3 Finite Scale-Free Networks

This is smaller than the natural cut-off for values of the scale-parameter in the range

2 < γ ≤ 3 . The result of applying this maximal degree in the example chosen above

is shown in Fig. 2.3, denoted by square symbols. While the difference to unity is

much improved in comparison to the former natural cut-off, the normalized average

nearest neighbor function knn(k)/〈k〉 still falls slightly below unity for large degrees.

Newer calculations by Dorogovtsev et al. [2005a] reveal that this structural cut-off is

still too large in that particular range of the scale-parameter γ and causes intrinsic

correlations to arise within otherwise uncorrelated networks without self- or multiple-

edges. Due to the maximal degree kmax being too large and the required constraints,

the vertices with large degrees k do have a tendency to connect preferentially with

low degree vertices which effectively yields unwanted disassortativity. The reason

for the failure of condition (2.30) in the case of scale-free networks with a scale-

parameter γ in the range (2, 3] can be seen in the strong fluctuations in the degree

distribution as only the first moment of the degree distribution P (k) is finite.

The approach taken by Dorogovtsev et al. is based on a statistical ensemble

ansatz. A canonical network ensemble is defined as the set of networks with a fixed

set of vertices and a fixed number of edges. The final networks are then the out-come

of an evolution process in which randomly chosen edges are removed and simulta-

neously added to pairs of vertices in the network. Each pair of vertices is chosen at

random with weights given by the product of a preferential function f(j) f(k) where

j and k are the degrees of the respective vertices. With the preferential function

f(k) = k+ 1− γ and beneath the critical temperature, the authors observe that the

degree distribution becomes scale-free. However, depending on the finiteness of the

second moment of the degree distribution, Dorogovtsev et al. find different cut-offs

of the degree range

kensemble

max =







N1/2 if γ > 3

N1/(5−γ) if 2 < γ ≤ 3.
(2.39)

The evolution process driving a network into this equilibrium network is, of course,

neither the same as constructing a network with the CM algorithm nor any other

algorithm used in this Thesis. The used algorithms fix a priori both, the number of

vertices and the number of edges just like the canonical network ensemble defined

by Dorogovtsev et al.. Thus, these algorithms can be interpreted to produce graphs

which are members of the canonical network ensemble below the critical tempera-

ture, since the algorithms used evidently yield random networks with the correct

degree distribution. Consequently, the ensemble maximal degree kensemble

max applies

equally to the numerically generated networks.

The considerations so far only cover the case of uncorrelated networks. However,

networks with a fast increasing average nearest neighbor function knn(k), as it can
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2 Structure of Complex Networks

arise in assortative networks, are much more sensitive to intrinsic degree correlations

than uncorrelated networks. Thus, a maximal degree kmax yielding uncorrelated

networks can still be too large if used in the context of assortative networks. An as-

sortative network requires that vertices with a large degree are preferably connected

to other vertices with a large degree, but it can happen that the vertices with the

largest degrees do not have sufficient vertices available with such a large degree due

to the interdiction of multiple- and self-edges. The average nearest neighbor func-

tion knn(k), presented in Eq. (2.31), accounts for this by logarithmically damping

the increase in knn(k) with increasing degree k. In effect, the average nearest neigh-

bor function can be used with a maximal degree as identified by [Dorogovtsev et al.,

2005a] with the maximal degree kmax = kensemble

max .

2.4 Conclusion

In summary, this chapter introduced the key measures used in this Thesis to char-

acterize the topology of the studied networks. An analytical framework allowing

to tune two-point correlations and clustering has been derived. The two-point cor-

relations are adjustable in the presented ansatz via the average nearest neighbor

function knn(k) which was set to a function tunable by the introduced correlation

parameter α. The clustering has been re-expressed with the help of the upper bound

λ(k) which is fixed by the two-point correlations within the network.

Furthermore, the detailed discussion of finite size effects within scale-free distri-

butions revealed that every finite sample is strongly affected by these. Extremely

small realization probabilities, discretization effects and large fluctuations make large

ensembles within numerical studies of scale-free networks necessary.

Another important finding is the required scaling of the maximal degree kmax with

the system size N in order to prevent intrinsic degree correlations to arise.
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To answer the question of the inter-relationship between dynamics and topology of

a network requires that the particular dynamics studied must fulfill certain integral

properties. The dynamics should be well studied on ‘classical’ topologies, represent

a large class of equivalent dynamical processes, and be made up of rather elementary

interaction rules which result in complex behavior but still allow for an analytical

treatment.

One dynamics studied here belongs to the class of reaction-diffusion dynamics.

This class of dynamics features stochasticity due to the diffusion and a deterministic

part by the reaction. These primary features are even present in the most elementary

form of a diffusion-annihilation process. This process is in particular representative

for a generic chemical reaction which is not auto-catalytic and acyclic. This class

of system is well studied on lattices and many other special geometries like fractals.

Due to the annihilation the density of particles is constantly decreasing. For classical

topologies the decrease of the particle density scales generally linear or weaker than

linear with time. This is in striking contrast to the behavior observed on scale-free

networks which show a super-linear decay for a scaling exponent γ in the range 2 to 3.

Furthermore, the studied two-component diffusion-annihilation process A + B → ∅
displays patterns on regular lattices, as a segregation of the components occurs,

which is much weaker on scale-free networks than on regular lattices. Two-point

correlations turn out to influence these patterns and the overall efficiency of the

dynamical process.

In addition, the famous Prisoner’s Dilemma game is studied. Unrelated indi-

viduals (so that there is no kin selection) are allowed to choose among the two

strategies cooperation and defection. The dilemma of the game arises from the ad-

vantageous defection strategy for an individual within a single interaction while the

cooperation strategy would result in an advantage for all individuals in the long-

run. In large, well-mixed populations, the dominant strategy is defection. Recent

studies [Gomez-Gardenes et al., 2007a] on Barabási-Albert networks, which have a

scale-free degree distribution, γ = 3, and particular further properties due to their

construction scheme, revealed a dominance of the cooperation strategy, a behavior

previously unobserved. A key property of the Prisoner’s Dilemma is the build up of

a stationary state. This allows for detailed characterization of the patterns formed.
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3.1 Reaction-Diffusion Process

From the class of reaction-diffusion systems, the particular type of diffusion-annihila-

tion dynamics is extremely well studied [Torney & McConnell, 1983, Toussaint & Wilczek,

1983]. The one- and two-component reactions in particular show anomalous behav-

ior in low dimensions. This is caused by pattern formation in the form of the build

up of a depletion zone for the former and a segregation of the two components for the

latter. The critical dimension is 2 for both dynamics. The derived mean-field (MF)

prediction for the continuous particle density decay reveals a power-law relationship

in time
1

ρ
−

1

ρ0
∝ tf , (3.1)

where ρ0 is the particle density at t = 0, and the value of f is 1 above the critical

dimension. The value of f below the critical dimension and within different geome-

tries like fractals, is always less than 1. A super-linear decay with f > 1 has only

been observed on scale-free networks to date. Gallos & Argyrakis were the first to

discover this super-linear relationship in numerical simulations [Gallos & Argyrakis,

2004, 2005]. Shortly afterwards these results were backed up by an analytical MF

calculation by Catanzaro et al. [2005a] for the case of the one-component A+A→ ∅
reaction. These calculations showed the dependence of f on the scaling exponent γ

in the case of scale-free networks to be

f(γ) =







1

γ − 2
2 < γ < 3

1 γ ≥ 3
. (3.2)

The reason for this extremely fast density decay originates in the existence of a small

number of vertices with very large degrees (so-called hubs) in a scale-free network.

As the A + A → ∅ analysis shows, the density is constantly 1/2 for vertices with a

degree k > kc = k/2ρ(t). The two-component reaction A+B → ∅, in turn, is much

more involved, since a new feature, a ‘jamming’ effect, is introduced.

The A+B → ∅ dynamics is defined on a network to start by random assignment of

at most one particle per vertex. A particle on a vertex may diffuse along a randomly

selected edge emanating from the hosting vertex to an adjacent vertex. Depending

on the state of the adjacent vertex at the other end of that edge, three cases can

occur: (i) If the adjacent vertex is empty, the particle moves to the new vertex. (ii) In

case a particle of the other species resides at the adjacent vertex, the annihilation

takes place and the particle densities are decreased appropriately. (iii) If a particle

of the same species is located at the adjacent vertex, the diffusion step is impossible.

The third possibility is responsible for the occurrence of jamming and results in

an extra term within the differential equation describing the time-evolution of the
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3.1 Reaction-Diffusion Process

particle densities. Nevertheless, this term becomes irrelevant in comparison to the

other terms within the long-time, low-density limit, as shown below.

3.1.1 Analytical Results

The detailed analytical treatment of the A + B → ∅ results can be found in the

Appendix A.1 and is already published by us [Weber & Porto, 2006]. A sketch of

the derivation and a summary of the major results are presented in the following.

An integral assumption of the MF ansatz, motivated by the importance the degree

k of each vertex has, is the statistical equivalence of vertices with the same degree k.

This is implemented by averaging over the set of vertices V(k) which have the same

degree k, also referred to as degree classes. As a result the overall particle densities

ρ(a)(t) and ρ(b)(t) can be obtained by averaging over the densities from all degree

classes k,

ρ(a)(t) =
∑

k

ρ
(a)
k (t)P (k) = ρ

(a)
k (t), (3.3)

where ρ
(a)
k (ρ

(b)
k ) is the density of particles of type A (B) which are located on vertices

with degree k. Modeling the diffusion as a Poisson process [Kampen, 1992] and

assuming the absence of two-point correlations, the resulting differential equation

for the degree-resolved densities is

dρ
(a)
k

dt
= −ρ

(a)
k +
k

k

[

1− 3ρ
(a)
k

]

ρ(a) + ρ
(a)
k 〈ρ

(a)
k 〉. (3.4)

For the sake of simplicity, the initial densities have been set equal, ρ(a)(t = 0) =

ρ(b)(t = 0), and the explicit time dependence of the particle densities has been

suppressed for improved readability. Due to symmetry, the equivalent equation for

ρ
(b)
k can be obtained by interchanging indices A and B. The time evolution of the

overall density ρ(a) follows straightforwardly by averaging Eq. (3.4) in respect to the

degree distribution

dρ(a)

dt
= −ρ(a) 〈ρ

(b)
k 〉 − ρ

(b) 〈ρ
(a)
k 〉. (3.5)

To proceed, a solution for ρ
(a)
k is necessary. The differential equation (3.4) is very

similar to the one previously found for the A + A → ∅ process [Catanzaro et al.,

2005a], with an additional term ρ
(a)
k 〈ρ

(a)
k 〉 and a coefficient of 3 instead of 2 in front

of ρ
(a)
k . The additional term can be shown to measure the particle pair correlations

which are defined as the number of particles of a certain type which are in contact

with another particle of another type, normalized by the total number of possible
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3 Dynamics on Complex Networks

contacts. The degree dependent pair correlation among unlike particles is given by

(see Appendix A.1.1)

Q
(ab)
k = ρ

(a)
k 〈ρ

(b)
k 〉. (3.6)

Analogously, the pair correlations among particles of the same type are given by

Q
(aa)
k = ρ

(a)
k 〈ρ

(a)
k 〉, showing that the additional term in Eq. (3.4) is caused by the

disallowed diffusion steps among particles of the same type. The relevance of this

‘jamming’ term for the time-evolution can be evaluated by comparing Q
(aa)
k , which is

quadratic in the density, to the corresponding term of the same order, 3ρ(a)ρ
(a)
k k/k,

by evaluating the ratio

〈ρ
(a)
k 〉

3ρ(a)k/k
=
k

3k

〈ρ
(a)
k 〉

ρ
(a)
k

. (3.7)

The one-component analysis reveals that effectively only vertices with a degree k >

kc carry a significant fraction of the particles while vertices with a lower degree

have a substantially lower density. In expectation of a similar behavior in the two-

component case, the evaluation of the averages in Eq. (3.7) leads to

〈ρ
(a)
k 〉

3ρ(a)k/k
≈

1

3

γ − 1

γ − 2

kc
k
f(
kc
kmax

). (3.8)

In this step, the continuous k approximation has been applied to transform the sums

of the averages into integrals which were evaluated in the limit of a finite network

size which has a maximal degree kmax. The scaling function

f(x) =
1− xγ−2

1− xγ−1
(3.9)

has the limiting values

f(x) =







1 x→ 0
γ − 2

γ − 1
x→ 1,

(3.10)

decreasing the importance of the ‘jamming’ term evenly for all degrees k as it is a

monotonically decreasing function for γ > 2. Due to the kc/k term in Eq. (3.8), it is

suitable to neglect Q
(aa)
k for a vertex with k ≫ kc. For k ≪ kc both terms, Q

(aa)
k and

3kρ
(a)
k ρ

(a)/k, are negligible, as these terms are quadratic in the density, being very

small for nodes with k ≪ kc in the long-time, low-density limit. The intermediate

range of k ≈ kc is difficult to assess analytically, but numerical simulations show

that Eq. (3.8) is substantially smaller than 1 in the low density limit even for the

range where k ≈ kc. Therefore, ‘jamming’ is only of relevance for vertices with a low

degree and high densities. It can be neglected in the following for the calculation

of the long-time behavior. In accordance with the approach to the analysis of the
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3.1 Reaction-Diffusion Process

one-component dynamics, an expression for the degree resolved particle density ρ
(a)
k

is obtained by applying a quasi-static approximation to Eq. (3.4), setting dρ
(a)
k /dt

equal to 0. This assumes that the diffusion process is much faster and much more

frequent than the annihilation reaction which holds in the long-time, low-density

limit. This means that the degree resolved densities remain almost constant such

that the derivatives vanish. Applying this approximation leads to

ρ
(a)
k =

ρ(a)k/k

1 + 3ρ(a)k/k
. (3.11)

This expression for ρ
(a)
k has the same structure as found for the A+ A→ ∅ process

except that the coefficient of ρ(a) in the denominator is 3 instead of 2. As the

structure of the differential equations is the same as for the A+A→ ∅ process, one

obtains the same scaling-behavior of Eq. (3.2) for each component. The new critical

kc for which a vertex is sensed as a hub by the dynamics is

kc =
k

3ρ(a)
=

2k

3ρ
. (3.12)

Therefore, for the hubs in the system with k > kc, Eq. (3.11) is close to 1/3, which

is completely consistent with MF analysis, as this means that hubs are occupied by

approximately 1/3 of the time by each component A and B, and are empty for the

remaining 1/3 of the time.

The critical degree kc defines which vertices serve as hubs for the dynamics, the

striking characteristic of the scale-free topology. This critical degree increases con-

stantly with decreasing density, since kc ∝ 1/ρ(a). Consequently, it changes with

time which vertices are regarded as hubs by the dynamics. A detailed finite-size dis-

cussion by Catanzaro et al. [2005a] reveals that once the critical degree kc is larger

than the maximal degree kmax in the network, the density decay slows down to a

linear density decay. As a result, the typical scale-free behavior of a super-linear

density decay is only visible for a rather short period of time, making very large

system sizes necessary. Furthermore, one might expect that the scaling exponent

derived in MF theory for each component’s density decay, f(γ) = 1/(γ−2), is miss-

ing some effects which slow down the reaction for exponents γ close to 2. Otherwise,

the diverging f(γ) for γ → 2 would result in a diverging reaction speed. Clearly,

one expects to recover the scaling law given by f(γ) for γ → 3. Choosing a value of

γ which is smaller than but close to 3 has the convenient side effect that the density

decay is relatively slow, such that the dynamics will show a ‘scale-free’ behavior for

a longer period of time with the appropriate density decay exponent larger than 1.

