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A B S T R A C T

As chip manufacturing processes are getting ever closer to what is
physically possible, the projections made by Moore’s Law and Dennard
Scaling no longer hold true, and CPU performance has been stagnating
over the last decade.

At the same time, the performance requirements of many important
application areas, ranging from machine learning to scientific comput-
ing, are increasing at exponential rates, creating a demand that CPUs
cannot satisfy anymore.

In order to cater the performance hunger of these applications,
computer architects have turned their attention towards heterogeneous
systems. By combining CPUs with one or multiple accelerators, ar-
chitects are seeking to provide the necessary performance through
specialization and more efficient forms of parallelism.

And while the accelerators have successfully delivered on the
promised performance in many cases, programming these hetero-
geneous systems is becoming increasingly difficult, as developers
need to take multiple devices, execution models, and data transfers
into account.

Over the course of this cumulative dissertation, we investigate two
potential solutions to the enormous challenges of heterogeneous sys-
tems programming.

General programming frameworks such as OpenMP define language
constructs that reflect important fundamental computing patterns and
allow developers to expose an application’s parallelism to the compiler
for efficient mapping to the target hardware.

Domain-specific programming frameworks, on the other hand, are
tailored to a single domain and provide mechanisms to capture the
high-level semantics and structure of an application, which is then
again mapped to the computational units of the underlying hardware
in an efficient fashion.

In this thesis, we discuss the merits of both approaches in detail and
show implementation examples for both.

For general programming frameworks, the selection of the most
suitable framework for a class of applications and target platform
is a crucial step. Using automotive software development as an ex-
ample, we perform an implementation study to extensively compare
three different frameworks. Based on the findings from this imple-
mentation study, we identify a number of key factors to assess the
suitability of general programming frameworks for applications and
target platforms.
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One popular general programming framework is OpenMP, and the
target offloading capabilities added in recent versions also make it
an interesting candidate for targeting FPGAs. To enable the use of
OpenMP for FPGA programming, we develop the first-ever prototype
for OpenMP target offloading constructs on FPGAs via High-Level
Synthesis. Furthermore, we design and implement an execution model
and hardware extensions for multi-threaded execution in FPGA ac-
celerators generated through High-Level Synthesis. By combining
multi-threaded execution in the generated FPGA accelerators with
OpenMP target offloading as programming interface, we do not only
significantly reduce idle cycles and improve performance, but also pro-
vide an easy-to-use programming interface with intuitive mechanisms
for data management.

In order to showcase the implementation of a domain-specific pro-
gramming framework, we develop a compiler for Sum-Product Net-
works, a class of machine learning models. By implementing compila-
tion flows for CPUs, GPUs and FPGAs, we are able to cover a wide
range of heterogeneous system setups and achieve improvements in
inference throughput of multiple orders of magnitude compared to the
existing Python-based libraries. The implementation of these toolflows,
which for CPU and GPU is based on the modern MLIR framework,
also illustrates the role compilers play for the future of heterogeneous
computing.
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Z U S A M M E N FA S S U N G

Während sich die Herstellungsprozesse für moderne Computerchips
immer stärker den Grenzen des physikalisch Machbaren annähern,
treffen die vom Mooreschen Gesetz und der Dennard-Skalierbarkeit
gemachten Voraussagen nicht länger zu. Infolgedessen stagniert die
Leistungsfähigkeit von CPUs seit über einem Jahrzehnt.

Gleichzeitig steigt der Bedarf nach mehr Leistung in vielen wichti-
gen Bereichen wie dem maschinellen Lernen oder dem wissenschaft-
lichen Rechnen exponentiell an, sodass ein Leistungsbedarf entsteht,
der von CPUs nicht länger abgedeckt werden kann.

Um diese sich auftuende Lücke zu schließen, haben Computerar-
chitekten ihr Augenmerk auf heterogene Systeme, die eine CPU mit
einem oder mehreren Beschleunigern kombinieren, gelegt. Durch Spe-
zialisierung und effizientere Parallelverarbeitung sollen diese Systeme
den entstandenen Bedarf decken.

Die Verwendung von Beschleunigern hat zwar tatsächlich die erhoff-
ten Leistungssteigerungen gebracht, jedoch auch die Programmierung
dieser Systeme deutlich verkompliziert.

Im Rahmen dieser kumulativen Dissertation diskutieren wir zwei
mögliche Lösungen zur Bewältigung der gewaltigen Herausforderun-
gen bei der Programmierung heterogener Systeme.

Allgemeine Programmiermodelle wie OpenMP stellen Sprachkonstruk-
te bereit, die die wichtigsten Muster in Anwendungen reflektieren und
die es so Entwicklern erlauben Parallelismus herauszustellen, sodass
er effizient auf die Zielplattform abgebildet werden kann.

Domänen-spezifische Programmiermodelle andererseits sind auf eine
einzelne Domäne zugeschnitten und stellen abstrakte Konstrukte zur
Erfassung der Struktur und Semantik einer Anwendung bereit. Diese
Strukturen und Semantik werden wiederum anschließend auf die
Zielhardware abgebildet.

Im Rahmen dieser Arbeit stellen wir die Stärken und Schwächen
beider Lösungen detailliert dar und präsentieren Beispiele für die
Implementierung beider Lösungen.

Für allgemeine Programmiermodelle ist die Auswahl des richtigen
Modells für eine Klasse von Anwendungen und Zielplattformen ein
erster wichtiger Schritt. Im Rahmen einer Implementierungsstudie
vergleichen wir drei Programmiermodelle im Detail, wobei wir die
Softwareentwicklung in der Automobilindustrie als Beispiel heran-
ziehen. Auf Basis der aus der Implementierungsstudie gewonnenen
Erkenntnisse identifizieren wir eine Reihe von Schlüsselfaktoren, die
zur Beurteilung der Anwendbarkeit eines Programmiermodells für
eine Anwendung und Zielplattform verwendet werden können.
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Eines der beliebtesten allgemeinen Programmiermodelle ist OpenMP,
und die kürzlich hinzugefügten Mechanismen zur Auslagerung von
Berechnungen auf Beschleuniger machen OpenMP auch zu einem in-
teressanten Kandidaten für die Programmierung von FPGA-basierten
Beschleunigern. Um die Nutzung von OpenMP für die Programmie-
rung von FPGAs zu ermöglichen, entwickeln wir den ersten Pro-
totypen für die OpenMP-Auslagerungsmechanismen auf Basis von
High-Level-Synthese. Außerdem entwerfen und implementieren wir
ein Ausführungsmodell sowie Hardwareerweiterungen für neben-
läufige Ausführung in von FPGA-High-Level-Synthese generierten
Beschleunigern. Durch die Kombination der Auslagerungsmechanis-
men und des nebenläufigen Ausführungsmodells können wir nicht
nur den Leerlauf deutlich verringern und die Ausführungsgeschwin-
digkeit verbessern, sondern auch eine einfach zu nutzende Program-
mierschnittstelle mit intuitiven Mechanismen zum Datenmanagement
bereitstellen.

Um auch die Implementierung eines domänen-spezifischen Pro-
grammiermodells zu demonstrieren, entwickeln wir einen Compiler
für sogenannte Sum-Product Networks, einer Klasse von Modellen
aus dem Bereich des probabilistischen maschinellen Lernens. Durch
die Übersetzung für CPU, GPU und FPGA schaffen wir eine breite
Abdeckung möglicher heterogener Systeme und erreichen eine Verbes-
serung des Durchsatzes der ML-Inferenz bis hin zu mehreren Größen-
ordnungen verglichen mit den aktuell verfügbaren, Python-basierten
Softwarebibliotheken. Die Implementierung dieser Compiler illustriert
so auch die Rolle von Compilern für die Zukunft des heterogenen
Rechnens.
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Part I

S Y N O P S I S





1
I N T R O D U C T I O N

In the last years, chip manufacturers have driven transistor scaling ever
closer to what is physically feasible. While manufacturers are confident
that they will be able to sustain this trend for at least another decade
in the future, using techniques such as gate-all-around and nano-sheets
for technology nodes as small as two nanometers [30, 31], operating
this close to the physical limit also means that one has to cope with
effects that have been negligible in the past.

As a consequence of these effects, projections on the development
of chip transistor count and energy consumption, captured in famous
“laws” such as Moore’s law [43] or Dennard scaling [11], do not hold
true anymore to their full extent and CPU performance is stagnating.

At the same time, however, performance demand is anything but
stagnating. Instead, the performance requirements in many important
areas of computing, such as machine learning, are increasing at an
exponential rate, with the consequence that CPUs are no longer able to
cater the performance hunger of many important applications.

In order to address this gap between CPU performance and appli-
cation performance demand, computer architects are turning their
attention towards heterogeneous systems, which combine a CPU with
one or multiple specialized accelerators. This trend can be illustrated
by looking at the Top500 list, a collection of the world’s 500 fastest su-
percomputers: While in 2011, only 19 out of these 500 systems (3.8 %)
were using a Graphics Processing Unit (GPU) as accelerator [22], only
ten years later in 2021, 147 out of 500 systems (29.4 %) are using some
sort of accelerator [23]. In the list of the Top100 systems, the share of
systems using accelerators is even higher at 45 % [23].

Accelerators promise improved performance by focusing on a spe-
cific class of problems or even a single domain rather than using
generic designs, and by providing abundant parallelism for applica-
tions.

While accelerators in many cases, e.g., machine learning training,
have successfully delivered on this promise, heterogeneous systems
are notoriously difficult to program compared to single-CPU systems
[7]. Developers need to decide where to run which code and how to
move data around in the system. In addition, the different accelerators
and their underlying architectures and execution models often require
very different programming styles.

In order to make programming of such heterogeneous systems more
accessible for developers, allowing them to leverage the full potential

3



4 introduction

of accelerators, we are going to investigate two alternative approaches
to programming such systems throughout the course of this thesis.

The first possible way to reduce the friction involved in program-
ming heterogeneous systems is using general parallel and heteroge-
neous programming frameworks, such as OpenMP or OpenCL. Many
of these programming frameworks have been established in the High-
Performance Computing community for many years and have evolved
over time as system design and components changed. Typically, these
programming frameworks extend an existing serial programming
language such as C or C++ with a number of language constructs
and Application Programming Interface (API) functions that provide
developers with a convenient way to target accelerators for execu-
tion, manage memory and data transfers, and allows them to expose
parallelism in the application to the compiler and runtime system.

Domain-specific programming frameworks on the other hand are
tailored for a single domain or class of applications. By providing
domain-specific programming abstractions matching the core com-
putational operations of that domain, these frameworks capture the
high-level semantics and computational structure of an application
and, when carefully designed, provide abstractions that feel natural
to a domain expert. Domain-specific frameworks can either be im-
plemented in the form of a standalone domain-specific language or
can be embedded into an existing programming language as library
functions.

We are going to discuss both alternatives and their respective merits
in detail as part of this thesis and will showcase examples of how both
kinds of frameworks can be implemented and used successfully to
target heterogeneous systems.

In Chapter 2, we will first discuss some of the developments that
have made the use of heterogeneous systems inevitable for many
modern applications, and will provide insight into how accelerators
can deliver better performance than CPUs and important characteristics
of heterogeneous systems.

Chapter 3 will then highlight some of the biggest challenges devel-
opers are confronted with when dealing with heterogeneous systems,
how general and domain-specific frameworks can help to overcome
these obstacles and discuss the respective advantages and disadvan-
tages of both solutions.

In Chapter 4, we are giving an overview of the publications which,
as part of this cumulative dissertation, can be found in Part ii, and
will provide insights into which aspects of general programming
frameworks must be taken into consideration when selecting the right
programming framework for a specific class of applications.

An overview of the publications in Part iii can be found in Chapter 5,
where we will demonstrate how a general programming framework, in
this case OpenMP, can be used to target a specific class of accelerators,
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namely Field Programmable Gate Arrays (FPGAs), in a heterogeneous
system. The publications in Part iii also illustrate how the necessary
compiler support and runtime extensions can be implemented to
support such devices.

The second alternative to heterogeneous system programming,
namely domain-specific programming frameworks, is discussed in the
publications in Part iv and summarized in Chapter 6. After giving
some background information on Sum-Product Networks, a class of ma-
chine learning models, we will demonstrate how automatic toolflows
and compilation starting from a domain-specific programming inter-
face facilitate exploiting the CPU’s full features set and allow targeting
accelerators such as GPUs or FPGAs in a heterogeneous system. In this
case, usage of the domain-specific programming framework in the
form of a Python library, and the underlying toolflows and compiler
developed as part of this thesis, can lead to significant improvements
in inference execution time.

Chapter 7 concludes this thesis, summarizes its contributions and
gives an outlook on the future of heterogeneous systems and the
corresponding programming frameworks.





2
H E T E R O G E N E O U S S Y S T E M S

As discussed in Chapter 1, modern computing systems become in-
creasingly heterogeneous, integrating a growing number of special-
ized accelerators into the system. In the first part of this chapter
(Section 2.1), we look at some developments in hardware capabilities
and computer architecture that have led to this trend. After that, we
investigate what sets heterogeneous systems apart from “traditional”
computer systems, which components they contain and how they are
composed (Section 2.2).

2.1 the need for heterogeneous systems

Given the trend towards heterogeneous systems, the question arises:
Why are systems becoming more heterogeneous, and why is there
a need for such accelerators? At first glance, using a heterogeneous
system makes programming much more complicated, as we will
illustrate in Chapter 3, and the execution often requires additional
data movements between different components of the system, as will
be discussed in Section 2.2.

The answer on why computer architects and programmers spend
all this effort on these complicated systems is actually quite simple:
Heterogeneous systems and, in particular, specialized accelerators are
needed to satisfy the demand for computational power for many of the
most relevant computational applications of our time, such as machine
learning or climate modelling. »The complexity for

minimum
component costs has
increased at a rate of
roughly a factor of
two per year.«
— Gordon E. Moore,
1965 in [43]

In order to see why the computational demand of such applications
often cannot be catered by “classical” CPU-only systems, we can have
a look at the evolution of the computational power of CPUs over the
last decades as shown in Fig. 2.1.

The plot shows a period of moderate increase in computing perfor-
mance in the 1980s, followed by a period of enormous growth in the
time between 1986 and roughly 2002, driven by two main factors. »The new slope

might approximate a
doubling every 2
years, rather than
every year, by the
end of the decade.«
— Gordon E. Moore,
1975 in [44]

The first development that enabled such growth in performance has
become known as Moore’s Law. In 1965 [43], Gordon Moore had, based
on previous development up to this point, predicted that technological
advancements would allow to double the number of transistors that
could economically be manufactured onto a device roughly every year.
Later on in 1975, he revised this projection, now predicting a doubling
every two years [44].

The second development, called Dennard Scaling, is just as important
for this rapid growth. Dennard et al. [11] found that, when scaling

7
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Figure 2.1: Development of computer system performance, measured using
integer programs (SPECintCPU). Replotted from [21] for higher
resolution.

down the transistor size and accordingly also the supply voltage, the
electric properties of the individual transistor change in a way such
that the power density of the device remains constant.»[...] the power

density remains
constant. Thus, even
if many more circuits
are placed on a given

integrated circuit
chip, the cooling

problem is essentially
unchanged.«
— Robert H.

Dennard et al., 1974
in [11]

These two developments made more and more transistors avail-
able to computer architects, allowing them to double performance
of CPUs and computing systems every 1.5 years. Next to scaling up
the operating frequency of the circuit, most of the performance gains
were achieved through so-called Instruction-Level Parallelism (ILP):
Computer architects would employ the additional available transistors
to simultaneously process multiple instructions in every clock cycle.

Yet, in the early 2000s, the rapid improvement of CPU performance
began to slow down, as the actual characteristics of manufactured
chips began to deviate from the projections made by Dennard Scaling.
The main reason for this development was that supply voltage could
not be scaled accordingly to transistor size anymore, due to parasitic
effects and static dissipation, causing supply voltage to reach a plateau
at about 1 V. Consequently, the power density did not remain constant,
but rather started to increase, making energy efficiency an important
concern for computer architects.

The increasing power density and, associated with it, the cooling
challenges, also meant that frequency could not be scaled up as before.
So, even though large manufacturers such as Intel had predicted clock
speeds of up to 10 GHz before, clock speed began to saturate around
4 GHz, where it has remained to date.

It became clear that, in order to further increase the performance
of computer systems, CPUs must make better use of the energy. Un-
fortunately, exploiting instruction level parallelism is not very energy
efficient, due to the fact that, in order to find a sufficient number of par-
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allel instructions, modern CPUs must speculate on the effects of branch
instructions, which make up for roughly 25 % of most applications
[21]. However, for any non-trivial input program, branch prediction
will misspeculate in some cases, causing the instructions that have
already entered the pipeline to be evicted. This does not only waste
the energy that was already spent on now discarded instructions, but
also requires additional energy to reset the pipeline. The investigation
by Hennessy and Patterson in [21] shows that, over a selection of
different workloads, on average 19 % of instructions are discarded
after beginning execution.

In order to identify designs that would waste less energy, computer
architects turned their attention to multi-core architectures. By repli-
cating the same core multiple times, processing can be parallelized.
Instead of relying on ILP to find parallelism, the programmer was now
responsible to identify and denote the parallelism in an application,
wasting less energy on misspeculated branches.

With the use of multi-core architectures, starting around the year
2004, it was possible to keep on improving CPU performance, although
the improvement rates were smaller than before. However, two funda-
mental issues limit the improvements that can be achieved through
parallelizing workloads across multiple cores.

First, multi-cores cannot fully solve the problems caused by the
break-down of Dennard scaling, i.e., integrating more cores still leads
to a higher power density, up to a point where the resulting heat
cannot be removed with standard packaging and cooling systems. »A fairly obvious

conclusion that can
be drawn at this
point is that the
effort expended on
achieving high
parallel processing
rates is wasted
unless it is
accompanied by
achievements in
sequential processing
rates of very nearly
the same
magnitude.«
— Gene M. Amdahl,
1967 in [4]

Secondly, all non-trivial programs always contain a serial portion
of code, which cannot be fully parallelized (e.g., input/output). Yet,
as the number of cores increases and the execution time spent on the
parallel portion of an application keeps decreasing, the serial portion
of the code starts to dominate the execution time and eventually limits
the maximum speedup that can be achieved through parallelization
across multiple cores. This effect has become known as Amdahl’s Law
[4].

Next to these fundamental challenges, recent years have also wit-
nessed a significant slow-down in Moore’s Law, a development that
also Gordon E. Moore himself had predicted [45]. According to Hen-
nessy and Patterson, the original projection of Moore’s Law was
already off by a factor of 15x by the year 2018 [21].

These challenges taken together, i.e., the end of Dennard Scaling,
the slow-down of Moore’s Law, and the effects of Amdahl’s Law on
parallel execution performance, have slowed down the development
of CPU performance to as little as three percent per year.

This stagnating CPU performance is however met by an ever-increasing
demand for more computational power by many highly relevant com-
pute applications. An example for such a development can be found
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Figure 2.2: Total amount of compute performance required to train selected
machine learning models. Note the log-scale on the y-axis. Re-
plotted from [2] for higher resolution.

in Fig. 2.2, showing how the computational power required to train
the biggest neural networks has developed over the last decade.

Since Krizhevsky et al. [35] used one of the now ubiquitous neu-
ral networks to win the ImageNet classification challenge in 2012,
the performance requirements of the largest neural network training
runs have increased by a factor of 300,000x over the years, which is
equivalent to a doubling every 3.4 months.

And machine learning is far from the only application domain,
which needs this kind of computational power. Other High-Performance
Computing (HPC) application areas such as climate modeling or med-
ical research are also in need for more computational performance,
e.g., to further increase the resolution of climate modeling.

This leaves the world of computer architecture in the unfortunate
situation that application requirements are increasing, while the de-
velopment of CPUs, which have provided that computational power
for many years, is stagnating.

As a consequence, computer architects are turning towards heteroge-
neous systems. In the next section, we will discuss how heterogeneous
architectures allow them to make better use of the available transistors
and build more energy-efficient systems.

2.2 characteristics of heterogeneous systems

The term Heterogeneous Systems is a rather broad term, and is, in
different contexts, used to refer to a whole variety of very different
systems.

In this thesis, we will focus on heterogeneous systems that combine
a CPU as a General-Purpose Processor (GPP) with one or multiple
accelerators in a single system. There are other sources of hetero-
geneity in a computer system that we will explicitly not consider, for
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example heterogeneous multi-cores [36]. These CPUs use the same In-
struction Set Architecture (ISA) for multiple, different cores combined
into one multi-core processor, such as ARM’s big.LITTLE architecture
[16], which is nowadays very common in the embedded and mobile
sector.

Yet, even with these sources of heterogeneity left out from consid-
eration, there is still a wide range of very different accelerators that
can be combined with a CPU, and potentially other accelerators, in a
heterogeneous system.

2.2.1 Types of Accelerators

One very common choice for accelerators in a heterogeneous system
are GPUs. GPUs were initially designed solely for graphics processing
and as such are already an example of a domain-specific accelerator
in a heterogeneous system.

However, it was quickly realized that the computational pattern
for which GPUs have been optimized, i.e., the massively parallel pro-
cessing of many elements, can also be found in many non-graphics
applications. This realization led to a trend coined as General-Purpose
computing on Graphics Processing Units (GPGPU), where GPUs where
employed to accelerate non-graphics workloads. Starting in the early
2000s, GPU vendors started to provide corresponding tools, e.g., Nvidia
CUDA which was first released in 2007.

Nowadays, GPU vendors explicitly include functional blocks in their
designs to facilitate the use of GPUs also for non-graphics tasks. Nvidia,
for example, includes Tensor cores in modern GPUs to make machine
learning training and inference more efficient.

And while the programming of GPUs initially required strict adher-
ence to the SIMT (single-instruction-multiple-threads) execution model,
vendors have made GPUs more flexible in this regard, too. Modern
generations of Nvidia GPUs now use a dedicated program counter
for each thread (not per warp as before) [47], making effects such as
control-flow divergence less of an issue.

Another interesting choice for accelerators are Application-Specific
Integrated Circuits (ASICs), which provide huge flexibility. Therefore,
ASICs can be found in heterogeneous systems in various shapes. For
some compute-intensive tasks which remain largely unchanged over
the lifetime of a device, task-specific ASICs are integrated into the
system. One example of such ASICs, which can be found in virtually
every smartphone nowadays, are specialized functional units for au-
dio/video encoding or wireless/broadband communication. Another
example for an even more specialized system is Anton 2 [56], whose
architecture is tailored for molecular dynamics simulation and the
fine-grained event-based processing required for this kind of applica-
tion.
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In other cases, ASICs are designed to cover a range of different
applications from one domain. In these cases, the flexibility of ASICs

allows to match the characteristics of the application domain directly
in the hardware design, e.g., with regard to data formats and memory
hierarchy. However, as the Non-Recurring Expenses (NRE) for ASIC

design are extremely high, designers in these cases must make sure to
design the ASIC in a way that allows reuse for different applications
from the same domain, while still implementing a design capable
of high performance and energy efficiency for applications of that
domain.

Examples for this kind of accelerator can be found in machine learn-
ing training and inference: Given the growing importance of neural
network approaches to machine learning, a number of companies have
built specialized accelerators for this domain, e.g., Google’s TPU or
Graphcore’s IPU.

In cases where the high cost of ASIC design and development are
not justifiable or where adaption to a concrete application in the field
is beneficial, FPGAs can be a great alternative to ASICs as accelerators
in a heterogeneous system. Next to configurable logic blocks and
interconnect, which allow to implement the desired functionality on a
fine-grained bit-level, modern FPGAs also contain functional units such
as DSP blocks for basic arithmetic operations, fast on-chip memories or
fixed functionality for access to off-chip memories and fast networking.

Advancements with regard to FPGA tooling, e.g., in the area of
High-Level Synthesis (HLS) for C/C++ or domain-specific tooling for
machine learning, have made FPGAs much more accessible, also to
non-hardware experts, and have helped the adoption of FPGAs as
accelerators in datacenters as well as embedded applications.

While the FPGA’s re-configurable logic allows parallelizing appli-
cations in the spatial dimension as well as, through pipelining, in
the temporal dimension, the difference in clock frequency remains
a challenge. While other heterogeneous system components such as
CPUs, GPUs, or ASICs typically operate at multiple Gigahertz frequencies,
recent FPGA generations are still limited to several hundred Megahertz.

Next to the three main kinds of accelerators explained above, there
are a number of other interesting acceleration options, such as Coarse-
Grained Reconfigurable Arrays (CGRAs), which provide reconfigura-
bility at the word-level, or Data Processing Units (DPUs), which, in
data-centers, are often combined with smart network interface cards
(SmartNIC) and used to offload storage or computation tasks.

2.2.2 Accelerator Architecture Motifs

Despite their very different characteristics and the fact that they rep-
resent very diverse points on the flexibility-cost tradeoff-curve, all
accelerator options discussed so far share a number of common hard-
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ware architecture motifs that allow them to make good use of the
available transistors and provide high performance and energy effi-
ciency. Dally et al. [9] identified four main motifs used for performance
and energy efficiency gain and which, in different shape, can be found
in all accelerators.

Parallelism is the first and most obvious way to achieve higher
performance. Modern CPUs, through multi-issue pipelines, multiple
cores and SIMD extensions, offer only limited parallelism. Accelerators
such as GPUs, on the other hand, offer higher degrees of parallelism
with hundreds of cores through a SIMD or SIMT programming model.

For domain-specific accelerators, it is also often possible to de-
sign highly parallel architectures and implementations for the most
common computational kernels in a domain. One example for such
specialization is the usage of an optimized systolic array structure for
matrix multiplication. This operation is the most common kernel in
deep neural network training and inference, therefore the specialized
systolic array is at the heart of Google’s TPU accelerator [32].

The second common motif, found in many accelerators, is data spe-
cialization. Being a general-purpose processor, CPUs typically support
a variety of datatypes for computation and need to have all of the
corresponding hardware units available. Accelerators, on the other
hand, can focus on just the most important datatypes for a class of
applications. One example for this specialization can be found in accel-
erators or processing elements (e.g., Nvidia’s TensorCores) for machine
learning: As a small number of integer bits, ranging from eight bit
down to a single bit, is usually sufficient for weight representation in
Deep Neural Network (DNN) inference, many DNN accelerators are
specialized to use these extremely efficient formats.

Another example for data specialization can be found in floating-
point computations: The IEEE-754 format specifies a number of special
cases, e.g., NaN and -Inf/+Inf. Logic for detecting and handling these
special cases often makes up for a significant portion of a floating-
point operator’s hardware footprint and latency. As the evaluation
in Chapter 17 shows, removing this logic if it is not required by an
application can significantly reduce the hardware area per operator
instance. Furthermore, data specialization to the data formats most
relevant to an application or domain can also reduce the number
of clock cycles and the amount of power required to perform an
arithmetic operation, resulting in higher performance and less cooling
issues.

The third motif addresses one of the most urgent problems of
modern CPUs: Accesses to off-chip memory (e.g., DRAM) do not only
take many clock cycles to complete, but also cost a lot of energy. A
single access to off-chip memory can consume multiple orders of
magnitude more energy than a single arithmetic instruction executed
by the CPU. Horowitz [27] determined that a single access to off-
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chip DRAM can consume 1,300x the energy of a 32-bit floating-point
addition.

CPUs try to address this problem in a generic fashion by using an
elaborate, implicitly managed cache hierarchy with multiple levels.
Caches improve the energy efficiency of accesses to cached data sig-
nificantly, with an access to a 1 MB cache “only” consuming about
100x of a 32-bit floating point addition [27]. However, while caching
works well for some applications, it can actually harm performance
for parallel execution in other cases. One example for an effect that
can harm performance is false sharing, where one core is forced to
repeatedly read a cache line from main memory, due to modifications
made by another core to an unrelated data item sharing the same
cache line.

Accelerators therefore often use local and optimized memories,
such as fast on-chip memories as scratchpad memories or buffers for
intermediate results. In contrast to CPUs, the memory hierarchy is
often also explicitly managed, either by the programmer (GPUs, FPGAs),
or the compiler and runtime system (ML accelerators). This explicit
management avoids effects such as false sharing, or the eviction of
frequently accessed data by less frequently accessed data, to improve
data locality.

Another way for accelerators to improve the efficiency and perfor-
mance over CPUs is through reduced overhead. In modern, superscalar,
out-of-order CPUs, a significant amount of hardware is dedicated to
the complex control logic required for instruction initialization and
completion. By removing most of this overhead and replacing it with
a pipeline specialized to the instructions actually used by the domain
applications, specialized accelerators can simplify program interpre-
tation, saving energy and hardware area. For example, as Horowitz
showed in [27], only a small portion of the energy consumed by an
instruction is used by the actual computation (e.g., addition). Another
significant portion is required for instruction access and decoding.
By using a SIMD (or SIMT) execution model instead, the energy for
instruction access and decoding can be amortized across all lanes (or
threads), improving energy efficiency.

Specialized instructions, for example for an entire matrix multiplica-
tion, additionally allow to reduce the runtime overhead. While a CPU

needs to execute dedicated, additional instructions, e.g., to maintain
loop counters, an accelerator can integrate such management directly
into hardware. An example for such a technique is zero-overhead looping
deployed in DSP devices. The number of such specialized instructions
should be limited to a few instructions highly relevant to the do-
main/application, to avoid the problems encountered with Complex
Instruction Set Computers (CISCs).
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Figure 2.3: Schematic of a typical data-center scale heterogeneous system.
Accelerators are equipped with decidated memories and do not
have direct access to CPU main memory. Explicit data transfers
need to be performed via the bus (e.g., PCIe).

2.2.3 Heterogeneous System Composition

When composing a heterogeneous system, the choice of accelerators
that, next to the CPU as the general-purpose processor, go into the
system, is not the only choice to be made. The coupling of the different
components and the communication among them offer additional
degrees of freedom that need to be considered.

On the datacenter-scale, despite efforts such as Intel’s Harp or
the Enzian system [3], accelerators are typically manufactured as
separate components and coupled comparably loosely with the CPU.
Such a system is sketched in Fig. 2.3. Accelerators such as FPGAs and
GPUs are usually integrated in the form of extension cards and can
communicate with the CPU through a bus system such as PCI Express.
The accelerators each have their own on-chip and off-chip memory.
In such a system, explicit data-transfers are required to make data
available for computation for the CPU or the different accelerators.
This is due to the fact that the accelerators cannot directly access
the CPUs main memory (or resolve the virtual addressing), and the
CPU can only access accelerator memory through comparably slow
memory-mapped I/O (MMIO).

These data transfers have to be taken into consideration when as-
sessing the acceleration potential of an application on a heterogeneous
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Figure 2.4: Schematic of a typical embedded heterogeneous system. CPU and
accelerators share the same physical memory via the on-chip bus
of the System-on-Chip.

system, as they can consume significant amounts of execution time, in
particular since the bus system, e.g., PCIe Gen 3 with 12-16 GB/s, of-
ten have a significantly smaller bandwidth than the on-board, off-chip
memory, e.g., HBM with up to 2 TB/s on an Nvidia A100 GPU.

Yet, the data transfers do not only affect performance, but also
place an additional burden on the programmer of such a system,
who needs to explicitly manage data movements when offloading
computations to an accelerator. Therefore, and in order to improve
efficiency of data transfers, initiatives such as Coherent Accelerator
Processor Interface (CAPI), Compute Express Link (CXL) or Cache
Coherent Interconect for Accelerators (CCIX) have defined protocols
for cache-coherent memory access across different components. By
providing a transparent view of a single memory space across CPUs

and accelerators, they lift the burden of explicit data transfers from
the programmer. Yet, data transfers still need to be performed, and
the protocols often still rely on PCI Express as the underlying physical
and electrical connection.

In embedded and mobile devices, on the other hand, CPU and ac-
celerators are typically coupled much more tightly and manufactured
onto a single SoC, as sketched in Fig. 2.4. In such a system, CPU and
accelerators may physically share the same main memory, and no data
transfers have to be performed before offloading computations to an
accelerator. This changes the characteristics of the heterogeneous sys-
tem significantly, as offloading can now be beneficial for much smaller
tasks, as we will discuss in Chapter 4.
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However, the fact that the components physically share the main
memory also means that they compete for the bandwidth of the single
memory interface, which can have a negative impact on performance.





3
T H E P R O G R A M M I N G C H A L L E N G E

With the new opportunities that open up when combining a CPU with
one or multiple accelerators as discussed in the previous chapter, also
comes a plethora of new challenges when considering how to program
such systems.

During the era where Moore’s Law and Dennard Scaling still were
in full effect, the only thing that programmers had to do to increase
the performance of their code was to wait a sufficient amount of time
and eventually buy a new CPU. For the identification of instruction-
level parallelism, which, next to advances in processing technology
and higher operating frequency, was the main source of increased
performance, the programmer could rely on the CPU scheduler. In
addition, the compiler, through transformations such as reassociation
of arithmetic computations, also tried to expose more ILP in a program.

However, starting with the introduction of multi-core CPUs in the
early 2000s, the responsibility for identifying and denoting parallelism
in a program started to shift towards the programmer. In order to be
able to employ all the resources of modern parallel and heterogeneous
systems, the input program needs to capture the parallel semantics of
the application and other sources of potential performance gains.

Established, popular programming languages such as C or C++,
however, provide only very limited mechanisms to denote parallelism
in an application. Approaches for auto-parallelization of programs
written in these languages, for example using the polyhedral model in-
side the compiler [17], work well for some applications. However, these
techniques are not applicable in the general case, due to language-
specific limitations, such as the pointer aliasing problem in C/C++. So,
in order to be able to make best use of the various components present
in today’s heterogeneous systems, suitable programming models for
the heterogeneous age of computing are needed.

3.1 requirements of advanced programming models

The tasks that an advanced programming model for the heteroge-
neous computing age must be able to fulfill are directly related to the
common accelerator architecture motifs that have been identified in
Section 2.2.2.

The most important task is of course to capture the parallelism of
an application. This can either happen through explicit notation of
parallel constructs directly in the source-code, e.g., annotations of a
parallel loop, or by capturing the semantics of a program on a very
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high-level of abstraction, where parallelism can then be found in the
individual units of the program.

The second important task is data management. This includes the
control over the local and optimized memories on the accelerator
itself as well as the data movements necessary to make data available
to processing units in a system with separate memories for each
component (cf. Section 2.2.3). One option is to expose appropriate
abstractions and interfaces to the programmer, as it typically is the case
for GPU programming models such as CUDA and the memory hierarchy
on GPUs. Another alternative is to make data movement and memory
hierarchy transparent to the programmer by obtaining the information
on which data is needed when on a high level of abstraction and
automatically insert necessary data movement operations.

Capturing program semantics on this high level of abstraction, with
comparably coarse-grained operations as basic building blocks of
an application has another advantage: As discussed in Section 2.2.2,
accelerators can significantly reduce the overhead of their hardware
implementation and runtime execution by executing larger operations,
such as a matrix multiplication, as a single instruction. Such high-level
operators in the programming framework do not only have a natural
mapping to the accelerator, but their use also significantly raises
the abstraction level and therefore benefits programmers. Another
example for a programming technique, which directly corresponds
to reduced control overhead in hardware, is dataflow programming.
This programming paradigm exposes parallelism by representing an
application as a graph of communicating actors and is a natural fit for
accelerators with multiple units communicating through streams.

Also for the last motif, namely data specialization, appropriate
programming abstractions can be integrated into a heterogeneous
programming framework. One example for such a mechanism is the
support for arbitrary bit-width integer and fixed-point arithmetic types
found in High-Level Synthesis tools for FPGAs, where reconfigurability
on the bit-level allows to directly reflect such arbitrary bit-width types
in hardware.

3.2 general heterogeneous programming frameworks

For the realization of a programming framework which is able to
fulfill the tasks mentioned above, there are various implementation
alternatives. One approach are general heterogeneous programming
frameworks, such as OpenMP, OpenCL, CUDA, or SYCL. These mod-
els are not specialized for a single domain or class of applications,
but rather define abstraction mechanisms and language extensions
for common computational patterns, such as parallel loops or con-
currently executing tasks. Typically, they are tightly integrated with
an existing, serial programming language, such as C, C++ or Fortran,
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and therefore allow at least partial re-use of an existing, serial code
base (cf. Chapter 4).

The advantage of the generic nature of these programming models
is that they can be used to accelerate a wide range of applications from
very different domains, as they focus on fundamental computational
patterns rather than domain-specific abstractions. Improvements of
the implementation of a programming model, e.g., in the compiler
or runtime library, benefit many applications, and hardware vendors
only need to implement the abstractions of the programming model
once to open their hardware up to many users and applications.

On the other hand, due to their general design, such programming
frameworks fail to capture the domain-specific, high-level semantics of
applications, and still operate on a comparably low level of abstraction,
e.g., reasoning about individual loops. Data management is typically
also explicit and requires careful attention by the programmer. Because
the language mechanisms (e.g., pragmas) are directly integrated into
program code, applications implemented in such general frameworks
also mix what is computed with how it is computed, with negative
effects on code readability and maintainability.

As the abstractions of general programming frameworks still operate
on a comparably low level, implementations using such a framework
often are specific to a single class of devices. One example for this
problem can be found when comparing vendor recommendations for
programming FPGAs or GPUs using OpenCL: While FPGA vendors typi-
cally recommend a single work-item implementation, with FPGA-specific
optimizations such as pipelining applied inside that single work-item,
GPU vendors usually recommend parallelizing an application across
many work-items and, if applicable, also concurrently active kernels. As
a consequence, OpenCL implementations optimized for FPGAs usually
do not deliver good performance on GPUs and vice versa.

3.3 domain-specific programming frameworks

Domain-specific programming frameworks can be used to overcome
these limitations of general programming models. They are special-
ized for a single domain of applications, and provide programming
language abstractions for operations specific to this domain. Because
these domain-specific operations typically have clearly defined seman-
tics and the memory access pattern is known beforehand, it is possible
to separate what is computed from how it is computed, by moving the
mapping of domain-specific operations to accelerator facilities into the
implementation of the programming framework. This also allows to
vary the mapping depending on available hardware and the desired
performance independently of the actual input code.
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Domain-specific programming frameworks are also a means to pro-
vide programming abstractions that feel “natural” to domain-experts,
i.e., the abstractions correspond directly to concepts from the domain.

Standalone domain-specific languages with a custom syntax, such
as Halide [52] for image processing, are one possible incarnation of
domain-specific programming frameworks, but require additional
implementation effort and impose an initial learning overhead on
users.

An alternative to this approach are embedded domain-specific pro-
gramming frameworks, which are integrated into an existing, estab-
lished programming language in the form of library calls or using
other language mechanisms provided by the host language. Examples
for this approach are popular machine learning frameworks such as
Tensorflow [1] or PyTorch [48].

The downside of domain-specific frameworks is the additional im-
plementation effort that initially has to be spent to define and imple-
ment the framework itself. For general frameworks, the implemen-
tation effort can be amortized over many different applications and
domains that can use the framework. For domain-specific frameworks,
on the other hand, this effort can be justified only by a large number
of users or applications, or significant gains in expressive power or
performance. To reduce the initial implementation effort, frameworks
such as LLVM [37] or MLIR [38] can facilitate the implementation of
domain-specific frameworks (cf. Chapter 6)

3.4 the role of compilers

Compilers play a central role in the implementation of both kinds of
programming frameworks, as they are responsible for mapping the
application, including parallelism, to the target hardware.»Designing

appropriate hardware
for a five-year

window in a field
that is changing as

rapidly as ML is
quite challenging.

Compilation
techniques, possibly

themselves enhanced
by ML, will be

central to meeting
this challenge.«

— Jeff Dean, David
Patterson and Cliff

Young, 2018 in [10]

Only if the compiler implementation and target mappings make
the best possible use of the computational resources available in the
heterogeneous system, can good performance for an application be
achieved eventually.

Automating the mapping process in the compiler has two important
advantages: First, it allows programming frameworks to abstract away
many low-level details of the underlying hardware and, as such, makes
it easier for users without intimate knowledge of hardware details to
use heterogeneous systems and achieve good performance.

Secondly, it makes applications portable. Instead of having a platform-
specific implementation for each potential target platform, which re-
quires rewriting the application for each new platform, a single imple-
mentation can be used to target different systems, even such systems
that are not yet available at the time an application is implemented.

