
Computer Science
Department
Laboratory for Parallel
Programming

Performance engineering of
data-intensive applications
Performance Engineering datenintensiver Anwendungen
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von M.Sc. Arya Mazaheri aus Esfahan, Iran
Tag der Einreichung: 2. August 2021, Tag der Prüfung: 21. Oktober 2021

1. Gutachten: Prof. Dr. Felix Wolf, TU Darmstadt
2. Gutachten: Prof. Dr. Ali Jannesari, Iowa State University
3. Gutachten: Prof. Dr. Morris Riedel, University of Iceland, Forschungszentrum Jülich
Darmstadt

Performance engineering of data-intensive applications
Performance Engineering datenintensiver Anwendungen

Accepted doctoral thesis by M.Sc. Arya Mazaheri

1. Review: Prof. Dr. Felix Wolf, TU Darmstadt
2. Review: Prof. Dr. Ali Jannesari, Iowa State University
3. Review: Prof. Dr. Morris Riedel, University of Iceland, Forschungszentrum Jülich

Date of submission: 2. August 2021
Date of thesis defense: 21. Oktober 2021

Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-210788
URL: http://tuprints.ulb.tu-darmstadt.de/21078

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/21078
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

To my parents, who continually encouraged me to pursue my dreams

&

to my loving wife, Salome, for her endless support and patience.

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version
übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem
Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs
mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der
angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 2. August 2021
A. Mazaheri

v

Abstract

Data-intensive programs deal with big chunks of data and often contain compute-intensive characteristics.
Among various HPC application domains, big data analytics, machine learning and the more recent deep-
learning models are well-known data-intensive applications. An efficient design of such applications demands
extensive knowledge of the target hardware and software, particularly the memory/cache hierarchy and the
data communication among threads/processes. Such a requirement makes code development an arduous
task, as inappropriate data structures and algorithm design may result in superfluous runtime, let alone
hardware incompatibilities while porting the code to other platforms.

In this dissertation, we introduce a set of tools and methods for the performance engineering of parallel
data-intensive programs. We start with performance profiling to gain insights on thread communications
and relevant code optimizations. Then, by narrowing down our scope to deep-learning applications, we
introduce our tools for enhancing the performance portability and scalability of convolutional neural
networks (ConvNet) at inference and training phases.

Our first contribution is a novel performance-profiling method to unveil potential communication bot-
tlenecks caused by data-access patterns and thread interactions. Our findings show that the data shared
between a pair of threads should be reused with a reasonably short intervals to preserve data locality, yet
existing profilers neglect them and mainly report the communication volume. We propose new hardware-
independent metrics to characterize thread communication and provide suggestions for applying appropriate
optimizations on a specific code region. Our experiments show that applying relevant optimizations improves
the performance in Rodinia benchmarks by up to 56%.

For the next contribution, we developed a framework for automatic generation of efficient and performance-
portable convolution kernels, including Winograd convolutions, for various GPU platforms. We employed
a synergy of meta-programming, symbolic execution, and auto-tuning. The results demonstrate efficient
kernels generated through an automated optimization pipeline with runtimes close to vendor deep-learning
libraries, and the minimum required programming effort confirms the performance portability of our ap-
proach. Furthermore, our symbolic execution method exploits repetitive patterns in Winograd convolutions,
enabling us to reduce the number of arithmetic operations by up to 62%without compromising the numerical
stability.

Lastly, we investigate possible methods to scale the performance of ConvNets in training and inference
phases. Our specialized training platform equipped with a novel topology-aware network pruning algorithm
enables rapid training, neural architecture search, and network compression. Thus, an AI model training can
be easily scaled to a multitude of compute nodes, leading to faster model design with less operating costs.
Furthermore, the network compression component scales a ConvNet model down by removing redundant
layers, preparing the model for a more pertinent deployment.

Altogether, this work demonstrates the necessity and shows the benefit of performance engineering and
parallel programming methods in accelerating emerging data-intensive workloads. With the help of the
proposed tools and techniques, we pinpoint data communication bottlenecks and achieve performance
portability and scalability in data-intensive applications.

vii

Zusammenfassung

Datenintensive Anwendungen arbeiten mit großen Datenmengen und sind daher häufig sehr berechnungsin-
tensiv. Bekannte Beispiele solcher Anwendungen im HPC-Bereich sind Big Data Analyse, Machine Learning
und seit Neuestem auch Deep Learning Modelle. Der Entwurf von effizienten datenintensiven Anwendungen
erfordert umfangreiches Wissen in Bezug auf Zielhardware und -software, hierbei sind insbesondere die
Speicher- und Cache-Hierarchie sowie die Kommunikation zwischen Threads und Prozessen von Bedeutung.
Für die Softwareentwicklung stellt dies eine große Herausforderung dar, weil unpassende Datenstrukturen
und Algorithmen zu suboptimaler Laufzeitperformanz führen und auch der Transfer auf neue Zielplattformen
Kompatibilitätsprobleme mit der Hardware verursachen kann.

In dieser Dissertation werden Werkzeuge und Methoden für das Performance-Engineering von paral-
lelen, datenintensiven Anwendungen vorgestellt. Zuerst wird die Analyse des Laufzeitverhaltens solcher
Anwendungen behandelt, um Erkenntnisse über die Kommunikation zwischen Threads zu gewinnen und
damit entsprechende Codeoptimierungen vornehmen zu können. Anschließend werden Werkzeuge spe-
ziell für Deep-Learning-Anwendungen vorgestellt, die die Performanz-Portabilität und Skalierbarkeit von
Convolutional Neural Networks in der Inferenz- und Trainingsphase verbessern.

Der erste Beitrag ist eine neuartige Performance-Profiling-Methode, die potenzielle Engpässe in der
Kommunikation aufzeigt, welche durch Datenzugriffsmuster und Threadinteraktionen verursacht werden.
Die Untersuchungen hierzu haben ergeben, dass die gemeinsam verwendeten Daten zweier Threads in
einem bestimmten Abstand zueinander wiederverwendet werden müssen, um die Datenlokalität zu be-
wahren. Existierende Profiler berücksichtigen stattdessen meist nur das gesamte Kommunikationsvolumen.
Weiterhin werden neue hardwareunabhängige Metriken zur Charakterisierung von Threadkommunikation
und Empfehlungen für die Optimierung relevanter Coderegionen vorgeschlagen. Experimente zeigen, dass
solche Optimierungen in den Rodinia Benchmarks eine Verbesserung von bis zu 56 % erreichen.

Für den nächsten Beitrag wurde ein Framework zur automatisierten Generierung von effizienten und
portablen Convolution-Kernels (u.a. Winograd Convolution) entwickelt, das verschiedene GPU-Plattformen
unterstützt. Dazu wird eine Kombination von Metaprogrammierung, symbolischer Ausführung und Auto-
tuning verwendet. Die Experimente zeigen, dass mit Hilfe dieser automatisierten Optimierungspipeline
effiziente Convolution Kernel generiert werden, die nahezu die Laufzeiten der Deep-Learning Bibliotheken
von etablierten Anbietern erreichen. Zudem unterstreicht der minimale Programmieraufwand die Leistungs-
portabilität dieses Ansatzes. Die Verwendung von symbolischer Ausführung erlaubt es, sich wiederholende
Muster in der Winograd Convolution auszunutzen, sodass bis zu 62 % der arithmetischen Operationen
eingespart werden können, ohne die numerische Stabilität zu beeinflussen.

Abschließend werden Methoden zur Skalierung der Performanz von Convolutional Neural Networks in
der Inferenz- und Trainingsphase untersucht. Die vorgestellte, spezialisierte Trainingsplattform, die mit
einem neuartigen Topologie-bewussten Netzwerkpruning Algorithmus ausgestattet ist, erlaubt schnelles
Training von neuronalen Netzen, schnelle Neural Architecture Search und schnelle Netzwerkkompression.
Dadurch können KI-Modelle einfach auf eine Vielzahl von Rechenknoten hochskaliert werden, was schneller
zu fertigen KI-Modellen bei gleichzeitig geringeren Betriebskosten führt. Darüber hinaus reduziert die
Netzwerkkompression die Größe der Convolutional Neural Networks, indem es überflüssige Ebenen entfernt
und dadurch die Performanz der Inferenz steigert.

ix

Diese Arbeit demonstriert die Notwendigkeit und die Vorteile von Performance Engineering sowie paral-
leler Programmiermethoden, um die immer häufiger vorkommenden datenintensiven Anwendungen zu
beschleunigen. Mit Hilfe der vorgestellten Werkzeuge und Techniken wurden Engpässe in der Datenkom-
munikation aufgezeigt und Portabilität und Skalierbarkeit von datenintensiven Anwendungen erzielt.

x

Acknowledgements

Similar to many other doctoral graduates, my PhD journey involved several moments of bewilderness
and uncertainties, yet the outcome gives me joy and pleasure, as I have become a more skilled person in
many different ways. During my entire PhD program, I was fortunate to have the opportunity of doing
independent research on the topics that excited me the most. All of which were not possible without the
help and support of my advisors. Thus, first and foremost, I would like to express my highest gratitude to
Prof. Dr. Felix Wolf and Prof. Dr. Ali Jannesari for giving me this level of freedom and inspiration to pursue
my dreams. Under their guidance, I became competent in my field of research and got a keen eye for detail
along with several soft skills. I cannot imagine finishing this work without their dedication in providing me
with invaluable and prompt feedback.

I would also like to sincerely appreciate Dr. Matthew Moskewicz for his inspiring passion and ideas that
motivated me to work on cutting-edge projects and to pursue new directions in my work. I am extremely
thankful to Sixing Yu and Tim Beringer for our fruitful discussions and collaboration on the network
compression method and training platform, respectively. I also thank Dr. Alexandru Calotoiu for our
insightful discussions. Moreover, I am grateful to my industrial partner, Dr. Heiko Schick at Huawei’s Munich
research center, for his consultation at later stages of my research project. The scalability experiments were
conducted on the Lichtenberg high performance computer of TU Darmstadt, for which I am highly thankful.
Additionally, I am grateful to Prof. Dr. Morris Riedel for agreeing to review this dissertation.

I wish to thank all my colleagues in the Laboratory for Parallel Programming (LPP) at Technical University
Darmstadt for the cheerful moments and the support they offered. Especially, I want to thank Petra Stegmann
for her continual support during my entire stay at LPP and invaluable feedback she provided on my doctoral
dissertation. Furthermore, I would like to thank my bachelor and master students who helped me with their
coding support. Johannes Schulte implemented the Vulkan backend. I also had the pleasure of working
with Tim Beringer during his bachelor and master studies on implementing Winograd convolution and
adaptive training, for which I am highly grateful.

In addition to the people and institutions mentioned above, who directly helped me in my research, I
would like to thank my friend, Alireza Mirian, who motivated me to take on the PhD journey. Moreover, I
cannot thank Salome enough for her unconditional and unwavering understanding, patience, and support
during busy or stressful times. Last but not least, I am deeply grateful to my parents for supporting me
throughout all my studies and their never-ending moral and emotional support.

xi

Contents

Acknowledgements xi

List of Figures xv

List of Tables xviii

1 Introduction 1
1.1 Data-intensive applications . 1

1.1.1 Deep-learning applications . 1
1.2 Performance engineering . 4

1.2.1 Performance profiling . 4
1.2.2 Performance portability . 5
1.2.3 Performance scalability . 5

1.3 Contributions . 6
1.4 Structure of this dissertation . 7
1.5 Statement of originality . 7

2 Performance profiling: Unveiling communication bottlenecks 9
2.1 Background and motivation . 9

2.1.1 Communication in shared memory systems . 10
2.1.2 Reuse distance analysis . 11
2.1.3 DiscoPoP profiler . 12

2.2 Characterizing the communication behavior of parallel programs 12
2.2.1 Instrumentation and profiling . 12
2.2.2 Communication pattern detection . 14
2.2.3 CRD: Communication reuse distance . 15
2.2.4 Communication bottleneck analysis . 18

2.3 Experimental results . 19
2.3.1 Communication analysis validation . 19
2.3.2 Communication scalability analysis . 22
2.3.3 Communication bottleneck analysis . 23

2.4 Related work . 23
2.5 Discussion . 25
2.6 Conclusion . 26

3 A primer on deep learning 29
3.1 Algebraic data structures – Tensors . 29
3.2 Deep neural networks . 30

3.2.1 Training phase . 31
3.2.2 Inference phase . 32

xiii

3.3 Performance analysis of deep-learning models . 32
3.4 Convolutional neural networks . 34

3.4.1 Building blocks of convolutional neural networks 36
3.4.2 Winograd convolution . 38

3.5 Neural architecture search . 40
3.6 Reinforcement learning . 41
3.7 Graph convolutional networks (GCN) . 41

4 Performance portability: Efficient and performance-portable ConvNet deployment 43
4.1 Motivation . 43

4.1.1 Why do we need different convolution types? . 44
4.1.2 How can we make ConvNets more efficient? . 44
4.1.3 How can we achieve performance portability in ConvNets? 45

4.2 Background on Boda . 47
4.3 Comparison of CUDA, OpenCL, and Vulkan . 48

4.3.1 Programming conventions . 49
4.4 Boda+ framework . 51

4.4.1 MetaGPU abstraction layer . 52
4.4.2 Winograd transformation optimization . 53
4.4.3 Code generation . 55
4.4.4 Variant selection and auto-tuning . 57

4.5 Experimental results . 57
4.5.1 Programmability analysis . 58
4.5.2 Winograd accuracy analysis . 59
4.5.3 Winograd transformation optimization results . 61
4.5.4 Performance portability analysis . 61

4.6 Related work . 67
4.7 Discussion . 68

4.7.1 Design trade-offs . 69
4.7.2 Generalization and extensibility . 70

4.8 Conclusion . 71

5 Performance scalability: An adaptive and scalable neural architecture search platform 73
5.1 Motivation and background . 74

5.1.1 Quantitative analysis of distributed DL training . 74
5.1.2 The necessity of DL-aware scheduling . 74
5.1.3 Dealing with large deep-learning models . 76
5.1.4 A holistic approach for network design and training 76

5.2 Scalability via DL-aware scheduling . 76
5.2.1 Job-level scheduling . 77
5.2.2 Cluster-level scheduling . 78

5.3 Scalability via network pruning . 79
5.3.1 Computational graph coarsening . 79
5.3.2 Automated graph encoder-decoder . 80
5.3.3 Network pruning using reinforcement learning . 82

5.4 Experimental results . 83
5.4.1 Evaluating the DL-aware job scheduler . 83

xiv

5.4.2 The impact of adaptive batch size tuning on NAS 84
5.4.3 Evaluating the network pruning . 86

5.5 Related work . 91
5.5.1 Hyper-parameter tuning . 91
5.5.2 DL-specific job schedulers . 91
5.5.3 DNN model compression and acceleration . 92

5.6 Discussion . 93
5.6.1 Distributed gradient synchronization method . 93
5.6.2 The real benefit of adaptive batch size tuning . 94
5.6.3 Further insights on network pruning using RL . 94

5.7 Conclusion . 95

6 Conclusion and outlook 97
6.1 Summary of contributions . 97
6.2 Outlook . 98

6.2.1 Extended application domain . 99
6.2.2 Supporting other hardware . 99
6.2.3 Full-stack AI . 99

6.3 Final remarks . 99

xv

List of Figures

1.1 The history and hype cycles of artificial intelligence along with the rise of deep-learning models. 2
1.2 Design concerns for design and deployment of AI applications. 3
1.3 Horizontal and vertical scaling. 6

2.1 Communicating memory accesses to a single memory location. Red box: true communication.
Blue circle: communication reuse. 10

2.2 Sample communication patterns found in various applications in SPLASH benchmark suite. 11
2.3 The workflow of the thread communication analysis. 12
2.4 Proposed signature memory architecture. (a) read signature uses two-level approach, (b)

write signature uses regular signature memory. 14
2.5 The comparison of (a) true communication and (b) communication reuse of function INTERF()

in the benchmark application water_nsquared. 15
2.6 Computing CRD for a sample 3D communication matrix. Dark cells denote reused communi-

cation. 16
2.7 A sample CRD histogram. Max and min cutoffs are placed depending on the cache size. . . 17
2.8 Communication analysis results for lu_ncb and lu_cb. 20
2.9 Communication analysis results for ocean_ncp and ocean_cp. 21
2.10 Communication analysis results for water_nsquared and water_spatial. 22
2.11 The effect of two input sizes (simdev and simsmall) on CRD histograms for the applications

lu, ocean, and water. 24
2.12 Popular types of task/thread communications categorized into point-to-point and collective

communications. 26
2.13 The visualization of point-to-point and collective communication patterns identified in bench-

mark applications. 27

3.1 From scalars to tensors. Tensors are generalization of matrices. 30
3.2 An illustration of neural networks. (a) Layered structure of neural networks. (b) The structure

of a neuron. 31
3.3 Deploying deep-learning models on a diverse set of edge devices. 33
3.4 A typical convolutional neural network. 35
3.5 An illustration of popular activation functions used in ConvNets. 36
3.6 An illustration of a convolution operation. 37
3.7 Visual representation of the computational steps within a sample F (22, 32) Winograd convo-

lution. 40

4.1 Tradeoff between key concerns in designing ConvNets. 44
4.2 Boda framework workflow. 47
4.3 Kernel execution space for (1) CUDA, (2) OpenCL, and (3) Vulkan. 49
4.4 An SGEMM kernel implemented with CUDA, OpenCL, and Vulkan (GLSL). 50
4.5 The workflow of Boda+. 51

xvii

4.6 A trivial sample of MetaGPU code. 53
4.7 Illustration of a Winograd filter transformation being optimized prior to code generation. . 54
4.8 L1-norm error analysis for various Winograd internal tile sizes. 60
4.9 Comparing the number of arithmetic operations of each Winograd transformation, before and

after optimization, where r ∈ {3, 5, 7},m ∈ [2, 10]. Our analysis indicates that the highest
arithmetic reduction can be achieved when α = 8. 62

4.10 Comparing the runtimes of optimized and non-optimized Winograd convolutions F (m2, r2),
where r ∈ {3, 5, 7},m ∈ [2, 9], and the batch size B ∈ {1, 5, 20}. 63

4.11 The runtime comparison of kernels generated by our method and cuDNN vendor library on
Nvidia GTX 1080 Ti. 64

4.12 The runtime comparison of Winograd convolutions generated using our method with cuDNN
on Nvidia GTX 1080 Ti. 64

4.13 The runtime comparison of kernels generated by our method and the MIOpen vendor library
on AMD Radeon RX 580. 65

4.14 The runtime comparison of Winograd convolutions with MIOpen library on AMD Radeon RX
580. 65

4.15 Vulkan performance with and without auto-tuning on Mali G71. 66
4.16 Winograd convolution performance with and without auto-tuning on Mali G71. 66
4.17 The qualitative analysis of various tensor-based libraries. 69

5.1 Adaptive DL-aware deep-learning training platform. 77
5.2 An overview of our deep-learning training scheduler. 77
5.3 The tradeoff between statistical efficiency and throughput given different batch sizes. . . . 78
5.4 The workflow of auto graph encoder-decoder model compression (AGMC). 80
5.5 A sample computational graph coarsening applied on a ResNet block. 80
5.6 Average job completion time of our scheduler compared with DRF and DL2. 84
5.7 Average job completion time for different number of GPU workers with and without adaptive

batch size. 84
5.8 GPU utilization of two NVIDIA GeForce GTX 1080 Ti’s. 85
5.9 Adaptive batch size tuning versus fixed batch size. 85
5.10 Adaptive batch size tuning of our method (no-threshold) versus Pollux (with threshold). . 86
5.11 Comparing the pruning stability of our method across different layers with random search

on ResNet-20/56. 87
5.12 Validation accuracy comparison of random search and AGMC on ResNet-56 under different

FLOPs. 88
5.13 An error-rate comparison for individual AMC layer embedding, overall AMC, and AGMC

layer embedding. Our method has achieved roughly 2× less error rate. 89
5.14 Adaptive batch size tuning versus using maximum possible batch size. 94
5.15 Accuracy recovery after different fine-tuning epochs. 95

6.1 The components of a full-stack AI platform. 100

xviii

List of Tables

2.1 The list of optimization types along with some examples categorized into coding and runtime
optimizations. 19

2.2 Detailed results of communication bottleneck analysis for a subset of the Rodinia [72]
benchmarks. 23

4.1 A comparison of the terminology used in CUDA, OpenCL, and Vulkan. 49
4.2 The list of pre-defined keywords in the kernel body alongside their corresponding value

within each target API. 53
4.3 Tuning parameters for Winograd convolutions. 58
4.4 Experimental setup. 59
4.5 Lines-of-code comparison for different convolution implementations alongside computed

effort metric. 59
4.6 Polynomial points selected by our method alongside their relative error. 60
4.7 List of sample convolutions for testing normal convolution kernels. 72
4.8 List of sample convolutions for testing Winograd kernels. 72

5.1 Detailed comparison of AGMC with other methods. 90

xix

1 Introduction

We begin this dissertation by providing an introduction to the main concepts that are necessary to un-
derstand the contributions. First, we describe the concept behind data-intensive applications and their
essential characteristics, which are relevant to our work. Particularly, we focus on a subset of data-intensive
applications, namely deep neural networks. We provide a brief history of such programs and the main
design concerns that motivated us to work on them. After defining our target application domain, we
briefly summarize performance engineering and its constituent methods that we use in our contributions.
Specifically, we explain a trilogy of performance engineering methods that span from “performance profiling”
and “performance portability” to “performance scalability”. Last but not least, we conclude this chapter
with an outline of this dissertation’s structure.

1.1 Data-intensive applications

In essence, data-intensive applications are a subset of computer programs that deal with large volumes of
data. They are typically parallelized using the data parallelism paradigm to benefit from multi-/many-core
processors. Additionally, such applications also involve compute-intensive characteristics [1]. Thus, an
efficient data-intensive program requires optimizations related to both memory and computations.

Big-data applications such as data analytics, web crawling, social network analysis, and weather prediction
are among the well-known examples of data-intensive applications. In fact, a variety of system architec-
tures have been developed for such applications, including parallel and distributed relational database
management systems, MapReduce [2] programming model, and Apache Hadoop [3].

A recently emerged workload is large-scale machine learning and particularly deep-learning applications.
Deep neural networks need to be trained with large datasets multiple times to reach to an acceptable
accuracy. Moreover, the inference phase is often deemed to operate in real-time, requiring a highly efficient
implementation to handle large amounts of data in a fraction of seconds. Thus, performance optimization
plays a vital role in realizing the potentials of such applications. In this dissertation, we primarily focus on
deep learning as the main example of data-intensive applications.

1.1.1 Deep-learning applications

Artificial neural networks and their more powerful variant, deep neural networks, have a long history that
dates even back to the time that early computers became available. Former breakthroughs in the AI research
led to several hypes and high expectations from the community. Nonetheless, regardless of all the ambitious
goals and efforts to imitate the functionality of a human brain using neural networks, this field of research
has experienced two extensive stagnations before 2012 (see Figure 1.1). The root cause was the prohibitive
computational demand of such networks. Given that traditional machine-learning methods could provide
better accuracy with lower computing complexity, neural networks lost the momentum and remained
untended for a while. Other reasons that prevented neural networks from flourishing were insufficient
labeled data, unexplainable outcomes, and extensive developing effort.

1

Ex
pe

ct
at

io
ns

Pe
ta

�o
p/

s-
da

ys

1940 1950 1960 1970 1980 1990 2000 2010 2020
1E-14
1E-12
1E-10
1E-08
1E-06
1E-04
1E-02
1E+00
1E+02
1E+04

Invention of
computers

Computers
available Workstations

PCs GPUs

Powerful
PDAs TPUs

Quantum
Computers

1943
Neural nets

1958
Artificial NN
perceptrons

1960
Back propagation

1965
Deep learning

1970
Expert systems

1983
Thinking machines

1984 CYC
1997 LSTM

1999 Albo

2012 AlexNet won
Imagenet challenge

2015 AlphaGo

2020
OpenAI's
GPT-3

1st AI winter 2nd AI winter

Perceptron

NETtalk

ALVINN

LeNet-5

AlexNet
ResNets

Xception

Neural machine
translation

AlphaGo Zero

VGG

2-year doubling (Moore’s law)
First era

3.4-month doubling
Modern era

Figure 1.1: The history and hype cycles of artificial intelligence along with the rise of deep-learning mod-
els [9]. Before 2012, the amount of compute used in the largest AI training doubled every 2-years,
similar to the Moore’s law. Since 2012, this amount is increasing exponentially with a 3.4-month
doubling time.

With the ubiquity of high-throughput GPUs, the modern era began in 2012 with the emergence of the
first real deep-learning models trained using GPUs. Previously, it was uncommon to perform training on
GPUs. Thus, the amount of computation used in the largest AI training doubled every 2-years, similar to
Moore’s law. Since 2012, this amount is increasing with a faster pace—3.4-months doubling time [4] (see
Figure 1.1). From 2012 to 2014, training jobs were running at most on eight GPUs. However, starting
from 2014, large-scale training became possible with the help of GPU clusters and additional algorithmic
improvements, enabling the training to scale up to hundreds of GPUs nodes. As a result, deep learning and
its popular technique, convolutional neural networks (ConvNets), are now the mainstream machine-learning
method for a wide variety of computer-vision tasks, including object detection [5], image segmentation [6],
and video classification [7]. In some cases, neural networks can now even beat human performance. Such
a wide and growing use-case in both academia and industry has been made possible by three enabling
factors [8]: (1) more efficient end-to-end deep-learning algorithms, (2) availability of massively parallel
compute platforms such as GPUs, and (3) large labeled datasets made available through crowd-sourcing. In
this work, we mainly focus on the second factor and attempt to enable ConvNets to efficiently harness the
full potentials of available computing resources.

The computations in deep-learning applications are divided into two separate phases: training and
inference. The training phase is often highly parallelizable and scalable. It heavily uses computational
resources, ranging from a high-end GPU to a large cluster of machines. Although such resources are readily
available to the industry and product developers, not enough attention is being paid to the orchestration
of AI jobs. Hence, AI projects have become the source of bottlenecks in research and development. As a
remedy, an AI-tailored job scheduler can immensely enhance the speed and scalability of deep-learning
training jobs.

Once the training of a ConvNet converges to an optimum level, the obtained model should be deployed

2

H
ar

dw
ar

e

A
I A

pp
lic

at
io

n

E�cient & parallel software

 Accuracy Speed Cost Energy Porta
bilit

y

Figure 1.2: Efficient and parallel software solution acting as a bridge between AI applications and hardware
(inspired by “A view from Berkeley” report [11] and Golden Gate Bridge). As a remedy for the
existing tension between the two ends, we need to strike a balance between accuracy, speed,
cost, energy consumption, and performance portability.

on the target hardware platform. However, due to several design concerns, high-end processors cannot
be directly used on edge devices. Accuracy, speed, cost, energy consumption, and portability are among
the main concerns during the development and deployment of AI models on target devices [10]. However,
the contradictory nature of these concerns often demands extra attention from the developers, as they
involve different constraints, priorities, and difficulties. For instance, for an AI model that is supposed to be
deployed on a mobile device with limited computing power, energy consumption and speed will have a
higher priority than one or more of the concerns mentioned earlier.

Nowadays, various efficient, low-cost embedded processors, including special-purpose processors for
AI-related tasks, exist in the market. GraphCore, Huawei, Intel Mobileye, Renesas, and Texas Instruments are
among the companies that have built various AI SoCs1, each bundled with different hardware specifications,
offering different performance levels. Nonetheless, deploying ConvNet models on such devices and exploiting
the utmost performance is a cumbersome task, often demanding iterative rounds of tuning and code
specialization. Therefore, a single recipe for optimization would not lead to the highest runtime efficiency
on all processors. Furthermore, ConvNet models have to be reshaped to match hardware constraints.
Such issues constitute a significant obstacle for AI developments in the industry sector. As a real example,
autonomous vehicles with the highest level of automation often demand the concurrent execution of multiple
AI jobs. Furthermore, they heavily rely on the real-time data gathered by many input sensors, all of which
require massive computing power to perform instant analysis and appropriate maneuvers.

Various application domains such as big data perform their computation in a layered system and employ
runtime frameworks such as Hadoop and Apache Spark for efficiency. Similarly, the computation behind deep
learning can be embodied in layered software systems. As a result, such systems act as a unified software
solution, bridging the gap between the high-level application implementation and complex hardware
platform by striking a balance between all design concerns mentioned earlier (see Figure 1.2). In Chapter 4,
we provide our bridge solution to realize the design concerns of deploying ConvNets on various GPU
platforms.

1System on a Chip

3

1.2 Performance engineering

In many application domains, computing resources are limited and costly. Hence, different levels of
optimization on code, architecture, and runtime scheduling are required to enhance the overall performance.
Even if computing resources are readily available, drawing less energy with an eye towards more environment-
friendly code is essential. To this end, a well-engineered process for performance analysis and tuning is
largely beneficial to attain the expected performance. Such a systematic process is called performance
engineering [12, 13]. Particularly, it is often regarded as the combination of different techniques applied
to a given application to enhance its non-functional properties such as performance, throughput, energy
consumption, memory usage, and performance portability. As mentioned earlier, in this dissertation,
we introduce three techniques to build our performance engineering approach. These methods are not
necessarily interdependent as each can be used separately for a specific use. In the following, we provide a
brief explanation for each method.

1.2.1 Performance profiling

Monitoring and collecting performance data from an application to analyze its behavior is called performance
profiling. Such data can later be analyzed to pinpoint potential performance bottlenecks. Upon the
identification of poorly performing code regions, the programmer can resolve performance issues by applying
appropriate code optimizations, if possible. Performance bottlenecks can occur due to various reasons such
as inefficient algorithms, poor data locality, and inappropriate thread communications (assuming that the
application is parallelized). Various methods with different overhead and profiling granularities exist for
performance profiling. Two well-known category of methods are (1) offline/simulation-based profiling and
(2) dynamic instrumentation. In the following, we will describe each category and enumerate a few notable
communication profiling tools.

Offline/simulation-based profiling. By imitating the real environment, we can monitor the runtime behav-
ior of a given application in a controlled fashion. Such methods either run the target application in
a controlled sandbox (e.g., by using Virtutech’s Simics simulator [14]) with many software probes
attached to record the changes, or by using debugging helper libraries available in parallel program-
ming frameworks (e.g., IPM [15] in MPI). For instance, using the former method, we can trace all
memory accesses to analyze the communication pattern [16, 17]. However, despite compressing the
analysis results, they produce extra-large output files, more than 100GB for a moderate input size [16].
Following the latter approach, we can employ IPM [18] to collect MPI communications between
processors [19, 20, 21, 22, 15]. Such efforts, however, are mainly designed for distributed-memory
applications and do not take shared-memory systems’ characteristics into account. Additionally, they
have high memory overhead since they use a 128-bit signature size for each MPI call. Therefore,
besides having high execution runtime, simulation-based profiling do not seem to fit for on-the-fly
analysis.

Dynamic instrumentation. By inserting a predefined function before every target instruction in the program,
we can extract various runtime metrics. These API calls are invoked at runtime and allow us to record
various performance data such as timestamps, memory accesses, and instruction counts. Well-known
instrumentation tools are LLVM [23], Intel Pin [24], DynamoRIO [25], and Valgrind [26]. For
example, DiscoPoP [27] uses LLVM instrumentation to analyze data dependences to identify potential
parallelization opportunities. Another project called MACPO [28] uses LLVM to instrument source
codes and analyze their data structures. Helgrind [29] and Helgrind+ [30, 31] are based on Valgrind
to detect synchronization errors. They utilize the shadow memory approach with 32 and 64 bits

4

shadow values, respectively. SD3 [32] is another profiler for data dependency analysis of sequential
programs, which reduces space overhead of tracing memory accesses by compressing strided accesses
using a finite state machine.

In addition to the code instrumentation methods, a number of tools rely on hardware performance
counters [33, 34, 35, 36, 37] to monitor the performance counters available in the underlying hardware
to collect the required information. They have much less overhead in comparison with the previous
methods. As a result, they are more suitable for performing rapid performance analysis, however,
with lower accuracy and the need for operating system tweaks. For instance, this technique can
only indirectly estimate thread communications, leading to inaccurate results [38]. An alternative
approach to overcome this issue is using translation lookaside buffers [38]. Although this approach
can only be used for thread migration in shared-memory systems, it could be a great start point for
future researches.

Given the pros and cons of each method described above, we opted for code instrumentation profiling
and present our solution for communication profiling in Chapter 2.

1.2.2 Performance portability

Given the wide range of available computing platforms such as CPUs, GPUs, and FPGAs, attaining high
utilization and efficiency on all platforms with the same code base is challenging. Even within the same line
of hardware, we have a magnitude of different configurations for computing cores, memory hierarchy, and
bandwidth. Such a task becomes even more complicated when new computing platforms emerge in the
market, such as Google’s tensor processing units (TPU), GraphCore, and Intel’s Nervana platforms. All these
varieties make the code development and efficient deployment on the end device an extremely cumbersome
task since each hardware requires a specific set of optimizations to be applied to the code. Furthermore,
each optimization method might have a different set of tuning parameters.

Various tools and methods have been introduced to the HPC community by experts to write a single
code and run it on various platforms, such as Kokkos [39], Raja [40], and SYCL [41]. However, they are
designed for general-purpose applications and do not necessarily consider the unique requirements of AI
applications. All these tools are based on a concept called performance portability. Since there is no standard
and universally accepted definition for such a term, we describe our point of view. We define performance
portability as “to achieve a performance close to best-known vendor runtime on each platform with a single
source code”. This statement implies that a code is only performance portable if the programmer does
not have to rewrite the program and the resulting performance is close to vendor libraries (usually within
20% of the best achievable runtime). Based on our definition for performance portability, in Chapter 4, we
introduce a library for generating efficient and portable ConvNet kernels.

1.2.3 Performance scalability

Generally, scalability is a property that identifies the ability of a system to efficiently deal with growing
amount of data if more computing resources are available. Often, scaling the resources is performed in two
different dimensions, namely horizontal (a.k.a. “scaling out”) or vertical (a.k.a. “scaling up”). Although
both scaling schemes involve provisioning more computing resources, they are substantially different in
implementation and attainable performance. As depicted in Figure 1.3, horizontal scaling works by adding
more compute nodes to the pool of resources. In contrast, vertical scaling adds more computing power, such
as CPU, GPU, and memory, to an existing machine. One key difference between the two is that horizontal
scaling expects a high degree of parallelism so that each node can execute a portion of computations. Thus,

5

CPU

IO

Horizontal scaling

Ve
rti

ca
l s

ca
lin

g

GPU

Figure 1.3: Horizontal and vertical scaling.

it involves additional effort to efficiently parallelize and prepare the code for such a scaling scheme. On the
contrary, vertical scaling is more straightforward, as the logic stays the same, yet the program runs on a
more powerful device.

Within the context of this dissertation, we studied the scalability degree of deep neural networks primarily
at the training phase. Deep-learning training is a dominant workload in many HPC and cloud-computing
centers, as such jobs are highly resource-/data-intensive, requiring access to large-scale computing resources
to complete within a reasonable amount of time. To meet such an extensive resource demand, dedicated or
shared clusters are often used, in which a job scheduler manages resource sharing between all the training
jobs. From the scalability perspective, the job scheduler is responsible for allocating the right number of
resources at the beginning and throughout the entire execution. In addition to introducing a DL-specific
scheduler, we present a novel model compression solution for scaling the performance of deep-learning
models in Chapter 5.

1.3 Contributions

The contributions of this work can be summarized as a class of methods for performance analysis and
accelerating recently emerged HPC workloads. By focusing on a specific range of data-intensive applications
(i.e., deep-learning workloads), we demonstrated that effective acceleration of such use cases requires a
combination of different methods. A brief description of our threefold performance engineering methods is
provided below:

Performance profiling: Unveiling thread communication bottlenecks. The first contribution is a novel
performance profiling method to identify potential communication bottlenecks from data sharing
among threads. Using our profiler, we observed that the data shared between a pair of threads
should be reused within a reasonable distance to preserve data locality. Thus, we propose new
hardware-independent metrics to characterize thread communication and suggest appropriate code
optimizations.

Performance portability: Efficient and performance-portable ConvNet deployment. Our second contri-
bution is a framework for the automatic generation of efficient and performance-portable convolution
kernels for various GPU platforms that support CUDA, OpenCL, or Vulkan. By relying on a syn-
ergy of meta-programming, symbolic execution, and auto-tuning, we enabled the specialization of a

6

challenging ConvNet operation named Winograd convolution. Achieving runtimes close to vendor
deep-learning libraries with minimum programming effort confirmed the performance portability of
our approach.