These considerations for the A+B → ∅ process have been verified by numerical sim-

ulations for various exponents γ while keeping the system size constant at N = 106

25



3 Dynamics on Complex Networks

t

1
ρ(a

) −
1

ρ 0(a
)

101

102

103

104

105

100 101 102 103 104

γ
2.1
2.25
2.5
2.75
3

Figure 3.1: Plot showing the density decay of the numerically simulated A+B → ∅
process for an initial density ρ0 = 0.1 and different exponents γ. With

increasing exponent γ, the density decay behaves ‘scale-free’ typical for

a longer period of time. The solid line has a slope of 1 and is shown as

a guide to the eye. Plot is taken from Weber & Porto [2006]

[Weber & Porto, 2006]. The numerical algorithm is described in Appendix A.2.3.

Figure 3.1 shows the resulting density decays. The curves deviate from a linear in

time decay only for very short durations, but the time span for which each process

behaves ‘scale-free’ increases with increasing exponent γ. An accurate verification

of the scaling relation f(γ) was therefore performed at a scaling exponent γ = 2.75,

which corresponds to a value of f = 4/3, at different system sizes N . Figure 3.2

shows these results, revealing that even for a system size of N = 107, the density

decay shows a scale-free behavior for less then two decades only.

3.1.2 Comparing Network Topologies

To suitably compare the A+B → ∅ reaction on different network topologies, some

general considerations are inevitable. The previous section highlighted the impor-

tance of the scaling exponent γ and the maximal degree kmax in the context of finite

scale-free networks. For a meaningful investigation of the impact concerning other

topological properties on the dynamics besides these two, it is required to leave these

constant and tune the topological property of interest in a controlled manner.
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Figure 3.2: Density decay of the numerically simulated A+B → ∅ process for uncor-

related networks of various sizes N , exemplified by an exponent γ = 2.75

and an initial density ρ0 = 0.1. The plot is taken from Weber & Porto

[2006] and illustrates the strong finite-size effects of the dynamics.

While this answers the question of what to compare, it still leaves one with the

questions of (i) how to quantify the impact and (ii) at what dynamical states to com-

pare the observables. Question (i) is solved by normalizing the measured observable

by the value of the corresponding fully randomized case. Concerning the latter

question (ii), one commonly compares dynamics at equal times t. This is not favor-

able for the annihilation dynamics as one particular graph realization (beyond the

topological properties discussed here) or initial distribution of particles may speed

up or slow down the reaction, altering the dynamical state. Instead, a much better

choice is the inverse overall particle density ρ−1 which is monotonically increasing.

This is supported by the analytical mean-field calculations presented in the previous

Sec. 3.1.1. The differential equation (3.5) for the density decay depends solely on

the degree resolved particle densities ρ
(a)
k and ρ

(b)
k . These can be approximated in

the late-time, low-density limit by Eq. (3.11) with an expression solely determined

by the particle density ρ = 2ρ(a) without an explicit time dependence. Additionally,

the particle pair correlations Q
(ab)
k are exclusively functions of the degree resolved

particle densities ρ
(a)
k and ρ

(b)
k . Thus these are also fixed in the late-time limit by

the overall particle density.

Using the inverse overall particle density ρ−1 instead of time t has the further
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3 Dynamics on Complex Networks

advantage that it is possible to define a critical ρ−1
c which marks the crossover from

scale-free to non-scale-free behavior of the dynamics on scale-free networks. Once

kc reaches the maximal degree kmax in the network, this crossover occurs which in

turn defines

ρ−1
c =

3kmax

2k
. (3.13)

The crossover will not be exactly at this value, but it provides a much better ap-

proximate than monitoring the scaling exponent f to be greater than 1.

3.1.3 Two-Point Correlations

The framework developed in Sec. 2.2.2 provides the necessary requirements of tun-

able two-point correlations with a fixed scale-free degree distribution in order to

measure the sole influence of two-point correlations. The choice of the average near-

est neighbor function knn(k) ∝ exp
[

lnα
(

1 + k
kmin

)]

in Sec. 2.2.2, Eq. (2.31) allows

to tune the correlation parameter α within a reasonable range. At the same time,

this choice is compatible with the required constant maximal degree kmax within the

whole range of α used below and does not cause intrinsic degree-degree correlations

to arise. The parameter α is chosen such that the resulting networks have a Newman

factor r of 0, ± rlow, or ± rhigh (0 < rlow < rhigh).

The major characteristic of the A + B → ∅ reaction besides the density decay

is the pattern formation in the form of segregation of the two components. This

pattern formation is monitored with the observable

QAB =
NAB

NAA +NBB
, (3.14)

introduced by Gallos & Argyrakis [2004]. It relates the number of unlike contacts

NAB to the total number of like contacts NAA + NBB in each instant, where one

contact is counted if two particles are located at adjacent vertices. A decreasing

QAB indicates an ongoing segregation of the reactants.

The Fig. 3.3(a) exemplifies the pattern measure QAB(ρ−1) vs. inverse density

ρ−1 for an underlying scale-free network with scaling parameter γ = 2.6 and the

initial densities ρ0 are 0.1 (red symbols) and 0.3 (blue symbols), respectively. As the

curves for both initial densities join after a short duration, one can conclude that

after this point the process is in each instant in a dynamical state determined solely

by the particle density ρ, as predicted by mean-field theory. On the contrary, the

pattern measure QAB(t) vs. time t, as presented in the inset of Fig. 3.3(a), does not

reveal this behavior. In Fig. 3.3(b) the pattern formation observable QAB(ρ−1) is

shown in relation to the uncorrelated case Quc
AB(ρ−1) vs. the inverse density ρ−1. It
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Figure 3.3: (a) Pattern measure QAB(ρ−1) and as inset vs. time t for two-point cor-

related networks with a scaling parameter γ = 2.6. (b) Pattern measure

QAB(ρ−1) and (c) efficiency measure PAB(ρ−1), each normalized to the

uncorrelated case. The initial density is 0.3 (red symbols) or 0.1 (blue

symbols), the network size is 107, and the two-point correlations are by

the Newman factor r: r = rhigh = 0.1 (square), r = rlow = 0.05 (dia-

mond), r = 0 (circle), r = −rlow (triangle down), r = −rhigh (triangle

up). Scale-free behavior diminishes past the marked inverse density ρ−1
c .

This plot is taken from Weber et al. [2008].
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is important here to note that the curves settle towards a constant value which is

directly related to the strength of two-point correlations, as we show in detail below.

The density below which this dynamical equilibration sets in depends on the strength

of the correlations and the number of hubs in the network. Dynamics on networks

with stronger correlations attain the dynamical equilibrium at lower densities, i.e.

larger ρ−1, visible in Fig. 3.3(b) for the r = ±rhigh curves. Equivalent plots of

QAB(ρ−1)/Quc
AB(ρ−1) for dynamics on networks with smaller scaling parameter values

γ than in Fig. 3.3(b) reveal an equilibration at lower densities. The decrease in

the scaling parameter γ goes along with an increase in the number of hubs in the

system. Consequently, the more hubs present in the system, the lower the density

below which an equilibration of QAB(ρ−1)/Quc
AB(ρ−1) occurs. However, raising the

scaling parameter γ to values greater than 3 prevents pattern equilibration to occur,

leading to a non-constant ratio of QAB(ρ−1)/Quc
AB(ρ−1) in this case. Apparently, the

feature of pattern equilibration is tied to a diverging second moment of the degree

distribution.

From Fig. 3.3(b) a pronounced segregation in the disassortative case can be in-

ferred, since the curves for r < 0 fall below unity when compared to the uncorrelated

case r = 0. Counterintuitively, simulations show a much faster reaction on these

disassortative networks. This apparent contradiction between segregation and high

reaction speed is resolved by observing a new quantity

PAB =
# annihilations

# created AB contacts
, (3.15)

which measures at each instant how efficient the reaction performs as it directly

quantifies how many annihilations take place per created unlike contacts. Fig-

ure 3.3(c) illustrates PAB(ρ−1) in relation to the uncorrelated case. The reactions

running on disassortative networks show a strongly increased efficiency as these

curves lie well above unity. The increase in efficiency for disassortatively correlated

networks is even one order of magnitude larger than the decrease in the measure

QAB(ρ−1) (indicating segregation), and is thus the dominating effect, explaining the

accelerated reaction speed.

The very interesting observation of a constant ratio QAB/Q
uc
AB for small densities

allows one to measure directly the dynamical response under a topological change

of the network by means of pattern formation with a single number. The constant

ratio is therefore a good measure to quantify the dynamical impact of the two-point

degree-degree correlations. In Fig. 3.4(a) this dynamical response is shown for differ-

ent choices of the scaling parameter γ. The data is plotted against the a priori fixed

correlation parameter α and shown as a function of the resulting Newman factor r in

the inset. One observes a linear relation of the pattern formation constant QAB/Q
uc
AB
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Figure 3.4: Dynamical response of the A + B → ∅ reaction with respect to the

pattern formation measure QAB/Q
uc
AB as a function of the parameter

α, which is used in the average nearest neighbor function knn(k). (a)

Results for a system size of N = 107 with different values of the scaling

parameter γ for the underlying scale-free network: γ = 2.4 (triangle

up), γ = 2.6 (triangle down), and γ = 2.8 (circle). (b) System size

dependency of the pattern formation measure QAB/Q
uc
AB exemplified for

the scaling parameter γ = 2.8: N = 104 (triangle up), N = 105 (triangle

down), N = 106 (circle), and N = 107 (diamond). The respective inset

in each figure presents the data vs. the Newman factor r. The plot is

taken from Weber et al. [2008].
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and the correlation parameter α. The slope of this linear inter-relationship increases

with increasing scale parameter γ. This linearity is only observed if the data is

plotted against the correlation parameter α which turns out to be a better choice

than the Newman factor r to measure the strength of the two-point degree-degree

correlations regarding the dynamical response. Even though the parameter α is not

a general statistical measure, it is capable of describing the overall correlations quite

well. This becomes clear in Fig. 3.4(b), where we exemplify the finite-size effects

on the pattern formation QAB/Q
uc
AB vs. the correlation parameter α for the scaling

parameter γ = 2.8. The network size N has been varied over 3 magnitudes, and

one expects a data-collapse such that all points fall onto a single line, independent

of the network size N as the quantity QAB/Q
uc
AB is by definition free of finite-size

effects. Fig. 3.4(b) verifies this expectation for small values of the correlation pa-

rameter α and only minor deviations are noticeable from the data-collapse for very

strong correlations. The inset plot in Fig. 3.4(b) shows the same function versus

the resulting Newman factor r, where the functional dependence changes with the

network size N .

3.2 Prisoner’s Dilemma

The Prisoner’s Dilemma game is motivated by the question of sustaining cooperation

within populations of unrelated individuals where selfish actions are rewarded and

there is no kin selection. The game in the form studied here originates from the

field of evolutionary game theory Weibull [1995]. This framework emerged out of

the combination of the two concepts evolution and game theory. The evolution is

concerned about the development of populations consisting out of individuals which

have a fitness ascribed. The fitness of an individual quantifies the reproduction rate

of that individual, thus causing a selection. A higher fitness than the average fitness

therefore leads to a higher density of such individuals within a population. The

fitness of each individual is determined by the payoff which the individuals receive

by playing a game against others. Within such games multiple individuals can

interact. Reducing the number of interacting players to two is a common scenario

studied in game theory, but still captures the essential aspects.

Game Theory The key concept of game theory is the use of a strategy set S from

which players must choose from within a game. The player’s payoff depends on

the choice of its own and the choice of the opponents strategy. A game is defined

by a set of participating players, a set of strategies S and a payoff function which

defines the payoffs resulting from different matchings of respective strategies chosen
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by players. Supposing a two-player game with two strategies, S = {C,D}, to choose

from, these matchings can be described by the scheme,

C D

C R S

D T P

If the first player selects C and the second also selects C, then both receive a payoff

R, respectively for mutual selection of D both receive P . In case the first player

selects C while the other selects D, then the first will get S and the second player

will receive T . This particular scheme assigns the payoffs to each player by the same

rules. The game belongs to the important class of a symmetric two-player game.

The payoffs of a two-player game are representable by a payoff matrixM , which has

the form in the case of the 2 strategy game above

M =

(

R S

T P

)

. (3.16)

In general, the payoff matrixM is for a symmetric two-player game with n strategies

defined by a n× n matrix with the entries mij.

Given the opponents strategy, a strategy is said to be a best reply if no other

strategy earns a higher payoff. A cornerstone of game theory is the concept of

a Nash equilibrium [Nash, 1950a,b, 1951] which is the set of strategies which are

best replies to themselves. Equivalently, if a strategy is played, which belongs to a

Nash equilibrium, then no other strategy will yield a higher payoff. The Prisoner’s

Dilemma game is characterized by the ordering of the scores within the payoff matrix

M . If C represents the strategy cooperation and D the defection strategy, the

ordering of the scores in the Prisoner’s Dilemma is T > R > P > S. In such a

setup the defect strategy D is advantageous for an individual player as it will in

each round yield the chance for a higher payoff. The cooperator strategy C is said

to be dominated by the defector strategy D, since choosing strategy D guarantees

to yield a higher or equal payoff than the other player. Since changing to another

strategy than defect D results in a lowered payoff, it is also a Nash equilibrium.

A major concern of game theory is to classify strategies and strategy profiles. The

Nash equilibrium is probably the most important one. However, placing game theory

within the concept of evolution shifts the focus into a different direction. Incorporat-

ing the concept of evolution requires the introduction of populations of players which

play certain strategies. Thus, a distinct fraction of players play distinct strategies.

The common scenario within evolutionary game theory is the assumption of a large

population within which randomly drawn players are matched pairwise to play a
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game. An important case in biology is the special situation of a large homogeneous

population. The homogeneity is understood in the sense that all individuals play

the same strategy i ∈ S. Supposing now, a small fraction ε ∈ (0, 1) of mutant

individuals which play strategy j ∈ S, j 6= i enter such a homogeneous population.

Evolution is assumed to select the strategy which will yield a higher fitness. The

question whether strategy i will resist a mutant strategy j depends on the conditions:

(i) The payoff from strategy i when played against itself must return a payoff which

is higher or equal to the payoff when strategy i is played against any other strategy,

say j. (ii) If the payoff of i played against itself is equal to the payoff returned if i

plays against another strategy j, then the payoff from j played against itself must

be lower than the payoff of i playing against itself. Whenever a strategy fulfills these

conditions, it is said to be an evolutionary stable strategy (ESS) [Maynard Smith,

1974, 1982, Maynard Smith & Price, 1973], an integral concept of evolutionary game

theory. To formalize these ideas, let ρi denote the fraction of players which hold on

to strategy i. Given the densities ρj , j ∈ S of all present strategies in a population,

the expected average payoff for each strategy i ∈ S is then

ui =
∑

j ∈S

ρjmij , (3.17)

where the coefficients mij are the entries of the payoff matrix M . With such a

definition the ESS criteria translates for a strategy i into the inequality

εjmij + (1− εj)mii > εjmjj + (1− εj)mji. (3.18)

The density of the mutant strategy j is denoted by εj such that the density of the

homogeneous strategy i is 1− εj.