To enable this portability, and even more importantly, performance
portability, i.e., achieving good performance when porting an applica-
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tion across different heterogeneous systems, significant effort is spent
today on designing appropriate programming abstractions that allow
to provide hints on parallelism to the compiler, and on the compiler
implementation itself, as we will discuss in the following chapters.





4
S E L E C T I N G T H E R I G H T P R O G R A M M I N G
F R A M E W O R K

In recent years, the trend towards heterogeneous systems has gained
momentum, and heterogeneous systems are pervading ever more
industries and areas of life. As a consequence, more and more indus-
tries will be confronted with the challenge of choosing an appropriate
programming framework for their respective applications and systems.

As heterogeneous computing has become ubiquitous in some in-
dustries already, in particular the High-Performance Computing area,
many well established heterogeneous, parallel programming frame-
works are available and need to be taken into consideration. This raises
the question of how one can select the right programming framework
for their application and system, and which characteristics and as-
pects of programming frameworks should be considered as part of
the selection process.

One example of an industry where heterogeneous systems are in-
creasingly gaining traction is the automotive industry. This trend is
mainly driven by two developments: First, while automotive vendors
in the past used multiple, but each simple so-called electronic control In modern

upper-class saloon
cars, there can be
more than one
hundred ECUs [13].

units, they are now turning towards centralized domain controllers,
where a single control unit handles multiple tasks, and, as a conse-
quence, also needs to provide more computational power.

The second main push for the deployment of heterogeneous systems
in the automotive industry is the advent of Advanced Driver Assis-
tance Systems (ADAS) that can take over driving tasks from a human
driver. The algorithms used in such systems are fairly complex and
require massive amounts of computational power, e.g., for object de-
tection or sensor fusion, which can only be provided by heterogeneous
systems.

Using the automotive industry as an example, we will demonstrate
which aspects can play a role when selecting an appropriate program-
ming framework for heterogeneous systems, and how information
about these aspects can be obtained to support the decision process. Later on, this

relationship might
reverse: After a code
base using a
particular
programming
framework exists,
vendors will only
employ platforms
supporting that
framework.

4.1 soft aspects of programming frameworks

Of course, there is a number of hard factors that can render the use
of a particular programming framework for a specific application or
domain completely infeasible. Naturally, an implementation of the
respective programming framework must be available for the target
platform, otherwise it will not be possible to deploy to that platform.

25
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Besides that, the key abstractions of the programming framework
should be a good match to the components of the target platform.
For example, choosing a programming framework for distributed
processing in a compute cluster (e.g., MPI) to program a system with
only a single or very few compute elements, connected by a low
bandwidth network, is not a good match, as the language constructs
for distributed processing of the programming framework will be of
no use on such a platform.

Yet, next to these factors, there is also a number of soft aspects that
play an important role in the selection process. In the context of the
automotive industry, examples for such soft aspects are programmer
productivity, maintainability, or portability.

Programmer productivity is directly linked to the usability of a
programming framework, but also the performance achieved by using
such a framework. However, oftentimes the best programming frame-
work is not necessarily the framework that eventually achieves the
highest performance, but rather the framework that, through suitable
abstractions and concise language features, allows programmers to
achieve sufficient performance. As developer time is an expensive and,
nowadays, also scarce resource, the productivity that can be achieved
is an important aspect.

Maintainability is another particularly important aspect, especially
in the automotive industry, where the lifetime of code, deployed in
vehicles and also within the company, can extend over multiple years
or even decades. The use of heterogeneous programming frameworks
can have a significant impact on the maintainability of code, so this
aspect needs to be taken into consideration.

As the deployed components can vary from vehicle to vehicle in
a product line, portability is another important aspect to program-
ming frameworks. Once written, the code base should be portable
across different target platforms, which requires that the programming
framework provides suitable mechanisms to abstract hardware details
of the underlying platform.

4.2 study design

Some of the aspects discussed above, in particular the soft aspects,
cannot be assessed by solely investigating the end-product of the de-
velopment process. Therefore, an implementation study seems to be
the most appropriate approach for our effort to investigate the suit-
ability of heterogeneous programming frameworks for the automotive
domain, as such a study allows assessing aspects such as programmer
productivity already during the development process.

The idea of the implementation study is to reflect a real-life devel-
opment process, in which an existing, serial code base is ported to
a modern, heterogeneous embedded system as close as possible. In
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contrast to other studies [25, 26], which assigned programming tasks
to undergraduate students as part of class-room studies to investigate
the ease-of-use of programming models, the developers in our study
are experienced users of the respective programming framework. We
argue that this is a closer resemblance of the real-world scenario, as
in industry, such tasks would be assigned to developers which have
previously used the programming framework.

Suitable serial code for typical automotive workloads from the ADAS

domain was extracted from the open-source Autoware framework [33,
34] into a total of three standalone benchmark kernels, which serve as
the starting point for the implementation study. More details on the The extracted

benchmark kernels
are available on
GitHub [57] under
an open-source
license.

extraction process and benchmark characteristics can be found in the
publication in Chapter 8.

From the wide variety of established parallel and heterogeneous
programming frameworks from the HPC domain, we have selected
OpenMP, OpenCL and CUDA as the most promising candidates,
based on the hard factors described above.

After selection of the three different frameworks, an experienced
developer for each of the frameworks was tasked with using the frame-
work to parallelize the existing serial code base of the three benchmark
kernels with the aim to offload computations to the accelerators on
the heterogeneous system. During this process, some key indicators
were constantly tracked, e.g., the number of working hours spent on
the kernel and the speedup over the original serial code base.

To assess portability, each developer would then port each kernel to
at least one other embedded, heterogeneous platform. Even more details

can be found in the
extensive technical
report [58]

The indicators collected during development were then comple-
mented by an analysis of the resulting code to assess the suitability of
the different programming models for the automotive domain. The
publication in Chapter 9 describes the tracking process and the metrics
we developed in more detail and provides detailed insights.

4.3 key findings

While the detailed insights regarding the individual programming
frameworks can be found in Chapter 9, we can also derive a number
of general properties that proved to be beneficial for programming
frameworks throughout the study.

One key finding is that a programming framework that requires
less restructuring of an existing serial code base clearly enhances
programmer productivity and allows developers to achieve higher
levels of performance faster. This is not only due to the lower effort
required, but also because any restructuring of the code always bears
the danger of introducing errors into the code that then require tedious
debugging efforts to fix. Also, if a strategy for parallelization and
offloading to accelerators can be implemented quicker, it can also be
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assessed very early in the development process, to see whether it is
promising or not. This avoids the pitfall of wasting many working
hours on a strategy that turns out to not provide any performance
benefits.

A second key finding was that programming language constructs
operating on a higher level of abstractions can be beneficial, and in
particular can facilitate portability across platforms.

One programming framework that provides such abstractions is
OpenMP and therefore allows for fast parallelization, offloading, and
portability. For the implementation of these constructs, OpenMP relies
on the compiler, which can also be a disadvantage if such compiler
support is not available for a platform.

During the study, this was the case for the chosen target platforms.
As no compiler supported the combination of ARM CPU and Nvidia
GPU, it was not possible to use OpenMP device offloading features to
target accelerators such as GPUs.

Later on, support for this combination was added in LLVM by other
open-source contributors. In the publication in Chapter 10, we further
extended this device offloading support, in particular the runtime
plugin for CUDA GPUs, to embedded heterogeneous devices, mainly
targeting the Nvidia Jetson family.

The evaluation in Chapter 10 showed that the extended implemen-
tation is able to provide performance competitive with a native CUDA

implementation on embedded heterogeneous systems. Considering
that our study showed that the use of OpenMP for offloading often re-
quires less developer effort than a CUDA implementation, this makes
OpenMP an interesting candidate for the programming of embedded
heterogeneous systems.
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O P E N M P F O R F P G A S

As discussed in the previous chapter, OpenMP combines many posi-
tive characteristics of programming frameworks. While earlier versions
of OpenMP have exclusively focused on multi-threaded execution on
CPUs, version 4.0 of the OpenMP standard also introduced constructs
for device offloading, making OpenMP an attractive candidate for
heterogeneous systems programming.

5.1 device offloading for fpgas

A simple example for OpenMP device offloading is shown in 5.1. The
target directive allows to easily denote regions of code that should
be executed on a device, i.e., an accelerator in a heterogeneous sys-
tem. The first implementations of OpenMP device offloading targeted
devices such as GPUs [5, 6] and DSPs [40]. Yet, the ability to specify
application code for host and device in the same source file in an
intuitive manner makes OpenMP offloading also very interesting for
FPGA programming.

The currently predominant way to target FPGAs in a heterogeneous
system via High-Level Synthesis is by using OpenCL. However, as
discussed in Chapter 4 and the publication in Chapter 9, restructuring
an application for OpenCL takes significant effort due to the verbose
host API and also requires the separation of device code and host code
in different compilation units.

This raises the question of whether it is possible to use OpenMP
device offloading to target FPGAs. OpenMP not only allows to denote
device regions within host code, but the map clauses, as showcased in
Fig. 5.1, also provide a mechanism to specify the necessary data trans-
fers between host and device with low overhead and in an intuitive
manner.

In order to investigate this question, our publication in Chapter 11

presented the first-ever prototype of OpenMP offloading to FPGAs based
on the LLVM [37] infrastructure. The compilation flow based on Clang
allowed targeting FPGAs using OpenMP device offloading. The target
regions of the code were extracted and passed on to the proprietary
HLS tool Vivado HLS by Xilinx.

Through a plugin developed for this work, which integrates with
LLVM’s OpenMP runtime for device offloading (libomptarget), data
transfers using the intuitive map clauses and execution handling were
provided at runtime. This runtime plugin as well as the compilation
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1 float a[N];

2 float b[N];

3 float c[N];

4

5 # pragma omp target \

6 teams distribute parallel for\

7 map(to:a[0:N], b[0:N]) map(from:c[0:N])

8 for(int i=0; i < N; ++i){

9 c[i] = a[i] + b[i];

10 }

Figure 5.1: Simple example for OpenMP device offloading of a vector addi-
tion.

flow we developed relied on the open-source framework TaPaSCo [20]
for automation of the HLS flow and the software/hardware interface.At the time the work

in Chapter 11 was
published, TaPaSCo

was still called
ThreadPoolCom-

poser (TPC).

While this first prototype already successfully demonstrated that
OpenMP device offloading allows offloading regions of code to the
FPGA and manage data-transfers, it still suffered from limitations, as
parallel OpenMP constructs inside the target region were not yet
supported and the interaction with Vivado HLS had to rely on source
code.

5.2 parallel constructs on fpgas

Yet, not only can the device offloading itself be interesting as input
code for targeting FPGAs, in addition the concurrent constructs in
OpenMP can be used for HLS. As the example in Fig. 5.1 shows, device
offloading can be combined with worksharing constructs, dividing
work across teams and, subsequently, threads in the team, in this
example.

In prior work, either concurrent tasks [14, 15, 50] or worksharing
loops [8] had been used to initiate parallel execution on the FPGA

through HLS. Still, in both cases, the authors solely relied on spatial
parallelism, i.e., they used the FPGA’s hardware resources to instantiate
concurrently executing accelerators for tasks or threads, but inside
each accelerator, only a single thread of execution would be active.

However, inside an FPGA accelerator generated by HLS, most oper-
ators are active at all times. Usually, the execution is organized into
so-called stages by a static schedule, and only one stage is active at a
time, leaving the remaining operators idle.

Huthmann et al. [28] have demonstrated that by operating multiple
threads in different stages of the same hardware accelerator, idle cycles
and execution time can be reduced significantly. Therefore, in the
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publication in Chapter 12, we developed a multi-threaded execution
model for High-Level Synthesis from OpenMP worksharing loops.

The execution model allows the accelerators to keep track of multi-
ple threads, working together in an OpenMP worksharing loop. While
still only a single thread is active at a time, pausing this thread, e.g.,
due to an access to external memory, does not cause the hardware to
become idle. Instead, another thread is activated and resumes execu-
tion. In the background, the suspended thread’s memory access will
be completed, making the thread available for execution again.

This execution model can also be combined with the approach
from prior work, so that there are multiple instances of the hardware
accelerator, each executing multiple threads. As the evaluation in
Chapter 12 shows, this combination can reduce idle cycles in hardware
by a factor of up to 8x and improve execution time by a factor of up
to 3x.

5.3 openmp offloading for multi-threaded fpga accel-
erators

Given the potential of multi-threaded execution on FPGAs and the
benefits of the low-overhead, intuitive interface of device offloading
to FPGAs, the publication in Chapter 13 combines the two approaches,
yielding an easy-to-use interface for programmers for creating multi-
threaded FPGA accelerators from OpenMP concurrent constructs.

The general outline of the compilation flow and integration with
LLVM’s OpenMP offloading runtime are similar to what was described
in Section 5.1 and Chapter 11, but with one major difference: Instead
of passing the content of the target region to the HLS compiler in the
form of C/C++ code, which severely limits the expressiveness of the
input to the HLS flow, the new compilation flow uses LLVM IR as input
to the HLS compiler Nymble [29].

Using LLVM IR allows communicating information about concurrent
OpenMP constructs such as teams distribute or parallel for to the
HLS compiler for the generation of multi-threaded hardware accelera-
tors. In addition, it also enables transformations on the intermediate
representation to happen before the HLS compilation. These trans-
formations make it possible to support interesting extensions, such
as vectorized loads/stores, access to FPGA on-chip memory and use
of OpenMP synchronization constructs (omp critical, omp barrier),
inside the target region intended for offloading to the FPGA. The flow
also supports the use of an optimized memory preloader through a
dedicated function, similar to other OpenMP API functions.

The multi-threaded execution model used by the generated hard-
ware accelerators is an advancement of the model presented by Huth-
mann et al. [28]. While the model discussed in Section 5.2 and Chap-
ter 12 is designed to have a small hardware overhead, the execution
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model used in Chapter 13 trades some hardware resources for even
higher performance by allowing multiple threads to be active at the
same time in different stages of the generated hardware accelerator.
This further reduces idle cycles and improves performance.

As detailed insights into the performance of an accelerator and
potential bottlenecks are an invaluable tool for HPC developers, we
have complemented the compilation flow by an approach for detailed
performance tracking in HLS-generated accelerators, presented in the
publication in Chapter 14.

By extending the compilation flow to insert small counters that keep
track of important performance metrics such as floating-point perfor-
mance, memory bandwidth and thread execution state, the approach
allows to gain meaningful insight into the execution characteristics
of an HLS-generated accelerator, as demonstrated in Chapter 14. To
present the gathered performance information to the user, the gener-
ated profiles are compatible with the popular Paraver performance
visualizer [49].
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A C C E L E R AT E D S U M - P R O D U C T N E T W O R K
I N F E R E N C E

While the previous two chapters focussed on general programming
frameworks and OpenMP in particular, this chapter will investigate
the use of domain-specific programming frameworks for heterogeneous
systems. As previously discussed in Chapter 3, domain-specific pro-
gramming frameworks provide a number of advantages that make
them an attractive candidate for heterogeneous systems programming.

To demonstrate how a domain-specific programming framework
can enable the usage of a variety of target platforms from a single input
description and provide significant performance improvements, we
are going to use the domain of Probabilistic Graphical Models (PGMs),
more specifically, Sum-Product Network (SPN) [51] as an example of
such a domain.

6.1 sum-product network background

Probabilistic (graphical) models such as Sum-Product Networks, are
nowadays receiving increasing attention as a robust alternative and
complement to other techniques from the Machine Learning domain,
such as (deep) neural networks. Due to their true probabilistic inter-
pretation, probabilistic models can much better handle the uncertainty
found in many real-world applications and are also able to express
uncertainty over their output, for example when confronted with out-
of-domain samples, a property especially important in safety-critical
applications.

While these interesting properties are common to most approaches
from the domain of probabilistic models, Sum-Product Networks have
an important advantage over many of these approaches: Given that the
SPN was constructed according to a number of simple rules (that can
be enforced in the learning process), SPNs guarantee tractable inference,
i.e., the complexity of inference is linear with respect to the model
size.

This property allows to deploy Sum-Product Networks in a wide
variety of applications, from databases [24] and robotics [60] to medical
imaging [53] or signal processing, e.g., robust automatic identification
of speakers [46]. An overview of applications using Sum-Product
Networks can be found in the survey by Sánchez-Cauce et al. [55].
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Figure 6.1: Example for the mixture of the two probability distributions,
shown by the red and green curve. The mixture is used to pre-
cisely capture the underlying distribution shown by the blue bars.

6.1.1 Model Structure

A Sum-Product Network model captures the joint probability dis-
tribution over a set of variables in the form of a Directed Acyclic
Graph (DAG). The graph consists of three different types of nodes,
each with particular semantics:

• The leaf nodes of the graph capture the univariate probability
distribution over a single variable, e.g., a Gaussian distribution.
This distribution can directly be obtained from the observations
(i.e., the training data) or a subset thereof. For example, for a
discrete, categorical variable, one could simply count the number
of occurrences of each category to assess the distribution. The
scope of a leaf node is the single variable associated with it.

• Product nodes correspond to a factorization of independent
variables. Simply put, two variables are independent of each
other, if the realization (i.e., the value) of one does not have an
impact on the probability distribution of the other. In such cases,
the two variables can safely be considered separately.

For the SPN to be valid and have guaranteed tractable inference,
the scopes of the different child nodes of a product node must
be disjoint. The scope of the product node itself is the union of
the scopes of all child nodes.

• Weighted sum nodes correspond to a mixture of multiple distri-
butions and assign a weight to each of the child nodes. A simple
example for the mixture of distributions can be found in Fig. 6.1.
The underlying distribution (blue bars) cannot be captured by
a single distribution. Through mixture (i.e. by combining) two
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distributions (shown as red and green curve), the underlying
distribution can be captured precisely. The different weights
associated with the two child distributions result from the fact
that the red curve covers more instances than the green.

In a valid SPN, the scope of all children of a sum node must be
identical, and this scope will also be the scope of the sum node
itself.

As the name indicates, leaf nodes can only occur at the leaves of
the DAG and cannot have any child nodes. Every SPN also has a single
root node, and multiple layers of sum- and product nodes can occur
between root nodes and leaves.

6.1.2 Learning

While the graph structure of a Sum-Product Network, as described
in the previous section, can be hand-crafted, optionally followed by
weight-learning only, there are also a number of algorithms to auto-
matically learn the DAG structure of the SPN model from data.

To illustrate how this learning process works, we give a brief
overview of one such learning algorithm as presented by Molina
et al. [41]. The base case of the algorithm is reached when only a single
variable is left, in which case the algorithm will simply learn a leaf
node from the univariate distribution of that variable.

If more than one variable is left, the algorithm will first try to
detect independencies among these variables through a pair-wise
independence test. In case the algorithm is able to find independent
subsets of variables, it will create a product node and recurse on each
of the subsets to obtain a child node for each of the subsets.

If the algorithm is not able to find any independent subsets, it will
instead perform a partitioning of the training samples and create a
sum node. Afterwards, it recurses on each of the partitions to obtain a
child node for that partition. The weights associated with each child
node directly correspond to the overall fraction of samples assigned
to this cluster.

The simple example of the age and income distribution of the
members of an university in Fig. 6.2 can be used to further illustrate
the learning process.

In the first step, the algorithm would fail to detect an independence
of the variables Age and Income and would therefore perform a clus-
tering, yielding the four colored clusters in Fig. 6.2. The algorithm
would then recurse on each of these clusters, where age and income
are now independent, so a product node would be created for each of
the clusters. In the last step, the algorithm would learn the univariate
distributions for age and income, respectively, in each of the clusters.

The learning process would then yield the final Sum-Product Net-
work model depicted in Fig. 6.3, which also illustrates the assignment
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Figure 6.2: Example distribution of age and income among university staff.

of weights to child nodes of a sum node: As there are typically far
fewer professors than students at a university, the blue cluster contains
fewer instances, and the weight (label (a)) associated with the left-most
child node of the root sum is therefore comparably small.

The algorithm for which a brief overview was provided here is only
one possible way to learn the structure of a Sum-Product Network
from data – an overview of other learning approaches can be found in
[55].

6.1.3 Inference

After the SPN model structure has been obtained using one of the
approaches just described, it can be used to answer probabilistic
queries through inference. Examples of probabilistic queries for our
example would be questions such as how likely it is that an em-
ployee of a university receives an income of I1 at age A1 (P(Age =

A1, Income = I1), joint probability) or the probability of earning I2 at
any age (P(Income = I2), marginal probability).

There are multiple kinds of inference, depending on the kind of
query that should be answered, but all involve a bottom-up traversal
of the SPN DAG, starting at the leaf nodes.

For example, to obtain a joint probability given some evidence, i.e.,
values for the variables the SPN is defined over, the inference process
will first query the univariate distributions at the leaf nodes using
the evidence to obtain a probability value. This probability value is
then propagated towards the root node of the SPN, performing the
respective operations on the way, i.e., multiplication of probabilities at
each product node and weighted addition at each sum node.
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Figure 6.3: Example of an SPN model for the distribution in Fig. 6.2. Weights
are annotated in black, probabilities for the example query in red.
For each of the four groups of persons at the university, the algo-
rithm has learned a sub-graph, attached as child node to the root
sum node. Within each group, age and income are independent
of each other, implying a product node. The distributions for age
and income in each group can be obtained from the data, e.g., by
counting the number of professors of each age, as shown in the
magnification.

To illustrate this process, let us return to the example SPN in Fig. 6.3:
Assume that the SPN should be used to answer how likely it is to earn
$100,000 per year at the age of 29 when employed by an university,
i.e., P(Age = 29, Income = $100k).

The evidence in this case is Age = 29 and Income = $100k, and is
used to query the univariate leaf distributions. In case of the professors
on the left-most side of the SPN, a low probability for the age of 29

will be obtained, as there are few professors aged 29, but a high
probability of earning $100k is yielded. These two probabilities get
multiplied, and the same happens for all other product nodes. The
resulting probabilities are then multiplied by the associated weights
and summed up to eventually obtain the final result. Unfortunately
for the author of this thesis, the obtained probability is very close to
zero.

Inference is the most important process when a Sum-Product Net-
work model is actually deployed into an application, therefore the
remainder of this chapter will investigate how to accelerate SPN in-
ference on heterogeneous systems. Learning of the model structure
is assumed to have taken place beforehand, e.g., offline on a large
machine.
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6.2 hardware acceleration

In previous work, various accelerator architectures have demonstrated
that FPGAs are a very promising platform for the implementation of
accelerators for machine learning inference, not only for (deep) neural
networks [18], but also other ML approaches such as Random Forest
[39]. Given that, and considering the fact that the DAG structure of
Sum-Product Network models lends itself to pipelining, developing
an FPGA-based accelerator for SPN inference seems promising.

Therefore, in the publication in Chapter 15, we developed an au-
tomatic toolflow as a turn-key solution to accelerated SPN inference
on FPGAs. Starting from an input description of the SPN model, ob-
tained through the open-source library SPFlow [42], the toolflow will
generate a fully pipelined accelerator for SPN inference, including all
the necessary interface components to embed the accelerator in a het-
erogeneous system and to load/store input and result data to/from
device memory.

The generated accelerator uses two of the motifs discussed in Sec-
tion 2.2.2: The pipelined, throughput-oriented architecture allows to
overlap the execution of the inference for multiple samples inside the
accelerator, a form of parallel execution. In addition, by using a static
schedule without explicit synchronization between the arithmetic hard-
ware operators in the datapath at runtime, and by specializing the
load/store infrastructure for the access pattern of SPN inference, the
accelerator also incurs a significantly reduced overhead. The combination
of these two motifs allows the accelerator to outperform existing CPU

and GPU implementations for many benchmarks.
In the publication in Chapter 16, we further extended the parallel

processing to concurrent execution on multiple accelerator instances
in a cloud-deployed FPGA, concretely the Amazon AWS EC2 F1 FPGA

instances. The software/hardware interface was extended to not only
overlap pipelined execution on multiple accelerator instances, but also
to overlap data-transfers between host and FPGA with execution. This
yields speedups of up to 1.6x over a 12-core Xeon CPU and up to 6.6x
over a Nvidia V100 GPU.

Yet, there is a third motif left that can be employed for Sum-Product
Network inference, namely data specialization. In the case of SPNs, that
means that the hardware arithmetic operators inside the datapath can
be specialized for the cases and ranges relevant for SPN inference.

So far, the accelerator was using standard IEEE-754 double arith-
metic operators from the open-source FloPoCo [12] library. In the
publication in Chapter 17, we therefore compared three different arith-
metic formats with regard to their suitability for SPN inference. Next
to a customized and optimized implementation of floating-point op-
erators, the Posit format [19], and a format based on the logarithmic
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number system and specialized for SPN inference were taken into
consideration.

As the FPGA provides the the necessary flexibility to realize arbitrary
configurations of the arithmetic formats, a fast, software-based Design-
Space Exploration (DSE) was used to determine the best configuration
for each format and benchmark.

The evaluation in Chapter 17 shows that the use of specialized
arithmetic formats does not only enable significant reductions in
hardware resource usage, but also improves performance through the
reduction of pipeline stages in the individual operators and reduces
energy consumption.

6.3 acceleration on cpus and gpus

Yet, not only FPGAs can provide fast Sum-Product Network inference,
but there also previously unused potentials for accelerated inference
on CPUs and GPUs. In particular, the Python-based inference in SPFlow
[42] leaves a lot of room for improvements, as Python is designed for
usability rather than for performance [21].

One approach to lift these potentials is the translation to a Ten-
sorflow [1] graph for execution. However, as the evaluation in Chap-
ter 15 shows, Tensorflow’s abstractions are not ideally suited for
Sum-Product Networks and inference on the translated SPN graph still
suffers from performance issues.

Another approach to accelerate inference, which we developed and
that was used a software baseline in Chapter 15, Chapter 16 and
Chapter 17, is to automatically generate code from the SPN descrip-
tion, more specifically C++ code with OpenMP directives for CPUs

and CUDA code for Nvidia GPUs. However, as already discussed in
Section 5.1, the expressiveness of source code can be a limitation and
not all transformations can be performed at this level.

Therefore, in the publication in Chapter 18, we developed a domain-
specific compiler for Sum-Product Network inference based on the
MLIR [38] and LLVM [37] frameworks. Again starting from an SPN The MLIR based

compiler for
Sum-Product
Networks is available
on GitHub [59]
under an
open-source license.

description obtained from the SPFlow framework [42], the compiler,
through a series of MLIR dialects, lowerings and transformations, auto-
matically generates optimized executables for CPUs and CUDA GPUs,
which are then loaded to execute inference on the SPN.

Similar to the FPGA accelerator, where the parallelism in the ap-
plication was leveraged for pipelining, this parallelism can also be
exploited on the two target platforms. On the CPU, through multi-
threading and usage of SIMD vector extensions, the compiler is able
to achieve speedups of up to 814x over SPFlow. When compiling for
the GPU, a speedup of up to 524x is achieved through the massively
parallel SIMT execution model.
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These speedups are also much higher than the speedups of 1.5x and
1.4x achieved through the translation to a Tensorflow graph.



7
C O N C L U S I O N A N D O U T L O O K

As CPU performance has been stagnating for most of the past decade
due to the developments and limitations discussed in Chapter 2, the
future of computing is heterogeneous. This era of heterogeneous
computing does not only promise significant improvements in perfor-
mance and performance-per-watt, and lots of exciting new architec-
tures, but also comes with a number of challenges when it comes to
programming these heterogeneous systems.

Throughout the course of this thesis, we have explored two potential
answers to these programming challenges.

One potential solution are general programming frameworks that
have been established in the HPC domain, such as OpenMP, and
which have evolved over time to better adapt to for the programming
challenges of the heterogeneous computing era. The selection of the
right programming framework for a specific task, domain or platform
is a crucial step. In Chapter 4 and the corresponding publications in
Part ii, we have identified important aspects and characteristics of
programming frameworks to guide such a decision.

Afterwards, in Chapter 5 and Part iii, we have demonstrated how
to extend the implementation and compiler support for one such
programming framework, namely OpenMP, to FPGAs as a new class of
devices. Our implementation of OpenMP device offloading for FPGAs

does not only provide an easy-to-use interface for targeting FPGAs in
an application and manage data exchange between host and device
with low overhead, but also significantly improves the utilization of
the accelerator through hardware multi-threading.

Another interesting potential solution to the programming challenge
are domain-specific programming frameworks. Using the example
of Sum-Product Networks, a class of machine learning models, we
have demonstrated in Chapter 6 and Part iv how to design and im-
plement a domain-specific framework targeting not only GPUs and
FPGAs, but also leveraging all available hardware features of the CPU.
By capturing the high-level semantics and structure of the application,
and using this information for the mapping to the target hardware,
our framework achieves significant performance improvements for
Sum-Product Network inference. At the same time, the framework’s
interface provides abstractions familiar to SPN domain experts.

In the foreseeable future, the trend towards heterogeneous sys-
tems will continue, with new accelerator architectures and completely
new kinds of accelerators being deployed into systems. At the same
time, the existing accelerators will also be used for other kinds of
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applications, as it is already happening with accelerators designed
for machine learning training and inference, such as Cerebras’ Wafer
Scale Engine, being used in general scientific computing [54].

Future generations of systems will also couple the accelerators more
tightly with the host CPU. Cache-coherent interfacing protocols such
as CCIX or CXL are precursors of this trend, and devices integrating
the CPU and accelerators in the same SoC or package, such as Intel’s
HARP, might also become more common in non-embedded scenarios.

In the area of general programming frameworks, the SYCL pro-
gramming framework is a comparably new, yet promising candidate.
It combines many of the important characteristics of programming
frameworks discussed in Chapter 4, e.g., a tight coupling with the
host programming language (C++), and the ability to target a wide
variety of processing elements, including CPUs, GPUs, and FPGAs. De-
spite being around for only a few years, it has already seen significant
vendor adoption, with Intel picking it up and extending it as DPC++
in their oneAPI effort.

With regard to domain-specific programming, frameworks such
as MLIR [38], which provide abstractions and infrastructure for the
implementation of domain-specific compilers, will be a key enabler
for the development of domain-specific programming frameworks
that successfully capture the high-level semantics of applications and
efficiently map it to target platforms, all while providing an easy-to-
use interface for domain experts.
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abstract

Due to the ever-increasing computational demand of automotive ap-
plications, and in particular autonomous driving capabilities, the
automotive industry and its suppliers are starting to adopt parallel
and heterogeneous embedded computing platforms.

However, C and C++, the currently dominating programming lan-
guages in this industry, do not provide sufficient mechanisms to fully
exploit such platforms. As a result, vendors have begun to employ true
parallel programming models such as OpenMP, CUDA or OpenCL.

In this work, we report on a benchmark suite developed specifically
to investigate the applicability of established parallel programming
models to automotive workloads on heterogeneous platforms.
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8.1 introduction

The computational demands of automotive applications has increased
steeply in recent years, in particular due to autonomous driving and
advanced driver-assistance (ADAS) functionalities.

To meet this new computational demand, the automotive industry
is starting to turn towards parallel and heterogeneous platforms. The
multi-core processors and accelerators (e.g., GPUs) found on heteroge-
neous platforms typically require programming language support to
explicitly express parallelism. However, C and C++, the currently domi-
nating programming languages in the automotive field, lack sufficient
mechanisms. As a consequence, the automotive industry is keenly
interested in parallel programming models.

While a number of well-established standards for parallel and het-
erogeneous programming exist in the HPC community, the embedded
target platforms used in automotive applications differ significantly
from the HPC systems these programming models were originally
tailored for.

In this work, we present the DAPHNE (Darmstadt Automotive Par-
allel HeterogeNEous) open-source benchmark suite [2], comprising
multiple kernels from automotive applications, together with parallel
implementations in different programming models and for different
embedded computing platforms. This suite allows to study the ap-
plicability of parallel programming models to different automotive
workloads and their performance on embedded, heterogeneous sys-
tems. The insights can also be used to establish a set of best practices,
potential adaptions and possible extensions of the investigated parallel
programming models.

8.2 benchmark suite

Our goal for the development of the benchmark suite was to extract
actual compute-intensive automotive workloads into easy-to-analyze
standalone kernels for parallelization.

For the serial implementations of the automotive workloads that
serve as the basis for our benchmarks suite, we reviewed multiple
open-source frameworks for ADAS. In this process, we found Auto-
ware [3] to be the most promising candidate as the source of the serial
implementations.

Autoware contains algorithms for all steps of an AD/ADAS appli-
cation, including sensing, perception, planning, decision making, and
actuation. As such, the modules contained in Autoware are represen-
tative for the kind of computations found in real-world automotive
applications.

Using the test dataset acquired from a real test drive and provided
by Autoware, we used profiling to identify execution hotspots. As our
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Table 8.1: Benchmark kernel statistics

Kernel LoC Input [MB] Output [MB] Data Sets

points2image 347 19 000.000 4 300.000 2500

euclidean_clust. 956 45.000 54.000 350

ndt_mapping 1394 4 200.000 0.008 115

aim was to accelerate code with a parallel execution model, only those
code parts that seemed promising for parallelization were considered
for extraction.

Currently, our benchmark suite contains three different kernels.
Each kernel was provided in a skeleton for standalone execution out-
side of the complex ROS-based Autoware framework. References to
third-party libraries were either inlined or replaced with custom im-
plementations. To make sure that we did not introduce any artificially
slow sections in this process, we compared the performance of our
implementation to that of the original Autoware implementation (for
an example, see Fig. 8.1).

Additionally, we extracted five data sets of increasing size with
input- and reference- data for each kernel, which we provide together
with the benchmark suite, see Table 8.1 for statistics.

After extraction, we parallelized each kernel using different pro-
gramming models. We chose OpenMP, CUDA and OpenCL for paral-
lelization, because these standards are supported on most embedded,
heterogeneous platforms. For each kernel, we provide an implemen-
tation in each of the programming models. In the case of OpenMP
we also provide implementations using the new device offloading
features. For the points2image-kernel, we additionally created an im-
plementation for Xilinx Zynq Ultrascale+ MPSoC using OpenCL with
Xilinx SDAccel.

8.2.1 points2image Kernel

The points2image-routine gets as input a point cloud (which originates
from a LIDAR) with intensity and range information. The points are
then projected onto a given 2D view.

With thousands of points being projected at the same time, this
seemed like a very good candidate for parallelization. However, in
practice, multiple of the 3D LIDAR points may end up being projected
to the same point in the 2D view. This leads to race conditions in
parallel execution, and can result in incorrect results when not handled
with care.

The original Autoware code prioritizes the point that is closer to the
projected view. This behavior is implemented in our parallel versions
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Figure 8.1: Comparison of different radiusSearch implementations.

by using atomic min functions in the threads accessing the 2D view.
In case of accessing the same 2D element, the atomic min function
guarantees that the correct thread writes its value.

Similar atomic and synchronization functions can be used to keep
the array with the corresponding intensity up to date. While these
atomic operations diminish the resulting speed up, the accelerators
were still able to improve the run time by up to a factor of 3.5x.

8.2.2 euclidean_clustering Kernel

Similar to points2image, the euclidean_clustering-kernel also operates
on a point cloud. The algorithm clusters points that are close together,
to identify objects.

The original implementation uses a kd-tree to compute the distances
between points. This was provided by the Point Cloud Library (PCL,
[4]). To remove the dependency on the PCL and enable stand-alone,
library-less compilation and execution, a custom implementation was
created. As the distances from all points to all others were required, our
replacement for the radiusSearch function from PCL employs a look-
up of the distances in a precomputed table. The table does not need to
hold the distances between two points, but just a boolean indicating if
the distance between those points is below the given threshold. This
reduces the memory required for the table significantly.

To verify that this standalone kernel has a similar performance to the
original one, it was benchmarked against the original Autoware ver-
sion. Fig. 8.1 shows that the performance of the two implementations
is almost identical.

8.2.3 ndt_mapping Kernel

The ndt_mapping kernel is a SLAM (simultaneous location and map-
ping) algorithm that works with Normal Distribution Transformations
(NDT, [1]). As input, two point clouds are accepted, one representing
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the current LIDAR scan, and a second one representing the map built
during the drive so far. The newly discovered points from the LIDAR
scan are then added to the map by aligning them with the existing
map.

The computational result is a transformation consisting of a rotation
and a translation. The transformation is the best transformation that
fits the newly acquired LIDAR point cloud to a pre-existing map point
cloud using NDT.

To make the kernel code library free, we replaced the complex SVD
algorithm, with a much simpler Gaussian solver. In general the SVD
solver deals better with singular matrices, but for our purpose, the
precision of the replacement turned out to be sufficient.

Beyond that, we again replaced a radius search within a kd-tree.
In this case, the search was not used to compute the distances from
all points to each other within the kd-tree. Instead it was used to
actually find the closest point inside the tree to a point outside the
tree. This search was implemented as a linear search within the point
cloud. Our evaluation showed that neither of these changes slows
down the sequential baseline. On the contrary, they actually improve
the runtime of the sequential baseline, and thus do not artificially
inflate the speedups we achieve through parallelization.

8.3 conclusion and outlook

We presented the DAPHNE open-source [2] benchmark suite, com-
prising three different workloads typical for automotive applications.
For each of the kernels we provided parallelizations with CUDA,
OpenCL and OpenMP, all qualified for execution on actual embedded
computing platforms.

The benchmark suite can be used to assess the applicability of
established parallel programming models to automotive workloads,
or to evaluate new compute platforms for the AD/ADAS domains.

In the future, we plan to extend the benchmark suite by adding
more kernels and parallelization with other programming models,
such as SYCL. Besides that, we will use the benchmark suite to inves-
tigate the performance of established parallel programming models
on embedded heterogeneous platforms and how these models can be
adapted to better meet the needs of the automotive industry.
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abstract

Due to the ever-increasing computational demand of automotive ap-
plications, and in particular autonomous driving functionalities, the
automotive industry and supply vendors are starting to adopt parallel
and heterogeneous embedded platforms for their products.

However, C and C++, the currently dominating programming lan-
guages in this industry, do not provide sufficient mechanisms to target
such platforms. Established parallel programming models such as
OpenMP and OpenCL on the other hand are tailored towards HPC
systems.

In this case study, we investigate the applicability of established
parallel programming models to automotive workloads on hetero-
geneous platforms. We pursue a practical approach by re-enacting
a typical development process for typical embedded platforms and
representative benchmarks.
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9.1 introduction

In recent years, the computational demands of automotive applications
have been steeply increasing, in particular with the introduction of
advanced driver-assistance (ADAS) and, at least partially, autonomous
driving (AD) functionalities.

As these functionalities require the processing of complex, compute-
intensive algorithms with high performance, the automotive industry
faces challenges similar to those encountered by the high-performance
computing (HPC) community about a decade ago. The computational
power provided by single-core embedded processors is not sufficient
anymore to meet latency and/or throughput requirements.

In reaction to these challenges, the automotive industry is starting to
turn towards parallel and heterogeneous platforms [9], e.g., combining
multi-core CPUs and GPUs. These multi-core processors as well as
accelerators typically require programming language mechanisms to
express parallelism and leverage their computational power. However,
C and C++, the currently dominating programming languages in the
automotive field [8], do not provide sufficient mechanisms. As a
consequence, the automotive industry needs to adopt parallel and
heterogeneous programming models.

While there is a number of well-established standards for parallel
and heterogeneous programming in the HPC community, the embed-
ded target platforms in the automotive industry differ significantly
from the HPC systems these programming models were tailored
towards. The thermal and power budget, the computational power
and the coupling between host CPU and accelerator of embedded,
heterogeneous platforms deployed in automotive vehicles differs sig-
nificantly from HPC systems.

So although the HPC programming models can serve as a solid
base, they are not usable “out-of-the-box”, and will require adaption
for use in automotive usage scenarios.

The aim of this case study is to investigate programming models
established in the HPC field with regard to their applicability in
embedded automotive applications. The intent of this case study is
to provide insights into how well established programming models
are suited for use in automotive applications, and how they could be
improved and extended for automotive use and target platforms.

Note that we do not focus on the raw performance only, but also
consider other important aspects for a practical usage of this parallel
programming models in industry, such as programmer productivity
and maintainability.