Performance scalability: An adaptive and scalable neural architecture search platform. Lastly, we devel-
oped a specialized training platform equipped with a novel topology-aware network pruning algorithm
to enable rapid and scalable network training, neural architecture search, and model compression. As
a result, an AI model can be easily scaled to a multitude of computing nodes, leading to faster model
design with less operating costs.

1.4 Structure of this dissertation

The remainder of this dissertation is structured as follows. We start by reviewing the fundamentals of
deep-learning applications in Chapter 3. Such programs are the main focus of our work, and understanding
them is the prerequisite for comprehending the rest of this thesis. Our performance engineering trilogy,
which constructs the main contributions, will follow in Chapters 2 to 5. First, we present our thread
communication profiler in Chapter 2. Next, Chapter 4 describes our proposed solution for efficient and
performance portable deployment of convolutional neural networks. As our last contribution, Chapter 5
presents a scalable training platform for deep-learning models. Finally, Chapter 6 concludes this document
by highlighting the potentials of this work and providing a handful of future research directions.

1.5 Statement of originality

The content of this dissertation is primarily based on four relevant peer-reviewed manuscripts that are
published in parallel computing, computer systems, and AI conferences, in which I have contributed as the
main or secondary author. The manuscripts were published under the supervision of Prof. Dr. Felix Wolf
(Department of Computer Science, Technical University of Darmstadt) and Prof. Dr. Ali Jannesari (Depart-
ment of Computer Science, Iowa State University). In the following, we provide the complete bibliographic
information of the manuscripts along with an explanation of their contribution to this dissertation.

• Arya Mazaheri, Felix Wolf, Ali Jannesari: Unveiling Thread Communication Bottlenecks Using
Hardware-Independent Metrics. In Proc. of the 47th International Conference on Parallel Processing
(ICPP), Eugene, OR, USA, pages 6:1–6:10. ACM, August 2018 [42].

↪→ The content of this paper appears mostly in verbatim text in Chapter 2. As the main author, I did
the brainstorming, implementation, experiments, and wrote the manuscript. The feedback and
supervision that I received from my co-authors greatly improved the quality of the paper.

• Arya Mazaheri, Johannes Schulte, Matthew Moskewicz, Felix Wolf, Ali Jannesari: Enhancing the
Programmability and Performance Portability of GPU Tensor Operations. In Proc. of the 25th Euro-Par
Conference, Göttingen, Germany, volume 11725 of Lecture Notes in Computer Science, pages 213–226,
Springer, August 2019, (best paper award) [43].

↪→ A part of Chapter 4 is based on the content of this paper, from which most of the text is taken as
verbatim. My former undergraduate student, Johannes Schulte, participated in implementing
the Vulkan backend [44]. I, as the first author, also participated in implementing the idea such
as MetaGPU, conducted all the experiments on various GPU platforms, and wrote the manuscript.
Dr. Moskewicz agreed to collaborate with us in this project, as the idea of this paper was based

7

on his former work. We benefited a lot from his expertise to define a clear goal and a right
experiment strategy for this project.

• Arya Mazaheri, Tim Beringer, Matthew Moskewicz, Felix Wolf, Ali Jannesari: Accelerating Winograd
Convolutions using Symbolic Computation and Meta-programming. In Proc. of the 15th EuroSys
Conference, Heraklion, Crete, Greece, pages 1–14, ACM, April 2020 [45].
↪→ Similar to the previous paper, Chapter 4 has also taken a large portion of this paper as verbatim.

Dr. Moskewicz proposed the idea of implementing an efficient Winograd and provided several
constructive feedback. My former undergraduate student at that time, Tim Beringer, helped me
in implementing a GPU version of the Winograd convolution in the Boda framework [46]. I, as
the first author, proposed additional key ideas, implemented the symbolic computation method,
conducted the experiments, and wrote the manuscript.

• Sixing Yu, Arya Mazaheri, Ali Jannesari: Auto Graph Encoder-Decoder for Neural Network Pruning. In
Proc. of the International Conference on Computer Vision, Montreal, Canada, IEEE, October 2021 [47].
↪→ The network pruning method that is described in Chapter 5 is derived from this paper. I, as the

secondary author, participated in the brainstorming, conducting the experiments, and writing
the manuscript.

In addition to the publications above, Chapter 5 contains a section related to a scalable training platform,
which is derived from the Master thesis of my former graduate student, Tim Beringer [48]. At the moment
of writing this dissertation, this work is still in progress.

8

2 Performance profiling: Unveiling communication
bottlenecks

The prevalence of multi-core processors has made parallel programming and, therefore, performance
analysis/optimization of parallel applications a must for exploiting utmost efficiency. However, despite the
emergence of various parallel programming models, libraries, and tools to make software parallelization
easier, the majority of programmers do not yet have detailed insights into performance bottlenecks and the
appropriate solutions [49]. Thus, parallel computation tasks are often not efficiently developed. On the one
hand, this could be due to undiscovered parallelism opportunities or inappropriate workload assignment
to available processors. On the other hand, low efficiency and scalability can be explained by ineffective
communications among the threads.

Thread communication plays an essential role in parallel applications, often not thoroughly investigated
during performance-bottleneck diagnosis. Because memory is much slower than processors, the complete
characterization of the memory access patterns of important code regions is critical for precise performance
diagnosis. This turns out to be more vital in multi-core systems, where data sharing among cores is often
performed in last-level caches [50]. Currently, the programmers’ approach to performance tuning is manual
code restructuring and applying compiler optimizations for each target platform. In general, however,
performance optimization needs to improve data-cache locality and reduce communication bottlenecks [51].

The expense of communications among tasks is often correlated with the amount of communication
and the degree of overlap with computations. Furthermore, performance depends on the size and sharing
configuration of the underlying cache. Various studies have investigated the sharing behavior in parallel
applications, but primarily only for a single cache size [52]. Therefore, they cannot tell how changes in
cache size, configuration, or even thread allocation policies might ultimately affect performance. Multi-core
reuse-distance analysis [53, 54] is a promising approach to assessing parallel applications’ locality and
their cache effectiveness. However, it fails to provide a detailed overview of communication among threads.
Furthermore, it suffers from high complexity and error-prone results due to thread interleaving. The
locality results are also often reported for the whole program. Therefore, we cannot focus on optimizing
data-sharing patterns and thread communication.

In this chapter, we present our early work on performance analysis and also the first part of our performance-
engineering trilogy. We conducted a comprehensive study using performance profiling to realize the most
common pitfalls and sources of bottlenecks in shared-memory parallel applications. Additionally, we
contemplated the applicable optimization methods for improving the efficiency of parallel programs, given
their communication patterns. Our profiling method is generic and can be applied to any shared-memory
application. The results and findings of this work paved the path to perform targeted code specialization
and performance optimization.

2.1 Background and motivation

Communication in parallel programming models is either explicit or implicit, depending on how threads
share data. For example, distributed-memory programming models like MPI follow explicit communication

9

Time

T1

T2

T3

W R W R R R R

R R R R R RW W W R

R W R R R

Figure 2.1: Communicating memory accesses to a single memory location. Red box: true communication.
Blue circle: communication reuse.

through send() and receive() API calls. The same process happens in GPU communications libraries,
such as Nvidia’s collective communication library (NCCL, pronounced “Nickel”) [55], which provides
topology-aware inter-GPU communication primitives. Within these libraries, we often have access to
collective communication primitives, such as AllReduce, Broadcast, Reduce, AllGather, and ReduceScatter.
Undeniably, they also provide point-to-point send/receive communication, allowing scatter, gather, or
all-to-all operations.

In shared-memory applications, however, exchanging data is implicit, and it is mostly accomplished through
memory accesses to shared variables [56]. Such a method, implies different communication patterns [16]
compared with distributed-memory applications, imposing additional irregularity and complexity on data
sharing. For the same reason, we are interested in finding an appropriate method for detecting thread
communications and discovering potential bottlenecks.

2.1.1 Communication in shared memory systems

We define a communication event as two memory accesses from different threads to the same memory
address with a specific pattern. Four different combinations of memory accesses (RaR, RaW, WaR, and
WaW) can occur, depending on whether the data is read or written by each thread. However, only the RaW
pattern implicates true communication. No thread can be declared as sender/receiver due to performing
the same operation in the other cases. In this case, one thread writes data (sender) which is then read
by another thread (receiver). To avoid redundant communication, we only consider the first read after a
write as a communication. Other read accesses to the exact location will be considered as reuse. Figure 2.1
illustrates an example of distinguishing between true communication and its reuse for a single memory
being accessed by three threads.

Identified communication events can be represented by a directed acyclic graph (DAG), in which each
node represents a thread, and edges denote the number of communication events between each pair of
threads. Such a graph is often visualized as an adjacency matrix, which is called communication matrix or
communication pattern [57, 56]. Each cell of the matrix contains the number of communication events for a
given pair of threads. The diagonal of the matrix is always zero, as memory accesses by the same thread do
not imply any communication. Figure 2.2 illustrates sample communication patterns that we found within
the applications in the SPLASH benchmark suite.

10

Figure 2.2: Sample communication patterns found in various applications in SPLASH benchmark suite.

2.1.2 Reuse distance analysis

Reuse distance has long been a hardware-independent metric for evaluating data reuse in programs [58].
The reuse distance of a given reference to element x is the number of distinct data elements accessed
between two consecutive uses of x. Data granularity could be anything from pages, cache lines, memory
words, or instructions. Reuse distance is typically used for predicting the cache hit ratio of a fully associative
LRU cache with N one-word blocks, in which data accesses with reuse distance of N or less would hit. The
reuse distance distribution is typically represented as a histogram diagram (a.k.a. locality signature) and
shows the overall program data locality (see Figure 2.7). Such an analysis can model data locality for all
cache sizes and can later be used as a reference for performance optimizations [58, 59, 60].

In multi-threaded applications, however, such an analysis is no longer hardware-independent because
threads interact with each other and memory accesses might interleave [53]. Various researchers proposed
an alternative method for computing concurrent reuse distance and private reuse distance for shared and
private caches, respectively [54, 61, 62]. Such methods are based on statistical modeling methods and
consider specific parallel regions, like loops, due to the high code divergence of task parallelism. Furthermore,
these methods consider all memory accesses and do not provide specific insights into communication events
and synchronization. Thus, we aim to address these issues and propose a locality-analysis method to study
communication in shared-memory applications.

11

Output Application
Instrumentation

Compile time Run time

So
ur

ce
 C

od
e

Static Analysis
(Region Annotation)

Thread
Pool

Communication Analysis

RaW, RaR
Pattern

Detection

Asym. Signature Memory

Read Signature

Write Signature

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

8

0

64

 42

180 72

5 0

362 16

010 12
True Communication

Matrices
Communication Reuse

Matrices

Offline Analysis

CR
D

An
al

ys
is

CR
R

An
al

ys
is

Figure 2.3: The workflow of the thread communication analysis.

2.1.3 DiscoPoP profiler

DiscoPoP [63, 27] is an LLVM-based dynamic dependence profiler mainly designed for detecting dependences
inside sequential and multi-threaded programs. It detects write-after-read (WAR), read-after-write (RAW),
and read-after-read (RAR) dependences among program instructions with the aid of code instrumentation.
The main issue regarding software profiling is the excessive runtime overhead and memory consumption,
preventing them from being used widely. However, DiscoPoP has succeeded in overcoming this challenge by
employing software signatures for recording memory access history. Therefore, program profiling with less
than 500MB of memory and 86× average slowdown has been made possible. A noteworthy feature about
DiscoPoP is that its components can be easily extended to add required functionalities. In this work, we
exploited this feature to implement our communication pattern profiler.

2.2 Characterizing the communication behavior of parallel programs

We argue that studying the communication pattern of parallel programs can characterize them and ultimately
be used for performance bottleneck analysis. Each communication pattern has a unique data-sharing topology
among processors/threads [19], enabling us to discern them quickly and apply relevant optimizations.
Although various methods already exist for extracting communication patterns, they are either only directed
toward distributed-memory applications [21, 64, 65] or not comprehensive enough to be used for memory
performance characterization [56, 51]. They mainly produce a single communication pattern for the entire
program and neglect the dynamic behavior of a parallel application. Additionally, they generate a simple
communication topology, failing to provide further insights into improve data locality.

To address the shortcomings mentioned above, we developed a method for thread communication analysis,
which consists of three different phases: (1) compile-time, (2) runtime, and (3) offline post-analysis. Figure
2.3 depicts a high-level overview along with the execution flow. In the following, we will explain the main
components.

2.2.1 Instrumentation and profiling

In order to produce a nested structure of communication matrices in potential hotspots of the target program,
we have devised a simple static analysis module. It analyzes the program and annotates each loop with a
unique identifier (UID) using LLVM metadata nodes. If the instrumented memory access is inside a loop,
the UID of the parent loop is fed into the pattern detection for further analysis.

To determine the communication pattern, we opted for the code instrumentation approach. As previously
discussed in Section 1.2.1, various methods and frameworks are available for instrumenting programs and
capturing inter-thread data dependencies. However, due to the following reasons, we chose compiler-based
instrumentation over simulation, binary instrumentation, and hardware counter analysis:

12

• Compile-time instrumentation provides more flexibility and freedom in terms of code instrumentation
with the aid of intermediate representation (IR). For instance, only specific functions, operations, or
data structures could be selected for instrumentation. In contrast, other methods are unable to detect
loop structures, boundaries, and data-structure-related operations [28].

• Compile-time instrumentation enables us to provide an on-the-fly analysis feature, unlike simulation
methods. However, such a feature comes with a cost. Typically, instrumentation degrades the runtime
performance by at least 80× ∼ 100×, yet it still outperforms the hardware analysis approach with
regard to accuracy.

• Binary program that is generated after compile-time instrumentation could run natively on the target
architecture and benefit from hardware-specific optimizations. On the contrary, simulators are often
not comprehensive enough to support all bells and whistles of high-end processors [28].

Given the reasons above, we implemented our method with the help of the DiscoPoP dependence pro-
filer [63] to obtain the required data for extracting communication patterns and communication reuse
distance. The input is the target program, containing all memory accesses. DiscoPoP detects data depen-
dences among program instructions using LLVM code instrumentation. We tweaked the instrumentation
module in DiscoPoP to support POSIX threads (a.k.a. pthread) and OpenMP parallelization models and
instrumented each memory access with its access type, memory address, executing thread ID, region infor-
mation, and variable size. We also annotated each code region to obtain fine-grained information related to
each region later on. The granularity of profiling is loop and function regions in pthread applications and
OpenMP regions in OpenMP applications.

As mentioned before, the main drawback of dynamic profiling, which prevents it from being widely used,
is runtime and memory overhead. Pairwise dependence analysis requires a lot of time and resources to
detect inter-thread dependences. Such dependences can be viewed as data conflicts since a dependence
exists only when the same memory location is accessed several times in a particular order by more than
one thread. Thus, to overcome the existing challenge, we utilized a customized data structure, called
asymmetric software signature, for recording memory accesses history [57]. The main reason is that
signature memories are typically used for determining conflicts between two sets of items, such as read
and write memory accesses. The concept of this data structure is borrowed from transactional memory
systems, where it provides an approximate representation of an unbounded set of elements with a bounded
set of states [66]. In other words, the memory consumption is constrained to a fixed value, but the user
can still adjust the maximum size. Additionally, signature memories access the stored data through hash
functions with O(1) access time to minimize the runtime overhead of detecting conflicts. However, the
output might be incorrect due to the limited memory size, similar to any hash-based data structure. In
fact, the probability of false-positive results correlates with the signature size and the number of memory
accesses in a given application.

Our asymmetric data structure consists of two separate signature memories. The first one is a two-level
signature memory, mainly designed for the read signature, as we need to store the list of all threads that have
accessed the corresponding memory location. It uses a fixed-length array of size n, where n is the signature
size, combined with an efficient MurmurHash [67] function that maps memory addresses to array indices.
We opted for this hash function because it has a much lower time complexity while having fewer collisions
compared to other hash functions. The first-level array stores pointers to the second-level arrays, all of
which are bloom filters. The Bloom filter [68] is a simple and space-efficient probabilistic data structure for
recording and representing a set of data to perform rapid membership queries. In our case, it has been
used to save the list of threads that accessed the same memory address. Figure 2.4(a) demonstrates the
proposed two-level signature approach. Memory location address hashes to an element in the first array. If
the element is empty, a pointer to the second array will be allocated and points to the new bloom filter.

13

. . .x y

0x64F72B2A

Hasher

. . .1 1 0 . . .1 0 1

Level 1
Signature Mem.

Level 2
Bloom Filter

. . .#

0x64F72B2A

Hasher

(a) (b)

0 0

Hasher Hasher

Figure 2.4: Proposed signature memory architecture. (a) read signature uses two-level approach, (b) write
signature uses regular signature memory.

The size of signature elements and bloom filters is adjustable by the programmer to optimize for a
particular program under test. However, the bloom filter has been designed so that its size does not need
to be adjusted manually. The bloom filter uses a bit vector of size m, where m depends on the number
of threads available in the target program. Furthermore, a linear combination of hash functions has been
devised to automatically adjust the number of hash functions according to the false-positive rate required
by the user. Since the maximum number of elements that are supposed to be stored in the bloom filter is
limited by the number of threads that might access the same memory location, it is guaranteed that the
false-positive rate does not go beyond the threshold limit.

On the other hand, as depicted in Figure 2.4(b), a plain signature memory is used for the write signature
memory. In this case, we use a plain signature memory to store source thread IDs. Each value stored in this
signature memory represents the last thread ID that accessed the corresponding memory location.

Although employing signature memories can significantly reduce the amount of memory overhead and
offer fast memory lookups, they incur potential hash collisions. Defining a small signature size could lead
to numerous collisions (i.e., h(v1) = x and h(v2) = x with v1 ̸= v2). This will then produce inter-thread
dependencies that do not actually exist (a.k.a. false positive). Consequently, the accuracy of the algorithm
decreases when the size of the signature decreases. Hence, picking the size of the signature shall be viewed
as a trade-off between memory consumption and accuracy.

2.2.2 Communication pattern detection

We are interested in detecting both true communication events (RaW) and their reuse (RaR). We define
true communication as a write operation on a given memory location followed by the first read of the same
memory, provided that two different threads are involved. On the other hand, communication reuse relates to
those re-reads after the initial RaW event. We distinguish between these two events because of their different
effects on cache usage and memory performance. One critical assumption is that the target application is
data-race free and synchronization points are used correctly. Otherwise, the gathered information would be

14

(a) (b)

Figure 2.5: The comparison of (a) true communication and (b) communication reuse of function INTERF()
in the benchmark application water_nsquared.

misleading.
The pseudocode for detecting dependences between threads with signature memories is shown in

Algorithm 1. This algorithm processes memory accesses in a logical order to detect thread dependences. To
achieve higher throughput and parallel analysis, we run this algorithm concurrently using the application’s
threads. Thus, the dependences are identified during program execution using lock-free primitives without
spawning any new thread.

The output of our profiler consists of three-dimensional communication matrices – one for true communi-
cations and one for communication reuse. The third dimension contains a sequence of memory addresses
shared between corresponding threads, which can be used to compute communication distances. Nonethe-
less, two-dimensional communication matrices can be easily extracted for the purpose of visualization.
Figure 2.5 shows a side-by-side overview of true communication and communication reuse matrices extracted
from a function in the application water_nsquared, in which the discrepancy between communication
reuse and true communication matrices is easily observable. In this specific case, we can spot the threads
that are reusing communication more than others. Such an observation can serve as the primary source of
information for data-locality optimizations, such as thread/data mapping.

2.2.3 CRD: Communication reuse distance

Data locality analysis is an established method for evaluating the efficiency of memory accesses within an
application. The traditional reuse distance analysis inspired us to propose communication reuse distance (CRD)
to analyze thread communications. CRD is a metric for measuring the data locality of communication events
between each pair of threads, with shorter distances having a higher chance to represent cache hits and
longer distances less so. We created a tool to measure the CRD for each code region (loops and functions
in pthread and parallel regions in OpenMP). The input consists of three-dimensional communication

15

Algorithm 1 Communication extraction using asymmetric signature memory.
for all memory access a in the program do

if Type(a) is read access then
if a in write signature then

if a not in read signature & lastWrite.tid ̸= a.tid then
add RAW dependence to comm. matrix;

else if lastWrite.tid ̸= a.tid then
add RaR dependence to reuse matrix;

end if
else {a not in write signature}

insert a to read signature;
end if

else {a is write access}
clear out correspondent entry in read signature;
insert a to write signature;

end if
end for

3D Communication Matrix

a a b c a +a +a b +a +b +b +a

T3

T2

T1

T0

T0 T1 T2 T3

c x

C
RD

 =
 0

C
RD

 =
 0

C
RD

 =
 1

CRD=1 CRD=0
C

RD
 =

 1

a

x a b 0

f a 0

a 0 g c

0 c b c

CRDT2,T3 = {0,0,1,1,1,0}
Memory

addresses

{
Consumer threads

Pr
od

uc
er

 th
re

ad
s

Figure 2.6: Computing CRD for a sample 3D communication matrix. Dark cells denote reused communica-
tion.

matrices that we generate using our profiler, including the sequence of true communication and their
reuse. Communication reuse events are previously annotated with a plus sign to distinguish them from true
communication. Given a communication trace for a pair of threads, we define the logical access time of a
communication as its index position in the trace, counted from the first communication event. Thus, CRDi,j

is the number of distinct data elements accessed between two consecutive usages of the same element
among threads i and j.

Figure 2.6 shows an example of CRD analysis for a pair of threads. In this example, we have two memory
locations, a and b, shared between threads T2 and T3. To obtain the CRD values, we need to compute the
distance between the reused communication on each memory location. Consequently, by concatenating all
CRDi,j together, we can achieve the final CRD value. Algorithm 2 shows the pseudocode for measuring the
CRD.

We use a histogram diagram to provide additional insights into the CRD, and potential cache misses
related to communication events. Moreover, we propose two cutoff distances: (1) maximum cutoff and

16

Algorithm 2 Computing communication reuse distance
CRD = [];
for all threadPair in commMatrix do

uniqueEvents = unique(threadPair);
for all element x in uniqueEvents do

indices = find occurrence indices of x and +x in threadPair;
distances = compute pairwise distance of indices
append distances to CRD

end for
end for

M
in

 C
ut

of
f

M
ax

 C
ut

of
f

Figure 2.7: A sample CRD histogram. Max and min cutoffs are placed depending on the cache size.

(2) minimum cutoff, where the former is defined as the total size of cache available in the target system,
whereas the latter is defined as the cache size minus the total size of non-sharing variables in the application.
Depending on the CRD value, the following conditions might apply, explaining the cache behavior:

• CRD[x > Max Cutoff] =⇒ Definite capacity miss

• CRD[Min Cutoff < x < Max Cutoff] =⇒ Probable capacity miss

• CRD[x < Min Cutoff] =⇒ No capacity miss

Figure 2.7 shows a sample histogram, where most of the communication reuse distances are below the
minimum cutoff. Thus, they would not suffer from cache capacity misses. However, a fraction of reuse
events fall between the minimum and maximum cutoffs, and therefore the chance of data locality deficiency
exists. Nevertheless, based on this diagram, we can quickly evaluate the efficiency of communication reuse
and apply further optimizations and data structure modifications to prepare the application for the target
platform.

CRR: Communication reuse ratio matrix

We introduce the concept of communication reuse ratio (CRR) as a matrix similar to a standard communication
matrix, where each cell contains the ratio of reuse to true communication instead. To obtain such a matrix,
we first extract true communication and reuse matrices and then use element-wise division to generate
the CRR matrix. The CRR matrix of a program region provides an overall understanding of the amount of
reuse compared to total communication. Hence, the threads that are not reusing communication or are not
mainly involved in repeated communication events could be easily identified. Our empirical experiments

17

showed that optimized applications have more homogeneous and balanced CRR matrices. Thus, inspired by
Diener et al. [69], we propose two quantitative metrics called homogeneity and balance to characterize and
compare CRR matrices. Such a comparison guides a programmer to reach an optimal implementation.

Homogeneity We believe that accessing the outcome of a communication event multiple times is more
desired than a long sequence of true communication. Thus, we would like to see homogeneous communi-
cation reuse over all threads rather than some threads having no communication reuse at all. Hence, we
define communication reuse homogeneity as Equation (2.1), where T denotes the total number of threads
and var denotes the variance function. For each row of the CRR matrix, we compute the variance and
finally compute the average of variances over all threads. A lower value indicates more homogeneous
communication reuse.

Homogeneity =

∑︁T
i=1 var(CRR[i])

T
(2.1)

Balance It is essential to determine whether some threads have a more communication reuse ratio than
others, as such information can be used for a more optimized thread placement. To characterize this
property, we introduce a metric called communication reuse balance. We first calculate the total reuse ratio
for each row in the CRR matrix (CommReuseRow), where each element i of CommReuseRow contains
the sum of all communication reuse ratios for thread i. Similar to computing load balance, we compute the
communication reuse balance as Equation (2.2). Typically, we seek to have a lower value to have a more
balanced CRR matrix.

Balance = (
max(CommReuseRow[1...T])∑︁T

i=1
CommReuseRow[i]

T

− 1)× 100% (2.2)

2.2.4 Communication bottleneck analysis

We believe that communication patterns and CRD analysis are valuable methods for identifying bottlenecks
and optimizing programs, regardless of their different aspect in characterizing communication issues.
CRD analysis informs a programmer which region’s communication is likely to trigger cache misses, while
communication and CRR matrices report which threads are likely to cause communication and reuse.
The combination of CRD and CRR analyses along with homogeneity and balance metrics can provide an
architecture-independent instrument suitable for targeted optimization. For instance, if CRR identifies
several threads as communicating or reusing the communication among each other, the CRD analysis can
detect whether this communication would be problematic or not. Furthermore, when CRD is high, data
structure and data access optimizations are commonly suggested. Alternately, if CRR metrics are high, it is
recommended to apply thread-affinity optimizations.

Table 2.1 contains several optimization methods that we found helpful, each categorized into optimization
type and stage. Within data-affinity optimization, we can apply various code optimization array blocking,
loop reordering, or loop fusion. We can also perform data-affinity scheduling during runtime. In the case of
thread-affinity optimization, we are only aware of applying thread mapping optimization. The mapping
policy should be selected based on the processor’s specification.

18

Code optimization Run-time optimization

Data-affinity opt. Array blocking, loop reordering,
loop fusion Data-affinity scheduling

Thread-affinity opt. - Thread mapping (various policies)

Table 2.1: The list of optimization types along with some examples categorized into coding and runtime
optimizations.

2.3 Experimental results

We conducted various experiments on several benchmark applications, including linear-algebra programs,
to validate the benefit of our method for identifying performance bottlenecks and applicable optimizations.
We tested the benchmarks with 16 threads and various input sizes, with an average of five independent
executions to ensure the correctness of the results.

As mentioned earlier, previous approaches [16, 17, 64, 65] often rely on program simulation and
sandboxing to extract communication patterns, which impose excessive runtime and memory overhead
to store intermediate data such as memory traces. On the contrary, our proposed profiler can detect
communication patterns during execution with an average slowdown of 110× while occupying less than 1
GB memory for allocating software signatures. Naturally, the runtime and memory overhead largely depend
on the inherent communication behavior of the target application – the more communication and memory
accesses are involved, the more slowdown will be caused. Nonetheless, we believe that the level of details
that we can obtain by using our profiler can justify the incurred overhead.

In this section, we evaluate various aspects of our method. First, we demonstrate the applicability and
usefulness of our proposed metrics. Then, we analyze the impact of input size on the communication reuse
distance. Finally, we provide our findings on appropriate optimization methods based on the metrics that
we proposed.

2.3.1 Communication analysis validation

To demonstrate the validity of the proposed metrics, we looked for multi-threaded applications that come in
two different versions, each with different optimization levels. Our investigation in popular benchmark
applications that have this property led us to lu, ocean, and water from the SPLASH benchmark suite.
We analyzed these three applications (in total, six programs) using our method to show the effect of
communication locality issues and code optimizations on communication reuse metrics. For each application,
we present the results in a tabular format (Figures 2.8 to 2.10), which includes relevant diagrams for the
most communication-intensive functions. Each row relates to a function within those programs and contains
a CRD histogram and two CRR matrices, where the first matrix is for the non-optimized version and the
second for the optimized version. Each CRR diagram is annotated with two numbers at the top, representing
homogeneity and balance.

lu. lu_ncb and lu_cb are two different versions of the same application, where the former is non-
contiguous, and the latter is a contiguous-block implementation. lu_ncb uses a one-dimensional array, in
which the matrix to be factored is stored. On the contrary, lu_cb uses a two-dimensional array, in which
all data points in a block (touched by the same processor) are allocated contiguously and locally.

We analyzed both versions using our profiler and provided the results for communication-intensive
functions in Figure 2.8. The CRD histogram for function bmod() shows that the contiguous version has a
lower distance, leading to fewer cache capacity misses. For validation, we analyzed the cache miss rate

19

CRD CRR (lu_ncb) CRR (lu_cb) LL Cache
Miss Ratio

bmod()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K

700K

800K

900K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu-ncb
lu-cb

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 110 CRB: 304

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 696 CRB: 19

ncb: 0.65%
cb: 0.38%

daxpy()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu-ncb
lu-cb

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 318 CRB: 74

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 133 CRB: 90

ncb: 0.09%
cb: 0.12%

lu()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

200

400

600

800

1K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu-ncb
lu-cb

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 271 CRB: 149

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 238 CRB: 35

ncb: 0.01%
cb: 0.007%

Figure 2.8: Communication analysis results for lu_ncb and lu_cb.

using Cachegrind. Detailed cache miss ratios reported for each function in Figure 2.8 show that the CRD
histograms comply with the miss rates. Balance and homogeneity metrics shown on top of the CRR matrices
denote higher communication imbalance in the non-contiguous version. However, the optimization increased
the heterogeneity. We believe that the balance of communication compensated for the heterogeneity. In
function daxpy(), the number of reuse in the contiguous version is much higher than the non-contiguous
version. However, the distance of communication is similar. A noticeable change is the homogeneity of
communications, which is improved in the contiguous version. We do not notice any significant improvement
in the last function, as the CRD histogram and CRR matrices follow the same pattern. Overall, our fine-
grained analysis was able to report slightly better results for the optimized version. Such an observation
was not made by Biena et al. [70], who reported that the cache behavior of both versions is similar.

ocean. The two versions of this benchmark application solve the same problem but with a different memory
layout. The non-contiguous implementation uses two-dimensional arrays, which avoids allocating contiguous
partitions. The contiguous version is implemented with three-dimensional arrays. The first dimension
specifies the processor which owns the partition so that partitions can be allocated contiguously [70].

Figure 2.9 shows the most communication-intensive functions of both ocean_ncp and ocean_cp. The
CRD histograms of functions laplacalc() and copy_red() clearly show a much higher communication
distance for the contiguous implementation, which is in line with the reported cache misses. The CRR
matrices of both versions of function laplacalc() demonstrate a similar pattern, while the non-contiguous

20

CRD CRR (ocean_ncp) CRR (ocean_cp) LL Cache
Miss Ratio

laplacalc()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K
N

u
m

b
e
r

o
f

re
fe

re
n
ce

s

ocean-ncp
ocean-cp

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 58 CRB: 63

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 1084 CRB: 8

ncp: 3.70%
cp: 6.25%

jacobcalc()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

500K

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

4.5M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

ocean-ncp
ocean-cp

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 919 CRB: 9

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 945 CRB: 10

ncp: 2.19%
cp: 2.39%

copy_red()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

10K

20K

30K

40K

50K

60K

70K

80K

90K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

ocean-cp

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: nan CRB: nan

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 84 CRB: 138

ncp: N/A
cp: 0.09%

Figure 2.9: Communication analysis results for ocean_ncp and ocean_cp.

version seems more homogeneous. In this case, the CRD profile is more helpful in finding the source of a
locality issue. We further observe that a number of functions, such as jacobcalc(), do not experience a
significant change by the optimization, despite having a high cache miss rate and communication insensitivity.
We conclude that just by focusing on the hotspot regions, we cannot effectively apply optimizations. Thus,
we investigated the reason for high CRD distance and poor CRR metrics for the contiguous version. We
found out that this issue can be attributed to the lower amount of shared write operations at the cost of a
much higher cache miss rate on multi-core devices [70]. Our analysis successfully identified the region
where the optimization failed to perform better than the straightforward implementation.

water. water_nsquared and water_spatial are non-optimized and optimized implementations for
the same program, respectively. In water_nsquared, the forces and potentials are computed using an
O(n2) algorithm [71], whereas water_spatial uses a more efficient algorithm with a computational
complexity of O(n). Moreover, the optimal version uses a uniform three-dimensional grid of cells on the
problem domain. Therefore, processors which own a cell will only access the neighboring cells, improving
the overall data locality.

Our analysis results reported in Figure 2.10 clearly show the superiority of the spatial version over
non-spatial implementation. All CRD histograms for the representative functions show lower communication
reuse distance for the spatial version. Our cache analysis results also show that the cache miss ratio
in the spatial version is much lower than the nsquared alternative. The CRR matrices for the spatial
implementation also seem more regular and homogeneous. The CRR matrices of function PREDIC() are a

21

CRD CRR
(water_nsquared)

CRR
(water_spatial)

LL Cache
Miss Ratio

INTERF()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

1.0M

2.0M

3.0M

4.0M

5.0M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

water-nsquared
water-spatial

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 1377 CRB: 28

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 994 CRB: 8

nsq: 0.24%
spat: 0.02%

POTENG()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

200K

400K

600K

800K

1.0M

1.2M

1.4M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

water-nsquared
water-spatial

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 2319 CRB: 7

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 1002 CRB: 7

nsq: 0.16%
spat: 0.007%

PREDIC()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

20K

40K

60K

80K

100K

120K

140K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

water-nsquared
water-spatial

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 355 CRB: 159

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 362 CRB: 275

nsq: 1.45%
spat: 0.76%

Figure 2.10: Communication analysis results for water_nsquared and water_spatial.

good example for demonstrating that relying solely on CRR is not enough for analyzing the communication
behavior, as no significant difference is observable between the two CRRs. However, the CRD diagram
shows a shorter distance for the spatial version.

2.3.2 Communication scalability analysis

Although the proposed metrics are hardware agnostic and do not change on different systems, the ap-
plication’s input might largely affect our metrics. Thus, it is favorable that the user analyzes the target
application using different inputs to reach an optimal version. Nevertheless, we noticed that such an input
dependency could be used to our advantage. Particularly, we observed that the amount of change, either
the amount of reuse or distance values, can be used for analyzing the scalability of a given application with
larger input sizes. Such a feature is not only helpful for understanding the application’s requirements but
also for selecting the region that suffers from increased communication overhead.

Figure 2.11 demonstrates the effect of two input sizes (i.e., simdev and simsmall) on the CRD
histograms of our test cases. The results of both versions of lu show that only function bmod() is affected by
a larger input size. Other diagrams show that a larger input size increases both the number of communication
events and their distances. Hence, there is a risk of higher cache misses related to communication events
after increasing the input size. We observed similar behavior in the ocean benchmark, in which the results
show that the optimized version still suffers from high communication overhead. In contrast to lu and

22

Before optimization after optimization
Benchmark Bottleneck region CRD H B CRD H B Data-affinity opt. Thread-affinity opt. Speedup
Back Propagation backprop.c: L321 - L327 5 84 21 2 54 14 Loop reordering, Array blocking - 15%

Needleman-Wunsch needle.cpp: L161 - 167, L176-L181 10 278 139 5 239 45 Data affinity (32 OMP chunk size),
Array blocking - 29%

SRAD main.c: L254 - L290, L296-L320 13 1124 153 4 981 89 Loop reordering Thread mapping 35%

Particle filter ex_particle_OPENMP_seq.c:
L488 - L495, L480-L482 8 321 89 3 384 121 Loop fusion - 56%

Streamcluster streamcluster_omp.cpp: L540 - L548 3 1409 6 - - - - Thread mapping 19%

Table 2.2: Detailed results of communication bottleneck analysis for a subset of the Rodinia [72] bench-
marks. Each metric is reported twice. Once for the non-optimized and once for the optimized
version. H and B denote homogeneity and balance, respectively. Highlighted bold numbers
indicate high metric values, instructing to apply relevant optimizations.

ocean, water_spatial shows better scalability, as its CRD profile does not seem to be affected a lot.
Such an observation clearly shows that the optimized algorithm performs better for larger inputs.

2.3.3 Communication bottleneck analysis

We used the Rodinia benchmark suite [72] to show the effectiveness of the proposed metrics in finding
communication bottlenecks. We were able to detect bottlenecks in the five benchmarks of Rodinia listed in
Table 2.2. The problematic code regions are reported for each application and the metric results before and
after optimization. For example, high CRD values demand to apply data-locality optimizations, which are
mostly done by code optimizations like array blocking and loop reordering. Conversely, high homogeneity
and balance values are a hint to apply runtime thread-affinity optimizations.