Evolutionary Game Theory A mathematical implementation of the idea that evo-

lution proposes the reproduction of individuals proportional to their fitness has been

introduced by Taylor [1979] with the replicator dynamics. Assuming a population

within which individuals are pairwise randomly matched and reproduction takes

places continuously over time, the resulting differential equation for the changing

fractions ρi of players which play a strategy i is

dρi
dt

= ρi(ui − φ). (3.19)

Here, φ is the average payoff of the whole population

φ =
∑

i∈S

ρiui. (3.20)
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Consequently, the fraction of individuals which play a strategy that yields a payoff

larger than the average of the whole population will increase over time.

The replicator dynamics assumes a well-mixed population within which every

player may play with any other. In the case of the Prisoner’s Dilemma such an

all-to-all interaction pattern always results in a population consisting only out of

defectors. Restricting the interactions from all-to-all, which corresponds to a mean-

field scenario, to regular structures such as lattices where players are at the lattice

sites and interactions are only possible among adjacent sites, reveals that cooperation

can sustain, although only rather small fractions of the population hold on to the

cooperation strategy in the stationary state which will emerge.

Generalizing the underlying topology to a network where vertices are players and

restricting interactions to adjacent players defined by the edges results in the as-

tonishing phenomenon that cooperation may even dominate the defect strategy on

networks with a scale-free degree distribution. The strong impact the degree dis-

tribution P (k) has on the level of sustained cooperation has recently been studied

numerically by Gomez-Gardenes et al. [2007a] on Barabási-Albert and Erdős-Rényi

networks. The authors investigated the Prisoner’s Dilemma with the parameters

R = 1, P = S = 0, T = b > 1. The choice of these parameters follows com-

mon practice [Nowak et al., 2004, Santos & Pacheco, 2005] to rescale the Prisoner’s

Dilemma to an effective one-parameter version. The parameter b sets the temptation

to defect. The evolution has been implemented with a finite population analogue of

the replicator dynamics [Santos & Pacheco, 2005].

Cumulative Payoffs In each time step, every individual i plays with its adjacent

neighbors and accumulates the payoff

πi =
∑

j

aij π(i, j). (3.21)

Here, π(i, j) denotes the payoff from a single game the player i receives when playing

with j. The sum in Eq. (3.21) will accumulate the results from ki games, since the

player i has degree ki. Following this, all players update their strategy synchronously

by comparing their individual payoff πi with the payoff πj of a randomly chosen

adjacent player j. The strategy sj of the player j is adopted by player i with the

probability

P (si → sj) =







πj − πi
b max(ki, kj)

if πj − πi > 0

0 otherwise
. (3.22)

Initially all players are set with a probability of p = 1/2 to play either the cooperation

or the defection strategy. For the initial transient, the system is evolved for a fixed
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time frame and consecutively an appropriate test whether the the stationary state

has been reach is applied. A rigorous test how to detect whether the system is in

the stationary state is not agreed on in the literature. The method used here is

explained in the Appendix A.2.4. Consecutively, the system is evolved for further

104 time steps during which observables are recorded. In particular the density of

cooperators ρ is measured.

Of special interest are players which do not change their strategy during the

observation period. These players have associated pure densities as pure cooperator

density ρc and pure defector density ρd. These stable pure cooperating players

are very important in the sustainment of cooperation. Conseqeuently, the number

of components Cc within a network which are made up of solely pure cooperators

is also very important and is monitored as well. Gomez-Gardenes et al. [2007a]

performed the numerical simulations on Erdős-Rényi graphs of size N = 4000 with

an average degree k = 4 and Barabási-Albert networks of the same size and the same

average degree k. The striking result is the dominance of the cooperation strategy

for a wide range of the parameter b in the case of the scale-free Barabási-Albert

network. The Erdős-Rényi networks in comparison perform much worse. A detailed

examination reveals that the cooperator density ρ is to a large fraction made up of

pure cooperators which form a single connected component in the case of Barabási-

Albert networks. Thus, the number of pure cooperator components Cc is exactly 1

over the whole parameter range of b checked in Gomez-Gardenes et al. [2007a] for

the Barabási-Albert networks. The Erdős-Rényi networks, on the contrary, have

many of these components. The authors argue that the scale-free structure of the

Barabási-Albert network is to be claimed for the well support of cooperation in

this topology as hubs are held to be responsible for the high cooperation density.

However, a thorough review of these results regarding the Barabási-Albert networks,

see Pusch et al. [2008b], reveals that the particular structure of the Barabási-Albert

networks is responsible for many of the observations. Due to the stepwise preferential

attachment scheme used to create the Barabási-Albert networks, a large and heavily

connected component builds up around the oldest vertices within the network. The

oldest vertices in turn do have the major fraction of edges and will in general be

the vertices with the largest degree, i.e. these vertices can be regarded as the hubs

of the network. This explains the peculiarity of the exclusive existence of only one

purely cooperating component. In addition, it is most likely that all hubs within the

Barabási-Albert networks are connected to each other which stabilizes cooperation.

Hubs, vertices with a large degree k, are stabilized due to the special updating

rules of Eq. (3.22) used within this version of the Prisoner’s Dilemma game. The

reasons are two-fold as the normalization factor bmax(ki, kj) is very large for hubs,

making a strategy adoption unlikely. However, the major stabilization factor roots
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3.2 Prisoner’s Dilemma

in the accumulation of payoffs in Eq. (3.21). Just by the large degree k a hub attains

a much higher payoff in total, since payoffs are simply added up. Therefore, hubs

have very likely a larger payoff than their adjacent vertices with a lower degree k

and become inert against a strategy adoption. Even if two hubs with a comparable

degree and opposing strategies are connected to each other, a persuasion of one

another is unlikely since hubs have many neighbors to which they possibly compare

themselves.

Effective Payoffs The stabilization of cooperation is evidently due to the accumu-

lation of payoffs. This accumulation is also responsible for breaking the invariance

under positive affine transformations of the payoffs inherent to the replicator dy-

namics as described in Eq. (3.19). A positive affine transformation to the average

payoffs ui is defined by two arbitrary constant parameters α > 0 and β ∈ R. The

new average payoff ui for an individual playing strategy i is

u′i = αui + β. (3.23)

Inserting this altered average payoff into Eq. (3.19) gives a differential equation of

dρi
d(αt)

= ρi(ui − φ). (3.24)

The positive affine transformation only changes the time scale, but leaves the char-

acteristics of the dynamics unchanged. To observe how such a positive affine trans-

formation alters the discrete replicator dynamics on networks, it is convenient to

introduce the definitions

D = max(T,R, P, S)−min(T,R, P, S) (3.25)

k> = max(ki, kj). (3.26)

With these the adoption probability of Eq. (3.22) can be rewritten as

P (si → sj) =







πj − πi
Dk>

if πj − πi > 0

0 otherwise
. (3.27)

The payoff πi of a player i within a network which has ki edges connected to it will

have a transformed payoff

π′i = απi + β ki. (3.28)

This changes the adoption probability into

P ′(si → sj) =







P (si → sj) + β
kj − ki
αDk>

if π′j − π
′
i > 0

0 otherwise
. (3.29)
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Figure 3.5: Cooperator density ρ for effective payoff rules on a scale-free network

with scaling exponent γ = 3 (square) along with the corresponding

Erdős-Rényi network (circle). The inset shows the analogous results

for cumulative payoffs.

This property inherent to an accumulation of payoffs in this context has first been

pointed out by Tomassini et al. [2007] and an alternative approach was proposed,

the concept of an ‘average payoff’. The authors suggest to normalize the payoff πi of

each player i by the degree ki of the player, resulting in a so-called ‘average payoff’

π̃i =
1

ki

∑

j

aij π(i, j). (3.30)

The payoff π̃i can be regarded as an efficiency score. Using these effective payoffs

recovers the invariance of the replicator dynamics with respect to positive affine

transformations again. Tomassini et al. [2007] focus on the transient properties of

the dynamics and a further study concerning this version of the Prisoner’s Dilemma

on Barabási-Albert networks is available [Szolnoki et al., 2008]. A publication con-

cerning the efficiency ruled strategy spreading on scale-free networks with two-point

correlations is in preparation [Weber & Porto, 2008a]. In the following, the results

for both versions will be presented.

Switching to effective payoffs reveals drastic changes in the dynamics as numerical

simulations show. These were performed on scale-free networks of size N = 4000 and

a scale exponent γ = 3 for comparability with results from Gomez-Gardenes et al.

[2007a], see the Appendix A.2.4 for implementation details. In Fig. 3.5 the coop-

erator density ρ in case of efficiency ruled payoffs for a scale-free network (square)
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Figure 3.6: Average degree of cooperating players κ for effective payoffs and as an

inset for cumulative payoffs. Symbols are as in Fig. 3.5.

and a corresponding Erdős-Rényi network (circle) with the same average degree of

k = 3.06 is shown along with respective data as inset for the cumulative payoffs. As

a result of the efficiency ruled payoffs, the advantage of the scale-free topology over

an Erdős-Rényi structure disappears for a wide range of the parameter b. However,

for very large values of b, the scale-free topology becomes advantageous again over

the Erdős-Rényi network and even out-performs the cooperator density ρ for the

accumulated payoff version. While the efficiency ruled strategy spreading version of

the Prisoner’s Dilemma game drops to densities as low as 10−2 for values of b larger

than 2, the accumulated payoffs version drops one magnitude of order lower. In ad-

dition, discontinuities in the cooperator density ρ become visible for rational values

of b. These arise from interactions among connected vertices with corresponding

degrees. Exactly at the discontinuities, stable interactions among pure cooperators

and pure defectors build up which has been verified by monitoring the number of

edges among these type of players explicitly. This number of edges is zero for all val-

ues of b except at the rational values of b for which the discontinuities are observed

in Fig. 3.5.

The use of effective payoffs drastically alters the dynamics and the characteristics

of the stationary state. By introduction of the effective payoffs, the vertices with

large degree k loose their inertness against strategy adoption. Monitoring the av-

erage degree of cooperating players κ, which is presented in Fig. 3.6, reveals that

with increasing b cooperation tends to be exhibited by players with lower degrees

k. The noticeable sudden decrease of κ close to 1 reveals a critical benefit bc which
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is due to the maximal degree kmax within the finite network. The concept of effec-

tive payoffs turns every player into the equivalent situation of playing their chosen

strategy against a population of k other players in each time step. The concepts

from evolutionary game theory apply commonly, and in particular the ESS concept,

within the case of an infinitely large population size Np → ∞. The definition of

ESS claims the stability of a strategy i against an infinitesimal small fraction εj of

a mutant strategy j into an infinitely large population. Within a finite population

a new phenomena of neutral drift emerges. Supposing a population to consist out

of Np − 1 individuals playing strategy i and 1 mutant which sticks to strategy j. If

both strategies i and j yield the same fitness, then j can replace i with a probabil-

ity of 1/Np. The concept of a finite evolutionary stable strategy ESSN introduced

by Nowak et al. [2004] incorporates this feature of neutral drift inherent to finite

populations. An ESSN strategy must oppose an invasion and the replacement by

neutral drift of another strategy [Nowak, 2006, Nowak et al., 2004]. Applying this

concept to the effective payoff version of the Prisoner’s Dilemma game reveals that

the defector strategy will always be in the set of ESSN while the cooperator strategy

is in this set if the population size Np, which corresponds to the degree k of a vertex,

fulfills the condition

b <
k + 1

k − 2
. (3.31)

At the critical benefit bc this condition becomes invalid even for the vertices with

the largest degree kmax within the network which defines the critical benefit

bc =
kmax + 1

kmax − 2
. (3.32)

Once b is lower than bc, the cooperator strategy is in the set of ESSN for all vertices in

the network. This will in turn cause a decrease of κ in direction to the much lower

average degree k, since cooperation is now capable to spread over the complete

network such that cooperators will on average populate vertices with the average

degree k.

The decrease of κ with large values of b is in striking contrast to the accumulated

payoff version. The corresponding curve in the inset of Fig. 3.6 on the preceding page

shows a clear shift towards a larger average degree κ of cooperating players in the

case of scale-free networks. Therefore, vertices with a small degree k are important in

the sustainment of cooperation for effective payoffs. The scale-free networks perform

better since there are simply much more vertices with a low degree available than

there are in the case of Erdős-Rényi networks with the same average degree. This

strongly opposes the frequent result in the context of scale-free networks that the

hubs of the network are held to be responsible for some peculiarity.
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Figure 3.7: Cooperator density ρ in case of effective payoffs shown for a lower value

of the scale-exponent γ = 2.5 along with the respective Erdős-Rényi net-

work. Symbols correspond to Fig. 3.5 and the inset shows the cumulative

payoff case.

However, the scale-free structure still seems to be of importance, since lowering

the value of γ to a value of 2.5 increases the level of cooperation in both versions as

shown in Fig. 3.7. It is crucial to note that the overall average degree k increases

to a value of 3.85 such that the dynamics should behave more like in the mean-field

case, meaning that cooperation is suppressed. The Erdős-Rényi networks follow this

expectation, displaying a decreased level of cooperation.

3.2.1 Two-Point Correlations

Strong assortativity and clustering is frequently observed within social networks

like friendship networks. An impact of these network properties on the Prisoner’s

Dilemma is therefore expected. Repeating numerical simulations for both versions

of the game with disassortative, uncorrelated, and assortative scale-free networks by

tuning correlations as introduced in Sec. 2.2.2 reveals contrary behavior. The coop-

erator density dependence ρ on the correlation parameter α in the case of effective

payoffs is shown in Fig. 3.8 on the next page along with an inset which shows the

number of pure cooperating components Cc. For values of b > bc the assortative

networks show a decreased level of cooperation. As argued above, the vertices with a

large degree k are not accessible for cooperators, since the cooperator strategy is not

in the set of ESSN for degrees which do not comply with the condition of Eq. (3.31).
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Figure 3.8: Dependence of the cooperator density ρ in the effective payoff case on

two-point correlations set by α equals to 0 (square), 0.2 (circle), and

−0.2 (triangle). The scale-free network has a scaling exponent of γ = 3.

The inset shows the number of pure cooperating components Cc.
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Figure 3.9: Impact of two-point correlations within a scale-free network with γ = 3

on the cooperator density ρ for cumulative payoffs. Symbols correspond

to Fig. 3.8 and the inset shows the data relative against the uncorrelated

case of α = 0.
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Assortative networks result in an increased connectedness of degrees of the same

order, especially of those with large degree. This makes an invasion of cooperators

onto vertices with a large degree k or the sustainment of the cooperator strategy

even more unlikely on these high degree nodes. The direct neighborhood of these

high degree vertices is biased towards the defection strategy. Tuning the correlations

in the opposite direction, on the other hand, brings up more players with a lower

degree k in the direct neighborhood of large degree vertices. The cooperators profit

from this as they now have a higher chance of invading a large degree vertex since the

support from other cooperating players on low degree vertices in the direct neigh-

borhood is increased. In accordance with this, the number of components with pure

cooperators is strongly enhanced by disassortativity, a consequence of the altered

cooperator density which spreads into niches of the network. The picture changes

once the temptation to defect falls below bc. In this regime, the cooperator strategy

is in the set of ESSN for all vertices, making all vertices accessible to the cooper-

ation strategy, including the large degree vertices. The large degree vertices are of

exceptional importance for the connectivity within the network. With the increasing

density of cooperators on these large degree vertices, the number of pure cooperator

components Cc collapses as these become aggregated to large components. This

aggregation to large components of pure cooperators stabilizes cooperation. The

aggregation is occurring faster on assortative networks which ultimately results in

an increased cooperator density in the assortative case for values of b below bc.