To this end, we have developed a practical approach described
in Section 9.3. In our evaluation, we present a detailed analysis of
important figures, e.g., programmer productivity and effort to reach
certain levels of speedup over a serial implementation.
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9.2 related work

Prior studies that investigated the usability and maintainability of
parallel programming models, such as [4] or [5], focused on HPC
applications and algorithms, whereas our case study is focused on
automotive, embedded applications. Most of these studies were also
conducted as classroom studies, with novice programmers as developers.
In this work, we explicitly do not consider the time required to learn
a parallel programming model, and have experienced developers
implement the kernels.

In other work, such as [18] or [12], the authors developed static and
dynamic analyses to predict the performance of parallel implemen-
tations of algorithms on different embedded and also heterogeneous
platforms. While they consider the underlying parallel characteristics
of the algorithms and how well they map to the platforms, we investi-
gate how well the parallelism in an algorithm can be expressed with the
different parallel programming models, and how much programming
effort is required to do so.

9.3 approach/methodology

The central aim of this case study is to investigate the use of existing
(often HPC-centric) programming models for the implementation of
automotive computation tasks on parallel, heterogeneous platforms,
and to identify potential areas for improvement of the existing stan-
dards or tool implementations.

To this end, and in contrast to previous investigations (e.g., [8]), we
take a practical and quantitive approach, based on real implementa-
tions of representative computational problems. The basic idea of our
approach is to re-enact the typical development process of migrating
an existing, serial implementation of an algorithm to a parallel, hetero-
geneous platform. With the continued integration of such platforms
into automotive vehicles, many OEMs and component suppliers will
be confronted with this task.

Through this re-enactment, we can investigate all relevant usability
aspects of the programming models in detail, as well as the ecosystem
of supporting tools.

In the following sections we will describe the individual steps of
our approach in more detail.

9.3.1 Identification of relevant programming models

In a first step, we need to identify the candidate programming models,
which we will use for implementation in our case study.

For parallel programming and the integration of dedicated accel-
eration, a number of programming models and standards already
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exist, mostly originating from the high-performance computing do-
main. As C and C++ are the dominant programming languages in
the automotive domain at this point, having almost 50% share [8],
we will focus on programming models that are based upon at least
one of these languages. Beyond that, we further tighten that focus to
well-established programming languages with an active community,
to make sure sufficient training resources and experts are available.

After reviewing the parallel programming models currently enjoy-
ing the most prominence, we selected OpenMP [11], OpenCL [10]
and CUDA [2] as candidate models. The three models cover a broad
spectrum, ranging from the rather high-level abstractions of OpenMP
to the very explicit parallelization and offloading of OpenCL.

9.3.2 Benchmark Selection

The beginning of the re-enacted migration process of an existing
application to a parallel, heterogeneous platform usually is the serial
implementation of an algorithm. As the central aim of this project is to
investigate the applicability of the programming models to automotive
software, we chose to use algorithms from the automotive domain
and their corresponding serial implementations as starting points for
our implementation.

After review, we selected the open-source DAPHNE benchmark
suite [15, 16] as the source for the serial implementations. The DAPHNE
suite contains three different automotive kernels, called points2image,
euclidean_clustering and ndt_mapping, that were extracted from the
Autoware autonomous driving framework [6]. In addition, the bench-
mark also provides datasets with input- and reference data captured
during an actual drive, that we can use to ensure the correctness of
our parallel implementations.

9.3.3 Selection and Bring-Up of Evaluation Platforms

For testing and performance evaluation of the benchmark implemen-
tations, suitable evaluation platforms are required. In the selection
process of these platforms, our central aim was to cover a broad range
of current embedded, parallel and heterogeneous platforms. After a
review of available technologies as step three of our approach, three
different platforms were acquired:

• Nvidia Jetson TX2

• Nvidia Jetson AGX Xavier

• Renesas R-Car V3M

All three selected platforms combine a multi-core CPU with a GPU
(called image recognition engine in case of the V3M) and are designed
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for automotive usage scenarios. As such, they exhibit the particular
characteristics regarding computational power and energy budget
typically found on automotive platforms.

9.3.4 Benchmark implementation and porting.

The fourth step of our approach is the actual implementation process
of the benchmarks that lies at the heart of our practical, quantitative
approach.

In contrast to many other surveys (e.g., [4]), we explicitly do not
consider the time required to learn a parallel programming model
here. In our implementation case study, the developers performing
the implementations are already experts with multi-year experience
with the respective programming models. This is similar to a real-
world scenario, where companies are likely to hire developers that are
familiar with programming models and have prior experience in their
use.

During the implementation, the original serial code is parallelized
using the means provided by the respective programming model. Ad-
ditionally, the compute-intensive parts of the application are offloaded
onto the parallel accelerators, i.e., the GPU, if the programming model
allows to do so.

This implementation flow replicates the typical process of migrating
an existing, serial code base to a new parallel, heterogeneous platform.
Beyond that, many of our insights should also be applicable to the
development process of new software from scratch, i.e., without a
pre-existing serial implementation.

Once an application has been parallelized, it should be deployable
to multiple different heterogeneous compute platforms, therefore porta-
bility plays a major role for the applicability of a programming model
for the automotive domain.

To assess the portability of the selected programming models and
the resulting development effort, we also re-enact the typical process
of porting an application to a different platform. To this end, the
resulting parallel implementation of a benchmark targeting an initial
platform is also evaluated and optimized at least on a second one.

While our practical approach allows us to investigate the program-
ming models in a real-world scenario, it does have a number of
limitations that might make it less suitable for other purposes.

• The kernels were selected to study the parallelization effort for
different parallel paradigms/platforms. They represent some
automotive workloads, but not all automotive workloads.

• With Autoware’s roots in fundamental academic research, their
implementation is not necessarily performance optimized. Sim-
ilarly, the highly modular ROS-based structure does carry a
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performance overhead, as it is very difficult (or not even possible
at all) to optimize data transfers between host and accelerator
memories across ROS node boundaries.

9.4 evaluation

The raw performance of the parallel implementations is not the key
aspect of the programming models we want to investigate in this
case study. But even so, achievable performance plays a crucial role
when judging a parallel programming model, and can therefore not
be completely neglected in this case study.

However, for the business decision on which programming model
to use for the implementation on heterogeneous platforms, the follow-
ing three non-functional aspects of programming models need to be
considered as well:

• Programmer Productivity

• Maintainability

• Portability

All three aspects of programming models listed above are “soft” char-
acteristics, i.e. they cannot be measured directly. Rather, one needs to
quantitatively assess them indirectly through a combination of multi-
ple metrics. To this end, we have assembled a set of measurements and
metrics described in the following. After the definition of our metrics,
we will investigate each of the listed aspects in Sections 9.4.1 to 9.4.3.

programmer productivity The productivity a developer achieves
using a given programming model gives insights into the ease-of-use
of the model.

We use a simultaneous tracking of working hours vs. achieved per-
formance to determine which programming model yields the required
performance with the least development effort. For many applications,
a performance lower than the maximum achievable performance on a
given platform is absolutely sufficient, e.g., to meet real-time require-
ments. In such a case, a programming model that achieves the required
performance faster than the other models, even though this model
may not be able to deliver the best peak performance, is preferable.

In our case study, the developers measure performance roughly
every sixty minutes, resulting in graphs similar to the ones shown in
Fig. 9.1, Fig. 9.2, and Fig. 9.3.

maintainability Application software in the automotive field
typically has a relatively long lifetime, potentially extending to over
more than a decade. Thus, good maintainability is indispensable. The
effort required for the maintenance of a piece of code is dominated
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Figure 9.1: Result of simultaneous tracking of working hours vs. speedup
over serial baseline to assess programmer productivity for bench-
mark points2image.

by the time that a developer, who is not the original author of the
code, needs to become familiar with the code base in order to make
the desired changes.

The maintenance effort is influenced by the code volume and the
complexity of the code. To assess the impact of parallel programming
models on the code volume, we measure the number of changed lines
compared to the original serial version of the code. In contrast to prior
work [4], we also consider in-place changes, because many parallel
programming models also require to restructure the original code of
the application.

Assessing the complexity added to the code base due to the use of a
parallel programming model is more complicated. Classical software
complexity metrics such as the ones proposed by McCabe [7] or
Halstead [3] are tailored towards control-flow heavy business software,
and are not suitable for this purpose. We therefore developed a new
metric, the Complexity Count. The reasoning behind the complexity
count, is that complexity introduced by parallel programming models
stems from the inclusion of new keywords, new datatypes, runtime
function calls and compiler directives defined by the programming
model into the code of an application. To calculate the complexity
count, we simply count the number of these additional programming
model constructs in the code base, and also the number of parameters
passed to these constructs, e.g., to runtime functions. For example,
the use of cudaMallocManaged(&a, vector_size * sizeof(float));

in the code would yield a complexity count of three.

portability Once a code base has been parallelized and partially
offloaded to dedicated accelerators, it should ideally be usable for
multiple different heterogeneous platforms. The characteristics of a
programming model (e.g., high-level abstractions, compiler directives,
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Figure 9.2: Result of simultaneous tracking of working hours vs. speedup
over serial baseline to assess programmer productivity for bench-
mark euclidean_clustering.

etc.) can directly influence the portability. It is thus important to assess
the porting effort required for each of the selected models.

Besides making the existing code compile, and compute correctly
on the new platform, porting typically involves a process of incre-
mental improvements to optimize performance on a new platform.
The duration of this process indirectly provides information about
the portability characteristic of a programming model. We use a si-
multaneous tracking of working hours spent on porting an existing
implementation vs. the performance on the new platform, similar to
the one we employed to measure the programmer productivity.

9.4.1 Programmer Productivity

While the three programming techniques employed in the study have
different effort vs. performance curves in Fig. 9.1-Fig. 9.3, a trend is
clear across the benchmark kernels.

openmp implementation Across all three benchmarks investi-
gated in our implementation case study, OpenMP typically requires
the least effort to parallelize an application. For example, the paral-
lelization of the points2image benchmark in Fig. 9.1 takes only a single
hour of development effort. In general, OpenMP, mainly based on
compiler directives, benefits from the fact that it typically requires
less invasive restructuring for parallelization than other programming
models. This also implies that the performance of the application can
be assessed throughout the development cycle, which can also be a
big plus for development productivity.
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Figure 9.3: Result of simultaneous tracking of working hours vs. speedup
over serial baseline to assess programmer productivity for bench-
mark ndt_mapping.

cuda implementation CUDA typically also allows for fast par-
allelization. Once a parallelization approach is determined, it can often
be realized in just a few hours for kernels with the complexity of our
benchmarks (e.g. Fig. 9.2 and Fig. 9.3). Performance-wise, OpenMP
and CUDA are mostly comparable, the lower number of threads avail-
able on the CPU (note that we focus on the CPU-based features of
OpenMP here!) and the overhead of offloading computation and data
to the more powerful GPU often cancel each other out.

opencl implementation For the majority of the benchmarks,
OpenCL requires much up-front work to restructure and partition
the application, resulting in a phase where performance cannot be
assessed to determine the prospects of success for the chosen paral-
lelization strategy. In Fig. 9.1 and Fig. 9.2, this is indicated by the late
start of the green curve for OpenCL. The relatively complex host code
for OpenCL, and the invasive changes to the serial implementation,
also cause OpenCL to often require the most effort for parallel and
heterogeneous implementation.

9.4.2 Maintainability

The ranking with regard to the required development effort also cor-
relates with the results that we get from our metrics for maintainability.
The evaluation of the total number of line changes (added or deleted)
in relation to the LoC of the original, serial implementation is given in
Fig. 9.4.

Because OpenMP allows to reuse the serial implementation almost
without changes in most cases, and only requires to add the descrip-
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Figure 9.4: Number of changed lines relative to serial baseline. Numbers in
parentheses give LoC of serial implementation.

tion of parallel semantics through compiler directives, the number of
changes is relatively small (3%-17%).

In contrast, CUDA requires kernel functionality to be extracted
to dedicated device functions and the inclusion of additional API
calls into the host code, resulting in a significantly higher number of
changes (24% to 80%).

For OpenCL, the extraction of device code to separate files and the
inclusion of even more boilerplate code into the host leads to sweeping
changes in the code base, ranging from 99% to 263%.

To assess the additional complexity introduced by the use of parallel
programming models into an application’s code, we use the Complexity
Count. The counts for all benchmarks and models are given in Table 9.1.

Benchmark CUDA OpenCL OpenMP

points2image 70 329 12

euclidean_clustering 17 120 15

ndt_mapping 64 113 28

Table 9.1: Complexity count.

Because the OpenMP compiler directives add parallel semantics
in a descriptive/prescriptive manner and operate on a high level of
abstraction, the complexity added by new keywords and directives is
very low.

For CUDA, the added complexity has two main sources: New
data-types and keywords are added on top of the C++ programming
language, mainly to partition the application between host and device.
Additionally, a number of API functions has to be called in order to
transfer data and execution to the device. Nevertheless, the complexity
added is still moderate.
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In OpenCL, the sources of complexity are similar to CUDA, namely
new data-types and keywords for the device section and API calls in
the host code. However, OpenCL requires much more host code than
CUDA, resulting in significantly higher complexity counts.

For OpenCL, there is also a considerable difference between the
use of the traditional C-API and the C++ wrapper API: While the
points2image benchmark was implemented with the C-API, the other
two benchmarks use the C++ wrapper API for the host code. Using
the latter, some steps of the host-side setup process are abstracted,
resulting in a notably smaller complexity count.

9.4.3 Portability

Similar to the discussion of development effort vs. performance, we
can also see a trend of using the three different programming methods
in terms of their portability.

The high-level of abstraction supported by OpenMP also benefits
portability. Moving an existing, parallel OpenMP implementation to
another platform typically boils down to a simple re-compilation on
the new platform, taking less than 20 minutes to complete for each of
our benchmarks.

For CUDA, the situation is similar. When moving from one platform
to another, the code usually does not need to be changed, thanks to the
standardization of the CUDA language by Nvidia for all its devices,
and only a small number of parameters needs to be tuned.

With OpenCL, things are different. Basic features, such as support
for double-precision floating-point arithmetic are only optional fea-
tures, and different vendors typically support different versions of the
OpenCL specification. To these they might add extensions that only
work on platforms manufactured by this vendor.

For two of our three benchmarks, this required manual changes that
often took hours. For example, adapting the points2image benchmark
for the Renesas V3M platform required code changes to use only single
precision floating point computations, instead of the double precision
of the original code. This required almost 12 hours of development
time.

9.5 conclusion

In this study, we have taken a very practical approach to evaluate
the applicability of today’s parallel programming models in the auto-
motive domain. We considered both the nature of typical automotive
compute kernels, which are often very short compared to HPC kernels,
and the constraints of actual embedded hardware platforms.

Based on our insights, we cannot declare a single “winning” pro-
gramming model here. However, our experiences should serve as a
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first indicator for the applicability of different programming models,
and show a way forward to future development and research.

The high-level abstractions defined by the OpenMP standard al-
lowed for a very good programmer productivity. For the actual paral-
lelization, OpenMP relies on the compiler, which yielded competitive
performance for our benchmarks. However, we were yet not able to use
the device offloading features recently added to the standard due to
insufficient compiler support on the target platforms. Future research
should investigate the possibility to extend the compiler support for
OpenMP to such target platforms and workloads in more depth (e.g.,
use OpenMP to target FPGAs [13, 14]).

CUDA strikes a balance between high-level abstractions and explicit
parallelization. In combination, this allows reasonable programmer
productivity and good performance. However, beyond the official,
proprietary compilers and runtimes from Nvidia, no competitive open
implementations for CUDA exist. Thus, the use of CUDA carries
the risk of vendor lock-in. Alternatives for moving CUDA outside
the Nvidia ecosystem (e.g., AMD HIP/ROCm [1]) are only slowly
appearing and need further evaluation in future research.

In contrast to CUDA, implementations with OpenCL require much
more host code, and far more invasive restructuring of the application.
The partitioning into multiple files for host and device code causes
a large up-front effort for implementation, before parallelization and
optimization can even be started.

With SYCL as a spiritual successor to OpenCL, the Khronos Group
provides a modern, open standard designed to overcome these lim-
itations of OpenCL. As soons as SYCL becomes available on more
embedded platforms, future research should investigate the use of
SYCL for the implementation of automotive workloads on the corre-
sponding target platforms.

More details on the evaluation and an investigation of FPGAs as
accelerators is available in the technical report [17].
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abstract

The growing computational demands of automotive applications re-
quire the use of powerful embedded, heterogeneous computing plat-
forms in vehicles. OpenMP, and in particular its device offloading
features, are a promising candidate programming model for these
platforms.

In this work, we show how typical automotive workloads can be
implemented and optimized with OpenMP device offloading. To
this end, we also adapt the LLVM OpenMP runtime to embedded,
heterogeneous platforms. Our evaluation shows that OpenMP device
offloading can deliver performance similar to that of optimized CUDA
implementations.
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10.1 introduction

As modern driver-assistance and autonomous driving functionalities
demand large amounts of computational power on-board of vehicles,
the automotive industry is starting to adopt embedded, heterogeneous
platforms, such as the Nvidia Drive system, to supply the required
computational power.

Programming these systems can be a challenging task and requires
a programming model suitable for the platform. In their study, Som-
mer et al. [4] identified OpenMP as a very interesting candidate, in
particular due to its ease-of-use and maintainability. With the device
offloading features introduced in version 4.0, and further refined in
newer versions of the OpenMP standard, OpenMP now also allows
to target heterogeneous systems, e.g., combining a multi-core CPU and
a GPU. However, in their study [4], Sommer et al. also found the
compiler support for OpenMP device offloading to still be limited on
embedded systems. Since the study has been conducted, the OpenMP
support in compilers has evolved, e.g., with the LLVM compiler infras-
tructure now supporting OpenMP device offloading on ARM-based
systems.

In this work, we show how OpenMP offloading can be used for
automotive workloads on embedded heterogeneous platforms by ac-
celerating three automotive workloads from the open-source DAPHNE
benchmark suite [3] on an embedded platform combining a multi-core
CPU and a GPU. We also modify the LLVM OpenMP runtime to
facilitate management of shared memory on embedded platforms.

10.2 implementation

We use the three automotive benchmark kernels points2image (P2I),
euclidean_clustering (EC) and ndt_mapping (NDT) from the open-source
DAPHNE suite [3] to demonstrate how OpenMP device offloading
can be used to accelerate performance-critical parts of automotive
applications. All three kernels represent typical automotive workloads
and have been extracted from the open-source Autoware framework
for autonomous driving [1].

As OpenMP constructs for device offloading differ from the parallel
constructs for CPUs, a serial implementation in pure C++ is used as
starting point for the study. For better comparability with the hand-
written CUDA implementation provided in the DAPHNE suite, the
same performance-critical sections of the program are offloaded to the
GPU.

After adding the OpenMP offloading constructs to the code (e.g.,
omp target teams distribute), it would already be possible to run
the kernels and offload the OpenMP target regions to a GPU. However,
this implementation does not yet exploit one of the most important
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differences between embedded heterogeneous platforms and hetero-
geneous systems typically found in HPC domains: on embedded
platforms, the different components of the system often physically
share the same memory, as it is the case for our target system, the
Nvidia Jetson platform [2].

We therefore modify the LLVM OpenMP runtime to allow for allo-
cation of memory that can be accessed by both, the host CPU and the
GPU. Using the standard OpenMP function omp_target_alloc, it is
now possible to allocate memory accessible by both components, and
avoid expensive data-copies. These data-copies made up for 88% of
the execution time for points2image and 49% for euclidean_clustering, so
allocating memory usable by both CPU and GPU significantly reduces
the kernel execution time. For the benchmark ndt_mapping, execution
was not even possible with application data allocated twice (once in
host memory, once in GPU memory) because this wasteful allocation
exceeded the system memory.

It is also possible to further optimize the ndt_mapping application
performance: Profiling the kernel shows that one of the target regions
is 10x slower than its CUDA counterpart. Further investigation of the
region shows that the atomic update (omp atomic update) is compiled
to a somewhat inefficient PTX code sequence, whereas the hand-
written CUDA version uses the CUDA builtin function atomicAdd.

But using OpenMP’s declare variant mechanism, a specialized
function for the atomic update can be defined. This specialized func-
tion for the CUDA architecture will automatically be selected by the
compiler when offloading to the CUDA architecture, whereas a generic
version of the function will be used for other architectures, keeping
the OpenMP-based implementation portable.

10.3 evaluation

We use an Nvidia Jetson AGX Xavier platform to compare a total of
five different implementations for the three different kernels:

• Serial baseline implementation in pure C++ (Serial).

• CPU-only OpenMP-implementation (OMP CPU).

• OpenMP offloading implementation assuming separate memory
(OMP Offloading).

• OpenMP offloading implementation optimized for physically
shared memory (OMP Phys. Shared Mem.).

• Hand-written CUDA implementation (CUDA).

Fig. 10.1 shows the accumulated runtime for each kernel (averaged
over three runs), the number of invocations corresponds to the full
data-set of the DAPHNE benchmark and is given in parentheses. The
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Figure 10.1: Accumulated runtime of benchmark kernel execution in seconds.

bar for OMP Offloading for ndt_mapping is missing due to the reasons
explained in the previous section.

For the first two applications, the use of physically shared mem-
ory (OMP Phys. Shared Mem.), as enabled by our modified version
of LLVM’s libomptarget, dramatically improves the execution time
compared to the version assuming separate memory. In case of the
points2image kernel, there is still a significant gap between the OpenMP
offloading version with physically shared memory and the hand-
written CUDA implementation, but the OpenMP offloading neverthe-
less clearly outperforms the CPU-only OpenMP implementation. The
OpenMP offloading implementation with physically shared memory
of euclidean_clustering even outperforms the optimized CUDA imple-
mentation by a small margin, making the OpenMP offloading the
fastest implementation of this benchmark kernel. For ndt_mapping,
there is a small difference in performance between OpenMP offloading
with physically shared memory and CUDA implementation, and both
versions are not able to keep up with the CPU-only implementation
of this kernel.

Table 10.1 further investigates the difference between OpenMP of-
floading with physically shared memory and hand-written CUDA
implementations by looking at the execution time per invocation of the
different GPU regions as given by nvprof. As the region execution time
is almost equal for points2image, the performance difference is most
likely caused by the OpenMP runtime itself. For euclidean_clustering,
the execution time for the second region is almost identical, the small
advantage of OpenMP offloading over CUDA stems from the differ-
ence in execution time of the first region. With the OpenMP offloading
version for ndt_mapping, both regions are slightly slower than their
CUDA pendants. However, an investigation of the original imple-
mentation shows that the implementation of the specialized atomic
update using OpenMP declare variant reduces the execution time
of Region 1 by a factor of more than 7x (from 87,890µs to 12,022µs).
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Table 10.1: Average runtime per kernel invocation in µs.

Benchmark Region Calls OMP PSM [µs] CUDA [µs]

P2I Region 1 2,500 118 121

EC
Region 1 1,726 541 1, 728

Region 2 191,132 8.8 7.4

NDT
Region 1 115 12, 022 9, 784

Region 2 115 35, 008 33, 829

10.4 conclusion & outlook

In this work, we have demonstrated how OpenMP device offloading
can be used to accelerate automotive workloads on embedded hetero-
geneous platforms, and how application performance can further be
improved by adapting the OpenMP runtime to the special features
of embedded systems and by using advanced OpenMP mechanisms,
such as platform-specialized function variants.

The optimized OpenMP offloading implementations developed in
this work are available in the public DAPHNE source code repository
on Github1. The modified version of the LLVM infrastructure is also
publicly available on Github2.

In the future, we plan to further improve the efficiency of the
OpenMP runtime on embedded platforms and investigate the use
of OpenMP offloading for other embedded and automotive use-cases.
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abstract

Future high-performance computing systems will need to include
multiple specialized accelerators in a single heterogeneous system to
overcome power-density limitations of CPU performance.

To program such heterogeneous systems without the need to main-
tain multiple code bases, OpenMP device offloading constructs can
be used to execute compute-intensive regions on different kinds of
accelerators.

In this work we present a proof-of-concept implementation of
OpenMP offloading for FPGA-based hardware accelerators. Our im-
plementation seamlessly integrates with the existing LLVM offloading
infrastructure, and enables the user to move computations to a custom
FPGA accelerator by simply adding OpenMP offloading directives to
the input program.

81



82 openmp device offloading to fpga accelerators

11.1 introduction

With new process technologies for CPUs no longer translating into
performance improvements due to power density limitations, the
performance increase for CPUs has declined in recent years. As
a consequence, CPU-only systems are no longer able to meet the
ever-increasing demands for computing power, especially in high-
performance computing (HPC) scenarios.

In order to overcome these limitations and provide sufficient com-
putational power for future computing tasks, future high-performance
computing systems will need to incorporate multiple dedicated, spe-
cialized accelerators into a single heterogeneous system. Each accelera-
tor is suitable for a limited set of operational tasks and is able to deliver
a better power-efficiency for this set of tasks than the general-purpose
CPU.

Beyond the GPUs that are nowadays very common in high-performance
heterogeneous systems, dedicated FPGA-based hardware accelerators
have received increasing attention recently. Their reconfigurability fa-
cilitates the adaptation of the accelerator to multiple tasks, delivering
better performance and power-efficiency than general-purpose proces-
sors. An example for the use of FPGAs in heterogeneous systems is
the deployment of FPGAs in Microsoft’s Azure cloud [4].

However, programming heterogeneous systems is hard, as each
system comprises multiple (potentially varying) different computa-
tional units. Adapting the software to each accelerator and system
requires significant rewriting of existing code bases, resulting in high
development effort and cost.

The use of a single input program for all kinds of accelerators, on
the other hand, is also challenging. This is especially true as not all
accelerators are suitable for all computational tasks, and typically only
the most computation-intensive sections ("hot-spots") of a program
should be offloaded to a dedicated device, whereas more sequential or
unsuitable (e.g. control-flow intensive) regions of code should remain
on the general-purpose CPU.

The OpenMP target directive, introduced and refined in recent
versions of the standard [13], is a perfect fit for denoting regions of
code that should be offloaded to a device in a heterogeneous system.
The directive does not only allow to specify the device-suitable regions
of code by easy-to-use pragmas, but the associated data mapping
clauses also give the programmer full control over what and how data
is mapped to the device. Therefore, the OpenMP target directive is a
good choice for the programming of heterogeneous systems including
an FPGA as dedicated hardware accelerator.

The LLVM compiler framework C/C++-language frontend, Clang,
is currently being extended for target directives. In this work, we build
on the existing Clang infrastructure to provide support for offloading
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to FPGA-based accelerators using OpenMP target directives. Our work
is based on ThreadPoolComposer (TPC) [10], an automated framework
for the synthesis and HW/SW interfacing of FPGA-based accelerators
(available from [19]). It uses Xilinx Vivado HLS for generating hard-
ware accelerators from C/C++. Our implementation enables the user
to directly offload OpenMP target regions that are compatible with the
input restrictions of Vivado HLS to FPGA hardware accelerators. The
user is not required to provide specialized code in the input program
to interface with the hardware accelerator and our implementation
also manages data mapping to the FPGA memory.

The rest of this work is structured as follows. Section 11.2 gives an
overview of related work and the existing OpenMP offloading infras-
tructure in Clang/LLVM. Section 11.3 provides a short introduction
to the ThreadPoolComposer toolchain, on which our work is based.
In Section 11.4 we describe our new compile and runtime flow, which
we evaluate and compare in Section 11.5. Section 11.6 concludes our
work and gives an overview on future work.

11.2 prior work

We will begin the discussion of related work by looking at other
tools which use OpenMP as input for High-Level Synthesis targeting
FPGAs and compare them to our approach. Afterwards, we describe
some efforts to implement OpenMP device offloading to non-FPGA
targets and explain the existing LLVM offloading infrastructure in
more detail.

11.2.1 OpenMP-based FPGA-acceleration

OpenMP-annotated source code has been used as input and starting
point for a number of High-Level Synthesis approaches targeting FP-
GAs. These approaches focus on efficiently mapping parallel OpenMP-
constructs to FPGA-based hardware accelerators, either using a pure
hardware-flow or aiming for a mixed software/hardware-environment.
For example, in [15, 16] a dedicated accelerator is synthesized for ev-
ery OpenMP task in the program. Other efforts, such as the ones
presented in [6–8, 18], efficiently map OpenMP worksharing loops to
FPGA-accelerators capable of executing computations from multiple
threads in parallel.

However, none of these approaches makes use of the OpenMP target
directives to allow the user to specify which regions to offload to the
FPGA, or how to map data from the host to the FPGA.

In contrast, the approach presented in this work uses the OpenMP
target directive to allow programming a heterogeneous system, includ-
ing FPGA-based accelerators, with a single, portable input code. The
focus of our work is the offloading itself, i.e. the management of the
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on-device execution and the efficient mapping of data from host- to
device-memory.

Using the memory mapping specified by the user in the appropriate
pragma allows our tool to clearly determine which data must be trans-
ferred to/from the device memory, whereas the previously discussed
approaches must employ a conservative approximation and tend to
transfer more data than strictly necessary.

For the mapping of the code inside the target region to FPGA-
accelerators, we currently rely on Vivado HLS. However, note that we
could also integrate other HLS-approaches (e.g., those already listed
above or other generic HLS systems such as Nymble [9], Bambu [14]
etc.), to efficiently map the code inside the target region, potentially
containing parallel OpenMP constructs, to the FPGA. Thus, our ap-
proach can be seen as complementary to the ones discussed above in
that it can additionally provide the user with clearly defined means to
specify a memory mapping and denote regions that are to be executed
as FPGA-accelerators.

11.2.2 OpenMP Device Offloading

OpenMP device offloading has previously been implemented within
the LLVM infrastructure for a number of device types. [2] presents
results for OpenMP execution in a system featuring a Xeon Phi accel-
erator. In [11], an implementation of OpenMP target offloading for
DSP accelerators is described. The target architecture comprises of
a multi-core, general-purpose ARM CPU and a multi-core DSP. The
volume of data transferred is optimized by allocating a contiguous
block of physical memory that is shared between host and device,
making the transfer to/from the device obsolete.

In [3], Bertolli et al. present an extension of the Clang language
frontend and the LLVM OpenMP runtime, which facilitates the use of
CUDA-enabled Nvidia GPUs for OpenMP offloading. Code regions
intended for offloading are automatically translated to CUDA ptxas
assembly, with OpenMP parallel constructs transformed to parallel
CUDA constructs. The runtime uses the CUDA device driver to map
data to/from the device and to initiate computation on the GPU.

Finally, [1] presents a concerted effort for generic and extensible
support of OpenMP device offloading within the Clang/LLVM com-
piler infrastructure. The implementation is designed to provide easy
access to common functionality, and to be extended for further device
types with limited implementation effort.

During the compilation phase, a separate device-specific translation
is performed. The resulting binaries for all devices and the host are
then combined to a single “fat” binary.

Additionally, the LLVM OpenMP runtime has been extended by
two-layered library support for device offloading, with the design of



11.3 threadpoolcomposer 85

the library described in [17]. The device-agnostic libomptarget provides
common functionality and offers a standardized interface for data
mapping and device execution control. To this end, libomptarget inter-
acts with the device-specific plugins on the second layer of the library,
which each provide support for offloading for a certain kind of device
(e.g. CUDA-enabled GPUs).

Our own work integrates seamlessly with this LLVM offloading in-
frastructure. In Section 11.4 we describe our custom Clang compilation
flow and the implementation of our libomptarget device plugin.

11.3 threadpoolcomposer

The ThreadPoolComposer [10] toolchain has been developed to fast-
track the prototyping of FPGA-based accelerators using HLS tools,
such as Vivado HLS. TPC automates the execution of the HLS tool to
synthesize hardware accelerators from kernel code, and can assemble
multiple instances of these accelerators (processing elements, PEs) in
a complete top-level design, called threadpool, which also provides
standardized connectivity to host and device memory. Regardless of
its internal composition, every threadpool can be controlled by a two-
layered, unified software interface, consisting of the user-facing TPC
API and the internal Platform API. TPC API provides basic functions
to query the device bitstream for available hardware modules, transfer
data to/from the device and launch jobs on the threadpool. Platform
API is only used to implement the TPC API and isolates platform-
specific code (e.g., to control infrastructure hardware). This facilitates
basic portability of TPC applications since the TPC API is identical
for all hardware platforms (write once, run "everywhere"). Using
TPC designs, the software programmer can thus take advantage of
the specific capabilities of the executing platform, without having to
rewrite any code. This makes TPC an ideal low-level foundation for
the implementation of higher-level, heterogeneous, parallel runtimes
and programming frameworks, such as OpenCL, or OpenMP.

In this work, we substantiate this claim by combining TPC and the
OpenMP target offloading infrastructure to implement FPGA-based ac-
celerators directly from OpenMP application code. Our custom Clang
toolflow (described in more detail in the next section) extracts stan-
dalone C/C++ functions from the OpenMP application code (marked
with the target directive), which are then fed into the TPC toolchain
to generate a hardware design. Our LLVM offloading plugin auto-
matically generates the TPC API calls to interface with the hardware,
enabling transparent offloading to the FPGA.
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Figure 11.1: Custom device toolflow for Clang.

11.4 offloading for fpgas

In this section we describe the integration of our work into the
Clang/LLVM OpenMP offloading infrastructure. As stated in Sec-
tion 11.2, our implementation consists of two parts, namely a custom
device toolflow for Clang and a device-specific plugin implementation
for libomptarget, both described in detail in the following sections.

11.4.1 Compilation Flow

As indicated in Section 11.2, the compilation of an input program
containing one or more OpenMP target directives results in multiple
calls to Clang toolflows. In addition to the regular invocation for the
host compilation, a distinct toolchain is invoked for each offloading
target selected in the original call to the Clang driver. In contrast to
the host compilation, the scope of per-device compilation is limited to
the target regions present in the input program, which have each been
extracted to a separate function before.

In order to support FPGA-based OpenMP offloading, we implement
a custom Clang toolflow (see (a) in Fig. 11.1), which is identified by a
custom LLVM target-triple we introduced. The output of our custom
toolflow consists of three parts:

• A TPC-specific device software executable (Fig. 11.1.b), which is
included in the fat binary.

• An input file for Vivado HLS for each target region in the original
program (Fig. 11.1.d).
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• A kernel description (Fig. 11.1.c) for each target region, used to
drive the TPC synthesis flow.

These output files are now described in greater detail.
TPC device software executable The device software executable is
the result of our custom code generation. It directly interacts with
TPC using functions from the TPC API (cf. Section 11.3). Its tasks are
the transfer of parameter values (e.g. pointers to arrays used within
the target region) to the FPGA, and the launch of the accelerator
execution after a job ID has been acquired. The additional level of
indirection introduced by this software executable (compared to di-
rect invocation of TPC from the libomptarget-plugin) is beneficial, as it
allows us to implement a more fine-grained control of the interfacing
between software and hardware. For example, we could implement
coarse-grain parallelism in the software executable, distributing the
computations of an OpenMP worksharing loops across multiple hard-
ware processing elements by acquiring and simultaneously launching
multiple offloaded jobs in the software executable.
Vivado HLS input file The Vivado HLS input files resulting from our
custom device compilation toolchain each contain the code for a single
target region of the original program, extracted to a function. Our
toolchain also preserves pragmas unknown to Clang in this regions,
allowing Vivado HLS specific pragmas annotated by the user to be still
present in the Vivado HLS input file. These pragmas, indicating e.g.,
pipelining or unrolling of a loop, could also be added automatically
in the future.
Kernel description The TPC-specific kernel description identifies the
Vivado HLS input file and the target function for each target region,
and also lists the type (value or reference) for each parameter of the
target function.

From here on, TPC automates the entire design flow: Using the ker-
nel description and the target region code source file, TPC synthesizes
a hardware module for each target region in the input program via
Vivado HLS. TPC then automatically assembles a complete top-level
design with host connectivity and memory access. The top-level can
contain multiple hardware instances of an individual kernel (so-called
processing elements), and also mix hardware instances of different ker-
nels (from distinct target regions), avoiding the need to dynamically
reconfigure the FPGA at runtime. Finally, the hardware design is syn-
thesized using the Vivado Design Suite. The resulting bitstream can
be directly loaded and accessed with the TPC APIs (see Fig. 11.1.f).

In summary, our custom compilation flow allows users to go from
a single input code, with OpenMP target directives annotated in the
program code, to a complete FPGA-design including memory- and
host-connectivity, without the need for the user to provide additional
low-level specifications to the flow.
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Figure 11.2: Runtime flow for TPC FPGA offloading.

11.4.2 Runtime flow

The OpenMP offloading model is a host-centric approach, i.e., the
execution starts on the host CPU. If a target region is encountered,
device execution is initiated by calling libomptarget using calls from
the LLVM OpenMP runtime library interface. Should this be the
first offload to a device, the device is initialized now. Before the
execution on the device can start, data needs to be made available on
the device. The OpenMP standard allows data to be shared between
host and device, as well as for separate data spaces. In our current
implementation, FPGA and host CPU do not share memory, therefore
we need to allocate and transfer mapped data to the FPGA memory
by invoking the TPC device plugin. During this process, libomptarget is
responsible for keeping track of the mapping between host and device
pointers for each variable mapped to the device, and the TPC-specific
device plugin uses data transfer functions from the TPC API to initiate
data transfers with the DMA engine in the FPGA bitstream.

In the next step, the TPC device-specific software executable is
loaded and launched using libelf and libffi, a process similar to the
one used for offloading to ELF-compatible devices in general. The
loaded software executable in turn starts hardware execution (cf. Sec-
tion 11.4.1). After hardware execution completes, data is copied back
to the host memory, again using TPC API calls and the DMA engine
on the FPGA. The entire runtime execution flow is shown in Fig. 11.2.

11.5 evaluation

For this initial proof-of-concept system, we use the Xilinx VC709 board
as accelerator. Here, an XC7VX690T FPGA, attached to 4 GiB on-board
memory, is connected to the host via PCIe Gen3 x8. This platform
uses the lightweight ffLink PCIe Gen3 interface which achieves close-
to-optimal data transfer speeds [5]. The host uses a four core Intel
Core-i7-6700K at 4.0 GHz with 16 GiB of DDR4 RAM running a Fedora
22 Linux with kernel 4.0.8.

We evaluate our approach using vector- and matrix-routines from
the Adept benchmark suite [12]. For each workload we create two
different hardware kernels: The first without any optimisations, the
second with loop pipelining for the innermost loop by manually
inserting the loop pipelining pragma available in Vivado HLS. All
kernels run at a frequency of 250 MHz and the pipelined kernels
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Figure 11.3: Normalized runtime.

were scheduled with an initiation interval of 1. For all benchmarks, we
were able to offload the workload loop to the FPGA by just adding a
simple OpenMP target pragma, demonstrating both the functionality
and convenience of our implementation.

We compare our implementation to the x86-offloading implementa-
tion present in LLVM. The x86-executables were compiled with -O3 and
use 4 cores for the OpenMP parallelised workload in each benchmark.
Runtimes (normalized to the x86 offloading execution) are shown in
Fig. 11.3. For the current prototype, the offloaded FPGA execution
is slower (geomean ∼6.9x and ∼3.4x), with pipelining significantly
speeding up the hardware execution (geomean ∼2x improvement over
non-optimised kernel). However, bear in mind that the x86 offloading
execution uses 4 core CPU at 4.0 GHz, whereas our current proof-of-
concept implementation is still limited to a single processing element
at 250 MHz.

Despite being slower than the CPUs, the prototype is actually useful
to evaluate the overhead of our offloading approach compared to the
x86 offloading implementation. We measure the runtime for different
data sizes, ranging from 0.5. . . 50 MiB of the input vector in the vector
scaling benchmark. The bold black line in Fig. 11.4 depicts the unit
diagonal between input data size and runtime (note the logscale!).
While the overhead of offloading dominates for all three targets in the
case of 0.5 MiB, all targets exhibit a gradient <1 for larger data sizes.
Considering the fact that the overhead of our offloading implemen-
tation includes hardware initialization, data transfers via PCIe, and
interrupt latencies, we conclude that our offloading approach via TPC
is competitive.
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Figure 11.4: Normalized runtime vs. data size in the vector scaling benchmark.