Computing the minimum cutoff distance for each application identified high median CRD values in the
benchmarks Backpropagation, Needleman-Wunsch, SRAD, and Particle Filter. High CRD indicates potential
communication locality issues, which we tried to address with code optimizations and runtime OpenMP
scheduling. These optimizations lowered the communication reuse distance and led to a considerable
amount of speedup. In Streamcluster and SRAD, we noticed high communication reuse heterogeneity
among threads, which calls for locality-aware thread mapping optimization. We could not measure the
effect of thread mapping on our metrics because our analysis currently focuses on the data and thread
mapping only alters the thread placement. However, a notable speedup was achieved just by optimized
thread mapping.

Our analysis results provided optimization insights, related to data and threads, which improved the
runtime performance by up to 56%. To the best of our knowledge, other methods do not provide such
detailed information on program communication for selecting the appropriate type of optimization. Thus,
we believe that our method can be used in companion with other performance debugging tools to extend
the scope of performance analysis.

2.4 Related work

To the best of our knowledge, no similar paper is published on evaluating the locality of communication in
shared memory systems. Gprof [73] and Threadspotter [74] are two well-known methods for optimization
suggestion, yet they are unable to produce comparable results. Profiling multi-threaded applications using
Threadspotter will primarily generate results only valid for a single thread (master). Furthermore, these
methods do not necessarily focus on communication bottlenecks, which is the main target of this paper.
Nevertheless, we discuss previous efforts on communication pattern detection and multi-core reuse distance
below.

23

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K

700K

800K

900K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

bmod

luncb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

50K

100K

150K

200K

250K

300K

350K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

daxpy

luncb-simdev
luncb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu

luncb-simdev
luncb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

bmod

lucb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

daxpy

lucb-simsmall
lucb-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

200

400

600

800

1K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu

lucb-simsmall
lucb-simdev

(a) lu

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

10K

20K

30K

40K

50K

60K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

rescal

oceanncp-simsmall
oceanncp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

500K

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

4.5M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

jacobcalc

oceanncp-simsmall
oceanncp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

20K

40K

60K

80K

100K

120K

140K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

rescal

oceancp-simsmall
oceancp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

500K

1.0M

1.5M

2.0M

2.5M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

jacobcalc

oceancp-simsmall
oceancp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s
laplacalc

oceancp-simsmall
oceancp-simdev

(b) ocean

(c) water

Figure 2.11: The effect of two input sizes (simdev and simsmall) on CRD histograms for the applications
lu, ocean, and water.

24

Although various methods have been proposed for analyzing the communication pattern in parallel appli-
cations, most of them target distributed-memory applications [75, 76, 19, 21, 15]. Such a communication
analysis is straightforward but cannot be extended to shared-memory programs. Simulation-based methods
attempt to simulate the system by logging and recording every change during program execution [16, 17],
preventing a practical analysis as it implies high runtime overhead and excessively large output files with
more than 100 GB for a moderate input size [16]. On the contrary, our method uses a memory-efficient
profiler. Other studies [77, 78, 79] utilized Intel Pin to extract communication patterns and used them for
thread and data mapping. However, their output is a single communication matrix. Thus, they are not able
to detect the dynamic behavior of an application in different code regions.

Reuse distance analysis has been studied extensively for single-core architectures [58, 80]. However, due
to the nondeterministic runtime scheduling of threads in multi-threaded applications, alternative methods
have been introduced to preserve hardware independence [54, 61, 62, 81, 82]. Recent methods [53] are
based on statistical models to predict the concurrent reuse distance. However, this method only works for
specific regions like loops. Furthermore, none of these methods can be used to analyze communication
events. Our method combines communication reuse distance with thread communication analysis, which
yields more comprehensive results.

Two studies [50, 51] tried to combine reuse distance analysis with other metrics. Rane et al. [50] proposed
a tool comprised of different analyses and metrics, such as reuse distance analysis, cycles per access, hit
ratios, and access strides to investigate data structures and find out their bottlenecks. However, they only
focus on data structures and neglect the effect of threads on communication. Another study [51] introduces
architecture-independent metrics, including multi-core reuse distance and communication analysis, to
perform performance analysis. However, no additional insights into thread communication are provided.

2.5 Discussion

In Section 2.3, we demonstrated the effectiveness of the proposed metrics in detecting communication
bottlenecks. We specifically evaluated our method on several linear-algebra benchmark applications, which
often access a large volume of data. Since tensor operations found in deep-learning applications often fall
into the same category, we believe that the lessons and findings presented in this chapter can be transferred
and used for optimizing tensor-based applications. Although such metrics proved to be useful on multi-core
systems, obtaining such fine-grained information on many-core processors, such as GPUs with hundreds of
threads, could be extremely challenging. In such a scenario, the communication matrices for GPU threads
become excessively large and make the analysis itself infeasible in terms of the required processing time
and memory. Nonetheless, not all stages of the AI research pipeline are running on GPUs. For instance,
training data set preparation, including cleaning and augmentation, have the potential to be parallelized on
CPUs and thus benefit from our approach.

Furthermore, we believe that our proposed profiler is helpful for analyzing the communication behavior of
a given application and then suggest the usage of efficient communication primitives available in specialized
libraries such as Nvidia’s NCCL [55]. As we already introduced NCCL in Section 2.1, this library provides fast
and efficient communication primitives for inter-GPU data sharing. NCCL supports various communication
patterns that can be categorized into point-to-point and collective communications. Point-to-point com-
munication relates to ordinary data sharing between pairs of threads. Anti-pattern and nearest-neighbor
patterns fall into this category. On the flip side, collective communications deal with bulk data exchange
among all processes simultaneously. Broadcast, gather, scatter, all gather, and all-to-all patterns belong to
collective communications. Figure 2.12 illustrates these patterns using communication matrices.

Our analysis found a number of communication patterns within different regions of our target applications
resembling the same patterns shown in Figure 2.13. For instance, the barrier implementation in the PARSEC

25

Pr
od

uc
er

Consumer
T0 T1 T2 T3

T3

T2

T1

T0

Anti-pattern

Pr
od

uc
er

Consumer
T0 T1 T2 T3

T3

T2

T1

T0

Broadcast

Pr
od

uc
er

Consumer
T0 T1 T2 T3

T3

T2

T1

T0

Scatter

Pr
od

uc
er

Consumer
T0 T1 T2 T3

T3

T2

T1

T0

Nearest neighbour

Pr
od

uc
er

Consumer
T0 T1 T2 T3

T3

T2

T1

T0

Gather

Pr
od

uc
er

Consumer
T0 T1 T2 T3

T3

T2

T1

T0

AllGather

A3A1 A2

B0 B3B2

C3C1C0

D2D1D0

Pr
od

uc
er

Consumer
T0 T1 T2 T3

T3

T2

T1

T0

All-to-All

P2P communication Collective communication

Figure 2.12: Popular types of task/thread communications categorized into point-to-point and collective
communications.

benchmark suite uses a spin-lock and behaves like a broadcast pattern. On the other hand, we noticed
gather and scatter patterns in the two main functions of the PBZip2 program. Such an observation in
generated communication patterns validates that our method can identify the communication type (i.e.,
P2P or collective) and suggest the relevant communication method available in specialized libraries (e.g.,
NCCL).

2.6 Conclusion

This chapter demonstrated that our proposed platform-independent communication metrics enable the
analysis of parallel programs in terms of their inherent data communication without being tied to particular
hardware. Additionally, we were able to detect data communication bottlenecks and address them with an
appropriate optimization method. Communication reuse distance (CRD) reflects the effect of communication
on the cache, while the communication reuse ratio (CRR) matrix sheds light on the amount of reuse after a
true communication between threads. With the help of two additional quantitative metrics, the homogeneity

26

(a) Anti-pattern
lu.C::bmodd()

(b) Nearest Neighbor
doStencil()

(c) Broadcast
parsec_barrier()

(d) Gather
PBZip2::consumer()

(e) Scatter
PBZip2::producer()

Figure 2.13: The visualization of point-to-point and collective communication patterns identified in bench-
mark applications.

and balance of CRR matrices can be easily evaluated. We showed that our method is not only able to detect
communication bottlenecks in different code regions, but also can help programmers apply a suitable type
of optimization. Additionally, we demonstrated that such an analysis is helpful for determining the input
scalability of a given application with regard to its cache usage.

We are aware that our proposed analysis might be only feasible when the number of threads is not
immensely large. Thus, a potential future line of work could be the extension of this work to consider
specific threads and memory locations (e.g., shared-memory regions in GPUs) that are involved in data
communication. Such approach can potentially support the large pool of threads that are typically found in
GPU programs.

27

3 A primer on deep learning

This chapter provides a brief introduction to the basics of deep learning, which serves as the basis for
understanding the following chapters, particularly Chapters 4 to 5. We begin with the fundamental data
structure used in deep-learning applications. Afterward, we primarily focus on convolutional neural networks
(ConvNets)—a subset of deep-learning models mainly used in computer vision tasks. Moreover, we focus on
the system side of ConvNets by explaining their algorithms, constituent layers, and underlying computations.
Finally, we briefly review related techniques such as neural architecture search, reinforcement learning, and
graph convolutional neural networks, as we have used them in our methods.

3.1 Algebraic data structures – Tensors

Machine-learning applications, particularly deep neural networks, usually work with numeric values stored
in a data structure. Such cornerstone structures are commonly known as tensors (a.k.a. ND-Arrays) that
house a collection of numbers in N dimensions. Within the context of image processing, we usually deal
with ND-Arrays of up to N = 4. Scalars are 0D-Arrays that contain a single number and can represent the
intensity of a single pixel. Vectors are 1D-Arrays, containing a list of numbers that can potentially represent
the colors (R, G, and B) of a given pixel. By adding another dimension, we obtain a 2D-Array or a matrix,
which can represent a grayscale image as it only has two dimensions (height and weight). Consequently,
adding another dimension leads to a 3D-Array that can fully represent a colored image since each pixel can
now become a vector of image channels.

Lastly, 4D-Arrays, or often called tensors, are mostly used for representing a group of multi-channel
images. As Figure 3.1 depicts, tensors can be viewed as generalizations of matrices to N-dimensional space.
Typically, tensors have the following dimensions:

Channel dimension. The dimensionality of the feature space is represented by channels (C). For example,
for colored images that we typically feed into the neural networks, we have three channels per pixel
according to the primary colors (red, green, and blue). However, the channel size is not always three,
as the neural network might add additional channels in the mid-layers of the network to increase the
feature space and extract additional information from the given input.

Spatial dimension. Within the context of image-based convolutional networks, the spatial dimensions
describe the size of a given tensor. We usually specify the size with height (H) and width (W)
parameters.

Batch dimension. For more efficient computation, multiple inputs can be grouped together as batches with
a length of B prior to any computation. Batching the inputs provides higher efficiency as it improves
data reuse, mostly due to reusing convolution filters’ weights during the computation.

Similar to vectors and matrices, arithmetic operations such as addition and multiplications can also be
performed on tensors. Often the ordering of tensor dimensions plays an important role in data locality and
efficient memory access. Thus, the compiler is responsible for the correct ordering of the tensor dimensions.

29

Scalar (0D-Array)

1

Vector (1D-Array)[︃
1
2

]︃ Matrix (2D-Array)[︃
1 2
3 4

]︃ Tensor (3D-Array)[︃
[1 2][3 4]
[5 6][7 8]

]︃
Figure 3.1: From scalars to tensors. Tensors are generalization of matrices.

Similar to many other projects, we extensively utilize tensors as the key data type for dealing with deep
neural networks and accelerating the underlying operations, such as convolutions. A tensor must have a
fixed number of dimensions and a fixed length for each dimension. Therefore, the total number of elements
in a tensor is the product of all dimension lengths. Recently, specifically designed tensor processors can
perform tensor arithmetics within a single instruction, offering higher efficiency than manually implemented
libraries.

3.2 Deep neural networks

Until recently, nearly all software was written based on a predefined algorithm solely designed to solve a
specific problem. This way of computer programming is often called Software 1.0 and contains explicit
instructions written by the programmer. To build an application, the programmer has to consider every
corner case that the user might encounter, each requiring a specific rule to be devised. Clearly, such a design
principle demands an extensive amount of time to find all the corner cases, devise the rules, and develop
the appropriate algorithms. The resulting codebase would potentially become extremely large, making code
maintenance an immensely challenging task.

Despite the popularity of the Software 1.0 programming paradigm, various attempts have been made to
automate the process of devising rules for taking appropriate actions. Recent efforts in this area have led to
the introduction of machine-learning methods, also often called Software 2.0. A class of machine-learning
applications is deep neural networks, which are programmed more abstractly often via setting the weights
of a collection of neurons and connections [83].

Most of the terminology and conventions used in neural networks are historically inspired by biological
neural networks that constitute animals and the human brain. As depicted in Figure 3.2a, neurons within a
neural network are often organized in layers, where internal layers are often called hidden layers. There is
no strict threshold, but among the AI community, networks with more than eight layers are considered deep
neural networks [84]. For instance, modern networks often contain hundreds of layers [85], making them
extremely memory and compute-intensive applications.

A neuron receives multiple inputs from its predecessor layers and generates one output by computing
the weighted sum followed by the neuron’s activation function (see Figure 3.2b). The connection between
the neurons i and j contain a weight wi,j that intensifies or weakens the input values. Hence, when a
sample input is fed to the networks, the network triggers specific output neurons according to the goal
of the network. The main task within deep neural networks is to learn the best values for such weights,
which leads to the highest accuracy for the network. Nevertheless, due to the huge number of weights, no
programmer is directly involved in setting the weights. Instead, the programmer uses supervised-learning
methods to train the weights based on the given input dataset. Once the model is trained, the model can be
used for making predictions in the inference phase. In the following, we will explain these phases in more
detail.

30

Input layer Hidden layers Output layer

(a)

X2

X3

X1

Σ ŷ

w1

w2

w3

Inputs Weights Sum Non-linearity Output

(b)

Figure 3.2: An illustration of neural networks. (a) Layered structure of neural networks. (b) The structure
of a neuron.

3.2.1 Training phase

The aim of training a deep-learning model is to minimize a loss function given a dataset and a set of trainable
weights. This process is formulated as:

L(w) =
∑︁

xi∈X ℓ(w, xi)

|X|
, (3.1)

where w is the set of weights, X is the dataset, and ℓ is the loss function. Gradient descent is the most
popular method to minimize the loss function and selects the appropriate weights for the connections within
the neural network. It is a first-order iterative optimization algorithm that can find the local minimum of
a differentiable function. The main idea is to take repeated steps to calculate the loss function over the
variable and move along the negative direction of the gradient (i.e., backward propagation). The step size
for moving backward is proportional to the absolute value of the gradient. Here, we describe the main
concepts and terms often used for training deep neural networks:

Back-propagation algorithm. To calculate the gradients, we use the back-propagation algorithm. Stochastic
gradient descent (SGD) and its variants like AdaGrad and Adam are some of the well-known methods.
SGD works by calculating layers’ activation by performing a feed-forward pass from the input to the
output neuron. Next, we calculate the gradient of the loss function for each neuron and each weight.
According to the chain rule, the gradients are obtained iteratively and backward from the output to
the input layer. Lastly, we update the weights using the formula wt+1

i,j = wt
i,j − η ∂L

∂wi,j
, where η is the

learning rate multiplied with the gradient of the loss function. Stochastic gradient descent evaluates
the gradient using a random mini-batch M(t) ⊂ X. Thus, the gradient computation requires an
additional batch size parameter M = |M(t)| and would perform the following formula.

∂L
∂wi,j

=

∑︁
xi∈M(t) ∆ℓ(w(t), xi)

|X|
(3.2)

In the case of distributed training, when synchronous data-parallelism is used, the mini-batch M(t)

will be equally divided into K partitions, where K is the number of workers (e.g., GPUs). Each worker
is responsible for computing the local gradient and then averaged across all workers to obtain the
global gradient. Such an averaging is typically performed via a collective communication operation

31

called AllReduce, which reduces the tensors in all processes to a single tensor and returns the result to
all processes.

Training hyper-parameters. To configure an optimal training process various hyper parameters are involved.
Often, setting these parameters is quite time-consuming. Thus, various tuning methods exist to select
the right parameters automatically. In the following, the most important hyper-parameters are listed:
Learning rate (η) is a scalar value that determines the ratio between step size and the absolute value

of the gradient. In other words, it controls the magnitude of gradient updates.
Batch size (B) defines the number of samples propagated through the network at once.
Epoch relates to one forward pass and one backward pass of all training samples. In other words, an

epoch finishes, when we go through the entire dataset once.
Often, there is a correlation between the hyper parameters. For instance, increasing the batch size
requires a lower learning rate to avoid sudden updates of the weights and converging issues.

Dataset. The collection of samples that a machine-learning algorithm can use to train its weights are
called a dataset. ImageNet [86], CIFAR-10/100 [87] are among the most popular datasets for image
classification. Often, the dataset contains the sample and respective labels that describe the sample.
Furthermore, the dataset is divided into training, validation, and test sets. The training set is a set of
samples used to fit the network parameters, while the validation set is a separate sample of data that
is used to assess the model quality while being training. The test set contains the samples that the
network has not seen before to make sure that the network can provide correct results on unseen
data.

Top-1 and Top-5 accuracy. To report the prediction accuracy of a given deep-learning model and compare
it with other models, top-1 and top-5 accuracy metrics are used. Top-1 is the conventional accuracy
metric that reports the percentage of the correct top class (the one having the highest probability).
On the other hand, top-5 accuracy means that any of the model’s five highest probability answers
must match the expected answer. For instance, assume that a deep-learning model is designed to
perform object recognition, and a picture of a cat is shown. If the cat is not the first output but is
among the first five outputs, using top-1 accuracy, we count the output as wrong. However, top-5
accuracy counts the output as a correct answer, because cat is among the top-5 guesses.

3.2.2 Inference phase

Once the training phase of a given deep-learning model is finished, the obtained model (i.e., trained
weights) will be used to make predictions on previously unseen inputs. This process is called inference
phase and the same forward pass used in the training phase is utilized for performing the predictions.
Although the deployment of DNNs on the target device might seem trivial, obtaining real-time performance
requires extensive optimizations and network adaptations. In this dissertation, we particularly focus on a
deployment framework for optimizing the runtime of DNNs. Furthermore, the trained model may also need
to be modified or simplified before being deployed for inference.

3.3 Performance analysis of deep-learning models

For many deep-learning researchers, a deep network’s top-1 and top-5 accuracy are the key metrics to
observe and tune, particularly while designing a model. Figure 3.3 clearly shows that the training and
deployment hardware platforms are inherently different in computing, power budget, available disk storage,

32

Highend
GPU

Training phase Inference phase

Deep-learning
model

Cloud HPC Edge device

Data center Earphone Always-on Smartphone Laptop

Compute 200+ TOPs 20 MOPs 100 GOPs 1-10 TOPs 10-20 TOPs

Power budget 200+ W 1 mW 10 mW 1-2 W 3-10 W

Model size 300+ MB 10 KB 100 KB 10 MB 10-100 MB

Latency ms - s < 10 ms ~10ms 10-100 ms 10-500 ms

SoC scale Max Nano Tiny Lite Mini

Figure 3.3: Deploying deep-learning models on a diverse set of edge devices.

latency, and SoC (System on a Chip) scale. Furthermore, edge devices that host a given deep-learning
model have a variety of different hardware characteristics. Deploying deep-learning models on such
memory-/computation-constrained devices demands additional consideration to other key factors [88], as
follows:

Computation speed. The amount of computations involved in the forward pass of a given deep-learning
model is correlated with its runtime speed. Thus, counting these computations can provide a theoretical
ball-park number for how fast a given model is. The number of computations is typically reported
as FLOPs1 or a slightly different metric called MACCs2. Since many of the computations in deep
neural networks are based on dot-products, we use MACCs to compute the number of operations. For
instance, the following dot-product code has n MACCs. In terms of FLOPs, there are 2n− 1 FLOPs
since n multiplications and n− 1 additions are involved.

y = w[0]*x[0] + w[1]*x[1] + w[2]*x[2] + ... + w[n-1]*x[n-1]

A MACC can roughly translate to two FLOPS. However, due to the widely available FMA3 support on
various hardware, we can perform fused multiply-add operations in a single instruction. It is worth
mentioning that FLOPS or MACCs estimations can just provide a rough idea of the computational cost.
Other parameters, such as memory consumption and access pattern, can largely affect the runtime
efficiency. Depending on the application domain, other metrics are also used as a proxy to define the
speed. For instance, within the context of the computer-vision application, frames-per-second (FPS)
becomes rather important, as a higher FPS leads to a more real-time runtime nature.

1Floating point operations per second
2Multiply-accumulate operations
3Fused multiply accumulate

33

Memory consumption. Unlike high-end GPUs with gigabytes of RAM, low-budget processors often have
access to a low amount of memory space with limited memory bandwidth. Obviously, the deep-learning
model cannot be executed if the required memory exceeds the available capacity. More importantly,
the memory access pattern governs the required memory bandwidth. For each layer in the deep
network, the device is supposed to:
1. read the input or feature-map tensor from main memory,
2. read the layer’s weights (filters) from main memory,
3. compute the dot-products,
4. write the result back to the main memory.

Such operations imply many memory accesses and, if not appropriately optimized, turn the application
into a memory-bound version. Thus, the effect of memory read/writes on overall efficiency is equally
important, if not more than the number of computations. In general, the fewer weights the model
contains, the faster it runs [88].

Disk storage. The amount of storage space the model takes to be saved on the device might be important
for some edge devices. Not only might disk storage be of concern, but a single model can add hundreds
of megabytes to the download size to update the target application, preventing a quick over the air
(OTA) update.

Power consumption. Whether the target device uses a battery or not, power consumption is an important
topic. The deep-learning model should not draw a considerable amount of energy to drain the battery
or make the device too hot. Furthermore, energy consumption is mostly dominated by memory
accesses. Han et al. [89] provided a ballpark figure for the power consumption of a large neural
network running on a 45nm CMOS processor. It was assumed that a 32-bit floating-point add operation
draws 0.9pJ , accessing a 32-bit SRAM cache takes 5pJ , and a 32-bit DRAM memory access takes
640pJ . Given such a processor, running a large deep network with one billion connections at 20fps
would draw a total of (20Hz)(1G)(640pJ) = 12.8W just for DRAM memory accesses as the cache is
probably too small to accommodate all the values. This estimation exceeds the power envelope of a
typical mobile device, proving that large models cannot be directly deployed on power-constrained
devices without any model compression or pruning.

Despite the importance of all the factors above, the number of computations and memory consumption
are the most important ones, as they affect other factors. For instance, more inefficient memory access leads
to higher power consumption. Thus, performance engineers often focus on these two main factors while
optimizing a deep-learning model.

3.4 Convolutional neural networks

Since this work is mostly related to the computer system’s side of AI in general, we do not provide an
extensive background on the historical terms, origin, and the wide range of available neural networks (e.g.,
RNNs, LSTMs, and GANs). We instead focus on deep convolutional neural networks (ConvNet) as they are
the target applications that we aim to accelerate. In this section, we provide a summary of such networks
along with their constituent layers. For more in-depth information, we suggest the reader to refer to more
comprehensive books and tutorials [90, 91].

The essential idea behind ConvNets is their ability to learn a broad set of filters (a.k.a. kernels), organized
into a hierarchy of layers, to extract meaningful information from a given image. Convolutional layers are the

34

1x1x1000

Convolution+ReLU Max pooling Fully connected+ReLU Softmax

Feature engineering Classification

Figure 3.4: A typical convolutional neural network.

main constituents of ConvNets, which can be defined as the function output = conv(input, filters), where
output, input, and filters are all multi-dimensional arrays (i.e., tensors). The main task is to cross-correlate
a set of learned filters uniformly on various scopes of a given image using the sliding window approach.
The output is a tensor called feature map, which contains abstract information, such as curves and edges.
As we proceed from the first to the last layers of the network, we can observe the abstraction level of the
features to rise. Therefore, deeper ConvNets are likely to perform better than shallow networks in various
computer vision tasks. Figure 3.4 illustrates a typical ConvNet containing various layers.

The deeper a network becomes, the more parameters it usually includes. Hence, more data-dependent
arithmetic operations will be involved, prolonging training and inference time. Furthermore, most computa-
tions take place in convolutional layers and accelerating them can significantly decrease the total inference
time. It is often possible to reshape the convolution operation as a matrix-multiplication operation. Thus,
we can use highly efficient linear algebra libraries (BLAS), such as single-precision general matrix multiply
(SGEMM). Such libraries are often highly parallelized and use GPUs for obtaining the highest speedups.
Higher bandwidth, latency hiding via thread parallelism, and easily programmable registers make GPUs a
lot faster than CPUs.

As the overall size of ConvNets grew, which is influenced by their depth, input size, and kernel size,
the efficient execution of such networks gained more importance, leading to the introduction of inference
frameworks such as TVM [92], TensorFlow’s XLA [93], and Glow [94]. Such frameworks usually perform
convolution operations as a series of dot-products, often with the assistance of a highly efficient BLAS library
implementation to maximize parallelism and runtime efficiency. They also perform various graph-level
and code-level optimizations to minimize the memory footprint and accelerate the network inference time.
Among the existing open-source frameworks, Boda [95] is mainly designed to accelerate ConvNet inference
using template meta-programming to generate specialized code for various GPU platforms. Boda provides
a flexible platform to write meta-code, from which low-level code optimized for given hardware can be
generated. For instance, we can unroll the loops, generate a long sequence of memory instructions, and
handle different input regimes.

35

-5 -2,5 0 2,5 5

-2,5

2,5

(a) ReLU
y = max(0, x)

-5 -2,5 0 2,5 5

-2,5

2,5

(b) Leaky ReLU y ={︃
0.01x x < 0
x x ≥ 0

-5 -2,5 0 2,5 5

-2,5

2,5

(c) Tanh
y = tanh(x)

-5 -2,5 0 2,5 5

-2,5

2,5

(d) Sigmoid
y = 1

1+e−x

-5 -2,5 0 2,5 5

-2,5

2,5

(e) Swish
y = x

1+e−x

Figure 3.5: An illustration of popular activation functions used in ConvNets.

3.4.1 Building blocks of convolutional neural networks

As depicted in Figure 3.4, various layers and functions are stacked up to build the final ConvNet. Although
we are free to employ any computation layer to build our network, a limited set of relatively simple primitive
operations exists that is often used in designing a ConvNet. For each computer-vision task, the choice of
layer type, interconnections, and layer orderings might be different. Thus, a considerable amount of time
and effort is required to explore the design space and ultimately finding the suitable network architecture.
Neural architecture search (NAS) [96, 97, 98] is a trendy line of research aiming to find an efficient way to
explore the design space of neural networks. For a more detailed description, please refer to Section 3.5.

In the following, we review the most essential computation layers/functions typically found in popular
ConvNets.

Activation layers. Among all ConvNet layers, these layers are the simplest and least computationally inten-
sive. Nonetheless, from a machine-learning perspective, they are critically important for introducing
non-linearity to the output results. Otherwise, the neural network becomes a linear regression model.
A wide variety of activation functions are used by deep-learning researchers, such as ReLU (Rectified
linear unit), LeakyReLU, Tanh, Sigmoid, and Swish. Figure 3.5 illustrates these functions. Nonetheless,
from a computational perspective, all these functions perform a function over each channel and pixel.
Thus, the input and output have the exact dimensions. Additionally, the computation overhead of
such functions is mostly related to reading the input and writing the output.

To avoid the unnecessary read/write overhead, we can fuse the activation layer to the previous layer.
For instance, merging the activation layer with the convolution or fully connected layer is often
possible. This way, we can save a set of extra data movements. Therefore, the overhead of activation
layers becomes reasonably negligible compared to other layers, such as convolutions.

Pooling layers. Another source of non-linearity for modern deep neural networks is pooling layers. The
principal idea behind such layers is motivated by translation invariance. Usually, convolution layers
tend to record the precise location of available features in the inputs. Thus, small movements of such
features result in a different output. Preferably, we want to avoid this problem and have a generalized
solution for predicting the presence of a feature within the input image.

Pooling layers are the response to this problem. They use the sliding window approach to spatially
pool each channel. Thus, depending on the pooling window size and stride, the output dimension
will change. The most common flavors are max pooling and average pooling. The former replaces the

36

Convolution & tensors

Input tensor
C ✕ H ✕ W

Kernel tensor
OC ✕ IC ✕ M ✕ N

Output tensor
H’ ✕ W’

Element-wise multiplication Summation1 2

Figure 3.6: An illustration of a convolution operation.

values in the sliding window by the maximum value, while the latter averages all the values. The
overall benefit of such layers is to intensify the effect of those channels/feature maps that are more
useful for predicting the right label.

Convolutional layers. As briefly mentioned before, convolution operations are the main building block
behind ConvNets. They are linear functions that apply a filter f on the input tensor. The output
tensor is often called a feature map, as it contains the features extracted by the convolution layer.
The semantics of a convolution operation is similar to pooling operations, where a sliding window is
employed to apply the filter on the input, as shown in Figure 3.6. However, in contrast to pooling
layers, convolutions apply a filter on all the input channels. Mathematically speaking, a convolution
operation involves the dot-product of a set of weights (filter f) with the input. A dot-product is the
element-wise multiplication of the filter and input values, which is then summed up to obtain a single
value.

Compared with other layers, convolution layers are the most computationally intensive layers, as
the value of each output pixel depends on all input channels. Concretely speaking, within a 2D
convolution, the total number of FLOPs required for computing each output pixel is IC ×Kx ×Ky.
The input and output feature maps of convolutional layers are three-dimensional matrices of size
H × W × C, where H, W , and C are height, width, and the number of channels, respectively.
Convolutional layers often use square kernels. Thus, a convolutional layer with kernel size K will have
K×K×Cin×Hout×Wout×Cout MACCs, given that we do not count the bias values. As an example,
for a 3×3 convolution with 128 filters, on a 224×224 input with 64 channels, we need to perform
3×3×64×224×224×128 = 3.699.376.128 MACCs.

Depth-wise separable convolution (DWConv). To make the convolution operations more efficient by re-
quiring less memory and computation, we can factorize a regular convolution into two smaller ones,
namely depth-wise and point-wise convolutions. Although such a factorization results in an approxi-
mation and not the original convolution output, the benefits outweighs the accuracy loss. In the worst
case, we can stack multiple DWConvs up to get the same accuracy. Recent mobile-friendly ConvNets,
such as MobileNet-v1/v2/v3, heavily use such layers to fit the model on memory-constrained mobile
devices.

The depth-wise convolution is from many aspects similar to a normal convolution, except that we do
not combine the input channels, causing the output channel to remain the same as the input channels.
Thus, the total number of MACCs would be K×K×Cin×Hout×Wout, avoiding a factor of Cout. The

37

other part is called point-wise convolution, which is a 1×1 convolution. The number of MACCs is
Cin×Hout×Wout×Cout, since K = 1.

Altogether, the DWConv needs Cin×Hout×Wout×(K×K+Cout) MACCs. Thus, using the same exam-
ple (a 3×3 convolution with K = 128, on a 64×224×224 input), we only need 64×224×224×(3×3 +
64) = 176.619.520. Clearly, the resulting MACCs value is way smaller than the MACCs required by a
normal 3×3 convolution.

Fully-connected (FC) layers. As the name “fully-connected layer” suggests, all the inputs are connected to
all the outputs. An FC-layer with M input and N output values requires M ×N weights stored as a
matrix W and a bias vector b. The following computation is then performed:

y = matmul(x, W) + b

Compared to a convolutional layer, an FC-layer demands a lot more memory and computing power.
Since FC and convolutional layers are very similar, modern ConvNets do not use such layers anymore.
In a convolutional layer, each output value is connected to K ×K inputs rather than all of them. Thus,
a convolutional layer is principally an FC-layer with most of the connections set to zero, making them
much more efficient.

Batch normalization. Training a ConvNet is sensitive to random initial weights and the learning algorithm’s
setting. As the name “batch normalization” also suggests, this layer standardizes the inputs to a
layer for each mini-batch. In modern ConvNets, it is very common to use batch normalization after
each convolutional layer to stabilize the learning process and reduce the number of required training
epochs.

Batch normalization receives the output of the previous layer (normally a convolutional layer) and
applies Equation 3.3 to every single output value y:

z = γ ∗ (y − µB)√
σ2 + ε

+ β, (3.3)

This formula normalizes y by subtracting the batch mean for that output channel and divides by the
standard deviation

√
σ2. The addition of ε is a small value, often around 0.001, to avoid division by zero.

γ and β are then used for scaling and adding bias. In modern networks, batch normalization is often
applied after a convolution layer and right before the activation layer (e.g., conv → BN → ReLU).
Since this operation is applied to each element in the output feature-map, we can simply merge the
computation with the previous layer, avoiding extra data movement.

3.4.2 Winograd convolution

Various algorithms exist aiming at optimizing the computations of convolution operations. Since one of the
contributions of this dissertation is based on the Winograd algorithm, we provide an in-depth explanation
for such convolutions.

A. Toom [99] and S. Cook [100] originally proposed optimal filtering algorithms using polynomial
residuals. Afterward, Shmuel Winograd generalized these algorithms and proposed a method for the
efficient computation of finite impulse response (FIR) filters [101]. Within this algorithm, computing m
outputs with an r-tap FIR filter, which is denoted by F (m, r) for a 1D convolution, requires m + r − 1
multiplications. Such a reduction is quite significant in comparison with the direct method, which requires

38

m× r multiplications [102]. To explain how such a reduction can be achieved, we use F (2, 3) as an example.
For instance, for an input vector d = (d0, d1, d2, d3) and g = (g0, g1, g2), the Winograd algorithm transforms
the input data and the filter to v = (v0, v1, v2, v3) and u = (u0, u1, u2, u3), respectively, using the following
equations:

v0 = d0 − d2, u0 = g0 (3.4)

v1 = d1 + d2, u1 =
g0 + g1 + g2

2
(3.5)

v2 = d2 − d1, u2 =
g0 − g1 + g2

2
(3.6)

v3 = d1 − d3, u3 = g2 (3.7)

Then, we multiply u and v element-wise and store the result in c = u⊙ v, such that each element within c
is denoted as ci = ui × vi. Lastly, the final result y = (y0, y1) is computed using the following equation:

y0 = c0 + c1 + c2, y1 = c1 − c2 − c3 (3.8)

The Winograd algorithm generalizes the transformations mentioned above and summarizes all these steps
into a single equation, such that y = A[(Gg)⊙ (Bd)], where the transformation matrices for F (m, r) are:

A =

[︃
0 1 1 0
0 1 −1 −1

]︃
,

G =

⎡⎢⎢⎣
1 0 0
1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

⎤⎥⎥⎦ ,B =

⎡⎢⎢⎣
1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

⎤⎥⎥⎦ (3.9)

Thus, the Winograd algorithm consists of three main stages, of which the first and the last stages perform
domain transformations. All transformations are done by matrix multiplications using pre-computed
matrices (A, G, and B) for each transformation. These matrices are fixed and are usually generated using
the Toom-Cook method with a set of heuristically chosen polynomial points [103]. In a given F (m2, r2) 2D
Winograd convolution, filter size r and the output tile sizem define the internal tile size (i.e., α = m+r−1),
which in turn determines the shapes and values of the transformation matrices. Thus, each Winograd
algorithm with distinct α demands a particular set of transformation matrices. Although the convolution
operation determines the filter size r of the Winograd algorithm, the output tile size m can be freely chosen.
Theoretically, by choosing a largerm, we can save more operations in the element-wise matrix multiplication
step. However, it causes Winograd transformations to involve more elements, allowing floating-point
rounding errors to jeopardize their numerical stability.

Figure 3.7 depicts all three stages of the computation for a sample Winograd convolution F (22, 32). Before
we explain each step, we define the following symbols, which are used by a Winograd convolution F (m, r):

• gk,c: k-th filter with channel c

• dc,b: b-th input tile of c-th channel

• Yk,b: b-th output tile for the k-th filter

• m: Winograd’s output tile size

• r: kernel or filter size

• P := N⌈H/m⌉⌈W/m⌉: number of internal image tiles

39

...

...
...

...

1 0 -1 0

0 1 1 0

0 -1 1 0

0 1 0 -1

1 1/2 1/2 0

0 1/2 -1/2 0

0 1/2 1/2 1

 1 0
 0

1/2 1/2 1/2

1/2 -1/2 1/2

 0 0
 1

Input (tiled) Input/Filter transformation Multiplication Output transformation1 32 Output

H

Wc

F

E

M

U = .gk,c.