Two-point correlations conversely alter the cooperation density ρ in the accumu-

lated payoff version of the Prisoner’s Dilemma game as shown in Fig. 3.9. The key

property of the accumulated payoff version of the game is the resulting inertness of

vertices with a high degree against strategy adoption. This causes the adoption of

the respective strategy by the nodes within the direct neighborhood of these high

degree nodes. The increased cooperator density ρ up to a factor of 2 for assortative

networks in the regime of very high values of b roots in the amplification of the

inertness for the cooperator nodes. Supposing a cooperator and a defector to be

initially connected. Both are assumed to have a large degree of the same order and

to have a distinct neighborhood. Initially both vertices will spread their respective

strategy to their direct neighborhood. Once the defector has done so, he will no

longer receive a high payoff in contrast to the cooperating player. Effectively the

defector has only a short time window available to turn the high degree cooperator

into a defector, otherwise the cooperator will have a higher payoff and will turn the

defector into a cooperator. This mechanism explains why assortativity enhances

cooperation for large values of b and explains the substantial increase in the average

degree of cooperators κ.

The situation for values of b close to 1 is different, as in this regime the survival
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of defectors is promoted in regions with cliques of small degree vertices which are

more frequent in assortative networks.

3.2.2 Clustering

The consequences of clustering, which is regulated by two-point correlations, were

studied in the context of uncorrelated networks with a value of α set to 0 in the ansatz

presented in Sec. 2.2.2. Surprisingly, the version of effective payoffs does not display

any dependence on clustering. Dynamical correlations further than two vertices are

therefore absent and do not build up. Thus, two-point correlations are solely induced

by the interaction rules which is in full accordance with the picture depicted in the

above Sec. 3.2 that each vertex in the network is equivalent to a population of k

players. The averaging procedure used to obtain the effective payoffs consequently

results in mean-field like behavior.

In the context of the accumulated payoffs, enhanced clustering interestingly sup-

ports the inferior strategy. In Fig. 3.10 the cooperator density ρ is presented. Up to

a cooperator density of 0.5 a decreased cooperator density is caused by clustering,

while starting from this density the enhanced clustering increases the cooperator

density. The inset of Fig. 3.10 shows the cooperator density ρ in relation to the

unclustered network. The plot reveals that clustering strongly increases the co-

operator density within the vicinity of large values for b. This effect roots in an

intensified inertness against strategy adoption. Once the situation arises that three

cooperating vertices are connected to each other to form a triangle, they support and

stabilize each other. Conceptually, a triangle of cooperators can be replaced by a

single vertex which combines all edges which leave these three vertices. This in turn

increases the effective degree of these vertices, growing their inertness and stability.

Due to this mechanism, the number of pure cooperating components Cc increases

by clustering which is shown in Fig. 3.11. While for uncorrelated networks without

clustering only 1 pure cooperating component exists, cooperation is spread to other

niches within the network in case clustering is enhanced. The strong discontinuities

at b = 2 are caused by the stable interactions among pure cooperators and defectors

at this integer value of b, as discussed above.

3.3 Conclusion

The challenge of a meaningful comparison of dynamics on different network topolo-

gies has been successfully solved for the two dynamics in question. In a first step
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Figure 3.10: Influence of clustering for accumulated cooperation dynamics on the

density of cooperators ρ. The scale-free network has a scaling exponent

γ = 3 and the clustering is tuned to µ equals 0 (circle), 0.1 (square), and

0.2 (triangle). The inset shows the curves in relation to the unclustered

data.
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Figure 3.11: Number of pure cooperating components Cc for the accumulated payoff

version on a scale-free network with different levels of clustering as in

Fig. 3.10 with according symbols.
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major topological constraints were identified. Within the context of scale-free net-

works the dependence on the scaling exponent γ and the importance of the maximal

degree kmax were identified. While the scaling exponent γ ultimately determines the

dynamics behavior in both dynamics studied, the maximal degree kmax is responsible

for finite-size effects. These topological properties are required to be held fixed in

order to study the impact of two-point correlations and clustering.

A further question, arising particularly in the A + B → ∅ reaction-diffusion pro-

cess, is related to the dynamical states by which the dynamics can be compared on

different topologies. The common parameter time turns out to be unsuitable and

has to be abandoned in favor of the inverse particle density ρ−1. This is supported by

the analytical calculations for the uncorrelated case in Sec. 3.1.1, showing that the

density fixes all relevant system properties in the long-time, low-density limit. Mon-

itoring the pattern formation in the two-component diffusion-annihilation reveals

that the effect of two-point correlations can be captured by a single scalar value.

Exploiting this fact identifies the correlation parameter α as a better measure than

the Newman factor r to describe the dynamical impact of two-point correlations on

the dynamics. The Newman factor suffers from finite-size effects while the correla-

tion parameter α is free from such a short-coming.

The observed super-linear density decay in the diffusion-annihilation process on

scale-free networks with a scaling exponent γ in the range of (2, 3] is caused by the

existence of hubs, nodes with a large degree k. Which degree k is sufficiently large

to consider a vertex as a hub is determined by the decreasing particle density.

In accordance with these results, the dominant role of hubs is strongly emphasized

in the accumulated payoff version of the Prisoner’s Dilemma game. A large degree k

causes inertness against strategy adoption which is responsible for the stabilization

of the cooperator density. This advantage vanishes in the effective payoff version of

the game. As a result the vertices with a small degree become the prevalent ones.

The contrary influence of two-point correlations on the accumulated and the effective

payoff version underlines the fundamental differences these two dynamics exhibit.

However, while two-point correlations support either strategy over the whole range

of the temptation to defect parameter b, enhanced clustering selectively supports

the inferior strategy in the accumulated payoff game.
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The concept of evolution [Nowak, 2006] from the domain of biology is ideally suited

to study the impact a dynamical process has on a network topology. Within this

framework a population of individuals reproduces itself in consecutive generations.

A reproduction of an individual involves the duplication of the parent, passing all

properties of the parent to the offspring. Rarely the duplication occurs with some

errors or modifications, yielding a mutant individual with distinct properties. Then,

selection regulates at what rates the distinct individuals reproduce themselves and

ultimately controls which type of individuals survives. In the context of a network

evolution, a distinct individual is represented by a distinct network realization and

the selection mechanism controls the reproduction of these on the basis of fitness

scores which are determined by the dynamical processes on these network real-

izations. This scheme implements a feedback from the dynamics on the network

topology and allows to identify the optimal network topologies for the given fitness

criteria. The evolution considered here is performed with the aim to find these opti-

mal network topologies. An integral assumption within this ansatz is the separated

time-scale of the evolution from the dynamics since the network realization is held

fixed during every dynamics.

In order to carry out the desired network evolution, a network mutation and a

network selection mechanism are required. The network mutation procedure has

to induce small random variations within the original network and fulfill some con-

straints, i.e. being ergodic within the network configuration space. Two appropriate

schemes are presented and evaluated in Sec. 4.1. This is followed by the introduction

of the selection process which originates from the domain of biology and is mapped

onto the concepts of statistical physics [Sella & Hirsh, 2005]. The results for the two

dynamical processes considered are presented in Sec. 4.2. The chapter closes with a

conclusion.

4.1 Network Mutation

The concepts of mutation and selection are independent in the course of an evolu-

tion. This requires the network mutation to act on a network without the knowledge
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of the dynamics. Including the knowledge of the dynamics within a network muta-

tion step would bias the evolution a priori into some direction. Instead, the network

mutation must allow for an ergodic random diffusion within the network configura-

tion space. The network configuration space is of enormous size and it is therefore

desirable to use a mutation scheme which is capable to produce random mutant

networks following the direction within the network configuration space induced by

the selection mechanism. By the independence from the selection mechanism, the

mutation scheme can not use any information provided by the dynamics. Assuming

that a particular dynamics is supported by distinct correlation patterns, the mu-

tation mechanism should support the build up of distinct conformations, i.e. the

increase of two-point correlations, clustering, and others, given a distinct network

realization. The mechanism should support any type of patterns and must not be

bound to a particular class of networks.

The first ansatz investigated removed a small fraction of randomly chosen edges

from the network and added these again in a random manner. While it seems very

intuitive, this attempt fails immediately as this scheme drives every network realiza-

tion into an Erdős-Rényi type graph. This highlights a further aspect to consider, the

random mutation scheme must not be bound to some particular class of networks,

but allow for an ergodic sampling of the network configuration space. Complete re-

distribution of all edges at random within each mutation would certainly ensure an

ergodic mutation, but the probability to yield networks with a degree distribution

different than a Poissonian is extremely unlikely. Necessarily, the mutation scheme

has to take into account the complete network realization and induce, based on this

information, some small perturbations.

Two schemes implementing these considerations are introduced below. To as-

sure that these mutation mechanisms meet the requirements presented above, each

scheme is thoroughly evaluated. To ensure the ergodic property, distinct network

realizations are successively mutated, but only mutations are accepted which mini-

mize the topological distance between the current network realization and an a priori

fixed network topology. The topological distance

d =
∑

j,k

∣
∣
∣P (j′ ≥ j, k′ ≥ k)− P t(j′ ≥ j, k′ ≥ k)

∣
∣
∣ (4.1)

is defined in terms of the joint degree distribution from the network realization,

P (j, k), and the joint degree distribution P t(j, k) of the a priori fixed target network.

The use of cumulative statistics is necessary for reasons explained in Sec. 2.3 since the

distance is determined among realizations of single network realizations. Choosing

the initial and the target network to be vastly different allows to explicitly test

the ability of a mutation scheme to turn an Erdős-Rényi network into a scale-free
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network with pre-scribed two-point correlations or vice versa. While this testing

scheme is by no means sufficient to ensure full ergodicity, it is sufficient to test

whether the scheme is capable to attain large variations in the degree sequence and

has the capacity to build up two-point correlations which ultimately rule higher

correlations. It is crucial to note that the overall number of edges is not fixed in this

ansatz, only the network size N is held constant.

4.1.1 Configuration Model Scheme

Bearing in mind the required properties the mutation scheme must obey, it is a

promising ansatz to induce some variations in the degree sequence within a given

network realization. The idea is to apply the configuration model (CM) algorithm,

which is used to generate uncorrelated networks with an a priori fixed degree dis-

tribution P (k), to a small fraction of a network. The algorithm used to generate

a whole network assigns each vertex a degree which is sampled from the desired

degree distribution P (k). Then these drawn degrees of each vertex are converted

into a discrete representation of the corresponding edge end distribution Pe(k) by

building up a list which includes for each vertex i exactly ki entries. Here ki is the

degree of vertex i and the entries for vertex i within the list represent open edge

ends bound to vertex i. Edges are then created by joining two edge ends sampled

successively from that list. The CM mutation scheme is motivated by the former

algorithm and defined as follows:

1. Initially a fraction of n nodes is randomly selected from the current network

to be mutated.

2. For every selected vertex i, a new target degree k̃i is sampled from the degree

distribution P (k) of the current network realization.

3. The selected vertices are successively processed in order to remove the edges

which start from each vertex i. However, a random amount of edges, drawn

from the range [0,min{ki, k̃i}], is not deleted. The difference among the target

degree k̃i and the number of edges kept yields the number of open edge ends to

be joined for vertex i within the next steps. In removing an edge from vertex

i the adjacent vertex, which is connected by this edge to vertex i, will loose an

edge end. If the connected vertex is not in the set of selected vertices, this loss

must be compensated by assigning an open edge end to a randomly chosen

vertex in the network.

4. All open edge ends are collected in a list which contains as many entries for

each vertex as there are open edge ends for that particular vertex.
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Figure 4.1: Degree distribution P (k) of the initial (circles), target (triangle) and final

(square) networks which were mutated with the CM mutation scheme.

5. Finally, edges are assembled by consecutively drawing pairs from the open

edge end list. Once an edge is formed, the respective edge ends are removed

from the list. This is repeated until the list is empty.

In step two the scheme utilizes apparently an information from the full network, the

current degree distribution P (k), to randomly assign new degrees to vertices. The

removal of the edges emanating from the set of selected vertices is quite involved.

The possibility to guard some edges helps to maintain possible correlations. The

actual removal of an edge which leads to a vertex which is not in the set of selected

vertices must be balanced by the assignment of an open edge end. This assignment is

necessarily made to a random vertex within the network and not to the vertex which

looses the edge end. Otherwise, the network would be bound to the set of degrees it

initially had, since all other degrees would have a weight of 0 for all mutations due

to the sampling with respect to the current degree distribution. By construction

of the scheme, the degree distribution will be maintained on average if no selection

mechanism is used. Only small variations of the network with respect to the degree

distribution are successively generated.

Since the CM mutation scheme is closely related to the CM procedure used to

generate uncorrelated networks of arbitrary degree distribution P (k), it is expected

that the CM mutation scheme is capable to successfully mutate the degree sequence

of an arbitrary initial network realization into the direction of an arbitrary different

degree distribution. Exploiting the testing scheme introduced above confirms this
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Figure 4.2: Newman factor r during the evaluation of the CM mutation scheme.

Reference lines are drawn for the Newman factor r of the target networks

which have assortative (triangle), uncorrelated (square), or disassortative

(circle) two-point correlations.

expectation. Figure 4.1 shows the evaluation of the CM mutation scheme with an

initially Erdős-Rényi type network and an uncorrelated scale-free network with a

scaling exponent γ = 3 as the target topology. The network size has been set to

N = 103, the fraction of vertices selected in each mutation step is 1%, and the

results are averaged over 10 independent runs. While the initial network (circle) has

a Poissonian degree distribution, vastly different from a power-law form of the target

network (triangle), the mutation scheme achieves an almost precise match (square)

with the target degree distribution. A single exception can be observed for vertices

with degree 1. Such vertices are not present in the target network, but have a high

frequency within the initial network. In the final network obtained the frequency

of degree 1 vertices is decreased. This decline continues with longer runs and the

frequency would vanish for extremely long runs.

However, while the uncorrelated case is expected to work well, the build up of

two-point correlations should be difficult to attain. Even though some pre-cautions

have been undertaken to allow for the build up of correlations, the CM scheme is

exclusively used to generate uncorrelated networks since only the degree distribution

P (k) is taken into account. Even though higher correlations are ignored by the

CM mutation scheme, the procedure is capable to reproduce two-point correlations

within the testing scheme. Repeating the evaluation with scale-free networks reveals

a good achievement with targeted two-point correlations set to assortative (triangle),
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uncorrelated (square), and disassortative (circle) as shown in Fig. 4.2. In difference

to the network used above, the correlation parameter α has been set to 0.4 (−0.4)

for the (diss-)assortative networks. The curves for two-point correlated cases both

show a slight offset below the target Newman values. This shift originates in the

difficulty arising from vertices with degree 1. While these vertices are not present in

the target network, they are still present in the mutated network and cause a slight

shift towards disassortative correlations.

4.1.2 Copying Scheme

Replication is one of natures primary driving forces. Applying this idea onto the

context of a network mutation is evidently not comparable to some biological repli-

cation scheme even though such connection can be made [Evlampiev & Isambert,

2008]. However, the concept of copying larger objects is an appealing approach, since

this offers the possibility to amplify distinct correlation patterns of higher order. A

characteristic the former CM mutation scheme lacks. Translating this concept to a

mutation procedure leads to the copy mutation scheme:

1. From the network under mutation a fraction of n nodes is randomly drawn.

These nodes will be copied within the next steps and are referred to as source

vertices. The random sampling is done successively to label each vertex with

an integer. Additionally the degree ki of each source vertex i is saved.