11.6 conclusion and future work

In this work, we have presented the first fully functional implementa-
tion of the OpenMP device offloading model for FPGAs. Our imple-
mentation seamlessly integrates with the existing LLVM offloading
infrastructure, and enables users to move computational workloads
to a custom FPGA accelerator by simply adding OpenMP target di-
rectives to their code. Using our tool flow, which combines custom
Clang extensions and TPC’s automation of the hardware synthesis
process, the user can generate a complete FPGA-design, including
memory- and host-connectivity, from a single, portable input code.
Furthermore, the OpenMP memory mapping clauses allow the user
to precisely specify which data to transfer to/from the device memory.
Our evaluation then showed that our approach does not introduce
excessive overhead to the offloading process.

In our current implementation, a single PE occupies less than 1% of
the FPGA’s resources (not including PCIe, memory and host connec-
tivity infrastructure). Therefore, in order to improve the performance
of FPGA offloading, we intend to make use of coarse-grain parallelism
in future work by automatically distributing the computation of paral-
lel OpenMP workloads, such as target team distribute, across multiple
identical PEs.

Beyond that, we intend to extend our implementation to additional
platforms supported by TPC, e.g., the Xilinx Zynq-series reconfigurable
SoC systems.
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abstract

Similarly to CPUs and GPUs, FPGA-based accelerators can also profit
from exploiting thread-level parallelism. Thus, the synthesis tools for
generating the circuits from high-level languages need to be extended
appropriately.

We present an extension of the Nymble hardware/software-co-
compiler for the automatic synthesis of hardware accelerators from
OpenMP worksharing loops, and describe modifications to the datapath-
and memory-architecture for multi-threaded execution.

The new execution model employs both spatial as well as thread-
level parallelism in the microarchitecture of the generated accelerator,
with the aim to efficiently hide memory access latencies.

We are able to gain raw speedups of more than a factor of 3x, and
improve the utilization of the computing unit by more than factor 8x,
when executing four threads instead of a single one on the computing
units.
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12.1 introduction

Recently, FPGAs are increasingly employed in large datacenters as
an alternative to GPUs as dedicated hardware accelerators. An ex-
ample for the use of FPGAs in high-performance computing (HPC)
scenarios is Microsoft’s Bing and Azure Cloud [3], where all com-
pute nodes are equipped with FPGAs for compute and high-speed
network-processing tasks. FPGA-based acceleration has also been used
successfully for high-speed network security monitoring [13].

High-level synthesis (HLS) of accelerator designs from high-level
language input programs is a powerful method to automatically im-
plement FPGA-based hardware accelerators. As of today, HLS-tools
mainly gain their speedup over a sequential execution on a CPU by
exploiting the instruction-level parallelism (ILP) present in the in-
put programs. However, the instruction-level parallelism contained in
applications is typically limited, e.g., by data-dependencies between
operations or by control-flow.

For the successful employment of HLS-generated FPGA-designs
in HPC-scenarios, the limited amount of speedup resulting from
the exploitation of instruction-level parallelism is not sufficient. This
is especially true in light of today’s FPGA sizes, which provide an
increasing amount of resources to the user.

To make full use of the available resources and in order to make
HLS-based FPGA-designs more suitable for use in high-performance
computing, HLS-tools recently started to make use of thread-level
parallelism (TLP). Yet, the automatic parallelization and extraction of
thread-level parallelism from input programs is difficult at best and
impossible for a large range of problems.

User-annotations guiding the compiler in the parallelization and
extraction of TLP from the input program are a possible and powerful
alternative. A popular standard for such user-annotations is OpenMP
[15]. The use of OpenMP directives for HLS allows to use existing
programs as input, without the need for the insertion of special hard-
ware annotation by the user. Furthermore, OpenMP’s shared memory
computation model is perfectly suited for FPGA-based hardware ac-
celerators, because their architecture often combines the FPGA with
an external memory, to which all threads running on the FPGA have
access.

From the microarchitecture perspective, TLP can be exploited by
carrying out each thread’s computations on a dedicated hardware
computing unit. However, this solution leaves plenty of room for im-
provement: Due to the latency caused by accesses to main memory, the
computing unit will be idle a significant portion of the execution time,
leaving the underlying hardware resources unused. By interleaving the
execution of multiple threads on the computing units, these latencies
can efficiently be bridged with other computations, improving the
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hardware resource utilization. Therefore it is the aim of this work to
extend the existing Nymble hardware/software-co-compiler to syn-
thesize hardware accelerators comprising computing units, which are
able to interleave the execution of multiple threads in a time-sliced
manner on the same FPGA area.

The rest of this work is structured as follows. Section 12.2 gives
an overview of the existing approaches for OpenMP-based HLS. In
Section 12.3 we describe the Nymble hardware-software-co-compiler,
on which this work is based. Section 12.4 presents our novel hardware
execution model and explains all necessary modifications to the hard-
ware datapath- and memory-architecture. In Section 12.5 we evaluate
our approach, Section 12.6 concludes and gives an outlook to future
work.

12.2 related work

There have been a number of approaches to integrate OpenMP into
High-Level Synthesis, ranging from mere source-to-source transforma-
tions to complex hardware execution models featuring direct access to
memory from the accelerator. Similar to our approach, some of these
approaches are based on OpenMP worksharing loops, indicated by
#pragma omp parallel for in the input program.

Leow et al. [12] as well as Dziurzanski et al. [7] pursue a pure
hardware approach and need to emulate shared memory by registers
(Leow) and global signals (Dziurzanski), respectively, because their
hardware implementation does not include a memory system with
access to shared memory.

In their work, Cilardo et al. [5, 6] use an OpenMP-annotated input
program as starting point for the synthesis of specialized hardware
accelerators in a System-on-chip, combined with general-purpose
processors. All elements of the resulting MPSoC have full access to
the memory via the communication network of the SoC.

The integration of OpenMP support into the LegUp high-level
synthesis system [2] by Choi et al. [4] features multiple levels of
parallelism in hardware. The resulting system is composed of a MIPS
processor and multiple hardware accelerators, which have direct access
to memory via the interconnect.

All of the approaches presented above exploit thread-level paral-
lelism with the concurrent execution on multiple hardware units. The
set of iterations is partitioned onto multiple identical hardware kernels,
which each conduct the computations of a single thread. However, in
none of the these approaches multiple threads are executed on the
same hardware datapath in an interleaved or concurrent fashion. Each
distinct datapath is only running a single thread at a time and this
1:1-relationship between computing units and threads is maintained
throughout the execution time. Only Choi et al. are able to pipeline
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execution of multiple threads in a limited number of cases. Our ap-
proach, in contrast, is intended to exploit thread-level parallelism in
multiple ways, by distributing the computation across multiple com-
puting units and, at the same time, running multiple threads on each
computing unit in an interleaved manner.

Concurrent execution of multiple threads has been used in existing
approaches [8, 10, 16]. In contrast to our work, these approaches do not
use OpenMP as a starting point for high-level synthesis. The thread-
level parallelism originates from threads explicitly managed by the
user or from multiple instances of the same program running in dis-
tinct processes and requires significant effort from the user. Contrary
to these approaches, our work allows users to incrementally modify
the program by inserting OpenMP-pragmas, which manage thread-
level parallelism. Moreover, our support for OpenMP provides the
user with a clearly defined shared memory model and synchronization
mechanisms.

Both approaches also integrate thread pipelining, which we do not
use in our current implementation.

12.3 nymble hw/sw-co-compiler

Our work is an extension of the Nymble hardware/software-co-
compiler [9], which aims for the automatic synthesis of a large subset
of C (including, e.g., pointer operations and irregular control flow in
loops) for so-called Adaptive Computer Systems (ACS), comprising an
FPGA as reconfigurable computing unit (RCU) and a general-purpose
processor.

Nymble allows the extraction of arbitrary sections of code, usually
delimited by pragmas for synthesis, to a dedicated hardware accelerator.
Furthermore, it also automatically provides all means necessary to
interface between the software running on the GPP and the hardware
accelerator.

For the high-level synthesis of the extracted hardware part in the
Nymble compiler, the pragma-denoted section of the input program
is represented as a hierarchical tree of so-called control-memory-data-
flow-graphs (CMDFG), with one CMDFG per loop in the hardware
code region. A CMDFG does not only model a program’s data flow
between operations, but also incorporates the control flow of the input
code. To this end, the control flow in the CMDFG is represented by
conditional data flow and predicates, which are added to operations
with side-effects (e.g., memory accesses). The tree of graphs contains
one CMDFG per natural loop in the input program and reflects the
nesting hierarchy of the loops in the program. During the execution
of an inner loop, the graph of the surrounding loop does not continue
its execution.
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The work presented in [8, 10], called Nymble-SMT, is also based
on the Nymble compilation framework. This approach uses loop-
pipelining with a dynamically varying initiation interval. To ensure
the minimal latency required to maintain loop-carried dependencies
between iterations from the same threads, this implementation uses
complex backpressure logic with tokens. In addition, dynamic operator
multiplexing is required to resolve concurrent use of shared operators
from different iterations of the same thread. As a consequence, the
relative costs for the implementation of the Nymble-SMT multithread-
ing model can be very high, especially for integer benchmarks which
use only relatively simple operators. In this work we extend Nymble
with an alternative multithreaded execution model (Section 12.4.1)
and the corresponding controller implementation. To support thread-
switching in the computing units, we augment Nymble’s CMDFG-
model with thread-context stores and implement an algorithm that
inserts context stores only where necessary (Section 12.4.2). More de-
tails on the basic mapping from CMDFG to hardware datapath and
the hardware/software-interface can be found in [9].

In contrast to Nymble-SMT, our model does not use loop pipelining
to reduce the cost and complexity of the controller implementation. In
order to support loop pipelining with a static II in our multithreaded
model, we would need to add logic to synchronize stalls across all
CDFGs of the graph-hierarchy. Besides that, the size of a thread’s
context, i.e. the elements that need to be stored and restored upon
stall and reactivation, increases when applying loop pipelining.

Being based on OpenMP, our implementation incurs less overhead
in the hardware/software-interface, as a single data-transfer and in-
vocation is sufficient, compared to Nymble-SMT where each thread
has to go through the HW/SW-interface. Contrary to Nymble-SMT,
our approach supports the duplication of datapaths, which allows
for the concurrent execution of multiple threads on distinct resources.
Our approach employs a fair round-robin hardware thread scheduler,
whereas Nymble-SMT uses a static prioritization scheme which can
lead to the starvation of threads. Furthermore, we implemented a
new cache- and memory-infrastructure which allows for shared mem-
ory between threads and higher operation frequencies of the kernels
compared to Nymble-SMT.

12.4 nymble-omp

The aim of this work is to extend the existing implementation of
Nymble to support the synthesis of multithreaded FPGA-accelerators
based on OpenMP input programs. We therefore need to add sup-
port for processing of loop-nests marked as OpenMP worksharing
loops by the pragma omp parallel for to Nymble. To this end, we imple-
ment the detection and extraction of OpenMP worksharing loops in
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float a;
float x [SIZE];
float y [SIZE];

#pragma omp parallel for schedule(static)\
shared(a, x, y) private(i)\
num_threads(NUM_THREADS)
for(i=0; i<SIZE; i++){
   y[i] = a * x[i] + y[i];
}

Figure 12.1: Example of an OpenMP worksharing loop.

Nymble’s frontend. Nymble-OMP will then construct a hierarchical
tree of CMDFGs for all loops in the annotated loop-nest.

The execution on the hardware datapaths synthesized from the
resulting set of CMDFGs follows a novel execution model. The new ex-
ecution model facilitates the interleaved execution of multiple threads
on each hardware datapath, and the distribution of the input problem
among multiple identical computing units running concurrently.

The following sections describe our novel execution model and
necessary modifications to Nymble’s datapath architecture in detail.

12.4.1 Execution Model

The basic idea of OpenMP worksharing loops, such as the one shown
in the code snippet in Fig. 12.1, is to distribute the work specified by
the loop body across a team of threads. From the set of iterations of
the annotated loop, each thread is assigned a subset, whose size is
dependent on the chosen distribution scheme.

On a typical multi-core CPU, the threads in the team will be dis-
tributed across the cores present in the CPU, where the execution of
multiple threads will be interleaved in a time-sliced manner in case
the number of threads specified by the user exceeds the number of
cores.

In contrast, the existing OpenMP-based approaches presented in
Section 12.2 synthesize a dedicated hardware computing unit per
thread and carry out each thread’s computation on distinct hardware
resources without interleaving. The advantage of this model is that a
thread can always be executed if it is ready to do so.

However, not all operations’ latencies can be determined statically
during the HLS-scheduling process, which is especially true for cached
memory accesses that can cause a significant delay in case of a cache-
miss. We refer to this kind of operation as variable-latency operations
(VLO).

If at runtime a variable-latency operation does not finish within
its assumed latency, this results in a stall of the hardware, i.e., the
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Figure 12.2: Thread state diagram.

computation on the hardware computing unit is stopped until the
VLO completes.

As a consequence, the employed hardware resources are not utilized
to their full extent as they remain idle for a significant fraction of
the execution time, e.g., if a data item must be retrieved from main
memory. With a more efficient utilization of the hardware resources
one could either achieve the same runtime performance with fewer
hardware resources or improve the performance of the system with
the same number of hardware resources.

Thus, the central goal of our execution model is to hide statically
unpredictable latencies, such as latencies caused by cached memory
accesses, with the execution of another thread on the same hardware
computing unit.

In case the executing thread hits a stall, i.e., if the execution of
a datapath operation takes longer than statically assumed for HLS-
scheduling, we perform a thread-switch, replacing the currently active
thread by some other available, execution-ready thread.

In order to be able to perform a thread-switch, we need to remove
the 1:1-relationship between threads and computing units, as used by
existing approaches. Instead of mapping each thread in the execution
context to a dedicated computing unit, we assign a set of threads to
each computing unit. The execution of all threads assigned to each
computing unit is then interleaved in a time-sliced manner. In doing
so, a thread-switch is only performed in case the currently executing
thread encounters a stall.

At runtime, a thread can be in one of four different states, shown
in Fig. 12.2, in our execution model. The single thread in state Active
executes until it hits a stall, causing the state transition to state Stalled.
As a consequence, one of the available threads is chosen as next thread
to be executed and activated. We currently use a round-robin scheme
to select the next thread from the set of threads in state Available for
execution, but many other selection schemes, such as techniques used
for hardware-only schedulers in GPUs [11], are conceivable and could
be implemented in our controller architecture.
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At the same time, the execution of the variable-latency operation
continues in the background, until it is completed and the previously
stalled thread becomes available again.

The cycle of execution, stall, and reactivation continues for each
thread until the thread eventually completes all iterations it was as-
signed at the beginning of the hardware execution and changes to
state Finished.

12.4.2 Datapath architecture and composition

Our multithreaded execution model requires the hardware datapaths
in the computing unit to be able to store the thread contexts of all
non-active threads, i.e. all threads stalled or available for execution,
which have been assigned to that computing unit.

On a CPU, a thread context is typically defined by the values held
in registers, which are stored and restored in case of a thread context
switch. In Nymble’s CMDFG model (cf. Section 12.3), all data- and
control-flow values are represented by data flow edges in the associ-
ated CMDFGs, so a thread’s context is defined by the values that flow
between the operators comprised in the hardware computing unit.

In order to carry values across clock cycle boundaries and to store
thread context in the datapath, we insert two different types of inter-
mediate storage elements into the hardware datapaths:

• Single element storage (SES) only holds a single data item, but
require significantly fewer hardware resources (registers in par-
ticular) for their hardware realization.

• Thread context storage (TCS) is able to store a single data item
per thread and can be indexed by a thread’s unique ID to retrieve
the value for a particular thread.

We use registers for the implementation of both kinds of storage
elements, because TCS typically store 4-8 elements (max. 256 bit) and
an implementation in distributed or block RAM would be a waste of
memory resources.

Our datapaths are statically scheduled, i.e. each operation is as-
signed a time-step, called stage in the Nymble context. It would be
a waste of resources to insert thread context storages in more loca-
tions than absolutely necessary. In general the insertion of a thread
context storage to hold a value is required only if a thread switch can
occur between the time the value is produced by an operation, and
the time it is consumed by its latest (in the schedule) user. Expressed
as a rule, an operation OP that produces a data value must be pro-
vided with a thread context storage if any of the stages in the interval
[Start(OP), Last Use(OP)[ contains a variable-latency operation.

The CMDFG-excerpt in Fig. 12.3 depicts some typical scenarios
showcasing examples for applications of the rules described above.
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Stage 6

Stage 5

Stage 4

Stage 3

Stage 2

Stage 1

TCS

VLO

SES

OP4

SES

OP3

TCS

M
CO

TCS

VLO
TCS

OP2

TCS

OP1

Figure 12.3: Example for the two different kinds of data storage in the datap-
ath
(SES = single element storage, TCS = thread context storage,
VLO = variable-latency operation, MCO = multi-cycle opera-
tion).

VLOs are generally provided with a thread context storage in the fol-
lowing stage. The multi-cycle operation (MCO, multiple clock cycles
fixed latency) must be provided with a thread context storage as it
spans across Stage 3, in which a thread switch can happen due to the
VLO in Stage 2. Operation 1 (OP1) has been provided with a thread
context storage because its last use (OP3), which is decisive for the
rule, is again in Stage 3, where a thread switch can happen. In contrast
to VLOs, thread-context storage linked to simple operations must be
added to the same stage, as simple operators cannot hold the value.
Operation 2 is also provided with a thread context storage due to
the fact that the stage it has been scheduled in contains a VLO. For
Operation 3, a simple single element storage is sufficient, as no thread
switching can happen between its start in Stage 3 and its last use
in Stage 4. The same holds true for Operation 4, because a potential
thread switch caused by the variable-latency operation in Stage 5 will
not occur in Stage 5, but in Stage 6.
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Figure 12.4: Cache- and memory-architecture, n is the total number of threads
across all computing units.

With the thread-context storage included in the datapaths, the con-
text of all currently non-active threads can be stored within the datap-
ath, and restored when a thread’s execution is resumed.

However, the interleaved execution of multiple threads on a com-
puting unit is not the only way we can make use of the thread-level
parallelism in OpenMP worksharing loops. Just as common in today’s
multicore CPUs, and similar to the previous approaches presented
in Section 12.2, we further exploit thread-level parallelism by includ-
ing multiple identical computing units in the hardware accelerator
and distributing the computations of the worksharing loop across
these computing units. The computing units work in isolation from
each other. Thread context is not shared and threads do not migrate
between units.

12.4.3 Memory architecture

In order to make use of potential spatial and/or temporal locality
exhibited by memory accesses, we insert a cache-infrastructure in
front of the interface providing access to the external RAM on the
device. We use a direct-mapped cache with a write-through strategy
for writes to memory. Each cache uses 512 cache-lines with 16 32-bit
words in each cache-line. A dedicated AXI4 master interface is used
in the kernel interface for memory accesses. The cache IP we use in
our implementation provides a single AXI4 slave interface, but does
not yet support reordering of accesses, i.e., a cache miss will delay all
subsequent accesses, even if they want to access data present in the
cache.
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If such a cache would be shared by multiple threads, accesses from
different threads can delay each other, with a potentially negative
impact on performance. In order to achieve maximum performance,
we instantiate a dedicated cache per thread, allowing each thread to
access memory independently.

This model, depicted in Fig. 12.4, is compliant to the OpenMP
shared memory model, which allows for threads to have their own
view of memory between synchronization points [15]. In addition to
the shared memory, the OpenMP standard allows for each thread to
have thread-private memory, e.g., for individual loop counters. However,
in our CMDFG-model such thread-local values are only present as
intermediate values in the CMDFGs and are thread-private by design.
Therefore we do not need to make any arrangements for explicit
thread-private memory in our memory architecture.

12.5 evaluation

In this section we evaluate how our new execution model affects
performance and the effects of the necessary changes to the datapath-
and memory-architecture. We compare our new execution model to
single-threaded execution and consider speedups as well as the costs
of the hardware implementation of our execution model.

Similar to related work [4, 16], we use benchmarks with integer arith-
metic. Our testcases are taken from the Adept benchmark suite [14].
Additionally we added an implementation of the sparse matrix-vector
multiplication using the compressed row storage format. Furthermore,
we also use floating-point implementations of each testcase for our
evaluation. Compared to the integer versions, these testcases exhibit
a different memory access behavior, i.e., memory accesses happen
less frequently as the computation for each element takes longer. By
including floating-point versions in our evaluation, we can study the
effects of the memory access behavior in more detail. For our evalu-
ation, vector-based benchmarks are set up to process 2000 element,
matrix-based benchmarks work on matrices of 50×50 elements.

We compare our new multi-threaded execution model to an execu-
tion model where only a single thread is running on each computing
unit. To this end, we examine four different configurations: A single-
threaded configuration with two threads running on two computing
units and three multi-threaded configurations with two computing
units running two, three and four threads each (four, six, and eight
threads total).

First, we evaluate the costs regarding hardware resources for the
implementation of our execution model. This includes the necessary
modifications to the datapath architecture (cf. Section 12.4.2) and the
implementation of the controller and thread scheduler.
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Figure 12.5: Speedup compared to single threaded execution.

We use Vivado 2016.4 for the FPGA implementation, targeting a
Virtex 7 (XC7VX690T) device on a VC709 board. The memory and
host-connectivity-infrastructure is configured to run at 200 MHz, inde-
pendent from the actual operation frequency of the hardware kernel.

The results for all four configurations are given in Table 12.1. The
number of DSP blocks used is unaffected by the choice of the execution
model. As expected the number of occupied BRAM-slices increases
with an increasing number of threads, as we need to spend more
resources on the extra caches in the design used for the additional
threads (cf. Section 12.4.3). The logic resources required for the imple-
mentation of the additional caches, our thread-switching logic and the
thread-context storage also cause an increase in resource usage.

However, the biggest effect of our execution model with regard to
the synthesis results is the limitation of the operation frequencies of the
hardware kernels. The complexity of the combinatorial computations
and indexing of thread-context storage causes the thread-switching
logic to become critical for the achievable frequency and causes the fre-
quency to decrease with an increasing number of threads interleaved
on the computing unit. This effect has also been observed by Choi et
al. in their work [4].

Despite the negative impact of the lower operation frequencies on
performance, we are still able to gain a significant speedup over the
single-threaded execution. The bar-plot in Fig. 12.5 shows the relative
speedup over execution with a single thread per computing unit for
each of our three multithreaded configurations. The execution times
were obtained by executing the resulting FPGA accelerator designs
on the VC709-board. The accelerated program is running on the host
computer and data is transferred to the external RAM on the FPGA
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Figure 12.6: Percentage of idle cycles encountered during execution.

board using PCI Express. We use performance counters inside the
kernels and combine them with the clock period achieved during
FPGA implementation to calculate the runtime. The data transfer time
from host to FPGA and back are not included in the runtime, as they
are independent of the execution model used.

We are able to achieve a significant speedup in all testcases, in some
cases of more than a factor of 3x by interleaving the computation of
multiple threads. The geo.-mean speedups are 1.51x, 1.93x and 2.07x,
respectively.

The impact of our execution model is also visible in Fig. 12.6, which
relates the number of idle cycles to the number of overall cycles.
While the single-threaded computing unit lies idle for more than
half of the execution time in almost all cases, our execution model
improves the utilization of the computing units significantly. With
an increasing number of threads assigned to each computing unit,
stalls can be hidden more effectively with computations from other
threads, resulting in a reduction of the idle-cycles by more than factor
8x (testcase Dense MV Float).

While there is a significant increase in speedup when going from
two threads per CU to three threads per CU for most of the cases,
this trend cannot always be sustained when increasing the number of
threads per CU to four. In those cases the interleaving of three threads
on each CU already leads to a high utilization (cf. Fig. 12.6), leaving
less headroom for an extra thread. In combination with the reduced
clock frequency, the addition of another thread is not always beneficial,
as can be seen in testcase Vector Scaling Float.

As described earlier, the performance is also affected by the fre-
quency of memory accesses. As visible in Fig. 12.5, we generally
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achieve a higher speedup for integer benchmarks, where memory ac-
cess happen more frequently, and the time spent during stalls caused
by memory accesses makes up for a greater portion of the execution
time. Especially in these cases the strength of our execution model,
the effective hiding of memory access latencies, comes into play.

In summary, the synthesis of hardware accelerators from OpenMP
programs clearly benefits from the interleaving of threads on the
computing units in our execution model. The number of idle cycles
decreases significantly (up to factor 8x) and speedups of more than
a factor of 3x can be achieved. The implementation of our execution
model requires some additional resources, especially for the extra
caches. The optimal number of threads is dependent on the input
program and the memory access behavior exhibited by the program.

12.6 conclusion and outlook

In this work, we presented an extension of the Nymble hardware/
software-co-compiler to automatically generate multithreaded hard-
ware accelerators from OpenMP worksharing loops. The novel exe-
cution model presented here as well as the modifications made to
datapath- and memory-architecture allow to interleave the execution
of multiple threads on one or more hardware computing units in a
time-sliced manner.

We investigated the impact of our new execution model on hardware
resource consumption and performance and compared our model to
single-threaded execution. Our results show that the HLS of FPGA-
based accelerators clearly benefits from our execution model. The
interleaving of multiple threads on a computing unit allows to effi-
ciently hide latencies caused by memory accesses. We were able to
gain raw speedups of more than a factor of 3x with four-way multi-
threaded execution and improve the utilization of the computing units
by more than a factor of 8x.

Our evaluation also showed that the optimal number of threads per
computing unit is dependent on the input program and its memory
access behavior. In the future, we want to automatically determine
the best number of threads using compiler analyses. Besides that,
we plan to add support for the OpenMP offloading constructs [1] to
our compiler, allowing the user to clearly denote regions of code that
should be extracted to a hardware accelerator and which and how data
is mapped to the device memory. We also want to further investigate
the impact of the memory- and cache-architecture on performance
and how this infrastructure can be adapted to the input problem.
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abstract

Next to GPUs, FPGAs are an attractive target for OpenMP device
offloading, as they allow to implement highly efficient, applications-
specific accelerators. However, prior approaches to support OpenMP
device offloading for FPGAs have been limited by the interfaces pro-
vided by the FPGA vendors’ HLS tool interfaces or their integration
with the OpenMP runtime, e.g., for data mapping.

This work presents an approach to OpenMP device offloading for
FPGAs based on the LLVM compiler infrastructure and the Nymble
HLS compiler. The automatic compilation flow uses LLVM IR for
HLS-specific optimizations and transformation and for the interaction
with the Nymble HLS compiler. Parallel OpenMP constructs are auto-
matically mapped to hardware threads executing simultaneously in
the generated FPGA accelerator and the accelerator is integrated into
libomptarget to support data-mapping.

In a case study, we demonstrate the use of the compilation flow and
evaluate its performance.
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13.1 introduction

As the end of transistor scaling [30] draws near, researchers are ac-
tively pursuing and evaluating alternative emerging architectures and
computing paradigms, with which they hope to continue performance
scaling we have grown used to rely on. Among the more salient of
these emerging architectures are reconfigurable systems, whose silicon
plasticity/reconfigurability provides a partial remedy for the end of
Moore’s law [22]– we do not need more transistors, we just need to
repurpose the existing transistor to better fit the requirements of our
applications.

Today, Field-Programmable Gate Arrays (FPGAs) are among the
more popular and mature reconfigurable systems available. While
early FPGAs had limited computing capabilities, and were primar-
ily used for circuit simulation and digital signal processing, mod-
ern FPGAs – on the other hand – feature tens of TeraFLOP/s of
raw single-precision performance, and are capable of rivaling both
general-purpose and graphics processing units (GPUs) in power ef-
ficiency and/or raw execution performance. Furthermore, with the
increased maturity of High-Level Synthesis [12] tools, using FPGAs
is no longer monopolized by hardware architectures, and instead,
anyone with knowledge of C/C++/Java programming can map appli-
cations onto these exciting new architectures. Today, several research
groups have already mapped important High-Performance Comput-
ing (HPC) applications onto FPGAs, with benefits illustrated over
existing approaches [16, 26, 33–35]. These efforts have led to several
research laboratories setting up large FPGA-based testbeds to investi-
gate the role of these reconfigurable devices in a post Exa-scale era,
such as the Noctua cluster at Paderborn University or the Cygnus
cluster at University of Tsukuba.

In this paper, we present the Nymble OpenMP HLS infrastructure,
which is a self-contained compilation tool-kit for running (a subset of)
OpenMP constructs on FPGAs, and also visualize them using the Par-
aver [23] visualization tool. Unlike existing OpenMP HLS approaches,
which use source-to-source compilation and rely on commercial black
box compilers for hardware generation, Nymble is transparent and
fully transforms OpenMP code down to Register Transfer Level (RTL)
Verilog code without external dependencies. This, in turn, enables
users to get a better insight into what hardware is actually generated,
while at the same time providing an open platform for FPGA-based
OpenMP research.

Our contributions in this paper are:

• A description over the Nymble infrastructure, including details
on the front-end compilation and the hardware generation &
architecture, including which OpenMP constructs Nymble sup-
ports and how they are implemented,
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• A use-case showing how Nymble transforms well-known OpenMP
code into hardware, including empirical performance evaluation,
and

• A discussion on the future of OpenMP for FPGAs, including
challenges and directions

13.2 motivation

Today, FPGAs are being considered to complement (and compete
with) the general-purpose processor and GPUs that currently reside in
modern HPC infrastructure. Several research laboratories are already
setting up large FPGA-based testbeds to investigate the role of these
reconfigurable devices in a post-Exa-scale era, such as for example the
Noctua cluster at Paderborn University or the Cygnus cluster at the
University of Tsukuba.

Meanwhile, using these accelerators in a user-friendly way (that
is, without resorting to writing RTL code), is often limited to using
vendor-specific toolchains, such as for example Intel’s OpenCL SDK
for FPGA [8] or Xilinx SDSoC/SDAccel [32]. While these toolchains
are often high-performing, they are also very tied to a specific ex-
ecution model. Furthermore, adding or researching into alternative
programming models using these vendor solutions (such as for exam-
ple OpenMP) is challenging, because tools are closed source, and even
if some aspects can be changed (such as the Board Support Package,
BSP), these changes become non-trivial.

There are methods to extend functionality, such as using source-to-
source methods to transcompile OpenMP [10], but these methods have
no way of even remotely controlling or dictating how the underlying
hardware is generated. Finally, vendor tools and road-maps are not
always necessarily aligned with what we as users or researchers need,
meaning that it is imperative to look at alternative approaches, in
particular for guiding and doing research on OpenMP execution on
future FPGAs. The Nymble OpenMP infrastructure aspires to be one
such alternative for OpenMP researchers and users.

13.3 the nymble openmp infrastructure

The goal of this work is to develop a compilation flow that maps
OpenMP target regions to FPGA-based accelerators without requiring
manual intervention by the user. The compilation flow is based on
the LLVM compiler infrastructure [18] and its implementation of
OpenMP. In contrast to many prior approaches that use source-to-
source transformations on AST-level to extract target regions for HLS
(see Section 13.6 for detailed discussion), the compilation flow in this
work uses LLVM IR to interact with the HLS tool. This approach
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Figure 13.1: Overview of the compilation flow.

facilitates code transformations that can be used to transform and
optimize target regions, described in more detail in Section 13.3.1.

As the commercially available HLS-tools only provide source-level
interfaces and no official interface on IR-level, the state-of-the-art aca-
demic HLS compiler Nymble [15] is used for the actual High-Level
Synthesis of the target regions. Besides providing an IR-level inter-
face, Nymblle also supports true multi-threading in the generated
accelerators [14], described in more detail in Section 13.3.2.

13.3.1 Compilation Flow

Fig. 13.1 presents an overview of our compilation flow. For OpenMP
device offloading, LLVM’s Clang frontend uses separate compilation
passes for host- and device code. For this work, the host compilation
remains completely unchanged and therefore supports any host code
and OpenMP host constructs that Clang supports.

The device compilation flow (shown on the right-hand side of
Fig. 13.1) does not only support the basic target directive to denote
target regions and the full range of data-mapping constructs (map-
clause, target data-directive, array-sections, etc.), but also provides
two kinds of parallelism: The teams or parallel construct can be used
inside a target region to express parallelism, Section 13.3.2 explains
how this parallelism is realized in hardware. Note that in our current
prototype, only one of these constructs can be used at a time and
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nested parallelism is not supported. For the teams construct, the
distribute construct is also supported to specify worksharing for a
loop nest.

Similar to many approaches investigated in the survey by Mayer
et al. [21] (see Section 13.6 for detailed discussion), a binary stub for
execution on the host machine is generated as one of the products of
the device compilation flow. In this work, the binary stub is not only
used to initiate the FPGA execution, but also to handle parallelism.
Parallel constructs will spawn multiple software threads in the binary
stub, these threads then interact with one hardware thread each in
the FPGA-accelerator in an 1:1-relationship. This approach allows
to re-use the standard mechanisms from LLVM’s OpenMP runtime
libomp to manage thread spawning and worksharing. Therefore, after
generating LLVM IR in the Clang frontend, the Kernel Extraction splits
the outlined target function into the stub to remain on the host and
the actual target region kernel function for High-Level Synthesis.

The API Call Insertion then inserts calls to a thin wrapper library
around Intel’s Open Programmable Acceleration Engine1 into the stub
function to transfer function arguments and initiate hardware execu-
tion. Note that, in contrast to approaches such as [17], data-management
is not handled via generated API calls, but rather through a plugin
for LLVM’s libomptarget, enabling the whole range of data-mapping
clauses/constructs, including array sections and uni-directional trans-
fers (to/from clause). The stub is then compiled for the host machine
(x86-64 in our case) and included in the binary executable using
the Clang Offload-Bundler [1]. At runtime, the stub is loaded by
libomptarget and initiates the execution on the FPGA accelerator.

The extracted HLS kernel undergoes a number of transformations
and optimizations before actual High-Level Synthesis (HLS-specific Op-
timizations in Fig. 13.1). The transformations are mainly concerned with
transforming OpenMP language constructs into constructs suitable for
High-Level Synthesis. Currently, the prototype supports the OpenMP
API runtime functions omp_get_thread_num, omp_get_num_threads,
omp_get_team_num and omp_get_num_teams, which, in addition to teams

distribute, can be used to assign individual workloads to the differ-
ent threads. Besides that, the synchronization constructs omp critical

and omp barrier are also supported inside target regions and mapped
to efficient implementations using hardware semaphores.

Static allocation of thread-private memory inside the target region
(alloca in LLVM IR) is also supported by the compilation flow and
HLS backend and automatically mapped to low-latency accessible
local memory (SRAM) on the FPGA device. Vector datatypes are also
allowed in the target regions, but arithmetic operations on vectors are
realized as individual operations on each vector element, as vector
operations do not provide significant benefits in FPGA hardware.

1 https://opae.github.io/
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Figure 13.2: Hardware architecture of the reconfigurable accelerator.

Therefore, to allow for more fine-grained scheduling during HLS,
we automatically partition vector-wide thread-private memories into
individual local memories for each element while preserving array
semantics as one of the optimization steps.

The transformed LLVM IR is then passed to the Nymble HLS back-
end, which performs the typical HLS steps of allocation, binding and
scheduling. For this purpose, the LLVM IR is transformed into a con-
trol dataflow graph (CDFG) representation, as described in [15]. More
details on the mapping of different constructs to hardware will be
presented in the next section.

The final product of the Nymble HLS backend is an HDL (Verilog)
description of the accelerator, which is passed to Intel’s Quartus soft-
ware for synthesis and place-and-route, eventually yielding an FPGA
bitstream.

13.3.2 Hardware Architecture

The overall hardware architecture of the generated FPGA accelerator is
depicted in Fig. 13.2. The Avalon slave interface of the compute unit (CU)
that is connected to the host is used as entry point for the hardware
execution. The memory mapped register file can be used to pass kernel
arguments and other information (e.g., thread ID) from the software
thread to the corresponding hardware thread.

For larger data, the accelerator supports two different kinds of
memory:

• Small, on-chip (SRAM) local memories (LMEM) are directly
connected to the compute unit. These memories can be used as
thread-private memory.
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• External memory (DRAM) located on the FPGA-board can be
used to hold large amounts of data and also for data-exchange
with the host RAM using the OpenMP data-mapping constructs
via the libomptarget-plugin. This memory is connected to the
CU via an Avalon bus, with a dedicated Avalon master port per
hardware thread.

As the data-width of the external memory interface is usually higher
than the size of single data-item of primitive type (e.g., float), vec-
tor data-types can be used in the OpenMP input code to improve
the memory access efficiency. Where possible, vector-wide memory
accesses are automatically mapped to Avalon burst accesses.

Another mechanism to further improve the memory access effi-
ciency is the use of the Preloader. By using calls to the custom function
omp_target_preload in the OpenMP input code to transfer data be-
tween global memory and thread-private local memory, the required
data can be transferred efficiently in a single burst transfer. A more
detailed discussion of the Preloader can be found in Section 13.4.1.

The Avalon bus system is also used to integrate the memory-mapped
Hardware Semaphore that is used to realize the omp critical and omp

barrier synchronization constructs.
The execution inside the Datapath is based on the Nymble-MT

execution model presented in prior work by Huthmann et al. [14].
The unique feature of this execution model is the fact that it supports
the simultaneous execution of multiple hardware threads in a single
compute-unit, whereas most other FPGA-based approaches achieve
thread-level parallelism through spatial replication of the compute-
unit (e.g., [6], cf. Section 13.6 for discussion).

To allow for simultaneous execution of multiple hardware threads,
the operations found in the data-flow graph of the kernel are orga-
nized into so-called stages according to their static HLS schedule. The
different stages can operated independently by the controller, allowing
multiple threads to be active in different stages simultaneously. The
stage-based execution model in addition also support loop pipelining.

The threads can operate completely independently of each other
in this model, also allowing threads to start and finish at different
points in time. Hardware threads are launched by their software
counterpart (as stated in the previous section, we use a 1:1-relationship
between software- and hardware threads) through the entry point in
the Avalon slave interface. Parallelism in the OpenMP execution model
(threads/teams) is automatically mapped to these simultaneously
operating threads by the compilation flow presented here.

A major challenge in the stage-based execution model is the inte-
gration of operations for which the latency (in clock cycles) cannot
be determined statically, e.g., accesses to external memory, which we
call variable-latency operations (VLO). These operations are scheduled
assuming their minimum latency. In case a VLO exceeds the assumed
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latency at execution time, the execution of the encountering thread
is suspended until the VLO completes. To make sure that a single
thread encountering a longer-than-expected latency does not block
other threads, stages containing a VLO allow for thread re-ordering,
i.e., threads can overtake each other in these stages.

13.3.3 Performance Visualization

Just as with any other device or target platform, the optimization
of application code is an important step to achieve performance on
FPGAs and is often an iterative process. To assist developers in this
process, the compilation flow developed in this work provides mecha-
nisms to automatically include various performance counters directly
in the generated hardware. While the full details of the hardware im-
plementation are out of scope for this work, the performance counters
were designed to be as non-invasive as possible, i.e., to not have an
impact on the performance of the investigated accelerator design, e.g.
by increasing the initiation interval of pipelined loops.

The performance counters allow to capture important metrics such
as memory bandwidth, arithmetic operations per time-interval (e.g.
GFLOPs) or hardware thread idle times and facilitate the analysis and
optimization of the target regions offloaded to the FPGA. After the
execution on the FPGA completes, the collected performance data is
exported in the Paraver trace format for use with the popular HPC
performance visualization tool Paraver [23]. The integration with a
state-of-the-art HPC visualization tool makes the performance analysis
of the FPGA target regions more accessible for HPC domain experts.

13.4 evaluation

To demonstrate the compilation flow from OpenMP with target offload-
ing to FPGA-based accelerators, we use a well-understood benchmark
as case study. The selected application allows to test the different
features of the compilation flow and architecture template by cover-
ing the supported OpenMP constructs as mentioned in the previous
section, including synchronization.

For the application, a single compute unit is implemented inside the
FPGA, supporting the simultaneous execution of up to four threads.
The implementation of the compilation flow is based on LLVM release
9.0 and Quartus Prime version 18.1.2 is used for synthesizing the
generated Verilog code to an FPGA bitstream.