U

Vd

g

d Y

V = .db,c.

M

M = U⊙V

Y = .M
.

α

α

r

r

α

α

α

α

r

α

r

α

m

m

⊙

.

.

..

. .

 1 0 0 0

 0 1 -1 1

 -1 1 1 0

 0 0 0 -1

1 0

0 -1

0 0

-1 0

α

m

1 0 0 -1

0 -1 0 0

α

m

Figure 3.7: Visual representation of the computational steps within a sample F (22, 32) Winograd convolu-
tion.

• α := m+ r − 1: Winograd’s internal working tile size
• G, B, and A: transformation matrices for input, filter and output, respectively

Input and filter transformation First, the input is decomposed into α× α tiles with the vertical and hori-
zontal stride of α− r+1. This stride causes neighboring tiles to overlap by r− 1 elements. Each input
tile and filter is then transformed by two transformation matrices V = BTdc,bB and U = Ggk,cGT .

Matrix multiplication The main computation happens in this stage, where element-wise matrix multiplica-
tion is used for multiplying the transformed filter U with the transformed input of the same channel
V . Then, all channels of the same image should be summed up (M =

∑︁C
c=1 Uk,cVc,b).

Output transformation Finally, similar to the first stage, the output tiles are transformed back into the
original space as Y = ATMA. The α× α tiles are transformed into m×m tiles first, and then placed
into the output image at their corresponding position.

To fully benefit from the Winograd convolution, we need to pick a suitable output tile size m, which meets
the expected accuracy level and memory limitations. Furthermore, various code optimizations (i.e., data
layout and fast matrix multiplication) are usually needed to improve the overall runtime performance [104,
105]. However, such optimizations depend on Winograd specifications and the target hardware platform.
Such a challenging task can be addressed effectively using a compiler, capable of generating specialized
code. Our proposed method in Chapter 4 follows this idea and is integrated into an inference framework.

3.5 Neural architecture search

Neural architecture search (NAS) is a design space exploration method for the automatic creation of deep
neural networks. NAS offers to solve the following key challenges [106] when designing a deep-learning
model:

Intractable design space. Given the combinatorial design space of neural networks, designing a deep
model with various layers and each with a multitude of different parameters gets quickly out of hand.
Thus, various NAS methods tend to suggest an optimal method to reduce the search space and find
the candidate model in a feasible amount of time.

40

Nontransferable optimality. The efficiency of a given model depends on various parameters that are not
necessarily tied to the model architecture. For instance, any modification of the input resolution or
target device would affect the runtime efficiency of the model. NAS can effectively resolve this issue
by quickly adapting the model before deployment.

Inconsistent efficiency metrics. Often, the accuracy is not the only efficiency metric for designing a model.
Other metrics such as FLOPs, latency, and memory/power consumption could be more vital given the
circumstances. Using NAS, it is possible to change the objective or even strike a balance between all
these metrics.

Among various NAS methods such as random search, genetic search, and reinforcement learning, differ-
ential NAS [106] (a.k.a. super-networks) is the latest trend that attracted a lot of attention. Differential
NAS is an enabling technique for simultaneous learning of the architecture of a neural network and its
weights. It is achieved by transforming the NAS problem, typically discrete, into a continuous one, which
can then be solved via gradient descent algorithms. FBNet [106], DARTS [107], ProxylessNAS [108], and
Once-for-all [109] are among the well-known differential NAS methods.

3.6 Reinforcement learning

Reinforcement learning (RL) has gained tremendous momentum in the past decade with numerous successful
use cases in robotics, computer games, and optimization algorithms. RL is one of the fundamental branches
of machine-learning paradigms that do not need pre-defined labeled data. It attempts to follow the trial-
and-error mechanism to learn how to take proper sequential actions in an environment to increase the
reward function [110]. Conventionally, an RL-based method consists of various concepts and components.
In the following, we briefly touch upon the most important concepts of RL.

Algorithm (agent): The agent is the main component that evaluates the state, performs the action, and
analyzes the reward.

Episode (rollout): The whole sequence of states and actions that are played until we reach the termination
state.

Current (st) and next states (st+1): The representation of the world for the current and one after applying
the action.

Action a: Any change that the RL agent performs that changes the state is called an action.

Policy π(s, a): A deterministic or stochastic mapping between each state to an action.

Reward r: A function that defines the reward after taking an action. The goal of the RL agent is to optimize
the cumulative reward.

3.7 Graph convolutional networks (GCN)

Many AI-powered tasks such as computer vision, machine translation, and speech recognition that use
various deep-learning models deal with Euclidean space. However, various datasets do not fit in classical
geometry and cannot be represented in the Euclidean space [111]. One of the most well-known examples are
graphs with their extensive use case in social networks, search engines, and even in molecular physics and
chemistry. Unlike typical inputs that can be represented by numerical values, graphs represent entities and

41

their relations using nodes and edges. Thus, to perform deep-learning on graph datasets, a new technique
is required.

Similar to ConvNets, graph convolutional networks perform similar operations, where the model learns
graph features by inspecting the nodes, neighboring nodes, and edges. In other words, GCNs are a
generalized version of ConvNets that work on the unstructured data format. Often, the scale of graph
analysis done by GCNs is categorized into node-level, edge-level, and graph-level. As the names suggest,
the extracted features from each category contain different levels of information useful for node, edge, and
graph classification. Moreover, GCNs can be implemented using spectral and spatial methods. Spectral-based
GCNs assume that graphs are undirected and fixed-size, making their application scope very limited. On
the other hand, spatial-based GCNs do not have this limitation and use a technique similar to convolution
operations to extract the information from neighboring nodes to compute a representation for a given node.

42

4 Performance portability: Efficient and
performance-portable ConvNet deployment

The high development cost in providing performance portability is a paramount obstacle, particularly in the
practical deployment of ConvNet models on GPU platforms. Although the semantics of ConvNet operations
can be easily defined and implemented in popular programming languages, efficient GPU implementations
require many programmer-years of effort. Not to mention that moving to another GPU platform demands
further code optimizations and additional programming effort to keep up the performance.

In this chapter, following the importance of proper performance optimization (see Section 2), we present
our second contribution, named Boda+, to address the concerns above by generating efficient, portable, and
accurate ConvNet computation code. Instead of focusing on parallel programming aspects, such as language
and compiler design, we propose a more pragmatic approach by utilizing existing languages and compilers
available on the target platform. Particularly, we leveraged the template metaprogramming technique in
order to alleviate the developers’ effort. At the end of this chapter, we show that our approach represents a
novel trade-off between portability, efficiency, and productivity. In summary, this chapter aims to answer
the following research questions:

• Is there a novel way to target various GPU platforms using a single sourcecode?

• How can we strike a fair balance between development productivity and runtime performance?

• To which degree new convolution operations, such as Winograd, can accelerate ConvNet runtime?

• Is it possible to write an optimization recipe and automate the necessary code adjustments for a given
operation?

4.1 Motivation

Although ConvNets are created through a combination of different layers (e.g., convolutions, pooling, and
non-linear activation functions), convolution layers alone are used abundantly across the whole network and
typically take up to 90% of the total runtime [10]. Such layers, particularly small ones with 3×3 filter sizes,
are the main constituents of modern deep networks, as they achieve higher accuracy with fewer parameters
than shallow networks with larger filters [112, 113]. Therefore, speeding them up would greatly alleviate
the inference time and promote the usage of ConvNets. Thus, we also aim to accelerate such layers via
optimized algorithms and obtain reasonably high performance on a wide variety of GPUs. Nevertheless, we
are aware of various, often contradictory, concerns that require careful consideration. Figure 4.1 illustrates
the four main concerns along with their contradictory nature. On the one hand, we have efficiency and
deployment cost, and on the other hand, portability and development cost. Thus, an appropriate solution
would need to find a balance for such a tradeoff. In the following, we touch on the main motivations behind
our method by answering three main questions.

43

PortabilityEfficiency: speed, accuracy & energy
Deployment cost Development cost

Tradeoff

Figure 4.1: Tradeoff between key concerns in designing ConvNets.

4.1.1 Why do we need different convolution types?

Direct convolution is the most straightforward implementation variant with its computational requirements
often exceeding available resources on commodity hardware. Therefore, to further speed up the convolu-
tional layers, new algorithmic improvements had to be introduced. For instance, GEMM convolution is a
method to express a convolutional layer as a matrix multiplication operation and benefit from hardware
intrinsics to accelerate the computations. Winograd’s minimal filtering algorithms are another attempt to
minimize the number of arithmetic operations for performing small convolutions [102] (as introduced in
Section 3.4.2). The key idea is similar to the FFT-based convolution, where multiplication in the frequency
domain corresponds to convolution in the time domain. FFT convolution transforms the input into the
frequency domain using discrete Fourier transformation (DFT), multiplies it by the frequency response
of the filter, and then transforms it back into the time domain using inverse DFT [114]. The Winograd
convolution follows the same principle. Inputs and filters are first transformed into another space before
the element-wise multiplication. After the multiplication step, the output will be transformed back to
the original pixel space to obtain the final result. Unlike the FFT-based convolution, which uses complex
numbers, all arithmetic operations of the Winograd convolution use real numbers, thus requiring fewer
operations [102]. Lavin and Gray [102] showed that these algorithms could be around 2× faster than the
direct convolution. However, the results are not as accurate as of the direct method due to the additional
floating-point rounding errors.

As explained above, we have various algorithms to implement a convolution operation, namely (1) direct,
(2) GEMM, (3) FFT, and (4) Winograd convolution. Each algorithm can have a specialized implementation or
variant. For instance, manually optimized convolution for the layers with filter_size = 1 can yield additional
performance. Additionally, each variant works differently depending on the convolution specifications, such
as filter and input size. For instance, for small 3×3 convolutions, the Winograd convolution often provides
better performance, however, at the cost of additional memory consumption. Thus, both the convolution
specifications and hardware constraints should be considered when selecting the right variant.

4.1.2 How can we make ConvNets more efficient?

As already explained in Chapter 2, a critical factor for developing robust shared-memory applications is the
efficient use of cache and thread communications [42]. Furthermore, inappropriate data structures, algo-
rithm design, and inefficient data locality may result in superfluous communication between threads/cores
and severe performance problems. Within the context of ConvNets, convolutional layers are inherently
linear-algebra computations and can be viewed as a generalization of matrix-matrix multiplication. Thus, we
used our code optimization findings from Chapter 2 and aimed to generate efficient convolution operations.

Listings 4.1.2 and 4.1.2 show sample matrix multiplication and convolution C-pseudocodes, respectively.
Note that both functions iterate over output elements in their outer set of loop nests and then iterate

44

over the elements of a dot-product in their inner loop nests. In order to compute convolutions using
matrix-matrix multiply, we only need to flatten all the inner loops (which iterate over all values in the filter
and corresponding input window) and treat them as the K dimension. Then, we flatten the out_x and
out_y dimensions and treat the combination as the M dimension. Hence, many of the same algorithms
and optimizations used for matrix-matrix multiplication also apply to convolutions [10]. However, instead
of three dimensions (M, N, and K) as in the case of matrix-matrix multiplication, a convolution operation
has a considerably larger and more complex input space, such as:

• Small/enumerated integers (e.g., padding, stride, kernel size),

• Large integers (e.g., input X and Y sizes, input and output number-of-channels), and

• Booleans (i.e., fusing activation function with the output).

// the first 2 loop nests iterate
over all elements of C

for(n=0; n<N; ++n) {
for(m=0; m<M; ++m) {

// the remaining loop nest
calculates the dot-product for a
single output element
C[m][n] = 0;

for(k=0; k<K; ++k) {
C[m][n] += A[m][k] * B[k][n];

}
}

}

Listing 4.1: Matrix-matrix multiplication.

// the first 3 loops iterate over all output pixels
for(out_chan=0; out_chan<out_chan_sz; ++out_chan) {
for(out_y=0; out_y<out_y_sz; ++out_y) {

for(out_x=0; out_x<out_x_sz; ++out_x) {
// the remaining 3 loop nests calculate the dot

-product for a single output pixel
out[out_chan][out_y][out_x] = 0;
for(in_chan=0; in_chan<in_chan_sz; ++in_chan) {

// wind_[x/y]_sz are the filter size (1,3,5)
for(wind_x=0; wind_x<wind_x_sz; ++wind_x) {

for(wind_y=0; wind_y<wind_y_sz; ++wind_y) {
out[out_chan][out_y][out_x] += filters[

out_chan][in_chan][wind_y][wind_x] * in[in_chan][
out_y+wind_y][out_x+wind_x];

}}}}}}

Listing 4.2: Convolution operation.

Varying the input values leads to different runtime behavior. For instance, the data reuse patterns for
kernel sizes 1, 3, and 11 are quite different. Currently, the programmers’ approach to performance tuning is
manual code restructuring and applying compiler optimizations for each target platform. Clearly, such a task
demands extensive programming effort and experience. However, given that only a few sparse points in a
convolution’s input space are needed for any particular application, convolution operations can particularly
benefit frommetaprogramming to be specialized for each use case. Therefore, we can automatically generate
an efficient convolution kernel without individual code manipulation on each platform.

4.1.3 How can we achieve performance portability in ConvNets?

Despite benefiting from rewarding code optimizations, deploying convolution operations on different types
of GPUs involves various challenges. The first fundamental challenge is the efficient implementation of
the GPU kernel itself. It requires deep knowledge of the operation’s semantics and the target GPU for
effective code optimization. For instance, performance engineers often develop multiple versions of the
Winograd convolution, each supporting a different filter and output tile size. Such a rigid design prevents
machine-learning compilers from using Winograd convolutions more effectively for layers with different
specifications, as the flexibility in choosing the output tile size is essential for achieving higher speedups.
Within our experiments, we observed that inference frameworks and engines (e.g., cuDNN) often pick
Winograd convolutions for a limited number of convolutional layers.

45

We learned that attaining the highest achievable performance across various platforms requires endless
rounds of manual code tuning to specialize the code to new hardware specifications. Porting the code
to other GPU platforms exacerbates the problem and it is, indeed, our second underlying challenge. To
overcome the code portability challenges [115], the following high-level tasks need to be addressed:

Syntax incompatibilites among GPU programming APIs. Discrepancies across GPU architectures and pro-
gramming interfaces, such as CUDA, OpenCL, and Vulkan, make the efficient execution of tensor
operations, which are the constituents of ConvNets, a challenging task. Among those, CUDA and
OpenCL are the two widely used programming models that alleviate the effort required to harness
the compute power of GPUs. While CUDA works only on Nvidia devices, OpenCL and Vulkan have
been designed with portability in mind to run on any compatible device. Nonetheless, performance
is not necessarily portable [116]. Furthermore, some vendors, such as Nvidia, are reluctant to fully
support OpenCL as they see it as a rival to their own standard. This becomes even worse on a number
of mobile GPUs for which there is no official support.
As a remedy, the Khronos group released a new programming API called Vulkan [117] along with
an intermediate language named SPIR-V [118] to address the portability of GPU programs. Vulkan
is inherently a low-level cross-platform graphics and compute API, much closer to the behavior of
the hardware, resulting into a more efficient execution on modern GPUs. Unlike others, Vulkan is
supported by all major mobile and desktop GPUs. This single feature makes Vulkan a more attractive
programming interface compared with OpenCL, not to mention its unique low-level optimizations.
However, such worthwhile features come at a price, as it requires significantly higher programming
effort. Particularly for newcomers, rewriting their code with Vulkan is a cumbersome task.

Hardware-specific constraints. Each GPU is equipped with a different memory size and might have a
specific memory hierarchy (e.g., global, shared, constant, and texture memory), data access method,
and hardware execution primitives, such as multiply-accumulate (MAC) instructions.

Data movement. Memory bandwidth is the main factor behind the memory wall and impedes the increase
of performance beyond a certain point, especially on mobile and edge devices with low memory
bandwidth. Therefore, the effective movement of data between off-chip and compute units is of great
importance. Furthermore, locality-aware memory access is the key for efficient ConvNet runtime, as
inefficient data access patterns or unnecessary memory transfers may cost even more than the time
saved by performing fewer computations.

Runtime specialization. It is crucial to determine when, where, and how the computations take place.
Specialized scheduling, resource management, and parallelization methods can effectively address
these issues.

Managing overheads. GPUs are throughput-optimized processors that run threads in chunks (a.k.a. warps).
Thus, minimizing the use and impact of conditionals, control flow, and indexing is crucial for avoiding
warp divergence and potential performance loss.

In this chapter, we conduct a comparative analysis of CUDA, OpenCL, and Vulkan, which we call target APIs
in the rest of this dissertation. We then use the outcome to design our inference framework named Boda+
and propose an abstraction layer that enables GPU tensor code generation using any of the target APIs.
Equipped with metaprogramming and auto-tuning, our code generator can create multiple implementations
and select the best-performing convolution on a given GPU. In the experimental results section, we will
show that our proposed framework offers a performance-portable ConvNet code generator with minimal
programming effort.

46

Variant selection &
auto-tuning

Graph-level
optimization

Code generation
with

metaprogramming
Compilation &

Execution
Compute graph

(CG)

Performance
portability

Programming model
portability

Annotated
CG

Refined
CG

Generated
Kernel

Figure 4.2: Boda framework workflow.

4.2 Background on Boda

Since our solution is based on the Boda framework [95], we provide a brief introduction and explain
its main design principles. Boda employs general-purpose metaprogramming and dynamic compilation
to generate specialized code and thus acts similar to a traditional compiler. However, in contrast to a
fully-fledged compiler, Boda does not intend to support general-purpose programming and avoids typical
intermediary layers in the compilation flow, such as the LLVM IR [23]. An overview of the Boda framework
for mapping ConvNet computations to GPU hardware is illustrated in Figure 4.2. A compute graph is the
input to Boda, which goes through various components to be mapped into different target back-ends. Boda
is front-end/back-end-agnostic and only requires the target platform to provide mechanisms for runtime
compilation (for metaprogramming/specialization), memory allocation, code execution, and per-function-
call timing (for profiling/auto-tuning). Conveniently, all modern GPUs support similar programming models
and input languages, such as CUDA for Nvidia GPUs and OpenCL for other GPUs. However, Boda does not
provide support for Vulkan-enabled devices.

Variant selection and auto-tuning Convolution operations have a wide range of possible input sizes and
parameters. Even with metaprogramming, creating a single function that optimally runs on a broad range
of inputs and platforms is almost impossible. Thus, Boda expects the user to develop multiple variants of
certain operations, such as convolution. Additionally, each variant might have various tuning parameters that
affect code generation and runtime performance. For instance, Boda receives the variants and their values
as MNt=4:4,MNb=16:16,Kb=4,vw=4. These parameters specify 4×4 register blocking, 16×16 thread
blocking, an inner-loop-unroll-factor of 4, and a vector/SIMD width of 4. Boda’s auto-tuning component
automatically selects the optimal value for these parameters using a brute-force search to (1) find the best
parameters for a given operation, as well as (2) learn much about a new target platform.

Graph-level optimization Convolution operations are commonly followed by element-wise activation
functions. Often, the overhead to read and re-write the output tensors to apply the activation function is
relatively high. As a remedy, merging the code for the activation function into the output-writing portion of
the convolution operation can avoid unnecessary extra memory accesses. Therefore, Boda performs the
fusion of adjacent convolution and activation operations.

Another optimization is the insertion of data-format-conversion operations, which is necessary as some
variants may use different layouts or padding of their input or output tensors. Since we are able to choose
the internal tensors format freely, Boda can exploit this optimization to achieve higher efficiency within
each variant.

Code generation with metaprogramming Boda provides programming model portability based on the
cross-compatible intersection of CUDA and OpenCL and forms a custom-made language named CUCL.
However, CUCL is not a new language and just abstracts away the syntactical differences between CUDA and

47

OpenCL. The performance portability issue is not addressed at this layer and Boda tackles the performance
optimizations via metaprogramming and auto-tuning. Boda allows the user to write only mildly restricted
native GPU code in CUCL. Compared to directly using CUDA or OpenCL, CUCL provides language-neutral
idioms, requires all functions’ tensor arguments to be decorated with their dimension names, and requires
access to tensor metadata (sizes, strides) to use a special template syntax: %(myarray_mydim_size). To
produce OpenCL or CUDA functions from a CUCL function template, the framework replaces CUCL idioms
with OpenCL or CUDA ones. Additionally, Boda replaces references to tensor sizes and strides with either
constant values for the specific input tensor sizes or references to dynamically-passed tensor metadata.
Typically, Boda cares most about the case where the sizes are replaced with constants, as this gives the
most possibility for optimizations and, therefore, efficiency. Then, for general metaprogramming support,
Boda employs a string-template-based approach, using the framework’s host language (C++) to write
code-generators that set the values of string template variables inside CUCL function templates.

4.3 Comparison of CUDA, OpenCL, and Vulkan

CUDA and OpenCL share a range of core concepts, such as the platform, memory, execution, and pro-
gramming model. Furthermore, their syntax and built-in functions are fairly similar to each other. Thus,
converting a CUDA kernel to an OpenCL version and vice versa is relatively straightforward [119, 120].
On the other hand, Vulkan does not fully conform to CUDA and OpenCL standards, as it is geared both
towards general-purpose computation and graphics while being portable and efficient. Various OpenCL
offline compilers exist for converting C code to an intermediate language, from which later platform-specific
assembly code can be easily generated. In contrast, Vulkan is able to target different platforms using a
single input code and SPIR-V, a new platform-independent intermediate representation for defining shaders
and compute kernels. Currently, SPIR-V code can be generated from HLSL, GLSL, and C with OpenCL.

Vulkan has been designed from scratch with asynchronous multi-threading support [121, 122]. Moreover,
each Vulkan-capable device exposes one or more queues that can also process work asynchronously to each
other. Each queue carries a set of commands and acts as a gateway to the execution engine of a device.
These commands can represent many actions, from data transfer and compute-shader execution to draw
commands. Each command specifies the requested action along with input/output data. The information
about the available actions and the corresponding data is encapsulated in a so-called pipeline. This pipeline
is then bound to a command buffer, representing a sequence of commands that should be sent in batches
to the GPU. These buffers are created prior to execution and, to save time, can be submitted to a queue
for execution as many times as required. However, creating command buffers is a time-consuming task.
Therefore, the host code often employs multiple threads, working asynchronously, to construct command
buffers in parallel. Once finished, a thread may submit these command buffers to a queue for execution.
Right after the submission, the commands within a command buffer execute without any interruption in
order or out of order—depending on the ordering constraints.

Despite these conceptual design differences, we prepared a mapping for the key concepts within each API
in terms of memory regions and execution models in Table 4.1. The table shows that the memory hierarchy
abstractions of the three interfaces are quite similar. Figure 4.3 illustrates the kernel execution space of the
target APIs in more detail. Each point in the space is occupied by a thread/work-item/invocation. Each
item is an execution instance of the kernel, with multiple of them combined into a thread block or group.
The whole execution space is called grid or NDRange. Note that this mapping only covers the concepts
shared among these APIs and does not fully cover the features of Vulkan.

Further comparison shows that Vulkan is more explicit in nature rather than depending on hidden
heuristics in the driver. Vulkan provides more fine-grained control over the GPU on a much lower level.

48

CUDA OpenCL Vulkan (SPIR-V)

M
em

or
y

re
gi
on

Global mem. Global mem. CrossWorkGroup, Uniform
Constant mem. Constant mem. UniformConstant
Texture mem. Constant mem. PushConstant
Shared mem. Local mem. Workgroup
Registers Private memory Private memory

Ex
ec
ut
io
n

m
od

el Thread Work-item Invocation
Thread block Work-group Workgroup
Grid NDRange NDRange

Table 4.1: A comparison of the terminology used in CUDA, OpenCL,
and Vulkan.

(1) Thread block
(2) Work-group
(3) Workgroup

(1) Grid, (2,3) NDRange

(1
) T

h
re

a
d

, (2
) W

o
rk-ite

m
,

(3
) In

v
o
ca

tio
n

Figure 4.3: Kernel execution space
for (1) CUDA, (2) OpenCL,
and (3) Vulkan.

This enables programmers to enhance performance across many platforms. Even though such privilege
comes with an extra programming effort, this feature can immensely increase the overall performance.
Operations such as resource tracking, synchronization, memory allocation, and work submission internals
benefit from being exposed to the user, making the application behavior more predictable and easier to
control. Similarly, unnecessary background tasks such as error checking, hazard tracking, state validation,
and shader compilation are removed from the runtime and instead can be done in the development phase,
resulting in lower driver overhead and less CPU usage [122] compared with other APIs.

Particularly, synchronization mechanisms require the developer to be explicit about the semantics of
the application but, in return, save a significant amount of overhead. While other APIs tend to insert
implicit synchronization primitives between invocations and constructs, such as kernel executions and
buffer reads, Vulkan is asynchronous by default. All synchronization between kernels or buffer I/O must be
added explicitly to their respective command buffer via built-in synchronization primitives, including fences,
barriers, semaphores, and events. Therefore, if no synchronization is required, we can strictly avoid the
overhead of such operations.

Another difference is how Vulkan allocates memory, both on the host and the device. While CUDA and
OpenCL often provide a single device buffer type and primitive functions for copying data between the
host and device buffers, Vulkan puts the programmer in full control of memory management, including
buffer creation, buffer type selection, memory allocation, and buffer binding. Furthermore, by making an
explicit distinction between host-transparent device buffers and device-local buffers, we can implement
explicit staging buffers or decide if they are not necessary—either because the amount of I/O to the buffer is
negligible or because host memory and device memory are actually shared, as it is the case on many mobile
platforms. Such explicit querying and handling of the underlying hardware can reduce unnecessary work
and utilize the hardware more efficiently.

4.3.1 Programming conventions

In contrast to other APIs, Vulkan has its own programming conventions. Therefore, code similarities might
not seem evident at first glance. Figure 4.4 shows a naïve matrix-multiplication kernel implemented using
each programming interface. For Vulkan, we chose GLSL as our kernel language because of its better
compatibility. We trimmed off some parts of the code for brevity. Regions with the same color and number

49

CUDA

__global__ void matrixMul(
 float* C,
 float* A,
 float* B,
 int wA, int wB)
{
 int tx = blockDim.x*blockIdx.x+
 threadIdx.x;
 int ty = blockDim.y*blockIdx.y+
 threadIdx.y;
 __shared__ float in_smem[wA*wA];
 for (int k = 0; k < wA; ++k) {
 float elementA = A[ty*wA+k];
 float elementB = B[k*wB+tx];
 value += elementA*elementB;
 }
 C[ty * wA + tx] = value;
}

Vulkan (GLSL)
#version 450
layout(local_size_x = 16,
 local_size_y = 16,
 local_size_z = 1) in;
layout(set=0, binding=0) readonly
 buffer matrix_a{
 float A[];
} a;
...
shared float in_smem[wA*wA];

void main() {
 uint tx=gl_GlobalInvocationID.x;
 uint ty=gl_GlobalInvocationID.y;
 for (int i = 0; i < wA; i++)
 sum +=a.A[ty*wA+i]*b.B[i*wB+tx];
 c.C[ty*wB + tx] = sum;
}

OpenCL

kernel void matrixMul(
 global float* C,
 global float* A,
 global float* B,
 int wA, int wB)
{
 int tx = get_global_id(0);
 int ty = get_global_id(1);

 local float in_smem[wA*wA];

 for (int k = 0; k < wA; ++k) {
 float elementA = A[ty*wA+k];
 float elementB = B[k*wB+tx];
 value += elementA*elementB;
 }
 C[ty * wA + tx] = value;
}

1

2

3

4

5

Figure 4.4: An SGEMM kernel implemented with CUDA, OpenCL, and Vulkan (GLSL). Numbers on the left
denote: (1) function declaration, (2) kernel arguments and data layout, (3) API-specific keywords,
(4) shared-memory allocation.

share the same functionality. Syntactically, GLSL is similar to OpenCL and CUDA. However, GLSL is more
restricted in specific ways, which requires rewriting some parts of the code. The biggest three differences
are:

• Arguments to a kernel are not declared in the function header. Instead, they are declared in the
global scope as so-called bindings, which can then be set with Vulkan. The compiler expects the entry
function for the kernel to take no arguments. However, accessing the arguments within the kernel is
the same as in other APIs.

• Workgroup dimensions have to be defined in the kernel and not in the host code. Moreover, each
workgroup contains many work items or compute-shader invocations.

• GLSL does not provide explicit support for pointer objects. Instead, all pointers are represented as
arrays of undefined length.

• Shared-memory objects are not declared within the kernel body. Instead, they are defined in the
bindings.

Due to the conceptual discrepancies between Vulkan and the other APIs, the host code of Vulkan is
radically different. For example, we can create a simple buffer in CUDA (cudaMalloc) or OpenCL
(clCreateBuffer) with a single line of code. To create the same buffer in Vulkan, we have to: (1) create
a buffer object, (2) get the memory requirements for that object, (3) decide which memory heap to use, (4)
allocate memory on the selected heap, and (5) bind the buffer object to the allocated memory. This requires
more than 40 lines of code. Clearly, host code programming in Vulkan is proportionally more complex,
which stems from its explicit nature. Such code verbosity not only increases the programming effort but
also makes the code more error-prone.

50

C
N

N
 F

ro
nt

-e
nd

myCNN.proto:

layers{ layer{ Conv1 top=data
bottom=conv1 }layer{ Conv2
top=conv1 … }… }

…TensorFlowCaffe

Code generation

NVIDIA
GPUs

AMD
GPUs

New
targets

Ba
ck

en
d

Auto-tuning &
variant selection

Graph-level optimization

activation

fc1

+
activation

fc1

Compute Graph (CG)

Annotated CGRefined
CG

KERNEL conv(in,filts) //CUCL IN
img:chan:y:x { … } main(cf1,cf2)
{ filts_buf[0+thread_id] =
filts[thread_id]; … }

CUDA / OpenCL / GLSL kernels

CUDA OpenCL Vulkan ?

Mobile
GPUs

wconvwconv

Hardware
information

Winograd spec.
F(m,r)

Transformation
recipe generator

Transformation
matrices DB

</
> Non-fused

Winograd </
> Fused

Winograd </
> Direct

Conv.

#pragma metagpu data_layout in(in,filts)

{...}

#pragma metagpu kernel_body

{main(cf1,cf2){%(filts_buf_loads);}N
on

-f
us

ed
W

in
og

ra
d

N
o
n
-f

u
se

d
W

in
o
g
ra

d KERNEL wgconv(in,filts)

main(cf1,cf2){
filts_buf[0+thread_id] =
filts[thread_id]; … }

C
on

vo
lu

ti
on

 C
od

e
G

en
er

at
io

n

Template meta-programming
(C++ metacode)

SGEMM
Library

MetaGPU Templates per operation

Executable

Figure 4.5: The workflow of Boda+.

4.4 Boda+ framework

A generic yet portable implementation invariably involves low-level programming and a significant degree
of metaprogramming [123, 124]. Thus, we embrace both of them in an attempt to create a system for
generating efficient and portable convolution codes, specially Winograd convolution, with any specification.

51

To this end, we extended the Boda [95] framework and created a more comprehensive inference engine
named Boda+ to generate tensor kernels for a wider variety of GPU programming APIs. Specifically, we
aimed to use a single code template to support any GPU platform that supports CUDA, OpenCL, or Vulkan.
We also added support for Winograd convolution code generation and uncovered the great potentials of
Boda+ in operation-specific code specialization. Similar to Boda, our framework benefits from template
metaprogramming approach to generate efficient GPU tensor code. However, our kernel-abstraction
method is more structured, understandable, and generic. Relying only on metaprogramming made Boda+
a lightweight framework with minimal external software dependencies. The major required software
packages are the C++ compiler and Python for building Boda+ itself, and a compatible GPU backend
compiler, such as NVCC, Clang with OpenCL enabled, or GLSL to compile GPU tensor codes.

The input is a ConvNet model, which Boda+ parses as a computational graph suitable for graph optimiza-
tion and variant selection. Figure 4.5 depicts a high-level overview of our approach. Once the framework
picks a Winograd convolution according to the hardware and the convolution parameters, we start with
the specification of the selected convolution, denoted by F (m, r). First, we generate corresponding trans-
formation matrices, after which we use Winograd templates to generate efficient code. Depending on the
desired GPU platform, we can generate CUDA, OpenCL, or GLSL code. Finally, the resulting GPU kernels
are compiled alongside their host code into a binary file, which can be executed in a standalone fashion on
the target device. In the following, we explain the main components of our method in more detail.

4.4.1 MetaGPU abstraction layer

Given the considerable code discrepancies among the target APIs (see Figure 4.4), generating a GPU kernel
out of a single code template might seem implausible at first sight. Nevertheless, we propose MetaGPU,
a compatibility layer over our target APIs. It abstracts away the syntactic differences for the basic GPU
programming concepts shared by our target APIs. This interface allows a specialized GPU kernel to be
generated without modifying the main source code for every platform and convolution specification. We
did not want to invent a new language because it creates additional learning overhead for programmers.
Instead, we keep the coding convention very similar to CUDA and OpenCL and simply ask the user to
separate the code into three regions using #pragma directives, similar to OpenMP. Figure 4.6 shows a
MetaGPU code sample. In the following, the main regions within a MetaGPU template is described.

1. Tuning parameters: The first region defines tuning parameters. We can either access them in the
kernel code or in the host program.

2. Data layout: The kernel arguments and required memories that need to be allocated in the shared
memory are defined within this region. Additionally, the scope of each argument should be defined
with any of in, out, or shared keywords.

3. Kernel body: As the name suggests, this region contains the actual kernel logic. A subtle difference is
that using pointers is not allowed. Furthermore, the user has to use pre-defined keywords for accessing
the GPU threads, workgroups, and synchronization barriers. Table 4.2 shows the list of keywords and
their corresponding string in each target API. MetaGPU also supports template metaprogramming to
generate adaptive code. Template placeholders are defined by %(placeholder_name)% and, using
Boda, the user can populate them with C instructions or any desired string. Such a feature can help
dynamically generate code and unroll loops to improve performance further.

52

#pragma metagpu tuning_knobs
{
 int wg_size_x;
 int unroll_lvl;

}

1 Tuning parameters

#pragma metagpu data_layout \
in(a,b) out(c) shared(in_smem)
{
 float const * const a;
 float const * const b;
 float * c;

 float in_smem[%(dim)*%(dim)];
}

2 Data layout

#pragma metagpu kernel_body {

 for(k=0;k<%(dim);k+=unroll_lvl){

 %(sm_loads);

 BARRIER_SYNC;

 %(inner_loop_body);

 }

}

3 Kernel body

Figure 4.6: A trivial sample of MetaGPU code.

Table 4.2: The list of pre-defined keywords in the kernel body alongside their corresponding value within
each target API.

CUDA OpenCL Vulkan

GLOB_ID_1D blockDim.x*blockIdx.x+threadIdx.x get_global_id(0) gl_GlobalInvocationID.x
LOC_ID_1D threadIdx.x get_local_id(0) gl_LocalInvocationID.x
GRP_ID_1D blockIdx.x get_group_id(0) gl_WorkGroupID.x
LOC_SZ_1D blockDim.x get_local_size(0) gl_WorkGroupSize.x
BARRIER_SYNC __syncthreads() barrier(CLK_LOCAL_MEM_FENCE) barrier()

4.4.2 Winograd transformation optimization

As already explained in Section 3.4.2, small convolutions are the primary beneficiaries of the Winograd
algorithm. Moving toward larger filters or output tiles makes the Winograd algorithm prone to low precision
and low performance. The accuracy degrades after a multitude of data-scaling and floating-point operations
with finite-precision [125, 103]. The performance also deteriorates because larger Winograd convolutions
demand larger transformation matrices. Existing Winograd implementations attempt to perform a multitude
of matrix multiplications in order to transform input tiles, filters, and outputs into the desired domain.
The growing number of arithmetic operations involved in the transformation steps gradually becomes a
burden. In this section, we provide a solution to optimize these steps and alleviate the adverse effects of the
Winograd transformations.

Selecting polynomial points

A critical factor in improving the numerical accuracy of Winograd convolutions is to find a good set of
polynomial points as the basis for generating transformation matrices. Inspired by B. Barabasz et al. [103],
our method heuristically finds the polynomial points and uses the modified Toom-Cook method to generate
transformation matrices—based on the idea of evaluating polynomials at given points using the Lagrange
interpolation theorem [103].

For a Winograd convolution F (m2, r2), we needm+r−2 points. We begin with the ordered set (0,−1, 1),
which has been proven to provide ideal points for reducing arithmetic operations and maintaining high
accuracy because multiplication by 1 or -1 can simply be skipped, and multiplication by zero enables us to skip
both the scaling and addition [103]. When more than three points are required, we perform an exhaustive
search for the remaining points. Empirical evaluations show that small and simple integers and fractions
are good candidates for reducing the required number of scalings and additions [103]. We follow the same
approach and select the points P as rational numbers, where P = {a

b |a, b ∈ Z,−9 ⩽ a ⩽ 9, 1 ⩽ b ⩽ 9}. To
find the most accurate set of points, we iteratively examine the precision of Winograd convolution results.