2. The same fraction of n nodes is randomly chosen from the remaining set of

vertices. These are the target vertices and are labeled as well with an integer.

All edges of the target vertices are removed. Within this removal the degree

of a source vertex might become decreased which is why the degree of each

source vertex has been saved in the previous step.

3. The source set of vertices is now consecutively iterated. Starting with the

first vertex sampled in step one all edges of this vertex are copied onto the

first vertex from the target set. If an edge from the source vertex points to a

vertex which is not in the source set, then the vertex from the target set will

be connected to that vertex. If on the other hand an edge from the source

vertex is connected to another vertex which is a source vertex as well, then

the target vertex will gain a connection with the corresponding vertex in the

target set. The correspondence is established by the labeling performed in the

former two steps. This scheme is repeated for all source vertices until all edges

from the source set are copied to the target set.

4. Within the removal of all edges in step two some source vertices have possibly

lost some edges. These edges are missing within the source set and are as well
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Figure 4.3: Degree distribution P (k) of the initial (circle), target (triangle) and final

(square) networks which were mutated with the copy mutation scheme.

absent in the target set since they did not get copied. This is compensated for

by adding the lost edges again. A vertex from the source set with lost edges

is assigned the missing amount of edges. The edges are connected to random

vertices from the target set.

The copy mutation scheme must take into account the fixed system size N of the

network to mutate such that a target set of vertices onto which in each step the

scheme copies the source vertices must be determined. All connections from the

target set are removed while extra care must be undertaken for edges connecting the

source and the target set of vertices. Once the edges from the target set are removed,

the information about these edges is lost within the copying step. Therefore, the

degree of each source vertex is recorded just before the removal of the edges from

the target vertices set. Redistributing these special edges in step four assures that

on average the total number of edges in the network does not change if no selection

mechanism is applied. The reassignment of these special edges in step four is realized

by a random scheme to gain some variations within the degree sequence of the

network.

The results of a first test whether the copy mutation scheme is capable to attain

an arbitrary degree distribution with the evaluation method formerly introduced

is shown in Fig. 4.3. The initial network is again an Erdős-Rényi network (circle)

with a Poisson degree distribution while the target topology (triangle) is a scale-free

degree distribution P (k) with a scaling exponent γ = 2.75. Two-point correlations
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Figure 4.4: Newman factor r during the evaluation of the copy mutation scheme.

Symbols and reference lines correspond to Fig. 4.2.

are absent within the target network. The final network (square) after overall 107

mutation steps displays a power-law degree distribution P (k) for nodes with degrees

larger than 1 which can be well approximated with a scaling exponent of the target

topology. The major difference is the systematic offset of the resulting final degree

distribution towards lower frequencies. This shift is reflected by a considerably

decreased average degree k. While the initial average degree is 3.03, the final average

degree is 1.64. It turns out that this decrease in the average degree results from a

higher acceptance probability of the applied selection criteria if a mutation occurs

which lowers the average degree. Supposing a mutation step which increases the

average degree, it is very likely that a vertex with a large degree is involved. Copying

such a large degree vertex has a significant impact on the scoring function. However,

simply by the large amount of edges copied it is very likely that correlations are

copied which oppose the targets topological properties. As a result the probability

is higher for a rejection of mutation steps involving vertices with a large degree.

In Fig. 4.4 results are shown for the extended evaluation tests with correlated

networks. The same parameter set has been used as in the previous section for

the CM mutation scheme. The copy mutation scheme is able to reproduce the

correlations of the target topology. The curves first fall into the disassortative regime

and then converge into the direction of the target value of the Newman factor r.

The trend of all three curves suggests for a longer duration the convergence onto

the correct final value of the Newman coefficient. The pronounced shift towards

disassortative values of the Newman factor r in comparison to the CM scheme roots
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back in the relatively increased frequency of vertices of degree 1. This is observable

from a comparison of the final histograms of the copy and the CM mutation scheme

in Fig. 4.3 and Fig. 4.1, respectively. Lowering the frequency of degree 1 vertices

is for both schemes difficult and is slightly pronounced in the copy scheme. The

increased frequency of vertices with degree 1 is responsible for the shift towards

disassortative two-point correlations.

The observed decrease of the average degree could be interpreted as a drawback

of the copy mutation scheme. The cause is an increased rejection probability for

mutations which include large degree vertices. In spite of the inaccuracies caused

within the evaluation tests, this behavior is of great advantage in an evolution driven

by dynamics. Evidently, the rejected mutations have a large impact on the network

topology. Therefore, the copy mutation scheme is able to generate mutated networks

with a significant topology change.

4.2 Network Selection by Dynamics

The selection process is a major cornerstone of an evolution. A common ansatz

is to model the evolutionary process in a framework of successively evolving finite

populations. The Moran process is an elementary stochastic model to study selec-

tion acting on a finite population of distinct individuals. The process considers a

population of fixed size which evolves in discrete generations. Within each gener-

ation a random individual for reproduction and a random individual for death is

selected. Therefore, the offspring of the former individual replaces the latter which

is why the process is also referred to as birth-death model. The initial population

in the first generation is assumed to consist out of different types of individuals.

Supposing there are only two types i and j of individuals available initially and sup-

posing a perfect reproduction without mutation, then the process has two absorbing

states. Once either type becomes extinct, the population will stay for all subsequent

generations homogeneous. This event is called the fixation of a certain type. The

probability for such an event to occur given a particular generation is referred to as

fixation probability.

Turning back to the context of evolution where mutations at a rate µ within

reproduction steps are possible, a formerly homogeneous population of a particular

type i can give birth to a single mutant type j. This situation of a large and almost

homogeneous population of type i, called the wild-type, and a mutant type j is a

common scenario within biology. At what probability the mutant type j can create

a lineage which takes over the whole population is given by the fixation probability

P (i→ j). If all individuals are selected with the same probability in each step for a
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reproduction or a death event, then the fixation probability is 1/Np. This changes

in the presence of fitness criteria. The fitness is interpretable in a biological setting

as the adaptability to the given environment of an individual. A higher fitness than

other individuals ultimately means a higher reproduction rate. Coining this onto

the Moran process translates into a preferential selection of individuals with a higher

fitness for reproduction events. Assuming a fitness of fj for a single mutant j arising

in a population of wild-type i with fitness fi, the fixation probability is

P (i→ j) =
1− fi

fj

1−
(
fi
fj

)Np
. (4.2)

Evaluating this fixation probability for mutants which have a fitness advantage over

the wild-type, i.e. fj > fi, reveals that a higher fitness does not necessarily guarantee

to replace the population. In addition it is even possible within finite populations

for mutants with a decreased fitness to take over the population.

The evolutionary process can be mapped onto a Markov process [Sella & Hirsh,

2005]. By the structure of the Markov process a stationary state will be reached. The

distribution of states within the stationary regime have been shown by Sella & Hirsh

[2005] to be Boltzmann distributed. This allows for the description of the station-

ary state in terms of a canonical ensemble in equilibrium from thermodynamics. A

translation of the evolutionary variables can be established by identifying the neg-

ative logarithmic fitness − ln f as energy E and the population size Np as inverse

temperature β.

The evolution carried out in this Thesis aims at identifying the optimal topologies

of a network with respect to the dynamical processes considered here. These optimal

structures emerge in the course of an evolution and are realized in the stationary

state. In this sense, a standard Monte-Carlo scheme [Binder & Heermann, 1997]

with Boltzmann weights is applicable to perform the network selection process, which

is implemented by:

1. Initially a single Erdős-Rényi graph is created and the largest component is

extracted from the graph. This graph forms the initial network for the evolu-

tion.

2. The fitness of the network − ln fi is measured by running the dynamical pro-

cess in question on the network. The fitness measure is a scalar value and

depends on the particular dynamical process. The value of the fitness measure

is commonly averaged over multiple runs of the dynamics on the same network

to obtain its mean value.

3. The network is mutated with the CM or the copy mutation scheme. Only

mutations which maintain the largest component are permitted. If the network
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disintegrates into multiple components, the mutation is rejected and repeated

with the original network.

4. The fitness of the mutated network − ln fj is observed as in step two. The

mutated network replaces the former network if the negative logarithm is lower

than that of the current network or if a randomly sampled number s in the

range of [0, 1] fulfills the condition

s < exp [−β (ln fi − ln fj)] , (4.3)

where the parameter β is the inverse temperature. In case the mutated network

is discarded, the former network is recovered.

5. Steps three and four are successively iterated for a sufficiently large amount of

generations.

6. Finally, the full network structure is saved.

The evolution requires some pre-cautions to consider. For example, the network

must be fully connected in the course of the evolution. This is ensured within step

three which immediately rejects any mutation leading to a defragmented network.

Recalling Eq. (2.13) in Sec. 2.2 reveals that this restricts admissible degree sequences

to comply with the condition of Eq. (2.13), k2 > 2k.

A further peculiarity of the scheme is the a priori unknown inverse temperature

β which constrains the acceptance rate. The common method to perform such

an optimization at temperature 0 leads to vanishing acceptance rates in the cases

studied. To ensure a sufficiently high acceptance rate, the inverse temperature is

tuned by the algorithm such that a pre-defined acceptance rate r is attained. Initially

β is set to an appropriate value and an increment factor β̂ is fixed. The inverse

temperature is multiplied with the increment factor β̂ each time a mutant network

is accepted which lowers the temperature. If a mutant network is discarded, the

inverse temperature is lowered by multiplying β with

β̃ = β̂
r
r−1 . (4.4)

With this choice, the inverse temperature will remain at a constant value, once the

acceptance rate r is reached. The acceptance rate is set to r = 0.2 and the increment

factor β̂ is equals to 1.01 within the evolutions considered here.

The results obtained with this evolution scheme are averaged over multiple differ-

ent initial realizations of the starting Erdős-Rényi network with an average degree

of k = 6 to observe the mean behavior. In addition, a crosscheck with a regular

three-dimensional lattice as initial network is performed to assure the independence

of the results from initial network topology. In the course of the evolution only one
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network realization and one mutant network is in each generation considered, even

though evolution regulates the development of a population. However, this setting

corresponds to a wide spread observed situation in biology that the population size

Np is large while the mutation rate µ is low, such that

µNp ≪ 1 (4.5)

is valid. In this limit, there are at maximum two different types of individuals present

in each instant within a population. Effectively the population can be represented

by a single individual and a mutant replaces that individual with a probability given

by the fixation probability.

4.2.1 Reaction-Diffusion Process

Driving an evolution by a selection mechanism based on the diffusion-annihilation

reaction A + B → ∅ requires a thorough choice of the initial parameters. The

networks considered here within the context of the diffusion-annihilation dynamics

have a size of N = 103. This size is comparable to many biological networks.

The limited network size constraints consequently the smallest density which is

resolvable. Dynamical states which have a particle density close to the minimal

density ρmin = 2/N will certainly not reflect the typical system behavior. Running

an annihilation reaction until all particles are vanished will display strong finite-

size effects, such that the density until which the process is considered is limited to

2ρmin. While the final density is limited to avoid finite-size effects, the initial density

must be limited as well. Starting of with a fully occupied network would emphasize

the deterministic characteristics of the diffusion-annihilation dynamics and neglect

topological differences. However, with decreasing initial density the reaction will

run shorter, having strong fluctuations within any fitness measure as consequence.

A choice of ρ0 = 0.1 will be used for the following. This initial density balances the

aspects raised.

A crucial ingredient for the evolution driven by a dynamics is the used fitness

measure. This measure ultimately defines which type of topology the evolution will

select. Consequently, a trivial fitness measure has a trivial topology as its solution.

An apparent fitness measure is the speed of the reaction. The time elapsed tf scales

with the number of particles which annihilate, such that a normalization by the

number of annihilation events

− ln fS =
tf

2 total # annihilations
(4.6)
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yields the average annihilation duration per particle. Assuring a fast reaction rate

and maximising the speed of the overall density decay will minimize fS. A require-

ment for an annihilation event to occur is the existence of an AB contact. The

optimal solution for this problem is evidently a star graph with one central node

which has the degree k = N − 1 and N − 1 further nodes of degree k = 1. This

structure is fully connected as required by the connectedness constraint and enforces

the strongest possible mixing among the particles.

Performing an evolution with both mutation schemes with respect to this speed

fitness measure confirms these considerations. The copy mutation scheme is capable

to recover the star topology. In contrast, the CM mutation scheme fails to drive the

network into a star topology. The CM mutation scheme is incapable to substantially

alter the topology of the initial network and the resulting values for the speed fitness

measure fS are smaller than results for the copy mutation scheme. This roots in the

inability of the CM scheme to generate network mutations which are substantially

different than the original network. The mutant networks are indifferent from the

point view of the dynamics with respect to the speed measure introduced in Eq. (4.6).

Aside of reaction speed, the diffusion-annihilation shows pattern formation. The

measures QAB and PAB introduced in Sec. 3.1.3 capture in essence pattern formation,

but are not directly applicable within their form defined. Both observables are

defined in each instant of the reaction and do not characterize the overall dynamical

process by a scalar value. Recalling the definition of the efficiency measure PAB,

which measures the annihilation rate in ratio to the rate of created AB contacts,

leads to an efficiency measure characteristic for the whole reaction. Defining an

efficiency measure as

− ln fP =
total # annihilations

total # created AB contacts
(4.7)

yields a scalar value suitable to be used as an effectivity fitness measure. The most

efficient reaction possible will need only one created AB contact per annihilation

such that the the largest value possible of the rhs from Eq. (4.7) is exactly 1. Lower

values indicate a decreased efficiency. This fitness measures requires consequently

the separation of the two reactants until they react. The optimal structure to fulfill

this criteria is a one-dimensional chain. Within such a structure mixed regions will

extremely fast segregate and each AB contact will result with a probability of 1/2

into an annihilation event. Structures which support a high level of segregation

are therefore favourable with respect to the efficiency measure. Lattices with low

dimensions beneath the critical dimension 4 fulfill this condition in general. However,

performed evolution runs are not capable to find these structures. By the nature

of the random sampling process structures as lattices, which are highly regular, are

very unlikely to be found by the random schemes applied here.
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Figure 4.5: The mean logarithmic combined fitness measure ln fC
δ of the annihila-

tion reaction is shown for different weighting of the evolutionary targets

speed and efficiency. The bars indicate the standard deviations and

the topologies exemplifies are a star (diamond), two-dimensional peri-

odic lattice (circle), an Erdős-Rényi graph with average degree k = 6

(square), and an uncorrelated scale-free network (triangle) with scaling

exponent γ = 2.75.

Both measures introduced favour vastly different topologies. While the solution

to efficiency fitness measure is in terms of the degree distribution a delta functional

at degree k = 1, the other speed measure will lead to a a degree distribution which

has a weight of N − 1 at degree k = 1 and weight 1 for degree k = N − 1. A

promising approach is the combination of these contrary evolutionary targets into

a combined fitness measure. The necessity to optimize two contrary evolutionary

targets at the same time is characteristic for biological systems. In order to weight

which of the two targets are to be optimized, a weighting parameter δ is introduced.

The resulting energies in units of kBT used for the Monte-Carlo scheme are

− ln fC
δ = −δ ln fS −

1

δ
ln fP. (4.8)

Evaluating this combined fitness measure for the topologies considered so far is

shown in Fig. 4.5. The fitness measure fC
δ is evaluated for different values of δ on

the topological structures of a star (diamond), a periodic two-dimensional lattice

(circle), and an uncorrelated scale-free network (triangle) with a scaling exponent

γ = 2.75. The one-dimensional chain has been omitted since it has such a slow

reaction speed that it is out of scope from the region plotted. The resulting energies
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Figure 4.6: Final degree distribution P (k) of an evolution with copy mutation

scheme driven by selection based on the process A+B → ∅. The distri-

butions shown are for the values δ equals to 1 (circle), 3 (triangle), and

10 (square). As an inset the cumulative degree distributions P (j ≥ k)
are illustrated.

as defined by Eq. (4.8) are drawn vs. the weighting parameter δ along with the

respective standard deviations which are indicated by the bars in each direction.