The targeted FPGA is an Intel FPGA PAC D5005 card. The card is
coupled via PCIe to the host processor, a quad-core Xeon Gold 5122

CPU which executes the host-portion of the applications and is also
used for CPU benchmarking. Note that the performance figures always
include data-transfers between host- and FPGA external memory via



13.4 evaluation 119

PCIe, initiated through libomptarget, i.e., the numbers reported here
are end-to-end performance of the FPGA offloading.

13.4.1 Case Study: GEMM

As an example application, we use the general matrix multiplication
(GEMM). The FPGA accelerator is compiled from a blocked version of
GEMM and the different hardware threads compute distinct submatri-
ces of the overall result matrix. Inside the computation of each thread,
the computation is partially unrolled to exploit the potential of spatial
parallelism provided by FPGAs. To reduce the number of expensive
accesses to global, external memory, local memory is used to buffer
inputs and intermediate results. To further improve the efficiency of
memory access to the input matrices A and B, the threads preload
blocks of the input matrices into the local memory using the preloader
that is part of the compute unit. For users of the compilation flow,
the preloading capability is available through a simple C++ template
function called omp_target_preload (cf. Listing 13.1), which simply
gets passed the relevant pointers to external and local memory and
the number and type of the elements to load.

1 template <typename T , i n t ELEMENTS>
2 void omp_target_preload ( s i z e _ t o f f s e t ,
3 s i z e _ t s t r i d e ,
4 s i z e _ t num_transfers ,
5 void * g lobalSrc ,
6 void * l o c a l D s t ) { . . . }

Listing 13.1: Definition of the omp_target_preload-function

The preloader will then collect the access to multiple elements in
a single Avalon (burst) request, significantly improving the memory
access efficiency. To further leverage the spatial parallelism, double
buffering is implemented for the local memory and the preloading
for the next block happens in parallel to the computation of the
current block. All these optimizations have been implemented using
standard OpenMP or, in case of unrolling (pragma unroll), compiler
annotations and C++ constructs. The omp_target_preload-function
was designed to be very generic and corresponds to a pattern often
found in accelerator programming (e.g., GPU programming), the
preloading of relevant input data from global memory to local memory.
An usage example of the preload-function can be found in Listing
13.2.
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1 void gemm( f l o a t * A , . . . ) {
2 [ . . . ]
3 VECTOR A_local [BUFFERING ] [ BLOCK_SIZE ] ;
4 omp_target_preload < f l o a t , BLOCK_SIZE>(
5 ( i *DIM) +k ,
6 DIM,
7 BLOCK_SIZE ,
8 ( void * ) A,
9 ( void * ) &A_local [ b u f f e r%BUFFERING *

↪→ BLOCK_SIZE ] ) ;
10 [ . . . ]
11 }

Listing 13.2: Usage example of the omp_target_preload-function
(excerpt).

Fig. 13.3 shows the performance of the FPGA accelerator with
different numbers of hardware threads executing simultaneously in
the single compute unit for matrices of dimensions 8192 × 8192. While
the performance of the accelerator almost doubles when going from
a single to two threads, the increase slows down for three and four
threads, respectively. In these cases, the threads do not only compete
for compute resources in the multithreaded accelerator, but also for
memory bandwidth to the external memory. The comparison with
the BLAS implementation from the ATLAS library [31] on the Xeon
CPU shows that the accelerator with a single thread outperforms a
single thread on the CPU, but is not able to keep up with an execution
with four threads on the CPU, partially also due to the data-transfers
between host and FPGA.

In terms of hardware resource usage, the accelerator takes up 14%
of logic resources, 16% of BRAM and 18% DSPs at a frequency of 183

MHz. Despite the relative low resource usage, it does not make sense
to further increase the number of threads due to the negative impact
on operating frequency. Instead, the remaining resources could be
utitlized to duplicate the accelerator and compute on multiple compute
units in parallel in future versions of the proposed architecture.

In order to validate the support for OpenMP synchronization con-
structs via a lock implemented in the bus-attached hardware semaphore,
an alternative version of GEMM, where each thread computes parts of
the result for each element of the result matrix. The computed partial
result is then added to the overall result inside a critical region.
Even though the hardware semaphore allows for efficient locking, this
version of GEMM, due to the very frequent access to global mem-
ory, delivers less performance than the optimized version using local
memories described above.
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Figure 13.3: Arithmetic performance of the blocked GEMM computation in
GFLOP/s with different numbers of hardware threads simulta-
neously active in the compute unit.

13.5 discussion

In this paper, we have demonstrated the Nymble infrastructure and
shown that we can support a significant subset of OpenMP target
offloading on FPGAs without much loss of generality, and that many
of the properties (load-imbalance, scalability, etc.) materialize even in
hardware. However, there are ample opportunities and future work
for OpenMP on FPGAs, some of which we discuss herein.

OpenMP tasking, introduced in v3.0 (and dependent tasks in v4.0),
is a construct that we would like to support in the Nymble subsys-
tem. In theory, all necessary ingredients to support tasking is already
provided by Nymble, and scheduling could be in a very software
manner. However, such a solution would likely bloat the generated
hardware, and a more customized approach is preferable (such as
Nexus [9]), but a trade-off between consumed FPGA resources and
the added performance must be performed. Alternatively, we could
outsource task-management to a soft-core (e.g., a RISC-V [2]) that only
orchestrates and resolves dependencies. More importantly, the FPGA
allows for customizing communication between threads (and thus
tasks), leading to interesting opportunities, particularly for dependent
tasks.

One exciting future direction is concerning the synchronization
and atomicity of operations. Today, Nymble uses a customized mutex
hardware core (that is memory mapped) to support atomicity and syn-
chronization. While this is a correct and functional way of supporting
them, there are likely better ways that leverage the customization that
FPGAs give us. For example, since we are working with an FPGA, we
could, in theory, place the functionality of atom updates inside the
external memory controller (DDR4 in our case). Similarly, rather than
going through shared memory for synchronization, we could have a
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system-wide token bus that synchronizes all the threads (by sending
and forwarding a synchronization token).

Another opportunity, unique for the FPGA, is concerning the recent
memory allocations added in OpenMP. Because the memory hierarchy
can be fully customized, we foresee that there are many future op-
portunities for tuning these for a particular performance criteria (e.g.,
execution time or power-consumption). For example, we could mark
part of the FPGA that would be dedicated to the memory hierarchy as
a partially reconfigurable region, and then dynamically adapt and opti-
mize the actual hardware in real-time, such as for example changing
cache sizes or replacement policies, scratchpad memories, coherency
(or coherency-less) islands of memory, and so on and forth, in order to
facilitate high-performance, low-latency producer/consumer patterns
in (for example) the OpenMP 4.0 dependent tasks.

The representation of floating-point numbers has recently become
a hot topic, with multiple authors proposing (and evaluating) new
representations such as Posit [13] and Elias encoding [20]. Today,
OpenMP does not contain support for setting a particular region to
use a specific representation, but in the future, it might. FPGAs can
execute arithmetic operations on these exciting new representations
at high speed [27]. If selecting number representation will be part of
future OpenMP standard, then FPGAs will be the platform that can
exploit it to the fullest.

Finally, scaling OpenMP onto multiple FPGAs is an open question.
On hand, we could rely on OpenMP’s accelerator directives, and
treat each device a discrete system with little to no access to other
systems. However, on FPGAs, we can do more, and create/include
special hardware to (for example) support a shared-memory view
across multiple FPGAs, or use tasks as containers that encapsulate
produced/consumed data, that are exchanged among FPGAs.

In short, our understanding of OpenMP on FPGAs is just starting,
and there are ample opportunities and future directions where this
work affect OpenMP in the future.

13.6 related work

As OpenMP-based programming is very attractive for integrating
FPGAs into HPC systems and toolflows, a number of previous works
has presented approaches for mapping OpenMP to FPGAs. A good
overview of these approaches can be found in the survey by Mayer et
al. [21].

Early approaches tried to map OpenMP tasks [4, 11, 24, 25] or
worksharing constructs [6, 7, 19], such as parallel for to FPGA accel-
erators. As these approaches date back to the time before the OpenMP
target constructs were standardized, no OpenMP constructs for speci-
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fying data mapping and device-specific execution were available for
these approaches.

More recent approaches combine the OpenMP device constructs
with commercially available HLS tools. Many of these works take
an approach where target regions are extracted from the input pro-
gram on AST-level [3, 28], making OpenMP-specific optimizations
before HLS difficult. The approach presented by Ceissler et al. [5]
even requires the accelerator cores to be implemented in a hardware-
description language and uses OpenMP only for the integration into
the overall application. Only the work by Knaust et al. [17] uses IR
(namely LLVM-IR) to interact with the HLS tool through an undocu-
mented interface. However, as the data-transfers via the OpenCL API
are statically generated during compile-time, their approach does not
support array sections or mapping of data in only one direction (to or
from), a limitation not found on our approach.

All of the tools mentioned above try to achieve a speedup over se-
quential execution through spatial parallelism (e.g., a dedicated accel-
erator core per thread) and classical HLS optimization techniques such
as loop pipelining, but none of them supports actual hardware multi-
threading inside the accelerator core. In contrast, in [29], OpenMP
worksharing loops were mapped to multi-threaded accelerator cores.
However, their threading model is much more limited than the one
used in this work, as in their model, only a single thread can be active
at a time and threads would only be switched when the active thread
was suspended due to memory access latency.

As one of the key challenges for an effective mapping of OpenMP
constructs to FPGA hardware, Mayer et al. [21] identified the code
analysis and optimization across the border between compiler frontend
and low-level HLS tool. With our fully integrated compilation flow
from input program to Verilog, we are able to propagate information
across this border and exploit knowledge of the underlying FPGA
execution model for high-level, FPGA-specific transformations on
IR-level in the compiler frontend.

13.7 conclusion

This work presented a compilation flow for targeting FPGAs with
OpenMP device offloading, in combination with a complete integra-
tion in libomptarget for complete data management support. The
presented compile flow supports a significant subset of OpenMP
for device offloading, including parallel constructs (e.g., parallel,
teams) that are mapped to actual hardware threads executing simulta-
neously in the generated, multi-threaded accelerator, a unique feature
of the presented approach.

By optimizing across the border between compiler front-end and the
HLS-tool based on LLVM and the academic HLS-compiler Nymble,
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FPGA-specific optimizations were integrated in the compile flow. This
insight could also be interesting for FPGA’s vendor and a motivation
to further open up their HLS-compiler IR interfaces for OpenMP-based
compilation flows.

The case study showed that it is possible to target FPGAs from
OpenMP programs, using only standard programming language con-
structs and annotations, without any HLS-specific extensions, and
also showcased an integration of a data preloading functionality that
could also be of interest on other accelerator architectures (e.g. GPUs).
As described in Section 13.5, OpenMP is an interesting option for
integrating FPGAs into parallel and heterogeneous applications, with
a number of interesting research avenues.
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abstract

The recent maturity in High-Level Synthesis (HLS) has renewed the
interest of using Field-Programmable Gate-Arrays (FPGAs) to acceler-
ate High-Performance Computing (HPC) applications. Today, several
studies have shown performance- and power-benefits of using FPGAs
compared to existing approaches for a number of application kernels
with ample room for improvements. Unfortunately, modern HLS tools
offer little support to gain clarity and insight regarding why a certain
application behaves as it does on the FPGA, and most experts rely on
intuition or abstract performance models.

In this work, we hypothesize that existing profiling and visualization
tools used in the HPC domain are also usable for understanding per-
formance on FPGAs. We extend an existing HLS tool-chain to support
Paraver – a state-of-the-art visualization and profiling tool well-known
in HPC. We describe how each of the events and states are collected,
and empirically quantify its hardware overhead. Finally, we practically
apply our contribution to two different applications, demonstrating

129
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how the tool can be used to provide unique insights into application
execution and how it can be used to guide optimizations.

14.1 introduction

The past decades’ pursuit for better and more productive High-Level
Synthesis (HLS) tools has recently sparked a flurry of innovative
research in using Field-Programmable Gate-Arrays (FPGAs) in High-
Performance Computing (HPC). Here, FPGAs are being examined as
alternative to traditional accelerators, and also to possibly mitigate the
effects of Moore’s law by providing a silicon substrate whose func-
tionality changes through time. Today, several authors [22, 26, 28, 29]
have already demonstrated performance- and/or power-consumption
benefits of using FPGAs over server-class general-purpose processors,
many-core accelerators (e.g. Xeon PHI), and graphics processing units
(GPUs). However, while most works show empirical benefits of using
HLS and FPGAs over alternative forms of computing, little clarity
is provided into why a certain application performs as it does, and
where opportunities to improve are.

High-Performance Computing has a long tradition of a diverse
arsenal of profiling and visualization tools, particularly those aimed
at understanding bottlenecks and limitations of high-performance
applications. Profilers and visualizers have been developed for most
parallel programming models, including both thread-based [17, 24]
and task-based [21] models.

In this paper, we hypothesize that existing HPC visualization tools
are sufficiently general to also be applied for understanding FPGA
applications compiled through HLS. Confirming our hypothesis is
important for several reasons: (i) it would provide the means to better
understand the performance HLS tools yield, including identifying
bottlenecks (e.g. memory-, compute- or latency-boundness), and (ii)
FPGAs could be more seamlessly integrated into HPC tool infrastruc-
tures.

To test our hypothesis, we extend a state-of-the-art HLS tool to
include modules that continuously monitor states and generate events
based on the execution. Our HLS tool supports a sub-set of the
OpenMP [7] 4.0 accelerator directives, allowing for multiple forms of
parallelism (SISD, SIMD, MIMD) and also supports shared-memory
synchronization (thread-level barriers and critical sections). Our meth-
ods are general and can be adopted for different HLS or visualization
tools. We demonstrate our efforts targeting the Paraver tool-chain [24],
which represents state-of-the-art in HPC profiling and visualization,
and is actively used in a number of HPC centers to understand perfor-
mance.

In this study we claim the following contributions:
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• We describe in detail how to integrate support for an HPC
profiling infrastructure into FPGA High-Level Synthesis flows,
quantifying area and utilization as well as measuring the impact
on performance

• Using two different applications, we demonstrate how our profil-
ing infrastructure can be used to the understand performance of
HLS-generated accelerators, showing step-by-step how to reason
about and overcome the bottlenecks.

14.2 background and motivation

Understanding the performance of applications through visualization
has long been an active research field in HPC. Some noteworthy
visualization methodologies include Score-P [18], Vampir [17], and
Paraver [24] (see the review by Isaacs et al. [16] for a complete list);
these tools are heavily used to port and obtain performance in state-
of-the-art HPC systems. Many of these tools work both on general-
purpose processors (CPUs) and Graphics Processing Units (GPUs), and
are used to provide intuitive understanding behind both application
execution and performance.

The most common way of extending a particular programming
model or framework (e.g. OpenMP [7]) to support trace-generation is
to intercept API function calls and time-stamp the related activities.
For example, when a thread is created (e.g. using pthread_create), a
profiling library intercepts the API call and time-stamps the thread
creation and saves it to a log. The log is later formatted and can be
viewed using one of said visualization tools, which also provide a
rich set of analyses. Due to the generality of modern processors, trace
generation is often trivial to implement with low overhead, and much
of the research focuses on other challenges, e.g. compression, and how
to manage the often tens of GB’s of trace-data.

The situation is different for HLS on FPGAs. Here, there are no
easily available interception mechanism. While it is possible to add
tracing mechanics into the code itself – as is done in CPU tracing – this
can severely impact the hardware generation, for example increase
initiation intervals (II) of loops through false dependencies, or impact
memory behavior or overheads. Furthermore, monitoring stalls and
memory-bandwidth is very hard since the application is not exposed
to those signals. Ideally, one would change the HLS compiler itself
to incorporate tracing and profiling. This option requires access to
the source-code of HLS compilers, most of which are closed-source.
Furthermore, the impact of fully supporting all features of an HLS
generated pipeline from the perspective of hardware constructs known
in HPC remains unknown and unmeasured. While trace-generation
and profiling indeed are much more challenging on FPGAs than
on general-purpose systems, there can also be more rewards. For
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Figure 14.1: Overview of the architecture template, including the Datapath
and Controller, generated by Nymble, and the integrated pro-
filing unit. All components are connected to four DDR4-banks
through the Avalon bus.

example, applications running on general-purpose systems are often
oblivious of low-level architectural details happening on CPUs (and
performance counters are often limited); on the other hand, FPGAs
are fully aware over its hardware, and much more (and interesting)
information can be obtained from its execution.

Our work aspires to unify performance visualization of FPGAs
to that currently existing in HPC, in order to leverage the mature
methodology available in HPC and also to help bridge (and hence
popularize) the use of FPGAs in HPC. Our work, to the best of our
knowledge, is the first effort to fully integrate an HPC visualization
framework into HLS compilers in order to reason around performance
and efficiency of the HLS-generated code.

14.3 nymble hls compiler

In this work, the ability to collect information for HPC performance
visualization tools in HLS-generated FPGA-accelerators is integrated
directly in an automated compile flow. The established academic HLS
compiler Nymble [14] serves as basis for the compilation flow.

Nymble originally targeted Xilinx devices and was adapted to also
target Intel FPGA boards for this work.
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14.3.1 Compilation Flow

In earlier versions of Nymble, users had to use specialized, custom
annotations (C/C++ pragmas) to mark regions of the application to
be executed on the FPGA. The necessary data-transfers were automat-
ically inferred by the compiler, pessimistically assuming that all data
had to be transferred to the FPGA and back to the host after execution.

In order to make the Nymble HLS compiler more accessible for users
from the HPC-domain, a new frontend was added which uses the
OpenMP target offloading constructs instead of the custom, Nymble-
specific pragmas. These constructs, standardized in version 4.0 and
following the OpenMP standard, do not only allow to denote tar-
get regions with standardized annotations, but also allow users to
clearly specify which and how data has to be transferred, avoiding
unnecessary costly data transfers between CPU and FPGA memories.

With the new frontend, it is possible to use any C/C++-program
with OpenMP annotations as input to the Nymble HLS compiler. The
automated HLS flow will create an accelerator design for the target
regions in the application (currently limited to one target region per
application) as Verilog HDL code. Together with the architectural
template shown in Fig. 14.1, this accelerator forms a complete FPGA-
design that can be synthesized using the vendor’s standard tools
(Quartus in Intel’s case).

As shown in Fig. 14.1, the generated accelerator has access to two
different kinds of memory: Small, but fast local memories and the
large external DRAM memory on the FPGA-board, which is also used
to exchange data between host and FPGA-accelerator. Data-transfers
are automatically handled as specified by the corresponding OpenMP
clauses (map). The preloader can be used to efficiently pre-load data
from the external memory to the local memory for faster access, and
the hardware semaphore connected to the Avalon bus is used to handle
OpenMP synchronization constructs (critical and barrier).

14.3.2 Execution Model

The execution inside the generated accelerator is organized according
to a static schedule computed at synthesis time to determine the start
times of individual operations.

However, for some operations, it is not possible to statically de-
termine their operation delay. One example of such variable-latency
operations (VLO) are (cached) memory accesses, which allow Nymble
to access local (BRAM) and external (DRAM) memory. A second ex-
ample of variable-latency operations are inner (nested) loops with
statically unknown trip count: These nodes are embedded into the
dataflow graph of the surrounding loop as a single operation node



134 extending hls with hpc performance visualization

with statically unknown delay. At runtime, the execution of the outer
loop’s graph is paused during execution of the inner loop.

At synthesis time, the scheduler assumes the expected minimum
delay for VLOs. To account for longer delays of VLOs during execution,
the surrounding hardware execution needs to be suspended (stalled).
The number of stalls, e.g., due to external memory accesses, is an
important performance figure.

However, fitting each operation with dynamic control signals (e.g.,
a handshake) would be too expensive in terms of hardware resource
consumption. The Nymble controller therefore orchestrates the exe-
cution at the granularity of stages, which contain all nodes active in
a single pipeline stage of the datapath. Controlling the execution at
the granularity of stages requires a smaller number of control signals
and less controller logic, while still allowing to suspend the execu-
tion when a variable-latency operation, e.g., access to external DDR
memory, exceeds the delay assumed during scheduling.

The unique feature of the extended Nymble-MT [15] execution
model employed in this work is that the model allows for the simul-
taneous execution of multiple hardware threads. Different hardware
threads can be active in different stages at the same time, significantly
increasing the overall throughput and resource efficiency of the accel-
erator. With the new OpenMP-based frontend for the Nymble HLS
compiler, parallel OpenMP constructs (e.g., teams, teams distribute

or parallel) are directly mapped to parallel hardware threads execut-
ing simultaneously in the generated accelerator.

In contrast to the basic C-slow execution model presented by Leiser-
son et al. [19], Nymble-MT also uses thread reordering to allow faster
threads to overtake slower threads during execution. To enable a stage
for thread reordering, the stage must be able to hold the context (e.g.,
intermediate results) of all hardware threads for all operations con-
tained in the stage. As this requires significant amounts of hardware
resources, it is not reasonable to generally enable thread reordering for
all stages. Instead, Nymble-MT selectively enables thread reordering
only for those stages that actually contain variable-latency operations,
whereas the other stages in between form a static region. In the reorder-
ing stages, a hardware thread scheduler (HTS) selects one available
thread for execution as soon as the following stage becomes available.
Huthmann et al. also presented more elaborate techniques to optimize
the placement of reordering stages in [13], but this is out of scope for
this work.

14.4 extending high-level synthesis with hpc profiling

support in paraver

In this work, we extend the Nymble HLS compiler to include the
capability of sampling and monitoring states and events, captured in
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the format required by modern HPC visualization tools, by embedding
hardware counters for profiling directly into the generated accelerator.

Although the concrete implementation of this work is specific to the
Nymble compiler, the general methodology developed in this work
is generic enough to be used with and integrated into the compila-
tion flow of other academic (e.g., LegUp [3]) or industrial (e.g., Intel
OpenCL [6], Xilinx Vivado HLS [27]) HLS tools. Our additions have
negligible impact on the overall compile time.

In this section, we give a brief introduction to Paraver and why we
chose it, before going deeper into how different metrics are imple-
mented and collected inside our HLS tool-flow.

14.4.1 Introduction to Paraver

Paraver is a state-of-the-art visualization tool that brings clarity into
how applications execute in HPC environments. The premise behind
Paraver is that many bottlenecks in applications can easily be identified
visually, such as how memory-bound the application is, or the degree
of load-(im)balance across threads. Paraver visualizes the execution of
actors (e.g., CPUs, Threads, MPI-ranks etc.) in a time-line view, where
different colors or values represent the behavior of the thread.

Paraver supports three types of records: states, events, and com-
munication. In this work, we have focused on supporting states and
events, and excluded communication since they are primarily used
for MPI communication, which for us is subject for future work in
visualizing multi-FPGA execution.

14.4.2 Hardware Collection of Paraver States and Events

As shown in the architectural template diagram in Fig. 14.1, the profil-
ing unit is integrated into the generated datapath and directly hooks-
into and snoops all compute pipelines that compose the accelerator.
The profiling unit is backed by the external memory, with the collected
performance counters being periodically stored to external memory to
avoid overflow of the counters. There they can later be accessed from
the host for analysis.

As previously stated, Paraver supports three types of records, out
of which we support two: states and events. A state describes the
situation a thread is currently in, whereas events are, on the other
hand, near-instantaneous measurements of a certain metric.

14.4.2.1 State Recording

States are useful in analyzing high-level details regarding the exe-
cution, such as whether the application is well-balanced (all threads
contribute equally), or how many serialization points exist in the ap-



136 extending hls with hpc performance visualization

Idle Running

Spinning

Critical

Start

Done

SpinEnter

SpinExit

CriticalExit

Figure 14.2: The state transition diagram of our implementation for recording
OpenMP critical sections. It includes profiling both the time
spent in acquiring (spinning) on the lock as well as the time
spent inside the protected section.

plication (the time spent in critical sections). In our implementation,
threads can be in four different states, as shown in Fig. 14.2, and
the state information is available per hardware thread. The two basic
states are Running and Idle. The running state indicates that a user (or
run-time system) has loaded a context and explicitly started the accel-
erator. The idle state indicates that there is no currently loaded context,
and/or the previous context finished executing. Our representation of
running/idle is identical to how it is used for CPUs and GPUs.

Next to that, Nymble supports OpenMP #pragma omp critical

sections. In multi-threaded applications, critical sections are used to
provide thread-safe access to data. The absence of critical sections can
lead to race conditions, breaking the application. Since the timing of
entering, exiting, and waiting for the lock associated with the critical
section is important, these are recorded as a state of the pipeline. The
state Spinning is used to express that a thread is currently waiting
to enter the critical section, which is currently occupied by another
thread. The state Critical is used to track the time a thread spends
inside the critical section. As a thread cannot resume computation
while waiting to enter a critical section, the time spent in state Spinning
can be an important performance figure.

The current state for each thread is stored in a register. Because
the state can change for multiple threads at once, each time at least
one thread changes it state, we record the current state for all threads
together with the current clock count. Each state is represented as
a 2-bit value: 00 for idle, 01 for running, 10 for critical, and 11 for
spinning. The size of each state record is 2 ∗ Nthreads + 32 bits wide.
Each record is saved into a buffer; when the buffer is nearly full, the
buffer is flushed to the external memory, and resumes operations.
Currently, the width of the buffer is equal to the data-width of the
external memory controller (512-bit), but can be tuned with other
sizes.
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14.4.2.2 Event recording

In general-purpose processors, events are often recorded by perfor-
mance counters, and accessed through tools such as PAPI [20]. They
include metrics such as memory-bandwidth (GB/s), compute per-
formance (e.g. FLOP/s), or how often resources stall (% stall cycles).
Implementation-wise, events are often collected for a certain time (the
sampling period), and are then time-stamped and saved at periodic
intervals.

In our methodology, we extended the HLS compiler to automatically
insert support for collecting metrics as events. Recording an event is
different from recording a state, as a threads’ state can change at any
time during execution, while an event is only acquired at periodic
intervals.

For each of the supported events, we added a performance counter
module to the accelerator. As we need to aggregate values from mul-
tiple sources (stages, operations, and others), this module has two
inputs for each source. The event to be recorded from that source, and
a condition if the value is valid. In each clock cycle, all valid values are
added to the running aggregate. All aggregated events are periodically
flushed to external memory. This period is user-adjustable, and is a
proxy over fine-grained information that is required, but is also subject
to a larger tracer – the higher the period, the more data is produced.
Next, we will introduce the different metrics we support and how they
are collected.

stalls As described in Section 14.3.2, the Nymble-MT execution
model supports variable-latency operations. If the execution of VLOs
exceeds the minimum latency assumed during static scheduling, the
pipeline is stalled.

Stalls in HLS environments are different from stalls in a CPU or
GPU. While a CPU only has a single pipeline that can stall (a binary
metric, the program counter stalls), in a Nymble accelerator every
stage that contains a variable-latency operation can stall (a compile-
time known discrete maximal value). In our implementation, a stall
can happen due to one of two things: (i) a memory access takes longer
than expected, or (ii) a resource (e.g., memory port) is shared across
many threads and arbitration leads to a stall.

In this work, stalls are collected as events and the collection of stalls
is implemented by snooping the control signals. For visualization
purposes, it would be impractical to show per-pipeline-stage stalls, as
these may occur in large numbers. Instead, we argue that an aggre-
gated per-thread stall event is more useful from a visual perspective.

A high number of stalls during execution can be an important
hint that the applications performance on the FPGA is limited by the
execution of variable-latency operations, e.g., due to latency when
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accessing external memory, or caused by contention when entering a
critical section, and can guide optimization of the application.

compute performance Compute performance in Nymble can
be classified as two types: floating-point and integer performance.
Each compute-stage in the pipeline has a number of both integer- and
floating-point operations scheduled onto it, determined at compile-
time. By snooping the control-bus associated with each compute-stage,
we can watch the value of the per-stage activation signal to determine
whether the arithmetic units in the stage are active. We can then
track the number of active units over time to measure the complete
performance. We collect the compute-performance as an event, where
each threads’ compute performance is aggregated and sampled during
an execution time window.

If the profiled compute performance falls short of the expected
performance, this can be an indicator that the accelerator is not able
to supply the arithmetic operators with data due to excessive memory
access latency. Preloading data from external DRAM memory to local
BRAM memory can help to improve the overall compute performance.

memory performance For inserting the performance counters
for memory accesses, there are multiple options: The counters could be
placed directly at each memory operation in the pipeline, or they could
be placed in the Avalon memory interface of the CU. All memory
operations in the pipeline are multiplexed to one Avalon read- and
one Avalon write port per thread. Therefore, we decided to place the
memory performance counters in the central Avalon interface and
evaluate the memory requests coming from the operators, as this
reduces the footprint of the memory performance counters.

Tracking the memory bandwidth by collecting the memory requests
coming from the operators to the Avalon interface incurs a small time
skew. However, to get rid of this skew, we would additionally need
to track memory responses, which would significantly increase the
footprint of the profiling infrastructure.

Information about the memory throughput of the application over
time can provide insights about the application’s memory access
pattern. Often, replacing many accesses to single data-items with a
single read of multiple data-elements (e.g., a submatrix) into fast local
memory can significantly improve the memory bandwidth and, in
turn, the overall application performance.
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14.5 results

14.5.1 Experimental Methodology

All experiments were carried out using a Stratix 10 SX-280HN2F43E2VG
FPGA on an Intel D5005 PAC card using the Quartus 19.2 software.
The OpenMP frontend for Nymble is based on LLVM version 9.

All performance measurements were captured using the perfor-
mance counters described in the previous section. For visualization
we used Paraver 4.8.2. Today, Paraver does not support the notion of
cycles. For all cases in the graphs where microseconds are used, these
are in fact cycles.

We used eight simultaneous threads in a single accelerator. More
than eight threads in a single accelerator did not increase the perfor-
mance further, because at this point all computing resources are filled.
Adding more threads only increases congestion. Instantiating another
accelerator would be possible, but is out of scope for this work.

14.5.2 Profiling Overhead and Hardware Footprint

The inclusion of the necessary infrastructure for the state- and event
tracing of course incurs a small hardware overhead. For our first case-
study, investigation of the post-P&R results shows that the inclusion
of our tracing infrastructure increases the number of registers by at
most 5.4% (geo.-mean 2.41%) and the number of ALMs by at most
4% (geo.-mean 3.42%), so the footprint of the tracing infrastructure
is comparably small. The impact on the operating frequency of the
accelerator is negligible (maximum degradation 8 MHz at 140 MHz).

A direct comparison of the different performance counters shows
that each of the counters contributes similarly to the hardware over-
head, none of the counters could be identified as being remarkably
expensive.

For our second study, the number of registers is increased by 1.3%
and the number of ALMs by 1.5%. The impact on the operating
frequency of the accelerator is even smaller with a degradation of only
1 MHz at 148 MHz.

14.5.3 Case-study: Matrix Multiplication

To illustrate how our methodology can be used to guide optimiza-
tions and reason about performance of applications compiled with
HLS, we turn our attention to one of the perhaps most important
computational kernels: the general matrix multiplication (GEMM). In
order to demonstrate our methodology, we consider matrices with
size 512x512.
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Figure 14.3: Paraver state-view showing the state each of the executing hard-
ware threads as a function of the execution time: Green repre-
sents a running state, Red represents spinning on a mutex, Blue
represents atomic execution inside critical sections, and Black
represents an idle thread.

The starting point of our case-study is a naive implementation, as
shown in Fig. 14.4a. The version is a text-book example of a GEMM
implementation, and has been extended to use OpenMP threads to
parallelize the innermost loop, while protecting the update to the C

matrix with a critical section.
We start by profiling our initial GEMM version. This version, for a

matrix of 512x512 elements, takes 853,522,308 cycles to execute. We
see the visualization for this version in Figure 14.3 (top); while threads
are mostly running without interference, we do notice that there is
a fair amount (1.54 %) of time spent in critical sections and spinning
on locks (1.57 %). This – in effect – extends the serial portion of the
code, limiting the parallelism (according to Amdahl’s law [1]), which
is shown in detail when zooming into the trace (Figure 14.3 (bottom)):
thread 7 is spinning on the lock that protects the critical section that
thread 6 is currently in. We also see that the memory throughput is
quite low (Figure 14.5) throughout the entire execution.

In the second version (called: No Critical Sections), we distribute the
work differently, effectively forcing threads to work on elements in
the output matrix C in isolation, removing the need to protect it. This
is a minor (and fairly non-intrusive) change in application code, but
removes all critical section- and spin-states, enabling the application
to fully execute in parallel (only green states, not shown due to space-
limitations) and be memory-bound. We can see in Figure 14.5 that this
version has a slightly better memory throughput, which overall yields
a net improvement of 1.14x in execution time over the original version
with minor improvements to obtained bandwidth.
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Figure 14.5: Visual comparison between the different GEMM versions and
their relative bandwidth over their respective execution time (ab-
solute metrics Paraver views are not included for space reasons).

Being memory-bound, in the third version (called: Partial Vector-
ization) (Fig. 14.4b) we partially vectorize our application. Here we
vectorize the loading of the matrix A, and still have B non-vectorized
(since it needs to be transposed to allow similar vectorization). The
vectorization width is 128-bit, which leads to a better memory perfor-
mance, which can be observed in Figure 14.5, yielding the expected
improvement in achieved memory throughput with wider accesses.
This also materialize in a 1.93x faster execution time over the previous
version.

The fourth version (called: Blocked version), we take a step back
and try to apply a commonly used method: blocking the algorithm.
Blocking should be an effective strategy, as it trades the expensive ex-
ternal memory operations for better, high-bandwidth, on-chip BRAM
bandwidth. Blocking is often used for CPUs [12], GPUs [10], and
even FPGAs [8]. Blocking consists of two stages: (i) we first load the
sub-matrices into local BRAMs, and (ii) we compute on the local
sub-matrices. Furthermore, we vectorized the computation on the
sub-matrices, leading to better compute performance.

These two discrete stages can be seen when visualizing the through-
put and compute-performance (FLOP/s) trace in Figure 14.6a– we
see the distinct compute phases as “spikes” in the execution trace,
which are dependent on the loading of data (the upper throughput
trace). The blocked version gives us a net performance improvement
of 5.28x over the initial version. Interestingly, we also notice that this
version yields a lower external memory throughput compared to our
previous partial vectorized version (Figure 14.5). The reason for this
is that we trade much of the external memory bandwidth for local
memory bandwidth.

In the final version (called: double-buffering), we remedy the problem
of distinct load- and compute-phases. Instead, we re-write our applica-
tion such that a thread performs the pre-load the next iterations’ blocks
while computing on the blocks currently available. The code for this
version is seen in Fig. 14.4c. We can see the impact on performance
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of this optimization in Figure 14.6b, and we clearly see a different
and more beneficial behavior compared to Figure 14.6a: the sequential
read and compute behavior is removed, as the memory accesses and
compute are now running in parallel. This also has a beneficial impact
on achieved external memory throughput, where it reaches the highest
performance out of our GEMM candidates (Figure 14.5). Overall, this
version is 19x faster than our initial version.

14.5.4 Case study: Infinite series for π calculation

In the second case study, we show how problems with the scaling of
algorithms can be analyzed using the state-view of Paraver. For this,
we use an infinite series for calculating π (source shown in Fig. 14.7),
which we distribute onto multiple threads. The sum-reduction of the
individual results is done using a critical section. Figures 14.8, 14.9, and
14.10 show the Paraver state traces for 1, 4, and 10 million iterations
respectively. For 1,000,000 iterations, the hardware only achieves 0.146

GFLOP/s. From the trace, it can be seen that the overhead of starting
the individual threads by the software causes the earliest threads
to be finished before last ones are even started. If we increase the
iteration count to 4,000,000, all threads are starting to get executed
in parallel, resulting in an increased performance of 0.556 GFLOP/s.
Further increasing the number of iterations to 10,000,000 gives us a
performance of 1.507 GFLOP/s. Unfortunately, since we are using
only single-precision computation, further increasing the number
of iterations results in numerical instability. Ignoring the instability,
increasing the number of iterations to 15 · 109 would give us 36.84

GFLOP/s.
From this case study we can see that the bottleneck for small com-

putational loads is located in the communication between the software
and hardware, so we will look into how we can improve our interface.

14.6 related work

The SoCLog [23] platform provides real-time acquisition of profiling
data for FPGA-based System-on-Chips. The primary metric of collec-
tion is activity and the authors visualize said activity on a time-line.
They show-case their work on DCT application, showing how different
traces of two versions (one un-optimized and one optimized) differs
in their framework. Compared to our work, which also captures ac-
tivity (IDLE/RUNNING), we also incorporate many more metrics
to provide a more truthful and informative picture of the execution.
Curreri et al. [5] profile FPGA throughput between producer and con-
sumer in HLS applications. The authors visualize the performance as
a DAG where nodes represents producers and consumers, and edges
data communication (throughput), showing both absolute and rela-
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DTYPE pi (int steps, int threads){
 DTYPE final_sum= 0.0;
 DTYPE step = 1.0/(DTYPE) steps;
 #pragma omp target parallel map(to : step) \
   map(tofrom: final_sum) num_threads(threads)
 {
   int step_per_thread= steps/omp_get_num_threads();
   int start_i = omp_get_thread_num()*step_per_thread;
   VECTOR sum = {0.0f};
   DTYPE local_step= step;
   for (int i=0; i< step_per_thread; i+=BS_compute) {
     #pragma unroll BS_compute
     for(int j=0; j < BS_compute; j++) {
       DTYPE x = ((DTYPE)(i+start_i+j)+0.5f)*local_step;
       sum[j] += 4.0f / (1.0f+x*x);
     }
   }
   #pragma omp critical 
   for(int i=0;i<BS_compute;i++) {
    final_sum+= sum[i];
   }
 }
 return final_sum;

}

Figure 14.7: Infinite series for π calculation, distributed across multiple
threads using OpenMP.

tive performance. Compared to our work, we aggregate and abstract
throughput performance in both off- and on-chip memory, show-
ing it per-thread and per-FPGA, rather than per-consumer/producer,
and we are more consistent with how HPC application display these
metrics.

Additionally, we support more metrics than only throughput. Podobas
et al. [25] used Paraver to reason about and demonstrate the effect
of resource-sharing and arbitration on load-(im)balance in multi-
threaded FPGAs similar to our work in this paper. This work extends
their work by including a much richer and complex set of events.
Calagar et al. [2] researched source-level profiling using their tool
Inspect, which links the generated hardware (Verilog) to source-level
(C/C++) constructs in order to provide understanding around what
hardware is generated, and what is happening through a familiar gdb-
like interface. Our work focuses more on the visualization of real-time
performance, but in the future could also benefit from linking traces
with source-level annotations in a way similar to what they proposed.
The OmpSs [9] task-based eco-system supports offloading OpenMP
tasks to FPGA accelerators [11], and the authors also support Paraver
trace-generation during FPGA execution. Their work focuses mostly
on visualization how the host processor orchestrates FPGA execution,
e.g., memory transfers to-and-from the FPGA itself rather than what
happens inside the accelerator (as this work does). Curreri et al. [4]
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Figure 14.8: Paraver state-view (colors explained in Fig. 14.2) for π with 1

million iterations divided onto 8 threads. Here it can be seen
that not all threads are executing simultaneously, resulting in a
performance of 0.146 GFLOP/s.

Figure 14.9: Paraver state-view (colors explained in Fig. 14.2) for π with
4 million iterations divided onto 8 threads. Compared to Fig.
14.8, the threads are now running more and more in parallel,
resulting in a performance of 0.556 GFLOP/s.