53

for(j=0, j<4, j++){

Gg[0][j] = ‐g[0][j];
Gg[1][j] = 0.5*(tmp + g[1][j]);
Gg[2][j] = 0.5*(tmp ‐ g[1][j]);
Gg[3][j] = g[2][j]; }

tmp = g[0][j] + g[2][j];

for(i=0, i<4, i++){

Gg[i][0] = ‐Gg[i][0];
Gg[i][1] = 0.5*(tmp + Gg[i][1]);
Gg[i][2] = 0.5*(tmp ‐ Gg[i][1]);
Gg[i][3] = Gg[i][2]; }

tmp = Gg[i][0] + Gg[i][2];

Remove 0,1s

Column-wise
index repr.

1

Factorization

2

3

Remove 0,1s

Row-wise
index repr.

1

Factorization

2

3

CSE4

Code-gen5

CSE4

Code-gen5

Figure 4.7: Illustration of a Winograd filter transformation being optimized prior to code generation.

In each iteration, we create random input and filter tensors with a uniform distribution in the range of (-1,
1) because, in practice, the weights of deep neural networks are primarily concentrated in this range. To
obtain the highest precision, we compare the results (FP32) with direct convolution (FP64) and compute
the error rate using the L1 norm. We perform this analysis 10,000 times, a relatively high iteration count to
make the results stable. We select the median value as the representative error rate of the chosen points.

Transformation recipe generation

Transformation matrices for a given Winograd convolution are always the same and often follow a regular
pattern. Thus, we avoid running an ordinary matrix-multiplication kernel and, instead, we use symbolic
computation to intensively simplify the transformation steps into a sequence of instructions for constructing
the transformed matrices. First, we use the modified Toom-Cook method to generate the transformation
matrices A, B, and G based on the selected polynomial points. One crucial feature is that we use rational
numbers instead of real floating-point numbers to avoid rounding errors. Then, we create a symbol matrix
with its size equal to the input size, similar to:

G =

⎡⎢⎢⎣
−1 0 0
1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

⎤⎥⎥⎦ , g =

⎡⎣g0,0 g0,1 g0,2
g1,0 g1,1 g1,2
g2,0 g2,1 g2,2

⎤⎦ (4.1)

We multiply the transformation matrix with the symbol matrix and obtain the result. Next, we apply the
following sequence of steps to optimize the transformed matrices:

1. Elimination of unnecessary arithmetic operations: We observe many multiplications by one or
zero, and additions with zero (i.e. 1× gi,j + 0 or 0× gi,j), which we eliminate and simplify down to
gi,j or 0.

2. Column-/row-wise index-based representation: We transform the resulting matrix into a vector
with the variable subscripts replaced by an induction variable symbol. A 2D Winograd transformation
consists of two consecutive matrix multiplications. We realized that we can always apply a column-wise
and row-wise representation generalization to these multiplications, respectively. The ultimate goal is
to generate the transformed matrix using only a single loop construct. Additionally, we can unroll the
loops if necessary.

3. Factorization: Each row within the resultant vector contains terms with rational coefficients. In
the case we find common coefficients across the terms, we apply factorization to save redundant
multiplications.

54

4. Common sub-expression (CSE) elimination: We use the CSE algorithm to find the common terms
among the vector rows. Thus, we can compute them once and reuse them multiple times. This method
reduces both the number of additions and multiplications.

Figure 4.7 illustrates the above steps applied to the sample filter defined in Equation 4.1. These opti-
mizations need to be performed only once before the actual Winograd convolution execution to obtain the
transformation recipes. Since these recipes remain the same for every specific F (m, r), we store them in a
database to facilitate their reuse and avoid generating them again.

4.4.3 Code generation

At a high level, we choose to take a generic and flexible approach to metaprogramming. Rather than using
language-level metaprogramming, we write code generators directly in C++. We use Boda’s native support
for tensors at the meta-code layer to allow code generation to exploit fixed, exact sizes for all inputs and
outputs. As described in Section 4.4.1, MetaGPU enables us to abstract away the syntactical differences
between our target APIs. Thus, we can use the same template code for generating CUDA, OpenCL, Vulkan
kernel codes. We will evaluate the performance of the kernels generated using this approach in Section 4.5.
However, in practice, we mostly use CUDA and the rather new Vulkan API to target the GPU platforms within
our study. Particularly, we decided to use Vulkan instead of OpenCL on non-Nvidia GPUs, as it supports a
broader range of GPUs, including mobile platforms. Furthermore, evidence shows that the Vulkan compiler
can produce more optimized GPU codes compared with OpenCL compilers [43].

We first parse the input MetaGPU code and extract the three regions. The tuning parameters can later be
used for auto-tuning. Then, the data layout of the kernel is parsed to find out the kernel arguments for
CUDA/OpenCL code and the bindings for Vulkan GLSL code. Based on the target programming interface,
we can then generate the kernel by generating corresponding argument declarations and merging them
with the kernel body. We observed that platform-specific compilers often do not successfully unroll loops
and remove unneeded conditionals. In such cases, we directly emit a sequence of instructions for iterating
through tensor elements, loading and storing data from/to global memory, shared memory, and registers.
To do this, we move the loop to the meta-code level and replace it entirely with a template placeholder,
such as %(filts_buf_loads), %(winograd_filt_transform), and %(store_results). Then,
at the meta-code level, we write code to generate the required sequence of instructions.

In general, we aim to make the code as simple as possible by reducing the usage of loops and conditions.
Such an optimization increases the chance that the platform-specific compiler generates efficient binary
code. Furthermore, the code generator has the privilege to employ the highly-tuned BLAS libraries that
exist on the target platform, such as cuBLAS and CLBLast [126]. In this study, we used CLBlast to perform
the matrix multiplications.

We also added Vulkan support by creating a new backend to support host programming. All the required
buffers, synchronizations, and timings will be handled by the Vulkan backend. Therefore, the end-user
does not have to write any host code using Vulkan. Since the programming effort of Vulkan is very high,
this feature will significantly enhance programmer productivity. Furthermore, we use the kernel batching
feature in Vulkan and submit up to eight compute shaders at once to the GPU. We believe that this simple
optimization will greatly reduce the kernel-invocation overhead.

Winograd transformation meta-code

In a 2D Winograd convolution, each transformation step should perform two consecutive matrix multiplica-
tions to transform a given tensor into the desired domain. Such multiplications are costly, and depending
on the matrix dimensions, they might impose significant runtime overhead. We aim to replace the six

55

matrix multiplications (i.e., G.g.GT , BT .d.B, and AT .M.A) with their corresponding intensively simpli-
fied single-level loops. We replace each matrix multiplication code with a template placeholder, such as
%(winograd_filt_transform), and later use metaprogramming to fill in the placeholder with the
transformation recipes that we introduced in Section 4.4.2. An example of the resulting code is illustrated
in Figure 4.7. We further reduce the complexity and improve the performance of the transformation code
using two optimization techniques:

• Adaptive loop-unrolling: We unroll the Winograd transformation loops to eliminate control instruc-
tions and achieve higher speedups. The unrolling factor is a tunable parameter, which we can tune
according to available instruction cache size. For those loops in which the iteration count is not
dividable by the unrolling factor, we find the closest divisor, or if we cannot find one, we fully unroll
the loop.

• Fused multiply-add (FMA) operations: Often, the terms involved in computing the elements of
transformed matrices contain a multiplication and an addition. Therefore, we can convert those
operations into an FMA instruction and perform them all in one step, with a single rounding. We can
benefit from FMA operations, provided that the target GPU and the programming interface support
such operations. Otherwise, we avoid calling these instructions and simply rely on basic arithmetic
instructions, instead.

Winograd code templates

We can implement Winograd convolutions in two different ways: (1) non-fused and (2) fused. A fused
implementation is often preferable as it reduces the GPU memory transfer by merging all the Winograd
steps into a single kernel. However, for large kernels, its memory requirement might exceed the available
GPU shared memory space. In such cases, we use the non-fused implementation as a fallback. As a rule of
thumb, fused implementations are often better suited for small convolutions such as 3× 3 convolutions with
small output tile sizes. We implemented code templates for both versions to demonstrate the applicability
of each version under different circumstances.

Non-fused implementation. This version implies that we have a separate kernel for each step of the
Winograd algorithm, and each kernel has to write the results back to the global memory. Although it
increases the data transfer overhead, the non-fused version is still a viable option for larger Winograd
convolutions, where the available shared memory is limited, particularly on mobile GPUs. In general, each
kernel assigns a tile of data to each thread, which first loads the data from the global memory to its registers.
Then, the actual computation takes place, and ultimately, the output will be written back into the global
memory.

Despite the additional arithmetic operations caused by Winograd transformations, a significant portion of
the computation takes place in Winograd’s matrix multiplication step. Therefore, obtaining higher efficiency
also relies on using optimized BLAS routines. The element-wise multiplication of the transformed input
with transformed filters can be seen as a dot product of two vectors U and V , as we need to sum up the
results across the channels. Therefore, we follow Lavin and Gray’s [102] approach to pose this problem as a
typical matrix multiplication and benefit from highly efficient SGEMM routines.

To reframe the problem as an SGEMM operation, we vertically stack each element of a transformed
filter tile. Then, we group them by their index within the tile and sort them by their filter K in ascending
order, such that each group denotes the K-th elements of each filter tile. Consequently, all channels will be
horizontally stacked and placed in their corresponding row, such that the first row contains all channels of
the first element within the first filter tile. The resulting (α2K,C) matrix is U ′

ij = U
i/K
i%K,j . The transformed

56

image is reframed in the opposite way, where elements with the same index are horizontally stacked and
grouped by the same image tile. Then, the channels are stacked in a column-wise fashion.

Since both matrices U ′ and V ′ are grouped by the index within their tile, there will be α2 groups per
matrix. Only the groups in U ′ and V ′ sharing the same tile index have to be multiplied, and only α2

matrix multiplications are needed. Since we need to multiply several small matrices, we avoid invoking
different matrix multiplication kernels and, instead, use a batched-SGEMM operation to perform all the
multiplications. We use a vendor BLAS library if it exists on the target platform. Otherwise, we use a
self-developed SGEMM kernel in the Boda framework.

Fused implementation. Merging all the Winograd steps into a single kernel has the potential advantage
of improving the usage of shared memory and registers. Data resides in the shared memory as long as it
is needed for computation. Previously, Lavin and Gray [102] proposed this optimization solely for small
Winograd configurations, such as F (3, 2) and F (3, 4), since the shared memory space is very limited [102].
We further extended this optimization and used metaprogramming to support larger configurations, as long
as enough shared memory is available. We split the threads within a thread block in half, such that the
first half computes filter transformations, and the other half computes input transformations. The matrix
multiplication step is divided into equal parts and distributed among the threads. Therefore, we cannot
invoke a real matrix-multiplication kernel and, instead, implemented the multiplications within the kernel.
Finally, all threads perform the output transformation together.

4.4.4 Variant selection and auto-tuning

Tensor operations have a wide range of possible input sizes and parameters. It is generally difficult, even
with metaprogramming, to write code that runs well across more than a limited range of input sizes and
hardware platforms. Such tuning parameters might control thread blocking, memory access patterns, or
load/store/compute vector widths. Thus, the auto-tuner automatically searches the tuning space to find
the right values for the given tuning knobs in the MetaGPU code and even across different implementation
variants. This is an important step towards higher performance portability.

The key feature of our auto-tuning method is the automatic per-platform variant selection and automated
sweeping over tuning parameters. We have two different variants of Winograd convolutions (i.e., fused
and non-fused), which might perform differently on each target platform. Thus, we expect to run the best
performing variant on a given platform, based on the convolution and available resources. Furthermore,
each variant needs to be optimized prior to execution using several tuning parameters, as described in
Table 4.3. By performing a brute-force, guided, or sampled exploration of the space of variants and tuning
parameters, we can find the best parameters for a given Winograd convolution operation and provide
performance portability among different hardware platforms. Considering the manageable size of the search
space, we used the brute-force method. Nevertheless, the tuning process could be further accelerated using
more sophisticated search methods.

4.5 Experimental results

Since the main contributions of Boda+ are GPU API abstraction and specialization of Winograd convolutions,
we first assess the effect of MetaGPU on improving the productivity and programmability of GPU program-
ming for tensor operations. Then, we provide analytical study results on the Winograd’s accuracy and the
impact of optimization recipes on the Winograd convolution. Lastly, we demonstrate the effectiveness of our
method in generating efficient convolution kernels on various GPU platforms. We evaluate the portability

57

Table 4.3: Tuning parameters for Winograd convolutions.

Tuning Parameter Purpose Values

WV Winograd variant (fused / non-fused) [0, 1]
LU Loop unrolling factor [1, 2, 4, 6, ∞]
MNt SGEMM Register blocking size Exponential of two
MNb SGEMM Thread blocking size Exponential of two
m Winograd output tile size 2 ≤ m ≤ 10

of the kernels that we generate using Boda+ and compare the performance with popular deep-learning
libraries. We decided to study the results of Winograd convolutions separately, to emphasize the effect of
having a specialized and optimized convolution flavor on the runtime performance. In this section, we
specifically provide the answers to the following questions:

• What is the impact of Boda+ on programming productivity (i.e., programmability)?

• How precise are the Winograd convolution results, and how does the accuracy change for different
Winograd configurations?

• To what extent can we optimize the Winograd transformation code?

• What is the runtime performance of the proposed method, and how does it perform compared with
other deep-learning libraries?

• How portable are the generated kernels across different GPU platforms?

• Is there any way to pick the most suitable configuration for a given Winograd convolution?

Experimental setup

To evaluate the proposed method, we chose NVIDIA GTX 1080 Ti and AMD Radeon RX 580, two popular
desktop GPUs. We also used a mobile platform based on the Hikey 960 development kit, which contains an
ARM Mali-G71 MP8 GPU. Table 4.4 summarizes the configuration details of the target platforms.

4.5.1 Programmability analysis

Our method offers performance portability while easing the burden of rewriting the program for each API.
However, to quantitatively evaluate the programming effort required to generate efficient deep-learning
kernels, we propose a metric based on total lines of code. Inspired by Memeti et al. [127], we use cloc to
determine the lines of MetaGPU code LOCMetaGPU and the total unique lines of code LOCTotalUniqueLines

needed to be written for our target APIs to provide code portability. We then define the programming effort
as follows.

Effort[%] = (LOCMetaGPU/LOCTotalUniqueLines)× 100 (4.2)

In most ConvNet frameworks, including Boda, multiple convolution variants exist, each specialized for a
specific case. For instance, Boda provides direct, tiled, GEMM, and 1×1 convolution variants. We counted

58

Table 4.4: Experimental setup.
Nvidia GTX 1080Ti AMD RX 580 ARM Mali G71 MP8

OS Ubuntu 16.04 64-bit Android 7.0
CPU Intel Xeon Gold 6126, 12Core @ 2.6GHz 4 Cortex A73 + 4 Cortex A53
Host Memory 64 GB 3GB LPDDR4 SDRAM
GPU Memory 11GB GDDR5X 8GB GDDR5 -
Driver Linux Display Driver 410.66 AMDGPU-PRO Driver 17.40 Native driver
CUDA CUDA 10.0 - -
OpenCL OpenCL 1.2 OpenCL 2.0 OpenCL 2.0
Vulkan SDK Vulkan 1.1.97 Vulkan 1.1.97 Vulkan 1.1.97

Libraries cuDNN 7.3 MIOpen 2.1 ARM Compute
Library v20.02.1

Table 4.5: Lines-of-code comparison for different convolution implementations alongside computed effort
metric.

LOCMetaGPU LOCCUDA LOCOpenCL LOCV ulkan LOCTotalUniqueLines Effort [%]

Direct convolution 113 562 631 1137 2330 4.84
Tiled convolution 115 548 618 1119 2285 5.03
GEMM convolution 89 1103 1172 1666 3941 2.25
1x1 convolution 160 1190 1259 1761 4210 3.80

the LOCs for each variant and target API. The results are shown in Table 4.5. For a fair programming effort
analysis, we used total unique lines between all the target APIs. The results indicate that using our method
requires on average 4% of the total effort needed to implement the code with all of the target APIs.

4.5.2 Winograd accuracy analysis

As mentioned earlier in Section 4.4.2, moving toward a larger internal tile size α, which itself depends
on the output tile size m and the filter size r, leads to a higher accuracy loss. However, it is not apparent
how much error is tolerable during the inference phase. Thus, we measured the accuracy of Winograd
convolutions with various internal tile sizes to find out how significant their error rates are and which one is
probably more suitable for a convolutional layer.

Table 4.6 reports the selected polynomial points for different Winograd internal tile sizes, within the
range of [4, 16] alongside their relative error. We compute the relative error using the L1 norm ||X||1:

RelativeError =
|| ˆ︁X −X||1

||X||1
,

||X||1 = maxj

∑︂
i

|ai,j |,

where ˆ︁X and X are the Winograd (32-bits) and direct convolution (64-bits) results, respectively. Conven-
tionally, the previous points can be reused for adding a new point to the sequence [103]. However, we
noticed that by recomputing the whole sequence of points, more accurate results could be obtained.

We investigated the numerical stability of the generated Winograd convolutions by measuring their error
range and error growth rate. Figure 4.8 depicts a box plot of L1-norm errors for Winograd convolutions

59

Table 4.6: Polynomial points selected by our method alongside their relative error.

α Points Relative Error

4 BP = (0, 1,−1) 6.11× 10−8

5 BP ∪ (2) 2.65× 10−7

6 BP ∪ (1/2,−2) 5.59× 10−7

7 BP ∪ (1/2,−2, 2) 1.14× 10−6

8 BP ∪ (2, − 1/2, 1/2,−2) 1.76× 10−6

9 BP ∪ (2,−1/2, 1/2,−2, 4) 9.93× 10−6

10 BP ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4) 1.42× 10−5

11 BP ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4,−4) 8.38× 10−5

12 BP ∪ (1/2,−2, 2, − 1/2, 3/4, − 4/3, 9/2, − 2/9) 1.83× 10−4

13 BP ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4, 1/4,−4, 4) 5.36× 10−4

14 BP ∪ (1/2,−2, 2, − 1/2, 9/7, − 7/9, 1/4,−4, 7/9, − 7/9) 9.10× 10−4

15 BP ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4, 1/4,−4, 7/9, − 9/7, 4) 3.45× 10−3

16 BP ∪ (1/2,−2, 2, − 1/2, 4/3, − 3/4, 2/7, − 7/2, 4/5, − 5/4, 4, − 1/4) 4.66× 10−3

4 5 6 7 8 9 10 11 12 13 14 15 16

α

10−7

10−5

10−3

10−1

L
1

-N
or

m
E

rr
or

2

4

6

E
rr

or
in

cr
ea

se
ra

te

Figure 4.8: L1-norm error analysis for various Winograd internal tile sizes.

with different α. We ran each case 10,000 times with randomly generated input and filters between (−1, 1).
We observed that the error rates proliferate with the addition of each new polynomial point. However, it
does not precisely follow an exponential trajectory, as opposed to the observation made by Barabasz et
al. [103]. Instead, we noticed that Winograd convolutions with even α benefit from a lower error-growth
rate. We observed the lowest error growth when α = 8.

In comparison with the inference phase, accuracy is a more crucial factor for the training phase, as it
affects learning stability. Nonetheless, according to previous studies [128, 129], error rates lower than
1e−02 do not harm the stability, implying that the inference phase is immune to such error rates. Such
an observation suggests that our generated Winograd convolutions can be used during inference without
experiencing any instability.

60

4.5.3 Winograd transformation optimization results

In Section 4.4.2, we proposed a method for reducing the computational complexity of Winograd transfor-
mation steps using symbolic computation. To demonstrate the effectiveness of our method, we numerically
analyze the computations involved in Winograd transformation steps by directly counting the number of
additions and multiplications. We selected Winograd convolutions with m ∈ {m ∈ N|2 ≤ m ≤ 10} and
r ∈ {3, 5, 7}. The results are given in Figures 4.9a– 4.9c. For each step, we separated the results into three
columns, each representing a particular filter size. The baseline is the straightforward implementation of
Winograd transformations using typical matrix multiplications. The optimized version represents the actual
number of arithmetic operations involved in the generated code. We also demonstrate the amount of FMA
operations, which we were able to identify.

We observed that our method was able to reduce the number of arithmetic operations in transformation
steps by up to 62%. We annotated the highest amount of reductions in each diagram. We often obtain
the highest amount of reduction when α = 8, except for a few cases, where other internal tile sizes yield
higher reductions. However, when looking at all the transformation steps, as depicted in Figure 4.9d, we
can conclude that transformations are better suited for optimization when α = 8. Such a value for α enables
our method to factorize more common terms and improve data reuse. Since transformation steps might be
considered as a small portion of the total computations involved in Winograd convolution, we also show
the total amount of arithmetic reduction in Figure 4.9d. As the blue line indicates, the total reduction
of arithmetic operations can reach up to 40%. Overall, our analysis of both accuracy and the number of
arithmetic operations in Winograd transformations after optimization confirms that when α = 8, Winograd
convolutions can be optimized to a greater extent.

To further validate the effectiveness of our method, we generated CUDA kernels for sample convolutions
with r ∈ {3, 5, 7} and the same set of Winograd output tile sizes m ∈ {m ∈ N|2 ≤ m ≤ 10}. Figure 4.10
depicts all the runtimes for the convolutions that we ran on our Nvidia GPU. Our results suggest that
Winograd convolutions with a filter size larger than five are probably not suitable for deployment, as other
types of convolutions perform much faster. We further noticed that larger values of m do not necessarily
save more operations during the matrix-multiplication step, as they cause additional computation overhead.
Evidence [104] suggests that this happens mainly for two reasons: (1) The dimension of output images
has to be divisible by m. Otherwise, the image is zero-padded, leading to a higher amount of operations
during both transformation and matrix multiplication. (2) The amount of operations for the image and
filter transformations grows quadratically with m.

For 3× 3 convolutions with small batch sizes, smaller Winograd output tile sizes m offer better runtime.
However, when we increase the batch size, larger values of m between (5,7) leads to a better result. In
contrast, we observe a different behavior with 5× 5 convolutions. For almost every batch size, an output tile
size of m = 4 offers lower runtime, provided that we enable our optimization. We notice that our method
can speed up convolutions by up to 1.65×, particularly when α = 8.

4.5.4 Performance portability analysis

Instead of showing end-to-end runtime results for whole deep neural networks, we follow a more fine-grained
approach and report per-convolution runtimes because it better highlights the impact of our optimizations.
Successfully speeding up even a single convolutional layer implies shorter inference runtime for the whole
network. Thus, to evaluate the performance portability of our approach, we selected a range of convolution
operations and generated the corresponding GPU code for each of the target APIs. Particularly, we extracted
43 unique convolutions from real ConvNets, such as AlexNet [84], Network-in-Network [130], and the
InceptionV1 [131] networks, which have (1) a batch size of five, and (2) more than 1e8 FLOPS. To evaluate
Winograd convolutions, however, we narrowed down our list to another 31 unique convolutions, as Winograd

61

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

F(1
0,

3)

0

200

400

600

#
o

f
A

ri
th

m
et

ic
o

p
er

a
ti

o
n

s

3x3 conv

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

F(1
0,

5)

0

500

1000

1500

2000

5x5 conv

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

F(1
0,

7)

0

1000

2000

3000

4000

7x7 conv

0.2

0.4

0.6α = 8

0.1

0.2

0.3

0.4

0.5α = 8

0.1

0.2

0.3

0.4

A
ri

th
m

et
ic

re
d

u
ct

io
n

ra
ti

oα = 8

Baseline: Add Mul Optimized: Add Mul FMA Reduction Ratio

(a) Filter transformation

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

F(1
0,

3)

0

2000

4000

#
o

f
A

ri
th

m
et

ic
o

p
er

a
ti

o
n

s

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

F(1
0,

5)

0

2000

4000

6000

8000

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

F(1
0,

7)

0

5000

10000

0.0

0.2

0.4

0.6

α = 6

0.2

0.4

0.6

α = 6

0.2

0.4

0.6

A
ri

th
m

et
ic

re
d

u
ct

io
n

ra
ti

oα = 8

(b) Input transformation

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

F(1
0,

3)

0

1000

2000

3000

#
o

f
A

ri
th

m
et

ic
o

p
er

a
ti

o
n

s

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

F(1
0,

5)

0

2000

4000

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

F(1
0,

7)

0

2000

4000

6000

0.0

0.2

0.4

0.6α = 8

0.3

0.4

0.5

α = 8

0.25

0.30

0.35

0.40

0.45

A
ri

th
m

et
ic

re
d

u
ct

io
n

ra
ti

oα = 9

(c) Output transformation

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

F(1
0,

3)

0.0

0.2

0.4

0.6

A
ri

th
m

et
ic

re
d

u
ct

io
n

ra
ti

o

α = 8

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

F(1
0,

5)

0.0

0.2

0.4

0.6 α = 8

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

F(1
0,

7)

0.0

0.2

0.4

0.6 α = 8 Transformations

Whole Winograd

(d) Overall arithmetic reduction ratios related to transformation steps and the whole Winograd algorithm for a single
tile.

Figure 4.9: Comparing the number of arithmetic operations of each Winograd transformation, before and
after optimization, where r ∈ {3, 5, 7},m ∈ [2, 10]. Our analysis indicates that the highest
arithmetic reduction can be achieved when α = 8.

62

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

0.0

0.2

0.4

0.7

R
u

n
ti

m
e

(m
s)

3x3 conv

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

0.0
0.1

0.3
0.4

5x5 conv

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

0.0

4.7

9.3

14.0
7x7 conv

1.00

1.25

1.2

1.4

1.0

1.2

S
p

ee
d

u
p

ra
ti

oNon-optimized

Optimized

(a) Batch size = 1

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

0.0

0.2

0.5

0.7

R
u

n
ti

m
e

(m
s)

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

0.0

0.2

0.4

0.6

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

0.0

31.7

63.3

95.0

1.00

1.25

1.4

1.6

1.0

1.1

S
p

ee
d

u
p

ra
ti

oNon-optimized

Optimized

(b) Batch size = 5

F(2
,3

)

F(3
,3

)

F(4
,3

)

F(5
,3

)

F(6
,3

)

F(7
,3

)

F(8
,3

)

F(9
,3

)

0.0

0.6

1.2

1.7

R
u

n
ti

m
e

(m
s)

F(2
,5

)

F(3
,5

)

F(4
,5

)

F(5
,5

)

F(6
,5

)

F(7
,5

)

F(8
,5

)

F(9
,5

)

0.0

0.2

0.5

0.7

F(2
,7

)

F(3
,7

)

F(4
,7

)

F(5
,7

)

F(6
,7

)

F(7
,7

)

F(8
,7

)

F(9
,7

)

0

200

400

600

1.0

1.1

1.4

1.6

1.0

1.1

S
p

ee
d

u
p

ra
ti

oNon-optimized

Optimized

(c) Batch size = 20

Figure 4.10: Comparing the runtimes of optimized and non-optimized Winograd convolutions F (m2, r2),
where r ∈ {3, 5, 7},m ∈ [2, 9], and the batch size B ∈ {1, 5, 20}.

convolution operations only makes sense for certain convolutions. The rationale behind this selection is that
we wanted these convolutions to model a streaming deployment scenario with high computational load but
some latency tolerance. The exact specifications for both sets of convolutions can be found in Table 4.7 and
Table 4.8.

For the sake of precision, we measured the execution times using GPU timers. Furthermore, to counter
run-to-run variation, we executed each kernel ten times and reported the average of the runtimes we
obtained. Because Vulkan GPU timers were not supported on our mobile platform, we had to use its CPU
timers instead. All the average speedups reported across the convolutions are computed using the geometric
mean.

We now present per-convolution-operation runtime results across three different hardware platforms
to illustrate the efficiency and performance portability of our method. We sorted the operations by FLOP
count, a reasonable proxy for their difficulty.

Nvidia GPU. A runtime comparison of CUDA, OpenCL, and Vulkan on our benchmark set of operations
is given in Figure 4.11. All runtimes are for running each operation using the best function generated

63

1.12 × 108 1.57 × 108 2.49 × 108 3.77 × 108 8.67 × 108 1.5 × 109 FLOPS

10 4

10 3

Se
cs

Vulkan OpenCL CUDA cuDNN

Figure 4.11: The runtime comparison of kernels generated by our method and cuDNN vendor library on
Nvidia GTX 1080 Ti.

1.00E+08 1.73E+08 2.99E+08 4.43E+08 7.32E+08 1.50E+09 4.48E+09

10−1

100

R
u

n
ti

m
e

(m
s)

cuDNN Fastest Boda No-Winograd cuDNN Winograd Boda Winograd

0

2

4

6

8

B
o

d
a

W
in

o
g

ra
d

/
cu

D
N

N
W

in
o

g
ra

d

Figure 4.12: The runtime comparison of Winograd convolutions generated using our method with cuDNN
on Nvidia GTX 1080 Ti.

by our method for that operation, selected by auto-tuning. The implementations are the same and only
the backend API is different. We also added cuDNN runtimes as the baseline to show the performance of
our method relative to the highly-tuned vendor ConvNet library. The results clearly show that our Vulkan
backend often yields lower runtime in comparison to the other two, and closer to cuDNN’s performance. We
believe that this is owed to kernel batching and the optimizations provided by Vulkan. On average, Vulkan
outperformed CUDA and OpenCL kernels by a factor of 1.54 and 1.86, respectively. Although cuDNN was
able to operate 1.38× faster than Vulkan, we noticed that in some cases, Vulkan can be up to 1.46× faster
than cuDNN.

Note that our results are slower especially in cases with 3×3 kernel sizes, where cuDNN is using Winograd
convolution. In Figure 4.12, we show that equipping our method with theWinograd convolution can decrease
the performance gap and get us closer to the performance of the highly-tuned cuDNN. We also included
Boda+’s runtime in the absence of the Winograd convolution to display its impact on the performance
of an inference engine. We observed that cuDNN’s fused Winograd implementation only supports 3 × 3
convolutions. Our method, on the other hand, is more versatile and can generate efficient fused Winograd
kernels for larger convolutions as well. The striped horizontal line in Figure 4.12 indicates the average
speedup over cuDNN’s Winograd convolutions. The results reveal that not only our method can often yield

64

1.12 × 108 1.57 × 108 2.49 × 108 3.77 × 108 8.67 × 108 1.5 × 109 FLOPS

10 4

10 3

Se
cs

Vulkan OpenCL MIOpen

Figure 4.13: The runtime comparison of kernels generated by our method and the MIOpen vendor library
on AMD Radeon RX 580.

1.00E+08 1.73E+08 2.99E+08 4.43E+08 7.32E+08 1.50E+09 4.48E+09

10−1

100

R
u

n
ti

m
e

(m
s)

MIOpen Fastest Boda No-Winograd MIOpen Winograd Boda Winograd

0.5

1.0

1.5

2.0

B
o

d
a

W
in

o
g

ra
d

/
M

IO
p

en
W

in
o

g
ra

d

Figure 4.14: The runtime comparison of Winograd convolutions with MIOpen library on AMD Radeon RX
580.

runtimes close to cuDNN’s performance, but also can perform better than cuDNN, by up to 8.1× in some
cases. However, cuDNN can achieve better runtimes for larger convolutions. We believe that this can be
mainly attributed to more efficient matrix-multiplication routines.

AMD GPU. Figure 4.13 compares the runtimes of our benchmark using OpenCL and Vulkan on the AMD
GPU. We also show MIOpen runtimes as the baseline to show the performance of our method relative to the
optimized AMD ConvNet library. Again, we notice that Vulkan outperforms OpenCL by a factor of 1.51 on
average. Presumably benefiting from the highly-optimized MIOpenGEMM, MIOpen performs better than
our Vulkan implementation for 25 out of 43 operations. For the 18 remaining operations, however our
Vulkan version runs up to 2.28× faster than MIOpen.

We also evaluated the effect of adding Winograd convolution and compared the runtimes on the AMD
paltform. Figure 4.14 demonstrates the results. The magenta striped line indicates the average speedup.
Although, MIOpen still performs better than our method for larger convolutions, we speculate that this is
presumably due to benefiting from the highly-optimized MIOpenGEMM library. However, in specific cases,
we were able to outperform MIOpen Winograd implementation by up to a factor of 1.9.

65

1.12 × 108 1.57 × 108 2.49 × 108 3.77 × 108 8.67 × 108 1.5 × 109 FLOPS

10 1

100

Se
cs

Vulkan-initial Vulkan-tuned

Figure 4.15: Vulkan performance with and without auto-tuning on Mali G71.

1.00E+08 1.73E+08 2.99E+08 4.43E+08 7.32E+08 1.50E+09 4.48E+09

101

102

R
u

n
ti

m
e

(m
s)

ARM ComputeLibrary-Winograd Boda No-Autotuning Boda Autotuning

1.0

1.5

2.0

S
p

ee
d

u
p

A
u

to
tu

n
ig

/
N

o
-A

u
to

tu
n

in
g

Figure 4.16: Winograd convolution performance with and without auto-tuning on Mali G71.

Hikey Mali-G71 GPU. Until now, Figures 4.11 to 4.14 illustrated that we were able to achieve competitive
performance compared to the vendor libraries on two different platforms. This observation confirms that our
method achieves good performance portability. To further validate the impact of auto-tuning on performance
portability, we executed the code generated by our method with and without auto-tuning on our Mali
G71 mobile GPU. This platform is entirely different from the previous two GPUs and usually requires an
enormous amount of effort to achieve reasonable performance.

The final results after selecting the right variant and tuning parameters are shown in Figure 4.15. Note
that runtimes are reported using CPU timers, because Vulkan GPU timestamps are not supported on Mali
G71. Auto-tuning requires much less effort than manual tuning and improves performance significantly—on
average by a factor of 3.11.

We also evaluated howWinograd convolution performs on our mobile GPU platform. Figure 4.16 illustrates
the results of using the auto-tuner to select the right Winograd implementation and tuning parameters. We
always used a non-fused implementation with m = 2, when auto-tuning is disabled. When auto-tuning is
enabled, we can achieve a considerable speedup—on average, by a factor of 1.74. The red line shows the
achieved speedup using auto-tuning for each convolution operation.

To compare the performance of our method with a well-known deep-learning library, we also added
the Winograd convolution runtimes of the ARM compute library. The results in Figure 4.16 verify the
importance of auto-tuning to achieve competitive results compared with other frameworks. Auto-tuning

66

enabled us to find more efficient implementations and even surpass the performance of the ARM compute
library for several convolution operations. We also noticed that the ARM compute library uses half-precision
floating-point operations in matrix multiplications, which explains the reason for higher performance in
other convolutions.

4.6 Related work

With the increasing popularity of GPUs, several authors compared CUDA and OpenCL programming
models [132, 119, 133, 116, 134, 120, 135, 127], but none of them studied Vulkan. Karimi et al. [132] and
Fang et al. [119] compared CUDA with OpenCL, focusing on their performance on conventional desktop
GPUs. Du et al. [116] were among the first who studied OpenCL performance portability and showed
that performance is not necessarily portable across different architectures. In contrast to these studies, we
carried out our experiments on recent architectures and included mobile GPUs to augment the performance
portability analysis. Kim et al. [120] proposed a one-to-one translation mechanism for converting CUDA
to OpenCL kernels, but they do not employ any metaprogramming and code generation to achieve higher
efficiency as we do. To the best of our knowledge, VComputeBench [122] is the only work which investigates
Vulkan from the compute perspective and proposes it as a viable cross-platform GPGPU programming model.
However, the authors concentrated more on creating a benchmark suite and did not provide a method for
code translation and enhancing performance portability.

Several studies have been conducted to reduce the arithmetic complexity of convolution operations [136].
Cong et al. [137] reduced the convolution runtime by up to 47% using the Strassen algorithm. Vasilache
et al. [138] further reduced the computational complexity of convolutions using an FFT-based method.
However, such a method is only practical in cases where the compute-to-memory ratio is high, and the cache
size is limited. Thus, FFT convolutions are mostly used for convolutions with large image/filter sizes, and
when the number of input/output channels is relatively small [139].

Soon after the seminal paper on Winograd convolution [102] appeared, the algorithm was integrated
in popular deep-learning libraries such as Nvidia cuDNN, AMD MIOpen, and Intel MKL. Subsequently,
several researchers attempted to make Winograd convolutions more accurate for larger kernel and input
sizes [125, 103]. Our experiments show that the polynomial points selected by our method can produce
slightly more accurate results. Further studies on the Winograd algorithm are mostly aimed at improving its
performance on various hardware platforms, such as GPUs, CPUs, edge devices, and artificial-intelligence
accelerators [140, 104, 141], reducing its computational complexity by leveraging sparse computations and
parameter pruning [142, 143, 144].