For values of δ in the vicinity of 1, the star topology has the lowest value with a

standard deviation close to 0. With increasing values of δ, the advantage of the star

disappears as the other curves attain lower values. With a value of approximately

δ = 5, the star is not any longer the best topology. At this value of the weighting

parameter δ the topology becomes indifferent with respect to the fitness criteria as

all curves fall onto a single point. Shortly after this crossing point, the curves suggest

a slight advantage of the scale-free topology, but no clear distinction can be made

since the standard deviations are too large. With increasing values of the weighting

factor δ, the periodic two-dimensional lattice becomes again the optimal topological

structure.

These observations make an evolution of the diffusion-annihilation appear very

difficult. The outcome of three evolutions with the values of δ equals to 1 (circle), 3

(triangle), and 10 (square) is shown in Fig. 4.6. All data-points have been averaged

over 10 independent evolutions for each value of δ. The copy mutation scheme is used

within all shown evolutions. Evolutions under the the CM mutation scheme have

shown to be incapable to optimize the fitness criteria for reasons explained above.

The degree distributions, illustrated in Fig. 4.6, show no apparent functional form.
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Figure 4.7: Fitness during an evolution of the A + B → ∅ process with different

weights δ for the evolutionary target. The inset shows the variability of

the degree sequence. The symbols correspond to Fig. 4.6.

Solely the degree distribution P (k) corresponding to the evolution, which effectively

optimizes for speed, is characteristic for a star like topology. Almost all vertices

have degree 1 while only a few vertices have a degree which is of the order of the

system size N = 103. The other two degree distributions follow for a small range

a power-law, but outside this range the degree distribution can not be captured

by some common functional form. The respective curves of the combined fitness

is shown Fig. 4.7. The initial values have been subtracted for comparability such

that all curves start at 0. Apparently, the evolution is able to optimize the fitness

measure for a value of δ = 1, which corresponds to a star, much better than for the

other evolutions with larger values of δ. The inset in Fig. 4.7 shows the variability

of the degree sequence which is measured in terms of the standard deviation σk in

relation to the mean degree k,

σk

k
=

√

k2 − k
2

k
. (4.9)

The variability increases dramatically within every evolutionary run and attains a

constant level as final value. The star topology for the δ = 1 evolution evidently has

the highest variability while the other two evolutions have a decreased variability in

comparison. Nevertheless, the variability for the δ = 3 and δ = 10 are considerably

high as they are well above 1.

A tabular comparison of the final fitness values is shown in Tab. 4.1. The data
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Topology Mean fitness Std. Dev. δ

Evolution 0.03 0.01 1

Star 0.03 0.01 1

Scale-Free 1.59 0.62 1

Erdős-Rényi 1.93 0.78 1

2D lattice 4.57 1.82 1

Evolution -0.14 0.03 3

Star -0.04 0.00 3

Scale-Free 0.15 0.23 3

Erdős-Rényi 0.30 0.28 3

2D lattice 0.97 0.62 3

2D lattice -1.59 0.31 10

Scale-Free -1.25 0.19 10

Evolution -1.10 0.15 10

Erdős-Rényi -1.07 0.19 10

Star -0.18 0.00 10

Table 4.1: Average combined fitness − ln fC
δ for different topologies and values of

the weighting parameter δ.

shows the obtained fitness values by the evolution along with fitness values from

the presented topologies above for the three values of the parameter δ considered

here. The network topologies found by the evolution are in case of the parameter

δ being in the range which favors the speed fitness criteria within the range of the

optimal topology as predicted above. For the large values of the parameter δ = 10,

the fitness measure favours highly regular topologies. These are inaccessible to the

random sampling scheme used here such that the evolution is not able to find a

topology which is better than the two-dimensional lattice.

4.2.2 Prisoner’s Dilemma

The Prisoner’s Dilemma arises from the question how cooperation can sustain such

that an apparent fitness criteria for the dynamics is based on the cooperator den-

sity ρ,

− ln f ρ = −ρ. (4.10)

This guides the evolution to select topologies with a high level of cooperation ρ.

This level of cooperation is constrained by the single parameter of the dynamics, the

temptation to defect b. An evolution is consequently performed at an a priori fixed
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Figure 4.8: Plot shows the cooperator density ρ during an evolution of the Pris-

oner’s Dilemma dynamics at a temptation to defect of b = 1.6. The

symbols indicate the different mutation schemes used, CM (circle) and

copy (square). The inset shows the variability of the degree sequence.

value of b. The choice of this parameter is important, since the initial conformation of

the network is an Erdős-Rényi when the evolution is started. This structure supports

only marginally the sustainment of cooperation such that cooperator densities are

very low. However, the cooperator density has to be larger than the minimal density

resolvable by the given system size N . Otherwise the evolution would not see any

cooperation at all, just by a too small system size.

Recalling that the Prisoner’s Dilemma has a stationary state within which the co-

operator density ρ is assumed to be stable, it is hence necessary to drive the dynamics

through the transient phase for each candidate network in the course an evolution.

The stationarity has the convenient side effect that the cooperator density is not sub-

ject to strong fluctuations. This allows for a low number of statistics per network

candidate which were set to 10 dynamical runs per network tried. The downside of

the stationarity is the much increased computational resources required. For that

reason the system size has been set to a value of N = 500 which is still a realistic

network size in terms of biological networks which are subject to cooperation.

The efficiency version of the Prisoner’s Dilemma turns out to be very hard to op-

timize. Neither the CM nor the copy scheme are capable to improve the cooperation

level. A problem in this case are the extremely low cooperator densities at the eval-

uated temptation to defect b of 1.6. Decreasing the temptation to defect b to lower
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Figure 4.9: Temperature β−1 in the course of an evolution of the accumulated Pris-

oner’s Dilemma game at a temptation to defect of b = 1.6. The inset

shows the mean degree k during the evolution.

values as 1.3 improves this, but does not solve the problem of marginal cooperation

density. A decreasment of the temptation to defect parameter b to values as low as

1.05 assures that the cooperators are able to spread over the whole network, since

the cooperator strategy is in the ESSN class for all vertices, including the vertices

with the largest degree kmax, see Sec. 3.2. This choice in turn does not leave much

room for fitness gains. The cooperator density ρ is at this level of the temptation to

defect parameter b ≈ 1 already close to 1. The evolution based on a CM mutation

scheme maintains the level of cooperation which is initially present. The CM scheme

does not alter the topology of the underlying network, the changes induced by the

CM scheme are too small to be sensed by the dynamics which is in accordance with

the diffusion-annihilation reaction. On the other hand, the copy scheme generates

in the course of an evolution some mutant networks which display large fluctuations

within the cooperator density. The selection scheme follows, once these fluctuations

are too large, only the noise from the fitness measure. As a result the cooperator

density is decreased.

The situation is different in the accumulated Prisoner’s Dilemma dynamics. To

some extent it is evident for the evolution which topological changes improve the

level of cooperation. Nodes with a large degree k help to maintain a high level of

cooperation, since the vertices are inert against strategy adaption. In contrast to

that, a low mean degree k increases the density of cooperation which is supported by

observations drawn from an increasing average degree k for Erdős-Rényi networks in
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Figure 4.10: Degree distribution of networks from an evolution with respect to the

cooperator density of the Prisoner’s Dilemma. The mutation schemes

used are the CM (circle) and the copy (square) scheme. The inset shows

the cumulative degree distribution P (j ≥ k) where a scaling exponent

γ = 2.11 has been determined and drawn as a reference line within both

figures.

Sec. 3.2 along with a decreasing cooperator density. A large mean degree k implies

pronounced mean-field behavior which corresponds to the absence of cooperation.

Both topological changes appear to be incompatible to one another and it is not

obvious what type of topology will emerge within an evolution. The density of

cooperators ρ is shown in Fig. 4.8 for an evolution performed at a temptation to

defect b = 1.6 with the CM (circle) and copy (square) mutation scheme. While the

copy scheme successfully optimizes the density of cooperation to its maximal value

of 1, the CM (circle) scheme is not able to overcome a certain level of cooperation.

A key ingredient of the copy (circle) mutation scheme to increase the cooperation

density is the increase of the variability of the degree sequence which is shown

as an inset in Fig. 4.8. Surprisingly, the CM scheme shows a slight decline in the

cooperator density ρ at a generation of roughly 104. At this point the acceptance rate

decreases significantly which is indicated by the increasing temperature, illustrated

in Fig. 4.9. This roots in the continuous reduction of the mean degree k by the

CM scheme. The mean degree k, shown as an inset in Fig. 4.9, is lowered to a

value of k = 2.87. A further reduction of the mean degree k is impossible, since the

network has to stay fully connected. The final degree distributions P (k) are shown

in Fig. 4.10. Evidently, the CM scheme keeps the functional form of the initial
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Poisson degree distribution and only pushes the initial mean degree k = 6 to a lower

value. The results from the copy scheme are vastly different. Evaluating the degree

distribution by cumulative statistics, which is shown as an inset in Fig. 4.10, reveals

that the final functional form is compatible with a power-law fit. This suggests that

a scale-free degree distribution is indeed an optimal structure for the support of

cooperation within the accumulated Prisoner’s Dilemma dynamics. A least-squares

fit of the cumulative degree distribution estimates a scaling exponent γ of 2.11. The

lines drawn within the double logarithmic plots of Fig. 4.10 have the respective

slopes and are well compatible with the data.

4.3 Conclusion

The influence of a dynamical process has been studied in the framework of evolu-

tion. Two network mutation schemes were introduced. The configuration model

(CM) mutation scheme considered is motivated by the CM scheme to construct un-

correlated networks. It focuses on the degree distribution of a network, producing

mutant networks which have a similar degree distribution as the original network

but include some variations. The other mutation scheme was based on the prin-

ciple of copying. A fraction of vertices from the original network is copied with

all edges among these vertices onto a random target region of the network. Both

schemes were thoroughly evaluated whether they allow for an ergodic sampling of

the network ensemble. The CM and the copy mutation scheme were verified to fulfill

this requirement within the testing scheme applied. However, the testing revealed a

minor short-coming of the copy scheme which slightly decreases the average degree

k in the course of the test performed. The reduction of the average degree k is

due to a large impact on the network topology whenever the copy mutation scheme

processes vertices with a large degree k in a mutation step. Such mutation steps

with a large impact on the network topology are in the majority of cases opposing to

the two-point correlations found in the target network. Therefore, mutations which

involve such large degree vertices have a higher probability of being rejected.

The reduction of the average degree k may appear at a first glance disadvantageous

and disqualify it as a proper mutation scheme. However, further tests reveal that

if no selection criteria is applied, the average degree k remains constant. The large

topological changes, which occur whenever a vertex of large degree k is copied, are

a hindrance in the tests performed, but will turn out to help an evolution to explore

topologies which substantially deviate from the initial topology.

Key concept of an evolution is the selection method. The final stationary distribu-

tion defined by a biological evolution like the Moran process is Boltzmann distributed
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[Sella & Hirsh, 2005]. As the focus here is on the final stationary state, the selection

method has been realized by means of a Monte-Carlo sampling scheme with Boltz-

mann weights. The energies minimized by the Monte-Carlo scheme correspond to

the negative logarithm of the fitness measure used, as shown in Sella & Hirsh [2005].

The fitness measure of a network is a scalar value defined by an appropriate observ-

able from the dynamics performed on the network.

In the case of the reaction-diffusion process, A+B → ∅, the choice of the fitness

measure turned out to be difficult. Choosing reaction speed as a fitness measure

results in the trivial topology of a star. In contrast, the efficiency measure leads

to a further trivial structure of a regular lattice. The two fitness measures were

combined with the help of a weighting parameter which controls to what extent

one or the other fitness measure is used. Evaluating this combined fitness measure

shows that either a trivial topology is optimal or the fitness measure is indifferent

with respect to random network topologies as different as scale-free and Erdős-

Rényi type networks. The performed evolutions with the copy mutation scheme

confirm the expectation to obtain one of the trivial structures. The evolutions with

the CM mutation scheme, on the contrary, failed to optimize any fitness measure.

This failure roots in the inability of the CM mutation scheme to generate mutant

networks which have significant topological changes causing an impact on the fitness

measure. In summary, the diffusion-annihilation process appears to be very difficult

to use to study network evolution driven by selection on dynamics. The observations

suggest that a meaningful evolution requires the existence of a stationary state of

the dynamics like it is common in biological systems.

The Prisoner’s Dilemma is free from the drawback of lacking a stationary state

as the A + B → ∅ reaction. The density of cooperators in the stationary state

of the Prisoner’s Dilemma is used as a fitness measure. The temptation to defect

parameter b constrains the density of cooperation and its value is a priori fixed in

the course of an evolution. The two versions of the Prisoner’s Dilemma considered

here have vastly different dynamical properties, which is reflected in the evolution

of these.

The effective payoff version of the dynamics reveals either to be insensitive against

topological changes induced by the mutation schemes or is subject to large fluctu-

ations. The behavior of the efficiency ruled dynamics is characterized to be almost

unaware of the underlying network topology. The insensitivity roots back in the rules

of the dynamics, since the transformation of payoffs into effective payoffs virtually

removes the topological fingerprint from the dynamical process. This is in accor-

dance with the proposed equivalence in Sec. 3.2 that each vertex within the network

is representable by a player who is playing the Prisoner’s Dilemma in a population of

size k, the degree of the vertex. The efficiency ruled dynamics consequently ignores
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to a large extent the network structure.

The situation changes drastically in the case of accumulated payoffs. The ac-

cumulation procedure ensures the direct impact of the topology on the dynamics.

The accumulated dynamics leads to different network topologies under the evolu-

tion with the two mutation schemes. At a temptation to defect value of b = 1.6, the

copy mutation scheme is capable to optimize the cooperator density to the highest

possible value ρ = 1, while the CM mutation scheme attains a cooperator density

considerably smaller. The CM mutation scheme is not capable to generate topo-

logical changes which simultaneously deviate from the initial Erdős-Rényi network

topology and induce a significant impact on the fitness measure of the cooperator

density. Instead, the CM mutation scheme keeps the Poisson degree distribution of

the initial network and reduces the mean degree k. The reduction of the average

degree k is a convenient method to increase the cooperator density. This moves the

system further away from a mean-field scenario which corresponds to an all-to-all

interaction pattern, where cooperation is absent. However, reducing the average de-

gree k is only possible to some extent as the network is required to stay connected.