Figure 14.10: Paraver state-view (colors explained in Fig. 14.2) for π with
10 million iterations divided onto 8 threads. Compared to Fig.
14.9, most of the time is spent running all threads, resulting in
a performance of 1.507 GFLOP/s.

provides a general methodology for profiling High-Level Languages
(essentially HLS) for FPGAs, and create a hardware module capable
of capturing performance metrics. They demonstrate their framework
on a molecular dynamics application in Impulse C. Our work extends
this by collecting many more diverse metrics, and we are also not
limited to streams, but we also include threads. Both Intel and Xilinx
offer visualization tools and profiling information for various parts
of their respective HLS flow, including reporting performance bot-
tlenecks (e.g., high initiation intervals) and what memory interfaces
were synthesized for what operation (e.g., coalesced, burst, etc.), often
linking performance problems back to source code. Our work extends
both of these by focusing on profiling dynamic execution in a multi-
threaded environment, where we also include concepts of threads,
critical sections, and achievable throughput.
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14.7 conclusions

In this work, we have developed a profiling infrastructure with OpenMP-
based frontend that can be included directly into an HLS toolflow that
produces traces that can be used with state-of-the-art performance
visualization tools. The infrastructure was included into the Nymble
HLS compiler and used with the Paraver visualization tool, but is
sufficiently general to be included in other HLS tools and to be used
with other HPC visualization tools.

Using two different applications, we demonstrated how the perfor-
mance visualization can be used to precisely analyze performance
bottlenecks, and successfully optimize the performance by restructur-
ing the HLS input code.

In the future, we plan to extend our infrastructure for communi-
cation between FPGAs in a multi-FPGA setup and evaluate how the
collected traces can be used for profile-guided optimization in the
HLS compiler.
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abstract

In recent years, FPGAs have been successfully employed for the im-
plementation of efficient, application-specific accelerators for a wide
range of machine learning tasks. In this work, we consider probabilis-
tic models, namely, (Mixed) Sum-Product Networks (SPN), a deep
architecture that can provide tractable inference for multivariate distri-
butions over mixed data-sources. We develop a fully pipelined FPGA
accelerator architecture, including a pipelined interface to external
memory, for the inference in (mixed) SPNs. To meet the precision
constraints of SPNs, all computations are conducted using double-
precision floating point arithmetic. Starting from an input description,
the custom FPGA-accelerator is synthesized fully automatically by our
tool flow. To the best of our knowledge, this work is the first approach
to offload the SPN inference problem to FPGA-based accelerators.
Our evaluation shows that the SPN inference problem benefits from
offloading to our pipelined FPGA accelerator architecture.
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15.1 introduction

The computational demand of many deep learning approaches, the
currently predominating branch of machine learning (ML), can only
be satisfied by specialized accelerators. Besides GPUs, which provide
massive parallelism for regular computations, and custom processors
such as Google’s TPU [14], which supports operations typical for ML
now, but is unable to adapt to advances in ML algorithms, FPGAs
have shown promise as an energy-efficient-yet-flexible alternative [19].
Microsoft is the most prominent advocate of the FPGA-centric strategy
and has widely deployed its Catapult [9] expansion boards across
its data centers. While initially being used to improve the quality of
results of its Bing search engine, Microsoft recently announced Project
Brainwave [5], which includes an FPGA-based processor tailored to
accelerate deep neural networks. Amazon and Baidu have also started
to employ FPGAs in their products and services [11].

A truly intelligent system, however, should be able to deal with un-
certain inputs (e.g. missing features) as well as express its uncertainty
over outputs. It is, therefore, no surprise that probabilistic approaches
have recently gained tremendous momentum within deep learning.
Corresponding approaches such as variational autoencoders, deep gen-
erative models, and generative adversarial nets (GANs), however, have
limited capabilities when it comes to probabilistic inference. Consider,
e.g. implicit likelihood models like GANs [13]. Even when successful in
capturing the data distribution, they do not allow to compute the prob-
ability of a test sample. In contrast, Sum-Product Networks (SPNs) [21]
are a deep architecture that permit exact and efficient probabilistic in-
ference. More precisely, they can compute any marginalization and
conditioning query in time linear to the model’s representation size,
by evaluating its computational graph representation—consisting of
computational nodes (addition & multiplication) and distribution
nodes—in a bottom-up fashion. This computational structure and the
need for efficient processing of batches of queries in different AI ap-
plication scenarios make SPNs a promising candidate for FPGA-based
acceleration.

Thus, the goal of the present paper is to develop a new, pipelined
FPGA accelerator architecture for the sum-product network inference
problem. This opens the door to local (on-chip) model inference and
in future work, even model learning. The dynamic range of the proba-
bilities and the need to represent values with very small magnitude
make the use of high-precision floating-point arithmetic necessary.
Besides the pipelined accelerator architecture, we also develop an au-
tomatic synthesis flow for SPNs. Our tool flow is a turn-key solution
that not only encompasses the actual synthesis of a hardware datap-
ath from an SPN description but also provides crucial parts for any
practically-usable FPGA accelerator, i.e., a high-throughput memory
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Figure 15.1: An example of a valid SPN. Here, x1, x2 and x3 are random vari-
ables. The structure represents the joint distribution P(x1, x2, x3).

system and accompanying software APIs. In our experimental evalu-
ation, we show that our pipelined architecture can handle different
model sizes and still provide high throughput which is an essential
feature of scalable inference. To the best of our knowledge, this is the
first approach to offload the SPN inference problem to FPGA-based
accelerators.

We proceed as follows. Section 15.2 briefly reviews SPNs, how they
are learned from training data and how inference works. Afterwards,
we touch upon existing approaches to accelerate probabilistic graph-
ical models on various architectures. Section 15.4 then presents our
pipelined accelerator architecture, our automatic tool flow, and the
integration into a heterogeneous system. In section Section 15.5 we
evaluate our accelerator and compare it to other architectures and
section Section 15.6 concludes the paper and looks forward to future
work.

15.2 sum-product networks

Probabilistic Graphical Models (PGMs) have had a broad impact on
machine learning, both in academia and industry. They can solve
many ML problems by simply answering probabilistic queries. Con-
sider, e.g., predictive modeling. One trains a PGM which then answers
probabilistic queries; for multi-class classification answering the query
arg maxc P(class = c|data) gives us the most likely class according
to our model. Alternatively, as in one of our benchmark datasets,
we can ask which is the most likely plant to grow in a particular
location: arg maxp P(plant = p|location). Unfortunately, inference in
unrestricted PGMs is often intractable. Motivated by the importance
of efficient inference for large-scale applications, a substantial amount
of work has been devoted to learning probabilistic models for which
inference is guaranteed to be tractable. Examples of these model
classes include sum-product networks (SPNs), hinge-loss Markov ran-
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dom fields, and tractable higher-order potentials. Being instances of
Arithmetic Circuits (ACs), see [3] for a discussion, SPNs are a deep
architecture that can represent high-treewidth models [25] and facili-
tate exact inference for a range of queries in time linear in the network
size [2, 21]. They inherit universal approximation properties from
mixture models—a mixture model is simply a “shallow” SPN with a
single sum node. Consequently, SPNs can represent any prediction
function, very much like deep neural networks. Having exact probabil-
ities offers an advantage not present in other PGMs and deep neural
networks. One can compare the probabilities computed by different
models and not only solve classification or regression problems, but
also do anomaly detection at the same time while taking into account
the statistical nature of the data. Furthermore, SPNs can compute
measures such as Entropy, Mutual Information, Information Gain, etc.
Moreover, the Mixed Sum Product Network (MSPN1) proposed by
Molina et al. [18], is a non-parametric version of SPNs that opens the
door for an efficient FPGA implementation based on histograms.

15.2.1 Definition of SPNs

Formally, an SPN is a rooted directed acyclic graph, comprising sum,
product, and leaf nodes as seen in Fig. 15.1. The scope of an SPN is the
set of random variables appearing on the network. An SPN can be
defined recursively as follows: (1) a tractable univariate distribution is
an SPN; (2) a product of SPNs defined over different scopes is an SPN;
and (3), a convex combination of SPNs over the same scope is an SPN.
Thus, a product node in an SPN represents a factorization over inde-
pendent distributions defined over different random variables, while a
sum node stands for a mixture of distributions defined over the same
variables. From this definition, it follows that the joint distribution
modeled by such an SPN is a valid probability distribution, i.e., each
complete and partial evidence inference query produces a consistent
probability value [20, 21]. Computationally, the number of arithmetic
operations is different for the given nodes. For product nodes, we
have |children| − 1 number of multiplications. For sum nodes, we
have |children| − 1 number of additions and |children| number of
multiplications. The leave nodes require as many operations needed
for a look-up table of size |domain(Variablei)|. The SPNs make no
restriction on reusing sub-structures as long as the consistency rules
are preserved.

15.2.2 Tractable Inference in SPNs

To answer probabilistic queries in an SPN, we evaluate the nodes
starting at the leaves. Given some evidence, the probability output

1 github.com/alejandromolinaml/SPFlow
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Figure 15.2: Example of a synthetic dataset, fitted using the SPN in Fig. 15.4.
For illustration purposes, we present here P(X2, X3) marginal-
izing X1 out. Hi(Xj) represent the different histograms in the
MSPN. The histograms are free to overlap, but the greedy learn-
ing algorithm attempts to represent different subsets of the data.
Deeper MSPNs can represent more complex datasets.

of querying leaf distributions is propagated bottom up. For product
nodes, the values of the child nodes are multiplied and propagated
to their parents. For sum nodes, instead, we sum the weighted values
of the child nodes. The value at the root indicates the probability of
the asked query. To compute marginals, i.e., the probability of partial
configurations, we set the probability at the leaves for those variables
to 1 and then proceed as before. An example of such marginalization
is shown in Fig. 15.2, where we obtain a new SPN that computes
P(X2, X3) = ∑x P(X1 = x, X2, X3) and show how it can be used to
fit a randomly generated dataset. All these operations traverse the
tree at most twice and therefore can be achieved in linear time w.r.t.
the size of the SPN. In this work, we consider only datasets with
discrete variables, as they can be easily implemented with fast look-up
tables, however extending the histograms to the continuous case is not
difficult. We also focus on joint computations as they are the basis for
all other inference algorithms. These operations at the leaves are then
executed in constant time, maintaining the tractability of the SPN.

15.2.3 Learning SPNs

While it is possible to craft the structure of a valid SPN by hand, doing
so requires domain knowledge and weight learning afterward [21].
Here, we use the greedy, top-down approach of the MSPNs that
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directly learns both the structure and weights of (tree) SPNs at once
while making few assumptions on the data.

It consists of three steps: (1) base case, (2) decomposition and (3)
conditioning. In the base case, if only one variable remains, the al-
gorithm learns a univariate normalized histogram and terminates.
Here, we represent univariate distributions by normalized histograms.
These histograms are then converted to look-up tables, as they can
be efficiently implemented on FPGAs. We use the same implementa-
tion for the traditional CPU code to keep the experiments as similar
as possible. In the decomposition step, it tries to partition the vari-
ables into independent components. This decomposition is based on a
non-parametric independency test [16] that is run for every random
variable Vj ⊂ V in a pair-wise fashion, creating a graph of interactions
among all the variables. We then obtain the disconnected components
of this graph, which indicates that variables inside a component are
tightly coupled and variables among different components are inde-
pendent. From these components, we induce a product node such that
P(V) = ∏j P

(
Vj
)

and recurse on each child.
If the base case is not applicable and the decomposition step can-

not find independencies, then the algorithm partitions the training
samples into clusters (conditioning). This clustering procedure first
transforms the data to a higher-dimensional space so that discrete
variables fit the assumptions of normality of the clustering algorithm.
From the clusters, we induce a sum node, and the algorithm recurses
on each cluster. The weights of the sum nodes then represent the data
proportions in the clusters. This learning algorithm does not reuse sub-
structures, however, the intermediate language representation used
keeps track of sub-tree references and the FPGA pipeline is aware of
them. Using a different algorithm or a pruning or compression step
can enable this capability.

This learning algorithm is typically pre-computed on a traditional
CPU. Then the resulting SPN structure can be compiled for infer-
ence into FPGAs, C++ code or even TensorFlow graphs, as shown in
section 15.5.

15.2.4 Size of SPNs

The size of the SPN depends on the training dataset and the learning
parameters. The smallest multi-variate SPN is a product node over
all the random variables, giving a lower bound on the network size
of |Variables| + 1. Introducing binary sum nodes doubles the size
of the sub-graph by the number of random variables in the node.
The learning algorithm then creates SPNs whose size is constrained
by heuristics for early stopping and the number of independencies
recovered from the data. Deeper SPNs are more expressive, but also
more computationally intensive, while shallower SPNs have fewer
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parameters and use fewer resources. Controlling the depth of the SPN
impacts how well it fits the data. A very deep structure tends to overfit,
while a shallow structure does not have enough expressive power to
represent the training data.

In this work, we focus on the largest SPNs that we can fit entirely in
FPGAs in a fully spatial realization.

15.3 related work

To the best of our knowledge, our work is the first automatic synthesis
tool to accelerate SPN inference on FPGAs.

Previous research has studied the FPGA acceleration of other kinds
of PGMs such as Bayesian Networks (BN) [1] and Markov Random
Fields (MRF) [4]. These approaches are orthogonal to ours, as the
inference problem, in general, is not tractable for BNs and MRFs. A
common theme in BN accelerators is to design specialized processors,
as inference in large tree-width models is expensive. In contrast, the
arithmetic circuit (AC) representation of BNs [6] resembles a datapath
similar to an SPN, which Zermani et al. [24] first compiled to C code
and then used Vivado HLS to synthesize an IP core to be used on a
Zynq SoC. Other ACs implementations for FPGAs can be found in ([8],
[12]). However, ACs are restricted to binary random variables, whereas
our SPN-based approach has no such restriction. Lastly, the recently
presented LibSPN [22] aims to bring multi-core and GPU acceleration
to SPNs by translating them to TensorFlow [10], but is not yet publicly
available and does not support histogram-based representation at
the leaf-nodes. For evaluation purposes, we implemented our own
TensorFlow-based GPU backend.

15.4 approach & implementation

The goal of this work is to synthesize efficient accelerators for the infer-
ence problem in sum-product networks. In this section, we present our
accelerator architecture, the compilation flow that generates the accel-
erator using the SPN structure learned as described in Section 15.2.3
as input and the integration of our accelerator into a heterogeneous
system.

15.4.1 System Overview

In this paper, we aim for a fully pipelined accelerator architecture
since we want to process a large number of queries efficiently and
each query is independent of other queries.

The vast amount of data required for the input values of each
query makes it inevitable to provide the accelerator with access to
the external memory on the FPGA board. We use the open-source
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Figure 15.3: Overview of the system architecture.

TaPaSCo framework [15], which provides a standardized memory
interface as well as an interface and host-side API for the integration
into a heterogeneous system (cf. Section 15.4.2).

Our accelerator architecture consists of four main components, de-
picted in Fig. 15.3. The controller is responsible for managing the
other components and provides the necessary TaPaSCo slave interface
(Section 15.4.2). Load and store unit together make up the memory
interface of the accelerator, described in more detail in Section 15.4.4.
The datapath implements the computation represented by the sum-
product network, see Section 15.4.3 for details on its construction.
Load unit, datapath, and store unit are decoupled by queues to al-
low for the latency-insensitive, independent operation of the different
components.

15.4.2 TaPaSCo & Heterogeneous system integration

In order to integrate our accelerator into a heterogeneous system,
we use the TaPaSCo-framework [15] that has been developed to fast-
track the prototyping of FPGA-based accelerators. TaPaSCo defines
AXI-based, standardized interfaces, which are used to control the
execution of the accelerator (slave interface) and provide the acceler-
ator with memory access (master interface). TaPaSCo also includes
an automated tool-flow to assemble multiple instances of these ac-
celerators (processing elements, PEs) into a complete top-level design,
called threadpool, which is then wrapped with the connectivity to host
and memory. Regardless of its composition, every threadpool can be
controlled by an unified software interface, the so-called TaPaSCO-API.
This API provides basic functions to transfer data to/from the device
and launch jobs on the accelerators in the threadpool.

To integrate our accelerator into the threadpool, we implement the
necessary interfaces. Our controller (cf. Fig. 15.3) implements an AXI4
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Figure 15.4: Intermediate representation of the SPN. Operators with n inputs
are split into balanced trees of operators with 2 inputs. Univari-
ate distributions are modelled by histograms Hi.

slave interface, which is used by TaPaSCo to transmit commands (e.g.
the start-command) from the host by reading/writing configuration
register values and control signals. Load and store unit in combination
implement an AXI4 master interface, which is connected to the external
memory on the FPGA board through the TaPaSCo infrastructure.
The implementation of this interface is described in more detail in
Section 15.4.4. The host can transfer data to/from the external memory
on the device by using the TaPaSCo API. Before the execution on the
FPGA starts, all sample data is transferred to the external memory on
the FPGA board. After the computation has completed, all result data
is transferred back to host memory.

We also use the API to control the execution of our accelerator in
the FPGA. This allows us to seamlessly integrate the offloading to the
FPGA accelerator into the host software for SPN inference.

15.4.3 Compile flow & Datapath architecture

Our automatic tool-flow that maps SPNs to FPGA accelerators starts
from a textual representation of the SPN, which describes the nodes of
the SPN, their individual configuration, and the connections between
the different nodes in the tree-structure of the SPN.

In a first step, we parse the textual input and construct a graph-
based intermediate representation of the SPN, as shown in Fig. 15.4
for the example SPN from Fig. 15.1. During the construction of the
graph IR, we decompose additions or multiplications with more than
two operands into balanced trees of two-input operators, as can be
seen for the three-input multiplication on the right side of the example
SPN.

As mentioned earlier in Section 15.2.3, the random variables with
univariate distributions at the leaf nodes of the SPN tree-structure
are modeled with histograms. Each histogram consists of multiple
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bins with corresponding probabilities, and the bins match adjacent
intervals of input feature values. If two neighboring bins share the
same probability value, our tool-flow merges these bins, resulting in a
bin which covers the two adjacent intervals of the original bins.

The configuration of the histograms is also part of another opti-
mization implemented in our tool-flow: The sample values stored in
memory are used to index into the bins of the different histograms.
Based on the largest possible value for the input features, which is
determined by the upper bound of the last bin, we can optimize the
input bitwidth. Across all histograms, we can calculate the minimum
number of bits n, necessary to represent the highest possible input
value, at compile time. All input values are then stored in memory
using n bits. This optimization reduces the pressure on the memory
interface, as less bandwidth is required to read the input values for
each sample from memory. If, for example, the highest possible input
values across all histograms was 212, we could represent all input val-
ues with only eight bit, reducing the memory bandwith requirement
by a factor of four compared to a generic representation with 32 bit.

Before we map the tree to hardware operators, we decompose
weighted adders into corresponding combinations of multipliers and
adders. In the next step, we now map the SPN tree structure to the
actual hardware datapath. As we aim for maximum throughput in
this first version of our synthesis tool, we use a fully-spatial, statically
scheduled microarchitecture for our datapaths. That is, every operation
in the SPN is implemented by its own operator module on the device,
and no resource-sharing occurs. For the scheduling of the fully-spatial
microarchitecture, a simple as-soon-as-possible strategy suffices to
obtain an optimal (concerning the latency) static schedule for the
datapath. Our pipelined schedule assumes that the memory interface
can provide an input sample in every clock cycle. However, depending
on the number of input features and the bitwidth of the memory
interface (cf. Section 15.4.4), this might not be the case. We therefore
introduce a shift register into our datapath, which keeps track of valid
samples in the pipeline to make sure we only write back correct output
values to memory.

For the pipelined implementation of the histograms at the leaf-
nodes of the SPN, we use a simple look-up table approach. The values
for each index are computed at compile time, and the discrete val-
ues of the input features are used to index the look-up table. The
arithmetic operations inside the tree (additions and multiplications)
are realized with pipelined operators from the FloPoCo-library [7].
Regarding the precision, a worst case scenario arises from the infer-
ence of a low-probability instance such as an anomaly or an outlier
data point evaluated on a shallow SPN consisting of one product
over all the univariate features. Furthermore, the number of discrete
values or bins in the look-up table can have a negative impact as
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LUT1 LUT5 LUT6 LUT7 LUT8 LUT2 LUT3 LUT4
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Figure 15.5: Example SPN mapped to HW operators. To balance the differ-
ent branches of the tree, some intermediate results need to be
preserved in shift registers. Look-up tables for the histograms
are indexed with the input feature values read from memory.

they represent a normalized distribution. This has a lower bound of
∏#features

i=0 min(histogrami(x)). To represent these values, which have a
very small magnitude, the whole computation within the datapath is
completely done in the FloPoCo floating point format, using 11 bits
for the exponent and 52 bits for the mantissa. Aside from subnormal
numbers, this format is equivalent to a double-precision floating-point
format. The final conversion to IEEE-754 double precision format for
use in the host is done right before the values are written back to
memory. In practice, the SPNs used in the experimental section did
not suffer underflows, however, bigger SPNs might have to do com-
putations in log-space. The size of the SPNs is limited to the FPGA
capabilities and implementing exp and log functions, would reduce
the size of the SPNs that we could implement on-chip.

The mapping to the hardware datapath for the example from
Fig. 15.1 is given in Fig. 15.5. The height of the operators in the
diagram indicates their scheduled start time, with the first time step
at the bottom. All look-up tables used to implement the histograms
are placed in the first time step and will be indexed by the discrete
values for the three input variables read from memory. As one can see
from the IR-graph in Fig. 15.4, the different branches of the tree have
different heights/latencies. We need to balance the different branches
to match partial results from the different branches at the merge points.
To this end, we insert pipelined shift registers into the datapath that
work as intermediate storages for partial results (labeled SR in the
diagram).
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15.4.4 Memory Interface

As explained in Section 15.4.2, TaPaSCo provides each processing
element, such as our accelerator, with a standardized AXI4-interface
which we use to connect our accelerator to the external memory on
the FPGA-board.

With our fully pipelined accelerator architecture, the goal is to feed
the pipeline with a new query every clock cycle. This requires an
efficient, pipelined load infrastructure, in particular as the number
of bits at the input of the datapath is typically higher than at the
output (due to the tree-structure of SPNs). For an efficient supply
of input data, we use AXI4 burst requests to read the query input
values from memory. The load unit computes the addresses for the
requests, relative to a base address configurable from the host. The
independence of the different AXI4 channels allows us to issue the
next burst request before all data from the current one has been sent,
resulting in a continuous stream of input data.

Inside the load unit, a re-alignment unit converts from the AXI4
data width (e.g. 512 bit in case of our evaluation on the VC709 board)
to the input width of the datapath. Here, we have to consider three
different cases: If the bitwidth of a sample matches the bitwidth of
the memory interface, we can simply forward the read data. If the
input bitwidth of the datapath is smaller than the memory interface
bitwidth, the realignment unit buffers the read data and forwards
chunks of appropriate size to the datapath. In case the bitwidth at the
input of the datapath exceeds the maximum bitwidth of the memory
interface, multiple beats must be buffered, before a complete sample
can be forwarded to the datapath. In all three cases, the realignment
unit was designed to forward a complete sample to the datapath as
soon as a sufficient amount of data was read/buffered. In the latter
case, the bitwidth of the memory interface limits the performance
of our accelerator, and we cannot start the computation for a new
sample in every clock cycle. After the computation inside the datapath
has completed, we need to store the results back to memory. Here
we buffer multiple output values and again use AXI4 burst requests,
which can be handled more efficiently by the memory interface, to
write back a batch of values.

15.5 experimental evaluation

15.5.1 Datasets

For the performance evaluation, we focused on datasets of count and
binary data types. For count data we used the NIPS2 corpus, contain-
ing 1,500 documents over the 100 most frequent words. For binary

2 archive.ics.uci.edu/ml/datasets/bag+of+words
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data we evaluated our implementation on a range of six different
datasets as pre-processed and provided by [17] and [23]. Accidents is a
dataset of traffic accidents in Belgium for the period 1991-2000. The
Audio dataset consists of information about users that listened or did
not listen to a set of top 100 artists. The Netflix dataset is a random
subset of the Netflix challenge, focused on the 100 most frequently
rated movies and whether a user rated a movie. The anonymized
MSNBC data contains information about whether a user visited a
top-level MSNBC page during a particular browsing session. The Na-
tional Long Term Care Survey (NLTCS) dataset contains variables that
measure whether a person can perform a set of daily living activities.
The Plants dataset indicates whether a given plant can be found in a
particular location.

15.5.2 FPGA implementation

For the evaluation of our FPGA implementation, we target a Xil-
inx VC709 evaluation board, containing a Virtex7-device (xc7vx690)
and 4 GiB of RAM. The heterogeneous system that we use for the
performance evaluation of the FPGA in Section 15.5.4 combines the
FPGA-board with an Intel i7 6700K CPU. We used Xilinx Vivado 2017.4
for the FPGA implementation with a target frequency of 200 MHz. The
results are given in Table 15.1. Column Cols gives the number of inputs
to the datapath, Adds and Muls give the number of two-input adders
and multipliers in the datapath and Depth indicates the depth of our
computation pipeline. Besides the achieved clock frequency, we also
state the resource requirements on the FPGA, for brevity those num-
bers are given relative to the entire FPGA in percent3. We encounter a
relatively low demand for BRAMs and a moderate usage of registers.
For the other numbers, the resource requirements roughly correspond
to the size of the network. This can be seen from the NIPS-examples
in particular: Here, we add an increasing number of input features
(i.e. words) to the SPN, resulting in a bigger network and thus in a
higher resource consumption.

Most of the examples achieve the target frequency, but in some
examples the routing to the DSP-blocks used for the realization of the
floating-point multiplication in FloPoCo becomes critical. We were
able to improve the routing by adding one or two more pipeline
stages to the multiplier; however, we see a notable degradation of the
operating frequency for NIPS80 and Netflix.

3 The absolute number of resources available are 433200 (LUT), 866400 (Register),
108300 (Slices), 1470 (BRAM) and 3600 (DSP), respectively.
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15.5.3 CPU & GPU Implementation

To have a complete performance comparison, we compiled the same
SPNs used in the FPGAs to both C++ and TensorFlow [10]. Both
implementations were executed on a Linux workstation with an AMD
Ryzen 1950X Processor, 128GB of RAM and an NVIDIA 1080Ti GPU
with 11GB of memory. We implemented the C++ version via code
generation, writing inlined functions with look-up tables for the leaves.
The rest of the SPN was expressed as a single function of additions
and multiplications of the leaf functions. We compiled the generated
C++ source code using GCC 7.2.0 and the flag -O3 and created two
versions, one with the flag -ffast-math enabled, called CPUF, and one
without it, called CPU. Both C++ implementations load all the data in
memory and evaluate each complete dataset 1000 times. We report the
average time for each instance of the dataset. For the GPU version, we
implemented a TensorFlow graph of additions and multiplications. For
the leaves, we used a look-up table implemented as a tf.gather operation
over placeholders containing the data. We then executed each complete
dataset 1000 times and measured execution times including data-
transfer to the GPU, just as for the heterogeneous system with the
FPGA.

15.5.4 Performance evaluation

To compare the performance of our FPGA implementation with the
CPU and GPU, we report two different execution times for the FPGA:
One only for the actual SPN computation, measured using a perfor-
mance counter (Cycle Counter) inside the accelerator, with the corre-
sponding actual time shown as (FPGAC). The second time (FPGA)
is measured on the host side and includes the time for data transfer
to/from the device memory and the launch of HW-execution. The
performance results are given in Table 15.2, Rows gives the number of
samples processed for each example. Besides the execution time in mi-
croseconds, we also report the throughput in samples per microsecond
(e.g. T-GPU).

The GPU performance clearly shows that the naive TensorFlow
parallelization model is not very suitable for the tree-structure of the
SPNs. The analysis of the traces shows that most lanes are only used
for a few operations and are idle most of the time. Additionally, a lot of
inter-lane communication takes place, as the computation of the tree is
spread across multiple lanes. This a general problem of the TensorFlow
GPU-model, which is tailored more towards neural networks, and
not linked to a specific GPU. The comparison of CPU and CPUF
shows that, except for the two smallest networks, the CPU execution
profits from the compilation with the fastmath-flag. Comparing the
performance of CPU and the FPGA performance counter, one can



168 automatic mapping of spn inference to fpgas

Table
1

5.
2:Perform

ance
com

parison.Best
end-to-end

throughputs
(T),excluding

the
cycle

counter
m

easurem
ents,are

denoted
bold.

D
ataset

R
ow

s
C

PU
(µs)

T-C
PU

(row
s/

µs)

C
PU

F
(µs)

T-C
PU

F
(row

s/
µs)

G
PU

(µs)
T-G

PU
(row

s/
µs)

FPG
A

C
ycle

C
ounter

FPG
A

C
(µs)

T-FPG
A

C
(row

s/
µs)

FPG
A

(µs)
T-FPG

A
(row

s/
µs)

A
ccidents

1
7
0
0
9

2
7
9
8.

2
7

6.
0
8

2
1
6
2.

5
9

7.
8
7

6
3
0
9
0.

9
4

0.
2
7

1
7
2
4
9

8
6.

2
5

1
9
7.

2
2

6
9
6.

0
0

24.44

A
udio

2
0
0
0
0

4
2
7
1.

7
8

4.
6
8

3
6
8
3.

7
1

5.
4
3

7
8
2
5
3.

4
6

0.
2
6

2
0
3
1
7

1
0
1.

5
9

1
9
6.

8
8

7
6
1.

0
0

26.28

N
etflix

2
0
0
0
0

4
8
9
2.

2
2

4.
0
9

4
0
9
8.

8
8

4.
8
8

6
7
1
7
2.

3
9

0.
3
0

2
0
3
2
2

1
0
6.

9
5

1
8
7.

0
0

6
5
4.

0
0

30.58

M
SN

B
C
200

3
8
8
4
3
4

1
5
4
7
6.

0
5

2
5.

1
0

1
2
7
1
3.

5
5

3
0.

5
5

6
2
3
4
9.

4
2

6.
2
3

3
8
8
9
0
0

1
9
4
4.

5
0

1
9
9.

7
6

5
0
0
8.

0
0

77.56

M
SN

B
C
300

3
8
8
4
3
4

1
0
0
6
0.

7
8

3
8.

6
1

9
4
1
8.

2
9

4
1.

2
4

5
0
5
5
8.

0
6

7.
6
8

3
8
8
8
1
0

1
9
4
4.

0
5

1
9
9.

8
1

4
9
3
3.

0
0

78.74

N
LT

C
S

2
1
5
7
4

7
9
1.

8
0

2
7.

2
5

6
8
7.

2
5

3
1.

3
9

3
5
5
4
4.

3
9

0.
6
1

2
1
9
0
4

1
0
9.

5
2

1
9
6.

9
9

5
6
6.

0
0

38.12

Plants
2
3
2
1
5

3
6
2
1.

7
1

6.
4
1

3
5
2
1.

0
4

6.
5
9

6
7
0
0
4.

4
1

0.
3
5

2
3
5
9
2

1
1
7.

9
6

1
9
6.

8
0

7
7
8.

0
0

29.84

N
IPS5

1
0
0
0
0

2
5.

1
1

398.31
2
6.

3
7

3
7
9.

2
3

8
2
1
0.

3
2

1.
2
2

1
0
2
3
6

5
1.

1
8

1
9
5.

3
9

3
3
7.

3
0

2
9.

6
5

N
IPS10

1
0
0
0
0

8
3.

6
0

119.61
8
4.

3
9

1
1
8.

4
9

1
1
5
5
0.

8
2

0.
8
7

1
0
2
7
9

5
1.

4
0

1
9
4.

5
7

4
6
4.

3
0

2
1.

5
4

N
IPS20

1
0
0
0
0

1
9
1.

3
0

5
2.

2
7

1
8
2.

7
3

54.72
1
8
6
8
9.

0
4

0.
5
4

1
0
2
8
5

5
1.

4
3

1
9
4.

4
6

5
4
3.

6
0

1
8.

4
0

N
IPS30

1
0
0
0
0

3
8
7.

6
1

2
5.

8
0

3
4
9.

8
4

28.58
2
5
3
5
5.

9
3

0.
3
9

1
0
3
0
8

5
1.

8
0

1
9
3.

0
6

5
9
2.

3
0

1
6.

8
8

N
IPS40

1
0
0
0
0

5
5
1.

6
4

1
8.

1
3

4
7
1.

2
6

21.22
3
0
8
2
0.

4
9

0.
3
2

1
0
3
0
6

5
1.

5
3

1
9
4.

0
6

6
3
2.

2
0

1
5.

8
2

N
IPS50

1
0
0
0
0

8
1
2.

4
4

1
2.

3
1

7
9
2.

1
3

1
2.

6
2

3
6
3
5
5.

6
0

0.
2
8

1
0
5
5
9

5
2.

8
0

1
8
9.

4
1

7
2
0.

6
0

13.88

N
IPS60

1
0
0
0
0

1
0
4
6.

3
8

9.
5
6

6
6
2.

5
3

15.09
4
0
7
7
8.

3
6

0.
2
5

1
2
2
7
1

6
1.

3
6

1
6
2.

9
9

7
9
9.

2
0

1
2.

5
1

N
IPS70

1
0
0
0
0

1
1
4
8.

1
7

8.
7
1

1
1
3
4.

8
0

8.
8
1

4
6
7
5
9.

2
6

0.
2
1

1
4
0
2
2

7
0.

1
1

1
4
2.

6
3

8
5
8.

6
0

11.65

N
IPS80

1
0
0
0
0

1
5
5
6.

9
9

6.
4
2

1
2
7
7.

8
1

7.
8
3

6
3
2
1
7.

9
9

0.
1
6

1
4
2
7
5

7
8.

5
1

1
2
7.

3
7

9
6
1.

8
0

10.40



15.6 conclusion and future work 169

see that, aside from NIPS5, the pipelined computation in the FPGA
outperforms the CPU implementation regarding execution time and
throughput. These values also demonstrate the effectiveness of our
pipelining: Especially for the cases with binary input data, we are able
to achieve an almost perfect pipelining, where we process a sample
per clock cycle (equivalent to a throughput of 200 samples (rows) per
µs). From the NIPS-examples, one can also see that the accelerator is
memory bound: With a larger number of input values, more data has
to be loaded from memory, and the pipeline cannot be fed every clock
cycle.

The comparison of the performance counter and the total FPGA
execution time including interaction in the heterogeneous system
shows that there is significant overhead for data transfers to/from
FPGA memory and the HW-launch. However, the FPGA is still able
to outperform the CPU for all binary examples and most of the larger
NIPS-examples (NIPS50, NIPS70, NIPS80), demonstrating the potential
of offloading the inference in SPNs to the FPGA, in particular for larger
SPNs. Note that for platforms having true shared memory between
the CPU and the FPGA, such as the Xilinx Zynq devices, or the Intel
HARP2 systems, these explicit data transfers between CPU and FPGA
memory can be completely avoided and the full speed-up (based on
the FPGAC measurement) realized.

15.6 conclusion and future work

We have presented the first FPGA-based accelerator architecture for
the inference problem in sum-product networks (SPNs), a deep ar-
chitecture for probability distributions. Our automatic synthesis flow
generates a fully-pipelined accelerator from an input description of
the SPN and also provides a software interface for interaction with the
accelerator in a heterogeneous system. The accelerator architecture fea-
tures pipelined access to the external memory on the FPGA-board and
double-precision floating-point computation. The results of our exper-
imental evaluation demonstrate that the pipelined computation in the
FPGA can outperform CPU- and TensorFlow-GPU-implementations,
almost processing a complete input sample per cycle for many exam-
ples.

There are several interesting avenues for future work. One could
extend our synthesis flow and hardware implementation for resource-
sharing of operators, in order to be able to map bigger networks. One
could also further optimize the arithmetic operators, e.g., by using
log-space computations, a very common arithmetic optimization in
the ML-domain. Another interesting research avenue is pre-compiling
a randomly generated structure and doing weight optimization in the
FPGA, with the aim of having a full implementation of a PGM in a
chip. If the random structure is large enough it could be retrained on
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different domains to fit any kind of data. This could also account for
domains with concept drifting. Finally, other potential usage scenarios
should be explored, such as computing mutual information, maximum
a posteriori estimation and approximate queries within databases. These
scenarios require fast processing of many input combinations but
require less data-transfer from host to FPGA.
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abstract

Large cloud providers have started to make powerful FPGAs available
as part of their public cloud offers. One promising application area
for this kind of instances is the acceleration of machine learning tasks.

This work presents an accelerator architecture that uses multiple
accelerator cores for the inference in so-called Sum-Product Networks
and complements it with a host software interface that overlaps data-
transfer and actual computation.

The evaluation shows that, the proposed architecture deployed
to Amazon AWS F1 instances is able to outperform a 12-core Xeon
processor by a factor of up to 1.9x and a Nvidia Tesla V100 GPU by a
factor of up to 6.6x.
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16.1 introduction

FPGAs have received increasing attention as a potential platform for
the implementation of application-specific accelerators for datacenter-
workload in recent years. As a consequence, large cloud providers
have started to make FPGAs available in their public cloud offers, such
as Amazon AWS with the F1-instances.

Next to genomics research, financial analysis and high-throughput
image and video-processing, FPGAs in the cloud are also used to solve
a wide range of machine learning problems. Starting with projects such
as Microsoft’s Brainwave [1, 4], FPGAs have established themselves
as a platform for the acceleration of machine learning tasks, next to
GPUs and custom ASICs such as Google’s TPU [5].

While much of the existing work on the acceleration of ML tasks on
FPGAs has been devoted to neural networks, e.g., for speech recog-
nition or image classification using convolutional neural networks
(CNN), a completely different problem is tackled in prior work such
as [12, 13], namely the inference in so-called Sum-Product Networks
(SPN).

Sum-Product Networks are one of the first models from the class
of Probabilistic Graphical Models that can provide tractable inference,
and, in contrast to neural networks, compute exact probability val-
ues. This difference also poses interesting challenges to the hardware
implementation with regard to the arithmetic precision, and many
optimization techniques often employed for the mapping of neural
networks to FPGA accelerators, such as weight quantization, cannot
be applied to Sum-Product Networks [13].

Yet, the evaluation in the prior work has shown some promising
results, with a pipelined datapath architecture and memory interface
outperforming CPUs and a Tensorflow-based GPU-implementation of
SPN-inference [12].

This work aims at extending the existing framework to efficiently
map and run the inference in Sum-Product Networks on the publicly
available FPGA cloud-offer Amazon AWS F1.

We present the following contributions:

• An extension to the open-source SoC generation framework
TaPaSCo [6] to support Amazon AWS F1. TaPaSCo is then used
to automatically generate all infrastructure necessary to run the
proposed accelerators on F1 and provides convenient software
interfaces.

• The existing SPN accelerator generator is extended to allow for
concurrent execution of multiple accelerators, promising better
resource utilization through overlapping processing and memory
transfers.
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• The software infrastructure is improved to incorporate the paral-
lel execution and preloading of data.

The paper is structured as follows: In Section 16.2, background on
Sum-Product Networks is given. Section 16.3 shows the existing frame-
work for the acceleration of SPN inference on FPGAs. Section 16.4
describes the accelerators, the implementation of support for Ama-
zon AWS F1 instances in TaPaSCo, and the extensions to the existing
framework and software interface. In Section 16.5, three different
SoC-architectures are evaluated with regards to their FPGA implemen-
tation. Additionally, the FPGA’s performance is compared with a CPU-
and GPU-based implementation of SPN-inference. Finally, Section 16.6
concludes this paper and gives an outlook to future work.

16.2 sum-product networks

Sum-Product Networks (SPN) [9] are a type of models from the class
of Probabilistic Graphical Models (PGM), which have received increasing
attention in recent time. PGMs capture statistical information and
relations over the variables in a dataset. By using probabilistic queries,
PGMs can then be used to solve a wide range of machine learning
problems, such as classification or regression. They can also be used
to derive statistical properties, such as marginals or conditionals, for a
given dataset and input values. For instance, on the NeurIPS corpus,
they can be used to compute the probability of different words to
occur with a certain frequency in a text.

In contrast to neural networks, which are the currently dominating
models in the machine learning (ML) domain, PGMs are capable of
computing exact probability values. However, earlier approaches to
probabilistic graphical models, such as Bayesian Networks or Markov
Random Fields, suffer from the fact that the inference in unrestricted
PGMs is intractable in general.