To the best of our knowledge, existing methods for implementing efficient Winograd convolutions are
geared toward a limited set of configurations (e.g., F (2, 3) and F (4, 3)) and computing devices. Each
study recommends a new set of optimizations, which are often bound to a specific hardware platform.
For example, Xygkis et al. [141] attempted to optimize the Winograd convolution on an Intel Movidius
Myriad2 device. Such edge devices have limited power and memory capacity, and due to the high memory
consumption of Winograd kernels, efficient memory management is essential. Therefore, the authors
introduced optimization methods like data transfer management and data-representation optimization,
which seems to be highly rewarding on Intel Myriad 2. However, they only evaluated their method for a
single Winograd convolution.

In contrast to GPU devices, CPUs have access to a larger amount of memory. Such a feature enables
inference frameworks to execute Winograd convolutions with higher dimensions and larger filters and output
tile sizes. Three methods have been introduced to implement efficient Winograd kernels on CPUs [140, 104,
105]. Each of them suggests a different mixture of optimizations based on the target CPU. For instance, Jia
et al. [104] demonstrated that their Winograd implementation can support n-dimensional convolutions.

67

They employed various optimization techniques, including data layout optimization, an efficient SGEMM
implementation, and transformation codelets for the efficient execution of Winograd operation on CPUs.
Despite their successful attempt in accelerating Winograd, their method has been tested only on CPUs.
Moreover, Jia et al. [104] claim that when the Winograd’s internal tile size (i.e., α) is even, only input and
filter transformations have a specific pattern that allows for further reduction in computational complexity.
In contrast, we demonstrated that all three Winograd transformation matrices often contain a regular
pattern, even when α is odd. Furthermore, none of the above-mentioned studies proposed a solution for
making Winograd convolutions performance portable. Such a feature is crucial for inference frameworks,
which aim to operate on various platforms.

The amount of work published on the portable execution of ConvNets as well as the use of Vulkan in
this context is very limited. To address the performance portability issue, inference engines and tensor
compilers such as TVM [92], PlaidML [145], TensorFlow’s XLA [93], Tensor Comprehensions [146],
Glow [94], DeepMon [147], and Boda [95, 115] provide a platform to facilitate code generation and
performance optimization. Important steps in that regard were the use of compiler techniques [145,
146] as well as device-specialized kernels written in shader assembly instead of high-level programming
languages [123] or platform-independent intermediate representations. However, implementations that
work on multiple platforms are often optimized for certain architectures or vendors. This reduces the
portability and performance predictability of ConvNet execution on server-/desktop-grade GPUs and mobile
GPUs alike. Furthermore, none of the works mentioned above are able to generate code for our target APIs
using a single-source approach for the kernel definition. PlaidML and Tensor Comprehension do not support
Vulkan at all. TVM and DeepMon are able to generate Vulkan code, but they require different input code
for each programming model, demanding extra programming effort to introduce new tensor operations.
Boda, on the other hand, has a compatibility layer on top of OpenCL and CUDA. Its approach is based on
writing lowest-common-denominator code that is compatible between the two and uses macro definitions
to abstract away syntactic differences. However, because of its larger code divergence, such an approach is
definitely not extendable to include Vulkan as well.

Among the frameworks mentioned above, TVM framework [92] is the most comprehensive solution
to run deep neural networks on a wide variety of hardware backends. TVM adopts the decoupled com-
pute/schedule paradigm introduced in the Halide framework [148] and provides a domain-specific language
for defining tensor operations and their optimization routines. Winograd convolution is also available in
the TVM codebase. However, it is a non-fused implementation and uses predefined and hard-coded trans-
formation matrices. We believe that integrating our symbolic analysis approach into the TVM’s Winograd
implementation can improve its versatility and runtime performance to a great extent.

4.7 Discussion

We attempted to show the positive impact of Boda+ on programming productivity and performance
portability using the experimental results and analytical studies presented in Section 4.5. Here, we would
like to discuss further qualitative insights and describe where we stand in comparison with other existing
classes of methods. For a fair comparison, we chose Boda [95] as the baseline, TVM [92] as an end-
to-end machine-learning compiler, and vendor libraries, such as cuDNN, as they are widely used by AI
programmers. We qualitatively assessed these tools with respect to various aspects, such as productivity,
efficiency, performance portability, extensibility, and ease of use. The results are given as a radar chart in
Figure 4.17. From our point of view, TVM does a good job in striking a balance between the qualitative
metrics. Most of its success is owed to its big established userbase, advanced architecture, and comprehensive
documentation. However, our framework is more versatile, giving the user the highest degree of freedom to
implement custom optimizations.

68

0

1

2

3

4

5
Productivity

Efficiency

Performance
portabilityExtensibility

Ease of use
Boda
TVM
Vendor libraries
Boda+

Figure 4.17: The qualitative analysis of various tensor-based libraries.

Figure 4.17 depicts two distinct spectrums, where one spectrum is the vendor libraries, and the other is
Boda+. Vendor libraries are mostly suited for achieving a highly efficient implementation with minimal
programming effort, where only accuracy and proof-of-concept is important. On the other hand, our
framework provides performance portability and a high degree of extensibility with the cost of negligible
performance loss and increased programming difficulty due to the need to support various GPU APIs. Overall,
we believe that such a sacrifice is inevitable to gain the additional performance benefits. Lastly, we argue
that Boda+ provides a higher degree of productivity to the users due to our MetaGPU API. Moreover, the
addition of Winograd convolution made Boda+ a more efficient library than Boda.

All in all, we noticed a trade-off between the studied design aspects. In the following, we provide more
detailed discussions on this trade-off and the extensibility of our framework.

4.7.1 Design trade-offs

Well-known vendor and proprietary libraries, such as cuDNN, MIOpen, and ARM Compute library, offer
striking performance with minimal programming effort from the end user on their own hardware platform.
Although the details of their development history are lacking, given the long development history and
continuous performance improvement, we can merely assume that extensive working hours were spent
on achieving the current level of performance. A programmer might readily decide to opt for one of these
vendor libraries. Nonetheless, expanding the use case of the target application to various platforms using
an alternative framework is often widely desired. When it comes to a custom-designed framework for
performance portable deployment, the five-fold trade-off between efficiency, portability, productivity, ease of
use, and extensibility emerges. Our investigations show that TVM is considerably successful in addressing
all the criteria. However, when it comes to extra extensibility and portability, we might need to sacrifice one
aspect for another. With Boda+, we acknowledged these issues and aimed to strike a balance between the
design trade-offs, but with more attention to performance portability.

We are well aware that measuring development productivity is a challenging task, as it depends on various

69

factors and mindsets [149]. In Section 4.5.1, we contemplated the possibility of improving this situation
and reducing the development time from years to months. When analyzing the development of Boda+, we
must decouple the effort spent on the framework itself from the actual time spent on implementing ConvNet
operations. Given the current implementation of Boda+, these two activities are, by design, closely coupled
in the source code, and it might not be accurately possible or meaningful to make a precise judgment.
Nevertheless, we compared the effort involved in using our method with the effort in programming in each
of the target APIs. Thus, we still believe that the programming effort estimations provided in Section 4.5.1
give at least a ballpark figure on the effectiveness of our method.

Benefiting from the novel MetaGPU abstract programming interface, metaprogramming, and auto-tuning
enabled us to provide a high degree of performance portability in addition to the programmability, as we
showed earlier in Section 4.5. We showed that the specialized kernels generated by Boda+ could compete
with vendor libraries with reasonable programming effort when various GPU platforms are involved. It is
worth mentioning that such an effort is only necessary if new tensor operations are necessary, such as the
Winograd operation that we added to Boda+. Thus, efficiency is also maintained together with portability
and productivity.

4.7.2 Generalization and extensibility

Although Boda+ is merely designed to accelerate ConvNets, we believe that it is generic enough and can be
extended to support other application domains with reasonably low effort. Thus, here we list the classes of
important features and development activities involved in Boda+, ordered from general framework support
to operation-/target-specific optimizations.

Tensors processing. Tensors are first-class citizens in Boda+. Although the support for tensors and
compute graph handling is more targeted towards ConvNets, they are generic enough to be used for
the implementation of a wider range of operations over tensors. Thus, with minimal effort, this part
of the framework can be used for other application domains as well.

Performance auto-tuning. Auto-tuning is one of the main pillars of our framework, enabling the perfor-
mance portability. Boda+’s support for auto-tuning is also general, and the required development
effort can be readily amortized across all hardware targets and operations. Furthermore, with the ad-
dition of more advanced auto-tuning algorithms, more complex tuning search spaces can be analyzed
with less overhead.

Diverse API support. Boda+’s backends for CUDA, OpenCL, and Vulkan are generally useful for running
any compute graph over tensors on the respective programming APIs. Furthermore, the MetaGPU
abstraction layer immensely simplifies the transition between the target APIs. This part of the
framework is also generic and the effort can be amortized across all APIs and operations.

Specialization and metaprogramming. We extensively used metaprogramming and code generation for
specializing ConvNet operations on the target GPUs. In general, adding new operations or new variants
of existing operations requires some effort. However, the framework is well structured to reduce the
development time, and the effort can still be partially amortized across different operations.

New operations. Adding a new operation in our framework might require some effort at the framework
level as well. Such an effort involves registering the operation in the framework, specifying the required
optimizations, optional heuristics on when to use this operation, and fallback implementations. In the
case of having a similar operation interface, this effort can be amortized across all variants.

70

Operation-specific optimizations. To achieve utmost performance, each operation may require some
amount of tuning and optimization. We demonstrated one example of this for optimizing Wino-
grad convolutions. Boda+ fully supports calling external libraries and scripts before generating the
final code. Principally, such optimizations can be written as generic as possible to be shared among
different operations, but we assume that this level contains the least amount of effort amortization.

4.8 Conclusion

In this chapter, we explored the possibility of providing performance portability with a high degree of
freedom in choosing the GPU programming interface. We presented a comparative analysis of the GPU
programming interfaces CUDA, OpenCL, and Vulkan. We let this comparison guide us in developing a
method for generating tensor GPU kernels coded in any of those APIs from a single source that abstracts
away the syntactic differences between these APIs. We implemented our approach in a state-of-the-art CNN
inference framework and analyzed the programmability and performance portability of the generated kernels.
Based on our experiments, our method reduces the programming effort by 98% when code portability
between different APIs is demanded. Furthermore, we showed that Vulkan offers better performance
compared with other APIs on our convolution benchmarks and sometimes performs better than CNN vendor
libraries.

We further experimented with a hard-to-implement convolution algorithm, namely Winograd convolution.
Such an algorithm is a promising method for reducing the computational complexity of convolution
operations. However, if not appropriately implemented, the performance may be lower than expected.
The overhead of the Winograd transformation steps can make it even inferior to direct convolution. In
this chapter, we showed the flexibility of our framework to be extended with a method based on symbolic
computation to create minimal yet efficient recipes that replace the straightforward matrix multiplication
method within Winograd transformations. Our empirical evaluation illuminated that choosing the right
output tile size m, depending on the filter size, can significantly reduce the number of arithmetic operations
while offering acceptable accuracy. To the best of our knowledge, this critical observation went unnoticed
so far. Furthermore, we were able to generate performance-portable Winograd convolutions with the help
of template meta-programming. Our runtime analysis shows that we can not only use the same Winograd
meta-code to run on a multitude of GPU platforms, including a mobile GPU, but also compete with vendor
ConvNet libraries, such as cuDNN, MIOpen, and the ARM compute library.

Finally, we believe that the proposed method can be extended to support other platforms, such as CPUs,
deep-learning accelerators, and dedicated inference engines (e.g., TVM [92]). To achieve higher speedups
and better compatibility on new hardware, we plan to implement tunable BLAS routines tailored toWinograd
multiplication steps.

71

Table 4.7: List of sample convolutions for testing
normal convolution kernels.

KSZ S OC B input FLOPs
5 1 32 5 28×28×16 1e+08
5 1 64 5 14×14×32 1e+08
1 1 256 5 7×7×832 1.04e+08
1 1 112 5 14×14×512 1.12e+08
1 1 128 5 14×14×512 1.28e+08
1 1 64 5 28×28×256 1.28e+08
1 1 64 5 56×56×64 1.28e+08
1 1 128 5 14×14×528 1.32e+08
1 1 144 5 14×14×512 1.44e+08
1 1 96 5 28×28×192 1.44e+08
1 1 384 5 7×7×832 1.56e+08
1 1 160 5 14×14×512 1.60e+08
1 1 160 5 14×14×528 1.65e+08
1 1 4096 5 1×1×4096 1.67e+08
1 1 192 5 14×14×480 1.80e+08
5 1 128 5 14×14×32 2e+08
3 1 320 5 7×7×160 2.25e+08
1 1 384 5 13×13×384 2.49e+08
1 1 128 5 28×28×256 2.56e+08
1 1 256 5 14×14×528 2.64e+08
1 1 96 5 54×54×96 2.68e+08
3 1 384 5 7×7×192 3.25e+08
3 1 208 5 14×14×96 3.52e+08
1 1 1000 5 6×6×1024 3.68e+08
1 1 1024 5 6×6×1024 3.77e+08
6 1 4096 5 6×6×256 3.77e+08
3 1 224 5 14×14×112 4.42e+08
1 1 256 5 27×27×256 4.77e+08
3 1 256 5 14×14×128 5.78e+08
5 1 96 5 28×28×32 6.02e+08
3 1 288 5 14×14×144 7.31e+08
3 1 128 5 28×28×96 8.67e+08
3 1 320 5 14×14×160 9.03e+08
11 4 96 5 224×224×3 1.01e+09
11 4 96 5 227×227×3 1.05e+09
7 2 64 5 224×224×3 1.18e+09
3 1 1024 5 6×6×384 1.27e+09
3 1 256 5 13×13×384 1.49e+09
3 1 384 5 13×13×256 1.49e+09
3 1 192 5 28×28×128 1.73e+09
3 1 384 5 13×13×384 2.24e+09
3 1 192 5 56×56×64 3.46e+09
5 1 256 5 27×27×96 4.47e+09

Table 4.8: List of sample convolutions for testing
Winograd kernels.

KSZ S OC B input FLOPs
5 1 32 5 28×28×16 1e+08
5 1 64 5 14×14×32 1e+08
3 1 256 1 14×14×128 1.16e+08
5 1 96 1 28×28×32 1.2e+08
3 1 288 1 14×14×144 1.46e+08
3 1 128 1 28×28×96 1.73e+08
3 1 320 1 14×14×160 1.81e+08
5 1 128 5 14×14×32 2.01e+08
3 1 320 5 7×7×160 2.26e+08
3 1 1024 1 6×6×384 2.55e+08
3 1 256 1 13×13×384 2.99e+08
3 1 384 1 13×13×256 2.99e+08
3 1 384 5 7×7×192 3.25e+08
3 1 192 1 28×28×128 3.47e+08
3 1 208 5 14×14×96 3.52e+08
3 1 224 5 14×14×112 4.43e+08
3 1 384 1 13×13×384 4.49e+08
3 1 256 5 14×14×128 5.78e+08
5 1 96 5 28×28×32 6.02e+08
3 1 192 1 56×56×64 6.94e+08
3 1 288 5 14×14×144 7.32e+08
3 1 128 5 28×28×96 8.67e+08
5 1 256 1 27×27×96 8.96e+08
3 1 320 5 14×14×160 9.03e+08
3 1 1024 5 6×6×384 1.27e+09
3 1 384 5 13×13×256 1.5e+09
3 1 256 5 13×13×384 1.5e+09
3 1 192 5 28×28×128 1.73e+09
3 1 384 5 13×13×384 2.24e+09
3 1 192 5 56×56×64 3.47e+09
5 1 256 5 27×27×96 4.48e+09

Note: KSZ , S, OC andB are the kernel size, stride,
number of output channels, and batch size of each
convolution operation. input is sizes of input tensor,
specified as y×x×chan. FLOPs is the per-operation
FLOP count.

72

5 Performance scalability: An adaptive and scalable
neural architecture search platform

Nowadays, the prevalence of employing AI models on edge devices with limited resources is of no surprise.
MobileNet [150, 151], ShuffleNet [152, 153], DiCENet [154], and CondenseNet [155] are among the
notable mobile-friendly ConvNet models that were designed with custom convolutional blocks to improve
the overall efficiency. However, such models do not promise to yield the utmost efficiency on every hardware
platform or AI task. A typical solution is to design a customized network according to the limitations and
specifications of the target hardware or a given AI task. Nevertheless, the design and training of such models
are not straightforward, as it is often necessary to perform a multitude of different training experiments to
find the most suitable AI model. Such a variety of experiments could result from manual hyperparameter
tuning, automatic neural architecture search (NAS), or iterative model compression/pruning. Therefore,
we argue that an efficient and scalable training platform is inevitable for obtaining the desired model in a
reasonable amount of time.

Given that state-of-the-art deep-learning (DL) models are considerably deep and require an extensive
amount of time to be fully trained, designing a robust DL model is an arduous and time-consuming task. As
a result, DL training has become one of the most common workloads in HPC and cloud data centers. As a
prominent data-intensive and long-running workload, the training phase is primarily executed on distributed
systems with access to a multitude of high-end accelerator cards (e.g., GPUs and TPUs). Given the large pool
of computing nodes available in a distributed infrastructure, scalability plays an essential role in benefiting
from such resources. Moreover, the efficient mapping of DL training processes to the processing nodes is a
challenging task. Particularly, distributed DL training is often realized via parameter-server or all-reduce
architectures. In parameter-server architecture, a set of nodes are dealing with collecting and distributing
DL gradients among the workers. Thus, in case of a large model, communication bottleneck issues might
arise. However, all-reduce architecture does not require any specific node for collecting gradients and all
the compute nodes participate in performing reduction over the gradients computed on their neighboring
nodes.

Shared HPC clusters are often equipped with a scheduler (e.g., SLURM) that mediates and maps the
submitted jobs to the available resources. A common disadvantage is that such schedulers often require the
user to define the required resources manually. As a result, the scheduler procures the resources only if
they are available. Naturally, improper resource allocation leads to inefficient training performance and
also underutilization of the cluster. Furthermore, DL jobs are often checkpointed periodically, providing
the opportunity to be adjusted given their progress and performance. For instance, we can scale up or
down the resources allocated to a DL job during execution to increase the utilization and make resources
accessible again for other concurrent jobs. Nonetheless, existing DL-agnostic schedulers do not consider
these properties. Alternatively, a DL-aware job scheduler can significantly enhance the scheduling process
and make a more efficient and scalable training platform.

This chapter proposes a specialized training platform dedicated to DL model training and compression.
Existing similar platforms such as Microsoft NNI [156], Gandiva [157], Pollux [158], Optimus [159], and
DL2 [160] primarily focus on ordinary DL training and neglect their unique characteristic. Since the models
with fewer parameters are more scalable in data-parallel training [161], we believe that scalable DL training

73

is achieved via a combination of network pruning and DL-aware job scheduling. Our proposed platform
streamlines the resource provisioning on HPC/cloud clusters via micro-services, accelerates DL-training/NAS
jobs, optimally scales up/down the training phase, and adapts the trained model to save memory and
computation.

5.1 Motivation and background

This section aims to describe the motivations and necessities behind our approach for scaling the performance
of deep-learning applications. We argue that such applications have specific characteristics that DL-specific
schedulers can exploit to expedite their training time and also increase resource utilization. Furthermore,
scalability is not only provided by external scheduling platforms, but also from adjusting the deep-learning
model itself. In the following, we explain the challenges and ideas that motivated the design of our solution.

5.1.1 Quantitative analysis of distributed DL training

The quality of a training algorithm can be analyzed quantitatively via training throughput and statistical
efficiency. In the following, we briefly describe these efficiency metrics.

Training throughput. The throughput of deep-learning training is defined as the number of training samples
processed per a unit of time. Each training iteration is composed of the time spent on computing
gradients Tgrad and the synchronization time Tsync. The latter is governed by the size of gradients and
network performance, which itself depends on the distance of nodes from each other. For instance,
the GPUs that are co-located on the same node will benefit from lower synchronization time.
Given a distributed data-parallel training job, the throughput depends on various critical factors [158],
such as resource allocation and node interconnections, gradient synchronization method (e.g., syn-
chronous or asynchronous), and the selected batch size. The first two factors are almost fixed and
unmodifiable. However, the batch size is easily adjustable. Typically, a larger batch size causes a
higher throughput and is beneficial to offset the Tsync time.

Statistical efficiency. The efficiency of a training job can be described as the amount of learning progress
made per a unit of training data. This metric has a tight correlation with batch size and learning rate
parameters, where a larger batch size typically decreases the statistical efficiency [158], as it adversely
affects the training stability and generalization performance. Estimating this metric is often based
on the gradient noise scale (GNS), which analyzes the noise-to-signal ratio of the stochastic gradient.
Simply put, a larger GNS translates to the possibility of increasing batch size and learning rate to
higher values without noticing a significant loss in statistical efficiency. However, this metric is not
constant throughout the training phase and tends to increase by up to 10× near convergence [162].
Therefore, increasing the batch size in the later stages of the training can enhance the statistical
efficiency and expedite the training process by achieving higher throughput.

5.1.2 The necessity of DL-aware scheduling

Shared computing clusters often provide resources through a job scheduler that manages the available
compute nodes and resources. The main goal of a scheduler is to provide users with fair access given the
user’s requirements. For this purpose, a wide variety of general-purpose schedulers have been developed.
SLURM [163], Mesos [164], YARN [165], and Borg [166] are among the well-known generic schedulers. A
typical workflow for submitting a training job to such schedulers is to define a job script containing the path

74

to the training code and additional scheduler-specific parameters, such as the number of required resources
(CPU cores, memory, and GPUs) and time duration. After submitting the job, the scheduler attempts to
allocate the required resources based on its scheduling algorithm and runs the user’s code. The number of
allocated resources remains constant throughout the execution, and the job might even terminate if the
duration exceeds beyond the defined runtime, requiring the user to resubmit the job.

We argue that using workload-agnostic schedulers is detrimental to the process of training deep-learning
models, as it suffers from the following limitations and challenges.

Selecting the right number of worker nodes. Traditional DL-agnostic schedulers demand the user to
define the number of nodes involved in the training. All-reduce distributed architectures only need the
number of workers, whereas, within a parameter-server architecture, the number of workers and parameter
servers (PS) have to be carefully selected. In this regard, former studies observed that a disproportionate
quantity of PS and workers leads to communication bottlenecks. Therefore, a proper resource allocation
scheme is one of the main challenges in scaling the training performance of a given deep-learning model.
Without any adjustment in the training hyper-parameters, increasing the number of resources will lead to a
decreasing speedup [160], preventing a linear speedup. The underlying reason is the increasing amount
of incurred communications. Therefore, the best course of action is to let the scheduler select the right
number of resources for a given job. The scheduler can observe the training progress and scale the job
to the maximum number of possible worker nodes, provided that no other job is competing for resources.
DL-agnostic schedulers fail to assist the user in selecting the right number of computing resources and follow
a fixed scheduling strategy.

Static resource allocation. Existing DL-agnostic schedulers follow a fixed scheduling strategy, in which,
once all the resources are assigned, other jobs should wait in the queue. Furthermore, if a training job
finishes and no other job is waiting in the queue, other running jobs cannot benefit from the recently freed
resources, making the cluster underutilized. Above all, the convergence and progress speed of DL training
jobs varies over time and different deep models [167], as they make moderately large improvements at the
beginning and begin to slow down at the end of the training, demanding additional computing power to
expedite the convergence speed. Hence, depending on the progress speed of the jobs, it is necessary to scale
up/down their resources to adapt the computational requirements of all jobs in the cluster.

All the situations mentioned earlier necessitate a dynamic resource allocation system to maximize resource
utilization and expedite the running jobs. Currently, deep-learning training algorithms are checkpointable
and highly scalable. Thus, it is relatively straightforward to save a checkpoint, seize the training, adjust
resource allocations, and resume the job with new computing resources. Despite the incurring scaling
overhead, the benefits outweigh the cost, as we can achieve higher resources utilization, faster DL training,
and more fair job scheduling. Making the scheduler fully in charge of setting and adjusting the number of
worker nodes will not only cut back on the operating costs, but also accelerate the design and validation
of AI applications. DL2 [160] and Optimus [159] mostly inspired our solution on designing cluster-level
scheduling by following their methodology on allocating compute nodes.

Tuning training hyper-parameters. Although a DL-aware and dynamic resource allocation can significantly
enhance training jobs, neglecting the inter-dependent training hyper-parameters can prevent us from
achieving maximum efficiency [158]. Particularly, batch size and learning rate of a training job largely
depend on the model and the allocated resources, as they influence the training progress and computation
volume.

75

Conventionally, the user is responsible for fine-tuning such training hyper-parameters and the number of
resources. Typically, such a task is done by trial and error or based on former experience. However, former
studies [158] have shown that the optimal value for such parameters is not constant throughout the training
and might need to be adjusted. Hence, a fully DL-aware scheduler should consider both the optimal resource
allocation and hyper-parameter tuning. Notable works in this area are Pollux [158] and Kungfu [168].
Particularly, we used the goodput metric introduced in Pollux to find the best hyper-parameters.

5.1.3 Dealing with large deep-learning models

Given the ever-increasing complexity of AI tasks, deep-learning models tend to have a deeper and wider
structure to provide more accurate results. For instance, the ResNet family has a wide range of architectures,
from 18 to 110 layers. Opting for deeper models dramatically increases the number of parameters, incurring
a higher volume of computation and memory. Evidently, low-budget edge devices are not able to run such
deep models. Furthermore, former studies [161] have shown that smaller models with fewer parameters
scale better in data-parallel training jobs. A typical solution is to shrink and adjust large models to fit the
capabilities of the target hardware and also expedite the training time. A well-known method is network
pruning that removes unnecessary feature-map channels to reduce the computational complexity of a model.
Since network pruning often requires a multitude of additional training processes to fine-tune the model
and increase the accuracy, this process can also benefit from a DL-aware training platform.

5.1.4 A holistic approach for network design and training

As we have learned so far, the scalability of deep-learning models is not only tied to the proper scheduling of
the training phase. Additional steps such as network pruning are required to accelerate the training phase
and make the model smaller to fit the limitations of the target hardware. Thus, we argue that a holistic and
comprehensive solution is necessary to achieve such a goal. As depicted in Figure 5.1, a potential solution is
a synergy of network pruning together with a DL-aware scheduler that can efficiently train a model suitable
for execution on a device with constrained FLOPs. Ideally the platform is built on top of well-developed
distributed systems for training, such as Horovod [169]. Furthermore, using containers (e.g., Docker or
Podman) and Kubernetes streamlines the process of scaling up and down the resources in a fraction of
seconds.

Moreover, we believe that neural architecture search can greatly benefit from a robust and efficient
training platform, as NAS jobs are extremely time-/resource-consuming. NAS jobs are slightly different
from normal DL training jobs, demanding special mechanisms to achieve scalable training experience. For
instance, one-shot NAS methods often have two different gradient optimizers—one for the actual weights
and another for architecture weights. To the best of our knowledge, existing DL-aware schedulers, such as
Pollux, do not support NAS methods. In this work, we aim to address this shortcoming and provide scalable
training for NAS jobs.

5.2 Scalability via DL-aware scheduling

We introduce an elastic multi-tenant DL-aware scheduling platform based on the all-reduce architecture
to deal with the increasing cost and complexity of DL training and neural architecture design. The multi-
tenancy feature of our scheduler enables the efficient training of several deep-learning jobs concurrently.
Furthermore, our proposed scheduler is equipped with a progress monitoring component for retrieving
status updates, a cluster of docker containers managed by Kubernetes responsible for performing the actual
training work, and a command-line client through which a user can interact with the system.

76

Deep-learning aware training platform

DL

<pytorch>

NAS

<pytorch>

DL-/NAS-aware scheduler

Topology-aware network pruning

Kubernetes cluster

HPC clusterDL/NAS script

Horovod distributed training framework
Deep-learning

model

Figure 5.1: Adaptive DL-aware deep-learning training platform.

Pod

DL-aware scheduler

DL
<pytorch>

NAS
<pytorch>

DL/NAS script

Pod
Tuning agent

DL training

Profiler

Job progress
monitoring

Scheduler /
resource allocator

- Type (Norm, NAS)
- Timestamp
- Epochs
- Batch_size
- Scalable_batch
- Workers
- Throughput
- Efficiency
…

DL Job

Figure 5.2: An overview of our deep-learning training scheduler.

Our scheduler operates in two separate but interdependent levels to provide scalable and elastic job
scheduling, namely cluster-level and job-level scheduling. The former deals with efficient resource allocation
given the available nodes on the cluster, while the latter attempts to adjust the training hyper-parameters of
the individual training jobs to enhance their throughput and efficiency. Figure 5.2 illustrates a high-level
overview of our scheduler’s architecture. The workflow starts with the user submitting a DL or NAS job to
the scheduler. The scheduler extracts various principal information, such as job type, epochs, and batch
size. Using the extracted information, the cluster-level scheduler allocates resources based on the job’s
specification. Then, during the training time, both the job and cluster-level schedulers constantly monitor
the progress and adjust the job’s parameters along with the allocated resources. In the following, we will
explain the cluster-level and job-level scheduling.

5.2.1 Job-level scheduling

As depicted in Figure 5.2, a profiler is running along with the training script inside the docker container
on the worker node. It periodically checks the training job’s status and measures the gradient noise scale
and throughput. Inspired by Pollux [158], we compute a metric called goodput at each iteration, which is
the product of training throughput and statistical efficiency, designed to strike a balance between the two

77

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
0

0.2

0.4

0.6

0.8

1

Batch size

Effi
ci
en

cy

80

100

120

140

160

180

Th
ro
ug

hp
ut

Efficiency
Throughput

Figure 5.3: The tradeoff between statistical efficiency and throughput given different batch sizes.

metrics. Figure 5.3 illustrates the statistical efficiency and throughput given different batch sizes. As it is
shown, increasing the batch size improves the throughput but with the cost of decreasing the efficiency. The
product of these two metrics in the goodput calculation guarantees to find the optimal batch size.

Statistical efficiency Et ∈ (0, 1] is modeled using pre-conditioned gradient noise scale ϕt and is expressed
as:

Et(M) =
ϕt +M0

ϕt +M
, (5.1)

ϕt =
tr(PΣP T)

|Pg|2
, (5.2)

where M0 and M are the initial and new batch sizes, respectively. g is the gradient, P is the preconditioning
matrix of the SGD algorithm, and Σ is the covariance matrix of per-example stochastic gradients. Intuitively,
the statistical efficiency measures the contribution of each training sample to the overall training progress.
As NAS jobs have two different gradient optimizers, one for network and another for architecture weights,
we compute the statistical efficiency for both of them and compute the average.

The training throughput is computed as T = m/Titer, where Titer is the time spent per iteration. It is
evident that larger batch size increases the throughput, but it affects the overall accuracy. Thus, the learning
rate has to be adjusted. We use AdaScale [170] to adjust the learning rate, but any other scaling rule can
also be used. Iteration time also plays a vital role in the overall throughput. It involves the time required for
computing the gradients plus the synchronization time. Thus, keeping the training processes close together
on nearby nodes is essential to avoid expensive communication costs.

5.2.2 Cluster-level scheduling

For proper resource allocation and scheduling, we opted for a reinforcement-learning method, as it can
adapt to the dynamic behavior of DL training jobs following a black-box end-to-end model. Additionally,
former studies demonstrated the effectiveness of such a setup in comparison with expert heuristics and
explicit modeling [160]. Thus, similar to DL2 [160], we designed our reinforcement-learning method to
take system state as the input and produce resource allocation policy for each job.

78

Environment states. We defined a matrix s = (x, d, e, w, t, s) as the input state for the RL agent, where:

• x is a matrix, where each row is a one-hot vector for describing the type of the job. We categorize
the jobs based on the model that they train, as similar jobs might benefit from the same scheduling
strategy.

• d is a vector that contains the number of time slots spent for running each job.

• e is a vector that represents the number of remaining epochs for each running job.

• w is a vector that stores the number of workers allocated to each job.

• t and s are also vectors representing the throughput and statistical efficiency values for each job,
respectively.

Action space. Unlike DL2 that operates in a parameter-server architecture, our scheduler works in an
all-reduce architecture. Thus, we only need to predict the right number of workers. To achieve this, we
configured the actions made by the RL agent to produce discrete values for the number of workers that
should be assigned to each job.

Reward function. The overall goal of scheduling is to reduce the total completion time. However, since an
RL agent cannot wait until the job completion time is computed, we used the goodput predictive metric as
the reward function. The rationale behind selecting such a metric is that an allocation policy that increases
the throughput and efficiency of a job can potentially decrease the overall job completion time, as higher
throughput correlates with processing more training samples.

5.3 Scalability via network pruning

As mentioned earlier, training small models with fewer parameters scales better. Thus, we equipped our
training platform with a model compression technique that prunes redundant channels. The core of the
model compression technique is to identify the appropriate compression policy for each layer as each layer
has a different redundancy level. Conventionally, network pruning was done using handcrafted policies,
often failing to deliver an optimal compression ratio with minimal accuracy loss. Our proposed method is,
however, a topology-aware network pruning called AGMC (auto graph encoder-decoder model compression)
that finds optimal pruning policies automatically.

To prune a given DNN, we first modeled the DNN as a computational graph and introduced a GCN-based
graph encoder to learn the DNN’s representation g. Then, the decoder decodes g into layer embeddings
si ∈ S, i = 1, 2, .., T , where T is the number of hidden layers. Since we aim to compress the DNN by
predicting the pruning ratio for each hidden layer, the RL agent takes the layer state S as the environment
state to search for the hidden layer’s pruning policy ai ∈ A, i = 1, 2, .., T . The pruned DNN’s performance
is then used as a reward for the current actions A taken by the RL agent. Figure 5.4 depicts an overview
of our method. In the following, we will explain the details of the simplified computational graph, graph
encoder-decoder, and RL agent within our approach.

5.3.1 Computational graph coarsening

Computational graphs with their rich topological information are the conventional representation for defining
deep neural networks. Typically, they are composed of thousands if not billions of primitive operations

79

Original DNN

G
C

N
-b

as
ed

gr
ap

h
en

co
de

r LSTM1

LSTM2

LSTMt

LSTM-based
state decoder

RL
 a

ge
nt

%

%

%

%

...

a1

a2

a3

at

Pruned DNN

Reward

Figure 5.4: The workflow of auto graph encoder-decoder model compression (AGMC).

ReadVar

Resource

Identity_1
Identity_2

ReadVariableOp

Conv2D

BiasAdd

Relu

Identity_1
Identity_2

conv1x1 , C=4

ReadVar

Resource

Identity_1
Identity_2

ReadVariableOp

Conv2D

BiasAdd

Relu

Identity_1
Identity_2

conv3x3, C=3

Add

conv1x1 conv3x3 ReLU

Transform

Figure 5.5: A sample computational graph coarsening applied on a ResNet block.

(e.g., add, minus, and multiply) [85], where edges are operations and nodes are intermediate results
(i.e., feature maps). Thus, they are often bloated, hard to interpret, and infeasible to be directly used for
any further analysis. Nonetheless, thanks to the frequently used high-level machine-learning operations
O ={n × n conv, ReLU, BatchNorm, (Max/Average) Pooling, Padding, Splitting} or custom blocks (i.e.,
motifs) in state-of-the-art networks, we can simplify such graphs by replacing primitive operations such
as add, multiply, and minus with high-level operations. Such a simplification can significantly reduce the
complexity while preserving important structural information. As depicted in Figure 5.5, we transform a
given computational graph represented in popular DL frameworks to a simplified version. Formally, we
construct a graph G = (V,E,O), where V is the feature maps, E is the operations, and O is the high-level
operations. Each directed edge with an edge type is associated with an operation in O.

5.3.2 Automated graph encoder-decoder

To enable further analysis of the graph inputs, we need to extract meaningful information, preferably in
a lower dimension. Embedding vectors are particularly designed for this purpose, as they are a relatively
low-dimensional learned space into which we can translate high-dimensional vectors. Furthermore, such a
representation facilitates the analysis with machine-learning models. An embedding can be learned and
then reused across different models.