The CM mutation scheme does not explore the inertness of vertices with a large

degree. Such vertices with a large degree stabilize cooperation significantly. The

copy mutation scheme manages to build up vertices with a large degree. In the

course of an evolution, the copy mutation constantly increases the variability of the

degree distribution which is crucial for the support of the inertness by vertices with

a large degree. The obtained degree distribution is compatible with a power-law,

suggesting that a scale-free network topology is indeed optimal with respect to the

accumulated Prisoner’s Dilemma.
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The onset of this Thesis was the development of an analytical framework which

allows to control the studied topological properties. The result has been a gen-

eral formalism capable to control two-point correlations on the level of the average

nearest neighbor function knn(k) while simultaneously allowing to fix a priori an

arbitrary degree distribution P (k). Furthermore, an algorithm has been introduced

generating arbitrary two-point correlated networks with an up to date unmatched

efficiency and accuracy, which was previously unavailable. In collaboration with

Andreas Pusch, the algorithm has been extended to incorporate the control over

clustering. With the ability to control two-point correlations and clustering in net-

works, their impact on two dynamical processes has been analysed. The functional

form of the average nearest neighbor function knn(k) has been set to depend on one

parameter, the correlation parameter α, which allows to tune two-point correlations

from assortative over uncorrelated to disassortative two-point correlations. With

the introduced metholodgy, virtually any dynamical process on a network can be

systematically studied with respect to two-point correlations and clustering.

The first dynamical process considered belongs to the class of diffusion-annihilation

dynamics, characterized by the stoichometric reaction equation A+B → ∅. An an-

alytical treatment in the case of uncorrelated networks has been performed. The

analysis revealed an explicit dependence of the density decay on the network topol-

ogy. In the long-time, low-density limit, the density decay in dependence of time

becomes a power-law, such that ρ−1 ∝ tf . The value of f is equal to 1 for homo-

geneous networks with a finite second moment k2 of the degree distribution. In the

case of scale-free networks with a scaling exponent γ in the range (2, 3], the second

moment k2 diverges. This causes f to turn into an explicit function of the scaling

exponent γ, which is f = (γ − 2)−1, resulting in values of f greater than 1. Besides

the density decay, the A+B → ∅ reaction is characterized by pattern formation in

the form of a segregation of the two components. On scale-free networks the segre-

gation has been shown to be pronounced for disassortative networks in comparison

to uncorrelated networks. Contrarily, these disassortative networks display a faster

reaction speed than uncorrelated networks. Observing that the efficiency of the

process is strongly increased for disassortative networks resolves this contradiction.

Disassortative two-point correlated networks are capable to combine contradictory
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aims such as segregation and high reaction speed. The ability of disassortative net-

works to combine contradictory concerns appears to be a general feature of this

topological property. For example, biological networks are subject to evolution un-

der contrary concerns and are in most cases disassortative, i.e. protein interaction

and gene regulation networks.

As a second dynamical process, the famous Prisoner’s Dilemma game has been

studied. The characteristics of the dynamics crucially depend on the implementation

of the finite replicator dynamics analogue used. Accumulation of payoffs leads to

an inertness of vertices with a high degree k which participate in many games. The

inertness against strategy adoption ultimately supports the sustainment of cooper-

ation and leads in the case of scale-free networks to a dominance of the cooperation

strategy over the defect strategy. Exploiting the influence of two-point correlations

in the accumulated payoff version shows that assortativity supports cooperation, es-

pecially in the domain of large values of the temptation to defect parameter b close to

2. In the case of networks with clustering, the enhancement of the cooperator density

is even stronger than it is caused by assortative two-point correlations in the regime

of the temptation to defect parameter b close to 2. This result is in accordance with

the strong assortative two-point correlation patterns and strong clustering observed

within social networks, suggesting the relevance of these topological properties with

respect to the sustainment of cooperation for social networks.

An alternative version of the Prisoner’s Dilemma has been considered as well. The

implementation of the finite replicator dynamics analogue has been altered from uti-

lizing accumulated payoffs to effective payoffs. The use of effective payoffs substan-

tially changes the characteristics of the Prisoner’s Dilemma dynamics. Scale-free

networks exert an increased support of cooperation in comparison to Erdős-Rényi

networks only in the regime of a highly challenging scenario, corresponding to a

temptation to defect parameter b close to 2. Using effective payoffs almost removes

the network topology from the dynamics. Every player i with a degree ki in the

network is put into the equivalent situation to participate in a Prisoner’s Dilemma

game carried out in a well-mixed population consisting out of ki individuals. Ex-

ploiting the concept of finite evolutionary stable strategies allows to classify whether

the degree ki of a vertex i is accessible to the cooperation strategy or not. An im-

pact of two-point correlations has been observable while further correlation patterns

like clustering have been found to be not relevant. This highlights the relevance

of two-point correlations in networks as it even influences the efficiency ruled Pris-

oner’s Dilemma, a dynamical process which virtually removes the network topology

by definition of its rules. The two-point correlations of a network ultimately controls

the distribution of edges, giving two-point correlations their striking importance.

The network evolution recovered the outstanding role of high variability in the
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degree sequence of a network topology. High variability results in a strongly het-

erogeneous distribution of degrees and is realized by a scale-free network topology.

A scale-free network with a power-law degree distribution has a second moment

considerably larger than the mean degree. This combination ensures the overall

connectedness of the network while providing a relatively low mean degree. A low

mean degree ensures that dynamical systems are moved away from mean-field be-

havior as it was found for the Prisoner’s Dilemma. On the other hand, the strong

heterogeneity causes vertices of vastly different degrees to be connected. Thus,

vertices of different scales become interwoven. For the example of the Prisoner’s

Dilemma, this ultimately amplifies the density of cooperation. The benefit for the

reaction-diffusion system from the heterogeneity is the strong reduction of the av-

erage distance from every vertex to any other vertex. The degree heterogeneity is

simultaneously of great importance for the topology and the dynamics of a network.

However, for complex topologies to emerge, more than a bias towards degree het-

erogeneity is necessary, since the A + B → ∅ process studied results in the trivial

structure of a star which has a degree sequence variability scaling directly with the

system size N .

In this Thesis the major results were drawn from a systematic study of two-point

correlations and a network evolution. First, the evolution of networks driven by a

selection method with respect to a dynamics requires a sufficiently complex dynamics

and an adequate network mutation mechanism. Otherwise trivial networks will

emerge or the dynamics is insensitive against mutations induced by the mutation

mechanism. Second, while the degree distribution characterizes the vertices of a

network, the two-point correlations of a network characterize the edges of a network

and generally alter dynamical processes on networks.
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A Appendix

A.1 Analytical Treatment of the

Annihilation-Diffusion Process

We assume the complex network of N nodes to be fully defined by its N × N
adjacency matrix aij. To discuss a physically meaningful complex network in the

sense of diffusion, we take the network to be undirected and free of self- and multiple-

connections. Therefore, aij is a traceless, symmetric binary matrix with the elements

aij being 0 or 1, which symbols a (dis)connection between site i and j. The state

of vertex i at time t is described by two dichotomous variables n
(a)
i (t) and n

(b)
i (t).

Their values may be 1 or 0 only, indicating the presence or absence of a particle A

(n
(a)
i (t)) and B (n

(b)
i (t)). The system state is thus defined by

n(t) = n
(a)(t) + n

(b)(t)

n
(a)(t) = {n

(a)
1 (t), n

(a)
2 (t), ..., n

(a)
N (t)}

n
(b)(t) = {n

(b)
1 (t), n

(b)
2 (t), ..., n

(b)
N (t)}.

(A.1)

Note, that these variables have to fulfill the constraint n
(a)
i (t)n

(b)
i (t) = 0 at any time.

In the course of the calculation, we will take the average over multiple realizations

of the same system, turning the discrete n
(a)
i (t) and n

(b)
i (t) variables into densities

ρ
(a)
i (t) and ρ

(b)
i (t). Furthermore, we will assume throughout the analysis the statis-

tical equivalence of vertices of the same degree k. Therefore, denoting by V(k) the

set of all vertices with the same degree k, we assume that

ρ
(a)
i (t) ≡ ρ

(a)
k (t) ∀ i ∈ V(k)

ρ
(b)
i (t) ≡ ρ

(b)
k (t) ∀ i ∈ V(k)

(A.2)

is valid. Following standard MF treatment, we hence neglect all fluctuations which

might exist within a set of vertices V(k). The total density ρ(a)(t) (ρ(b)(t)) is given

by the set of partial particle densities {ρ
(a)
k (t)} ({ρ

(b)
k (t)}) through the relation

ρ(a)(t) =
∑

k

ρ
(a)
k (t)P (k). (A.3)
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A dynamics starts by random assignment of maximal one particle per vertex. The

particles diffuse by random jumps at a rate λ to adjacent neighbors through the

network. If two different particles meet at a vertex, they instantly annihilate and

the vertex becomes empty. Before we proceed to the time evolution of the system,

we first derive an expression for the particle pair-correlations in dependence of the

partial particle densities.

A.1.1 Particle pair-correlations

We quantify the particle pair-correlations for given partial particle densities by

counting the number of contacts between particles on adjacent vertices. To count the

AB contacts of a vertex i, we assume vertex i to carry an A particle and count the

number of adjacent vertices which are occupied by a B particle. Setting this number

in relation to all connections of the vertex i yields the pair-correlation coefficient

q
(ab)
i (t) =

1

ki
n

(a)
i (t)

∑

j

aijn
(b)
j (t). (A.4)

Averaging now over a whole ensemble of equal systems and making use of the usual

MF assumption 〈n
(a)
i (t)n

(b)
j (t)〉 ≈ 〈n

(a)
i (t)〉 · 〈n

(b)
j (t)〉, we obtain

Q
(ab)
i (t) =

1

ki
ρ

(a)
i (t)

∑

j

aijρ
(b)
j (t). (A.5)

By using the statistical equivalence of all Nk vertices i with the same degree k, we

can sum over all these vertices such that

Q
(ab)
k (t) =

1

k
ρ

(a)
k

∑

k′
ρ

(b)
k′ (t)

1

Nk

∑

i∈V(k)

∑

j∈V(k′)

aij . (A.6)

In this step, we split the sum with index j into two sums over k′ and one over V(k′).

The double sum over aij is related to the conditional probability P (k′|k) that a

vertex of given degree k has a neighbor which has degree k′. This equation has been

derived previously [Boguñá et al., 2003] to be

1

kNk

∑

i∈V(k)

∑

j∈V(k′)

aij = P (k′|k). (A.7)

Using this equation and assuming an uncorrelated network, which simplifies the

conditional probability P (k′|k) to k′P (k′)/k, we obtain the expression

Q
(ab)
k (t) = ρ

(a)
k (t) 〈ρ

(b)
k (t)〉. (A.8)
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One should note that by introducing the mean k, the values of the exponent γ are

limited to γ > 2. Otherwise the mean k is not defined in the limit of infinite size

networks (N → ∞). The overall particle pair-correlation coefficient QAB(t) can

easily be computed by multiplying Eq. (A.8) with P (k) and summing once more

over all k,

QAB(t) = ρ(a)(t) 〈ρ
(b)
k (t)〉. (A.9)

Analogously, we have Q(aa)(t) = ρ(a)(t) 〈ρ
(a)
k (t)〉, Q(bb)(t) = ρ(b)(t) 〈ρ

(b)
k (t)〉, and

Q(ba)(t) = ρ(b)(t) 〈ρ(a)
k (t)〉.

A.1.2 Density decay

For further computations we will assume for simplicity that the initial densities of

ρ(a) and ρ(b) are equal, so that there is a symmetry between A and B particles. We

will calculate only an expression for n(a)(t), and one may obtain the corresponding

n(b)(t) equations by interchanging indices A and B. Modeling the diffusion as a

Poisson process [Kampen, 1992], the set of {n
(a)
i (t)} changes within an infinitesimal

time interval dt as

n
(a)
i (t+ dt) = n

(a)
i (t) η

(a)
i (dt) +

[

1− (n
(a)
i (t) + n

(b)
i (t))

]

ξ
(a)
i (dt). (A.10)

Here η
(a)
i and ξ

(a)
i are dichotomous random variables, taking values of 0 or 1 with

certain probabilities p and 1− p respectively,

η
(a)
i (dt) =







0 p = λ dt




∑

j

aijn
(b)
j (t)

kj
+



1−
1

ki

∑

j

aijn
(a)
j (t)









1 1− p

(A.11)

ξ
(a)
i (dt) =







1 p = λ dt
∑

j

aijn
(a)
j (t)

kj

0 1− p

. (A.12)

The following two cases need to be distinguished: (i) If site i is occupied by an A

particle at instant t, η
(a)
i (dt) is responsible for the next time step: The site may

become empty (η
(a)
i = 0) with a probability proportional to the product of the

jumping rate λ and the time interval dt if a B particle in the neighborhood jumps

onto site i or if the A particle at i jumps away to a neighborhood site where no A

particle is already located. Otherwise no change happens. (ii) If the site i is empty

at instant t, then ξ
(a)
i (dt) will determine the time evolution: The vertex may become

occupied by an A particle only if one in the neighborhood jumps onto vertex i. Note
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that the two random variables η
(a)
i and ξ

(a)
i are hence not independent from each

other, but we will treat them as independent (cf. [Catanzaro et al., 2005a]).

Equation (A.10) yields an average time evolution for n
(a)
i (t)

〈n
(a)
i (t+ dt)〉 =n

(a)
i (t)− dt






n

(a)
i (t) +

∑

j

[

n
(a)
i (t)
aijn

(b)
j (t)

kj

− n
(a)
i (t)

1

ki
aijn

(a)
j (t)

−
(

1−
[

n
(a)
i (t) + n

(b)
i (t)

]) aijn
(a)
j (t)

kj

]





,

(A.13)

where we have set without loss of generality the jumping rate λ = 1. Averaging over

a whole set of equal initial configurations and applying once more Eq. (A.7) and the

statistical equivalence of vertices with the same degree, Eq. (A.2), we obtain after

some formal rearrangements

dρ
(a)
k

dt
=− ρ

(a)
k −

∑

k′







1

k′

[

ρ
(a)
k ρ

(b)
k′ − k

′ρ
(a)
k

1

k
ρ

(a)
k′

−ρ
(a)
k′ + ρ

(a)
k ρ

(a)
k′ + ρ

(b)
k ρ

(a)
k′

]

kP (k′|k)






.

(A.14)

Here we have suppressed the explicit time dependence for the sake of simplicity.

Assuming the network to be uncorrelated (i.e. that P (k′|k) = k′ P (k′)/k) allows us

to perform the sum over k′, yielding finally the expression

dρ
(a)
k

dt
= −ρ

(a)
k −

k

k

[

ρ
(a)
k ρ

(b) − ρ(a) + ρ
(a)
k ρ

(a) + ρ
(b)
k ρ

(a)
]

+ ρ
(a)
k 〈ρ

(a)
k 〉 (A.15)

for the partial particle densities. Multiplying Eq. (A.15) with P (k) and summing

over all k values results in the differential equation for the overall density,

dρ(a)

dt
= −ρ(b)〈ρ(a)

k 〉 − ρ
(a)〈ρ(b)

k 〉

= −Q(ab) −Q(ba).

(A.16)

From Eq. (A.16) it is apparent that the density decay is directly proportional to the

pair-correlations among unlike particles. To proceed further, we need expressions

for ρ
(a)
k and ρ

(b)
k . Since the initial densities are equal, we have forcibly Q(aa) = Q(bb)

because of symmetry. This implies the equality ρ
(a)
k = ρ

(b)
k ≡ ρ

′
k, allowing further
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simplifications and transforming Eq. (A.15) into

dρ′k
dt

= −ρ′k +
k

k
[1− 3ρ′k] ρ

′ + ρ′k〈ρ
′

k〉

= −ρ′k +
k

k
[1− 3ρ′k] ρ

′ +Q′′k.

(A.17)

The further derivation of the partial particle densities is discussed in Sec. 3.1.1,

enlightening the impact of ‘jamming’.