But Sum-Product Networks overcome this limitation and combine
the ability to compute exact probabilities with tractable inference in
linear time with respect to the network size [8]. SPNs not only allow to
efficiently solve classification or regression problems, but can also be
used to calculate additional properties of the underlying probability
distribution, such as entropy or mutual information. Examples for the
use of SPNs in real-world applications include classification of the
characters in a handwritten sequence [11], or path planning algorithms
for mobile robots [10]. Because SPNs compute exact probabilities,
they are also able to express uncertainty over their output in such
applications (e.g. in sequence labeling), a capability not present on
neural networks.
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Figure 16.1: Example of a valid Sum-Product Network, capturing the joint
probability distribution of the variables x1, x2 and x3.

16.2.1 Model Representation

Sum-Product Networks capture the joint probability distribution over
a set of random variables as a rooted, directed acyclic graph (DAG),
with three different kinds of nodes:

• Leaf nodes represent univariate distributions. For an efficient
mapping to the FPGA, these can be represented using histograms.

• Product nodes correspond to a factorization over independent
distributions, and are therefore always defined over different
scopes (i.e., random variables).

• Weighted sum nodes represent a mixture of multiple distribu-
tions over the same scope as a convex combination.

An example for a valid Sum-Product Network, which captures the
joint probability P(x1, x2, x3) for three random variables, is given in
Fig. 16.1.

16.2.2 Learning

Similar to many other machine learning models, the structure and
parameters of a Sum-Product Network can be learned from training
data. As a brief introduction, a short description of the top-down
learning algorithm proposed by Molina, Vergari, Di Mauro, Natarajan,
Esposito, and Kersting [7] follows. Next to this algorithm, a number
of other approaches to learn the structure and/or parameters from
data exists.

The algorithm’s recursive base case is reached, if only a single vari-
able is left. In this case, the algorithm learns a histogram representing
the univariate distribution of this variable.

If more than one variable is still left to process, the algorithm tries to
find independent sets of variables using a pair-wise, parametric inde-
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pendency test. If the test succeeds, a product node is created and the
algorithm recurses on the independent sets. If the independence test
fails, the training data is partitioned using clustering. This induces a
weighted sum node, where the weights correspond to the normalized,
proportional size of the associated clusters.

This work focuses on the inference process in a given, previously
trained and optimized SPN. Therefore, learning of the SPN structure
can happen offline on a traditional CPU.

16.2.3 Inference

As stated earlier, SPNs can be used to compute a range of different
probabilistic queries to solve different ML problems, such as multi-
class classification. However, independent of the actual probabilistic
query, the inference process boils down to a bottom-up evaluation
of the SPN graph with given (partial) evidence. By indexing the
histogram, the probability value associated with the given evidence
for the input variable can be determined. These probability values
are then propagated upwards through the tree. At product nodes, the
probabilities for the different child nodes are multiplied. In case of
a sum-node, the probabilities are first multiplied with the associated
weight and then summed up. Eventually, at the root node of the SPN,
the inference process will yield a single probability value as the answer
to our probabilistic query.

This work focuses on the computation of joint probabilities, which
corresponds to a single evaluation of the SPN with full evidence
per input sample. However, the datapath architecture could easily
be extended to support other kinds of probabilistic queries on SPNs,
for example to compute marginals, where the histograms for the
marginalized variables are replaced by the value 1. With the value
for joint probability and the result from a marginalized evaluation,
conditional probabilities can easily be computed as P(Y|X ) = P(Y ,X )

P(X )
.

16.3 prior work

To the best of our knowledge, the work we presented in [12, 13] is
the only work to date on the acceleration of SPN inference on FPGAs.
The goal of the prior work was the acceleration of the computation
of the joint probability over the variables represented by an SPN by
its evaluation, and was done by processing small batches of input
samples with high throughput.

To this end, an automatic flow that maps textual representations
of SPNs to fully custom datapaths is already available as a result
of the prior work. The generated datapath for an SPN captures the
computation tree represented by the SPN and is completely pipelined
by using a fully spatial implementation, where each operation in the
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SPN tree directly corresponds to a hardware operator in the datapath.
For the hardware operator implementation the FloPoCo framework
[2] is used, with a format similar to IEEE-754 double precision (apart
from subnormals).

The automatically generated datapath is supplied with data through
a pipelined memory infrastructure. The memory infrastructure uses
AXI4 burst requests to supply the datapath with a continuous stream
of input data from the DDR3-memory attached to the FPGA and writes
back results to memory. In both the load- and store-unit, a MIMO
(Multi-in-Multi-out) unit is used to translate between the external
AXI4 datawidth, and the internal input- and result bitwidth of the
datapath, respectively.

The open-source TaPaSCo-framework [6] is used to integrate the
accelerator core into a heterogeneous system. The automatic SoC com-
position capability of TaPaSCo can be used to automatically connect
the accelerator(s) to the FPGA’s external memory and the PCIe-based
host interface. Using the TaPaSCo software API, execution of the ac-
celerator(s) can be controlled and data, such as, input & results, can
be transferred between host memory and FPGA external memory.

16.4 extension for high-throughput inference

This work builds on the automatic mapping flow from [12] to gen-
erate pipelined datapaths for SPNs. In the current work, generated
datapaths are coupled with a completely new memory infrastructure,
designed from the ground up to support the simultaneous execution
on multiple accelerator cores, and concurrent data-transfers from/to
the host. Beyond that, to incorporate the necessary infrastructure,
the open-source TaPaSCo framework has been extended to support
Amazon AWS F1 instances, and provided with a new multi-threaded
SW-interface for simultaneous SPN inference.

Accordingly, the following sections describe the two necessary steps:
(1) Extend TaPaSCo with AWS capabilities. (2) Ensure multi-threading
compatibility by implementing a new, high-performance memory
infrastructure to feed the datapath.

16.4.1 Extending the TaPaSCo Framework for the Reconfigurable Cloud

Amazon’s first generation FPGA instances actually run in a virtual-
ized environment, with only limited access to the hardware. Amazon
uses the partial reconfiguration feature to split the area of the Virtex
UltraScale+ FPGA into an user accessible area (called custom logic)
and the so-called Shell. The Shell is provided by Amazon as an en-
crypted design checkpoint and acts as an interface between the custom
logic and the external peripherals such as the PCI Express interface
or memory. A DMA engine for data transfer between host and FPGA
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is provided by the Shell in the form of the Xilinx XDMA IP core.
However, TaPaSCo’s own DMA engine is used here, as it achieves
better throughput and requires fewer driver changes to be used.

The Shell provides up to 16 MSI based interrupts that can be used
by the developer. TaPaSCo, however, requires more than 16 interrupts
for optimal performance. A custom interrupt controller is thus used to
translate between the needs of TaPaSCo and the interfaces of the AWS
Shell. The interrupt controller has a FIFO buffer on each interrupt
input and an additional input for ACK signals coming from the Shell.
Furthermore, interrupts are ACKed from the host to avoid situations
where the interrupt service routine is already active, which would
result in dropped interrupts.

Each FPGA on an F1 instance has access to up to four channels
of ECC DDR4 memory, each with a size of 16 GiB. One channel is
provided by a MIG memory controller inside the Shell, while the MIGs
for the other three channels are placed inside the custom logic. The
developer can decide how many memory channels are enabled, offer-
ing the possibility to trade-off between a larger number of memory
channels, and the available area on the device.

Amazon does provide an Amazon Machine Image (AMI) for FPGA
development, which includes all required Xilinx tools and licenses.
For users, owning the required licenses, on-premise development is
supported as well. In both cases, the design flow ends with a design
checkpoint containing both the custom logic and the Shell. This design
flow differs in many ways from any existing flow in TaPaSCo, as
it includes writing out checkpoints for the custom logic, adding the
checkpoint of the Shell to the project, linking the custom logic and Shell
together, or adding a top-level wrapper provided by Amazon. The
Amazon design flow has now been integrated into TaPaSCo, so a final
checkpoint is created together with a mandatory manifest file, which
are then both sent to Amazon servers. There, in an automated process,
the submitted checkpoint is verified to not contain any combinatorial
loops or unrouted nets. On success, the bitstream can be referenced
by a globally unique identifier, which can in turn be used to load the
bitstream into a device.

As Amazon limits the power draw of the FPGA to 85 watts by
gating the clock to the custom logic should this limit be exceeded,
clocking was another important topic when integrating the F1 platform
into TaPaSCo. The Shell provides up to three different clock groups
with different, but not arbitrary frequencies. As the design space
exploration of TaPaSCo requires the design frequency to be varied
in 5 MHz steps, an additional clock generator (MMCM) is used. The
placement of that MMCM is tricky, however, as it cannot be placed
near the Shell’s MMCM, as this area is not accessible to user logic. This
suboptimal placement of the clocking resources put some additional
constraints on the design to optimize timing. For example the internal
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logic of all AXI Interconnects is always clocked by the Shell’s main
clock, even if the design clock is faster.

16.4.2 Improvements of the Accelerator Architecture

The existing memory infrastructure in the previous work was clearly
designed to provide the maximum memory throughput in a scenario
with only a single accelerator and where the execution of a job would
not start before the previous job had completed. As a result, the prior
load infrastructure would completely occupy the AXI4-bus by having
a high number of transfers with maximum burst length in flight,
ensuring that a continuous stream of input data gets supplied to the
datapath. On the other side of the accelerator, the data store unit did
not buffer many results, but would instead use long-lasting burst
requests, occupying the AXI4 write-channel for a long time.

This behavior is problematic, as the accelerator presented in this
work executes inference on multiple SPN instances simultaneously,
which requires overlapping of data transfer with accelerator execution.

First, the large number of incomplete memory transactions can lead
to deadlocks with the simultaneous execution of multiple accelerators:
If one core is blocked from writing because another core is occupying
the write channel, it will not be able to complete potentially incomplete
read transactions due to back-pressure in the datapath. If the core
occupying the write channel is blocked from reading due to the first
core’s outstanding read request, it won’t be able to compute the
results necessary to complete the write request, effectively resulting in
a deadlock.

The occupation of the write channel is problematic for another
reason: TaPaSCo uses a DMA engine to transfer data from the host
memory to the FPGA’s external memory. However, if the memory
interface’s write channel is occupied by the accelerator for a long time
span, the DMA engine cannot execute the transfer, forcing computa-
tion and data transfer to effectively execute sequentially.

To overcome this problem, a completely new memory infrastructure
for the accelerator is implemented. In the course of the re-design,
the input MIMO unit was moved to the datapath, in order to unify
the interface of the accelerator core across different Sum-Product
Networks.

The new load interface has fewer incomplete transfers in flight, and
now uses an internal buffer that allows to store a substantial amount
of input data. A new request is only issued if all data that will be
loaded in the course of this request can be buffered internally. In this
manner, it can be ensured that even if in the presence of back-pressure
from the store interface, all incomplete load requests can be completed
to avoid deadlocks. Additionally, this buffer allows the accelerator
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Figure 16.2: Multi-core architecture with single memory interface.

to continue its computation for some time, even if the current load
request incurs some delay.

The store interface is also redesigned to be able to buffer results for
a complete burst request internally. Only after enough results for a
complete burst request have been calculated, a new write request is
issued. Because all write data is available, the write request can be
completed in the shortest time possible, not only avoiding deadlock,
but also allowing the TaPaSCo DMA engine to transfer data in parallel
to the computation in the accelerator cores.

16.4.3 SoC Architecture

The TaPaSCo-framework, with the extensions described in Section 16.4.1,
is able to automatically construct and generate SoC-designs for the
F1 FPGA instances provided by Amazon AWS. The AXI4 slave inter-
face of the accelerator core, which is used for control signalling (e.g.,
launch execution) is attached to the PCIe-based host interface. The
AXI4 master interfaces of each core are automatically connected to the
memory interface of the FPGA’s external DDR-memory via a shared
bus. As described in the previous section, the SPN accelerator core
uses a single AXI4 master interface to read and write data and results
from/to external memory.

The obligatory Shell environment provided by Amazon as part
of the AWS F1 HDK by default contains a single interface to FPGA
external memory. For the baseline architecture a single SPN accelerator
core is connected to this interface via AXI4, allowing the accelerator
core to read and write data from/to the external memory. As described
in the previous section, the load/store interface of the accelerator
is re-designed in a way that allows to operate the DMA-unit used
by TaPaSCo to transfer data from host memory to FPGA memory
concurrently to the accelerator.

Although this baseline architecture is already a fully functional
accelerator for SPN inference, further improvements to the throughput
can be made: The vast amount of hardware resources available on the
Xilinx Virtex UltraScale+ devices, with which the AWS F1 instances
are equipped, allows multiple instances of the SPN accelerator cores,
which can compute multiple inferences simultaneously. In the multi-
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Figure 16.3: Multi-core architecture with four independent memory inter-
faces.

core architecture, depicted in Fig. 16.2, up to four SPN accelerator
are connected to the memory interface via a shared bus. Due to the
changes made to the memory infrastructure (see Section 16.4.2), the
different cores can now operate concurrently on the same bus.

However, depending on the number of input values of the SPN
and the memory bandwidth requirement that goes along with that
(remember that the datapath architecture is fully pipelined and can
process a new sample in every clock cycle), the single interface to
memory can become a bottleneck. To overcome this limitation, and
fully exploit the memory bandwidth provided by the four indepen-
dent memory banks on the Virtex UltraScale+ device, and additional
three more memory interfaces can be used. Just as in the multi-core
architecture, up to four SPN accelerator cores are connected to the four
memory interfaces via an AXI4 SmartConnect, depicted in Fig. 16.3.
Note that as long as the four accelerator cores access distinct memory
regions located on the different memory banks, they can be served
simultaneously through the SmartConnect, so this bus infrastructure
will not become a bottleneck.

16.4.4 Multi-threaded Software-Interface

The existing host software uses the TaPaSCo software API to launch
the entire computation in a single, large job. However, to fully ex-
ploit the available throughput, the software interface needs to reflect
the multi-core architecture in the FPGA-hardware and launch multi-
ple, independent jobs that execute concurrently on the different SPN
accelerator cores.

Although it would be sufficient to launch four independent jobs in
different threads, there are more improvements to be had: In the prior
work, the overhead for transferring data between host- and FPGA-
memory turned out to be relatively large and contributed significantly
to the overall execution time.

Therefore, a goal is to extend the software interface to allow overlap-
ping of computation on the SPN accelerator cores and data transfer to
reduce the overall execution time of SPN inference. The computation
is split into independent blocks (chunks), which can be independently
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Figure 16.4: Block-wise execution overlapping actual computation and data-
transfer between host- and FPGA-memory.

preloaded. Fig. 16.4 shows how computation and data transfer are
overlapped with this change: While block n is computed on the FPGA
SPN accelerator core 1, the input data for block n + 1 is concurrently
transferred to the FPGA memory by another thread. As soon as the
computation of block n is completed, the computation for block n + 1
can start, while the results for block n are copied back to host memory.
At the same time, the same execution scheme can be used for another
block of samples on another SPN accelerator core.

This execution scheme is implemented based on the TaPaSCo soft-
ware API using OpenMP on the host, the block size and number
of threads are configurable parameters for the host software. As de-
scribed in the previous section, it is important that the different SPN
accelerator cores operate on distinct memory regions located on dif-
ferent memory banks. To ensure this behaviour, each host thread has
fixed device memory addresses to evenly distribute the workload
across the different SPN accelerator cores in the multi-core architec-
tures (cf. Fig. 16.2 & Fig. 16.3).

16.5 evaluation

16.5.1 Benchmarks

The approach is evaluated through a set of eight different benchmark
SPN models derived from the NeurIPS corpus [3], which has also been
used before for evaluation purposes in [12, 13].

The SPN networks derived from the NeurIPS corpus capture sta-
tistical properties about the number of occurrences (frequency) of
different words in the texts contained in the corpus. Using inference
in this networks, it is for example possible to compute the probability
that certain words each occur with a specific frequency in a text.
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The increasing number of inputs of the networks in the benchmark
make them particularly interesting for the evaluation: Not only does
the required memory bandwidth increase with the number of inputs,
but also the size of the SPN networks themselves increases, leading to
more computational demand and, with the fully spatial implementa-
tion of the datapaths, also more FPGA resource consumption.

All the following performance evaluations have been performed
using a dataset containing ten million samples per benchmark.

16.5.2 FPGA Implementation

The FPGA resource usage and implementation results are evaluated by
implementing each of the three different SoC-architectures described
in Section 16.4.3 for each of the benchmarks on the xcvu9pflgb2104-
2 FPGA, with which the Amazon AWS F1 instances are equipped.
Xilinx Vivado version 2018.3 and TaPaSCo version 2019.10 (pre-release),
extended as described in Section 16.4.1, are used. All reported numbers
are taken from the post-place&route reports generated by Vivado. The
resource usages for each SoC-architecture and each benchmark are
given in Fig. 16.5. For brevity, the numbers are given relative to the
number of available resources. For reference, the VU9P FPGA has in
total 148× 103 CLB, 2× 103 BRAM and 7× 103 DSP.

Even with a single memory interface and only one SPN acceler-
ator core, the design already requires a significant amount of logic
resources (CLB), partially also due to the obligatory AWS Shell and
basic platform components (e.g., PCIe interface). However, there is
still sufficient headroom left to implement multiple SPN accelerator
cores. The operating frequencies for this configuration reach up to 410

MHz.
The resource usage increases noticeably for the first multi-core

architecture, which uses up to four SPN accelerator cores coupled
with a single memory interface. For the two largest networks, NIPS70

and NIPS80, only three accelerator cores fit onto the FPGA device. The
DSP usage correlates linearly to the number of SPN accelerator cores,
but for the other two kinds of resources, the relative increase is much
smaller: Logic resources (CLB) required increase just by a factor 1.5x
to 2.13x, and only between 1.2x and 1.4x more BRAMs are used. The
higher resource usage also results in a noticeable degradation of the
operating frequency, with this configuration the highest achievable
frequency is 370 MHz.

When using four memory interfaces in the multi-core architecture,
the available resources limit the number of SPN accelerators that can
be implemented for some examples: For NIPS50 and NIPS60 only
three cores fit the device and for NIPS70 and NIPS80 only two cores
can be placed. Regarding the resource usage, the increase compared
to the baseline architecture with one core and one memory interface
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is comparable to the first multi-core architecture. The number of DSPs
used scales linearly with the number of SPN accelerator cores, CLBs
increase by factor 1.6x to 2.2x and BRAM usage increases by 1.43x to
1.6x. The direct comparison of the two multi-core architectures shows
that the additional memory interfaces only consume a relatively small
number of resources.

However, with four memory interfaces, three of them are imple-
mented in the custom logic. Here, timing closure can become prob-
lematic. The achievable frequency drops by 30%-50% across all bench-
marks, partly because of the high resource usage (more than 80% of
logic resources for most examples) and the IO-restricted locations for
the memory interfaces.

16.5.3 Performance Evaluation

In this section, the performance of the three different architectures is
compared to CPU- and GPU-based implementations. Furthermore,
the FPGA-implementations have different choices for block-size and
number of threads to determine the optimal configuration (cf. Sec-
tion 16.4.4). For brevity detailed charts have been omitted. For most
benchmarks, a block-size of 400,000 samples per block, and three
to four host software threads per SPN accelerator result in the best
performance.

16.5.3.1 CPU Baseline

For the CPU baseline, a custom C++ compilation flow is used, sharing
some of the infrastructure (intermediate representation, parser) of the
datapath generator. The flow automatically generates optimized C++
code for each example and invokes the compiler (gcc) with flags -O3

and -ffast-math. To efficiently parallelize the workloads, the data-
set is split into blocks, which can be processed concurrently using
OpenMP with twelve threads on a 12-core Xeon E5-2680 v3 CPU of
the Lichtenberg high-performance computing cluster.

16.5.3.2 GPU Baseline

The evaluation in prior work [12] showed that Tensorflow, tailored
towards standard neural networks, is not able to efficiently map the
inference in SPNs to GPUs. Therefore, for a fair comparison, a custom,
optimized CUDA compilation flow, again based on the common in-
frastructure we developed, is used. Within each block, the processing
of samples is parallelized across the available GPU processing units.
Eight threads on the host CPU are utilized to parallelize processing
of blocks. The evaluation is done on the top-end Nvidia Tesla V100

GPUs available in the Amazon AWS cloud with CUDA version 9. The
evaluation shows that our custom SPN-to-CUDA compilation flow
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Figure 16.6: Samples processed per second by the CPU, GPU and the FPGA
architecture for increasing problem sizes. For very small problem
sizes, the CPU is faster as the transfer overhead to PCIE-based
accelerators is dominant. However, for larger problem sizes, the
FPGA pulls ahead. The GPU cannot keep up with either of the
other two competing approaches.

improves the throughput by a factor of up to 109x (geo.-mean 96x)
over the original Tensorflow-based mapping.

16.5.3.3 Performance Comparison

Fig. 16.6 shows the throughput of the CPU- and GPU-baseline and the
three different SoC-architectures.

Even though the performance of the GPU-baseline improves up
to factor of 109x over the old Tensorflow-based baseline, the GPU is
still left behind and provides the least throughput. The computational
density of the SPN inference in the examples is not sufficient to
compensate for the data-transfer overheads and fully exploit the GPU’s
computational power. This can also be seen in our observation that
the GPU performance is almost independent of the SPN network size.

In contrast, the CPU performance is highly dependent on the net-
work size, and decreases as the number of operations in the SPN’s
tree increases. Still, for small examples, the CPU provides the best
throughput of all architectures, since it does not incur data transfer
overheads.

The baseline FPGA-architecture with a single SPN accelerator core
and memory interface is outperformed by the CPU for the examples
up to NIPS30, but for larger networks, the pipelined processing yields
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significant speedups of up to factor 1.6x (geo.-mean 1.01x) over the
CPU, and 4.6x over the GPU (geo.-mean 4.3x).

Despite using up to four cores with only a single memory interface,
the first multi-core architecture is also able to outperform the CPU
by a factor of up to 1.47x (geo.-mean 0.99x) for larger examples and
the GPU by a factor of up to 5.15x (geo.-mean 4.23x) on all examples.
The overall performance is slightly lower compared to the single-core
architecture due to the operating frequency drop (cf. Section 16.5.2)
and the saturation of the memory interface. Therefore, the DMA
transfers of data from/to host and computation effectively happen
sequentially, leading to a degradation in performance, in particular
for the larger examples.

With up to four SPN cores and four distinct memory interfaces
in the second multi-core architecture, the FPGA is already on par
with the CPU for NIPS20 and even more significant speedups can be
observed for all bigger networks. The speedup reaches as high as 1.9x
over CPU (geo.-mean 1.28x) and 6.6x over GPU (geo.-mean 5.47x).

When directly comparing the baseline FPGA-architecture with the
second multi-core architecture with up to four SPN cores and four
distinct memory interfaces, it can be seen that the performance advan-
tage decreases for the larger networks. Whereas the relative speedup of
the multi-core architecture is 1.7x for NIPS10, it decreases to only 1.15x
for NIPS80. This is due to the fact that four SPN cores do not fit on the
device for the larger examples (cf. Section 16.5.2), and the high penalty
on the lowered operating frequency incurred when using four distinct
memory interfaces. Note that this is most likely an artifact specific to
the AWS F1 system architecture. Still, this multi-core architecture is
the best performing FPGA accelerator architecture.

16.6 conclusion & outlook

This work presents an accelerator architecture, based on a framework
developed in prior work, for the efficient inference of so-called Sum-
Product Networks on FPGA instances in the cloud based Amazon
AWS F1 instances.

The open-source TaPaSCo-framework has been extended to support
Amazon AWS F1 instances, enabling automatic SoC generation based
on the proposed accelerator including integration into a heterogeneous
system.

To make use of the resources available on the FPGA-instances, three
different architectures have been investigated that allow concurrent
processing on multiple accelerator cores. This required a re-design of
the accelerator memory interface compared to prior work. Lastly, the
accelerator architecture is complemented with a multi-threaded host
software interface that is able to efficiently overlap data-transfer and
actual computation in order to improve end-to-end execution times.
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The evaluation shows that the developed architectures are able to
outperform a 12-core Xeon CPU and a Tesla V100 GPU by up to a
factor of 1.9x and 6.6x, respectively.

In the future, we plan to extend the mapping toolflow with the
ability to share operators between multiple operations in the SPN
graph, allowing us to map even bigger networks to FPGAs.

The extension to the TaPaSCo-framework developed in the course of
this work will also become an official part of the TaPaSCo open-source
release on Github [14]. Just as any other platform in the TaPaSCo-
framework, the AWS support will allow to automatically compose a
SoC-design around any accelerator core with a suitable AXI4-interface
and connect to it from the host CPU via the TaPaSCo software API.
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abstract

Probabilistic Graphical Models (PGM) have recently received increas-
ing attention for various machine learning tasks and approaches for
their acceleration on FPGAs have been presented.

In this work, we investigate three different arithmetic formats,
namely customized floating-point, Posit and logarithmic number sys-
tems with regard to their suitability for the inference in PGMs, specifi-
cally so-called Sum-Product Networks (SPN). Based on results from
an automatic design-space exploration developed in this work, we
implement hardware arithmetic operators for each format, optimized
for SPN inference.

Our evaluation shows that the choice of the most area-efficient
solution depends on the relation between the numbers of adders
to multipliers in the network. Up to 57% and 68% of Slice and DSP
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reductions, respectively, could be obtained compared to previous work.
With regard to performance, all formats achieve similar results and
outperform CPU and GPU-based implementations of SPN inference
by factors up to 12x and 4.6x, respectively.

17.1 introduction

Next to GPUs and custom ASICs, such as Google’s TPU, FPGAs have
established themselves as a succesful implementation platform for the
acceleration of machine learning (ML) tasks, in particular for inference.
Besides numerous works on the acceleration of the inference in neural
networks, for example convolutional neural networks (CNN) for com-
puter vision applications, new approaches to accelerate inference in
probabilistic models on FPGAs have recently been presented.

One such approach for the inference in so-called Sum-Product Net-
works (SPN) was developed in [26, 27, 29]. Compared to neural net-
works, Sum-Product Networks, which belong to the class of tractable
Probabilistic Graphical Models (PGM), can better deal with missing
input features and, as SPNs compute exact probability values, are also
able to express uncertainty over their outputs.

However, this ability also poses new challenges to the implemen-
tation of such networks on FPGAs. In [26, 27], the authors used a
double-precision floating-point format to preserve accuracy. Such an
arithmetic format is expensive to implement on FPGAs. Therefore,
in this work, we seek to optimize the hardware arithmetic operators
to reduce resource usage, while preserving sufficient accuracy. To this
end, we will investigate three different arithmetic formats, namely
“traditional” but customized floating point, logarithmic number sys-
tem (LNS) and Posit, with regard to their suitability for FPGA-based
accelerators for SPN inference.

We exploit an automatic and efficient design-space exploration (DSE)
flow, based on software-only emulation of the arithmetic formats
for SPN inference, to determine the minimal bit-widths required
to preserve accuracy with each of the formats prior to hardware
generation.

Based on the findings from our DSE, we then implement hard-
ware arithmetic operators for each of the three investigated arithmetic
formats, optimized for the inference in Sum-Product Networks on
FPGAs. The optimized arithmetic operators are used to generate fully
pipelined datapaths, which are integrated into a SoC-design provid-
ing the host-CPU software interface. In our extensive evaluation, we
investigate which arithmetic format is most suited for SPN inference
on FPGAs and compare the performance of the generated datapaths
with CPU and GPU-based implementations of SPN inference.
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17.2 spn background

Sum-Product Networks [22] belong to the class of probabilistic models,
which can be used for a range of different machine learning tasks.
As they are also able to take the statistical nature of the data into
account, and deal well with uncertainty and missing features, this
class of models has received increasing attention recently.

After a probabilistic model has been trained from data, different
machine learning problems, such as classification and regression, can
be solved by using probabilistic queries on the trained model. An
example for such a query would be to determine which news-article a
user is most likely interested in, based on information on whether or
not he or she has looked at other articles before.

In comparison with other probabilistic models and other ML-techniques,
such as deep neural networks, SPNs exhibit a number of interesting
characteristics, that makes them attractive for use in a range of different
applications. For example, SPNs have already been used succesfully
for sequence labeling [24], i.e., classifying the characters in a hand-
written sequence, or in path planning algorithms for mobile robots
[23].

One very important property of SPNs for their practical usage is the
efficiency of the inference: While in general, inference for unrestricted
PGMs is intractable, the inference in SPNs is guaranteed to be linear
w.r.t. the number of nodes [3, 22]. This tractable inference is key to
efficiently answering probabilistic queries in practical applications.

Another interesting property of SPNs is their expressiveness: From
mixture models, which can easily be represented by a shallow Sum-
Product Network with a single sum-node, SPNs inherit the universal
approximation property [20]. This means that Sum-Product Networks
can represent any prediction function, similar to deep neural networks.

One of the most interesting properties about Sum-Product Networks,
that also makes SPNs stand out from other ML-techniques such as
deep neural networks, is the precision of the inference process. Whereas
neural networks generally compute approximate values, Sum-Product
Networks are instances of Arithmetic Circuits [30] and therefore facili-
tate the computation of exact probability values. Beyond more precise
answers to queries, this also offers the advantage that the inference
process can be combined with anomaly detection by comparing the
respective probabilities from different SPNs, and also better account
for the statistical nature of the data.

In this work, we focus on the inference process in a pre-trained
SPN. In this case, the learning has taken place offline on a traditional
CPU-based machine.
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Figure 17.1: Example of a valid SPN representing the joint probability
P(x1, x2, x3, x4).

17.2.1 Model Representation

A Sum-Product Network captures the joint probability P(X, Y, Z)
over a set of variables {X, Y, Z} in the form of a rooted, directed
acyclic graph (DAG). An example for a valid SPN over the variables
{x1, x2, x3, x4} can be found in Fig. 17.1. The graph representation of
SPNs is composed from three different kinds of nodes, with some
additional restrictions to guarantee the validity of the SPN:

• Leaf nodes represent univariate distributions over a single vari-
able. In this work, based on the approach proposed by Molina et
al. [19], we represent these univariate distributions by histograms
for an efficient mapping to the FPGA.

• Factorizations over independent distributions are represented
by product nodes in the graph. The child nodes of a product
node are defined over different scopes, i.e., each sub-tree uses a
distinct set of variables.

• Mixtures over distributions defined over the same set of variables
are represented by sum-nodes, where each child node is addi-
tionally associated with a weight. The child nodes of a sum node
are defined over the same scope, i.e., the same set of variables
appears in each subtree.

17.2.2 Inference

The inference process depends on the kind of probabilistic query that
should be answered. Common to all kinds of inference is the bottom-
up evaluation of the SPN graph, eventually yielding a probability
value at the root of the graph.

The most basic kind of inference in an SPN is the joint computation,
yielding the joint probability for given input values, i.e., full evidence.
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In the first step, the leaf nodes are queried with the value of the
associated input variable, yielding a probability value. In this work,
the univariate distributions at leaf nodes associated with an input
variable are modeled using histograms, which are simply indexed with
the input value. The resulting probability values are then propagated
upwards through the tree. At product nodes, the child node values
are multiplied with each other. When a sum node is reached, the child
node values are first multiplied with the corresponding weight and
then summed up.

Marginalization [20] of variables is another possible kind of query
that can be answered by inference. To this end, the leaf nodes as-
sociated with the marginalized input variables are replaced by the
probability 1. The remaining leaf nodes are just queried with the
associated input values from the partial evidence. The rest of the
inference process is identical to the joint computation. Through the
combination of joint computation and marginalization, it is also possi-
ble to compute conditional probabilities using the following equation,
where the numerator of the fraction corresponds to the joint computa-
tion and the denominator can be computed by marginalization of Y:
P(Y|X) = P(Y,X)

P(X)
.

In this work, we focus on joint computation, but the datapath ar-
chitecture can easily be extended to support other kinds of inference,
such as marginalization.

In prior work, accelerators for the inference in other Probabilistic
Graphical Models such as Bayesian Networks (BN) [1] or Markov
Random Fields (MRF) [5] were developed. However, as discussed in
the previous section, the inference in these kinds of PGMs differs
significantly from Sum-Product Networks and the techniques used in
these works cannot be applied to SPNs without further ado.

To the best of our knowledge, the only approach to accelerate SPN
inference on FPGAs was presented in [26, 27]. In this work, we seek
to extend the automatic toolflow from this work with three different
arithmetic formats.

17.3 arithmetic number formats

17.3.1 Fixed Point

Fixed-point arithmetic can be implemented very efficiently in FPGAs.
Yet, we do not consider fixed-point further in this work, because with
SPNs, very small numbers can still represent significant results. In [19],
the authors reported on relevant log-likelihoods as small as −144 and
a first analysis of the dynamic range of the results of our benchmark
networks showed that the smallest numbers are as small as 1.85 · 10−88.
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As each number can also be as large as one, at least 292 bits would be
necessary to encode this number. A binary multiplier of corresponding
size would require over 200 DSP-slices and is thus not a viable option.

The fact that such small numbers can still be significant for the
outcome of the SPN and the result of the ML-task is also the reason
why we use comparisons in log-space to compute the deviation from
reference results in the rest of this work.

17.3.2 Floating Point

As motivated above, for applications requiring a large dynamic range,
the word length w of fixed-point numbers may get excessively large.
Floating point (FP) numbers provide a much wider dynamic range,
at the cost of a reduced precision, for the same number of bits. An
FP number X according to the IEEE 754 standard is represented as
X = (−1)s × 1. f × 2e−e0 , where s is the sign bit (0 for positive, 1 for
negative), f is the fraction and e is the exponent field. The exponent
field e is a we bit unsigned integer that represents the signed exponent
e− e0, where e0 is called the bias defined as e0 = 2we−1 − 1. As the
FP format is normalized such that the leading bit of the significant is
equal to ‘1’, only the fractional bits of the mantissa are stored in wm

bits.

17.3.3 Posit

The Posit arithmetic format is a comparably young format, introduced
in 2017 as an implementation of type-3 unum (universal number)
arithmetic [12]. The Posit format is characterized by two parameters,
the total number of bits in the format w and the number of bits used
to represent the exponent wes.

As shown in Fig. 17.2, the Posit number representation is composed
of four parts.

Negative numbers are encoded as 2’s complement where the most
significant bit (s) indicates the sign of the number.

The next component, the so-called regime, distinguishes Posit from
traditional floating point formats. The regime is represented using
a variable run-length (or thermometer) encoding, i.e., a sequence of
bits with identical value terminated by a bit of the opposite value,
where the length of the sequence represents the encoded value. As
an example, the sequence 0001 encodes the value −3, whereas the
sequence 110 encodes the value 2.

The third component, the exponent, is encoded as a binary number
using a fixed size of wes bits. In contrast to IEEE754 floating point, the
exponent only encodes positive numbers and no bias is used.

The last component is the mantissa, which is stored just as in IEEE754

floating point, with an implicit leading 1 omitted. The mantissa occu-
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s Regime Exponent Mantissa

wr bits,

variable run-length encoding
wes bits Remaining wm bits

w bits

Figure 17.2: Posit binary format.

pies the remaining wm bits, that are left after the run-length encoding
of the regime and the fixed-size exponent.

Because the length of the regime is only limited by w − 1, the
mantissa and also the exponent may not be present at all.

Given the sign bit s, a regime value r, the exponent e and the man-
tissa f , the number represented in Posit can be computed as follows:
(−1)S × useedr × 2e × 1. f , where useed = 22wes . As an example, with
w = 7 and wes = 2, the bit-sequence 0 01 11 10 encodes the decimal
value (−1)0 × (222

)−1 × 23 × 1.102 = 0.75.
Multiple previous works have developed Posit arithmetic hardware

operators for FPGAs. While [15] and [21] found that Posit incurred a
significant area overhead over traditional floating point, the operators
developed in [4] required resources comparable to FP implementations
and for the particular application investigated in this work, floating
point could be replaced with a smaller bit-width and more area-
efficient Posit format. As only the operators from [15] are available
open-source, we build on this library for the implementation of the
Posit hardware operators in this work. We extend the operators to
meet our requirements as described in Section 17.5.3.

17.3.4 Logarithmic Number System

Originally, Logarithmic Number Systems (LNS) were developed as an
alternative to floating point numbers. The general idea behind LNS is
that instead of storing a real number as a combination of an integer
exponent and a fixed-point number, only the logarithm log2(A) = EA
is stored as a fixed-point exponent. In general purpose applications,
LNS-numbers are then encoded as follows: A = −1SA × 2EA and a flag
is used for zero values [6, 14].

Due to the logarithmic nature of the encoding, all calculations are
performed in a logarithmic scale. Thus, logarithmic properties apply
and log2(a× b) = log2(a) + log2(b), greatly simplifying multiplicative
calculations.

In contrast to this, additive arithmetic operations become more
complex. Assuming that x > y holds, addition and subtraction are
given by log2(x± y) = log2(x)+ log2(1± 2(log2(y)−log2(x))). The second
part of the equation is usually implemented through a helper function
h, and the allowed interpolation error determines how this function
is implemented in hardware. In this work, we adapt the approach



198 comparison of arithmetic number formats for spn inference

from [29], which was optimized for SPNs and uses a quadratic spline
interpolation for h.

17.4 design-space exploration using software emulation

A fair comparison of the three arithmetic formats considered requires
that the individual parameters of the different formats (e.g. overall
bitwidth) are optimized as much as possible.

To this end, prior work such as [25] has often used theoretical worst-
case analyses based on error-models for fixed- and floating-point
arithmetic operators. However, these analyses tend to overestimate
the error that occurs during actual computation. Besides that, error
analysis models for Posit and LNS are not readily available and many
of the application-specific optimizations to the hardware operator
implementations described in Section 17.5 cannot easily be modelled
in such error models.

Therefore, we take a different approach: Using a C++-based soft-
ware emulation of the individual SPN and the different arithmetic
formats, the design-space is traversed to determine the best viable
configuration for each arithmetic format on a per-benchmark basis.
We use the available benchmark data to run the software emulation
with each configuration and only accept a configuration, if it maintains
a given error-threshold. As the representativeness of the training data
is key to the ML training itself, the design-space exploration will yield
configurations that work for all relevant input combinations. This
approach is also common when quantizing neural networks [13].

17.4.1 Implementation

Using a graph-based intermediate representation and an abstract
syntax tree (AST) infrastructure, we generate C++ code emulating the
behavior of each of the different arithmetic formats in hardware as
closely as possible.

The design-space of possible configurations is then automatically
traversed. For each configuration, we generate and compile the C++
code and run the SPN inference on a CPU. If the maximum error does
not exceed the configurable error threshold, we accept the configura-
tion.

The performance of the DSE can be improved significantly by in-
vestigating multiple configurations in parallel and additionally paral-
lelizing the CPU-based execution using OpenMP. This way, we could
reduce the time required to determine the correct floating-point config-
uration for the largest benchmark instance NIPS80 from 656 seconds
to only 138 seconds.
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Table 17.1: Configuration of the three arithmetic formats for each of the
benchmarks maintaining an error of 1× 10−6.

FP Posit LNS

Benchmark we wm w wes wI wF h-Error

Accidents 8 26 36 4 7 32 21.5

Audio 9 28 36 4 8 30 20.5

MSNBC 200 8 26 32 4 7 31 19.5

MSNBC 300 8 24 32 4 7 31 20.5

Netflix 9 26 36 4 8 30 20.5

NLTCS 7 26 32 3 6 30 19.5

Plants 8 28 36 5 7 31 20.5

NIPS5 7 24 30 3 5 26 18.5

NIPS10 7 24 32 3 6 27 20.0

NIPS20 8 24 34 3 7 29 19.5

NIPS30 8 26 34 4 7 29 19.5

NIPS40 9 26 34 4 7 30 19.5

NIPS50 9 26 34 5 8 30 19.5

NIPS60 9 26 36 5 8 30 19.5

NIPS70 9 26 36 5 8 30 20.5

NIPS80 10 26 36 5 9 31 19.5

17.4.2 Accuracy Results

For the following accuracy evaluation, an error threshold of 1× 10−6

was used. Note that we compute the error in log-space to determine
the error independently from the magnitude of the values. For each of
the arithmetic formats, different parameters can be chosen: For floating
point, the number of bits in the mantissa (wm) and the exponent (we)
can be configured. The Posit format is parameterized by the total
number of bits (w) and the number of bits used for the exponent (wes).
The LNS format can be configured by three parameters: The number
of integer (wI) and fraction (wF) bits in the fixed-point format of the
exponent and the maximum error allowed for the interpolation (Error)
of the helper function h used in LNS-addition.