To extract and learn the embeddings from the hidden layers in computational graphs, we introduce a

80

two phase encoder-decoder. Graph convolutional networks (GCN) and their variants [171, 172] have been
successfully applied to learn the topology information from graphs. For instance, they have been successfully
applied to node classification, link prediction, and graph classification. The encoder part analyzes the
computational graph using GCN and generates an embedding for the entire DNN’s structure g ∈ R1×d,
where d is the embedding vector size. To obtain the embedding vector for each hidden layer, we designed
a decoder based on LSTM [173] networks. We denote layer embeddings as S ∈ RT×d, where T is the
number of hidden layers, and each contains an embedding of size d. In the following, we provide a detailed
explanation of both encoder and decoder parts.

GCN-based graph encoder

As already explained in Section 3.7, we can employ GCNs to embed graphs by gathering node features
from neighboring nodes. Hence, we apply the graph encoder on the target computational graph G to
obtain node-embedding matrix H = GCNencoder(G) ∈ RN×d. The graph encoder is a two-layer GCN with a
hidden feature size of 50 units and a DNN embedding size of 11 units. The message passing function is also
formulated as Equation 5.3.

hl+1
i =

∑︂
j∈Ni

1

ci
W lhl

j , (5.3)

where hl
i refers to the hidden state of node i in the lth GCN convolution, ci is a constant coefficient, Ni is

the set of node i neighbors, and W l is the weight matrix that needs to be learned during training.
Similar to standard GCNs, our GCN also attempts to learn node embeddings, yet we need to learn the

embedding for the entire graph structure. A commonly used mechanism to compute graph-level embedding
is to utilize the graph mean pool as formulated in Equation 5.4. Principally, it computes an average of the
node embeddings and provides a graph embedding g.

g =
1

N

N∑︂
i=1

hi, (5.4)

where H = hi, i = 1, 2, ..., N is the node-embedding matrix, hi is the embedding of ith node , N is the total
number of nodes in the graph, and d is the embedding size.

LSTM-based decoder

The decoder component is designed to learn the environment states of the target DNN hidden layers required
for the RL agent. Since the state vectors in the reinforcement-learning (RL) environment are determined by
the previous state and the action (the pruning ratio), the decoder takes the previous layer’s state vectors
and RL agent’s action as input as well. To deal with such an input space, we used long short-term memory,
as it uses feedback connections to process the sequence of data, instead of a single data point. Thus, we
define our decoder as in the following formulas:

s1 = LSTMdecoder (g) (5.5)

st = LSTMdecoder (st−1, at−1) (5.6)

For the t−th hidden layer, we use the feature st−1 of the previous hidden layer and the compression policy
at−1 (the action selected by the RL agent) to calculate the environment states.

81

5.3.3 Network pruning using reinforcement learning

We leveraged reinforcement learning to find the optimal pruning ratios efficiently. We briefly explained the
concept of RL in Section 3.6. In the following, we describe the details of the RL setup for network pruning.

Environment states. In contrast to existing RL-based model compression methods that use fixed hand-
crafted layer embeddings as environment states, we use DNN layer embeddings S ∈ RT×d generated by the
graph encoder-decoder as environment states.

Action space. The actions made by the RL agent are pruning ratios within a continuous space. Specifically,
the RL agent takes the layer embeddings S ∈ RT×d as environment states and predicts corresponding
pruning ratios ai ∈ A, i = 1, 2, .., T , where ai ∈ [0, 1).

Reward function. Since the RL agent is responsible for pruning the network, the actions made by the RL
agent should be evaluated and rewarded with positive feedback or penalized with a negative value. Thus,
we formulated the reward function to evaluate the performance of the pruned network as Rerr = −Error,
where Error is the compressed DNN’s top-1 error on the validation set. However, one drawback of such a
reward function is that it offers little or no incentive for model size and FLOPs reduction. Without including
any constraint (e.g., FLOPs or #parameters), the RL agent tends to look for a tiny compression ratio. To
solve this issue, we devised an action rescaling mechanism. As described in Algorithm 1, we compute the
size that we still need to reduce according to the original scale. Lines 1-2 compute the total model size (e.g.,
FLOPs and #parameters) Wall and reduced size Wreduced. If the reduced size is less than the desired model
size reduction d, the algorithm will rescale the pruning ratios to compensate for the difference d−Wreduced.
Lines 4-7 relate to the rescaling process, and the for-loop in lines 5-7 adjusts the pruning ratio for each layer
according to the difference to the desired model size reduction. Finally, in line 7, we truncate the pruning
ratio with the upper bound amax.

Algorithm 1: RL action rescaling algorithm to achieve the desired model size reduction.
Input: The actions a = {a0, ..., aT}, the upper bound of actions amax, the model size

(#FLOPs/#Parameters etc.) of each hidden layer W = {W0, ...,WT}, and the desired model
size reduction d

Output: The actions a′ after re-scaling
Wall =

∑︁
tWt

Wreduced =
∑︁

tWtat
if Wreduced < d then

drest = d−Wreduced

for i = 1, 2, ..., T do
ai+ = (drest ∗ (ai/

∑︁
t at))/Wi

a′i = min(amax, ai)

return a′

RL agent policy. There are various RL search policies, such as proximal policy optimization (PPO) [174]
and deep deterministic policy gradient (DDPG) [175]. However, to make a fair comparison with our baseline
method AMC [176], we chose DDPG as our RL policy to exclude the effect of the RL policy on the evaluation

82

results. We believe that this isolation design choice can help show the benefit of our learning-based network
pruning compared to handcrafted methods.

We configured the DDPG agent to receive the environment states si ∈ S, i = 1, 2, .., T produced by our
decoder and produce actions (i.e., pruning ratios) ai ∈ A, i = 1, 2, .., T by using a multi-layer perceptron
(MLP). The actor-network µ and the critic network Q have two hidden layers, each with 300 units. The
µ’s output layer applies the sigmoid function to bound the actions within (0, 1). We use τ = 0.01 for the
soft target updates. In the first 25 episodes, our agent searches with random action. Then, it continues
searching for 300 episodes with exponential decayed noise.

5.4 Experimental results

We individually evaluate our training platform according to the two components that build our system.
First, we analyzed our DL-aware scheduler for normal training and neural architecture search. Then, we
conducted a detailed study on the efficiency of our network pruning method.

5.4.1 Evaluating the DL-aware job scheduler

We evaluated our scheduler with respect to the job completion time using a simulation platform to schedule
40 jobs on 16 nodes. The jobs are submitted based on a job trace, which instructs how and when the jobs
arrive. The jobs resemble the training progress for various models such as Resnet-50, VGG-16, and ResNeXt.
Figure 5.6 shows the average job completion time (i.e., time from job submission to its completion) of the
Dominant Resource Fairness (DRF) scheduler, DL2, and our elastic DL-aware scheduler. We chose DRF as it is
a generic, DL-agnostic scheduler often used in typical schedulers, in which jobs are prioritized based on their
dominant resource share (e.g., CPU, GPU). As the results show, we achieved 51% reduction in the average
job completion time compared with DL-agnostic schedulers. Clearly, exploiting DL training characteristics
can yield such a considerable improvement. Moreover, we outperformed the DL-aware scheduler DL2 and
alleviated the training time by up to 36%. Such a comparison shows that the combination of adaptive
hyperparameter tuning and DL-aware job scheduling has a significant effect on accelerating DL training
performance.

Next, we studied the effect of adaptive hyperparameter tuning on the DL training process. In contrast to
Pollux that only studied normal DL training jobs, we also included NAS jobs and attempted to accelerate
them using this technique. We ran our experiments on Nvidia’s A100 GPUs available on the Lichtenberg II
cluster at TU Darmstadt. Figure 5.7 depicts the average job completion times in log-scale for various DL and
NAS jobs, each configured with different settings. We used MobileNet-v2 and DARTS trained on CIFAR-10
as our normal DL training and NAS workload, respectively. Regarding the training settings, we primarily
altered the number of GPU workers w ∈ {1, 2, 4} while keeping the batch size constant for four cases and let
the remaining two cases to be adaptively adjusted. The remaining training parameters were left untouched,
except for the learning rate, which is also adjusted to maintain a high level of accuracy.

As the results show, adding another GPU worker without adapting the batch size slows down the overall
training process since per-GPU batch size becomes smaller (i.e., B = 32) and more gradient synchronizations
are necessary. Manually increasing the overall batch size to 128 implies that each GPU uses the initial batch
size (i.e., B = 64) and alleviates the issue by offering a noticeable speedup of 1.14×. However, with the
same number of GPU workers, we achieved the speedup of 2× using adaptive batch size tuning. We noticed
a similar pattern within NAS training, however, with less speedup. Nevertheless, the speedup compared to
manual batch size selection is clearly noticeable.

83

DRF DL2 Our
scheduler

0

1

2

3

4

5
4.97

3.85

2.45

Av
er
ag

e
jo
b
co

m
pl
et
io
n
tim

e
(s
)

Figure 5.6: Average job completion
time of our scheduler
compared with DRF and
DL2.

w=1
B=64

w=2
B=64

w=2
B=128

w=2
B=⟳

w=4
B=256

w=4
B=⟳

101

102

103

3.79
3.98

3.3

1.89

2.71

1.24

7.16 7.19

6.5

5.9 5.84

5.35

Av
er
ag

e
jo
b
co

m
pl
et
io
n
tim

e
(s
)

MobileNet-v2
DARTS (NAS)

Figure 5.7: Average job completion time for different number of
GPU workers with and without adaptive batch size.

A noteworthy benefit of adaptive batch size tuning is the improvement of resource utilization. Figure 5.8
depicts the GPU utilization of two GPUs during the first few training epochs of ResNeXt. The first epoch
used the initial batch size of 128 per GPU, marking the total GPU utilization of ∼50% per GPU. Our adaptive
batch size tuning increases the batch size to 253 after the first epoch, increasing the utilization to above
75% per GPU. Having access to more training data and less inter-GPU synchronization can explain such an
improvement.

Looking again at Figure 5.8, we notice several sudden utilization drops throughout the training that we
annotated with gray rectangles. After further investigations, we found out that these drops are related to
the end of each epoch, where all the batches are processed. These intervals can be effectively used for
checkpointing, task migration, and further training adjustments since less interruptions will be caused.

5.4.2 The impact of adaptive batch size tuning on NAS

Since one of the goals behind our scheduler is to enhance the performance of NAS training, we conducted
experiments on DARTS [107], which is a popular NAS method. We used four A100 Nvidia GPUs and trained
DARTS with default settings on the CIFAR-10 dataset. Compared to the fixed batch size set at the beginning
of the training, adaptive batch size tuning led to 45% faster execution while offering the same accuracy.
Such an observation validates that selecting the right batch size given the available hardware is important
to fully utilize the training hardware and produce the trained model in the minimum amount of time.

Although Pollux does not support multiple data loaders that are common in NAS training, our scheduler
resolved this issue and effectively tuned NAS jobs. Moreover, we noticed that Pollux sets a threshold of
5% for updating the batch size at each training iteration. In other words, Pollux adapts the batch size
only if the expected goodput exceeds more than 5%. In our experiments, we noticed that such a design

84

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

50

100

150

200

Training iteration time

G
PU

U
til
iz
at
io
n
[%

]

Figure 5.8: GPU utilization of two NVIDIA GeForce GTX 1080 Ti’s. The first epoch uses the initial batch size
of 128 and lasts for 58 seconds.

0 0.5 1 1.5 2 2.5 3

·104

50

100

150

200

Time (s)

Ba
tc
h
si
ze

Fixed Adaptive

(a) Batch size

0 0.5 1 1.5 2 2.5 3

·104

0.6

0.8

1

Time (s)

To
p-
1
er
ro
r[

%
]

Fixed Adaptive

(b) Accuracy

Figure 5.9: Adaptive batch size tuning versus fixed batch size.

choice is not suitable for NAS training, as each epoch takes a longer amount of time to finish. Eliminating
the threshold provided us with lower job completion time and, therefore, higher speedups. As depicted in
Figure 5.10, we noticed an increase in the batch size at each iteration while Pollux waits until the threshold
is met. Given that both configurations attain similar accuracy, but ours managed to finish earlier, we argue
that the no-threshold mechanism works better for NAS jobs.

85

0 0.5 1 1.5 2

·104

50

100

150

200

Time (s)

Ba
tc
h
si
ze

With threshold No threshold

(a) Batch size

0 0.5 1 1.5 2

·104

0.6

0.8

1

Time (s)

To
p-
1
er
ro
r[

%
]

With threshold No threshold

(b) Accuracy

Figure 5.10: Adaptive batch size tuning of our method (no-threshold) versus Pollux (with threshold).

5.4.3 Evaluating the network pruning

We evaluated our network pruning method by performing FLOPs-constrained structured pruning on sev-
eral bulky and mobile-friendly ConvNets, including ResNet-20/56 [85], VGG-16 [177]), and MobileNet-
v1/v2 [150, 151]. To show the superiority of our approach and validate the effectiveness of the learning-
based embedding, we compared our approach with three existing methods:

• Uniform, shallow, and deep empirical policies [178, 179].

• Handcrafted channel reduction methods, such as SPP[180], FP [179], and RNP [181].

• Regularization-based methods, such as MorphNet [182] and SSL [183].

• RL-Based AutoML methods, such as automatic model compression method AMC [176], which manually
defines DNN layer embeddings, and random search with reinforcement learning (RS), which does not
leverage any layer embeddings.

• Other pruning methods, such as DSA [184] and Rethink [185].

Datasets. We conducted our experiments using the datasets CIFAR-10 [186] and ImageNet [187]. To
accelerate the search process on CIFAR-10, we split the training set into two partitions of 15k and 5k images.
We used the 15k training set to rapidly fine-tune the candidate model and the remaining 5K images as
the validation set to calculate the reward function. To deal with the ImageNet dataset, we split 5k images
from the training set as the validation set to calculate the reward. However, the validation accuracy of
the ImageNet dataset is sensitive to the compression, as with high compression ratios, the accuracy drops
considerably without fine-tuning. Thus, the RL agent can not get a valuable reward. As a remedy, we
decompose the pruning on the ImageNet dataset into several stages and add one epoch of fine-tuning for
each search episode. For instance, to obtain a 49% FLOPs model compared to the original network, instead
of performing a single step 49 % FLOPs pruning, we prune the target DNN two times, each with 70% FLOPs
constraint (i.e., 70%FLOPs × 70%FLOPs = 49 % FLOPs).

86

0 2 4 6 8 10 12 14 16 18

Hidden Layers

0.0

0.2

0.4

0.6

0.8

1.0

D
e
n
s
it
y
(#

n
o
n
-z
e
ro

w
e
ig
h
t
/
#
to
ta
l
w
e
ig
h
t)

Ours 50 episodes

Ours 100 episodes

Random search 200 episodes

Random search 300 episodes

(a) ResNet-20

0 5 10 15 20 25 30 35 40 45 50 55

Hidden Layers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
e
n
s
it
y
(#

n
o
n
-z
e
ro

w
e
ig
h
t
/
#
to
ta
l
w
e
ig
h
t)

Ours 100 episodes

Random search 200 episodes

Random search 300 episodes

(b) ResNet-56

Figure 5.11: Comparing the pruning stability of our method across different layers with random search on
ResNet-20/56.

The effectiveness of graph encoder-decoder for network pruning

We argued that the automatic extraction of layer embeddings from graph topology is more effective than
handcrafted pre-defined features. Thus, to validate our claim, we analyzed our layer embeddings with
existing methods. First, we demonstrate the necessity of layer embeddings by comparing the accuracy with
a method that does not use any feature. Then, we compare the accuracy achieved without layer embedding
with the ones that AMC [176] uses.

Learning-based vs. no embedding. To prove the benefit of using layer embeddings for network pruning,
we compared our method with a simple random search RL agent that does not use any layer embedding.
We configured all the hidden layers to a fixed one-hot vector as the RL agent’s environment state and set
the remaining parameters similar to our RL setup. Figure 5.11 shows that our method achieves better
results compared with the blind random search on ResNet-20 and ResNet-56. Particularly, for ResNet-20,
random search uses 200 and 300 episodes, achieving a compressed network with 71% and 88.41% validation
accuracy, respectively. On the other hand, AGMC only searches for 50 episodes and 100 episodes with a
validation accuracy of 93.8% and 94.6%, respectively. Hence, AGMC achieved a higher compression ratio
and accuracy with considerably fewer search episodes.

Moreover, looking at the compression ratio of each individual hidden layer, we observed that AGMC tends
to apply a more uniform pruning policy. Such an observation is similar to the uniform pruning policy[179],
which shows that the uniform policy can be more beneficial for network pruning.

We also compared the performance of our method with the random search on ResNet-56 under different
FLOPs-constraints. ResNet-56, with its deeper network structure, is more challenging to prune properly.
Figure 5.12 illustrates the validation accuracy with respect to different pruning ratios. We observed that
AGMC outperforms the random-search method with a higher accuracy given the same pruning ratio. With
10% FLOPs reduction, the validation accuracy of both methods are almost similar. However, with 90%
FLOPs reduction, AGMC excels by a large margin.

Learning-based vs. manually-defined layer embeddings. AMC utilizes a pre-defined set of layer em-
beddings for its RL agent to search for the best pruning policy. Such an embedding vector consists of 11

87

0 10 20 30 40 50 60 70 80 90 100
Reduced FLOPs %

87

88

89

90

91

92

93

Va
l.

AC
C.

AGMC
Random Search

Figure 5.12: Validation accuracy comparison of random search and AGMC on ResNet-56 under different
FLOPs.

features denoted as st = (t, n, c, h, w, stride, k, FLOPs(t), reduced, rest, at−1), where t is the layer id, the
dimension of the kernel is n× c× k× k, and the input is c× h×w. FLOPs(t) is required FLOPs to execute
the layer. Reduced is the total number of FLOPs reduced in previous layers and rest is the number of
remaining FLOPs in the upcoming layers. We argue that such a rigid design cannot capture all the essential
features such as topological information or the number of parameters available in each layer.

To make a fair comparison, we also set our learning-based embedding vector size to 11 (i.e., S ∈ RT×11)
and evaluated it with AMC’s embeddings on a 50% ResNet-20 pre-trained with the CIFAR-10 dataset.
Figure 5.13 depicts the influence of each feature on achieving a lower top-1 error. Relying on stride as
the only layer embedding leads to an error rate of 31%, as it provides not enough information to discern
the layers. Combining stride with the number of filters n reduces the error rate to 18%. Consequently,
combining all the features brings us to a 10.2% error margin. Nonetheless, our learning-based layer
embedding outperformed the overall accuracy of AMC by a factor of two and achieved an error rate of
5.38%.

Analytical study on network pruning performance

We evaluated AGMC on various deep-learning models from bulky to mobile-friendly ConvNets, the last of
which are already compressed and challenging to prune further. ResNet and VGG networks, often considered
as bulky DNNs, involve billions of parameters, making them quite challenging to be deployed on edge devices
due to their high memory consumption. We perform FLOPs-constrained pruning on over-parameterized
DNNs by leveraging the RL agent to search for pruning ratios for each convolutional layer. However, ResNet
networks contain residual connections and different pruning ratios between residual connected layers can
cause feature-map dimension mismatch. As a remedy, we share the pruning ratio between the residual
connection layers.

On the other hand, MobileNet models [150, 151] are considered as mobile-friendly DNNs that are
equipped with customized convolutional blocks to reduce the number of parameters, making them suitable
for deployment on edge devices. For instance, the MobileNet-v1 block splits a traditional convolution into a

88

st
ri
de +

n +
c

+
h,
w

+
F
LO

P
s

+
re
du
ce
d

+
a t−

1

+
la
ye
r

all
(A
MC

)
AG
MC

0

5

10

15

20

25

30

35

To
p-
1
er
ro
r[

%
]

Figure 5.13: An error-rate comparison for individual AMC layer embedding, overall AMC, and AGMC layer
embedding. Our method has achieved roughly 2× less error rate.

pair of point-wise and depth-wise convolutions. Furthermore, based on MobileNet-v1, MobileNet-v2 adds
an additional linear expansion layer and introduces residual connections. To maintain the characteristics of
the mobile-friendly DNNs, we have developed specific pruning strategies for them.

MobileNet-v1. The MobileNet-v1 block contains a depth-wise and a point-wise convolution. Instead of
pruning them separately, we view the two convolutions together and only prune point-wise convolutions.
The reason is that the depth-wise convolution only operates on one input channel and pruning that filter
will cause information loss for the corresponding channel.

MobileNet-v2. Similar to MobileNet-v1, we prune linear expansion layers and point-wise convolutional
layers. Since residual connections are between linear expansion layers, we share the linear expansion layers’
pruning ratio.

Table 5.1 reports the pruning performance of AGMC in comparison with several state-of-the-art methods.
Our method outperforms the empirical policies by a large margin on ResNet-20 and 3.6% on ResNet-56.
Compared with AMC, AGMC achieved 5.02% and 2.56% higher accuracy on ResNet-20 and ResNet-56,
respectively. For the VGG-16 model trained on the ImageNet dataset, we compared AGMC with state-of-
the-art handcrafted channel reduction methods (i.e., SPP[180], FP[179], and RNP[181]) and AMC[176].
Results show that AGMC outperformed all the baselines methods by a large margin.

On MobileNet-v1/v2, we compare AGMC with the uniform pruning policy and the RL-based method
AMC. Compared to the uniform policy, which sets the compression ratio uniformly, AGMC achieves a higher
compression ratio with only 1.2% test accuracy loss. Furthermore, our efficient layer embedding outperforms
AMC on MobileNet-v1 and MobileNet-v2, with the same target FLOPs.

We also measured the inference speed of the compressed ResNet-20/56, VGG-16, and MobileNet-v1 on

89

Table 5.1: Detailed comparison of AGMC to other methods according to pruning ratio, latency, and GPU
memory usage.

Model Method FLOPs Acc.% ∆Acc. Latency GPU Memory

ResNet-20
(CIFAR-10)

Original 100% 91.73 0 0.32ms 1.1MB
Deep 50% 79.6 -12.13 - -

Shallow 50% 83.2 -8.53 - -
Uniform 50% 84 -7.73 - -
SSL 52% 89.78 -2.39 - -

MorphNet 48% 90.1 -2.07 - -
Rethink 60% 91.07 -1.34 - -
SFP 58% 90.83 -1.37 - -
DSA 50% 91.38 -0.79 - -
AMC 50% 86.4 -5.33 - -
AGMC 50% 91.42 -0.31 0.30ms 565KB

ResNet-56
(CIFAR-10)

Original 100% 93.39 0 0.52ms 3.4MB
Uniform 50% 87.5 -5.89 - -
Deep 50% 88.4 -4.99 - -
SSL 47% 91.22 -1.90 - -

MorphNet 52% 91.55 -1.57 - -
Rethink 50% 93.07 -0.73 - -
SFP 50% 92.26 -1.33 - -
AMC 50% 90.2 -3.19 - -
AGMC 50% 92.76 -0.63 0.48ms 1.8MB

VGG-16
(ImageNet)

Original 100% 70.50 0 20.52ms 528MB
FP 20% 55.9 -14.6 - -
RNP 20% 66.92 -3.58 - -
SPP 20% 68.2 -2.3 - -
AMC 20% 69.1 -1.4 - -
AGMC 20% 70.35 -0.15 16.82ms 387MB

MobileNet-v1
(ImageNet)

Original 100% 70.60 0 11.02 17MB
Uniform 56% 68.10 -2.50 - -
Uniform 41% 66.90 -3.70 - -
AMC 40% 68.90 -1.70 - -
AGMC 40% 69.40 -1.2 10.52ms 14MB

MobileNet-v2
(ImageNet)

Original 100% 71.80 0 - -
Uniform 70% 69.80 -2.00 - -
AMC 70% 70.80 -1.00 - -
AGMC 70% 70.87 -0.93 - -

90

an Nvidia RTX 2080Ti GPU and compared it with the original model. We used a batch size of 32, and the
compressed models are tested on CIFAR-10 and ImageNet datasets. As shown in Table 5.1, our pruning
achieves notable GPU memory reduction. For VGG-16, the original model’s GPU memory usage is 528 MB
since it has dense layers and its first dense layer contains 25088 neurons. The 20% FLOPs VGG-16 with
pruned convolutional layers significantly reduced the feature map size input to dense layers, taking 141 MB
memory less than the original. Moreover, all of the models pruned by AGMC achieved remarkable inference
speedup without losing considerable test accuracy. For instance, the 20% FLOPs VGG-16 achieved 1.22×
speedup on the ImageNet dataset.

5.5 Related work

This section reviews former studies and efforts related to hyperparameter tuning, DL-specific schedulers,
and model compression methods.

5.5.1 Hyper-parameter tuning

Many former studies explored automatic hyper-parameter tuning for machine learning and deep-learning
models [188, 189]. Various tuning parameters, including batch size and learning rate, can be optimized
using these methods. However, these projects are primarily designed to increase the overall model accuracy
and not the training efficiency.

Recently, adaptive hyper-parameters tuning for enhancing training efficiency is gaining momentum. These
works mainly tune batch size and learning rate parameters, as they have the biggest influence on model
quality and training progress. For instance, AdaBatch [190] increases the batch size at specific training
iterations and linearly scales the learning rate. Another study [191] suggests increasing the batch size
without decaying the learning rate. CABS [192] and Pollux [158] adaptively tune batch size and learning
rate parameters during training using gradient statistics. Similarly, KungFu [168] also supports adaptive
training of a single job by a unified set of APIs to monitor the training progress and define custom adaptation
policies. None of the above works, however, studied NAS jobs and their training progress.

5.5.2 DL-specific job schedulers

As our scheduler falls into the category of multi-tenant scheduling, we mainly consider previous work that
manage resources in a shared multi-tenant environment. Prior works can be grouped into two categories:
(1) rigid, (2) elastic, and (3) elastic-adaptive schedulers.

Rigid schedulers

Rigid schedulers do not consider the performance scalability of DL-training jobs given the number of
allocated resources. For example, Tiresias [193] and Gandiva [157] demand the user to define the number
of GPUs at the time of job submission, which remains the same throughout the entire training. A slight
advantage of Gandiva is its enhanced resource utilization through fine-grained time-sharing and job packing.
Moreover, Gandiva’s dynamic GPU allocation is not based on the job’s scalability.

Elastic schedulers

This group of schedulers automatically select and adjust the number of resources allocated to each job given
their progress to maximize the resource utilization and reduce the overall training time. Dolphin [194]

91

is an elastic data-parallel machine-learning framework, in which the allocation of parameter servers and
workers is dynamically adjusted based on a cost model. SLAQ [195] employs an online-fitting approach to
estimate the training loss of classical machine-learning algorithms. It supports a broad set of optimization
and solves a min-max problem to provide fairness among the jobs. Another scheduler is Dorm [196], which
uses a utilization-fairness optimizer to schedule machine-learning jobs. These works did not consider special
properties of DL jobs.

In contrast, Optimus [159] is a DL-specific scheduler that is based on the parameter-server execution
model. It dynamically adjusts the allocation of workers and parameter servers based on online-fitted resource-
performance models to achieve the best resource efficiency with minimum average job completion time.
Optimus attempts to equally divide model parameters onto parameter servers to achieve load balancing
due to its dependence on the parameter-server architecture. Bao et al. [197] also designed an online
scheduling method for DL jobs. However, such works are based on simplified assumptions and a predefined
performance model that can potentially lead to suboptimal performance in corner-case situations. Lastly,
DL2 scheduler [160] is a follow-up work from the authors of Optimus. They used reinforcement learning to
perform online scheduling. By outperforming Optimus, they showed that using performance models is not
always efficient.

In summary, existing elastic schedulers do not consider the statistical efficiency of DL training and the
correlation of resource allocation with training parameters.

Elastic-adaptive schedulers

The last type of schedulers are the ones that not only adjust the allocated resources given the progress of
the DL training but also adapt the training hyperparameters to enhance the training progress further. To the
best of our knowledge, Pollux [158] and KungFu [168] are the only schedulers that attempt to schedule DL
jobs. However, none of them were applied to NAS jobs. We also believe that performing online scheduling
using reinforcement learning can further improve performance.

5.5.3 DNN model compression and acceleration

Various techniques have been introduced to compress DNN models into smaller versions and accelerate
them with a variety of techniques. Since the focus of our work is on network pruning, we provide a detailed
summary of such methods along with a brief description of other model compression methods. It is also
worth mentioning that various methods are based on a combination of the methods below.

More optimal layers. Traditional convolution layers take a lot of space and computing power. With recent
advances in DNN algorithms, more efficient layers have been introduced as a remedy. For instance,
fully connected layers are never used in modern networks, as they have been replaced with 1×1
convolutions. Furthermore, mobile-friendly networks such as MobileNet [198] have introduced the
concept of depth-wise separable convolutions, which require much fewer parameters but offer the
same or even higher accuracy.

Knowledge distillation. This category of model-agnostic compression techniques resembles the “teacher-
student” analogy, in which a small model is trained to imitate a larger pre-trained model [199, 200,
201]. Particularly, the knowledge is transferred from the larger to the smaller model by minimizing a
loss function. Using this method, the student model inherits higher accuracy than the teacher and is
more efficient for deployment on edge devices due to its lower computational complexity. However, the
lack of an appropriate teacher model causes suboptimal student models. Moreover, training multiple
student models requires a significant amount of computational resources [202].

92

Tensor factorization. It decomposes DNN weights into more lightweight pieces [203, 204]. A notable
effort is the factorization of ordinary 3×3 convolutional layers into the sequence of 1×3 and 3×1
layers [205]. Moreover, Zhang et al. [206] factorized convolutional layers into 3×3 and 1×1. Both
methods yielded higher performance.

Quantization. The process of reducing the number of bits used for representing the weights in a DNN is
called quantization. Typically, DNN models are designed with 32-bits floating point numbers (i.e.,
FP32). Such models are bulky and memory intensive. By reducing the bit width to FP16 or even
8-bits integers, we can extensively save memory and space without incurring significant loss [89, 207,
208]. Using even lower bit widths, such as 4/2/1-bits, has also been evaluated with rather promising
results [209].

Network pruning. Among other compression methods, network pruning [89, 210, 211] has been widely
studied over the last decade. It shrinks the size of over-parameterized networks by eliminating a
portion of parameters within each DNN layer via two different methods: (1) fine-grained pruning
and (2) structured pruning. Fine-grained pruning [89] removes each unimportant element in weight
tensors. On the other hand, structured pruning [179] prunes an entire block of weight tensors, such
as channels, rows, columns, and blocks. Despite the higher compression ratio offered by fine-grained
pruning, such a method has shown to be useful only on specific hardware accelerators [212, 213], as
specialized algorithms are required to handle irregular sparse tensors. In contrast, structured pruning
provides regularly pruned weights and can be used on commodity hardware.

Various structured pruning policies such as handcrafted and AutoML-based methods are available.
Empirical pruning policies (e.g., uniform, shallow, and deep [178, 179]) are mostly handcrafted
by experts, demanding human effort and domain expertise. The uniform policy [178] sets the
compression ratio uniformly, while the shallow and deep policies aggressively prune shallow and
deep layers, respectively [179]. Such handcrafted empirical policies heavily rely on manually defined
rules and fail to achieve the optimal compression ratio. Other handcrafted methods focusing on
channel pruning are SPP [180] and FP [179]. SPP prunes DNN layers by measuring the reconstruction
error. FP estimates the sensitivity of each layer, where layers with lower sensitivity are pruned more
aggressively. Recently, RL-based automatic network pruning methods [214, 176, 215] have yielded
better results. He et al. [176] proposed a reinforcement-learning-based method for network pruning,
yet they still use handcrafted features to represent DNNs and ignore the rich structural information
within computational graphs.

5.6 Discussion

This chapter presented our early effort towards the acceleration and scalability of DL/NAS training. We
showed the benefits of out platform in terms of speedup and accuracy in Section 5.4. Here, we aim to shed
some light on other aspects, particularly by discussing further design choices and insights.

5.6.1 Distributed gradient synchronization method

We built our DL training platform with the assumption of using the all-reduce method for synchronizing the
gradients across all the worker nodes. We made such a design choice partly because of fewer parameters
(i.e., only number of workers) that need to be tuned. On the contrary, the parameter-server method requires
the number of parameter servers and workers, making the tuning process much more complex.

93

0 0.5 1 1.5

·104

50

100

150

200

Time (s)

Ba
tc
h
si
ze

Static Max Adaptive

(a) Batch size

0 0.5 1 1.5

·104

0.4

0.6

0.8

1

Time (s)

To
p-
1
er
ro
r[

%
]

Static Max Adaptive

(b) Accuracy

Figure 5.14: Adaptive batch size tuning versus using maximum possible batch size.

Moreover, parameter-server-based methods have shown to offer better results in those environments
where the DL training is supposed to run on a large number of unreliable and heterogeneous nodes. However,
all-reduce method works better on a small number of fast compute nodes with high bandwidth links [216].
Since computing clusters often provide the latter case, using all-reduce architecture seems more reasonable.
Nevertheless, our training platform can be easily extended to support parameter-server architecture as well.

5.6.2 The real benefit of adaptive batch size tuning

In the experimental results section, we presented various aspects of our scheduler and the effect of adaptive
tuning on NAS training jobs. Regardless of the positive impacts, one might prefer to use maximum batch
size according to the capability of the hardware instead of adaptive batch size tuning. For this purpose, we
compared adaptive batch-size tuning with constant maximum batch size and presented the results in 5.14.
We trained a NAS method (DARTS) using the CIFAR-10 dataset on four Nvidia A100 GPUs for 90 epochs.
Our experiments indeed show that using the maximum batch size can potentially lead to a slightly faster
training. However, the accuracy diagram (see Figure 5.14b) shows that static maximum batch size suffers
from unstable accuracy throughout the training. On the contrary, adaptive tuning attempts to maintain
statistical efficiency, leading to a more stable and accurate model.

Moreover, the results presented in Figure 5.14 assumed that the number of GPUs does not change
throughout the training process. However, if the scheduler decides to adjust the resources, the batch size
needs to be updated as well. Using static batch size might lead to training failure or in the best case lead to
inefficient execution. In contrast, our adaptive mechanism can swiftly recover and adjust the batch size
according to the new resource configuration without any manual intervention.

In summary, our experiments prove that adaptive batch size tuning not only frees the user from the
manual selection of hyper parameters, but also offers higher accuracy and stability for the trained model.

5.6.3 Further insights on network pruning using RL

The time required by the RL agent to find the best pruning policy largely depends on the RL agent’s action
space. In our case, the action space is the hidden layer’s pruning ratio, which is between [0, 1). Thus, even
with deep networks, the search space is still manageable, as the number of layers are limited. For instance,

94

0 5 10 15 20 25 30 35 40 45 50
Epochs

40
45
50
55
60
65
70
75

To
p-

1
Te

st
 A

cc
ur

ac
y

ResNet-50
ResNet-18
MobileNet-v2

Figure 5.15: Accuracy recovery after different fine-tuning epochs.

the largest ResNet contains 110 convolutional layers. Compared to many popular and huge RL tasks that we
find in self-driving cars or AlphaGo, our search space is acceptable and practical. Additionally, we recorded
the RL search time on ResNet-56 with 300 episodes. It takes (320± 30) seconds on an RTX 8000 GPU to
finish the entire search for the pruning ratios.

Furthermore, we observed that the models pruned by AGMC can quickly recover from the accuracy loss
(see Figure 5.15). After only one epoch, we can compensate for almost all the accuracy loss. For all DNNs,
the accuracy gap between one epoch fine-tuning and 150 epochs fine-tuning is less than 3%. Thus, we only
needed to perform less than 50 fine-tuning epochs, which is far less than other state-of-the-art methods.

5.7 Conclusion

In this chapter, we argued that the scalability of deep neural networks could be improved not only through
a more robust training platform but also by using smaller networks. Thus, we introduced a network training
and pruning platform to address the scalability of deep-learning models.

We showed that blind horizontal scaling without adapting the training job causes resource underutilization.
Thus, we proposed an elastic DL-aware scheduler that supports job-level and cluster-level scheduling,
aiming to increase the throughput and efficiency of the training job. Our experiments validated that our
scheduler expedites the training of normal deep-learning training as well as neural architecture search jobs.
Furthermore, we noticed that adaptive batch size tuning could enhance resource utilization.

Moreover, by taking advantage of graph convolutional networks and reinforcement learning, we proposed
a learning-based method to extract topology information of a given ConvNet. Based on the extracted
information, our compression method automatically explores network pruning policies to find the best
strategy for reducing the computational complexity of a given network while maintaining accuracy. Under
the same compression ratio, experimental results on bulky and mobile-friendly ConvNets showed that
learning the embeddings from the ConvNet structure can outperform all the rule-based embedding methods
by a large margin. On bulky ConvNets, such as ResNet-56, our method performs better than all the baselines
with only 0.63% accuracy drop. For already compact networks such as MobileNet-v1, we also achieved a
higher compression ratio than baselines with only 1.2% accuracy loss. Such a low accuracy loss shows the
superiority of our method compared with state-of-the-art methods.