A.1.3 Validation of the approximations

To validate the analytical calculations developed, we have to verify the two central

approximations made which are based on the assumption of a small particle density

on the network. Furthermore, it is crucial to get an estimate which densities can be

considered small enough for the validity of the approximations. Our first approxi-

mation was to neglect in Eq. (A.15) the ‘jamming’ term Q′′k in comparison to the

other term quadratic in the density 3kρ′kρ
′/k. We have shown the validity of this

approximation analytically for vertices with a degree k ≫ kc and k ≪ kc (the latter

for low densities). To check the intermediate range k ≈ kc, we perform numerical

simulations. If we set the ratio in Eq. (3.7) equal to 1, we obtain a critical degree

k̃c,

k̃c =
〈ρ′k〉

3ρ′/k
, (A.18)

which separates vertices whose ‘jamming’ term is less important than the other

quadratic density term in Eq. (A.17) from those vertices for which the ‘jamming’

term is at least of equal importance. The time-evolution of the particle density on

vertices with a degree k ≫ k̃c is not affected by ‘jamming’, whereas vertices with

a degree of the order of k̃c or lower are affected. On the other hand vertices with

a small degree do not contribute to the overall particle density at later times, since

the hubs dynamically attract the particles and carry the highest density ρ′c = 1/3.

Considering only vertices as hubs which have a degree k > kc = k/3ρ′, we have as a

condition for ‘jamming’ not being relevant

k̃c ≪ kc. (A.19)

If condition (A.19) is fulfilled, there are no vertices left in the network which do

carry a sufficiently high density and whose ‘jamming’ term is important for the

time-evolution of their ρk(t). In Fig. A.1 we exemplified this condition for an

exponent γ = 2.75 and an initial particle density ρ0 = 0.95. Note that the curves

are only drawn until kc reaches the value of the maximum degree kmax present in the
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Figure A.1: Plot of kc and k̃c of the numerically simulated A + B → ∅ process for

an exponent γ = 2.75 and an initial density ρ0 = 0.95. Since kc is

increasing much faster than k̃c, ‘jamming’ becomes quickly irrelevant.

network. Once the value of kc is much greater than k̃c the ‘jamming’ effect is of no

more relevance for the time evolution of the process for all vertices in the network,

including those with k ≈ kc. It is crucial to note that kc grows much faster than k̃c
in the course of the process. Therefore, the ‘jamming’ is continuously diminishing

during the dynamics and only important for low degree vertices carrying a high

density in the beginning of the process. An equivalent criterion to test whether

‘jamming’ is not relevant is to check if the ratio of k̃c/kc is substantially smaller

than 1. In Fig. A.2(a) we illustrate this for an initial density ρ0 = 0.95. Again, the

individual curves are only drawn until kc reaches kmax. They start with a maximum

value of almost 1, indicating the presence of ‘jamming’ and drop quite quickly well

below 1. In Fig. A.2(b) we show the same simulations but with a much smaller

initial density of ρ0 = 0.1. Most importantly, these curves already begin at values

well below 1 and therefore there is never ‘jamming’ present in the dynamics. The

interesting intermediate increase of k̃c/kc for the initial density ρ0 = 0.1 (Fig. A.2(b))

comes from the fact the dynamical hubs start with a density ρ′0 = 0.05 which is

smaller than their long-time density ρ′c = 1/3. Therefore, all vertices with ρ′k < 1/3

and a degree k > kc will have increasing particle densities ρ′k which enter 〈ρ′k〉 in

Eq. (A.18). Once the dynamics has reached its long-time behavior, there are no

more ρ′k-terms in 〈ρ′k〉 which increase in magnitude, since the dynamical hubs carry

the highest density in the network.
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Figure A.2: Ratio of k̃c and kc of the numerically simulated A + B → ∅ process on

networks of different exponents γ as indicated, with an initial particle

density (a) ρ0 = 0.95 and (b) ρ0 = 0.1.

The second approximation made to obtain an expression for ρ′k, the quasi-static

assumption dρ
(a)
k /dt ≈ 0, yielded Eq. (3.11). Rearranging Eq. (3.11) into

k

(

1

ρ′k
− 3

)

=
k

ρ′
(A.20)

leads to an expression where the right hand side (and consequently the left hand

side as well) is independent of k if the approximation is indeed valid. Plotting the

left hand side of Eq. (A.20) for a couple different degrees k should yield a data-

collapse onto a single curve. Fig. A.3 on the following page illustrates this in the

case of an exponent γ = 2.5. The curves join quite nicely at roughly t ≈ 50. Similar

time points are obtained for other exponents γ. We can therefore expect that the

quasi-static approximation holds after this time.

A.2 Numerical Methods

A.2.1 Generation of Two-Point Correlated Networks

The overall scheme of the algorithm to construct a network with N vertices and a

given joint degree distribution P (j, k) is the following:
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Figure A.3: Numerical validation of the quasi-static approximation according to

Eq. (A.20) for the A + B → ∅ process, exemplified by an exponent

γ = 2.5 and an initial density ρ0 = 0.1. The k-classes are logarithmi-

cally joined, where class 1 corresponds to vertices of degree k = 2, class

6 to 8 ≤ k ≤ 10, class 11 to 33 ≤ k ≤ 42, class 16 to 134 ≤ k ≤ 178,

and class 21 to 563 ≤ k ≤ 750. A data-collapse is observed for t & 50.

1. As in the CM algorithm, one first has to draw a degree sequence by calculating

the theoretical (continuous) edge end distribution Pe(k) from the joint degree

distribution P (j, k) and transform that into a degree distribution P (k). From

this distribution, a degree sequence of length N is drawn.

2. Each element of the degree sequence represents a vertex. All vertices with the

same degree k are then sorted into degree classes, each containing only vertices

of the same degree k.

3. To compensate for discretization effects caused by the finiteness of the sampled

network, one has to calculate the discrete edge end distribution P (d)
e (k) from

the generated degree sequence. To do so, one acquires, by estimating the size of

each degree class, the discrete degree distribution P (d)(k), which corresponds

to a discrete edge end distribution by P (d)
e (k) = k P (d)(k)/k̄.

4. Next, the discrete conditional probability P (d)(j|k) is setup. To obtain a ma-

trix which accommodates the discretization effects, one replaces the continuous

edge end distributions Pe(k) in the definition of the conditional probability dis-

tribution of Eq. (2.5) by the discrete edge end distributions P (d)
e (k) and obtains

82



A.2 Numerical Methods

therefore

P (j|k) =
P (j, k)

Pe(k)
= Pe(j) f(j, k)

≈ P (d)
e (j) f(j, k) = P (d)

e (j)
P (j, k)

Pe(j)Pe(k)
.

(A.21)

Since the discrete edge end distribution P (d)
e (j) and the continous correlation

function f(j, k) is mixed, the resulting conditional degree distribution P (d)(j|k)
is only approximately normalized for a given degree class k. To obtain a

conditional probability distribution suitable for sampling degree classes, one

normalizes each degree class separately, leading to the final form

P (d)(j|k) =
P (d)

e (j)

Pe(j)
P (j, k)




∑

j

P (d)
e (j)

Pe(j)
P (j, k)





−1

. (A.22)

This definition is consistent with the limes N → ∞, as the discrete edge

end distribution P (d)
e (j) becomes equal in this limit to the continous edge end

distribution Pe(j) and the ratios P (d)
e (j)/Pe(j) become exactly 1, respectively.

5. After all base data structures have been initialized, the algorithm starts to draw

edges by drawing edge ends. The first edge end is selected by first drawing

a degree class k from the edge end distribution P (d)
e (k) and then randomly

choose a vertex from that degree class.

6. The second end of the edge is chosen in the same two step manner. However,

the second draw of a degree class j is done with the appropriate conditional

probability distribution P (d)(j|k) instead of the edge end distribution P (d)
e (k).

This construction scheme yields correctly correlated graphs, since it is

Pe(k)
︸ ︷︷ ︸

1. draw

P (j|k)
︸ ︷︷ ︸

2. draw

= P (j, k). (A.23)

An edge is created whenever the constraints of neither self- nor multiple-edges

is met. Otherwise the drawn edge is rejected and the algorithm continues with

step five.

7. If the edge is created, the probability weights of the two edge ends are removed

from the corresponding degree classes in the edge end distribution P (d)
e (k) and

the conditional probability distribution matrix P (d)(j|k). The removal of the

probability weight is equivalent to the removal of the two half-edges from the

list of eligible half-edges in the CM algorithm.

8. The steps five to seven are repeated until no edge ends are left and all edges

are formed.

83



A Appendix

The principal numerical costs of the algorithm arises from the continuous sam-

pling of degree classes in the steps five and six above. Since the algorithm has to

sample only the degree classes actually realized, which is a significant lower number

than the system size N , the numerical costs are of the order O(Nα) with α < 1.

Furthermore, due to the removal of probability weight of used half-edges throughout

the construction procedure, the algorithm samples only the possible configuration

space which remains valid in each iteration step just as in the CM algorithm. The

memory usage of the algorithm scales with the square of the number of realized

degree classes. This can become a significant advantage over the CM procedure

as described above, since the memory usage of the CM procedure scales with the

number of half-edges needed to construct the network.

A.2.2 Generation of Two-Point Correlated Networks with

Clustering

The scheme of the algorithm to construct a network with N vertices and given

discrete versions of corresponding distributions, Pd(j, k) and cd(k), Pd(j, k) being the

number of connections between vertices with degrees k and j (double that number

if k = j), and cd(k) being the number of triangle edges constituted by vertices with

degree k, is the following:

1. One begins by assigning a number of stubs (the target degree) to every vertex

according to the degree distribution Pd(k), which is calculated from Pd(j, k)

as Pd(k) =
∑

j Pd(j, k)/k.

2. The next step is to get a list of degrees of triangle-corners, which shall contain

cd(k) entries with value k. For every connection built the appropriate entry

in the Pd(j, k) matrix is decreased by 1 and for every triangle built (for every

connection placed, a check is performed for simultaneous neighbors of the

involved vertices as any shared neighbor accounts for a new triangle built) to

delete one entry from the triangle list and to decrease cd(k) by 1 for every

degree involved.

3. Then one starts to build all triangles in the triangle list one by one. Let vi be

the vertices involved and ki their target degree.

4. Draw a random entry k1 from the triangle list and draw a corresponding vertex

v1 with at least one free stub. If no such vertex is available, all entries with

value k1 are deleted from the triangle list and one starts again with this step.

5. Now, one chooses with uniform probability either (a) an edge or (b) a stub of

vertex v1 out of a list created by omitting all edges for whose end vertex no
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more triangles can be build (i.e. cd(k) = 0). In case of (a), one has chosen

an edge and the end vertex is v2. If a stub has been drawn (b), a vertex v2
in the same manner is obtained as the vertex v1 has been sampled with the

further condition Pd(k1, k2) > 0. If it is not possible to find a k2 fulfilling this

condition, all entries with value k1 are deleted from the triangle list and the

algorithm starts again at step 4.

6. Next, one draws (a) an edge or (b) a stub of vertex v2 from a list like one

did in the preceding step for vertex v1, but with edges inserted into the list

only if they are fulfilling the supplementary condition of Pd(k1, k3) > 0 or

vertex v3 being connected to vertex v1 and vertices v1, v2, and v3 not already

constituting a triangle. Having drawn an edge (a), the triangle is closed by

adding the missing edges and updating all dynamic quantities. Having drawn

a stub (b), a k3 is choosen from the triangle list consistent with k1 and k2. It

might happen that this is not possible and one starts again with step 4. When

a k3 is obtained, one draws a vertex v3 which either has enough free stubs or

is already connected to vertex v1 or v2, add the missing edges, and update all

dynamic quantities.

Note that in steps 5 and 6 the case of two or three degrees being the same has to be

properly taken into account in order not to build too much triangles or connections,

and that self-connections are forbidden.

Those steps are repeated until no more triangles can be build anymore. This point

may be defined by a maximum number of successive tries that did not result in a

triangle being built or until the triangle list is empty.

Afterwards the rest of the graph is built by randomly choosing edges out of the

remaining edge list, which contains Pd(k1, k2) entries (k1,k2) for all degrees k1, k2.

Two non-identical vertices are randomly choosen with stubs left and the edges (if the

vertices are not already connected) are build which become deleted from the edge

list. We repeat this until the edge list is empty or no more vertices are available

which still lack connections and are not already connected to each other. If there

are edges left over (typically there is no edge left, and very seldomly there are more

than one or two edges left), these are substituted by randomly connecting vertices.

A.2.3 Annihilation-Diffusion Dynamics

The A + B → ∅ dynamics is simulated in the following way: Initially a fraction

ρ = 2ρ(a) = 2ρ(b) of randomly chosen vertices is selected. Then, the algorithm

assigns randomly an equal amount of A and B particles to the set of chosen vertices.
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Each vertex is assigned at most one particle. After this initial setup, the diffusion-

annihilation dynamics starts. First, a vertex which carries a particle and a random

adjacent neighbor of this vertex are randomly selected. Three cases need to be

distinguished: (i) If the neighbor vertex is empty, the particle moves to the new

vertex, leaving the initial vertex empty. (ii) If the neighbor vertex is occupied by a

particle of the other type, an annihilation reaction occurs and both vertices become

empty. Accordingly, the number of particles is decreased for each particle type by

one, n(a) → n(a) − 1, and n(b) → n(b) − 1. (iii) If the neighbor vertex is occupied by

a particle of the same type, then no jump occurs. In any case, the time is updated

by t → t + 1/(n(a) + n(b)), where n(a) and n(b) correspond to the values before the

diffusion step, and one continues by selecting randomly another vertex carrying a

particle, and so forth.

In order to obtain the system’s typical behavior, in this Thesis averages of 50

independent dynamics on each graph and over 100 independent graphs are taken,

making up a total of 5000 dynamics per data-point.

A.2.4 Prisoner’s Dilemma Dynamics

The prisoner’s dilemma dynamics is implemented similarly as by Gomez-Gardenes et al.

[2007a]: (i) At the beginning, each individual i of the population (i.e., each node

i) has the same probability of choosing cooperation or defection as initial strategy.

(ii) Following Nowak et al. [2004], Santos & Pacheco [2005], the prisoner’s dilemma

payoffs are set as R = 1, P = S = 0, and T ≡ b > 1, so that the benefit b

is the only parameter, and implement a finite population analogue of the replica-

tor dynamics: At each time step t, which represents one generation of the discrete

evolutionary time, each node i in the network plays with all its ki neighbors and

accumulates its obtained payoff πi. Then, all individuals i update synchronously

their strategies si by each one choosing one of its neighbors at random, say j,

and comparing their respective payoffs πi and πj (πi/ki and πj/kj for the effec-

tive payoff dynamics). If the neighbor’s payoff is lower or equal, then the individual

i keeps its strategy si for the next time step. On the contrary, if the neighbor’s

payoff is higher, πj > πi, i adopts the strategy sj of j for the next time step

with probability P (si → sj) = (πj − πi)/(bmax{ki, kj}) for the cummulative and

P (si → sj) = (πj/kj − πi/ki)/b for the effective payoff version. In this Thesis,

the dynamics is run for a transient time of 5000 generations. Then, the cooperator

density is measured, the dynamics is evolved for another 1000 time steps, and the

cooperator density is measured again. If both densities, each averaged over 10 time

steps and separated by 1000 generations, deviate by more than 0.01, the procedure

is repeated another 1000 generations later. Otherwise, the actual measurement is
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started over the next 104 time steps. All data presented in this Thesis is averaged

over 100 network realizations with 50 independent dynamics with different initial

conditions on each network realization, resulting in 5000 dynamics per data-point.
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