The configurations identified through our design-space exploration
for each benchmark can be found in Table 17.1. The plots in Fig. 17.3
show how the maximum error develops across different configura-
tions for each arithmetic format in the NIPS80 benchmark, the largest
instance in our benchmark set.

For floating point, a minimum number of exponent bits (we) is
required to be able to represent small but significant values in the
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Table 17.2: Comparison of the per-operator resource requirements and
pipeline depth, using configurations for NIPS80 (cf. Table 17.1).

Format Op. Slice DSP BRAM pipeline depth

FP
Adder 106 0 0 5

Mult. 86 2 0 5

Posit
Adder 374 0 0 7

Mult. 340 4 0 12

LNS
Adder 757 20 1.5 64

Mult. 36 0 0 3

first place. Beyond that, a certain number of mantissa bits (wm) is
required to represent numbers sufficiently accurate so the error will
not accumulate beyond the error threshold.

With Posit, a minimum number of bits for the exponent (wes) and
the total size of the format (w) is required. However, if the size of the
exponent is increased beyond that minimum number, the total number
of bits also has to be increased, otherwise the number of bits remaining
for the mantissa (max. w−wes− 3) is no longer sufficient. So for Posit,
the sweet spot is reached when wes is just large enough to encode all
relevant exponents.

The direct comparison of floating-point and Posit shows, that the
total bitwidth of the formats is typically relatively close. This result
aligns with the findings in [8]. The probabilistic values computed
inside the SPN tree are very small, and lie outside of the golden range
identified in [8]. In that range, relatively small Posit formats can be
used to replace significantly larger floating-point formats.

The LNS format will only produce correct results, if the number of
integer bits (wI) is sufficiently large to represent all relevant exponents,
therefore the plot in Fig. 17.3c shows the development of the error
depending on the fraction bits (wF) of the exponent and the interpola-
tion error of the addition helper function h for wI = 9. The number
of fraction bits must be sufficiently large to represent numbers with a
certain accuracy and, at the same time, the allowed interpolation error
of h must be sufficiently small so the LNS addition does not introduce
excessive error.

17.5 implementation of hardware arithmetic operators

Based on the findings from the automatic DSE presented in the previ-
ous section, specialized hardware arithmetic operators for SPN infer-
ence were developed. This section details the implementation for each
arithmetic format. An overview of the resource requirements of the
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Figure 17.4: FP Adder dual path mantissa processing

individual operators can be found in Table 17.2. The operators were
designed as drop-in replacement for the operators in [26] to enable
reuse of the automatic toolflow in this work.

17.5.1 Floating Point

The floating point implementations used in this work are based on
the FloPoCo tool [9] which was extended for the specifics of SPN. All
of our extensions have been made publicly available in the FloPoCo
git repository [7]. Note that subnormal numbers are not supported in
FloPoCo as they are very costly to implement and the loss in dynamic
range can be easily compensated by adding one additional mantissa
bit.

17.5.1.1 Floating Point Adder

Addition in FP is a much more time and resource consuming operation
compared to FP multiplication. The basic algorithm to perform a
floating point addition requires the following computation steps: 1)
computing the exponent difference, 2) alignment of the operands, 3)
mantissa addition, 4) alignment and rounding of the result, and, 5)
handling of special values. All these computations lie on the critical
path where the large bit shifters required for the two alignment steps
are among the most demanding. Also, faithful rounding does not help
much for addition. However, a well-known technique to reduce the
delay is the dual-path (DP) architecture [11]. The observation here is
that two cases exist that can be treated separately: 1) when subtracting
two numbers with similar magnitude, only a small operand shift is
necessary while a full result shifter is required; 2) in all other cases,
the operand shift has to be large while a small shift for the result
is sufficient. In the DP adder, the computations for both cases are
computed in parallel, and the correct result is selected at the end.
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Table 17.3: Direct comparison of the FP adder before and after their optimiza-
tion using the configurations for NIPS80 (cf. Table 17.1).

Operator Slice DSP PD Freq. [MHz]

FP Adder Single Path 138 0 8 384

FP Adder Dual Path 184 0 7 274

FP Adder (only pos. args.) 106 0 5 389

Figure 17.4 shows the data path for processing the mantissa, omitting
the control signals for brevity. The first case is called the close-path
(shown on the left in blue) and the second case the far-path (shown
on the right in green). While for the operand alignment only a 1-bit
right shift (R1-Shift) is necessary in the close-path, a full right shifter
(R-Shift) is necessary in the far-path. In contrast, the result of the close-
path requires a leading zero counter (LZC) and full right shifter, while
the the far-path only requires a 2-bit shift (R2-Shift) for normalization
and rounding.

To implement SPNs, we can make use of the dual-path idea by
exploiting the fact that all values in SPNs are restricted to be positive
and only additions occur. Hence, the close-path in a dual-path archi-
tecture will never be active in an SPN. To this end, we extended the
dual-path implementation of the FPAdd operator in FloPoCo with an
option to optimize the adder only for positive numbers, which omits
all components from the close-path as well as the output multiplexer.

To gauge the effects of this optimization, we performed a synthesis
experiment on the single operators (using the same setup later de-
scribed in Section 17.6.2). The results are given in Table 17.3, showing
the logic resources, the pipeline depth (PD) as well as the max. clock
frequency. As there are two options for the FP adder in FloPoCo, a
single path and a dual path, we synthesized both. As expected, the
dual path has one pipeline stage less compared to the single path, but
at the expense of a larger chip area. Remarkably, our optimization
for only positive operands (listed as “only pos. args.”) leads to a slice
reduction of 23.2% and 42.4% compared to the single and dual path
options, respectively, while reducing the pipeline depth by 3 and 2

cycles at the same time.

17.5.1.2 Floating Point Multiplier

The computation of an FP multiplication is much simpler compared to
addition: 1) the mantissas are multiplied, 2) the exponents are added,
and, finally 3) the result is normalized and rounded. This normaliza-
tion requires only a small shift by one bit position and can usually be
merged with the output MUX that is necessary for the special values.
Besides this, the rounding mode has the most influence on the used
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resources. In contrast to correct rounding, faithful rounding requires
only about half the number of bits plus some guard bits of the man-
tissa multiplication result [2]. Hence, a truncated integer multiplier
can be used for the mantissa which requires less chip area. Therefore,
the FP multipliers in this work use faithful rounding based on the
work in [2].

17.5.2 Logarithmic Number System

For the implementation of the LNS hardware operators, we employ
the implementation of Weber et al., presented in [29]. They developed
pipelined and parameterized LNS adders and multipliers targeted
towards SPNs.

As discussed earlier, multiplication in the logarithmic space can be
implemented as a simple binary addition, and consequently consumes
less than half (36 vs. 86, cf. Table 17.2) of the slices compared to the
floating-point multiplier, and no DSPs.

On the other hand, the much more complex calculation for addition
in logarithmic space, for which a quadratic spline interpolation was
used in [29], results in a larger chip area for the logarithmic adder,
which consumes 757 slices and 20 DSPs, compared to 106 slices and
no DSPs for FP.

17.5.3 Posit

For the implementation of the Posit hardware operators, we build
upon PACoGen [15], an open-source project providing Posit basic
arithmetic operators. These implementations are generally only real-
ized as combinatorial circuits.

To ensure a fair comparison between the arithmetic formats regard-
ing operating frequency, we introduced pipelining into the existing,
parameterized implementation. The resulting multiplication operator
requires almost five times the logic resources (340 vs. 86 slices), and,
even though we adopted the optimal DSP allocation scheme from [17],
twice the number of DSPs (4 vs. 2), as the floating-point multiplier. In
case of the addition, the additional decoding logic for the regime and
the higher internal precision cause the Posit adder to use significantly
more resources than its floating-point counterpart (374 vs. 106 slices,
cf. Table 17.2).

17.6 evaluation

17.6.1 Benchmarks

In order to be able to compare the performance and FPGA resource
usage directly to [26], we use the same set of benchmarks. The set
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contains two kinds of benchmarks: Count-based examples, which are
taken from the NeurIPS corpus [10] and capture information about the
frequency of words in texts, and examples with binary input variables,
which were pre-processed by [18] and [28] and capture statistical data,
such as usage statistics of services. More detailed information on the
individual benchmarks can be found in [26].

17.6.2 FPGA Implementation Results

We first compare the resource usage of the three different arithmetic
formats for the benchmark set, using the configurations from Ta-
ble 17.1. Xilinx Vivado 2019.1 and TaPaSCo 2019.10 (pre-release)
are used to generate bitstreams for a Xilinx Virtex 7 FPGA device
(xc7vx690), all numbers given here are taken from the post-place&route
reports. We use the automatic design-space exploration feature of
TaPaSCo [16] to determine the best possible frequency. All bitstreams
are tested in actual hardware on a Xilinx VC709 development board,
verifying that the configurations determined by our DSE (cf. Sec-
tion 17.4) maintain the given error bound of 1× 10−6.

The FPGA implementation results are given in Table 17.4. For
brevity, numbers are given relative to the entire FPGA, the absolute
number of resources available are 108,300 (Slices), 1,470 (BRAM) and
3,600 (DSP), respectively.

Through our automatic design-space exploration to determine the
minimum viable configuration and the optimization to the floating
point operators described in Section 17.5.1, the resource usage com-
pared to the results reported in [26], decreases by up to 57% in logic
slices (avg. 38.5%) and up to 68% in DSP (avg. 62.9%). Additionally,
the clock frequency increases by up to 75 MHz (avg. 46.6 MHz). The
decrease in resource consumption is also depicted in Fig. 17.5.

The comparison between customized floating-point (CFP) and Posit
shows that the latter requires significantly more logic (avg. +53%)
and, except for benchmarks Audio and Plants, which contain a low
number of adders in comparison to the number of multipliers, also
twice the number of DSPs. The BRAM utilization is almost identical,
the frequency is typically lower for Posit (avg. 30 MHz less) and the
pipelines are notably deeper. Overall, one can conclude that Posit is
less suitable for SPN inference than floating-point, probably because
the numbers involved in SPN inference lie outside of the golden range
(cf. Section 17.4.2), where Posit could make up for the additional
decoding logic by using much narrower bitwidths. However, the Posit-
based arithmetic still outperforms the double-precision arithmetic
used in [26] by up to 22.6% in slices (avg. 9.5%) and 36% in DSP (avg.
34.2%).

When compared with floating-point, LNS requires slightly more
slices (avg. +7.57%) and significantly (avg. +56%) more BRAM, which,



206 comparison of arithmetic number formats for spn inference

Figure 17.5: Improved resource and maximum frequency for floating-point
arithmetic in comparison with prior work [26].

however, is not a critical resource in our case. The frequencies are
comparable, with winners in both formats. The pipelines are much
deeper, mainly due to the long latency (64 cycles) of the LNS adder.
The DSP usage comparison between floating-point and LNS is highly
dependent on the multiplier/adder-ratio (given as M/A in Table 17.4)
of the examples. Only if there are roughly nine times more multipliers
than adders, LNS outperforms floating-point with regard to the DSP
usage (NIPS10 is an outlier, probably due to the very low DSP usage
in both formats). Overall, it seems that LNS is only suitable for such
SPNs with a much higher number of multipliers than adders. Yet,
the LNS-based arithmetic is able to outperform the FloPoCo double-
arithmetic results from [26] by up to 57.5% in slices (avg. 33.7%) and
86% in DSP (avg. 66%), in particular for examples with only a few
adders.

To further validate our results, we also tested relaxed error condi-
tions, namely 1× 10−4 and 1× 10−2, for benchmarks Accidents and Au-
dio, which were chosen because of their very different adder/multiplier-
ratio. We have to omit detailed results for brevity here, but overall,
the relation between LNS- and floating-point format found in the
evaluation for 1× 10−6 persists for relaxed error conditions: LNS is
only able to save resources in comparison to floating-point, if the SPN
contains very few adders compared to the number of multipliers.
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Table 17.5: Power consumption of the datapath.

Power Consumption [Watt]

Benchmark [26] CFP Posit LNS

Accidents 12.493 3.069 5.267 3.721

Audio 18.427 5.518 8.358 2.818

17.6.3 Power Evaluation

Next to the required chip area, we are also interested in the impact of
the arithmetic format onto power consumption.

In order to investigate the power consumption of the different
arithmetic formats, we consider only the datapath itself, leaving out
the memory infrastructure and TaPaSCo platform infrastructure. We
again run synthesis and P&R for the Xilinx VC709 board using Vivado
2019.1. Afterwards, we use Mentor Questasim 2019.2 to run a post-
implementation timing simulation to capture signal activity information
from a run with actual inference input data. Using this activity infor-
mation, we then use the Vivado 2019.1 power analysis for an estimate
of the power consumption of the datapath.

As the post-implementation timing simulation can take several
days for larger circuits, we again limit our investigation to the two
benchmark instances Accidents and Audio, that we selected for the
reasons described in the previous section. In addition to the three
arithmetic formats investigated in this work, we also conduct the
measurement for the double-precision FloPoCo-format from prior
work [26].

The results from the power analysis (Table 17.5) align with our
findings for the chip area in the previous sections: In the benchmark
instance Accidents, where the customized floating-point was the most
area-efficient format, it also requires the least power, followed by LNS.
For the benchmark instance Audio, where LNS was the most area-
efficient format due to the low number of adders in the SPN, LNS also
requires the least power. Just as before, Posit is not able to keep up
with the two other formats with regard to power usage.

Compared to the double-precision format from prior work, the SPN-
optimized arithmetic formats developed in this work are able to save
significant amounts of power.

17.6.4 Performance Evaluation

In this section, we evaluate the performance of three arithmetic formats
implemented on the FPGA and compare it to a CPU and GPU-based
implementation of SPN inference.
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17.6.4.1 CPU & GPU Baseline

Based on the compiler infrastructure that we created for the design-
space exploration (cf. Section 17.4), we additionally built a custom
compilation flow mapping an SPN description to optimized C++ and
CUDA-code, both using double-precision floating-point arithmetic.
In both cases, we compiled using -O3 and -ffast-math to enable
aggressive compiler optimizations. Our C++ compilation flow on an
AMD Ryzen 1600X performs on par with the CPU-baseline from [26],
and our CUDA compilation flow is able to outperform the original
Tensorflow-based GPU-mapping from [26] by a factor of up to 90x on
a Nvidia 1080Ti GPU.

17.6.4.2 Performance Comparison

For the comparison, we run the inference on the VC709 development
board, coupled with an AMD Ryzen 1600X. Our measurements of the
throughput in Fig. 17.6 also include the time required to transfer the
data between host and FPGA.

For the three smallest count-based samples (NIPS5-20), the CPU
provides the best throughput. For these small networks the overhead
for data-transfer to the accelerator (GPU or FPGA) clearly dominates
the execution time. With our optimized CUDA compilation flow, the
GPU provides better throughput than the CPU for the remaining
benchmarks, in particular for the binary examples.

Despite the large differences in the pipeline-depth (cf. Table 17.4),
the performance for the three arithmetic formats implemented on the
FPGA varies only slightly. Overall, all three versions deliver very simi-
lar performance (with an overall difference of less than 2%). Compared
to the previous FPGA implementation in [26], the new formats provide
better throughput (geo.-mean. 2.1x speedup). This is partly due to the
higher operator frequencies, but also caused by improvements to the
underlying TaPaSCo framework.

All three formats significantly outperform the CPU. Except for the
three benchmarks mentioned earlier, the speedup reaches as high as
factor 12x (geo.-mean 2.5x). The three FPGA versions also provide
significantly higher throughput than the GPU-based implementation,
here, the speedups reach up to 4.6x (geo.-mean. 2.1x).

Again, note that our measurements include the PCIe data-transfer to
the FPGA memory. On shared-memory systems such as Zynq MPSoC,
the speedup over the CPU and the GPU would reach up to 37x and
14x, respectively.

17.7 conclusion & outlook

In this work, we have investigated three different arithmetic formats
with regard to their suitability for Sum-Product Network Inference
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on FPGAs. We have developed an automatic design-space explo-
ration framework, which allows us to efficiently identify the minimum
bitwidth required for each of the formats to maintain a given error
margin. Based on the findings from the DSE, hardware arithmetic
operators, optimized for SPN inference, for each of the formats were
implemented.

Our evaluation shows that customized floating-point is the most
resource-efficient format for SPN inference, and is only outperformed
by a logarithmic number system format for SPNs with very few adders
compared to the number of multipliers. All three investigated arith-
metic formats deliver almost identical performance and significantly
outperform CPU and GPU-based implementations of SPN inference,
by factors up to 12x and 4.6x, respectively.

In future work, we will investigate how the hardware arithmetic
operators can be optimized further, e.g., by using fused operators.
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abstract

Sum-Product Networks have received increasing attention from academia
and industry alike, but the software ecosystem is comparably sparse.
In this work, we enhance the ecosystem with an open-source, domain-
specific compiler that allows to easily and efficiently target CPUs and
GPUs for Sum-Product Network inference. The implementation of the
compiler is based on the open-source MLIR framework.

Using a real-world application of Sum-Product Networks, a robust
speaker identification model, we showcase the performance improve-
ments our compiler can achieve for SPN inference on CPUs and GPUs.
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18.1 introduction

Probabilistic models are receiving increasing attention from both
academia and industry, being a complementary alternative to more
widespread machine learning approaches such as (deep) neural net-
works (NN). Probabilistic models can handle the uncertainty found in
real-world scenarios better, and are also, in contrast to NNs, able to
express uncertainty over their output.

However, in contrast to neural networks, for which a rich ecosys-
tem with a variety of frameworks, libraries and compilers, such as
Tensorflow’s XLA, or Facebook’s Glow, is available, the ecosystem for
probabilistic models such as Sum-Product Networks (SPN) is compar-
atively sparse, due to them being a relatively young class of models.

One of the most popular libraries for research with Sum-Product
Networks is SPFlow by Molina et al. [3], which provides a program-
matic representation of Sum-Product Network models and allows
to learn their structure and parameters from data. SPFlow also al-
lows to perform inference on the models obtained through learning,
but is implemented in pure Python and can therefore not leverage
the full feature set of CPUs or GPUs. However, exploiting all avail-
able hardware features is crucial for the deployment of SPN models
on embedded-grade devices and for efficient inference in real-world
applications, e.g., to fulfill real-time requirements.

Therefore, in this work, we enhance the SPN ecosystem by develop-
ing SPNC, an open-source domain-specific, multi-platform compiler for
performing fast Sum-Product Network inference on CPUs and GPUs,
and present the following contributions:

• Based on the MLIR framework [2], we develop custom high-
level intermediate representations capturing the semantics of
Sum-Product Networks in the compiler (Section 18.3.1).

• We define efficient strategies to map Sum-Product Network infer-
ence to CPUs with vector extensions and CUDA GPUs. The map-
ping strategies make use of the underlying hardware’s specific
features for efficient inference (Section 18.3.2 & Section 18.3.3).

• Using a real-world application of Sum-Product Networks, we
evaluate our approach in detail, and compare it to the currently
available framework (Section 18.5).

• We develop a Python interface to our compiler, which seamlessly
integrates with SPFlow [3] and allows to target CPUs and GPUs
with ease (Section 18.4).

Furthermore, we provide necessary background information on
Sum-Product Networks and the open-source MLIR framework in the
next section, and discuss related works in Section 18.6.
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Figure 18.1: Example of a Sum-Product Network graph.

18.2 background

18.2.1 Sum-Product Networks

SPNs [7] are a relatively young class of probabilistic graphical models
(PGM). In principle, such class of models can be considered a unified
approach combining Bayesian network representation formalism and
Markov random field computation. Such a computational configu-
ration enables SPNs to efficiently reason under incompleteness and
uncertainty, which is a challenging task in many real-world scenar-
ios [11]. Unfortunately, inference requires intense computation that
introduces a long delay. This is a core motivation of our work.

Additionally, in contrast to most neural network architectures, SPNs
are also able to quantify uncertainty over the output. An example for
this property can be found in [6], where SPNs, when confronted with
out-of-domain images, indicate this through a low likelihood for the
output class, in contrast to the multi-layer perceptron undergoing the
same test. An overview of other practical usage examples of SPNs can
be found in the survey by Paris et al. [5].

Sum-Product Networks capture the joint probability of a set of
variables (i.e., features) in the form of a directed acyclic graph (DAG).
Regardless of the application and the underlying data, the DAG is
always composed from three different types of nodes. At the bottom
of the DAG, so-called leaf nodes capture the univariate probability
distribution of a single variable/feature. Depending on the type of
data (e.g., continuous vs. discrete), and underlying distribution of the
data, different probability distributions can be used, e.g., Gaussian
distribution for continuous variables, or a categorical distribution for
discrete values. The so-called scope of a leaf node is the single variable
associated with it. Further up in the graph, a combination of product
nodes and weighted sum nodes is used to capture the joint probability
distribution. Product nodes represent factorizations of independent
variables. For the SPN to be valid, the scopes of the different child
nodes of a product node must be disjoint. Weighted sum nodes, on the
other hand, represent a mixture of distributions and the scopes of all
child nodes must be identical in a valid SPN. The structure of the SPN
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depends on the distribution of the underlying data, and can either
be learned from data, or be hand-crafted, just followed by parameter
learning. An overview of SPN learning algorithms can be found in
[5]. A small example of an SPN graph is shown in Fig. 18.1. As a
core functional principle, the SPN decomposes complex multivariate
“global” functions by exploiting the way in which the global function
factors into a product of simpler “local” functions of a subset of the
variables [1]. SPN can be used to solve machine learning tasks, such
as classification, by performing inference on the underlying DAG. In
general, SPNs support multiple different types of inference. In this
study, we are focusing on two of these types, namely joint probability
inference and marginal inference. Joint probability inference is used
to obtain the joint probability given full evidence (i.e., a value for
each variable). To this end, the evaluation of the SPN DAG starts
by evaluating the distribution of the leaf nodes, given the value of
the variable associated with each of them. After that, the values are
propagated upwards through the DAG, performing multiplication
or weighted addition at the product and sum nodes, until a final
probability value is obtained at the root node of the SPN. Marginal
inference, on the other hand, is used when only partial evidence is
available. Leaf nodes for which no evidence is available are set to 1,
the remaining ones are evaluated just as in joint inference, and the
propagation of values through the SPN is performed analogously to
the description above.

The compiler developed in this study aims to accelerate the inference
in Sum-Product Networks by efficiently mapping them to different
hardware targets. Learning of the SPN is assumed to have taken place
beforehand, using a standard Sum-Product Network framework such
as SPFlow [3].

18.2.2 MLIR

The implementation of SPNC in this work is heavily based on the
open-source MLIR framework [2]1. Therefore this section presents a
brief overview of MLIR.

MLIR aims to facilitate the implementation of compilers by pro-
viding an extensible framework for the implementation of multi-level
IRs. The main reason for adding multiple levels of abstractions into
compilers is that an early lowering to a low-level intermediate represen-
tation such as LLVM IR loses too much of the high-level structure of
the program, which later on must be reconstructed using often fragile
approaches based on the low-level IR in order to perform transforma-
tions, e.g., on loops. Capturing additional information and potentially
domain-specific semantics in one or multiple high-level IRs enables
the compiler to perform more powerful program transformations.

1 https://mlir.llvm.org
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Because MLIR provides common components for the implemen-
tation of IRs, such as pass managers and common transformations,
users can focus on the design of the IR itself.

In order to not impose too many constraints on the semantics of
different IRs, MLIR defines a minimal set of generic abstractions that
must be used by all IRs. Similar to most modern compilers, MLIR uses
the static single assigment (SSA) form, with operations (short: Ops)
consuming and producing values. All values are typed, with the type
system being extensible, while also defining a number of common
types. So-called attributes, which are also typed, can additionally be
used to attach compile-time information to operations.

Operations, types, and attributes are organized in so-called dialects,
which do not add any semantics, but are a mere logical unit for the
organization of the IR. Dialects can be mixed in the same logical unit,
and so-called lowerings translate between different dialects, with intra-
dialect transformations also being available. Typically, a progressive,
step-wise lowering from a high-level dialect to lower-level dialects
is used to compile for a specific target, e.g., a CPU. To enable the
implementation of common transformations, MLIR uses the notion of
traits and interfaces that can be attached to operations, and provides
generic interfaces for transformations such as constant folding.

MLIR’s extensible nature allows us to design custom high-level IRs.
We use these to represent Sum-Product Networks in the compiler
developed in this work, while we can rely on the common infrastruc-
ture and dialects provided with MLIR to efficiently target different
hardware platforms.

18.3 approach

The aim of SPNC is to automatically compile Sum-Product Networks
and probabilistic queries operating on them to executable kernels.
Compiling individual SPNs allows to employ all hardware features
available on the target platform for fast inference, for example vector
extensions present on most modern CPUs. Currently, SPNC supports
two main targets:

• CPUs: Being based on MLIR and LLVM, SPNC can target any
CPU for which a backend is present in LLVM. Vector extensions
are currently supported on x86 (AVX, AVX2, AVX-512) and Arm
(Neon Advanced SIMD) CPUs.

• GPUs: The flow currently supports Nvidia CUDA GPUs, but the
generic GPU abstractions of MLIR would allow to target other
GPUs with comparably few changes.

The compilation flow for both targets is based on MLIR. To this end,
two SPN-specific MLIR dialects have been designed and implemented,
which will be described in Section 18.3.1. Starting from these dialects,



220 spnc : fast sum-product network inference

the target-specific lowerings will create an executable, using the flows
described in Section 18.3.2 and Section 18.3.3. The user interface and
some implementation details are described in Section 18.4.

18.3.1 MLIR Dialect Design

The first of the two SPN-specific dialects that SPNC employs during
compilation, called HiSPN, captures the DAG structure of a Sum-
Product Network and the information about the query to perform
on a high level of abstraction. It was designed to closely match the
representation used internally by the SPFlow framework [3], similar to
how an abstract syntax tree captures a general-purpose programming
language on a high level of abstraction.

In the HiSPN dialect, an abstract probability type is used for values
inside the SPN DAG, allowing SPNC to delay the decision on the
actual data type used for computation and take graph characteristics
into account.

The second SPN-specific dialect, called LoSPN, represents the ac-
tual computation that needs to be performed to process the requested
query on the SPN. The top-level unit in this dialect is a Kernel, compris-
ing one or multiple Tasks. A Task does not only represent (parts of) the
SPN DAG structure, including weighted sum, product, and leaf nodes,
but also contains information about which inputs values will need
to be accessed and which outputs will be produced as intermediate
or final result. In contrast to HiSPN, LoSPN uses a concrete type for
the values. To represent the computation in log-space, which com-
monly used to avoid arithmetic underflow in Sum-Product Network
inference, a SPN-specific data type was added to the LoSPN dialect.

The lowering from HiSPN to LoSPN is currently identical for both
flows, targeting CPU and GPU. In this step, the necessary computa-
tion for the query is derived from the SPN DAG structure and query
information captured by HiSPN and is the lowered into the operations
of the LoSPN dialect. After lowering, the LoSPN representation under-
goes a number of transformations, including steps such as common
subexpression elimination (CSE), followed by the target-specific low-
erings to dialects provided by the MLIR framework described in the
next two sections.

18.3.2 CPU Compilation Flow

The compilation flow for the CPU starts with the serialized SPN
model (cf. Section 18.4), an overview is shown in Fig. 18.2. After
deserialization to the HiSPN dialect, lowering to LoSPN, and the
transformations on the LoSPN dialect have been performed, the IR is
again lowered to dialects provided as part of the MLIR framework. The
Kernel and the Tasks in the LoSPN dialect are lowered to functions,
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Figure 18.2: CPU Compilation Flow.

with the Kernel function calling the functions for the individual Tasks
and the Task functions iterating multiple inputs for batch processing.

The operations contained inside each Task are lowered to a combi-
nation of different dialects (Note that MLIR allows to mix operations
from different dialects in the same function/module):

• Standard dialect: Contains operations such as simple addition
or multiplication on arbitrary data-types, including vectors.

• Math dialect: Elementary math functions, such as the exp and
log function, are represented by operations from this dialect.

• SCF dialect: Operations from this dialect represent structured
control flow, e.g. for-loops.

• MemRef dialect: Contains facilities to handle memory, e.g., allo-
cation or store/load operations.

• Vector dialect: Vector specific operations, e.g., vector lane shuf-
fling.

The combination of the Vector dialect and the Standard operation’s
ability to handle vector data-types lets the compiler exploit the CPU’s
SIMD extensions, if present, for maximum efficiency. In contrast to a
generic loop vectorization, a domain-specific compiler such as SPNC
can, thanks to the MLIR framework, leverage high-level information
to generate more efficient code, e.g., by employing a combination of
simple vector loads and shuffles instead of expensive gather loads.

After some transformation passes provided by the MLIR framework,
all dialects are lowered to the LLVM dialect and then translated to
LLVM IR, so LLVM can produce the final executable. As part of this
process, the executable is also linked with vector libraries, providing
optimized implementations of elementary math functions (e.g., exp)
for vector code. The currently supported vector libraries are Intel
SVML and Libmvec for x86 CPUs, and ARM Optimized Routines for
ARM Neon.

Although it is technically possible to perform within the MLIR
framework, we have decided to implement multi-threading in the
runtime-component (cf. Section 18.4) rather than directly in the gener-
ated code. This allows to adopt the threading behavior dynamically,
e.g., when executing multiple compiled kernels concurrently.
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Figure 18.3: GPU Compilation Flow.

18.3.3 GPU Compilation Flow

Similar to the CPU compilation flow, the GPU compilation flow also
starts from the serialized SPN model and performs the same steps up
to the lowering of LoSPN to dialects from the MLIR framework. Here,
for the GPU, the Kernel is lowered into a function, which will remain
on the host CPU and will be responsible for GPU/CPU data transfers
and the invocation of the Tasks, which, in contrast to the CPU flow,
are lowered into device functions executing on the GPU.

For the operations inside the Tasks, a similar combination of MLIR-
provided dialects is used, with one notable difference: Instead of the
Vector dialect, the GPU dialect is used to represent the SIMT execution
model, with operations for access to block and thread identifiers and
for representation of GPU device functions and runtime functions for
memory & execution management.

After that step, the GPU- and host portion of the IR are separated
into two compilation units. While the flow for the host portion via
LLVM is very similar to the CPU flow, eventually resulting in an
executable, the GPU portion of the code is translated in multiple steps
to NVVM IR, PTX assembly and a GPU binary (CUBIN format). This
GPU binary is then loaded at runtime by the host function to execute
inference on the GPU.

An overview of the overall compilation flow for the GPU is shown
in Fig. 18.3.

18.4 python interface & implementation

In order to make the compiler and the execution of the compiled
binaries via the runtime component accessible to machine learning
experts working with the SPFlow library, SPNC offers a Python-based
interface to the compiler and runtime. In this manner, machine learn-
ing experts can create the SPNs using their familiar tools from the
SPFlow library and feed their results to the compiler.

Fig. 18.4 shows an usage example of the Python interface, the ex-
ample SPN is taken from SPFlow’s documentation. Location (1) in
the code shows how inference is usually performed in SPFlow, by
invoking log_likelihood.
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1 import numpy as np

2 from spn.structure... import ...

3

4 # Create an example SPN

5 p0 = Product(children=[Categorical(p=[0.3, 0.7], scope=1),

6 Categorical(p=[0.4, 0.6], scope=2)])

7 ...

8 spn = Sum(weights=[0.4, 0.6], children=[p2, p4])

9

10 # Create some random test data

11 ...

12 test_data = np.c_[a, b, c].astype("float32")

13

14 # Perform inference using SPFlow

15 from spn.algorithms.Inference import log_likelihood

16 spflow_results = log_likelihood(spn, test_data) # Location (1)

17

18 # Compile for CPU and perform inference

19 from spnc.cpu import CPUCompiler

20 cpu_results = CPUCompiler().log_likelihood(spn, test_data) # Location (2)

21

22 # Compile for CUDA GPU and perform inference

23 from spnc.gpu import CUDACompiler

24 gpu_results = CUDACompiler().log_likelihood(spn, test_data) # Location (3)

Figure 18.4: Python interface usage example.

The other two locations show the invocation of SPNC for compila-
tion and execution on the CPU (2) or CUDA GPU (3). In both cases,
the invocation of log_likelihood on the compiler will first compile
the SPN using the respective flow described in Section 18.3.2 and
Section 18.3.3 and then execute inference using the compiled kernel. A
small runtime component part of SPNC is responsible for loading the
compiled kernel and executing inference. In case of CPU execution,
the runtime is also responsible for multi-threaded execution using
OpenMP. The Python interface also supports separate compilation and
execution, so an SPN only needs to be compiled once to repeatedly
perform inference.

Similar to SPFlow, the compiled kernels also support marginalized
inference by passing NaN as input value for marginalized variables.

The Python interface is implemented using Pybind11
2. As Pybind11

has full support for numpy arrays, input data for execution can simply
be provided as numpy arrays, and the result data will likewise be
returned as a numpy array. For efficient exchange of SPN models
between the Python interface and the compiler, implemented in C++,

2 https://github.com/pybind/pybind11
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Figure 18.5: Performance comparison for clean speech samples on non-
embedded systems, given as speedup over execution in SPFlow.

a binary serialization based on the open-source Cap’n Proto3 library
was implemented.

18.5 evaluation

To demonstrate SPNC’s ability to target different heterogeneous sys-
tems, we are evaluating it on two different systems: As an example of
an embedded-grade device, a Nvidia Jetson AGX Xavier device with
6-core ARM v8 CPU and Volta GPU will be used. As a non-embedded
device, a machine with an AMD Ryzen 9 3900XT CPU equipped with
32 GB RAM and an Nvidia RTX 2070 Super GPU with 8 GB RAM will
be used. As the Ryzen processor does not support AVX-512, experi-
ments for AVX-512 will be performed on a dual-socket system with
two Intel Xeon Platinum 9242 CPUs and 384 GB RAM.

As a real-world application of SPNs, an SPN-based automatic
speaker identification from [4] is used as example application. Based
on the open-source release by Nicolson et al.4, we evaluate two dif-
ferent scenarios, namely the clean speech samples (245567 samples)
and noisy speech samples with marginalization (1227835 samples). A
sample comprises 26 features, each encoded as single-precision float-
ing point value. We use computation in log-space to avoid deviation
from the original result, using single-precision floats as the underlying
data type. The implementation by Nicolson et al. contains an SPN per
speaker, so a set of 628 different SPNs is used for evaluation.

In all experiments using our compiler, we measure the execution
time from Python, i.e., the execution time always also includes the
invocation overhead of the Python interface in addition to the actual
execution time. We track compilation time and execution time sepa-

3 https://capnproto.org/
4 https://github.com/anicolson/SPN-ASI
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Figure 18.6: Performance comparison for noisy speech samples on non-
embedded systems, given as speedup over execution in SPFlow.

rately (also for Tensorflow). The average compilation time across all
platforms for CPU is 7 seconds (max. 33s) and for GPU 2s (max. 5s).
The translation of the SPFlow graph to a Tensorflow graph, which is
provided by the SPFlow framework, takes 18 seconds on average (max.
61s).

18.5.1 Non-Embedded Systems

Figs. 18.5 and 18.6 show the performance comparison for the non-
embedded systems, the numbers are given as speedup over the infer-
ence execution with SPFlow.

The speedup achieved by translating the SPFlow graph to a Tensor-
flow graph is relatively low on both CPU (geo.-mean 1.5x) and GPU
(1.38x), as the graph is still broken down into individual operations
that are launched through the Tensorflow runtime. Marginalization
is currently not supported by the Tensorflow translation in SPFlow,
therefore no bars are shown for Tensorflow in Fig. 18.6.

SPNC on the other hand achieves speedups of 564x and 482x by
compiling for the CPU and multithreaded execution, without employ-
ing vector extensions. If the vector extensions and vector libraries for
elementary functions (Libmvec for AVX-2 and Intel SVML for AVX-
512) are used additionally, the speedup increases to 801/814x and
976/935x, respectively. The compilation for the GPU also achieves a
significant speedup of 352x and 524x, but data movements between
host and device in both cases make up for more than 60% of the
execution time, so even though the execution on the GPU itself is
very fast, the data movement overhead, which is not present when
compiling for CPU, limits the speedup.
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Figure 18.7: Performance comparison for noisy speech samples on embedded
systems, given as speedup over execution in SPFlow.

18.5.2 Embedded System

Figs. 18.7 and 18.8 show the same comparison for the embedded-grade
Jetson Xavier platform. As there are fewer CPU cores available than
on the Ryzen/Xeon CPU, the speedup achieved by compilation for
CPU is smaller compared to Figs. 18.5 and 18.6, but still reaches 124x
(clean) and 58x (noisy) compared to SPFlow. When using the Neon
Advanced SIMD extensions, the speedup increases by 2.9x/2.3x to
369x and 133x. In contrast to Figs. 18.5 and 18.6, the GPU compilation
on the Xavier platform provides better performance than the CPU
compilation. This is due to the fact that GPU and CPU physically share
the same memory and no memory transfers between host CPU and
GPU are necessary. With the memory transfers eliminated, our GPU
compilation achieves speedups of 1004x and 784x.

Another important aspect on embedded systems is memory usage:
For the noisy speech samples, it is not possible to process all sam-
ples in one batch with SPFlow, as the SPFlow inference runs out of
memory (16 GB) and the input has to be processed in multiple blocks
sequentially. The compiled kernels are much more memory-efficient
and allow to process all samples in a single invocation.

For the Tensorflow comparison on this platform, the Tensorflow
package officially provided by Nvidia for Jetson platforms is used.
Similar to Figs. 18.5 and 18.6, the translation provides a speedup
over SPFlow (2.36x), but is still significantly slower than the compiled
executables.
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Figure 18.8: Performance comparison for noisy speech samples on embedded
systems, given as speedup over execution in SPFlow.

18.6 related work

To the best of our knowledge, the compiler presented in this work
is the first compiler for Sum-Product Networks, enabling efficient
inference on multiple hardware platforms.

For creation, training, inference, and experimentation with Sum-
Product Networks, a number of libraries have been proposed over the
years. The two most popular ones, according to the survey conducted
by Paris et al. [5], are SPFlow [3] and libspn [8].

SPFlow allows users to either programmatically create an SPN or
learn it, including its structure, from data. It also supports inference
on the obtained SPN, either in pure Python, or, for a limited number
of cases, through a translation to a Tensorflow graph and execution of
that graph. As our evaluation has shown, our compiler significantly
outperforms both variants.

Libspn also allows to perform parameter learning and inference for
SPNs, again through translation to a Tensorflow graph, which has
yielded suboptimal performance in our evaluation in Section 18.5.

Another interesting approach to efficient training and inference for
SPNs is through tensorization of the SPN graph, as shown in [6] or
[12]. However, these implementations are limited to weight learning,
with the structure of the SPNs being subject to additional constraints,
whereas our compiler can process SPNs with arbitrary DAG structure.

In previous work [9, 10], we have developed a custom, FPGA-based
inference accelerator for Sum-Product Networks. However, as the
automatically generated accelerator uses a fully spatial hardware
layout, the maximum size of SPNs that can be mapped to the FPGA
is limited by the available hardware resources to sizes significantly
smaller than the SPNs evaluated in this work, and the flow currently
does not support Gaussian distributions.



228 spnc : fast sum-product network inference

18.7 conclusion

In this work, we have presented SPNC, a domain-specific compiler
for fast inference in Sum-Product Networks. The implementation of
SPNC is based on the open-source MLIR framework, which facilitates
the implementation of domain-specific compilers.

SPNC was designed to seamlessly integrate with SPFlow, a popular
open-source library for SPN construction, learning, and representation,
through its Python interface.

In our evaluation, using an SPN-based robust automatic speaker
identification as a real-world example of Sum-Product Networks, we
have demonstrated how SPNC can target different heterogeneous
systems and can achieve a speedup over SPFlow of a factor of up to
978x when compiling for CPUs with vector extensions, and up to a
factor of 1003x when targeting CUDA GPUs.

availability

SPNC is available as open-source software under the Apache v2 Li-
cense on Github5. In the releases section on Github, pre-built packages
for Linux systems can be found for download and installation via
Python pip.
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