By preventing significant accuracy loss while pruning, we can apply more aggressive compression and

95

obtain a smaller model. Thus, with respect to the scalability perspective, the resulting model can now be
potentially trained faster than the original model and also run faster on the target device.

96

6 Conclusion and outlook

The main goal of this dissertation was to present our solutions for performance analysis and optimization
of data-intensive applications. Particularly, we aimed to design tools and platforms for accelerating and
scaling their performance. Given the recent quantum leap in artificial intelligence, it is apparent that smart
devices are pervading all aspects of our life. Thus, as a ubiquitous data-intensive use case, we decided
to focus on deep-learning workloads. We bundled our threefold techniques into a single inclusive term,
namely “performance engineering”, to highlight the necessity of a combined approach to achieve the desired
performance. In this chapter, we summarize the contributions of this dissertation, highlight the impact of
our work, and present the next possible steps as our future work.

6.1 Summary of contributions

From the perspective of performance engineering, this dissertation presented three main contributions. Each
contribution contains additional novelties that are explained in detail in Chapters 2 to 5. In the following,
we enumerate and summarize all the contributions that we have presented in our work.

Performance profiling. As data-intensive applications deal with a large amount of data and communication
events, our first contribution was a novel performance profiling method to identify potential communi-
cation bottlenecks that arise from ineffective thread communications. Instead of analyzing the entire
application, using LLVM instrumentation, we can find hotspots (i.e., regions with a high degree of
communication) within the code and fully focus on those code sections.Using our memory-efficient
code instrumentation profiler, we achieved the following points.

• We introduced a set of hardware-independent metrics to identify data communication bottlenecks.
Inspired by data reuse distance, we proposed communication reuse distance (CRD) that reflects
the effect of communication on the cache. Moreover, our proposed communication reuse ratio
(CRR) matrix sheds light on the amount of reuse after a true communication between threads.

• We quantitatively analyzed the homogeneity and balance of CRR matrices to give a better
perspective on comparing code variants.

• We showed that our method could detect communication bottlenecks in different code regions
and also help programmers apply a suitable type of optimization, increasing the performance by
up to 56%. Furthermore, we demonstrated that such an analysis is helpful for determining the
input scalability of a given application with regard to its cache usage.

Performance portability. Our second contribution was designing and implementing a framework for the
automatic generation of efficient and performance-portable convolution kernels for various GPU
platforms. We analyzed and compared the syntax and taxonomy of three GPU programming interfaces:
CUDA, OpenCL, and Vulkan. Our comparative study illuminated the similarities and differences
among the three APIs, paving the path for designing a code portability layer. We employed a synergy
of meta-programming, symbolic execution, and auto-tuning to specialize a challenging ConvNet

97

operation named Winograd convolution. Our detailed achievements in this line of work are listed
below.

• We developed a method for generating tensor GPU kernels coded in any of the target APIs from
a single source that abstracts away the syntactic differences. We implemented our approach in a
state-of-the-art CNN inference framework called Boda and analyzed the programmability and
performance portability of the generated kernels. Based on our experiments, our method reduces
the programming effort by 98% when code portability between different APIs is demanded.
Furthermore, we showed that Vulkan offers better performance than other APIs on our convolution
benchmarks and sometimes performs better than vendor libraries. Such an observation can
encourage the programmers to consider Vulkan as their first library of choice for deploying GPU
codes on devices with no application-specific library support.

• We proposed a method based on symbolic computation to create minimal yet efficient recipes
that replace the straightforward matrix multiplication method within Winograd transformations.
Our empirical evaluation illuminated that choosing the right output tile size m, depending on
the filter size r, can significantly reduce the number of arithmetic operations while offering
acceptable accuracy (e.g., F (m = 6, r = 3), F (m = 4, r = 5)). To the best of our knowledge, this
critical observation went unnoticed so far.

• We enabled generating performance-portable Winograd convolutions with the help of template
meta-programming. Our runtime analysis shows that we can use the same Winograd meta-code
to run on a multitude of GPU platforms, including a mobile GPU, and compete with vendor
ConvNet libraries, such as cuDNN, MIOpen, and the ARM compute library.

Performance scalability. Lastly, to enhance the scalability of deep-learning applications, we developed a
specialized training platform and equipped it with a novel topology-aware network pruning algorithm.
The overarching goal is to enable rapid and scalable network training, neural architecture search, and
model compression. As a result, a training job can be easily scaled to a multitude of computing nodes,
leading to faster model design with less operating costs. Further achievements are described below.

• We developed a deep-learning-aware scheduler that supports cluster-level and job-level scheduling.
Using our scheduler, deep-learning training jobs can be scaled up efficiently to a multitude of
nodes, depending on the number of concurrently running jobs. Moreover, our proposed scheduler
considers the unique behavior of neural architecture search jobs and adapts the required resources
to better harness the computing power and expedite the network design process.

• We proposed an automatic model compression method by employing graph convolutional net-
works and reinforcement learning. To the best of our knowledge, this is the first work to model
DNNs as computational graphs to enhance model compression. We showed the superiority of our
learning-based method by comparing its performance with rule-based DNN embedding, where
we outperform them and achieve higher accuracy with fewer required FLOPs.

6.2 Outlook

We believe that the provided methods and techniques in this dissertation do not necessarily end here as they
have the potential to be extended and studied in future research projects. Moreover, due to the increasing
demand from the industry to use and deploy AI applications on their products, we strongly believe that the
idea behind this work has the merit to be transferred to industry. All in all, we envision various possible
future research directions that are worth investigating. This section provides an outlook towards such
research and development opportunities.

98

6.2.1 Extended application domain

While the first contribution of our thesis was generic enough to be used for any data-intensive application,
the remainder of our work primarily targeted deep-learning applications. Such a decision was not only
made due to the unique characteristics of deep learning, but also due to feasibility given the limited available
time to finish the thesis project. Nonetheless, we believe that our performance portability layer has the
potential to be fully extended to other application domains as well. For example, any numerical operation
that operates on tensors should be able to benefit from our methodology. Thus, foreseeable future work
would be to explore the potential operations and application domains. Particularly, scientific simulations and
computations that use tensors to represent large data volumes can be analyzed for performance portability.

6.2.2 Supporting other hardware

Within this work, we discussed the portability of ConvNet operations on various GPUs. However, efficient AI
deployment becomes challenging when dealing with low-budget edge devices not necessarily equipped
with GPUs. Thus, a potential future work would be to support additional hardware platforms, such as
CPUs, TPUs, ASICs, and FPGAs. Nonetheless, the concepts that we introduced for efficient model search,
compression, and deployment using efficient operations can also be used to target such devices. To achieve
this goal, we need to design more lightweight ConvNets, compress them to a higher degree, and deploy the
compressed models on CPUs instead. Such an effort enables affordable AI for all sorts of mass-produced
devices, such as autonomous vehicles (e.g., cars, trains, buses, trucks), UAVs1, and IoT2 devices.

6.2.3 Full-stack AI

We consider our work presented in this dissertation as an initial step towards a full-stack AI platform. A
full-stack AI platform consists of various components that work hand-in-hand to create a fully functional
AI-based system. As shown in Figure 6.1, the main categories are data, model, infrastructure, and application.
In this work, we primarily worked on the model and infrastructure parts and achieved noteworthy results.
We can complement the overall workflow and create a full-fledged AI design pipeline by attaching other
components and extending the current methods.

6.3 Final remarks

Given the rapid growth in the amount of data and connected smart devices, there will be an increasing
demand for more efficient computing. We strongly believe that performance engineering of data-intensive
applications, particularly deep-learning models, will remain a hot topic for the foreseeable future. Hence,
it is critical to constantly design and invent new tools and methods to assist programmers in pinpointing
performance bottlenecks and making their code run efficiently on various platforms. With new hardware
generations being introduced every couple of months, an ecosystem of performance-engineering tools is vital
to harness the available computing power, increase productivity, and reduce programming effort. In this
work, we focused on the challenges associated with data-intensive applications, particularly in executing
deep-learning models. We introduced three different techniques to address performance analysis, portability,
and scalability. The first was a generic profiling method, whereas the last two contributions were focused
on AI workloads. As a result, we managed to identify communication bottlenecks in various data-intensive
applications. Moreover, we improved the portability and scaled up the performance of deep-learning
1Unmanned aerial vehicles
2Internet of things

99

 Full-stack AI

 Data

 Data collection/
 annotation

 Task definition

 Efficient dataset storage

 Data augmentation

 Accuracy metrics

 Model

 DNN model structure

 Preprocessing & feature 
 extraction

 New objective functions & 
 layer types

 Quantization & compression

 Design space exploration (NAS)

 Applications

 Offline/Realtime 
 processing

 Vision/NLP/etc.

 Sensor data fusion

 Infrastructure

 DNN frameworks

 Visualization tools

 Efficient portable 
 computation kernels

 Large-scale training platform

 Deploy on cloud & 
 embedded HW

Figure 6.1: The components of a full-stack AI platform. The highlighted boxes are the components that we
directly or indirectly targeted in this thesis.

workloads on various platforms. We look forward to pursuing our visions mentioned in Section 6.2 to
further demonstrate the value of our approach.

100

Bibliography

[1] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. “Chapter 8 - Data-Intensive Computing:
MapReduce Programming”. In: Mastering Cloud Computing. Ed. by Rajkumar Buyya, Christian
Vecchiola, and S. Thamarai Selvi. Boston: Morgan Kaufmann, 2013, pp. 253–311.

[2] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large clusters”. In:
Communications of the ACM 51.1 (2008), pp. 107–113.

[3] Apache Software Foundation. Hadoop. Version 0.20.2. Feb. 19, 2010.
[4] Dario Amodei and Danny Hernandez. AI and compute. July 1, 2021. url: https://openai.com/

blog/ai-and-compute/.
[5] Ross Girshick, Forrest Iandola, Trevor Darrell, and Jitendra Malik. “Deformable part models are

convolutional neural networks”. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 437–446.

[6] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition. 2015,
pp. 3431–3440.

[7] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
“Large-scale video classification with convolutional neural networks”. In: Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition. 2014, pp. 1725–1732.

[8] Andre Esteva et al. “Deep learning-enabled medical computer vision”. In: NPJ digital medicine 4.1
(2021), pp. 1–9.

[9] Nicolas Villain. The role of artificial intelligence in medical imaging: from research to clinical rou-
tine. 2019. url: https://www.aphc.info/wp-content/uploads/2019/01/pre232-
villain-nicolas.pdf.

[10] Matthew W. Moskewicz. “Implementing Efficient, Portable Computations for Machine Learning”.
PhD thesis. University of California, Berkeley, 2017.

[11] Krste Asanovic et al. The Landscape of Parallel Computing Research: A View from Berkeley. Tech. rep.
UC Berkeley, 2006.

[12] Torsten Hoefler, William Gropp, William Kramer, and Marc Snir. “Performance modeling for sys-
tematic performance tuning”. In: Proc. of International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE. 2011, pp. 1–12.

[13] Georg Hager and Gerhard Wellein. Introduction to high performance computing for scientists and
engineers. CRC Press, 2010.

[14] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hallberg, Johan
Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. “Simics: A full system simulation
platform”. In: Computer 35.2 (2002), pp. 50–58.

101

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://www.aphc.info/wp-content/uploads/2019/01/pre232-villain-nicolas.pdf
https://www.aphc.info/wp-content/uploads/2019/01/pre232-villain-nicolas.pdf

[15] German Florez, Zhen Liu, Susan M Bridges, Anthony Skjellum, and Rayford B Vaughn. “Lightweight
monitoring of MPI programs in real time”. In: Concurrency and Computation: Practice and Experience
17.13 (2005), pp. 1547–1578.

[16] Nick Barrow-Williams, Christian Fensch, and Simon Moore. “A communication characterisation of
Splash-2 and Parsec”. In: Proc. of International Symposium on Workload Characterization (IISWC).
IEEE. 2009, pp. 86–97.

[17] Eduardo Henrique Molina da Cruz, Zanata Alves, Alexandre Carissimi, Philippe Olivier Alexandre
Navaux, Christiane Pousa Ribeiro, and J Mehaut. “Using memory access traces to map threads
and data on hierarchical multi-core platforms”. In: Proc. of International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE. 2011, pp. 551–558.

[18] Karl Fuerlinger, Nicholas J Wright, and David Skinner. “Effective performance measurement at
petascale using IPM”. In: Proc of. 16th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE. 2010, pp. 373–380.

[19] Shoaib Kamil, John Shalf, Leonid Oliker, and David Skinner. “Understanding ultra-scale application
communication requirements”. In: International Symposium on Workload Characterization (IISWC).
IEEE. 2005, pp. 178–187.

[20] Orianna DeMasi, Taghrid Samak, and David H Bailey. “Identifying HPC codes via performance logs
and machine learning”. In: Proc. of the first workshop on Changing landscapes in HPC security. ACM.
2013.

[21] Sean Peisert. Fingerprinting communication and computation on HPC machines. Tech. rep. Lawrence
Berkeley National Laboratory, 2010.

[22] Chao Ma, Yong Meng Teo, Verdi March, Naixue Xiong, Ioana Romelia Pop, Yan Xiang He, and
Simon See. “An approach for matching communication patterns in parallel applications”. In: Proc.
of International Symposium on Parallel & Distributed Processing (IPDPS). IEEE. 2009, pp. 1–12.

[23] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong program analysis &
transformation”. In: Proc. of International Symposium on Code Generation and Optimization (CGO).
IEEE. 2004, pp. 75–86.

[24] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, StevenWallace,
Vijay Janapa Reddi, and Kim Hazelwood. “Pin: building customized program analysis tools with
dynamic instrumentation”. In: ACM Sigplan notices 40.6 (2005), pp. 190–200.

[25] Derek Bruening and Saman Amarasinghe. “Efficient, transparent, and comprehensive runtime
code manipulation”. PhD thesis. Massachusetts Institute of Technology, Department of Electrical
Engineering, 2004.

[26] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavyweight dynamic binary
instrumentation”. In: ACM Sigplan notices 42.6 (2007), pp. 89–100.

[27] Zhen Li, Rohit Atre, Zia Ul Huda, Ali Jannesari, and Felix Wolf. “Unveiling Parallelization Opportu-
nities in Sequential Programs”. In: Journal of Systems and Software 117 (July 2016), pp. 282–295.
doi: 10.1016/j.jss.2016.03.045.

[28] Ashay Rane and James Browne. “Enhancing performance optimization of multicore chips and
multichip nodes with data structure metrics”. In: Proc. of the 21st international conference on parallel
architectures and compilation techniques. 2012, pp. 147–156.

102

https://doi.org/10.1016/j.jss.2016.03.045

[29] Ali Jannesari and Walter F Tichy. “On-the-fly race detection in multi-threaded programs”. In: Proc.
of the 6th workshop on Parallel and distributed systems: testing, analysis, and debugging. ACM. 2008,
p. 6.

[30] Ali Jannesari, Kaibin Bao, Victor Pankratius, and Walter F Tichy. “Helgrind+: An efficient dynamic
race detector”. In: Proc. of International Symposium on Parallel & Distributed Processing (IPDPS).
IEEE. 2009, pp. 1–13.

[31] Ali Jannesari and Walter F. Tichy. “Library-independent data race detection”. In: IEEE Transactions
on Parallel and Distributed Systems (TPDS) PP.99 (2013), pp. 1–11.

[32] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. “SD3: A scalable approach to dynamic data-
dependence profiling”. In: Proc. of 43rd Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE Computer Society. 2010, pp. 535–546.

[33] Xu Liu and John M.Crummey. “Pinpointing data locality problems using data-centric analysis”.
In: Proc. of 9th International Symposium on Code Generation and Optimization (CGO). IEEE. 2011,
pp. 171–180.

[34] Georges Da Costa and Jean-Marc Pierson. “Characterizing applications from power consumption: a
case study for HPC benchmarks”. In: Information and Communication on Technology for the Fight
against Global Warming. Springer, 2011, pp. 10–17.

[35] Xu Liu and John M.Crummey. “A data-centric profiler for parallel programs”. In: Proc. of SC13,
International Conference for High Performance Computing, Networking, Storage and Analysis. ACM.
2013, p. 28.

[36] François Broquedis, Olivier Aumage, Brice Goglin, Samuel Thibault, P-A Wacrenier, and Raymond
Namyst. “Structuring the execution of OpenMP applications for multicore architectures”. In: Proc. of
International Symposium on Parallel & Distributed Processing (IPDPS). IEEE. 2010, pp. 1–10.

[37] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. “Collecting performance data with
PAPI-C”. In: Tools for High Performance Computing 2009. Springer, 2010, pp. 157–173.

[38] Eduardo HM Cruz, Matthias Diener, and Philippe Olivier Alexandre Navaux. “Using the translation
lookaside buffer to map threads in parallel applications based on shared memory”. In: Proc. of the
International Parallel & Distributed Processing Symposium (IPDPS). IEEE. 2012, pp. 532–543.

[39] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. “Kokkos: Enabling manycore per-
formance portability through polymorphic memory access patterns”. In: Journal of Parallel and
Distributed Computing 74.12 (2014). Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing, pp. 3202–3216. issn: 0743-7315.

[40] R. Hornung and J. Keasler. The RAJA Portability Layer: Overview and Status. Lawrence Livermore
National Lab (LLNL), 2014.

[41] Ronan Keryell, Ruyman Reyes, and Lee Howes. “Khronos SYCL for OpenCL: A Tutorial”. In: Proc.
of the 3rd International Workshop on OpenCL. IWOCL ’15. Palo Alto, California: Association for
Computing Machinery, 2015.

[42] Arya Mazaheri, Felix Wolf, and Ali Jannesari. “Unveiling Thread Communication Bottlenecks Using
Hardware-Independent Metrics”. In: Proc. of the 47th International Conference on Parallel Processing.
2018, pp. 1–10.

103

[43] Arya Mazaheri, Johannes Schulte, Matthew Moskewicz, Felix Wolf, and Ali Jannesari. “Enhancing
the programmability and performance portability of GPU tensor operations”. In: Proc. of the 25th
Euro-Par Conference, Göttingen, Germany. Vol. 11725. Lecture Notes in Computer Science. Springer,
Aug. 2019, pp. 213–226.

[44] Johannes Schulte. “Achieving Efficiency and Portability in Convolutional Neural Networks Using
Vulkan API”. Bachelor’s thesis. Technical University of Darmstadt, Department of Computer Science,
2018.

[45] Arya Mazaheri, Tim Beringer, Matthew Moskewicz, Felix Wolf, and Ali Jannesari. “Accelerating
Winograd Convolutions using Symbolic Computation and Meta-programming”. In: Proc. of the 15th
EuroSys Conference, Heraklion, Crete, Greece. 40. ACM, Apr. 2020, pp. 1–14.

[46] Tim Beringer. “Decreasing the Computational Complexity of Convolutional Neural Networks with
Winograd Convolution”. Bachelor’s thesis. Technical University of Darmstadt, Department of Com-
puter Science, 2018.

[47] Sixing Yu, Arya Mazaheri, and Ali Jannesari. “Auto Graph Encoder-Decoder for Model Compression
and Network Acceleration”. In: Proc. of the International Conference on Computer Vision (ICCV),
Montreal, Canada. IEEE, Oct. 2021.

[48] Tim Beringer. “Adaptive White-box Scheduler for Deep Learning Training”. MA thesis. Technical
University of Darmstadt, Department of Computer Science, 2021.

[49] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. “Parcae: a system for flexible parallel
execution”. In: ACM SIGPLAN Notices 47.6 (2012), pp. 133–144.

[50] Ashay Rane and James Browne. “Performance optimization of data structures using memory access
characterization”. In: Cluster Computing (CLUSTER), 2011 IEEE International Conference on. IEEE.
2011, pp. 570–574.

[51] Milind Kulkarni, Vijay Pai, and Derek Schuff. “Towards architecture independent metrics for mul-
ticore performance analysis”. In: ACM SIGMETRICS Performance Evaluation Review 38.3 (2011),
pp. 10–14.

[52] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. “The PARSEC benchmark suite:
Characterization and architectural implications”. In: Proc. of International Conference on Parallel
Architectures and Compilation Techniques (PACT). ACM. 2008, pp. 72–81.

[53] Meng-Ju Wu and Donald Yeung. “Efficient reuse distance analysis of multicore scaling for loop-based
parallel programs”. In: ACM Transactions on Computer Systems (TOCS) 31.1 (2013).

[54] Derek L Schuff, Benjamin S Parsons, and Vijay S Pai. “Multicore-aware reuse distance analysis”. In:
Proc. of International Parallel & Distributed Processing Symposium Workshops (IPDPSW). IEEE. 2010,
pp. 1–8.

[55] NVIDIA Collective Communications Library (NCCL). 2021. url: https://developer.nvidia.
com/nccl.

[56] Matthias Diener, Eduardo HM Cruz, Marco AZ Alves, and Philippe OA Navaux. “Communication
in shared memory: Concepts, definitions, and efficient detection”. In: Proc. of 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP). IEEE. 2016,
pp. 151–158.

[57] Arya Mazaheri, Ali Jannesari, Abdolreza Mirzaei, and Felix Wolf. “Characterizing Loop-Level Com-
munication Patterns in Shared Memory”. In: Proc. of 44th International Conference on Parallel
Processing (ICPP). IEEE. 2015, pp. 759–768.

104

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

[58] Chen Ding and Yutao Zhong. “Predicting whole-program locality through reuse distance analysis”.
In: ACM SIGPLAN Notices. Vol. 38. 5. ACM. 2003, pp. 245–257.

[59] Kristof Beyls and Erik D’Hollander. “Reuse distance as a metric for cache behavior”. In: IASTED
Conference on Parallel and Distributed Computing and systems. Vol. 14. 2001, pp. 350–360.

[60] Kristof Beyls and Erik H D’Hollander. “Generating cache hints for improved program efficiency”. In:
Journal of Systems Architecture 51.4 (2005), pp. 223–250.

[61] Yunlian Jiang, Eddy Zhang, Kai Tian, and Xipeng Shen. “Is reuse distance applicable to data locality
analysis on chip multiprocessors?” In: Compiler Construction. Springer. 2010, pp. 264–282.

[62] Meng-Ju Wu, Minshu Zhao, and Donald Yeung. “Studying multicore processor scaling via reuse
distance analysis”. In: ACM SIGARCH Computer Architecture News. Vol. 41. 3. ACM. 2013, pp. 499–
510.

[63] Zhen Li, Ali Jannesari, and Felix Wolf. “An efficient data-dependence profiler for sequential and
parallel programs”. In: Proc. of 29th IEEE International Parallel & Distributed Processing Symposium
(IPDPS). 2015.

[64] Sean Whalen, Sophie Engle, Sean Peisert, and Matt Bishop. “Network-theoretic classification of
parallel computation patterns”. In: International Journal of High Performance Computing Applications
(2012).

[65] Sean Whalen, Sean Peisert, and Matt Bishop. “Multiclass classification of distributed memory parallel
computations”. In: Pattern Recognition Letters 34.3 (2013), pp. 322–329.

[66] Daniel Sanchez, Luke Yen, Mark D Hill, and Karthikeyan Sankaralingam. “Implementing signatures
for transactional memory”. In: Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM
International Symposium on. IEEE. 2007, pp. 123–133.

[67] MurmurHash family of hash functions. 2021. url: https://github.com/aappleby/smhasher.
[68] Andrei Broder and Michael Mitzenmacher. “Network applications of bloom filters: A survey”. In:

Internet mathematics 1.4 (2004), pp. 485–509.
[69] Matthias Diener, Eduardo HM Cruz, Marco AZ Alves, Mohammad S Alhakeem, Philippe OA Navaux,

and Hans-Ulrich Heiß. “Locality and balance for communication-aware thread mapping in multicore
systems”. In: Proc. of the European Conference on Parallel Processing. Springer. 2015, pp. 196–208.

[70] Christian Bienia, Sanjeev Kumar, and Kai Li. “PARSEC vs. SPLASH-2: A quantitative comparison
of two multithreaded benchmark suites on chip-multiprocessors”. In: International Symposium on
Workload Characterization (IISWC). IEEE. 2008, pp. 47–56.

[71] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. “The
SPLASH-2 programs: Characterization and methodological considerations”. In: ACM SIGARCH
Computer Architecture News. Vol. 23. 2. ACM. 1995, pp. 24–36.

[72] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin
Skadron. “Rodinia: A benchmark suite for heterogeneous computing”. In: Proc. of International
Symposium on Workload Characterization (IISWC). IEEE. 2009, pp. 44–54.

[73] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. “Gprof: A call graph execution profiler”.
In: ACM Sigplan Notices. Vol. 17. 6. ACM. 1982, pp. 120–126.

[74] David Eklov and Erik Hagersten. “StatStack: Efficient modeling of LRU caches”. In: International
Symposium on Performance Analysis of Systems & Software (ISPASS). IEEE. 2010, pp. 55–65.

105

https://github.com/aappleby/smhasher

[75] Ahmad Faraj and Xin Yuan. “Communication characteristics in the NAS parallel benchmarks”. In:
IASTED PDCS. 2002, pp. 724–729.

[76] Ingyu Lee. “Characterizing communication patterns of NAS-MPI benchmark programs”. In: IEEE
Southeastcon 2009. IEEE. 2009, pp. 158–163.

[77] Eduardo HM Cruz, Matthias Diener, Laércio L Pilla, and Philippe OA Navaux. “An efficient algorithm
for communication-based task mapping”. In: Proc. of Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). IEEE. 2015, pp. 207–214.

[78] Matthias Diener, Eduardo HM Cruz, Laércio L Pilla, Fabrice Dupros, and Philippe OA Navaux.
“Characterizing communication and page usage of parallel applications for thread and data mapping”.
In: Performance Evaluation 88 (2015), pp. 18–36.

[79] Matthias Diener, Eduardo HM Cruz, and Philippe OA Navaux. “Locality vs. balance: Exploring data
mapping policies on NUMA systems”. In: Proc. of 23rd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). IEEE. 2015, pp. 9–16.

[80] Yutao Zhong, Xipeng Shen, and Chen Ding. “Program locality analysis using reuse distance”. In:
ACM Transactions on Programming Languages and Systems (TOPLAS) 31.6 (2009).

[81] Qingpeng Niu, James Dinan, Qingda Lu, and P Sadayappan. “PARDA: A fast parallel reuse distance
analysis algorithm”. In: 26th International Parallel & Distributed Processing Symposium (IPDPS).
IEEE. 2012, pp. 1284–1294.

[82] Derek L Schuff, Milind Kulkarni, and Vijay S Pai. “Accelerating multicore reuse distance analysis
with sampling and parallelization”. In: Proc. of International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE. 2010, pp. 53–63.

[83] Andrej Karpathy. Software 2.0. url: https://karpathy.medium.com/software-2-0-
a64152b37c35l.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convolu-
tional neural networks”. In: Advances in neural information processing systems 25 (2012), pp. 1097–
1105.

[85] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image
recognition”. In: Proc. of the IEEE conference on computer vision and pattern recognition (CVPR). 2016,
pp. 770–778.

[86] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: International journal
of computer vision 115.3 (2015), pp. 211–252.

[87] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech. rep.
0. Toronto, Ontario: University of Toronto, 2009.

[88] Matthijs Hollemans. How fast is my model? July 1, 2021. url: https://machinethink.net/
blog/how-fast-is-my-model/.

[89] Song Han, Huizi Mao, and J. William Dally. “Deep Compression: Compressing Deep Neural Network
with Pruning, Trained Quantization and Huffman Coding”. In: 2015.

[90] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning. https:
//d2l.ai. 2020.

[91] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

106

https://karpathy.medium.com/software-2-0-a64152b37c35l
https://karpathy.medium.com/software-2-0-a64152b37c35l
https://machinethink.net/blog/how-fast-is-my-model/
https://machinethink.net/blog/how-fast-is-my-model/
https://d2l.ai
https://d2l.ai
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[92] Tianqi Chen et al. “TVM: An automated end-to-end optimizing compiler for deep learning”. In:
Proc. of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2018,
pp. 578–594.

[93] Martı́n Abadi et al. “TensorFlow: A system for large-scale machine learning”. In: Proc. of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI). Vol. 16. 2016, pp. 265–
283.

[94] Nadav Rotem et al. Glow: Graph lowering compiler techniques for neural networks. 2018. eprint:
1805.00907.

[95] Matthew W Moskewicz, Ali Jannesari, and Kurt Keutzer. “A Metaprogramming and Autotuning
Framework for Deploying Deep Learning Applications”. In: arXiv preprint arXiv:1611.06945 (2016).

[96] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. “A survey on neural architecture search”.
In: arXiv preprint arXiv:1905.01392 (2019).

[97] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. “A
comprehensive survey of neural architecture search: Challenges and solutions”. In: ACM Computing
Surveys (CSUR) 54.4 (2021), pp. 1–34.

[98] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. “Neural architecture search: A survey.” In:
Journal of Machine Learning Research (JMLR) 20.55 (2019), pp. 1–21.

[99] Andrei L Toom. “The complexity of a scheme of functional elements realizing the multiplication of
integers”. In: Soviet Mathematics Doklady. Vol. 3. 4. 1963, pp. 714–716.

[100] Stephen A. Cook and Stål O. Aanderaa. “On the minimum computation time of functions”. In:
Transactions of the American Mathematical Society 142 (1969), pp. 291–314.

[101] Shmuel Winograd. Arithmetic complexity of computations. Vol. 33. Siam, 1980.
[102] Andrew Lavin and Scott Gray. “Fast algorithms for convolutional neural networks”. In: Proc. of the

IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 4013–4021.
[103] Barbara Barabasz, Andrew Anderson, and David Gregg. Error analysis and improving the accuracy of

Winograd convolution for deep neural networks. 2018. eprint: 1803.10986.
[104] Zhen Jia, Aleksandar Zlateski, Fredo Durand, and Kai Li. “Optimizing n-dimensional, Winograd-

based convolution for manycore CPUs”. In: Proc. of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM. 2018, pp. 109–123.

[105] Partha Maji, Andrew Mundy, Ganesh Dasika, Jesse G. Beu, Matthew Mattina, and Robert Mullins.
Efficient Winograd or Cook-Toom convolution kernel implementation on widely used mobile CPUs. 2019.
eprint: 1903.01521.

[106] Bichen Wu et al. “Fbnet: Hardware-aware efficient convnet design via differentiable neural architec-
ture search”. In: Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 10734–10742.

[107] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “Darts: Differentiable architecture search”. In:
arXiv preprint arXiv:1806.09055 (2018).

[108] Han Cai, Ligeng Zhu, and Song Han. “ProxylessNAS: Direct Neural Architecture Search on Target
Task and Hardware”. In: Proc. of International Conference on Learning Representations (ICLR). 2019.

[109] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. “Once for All: Train One
Network and Specialize it for Efficient Deployment”. In: International Conference on Learning
Representations. 2020.

107

1805.00907
1803.10986
1903.01521

[110] Alexander Zai and Brandon Brown. Deep reinforcement learning in action. Manning Publications,
2020.

[111] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. “A
comprehensive survey on graph neural networks”. In: IEEE transactions on neural networks and
learning systems 32.1 (2020), pp. 4–24.

[112] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. 2014. eprint: 1409.1556.

[113] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. 2015. eprint: 1502.03167.

[114] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
FFTs. 2013. eprint: 1312.5851.

[115] Matthew W Moskewicz, Ali Jannesari, and Kurt Keutzer. “Boda: A Holistic Approach for Implement-
ing Neural Network Computations”. In: Proc. of International Conference on Computing Frontiers.
CF’17. Siena, Italy: ACM, 2017, pp. 53–62.

[116] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack Dongarra. “From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming”.
In: Parallel Computing 38.8 (2012), pp. 391–407.

[117] The Khronos Group. Khronos Vulkan Registry. 2019. url: https://www.khronos.org/
registry/vulkan (visited on 02/15/2019).

[118] The Khronos Group. Khronos SPIR-V Registry. 2019. url: https://www.khronos.org/
registry/spir-v (visited on 02/15/2019).

[119] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. “A comprehensive performance comparison of
CUDA and OpenCL”. In: Proc. of International Conference on Parallel Processing (ICPP). IEEE. 2011,
pp. 216–225.

[120] Junghyun Kim, Thanh Tuan Dao, Jaehoon Jung, Jinyoung Joo, and Jaejin Lee. “Bridging OpenCL
and CUDA: a comparative analysis and translation”. In: Proc. of International Conference for High
Performance Computing, Networking, Storage and Analysis. SC’15. ACM. 2015, pp. 1–12.

[121] Adrian Sampson. “Let’s Fix OpenGL”. In: Leibniz International Proceedings in Informatics. Vol. 71.
LIPIcs ’17. Schloss Dagstuhl, Leibniz-Zentrum füer Informatik. 2017.

[122] Nadjib Mammeri and Ben Juurlink. “VComputeBench: A Vulkan Benchmark Suite for GPGPU on
Mobile and Embedded GPUs”. In: Proc. of International Symposium on Workload Characterization.
IISWC’18. IEEE, 2018, pp. 25–35.

[123] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, and Evan Shelhamer. “cuDNN: Efficient primitives for deep learning”. In: arXiv preprint
arXiv:1410.0759 (2014).

[124] Andrew Lavin. maxDNN: An efficient convolution kernel for deep learning with Maxwell GPUs. 2015.
eprint: 1501.06633.

[125] Kevin Vincent, Kevin Stephano, Michael Frumkin, Boris Ginsburg, and Julien Demouth. “On im-
proving the numerical stability of Winograd convolutions”. In: Proc. of the International Conference
on Learning Representations (ICLR). 2017.

[126] Cedric Nugteren. “CLBlast: A tuned OpenCL BLAS library”. In: Proc. of the International Workshop
on OpenCL (IWOCL). ACM. 2018, p. 5.

108

1409.1556
1502.03167
1312.5851
https://www.khronos.org/registry/vulkan
https://www.khronos.org/registry/vulkan
https://www.khronos.org/registry/spir-v
https://www.khronos.org/registry/spir-v
1501.06633

[127] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. “Benchmarking OpenCL,
OpenACC, OpenMP, and CUDA: programming productivity, performance, and energy consumption”.
In: Proc. of Workshop on Adaptive Resource Management and Scheduling for Cloud Computing. ACM.
2017, pp. 1–6.

[128] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with
low precision multiplications. 2014. eprint: 1412.7024.

[129] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. “Deep learning with
limited numerical precision”. In: Proc. of the International Conference on Machine Learning. 2015,
pp. 1737–1746.

[130] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In: arXiv preprint arXiv:1312.4400
(2013).

[131] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going deeper with convolutions”. In: Proc. of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[132] Kamran Karimi, Neil G Dickson, and Firas Hamze. “A performance comparison of CUDA and
OpenCL”. In: arXiv preprint arXiv:1005.2581 (2010).

[133] Rafael Sachetto Oliveira, Bernardo Martins Rocha, Ronan Mendonça Amorim, Fernando Otaviano
Campos, Wagner Meira, Elson Magalhães Toledo, and Rodrigo Weber dos Santos. “Comparing
CUDA, OpenCL and OpenGL Implementations of the Cardiac Monodomain Equations”. In: Proc.
of 9th International Conference on Parallel Processing and Applied Mathematics. PPAM’11. Torun,
Poland: Springer-Verlag, 2011, pp. 111–120.

[134] Ching-Lung Su, Po-Yu Chen, Chun-Chieh Lan, Long-Sheng Huang, and Kuo-Hsuan Wu. “Overview
and comparison of OpenCL and CUDA technology for GPGPU”. In: Proc. of Asia Pacific Conference
on Circuits and Systems. APCCAS’12. IEEE. 2012, pp. 448–451.

[135] Hercules Cardoso Da Silva, Flávia Pisani, and Edson Borin. “A Comparative Study of SYCL, OpenCL,
and OpenMP”. In: Proc. of International Symposium on Computer Architecture and High-Performance
Computing Workshops. SBAC-PADW’16. IEEE. 2016, pp. 61–66.

[136] ParthaMaji and Robert Mullins. “On the reduction of computational complexity of deep convolutional
neural networks”. In: vol. 20. 4. Multidisciplinary Digital Publishing Institute, 2018, p. 305.

[137] Jason Cong and Bingjun Xiao. “Minimizing computation in convolutional neural networks”. In: Proc.
of the International Conference on Artificial Neural Networks. Springer. 2014, pp. 281–290.

[138] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann
LeCun. Fast convolutional nets with fbfft: A GPU performance evaluation. 2014. eprint: 1412.7580.

[139] Aleksandar Zlateski, Zhen Jia, Kai Li, and Fredo Durand. “The Anatomy of Efficient FFT andWinograd
Convolutions on Modern CPUs”. In: Proc. of the ACM International Conference on Supercomputing.
ICS. Phoenix, Arizona: Association for Computing Machinery, 2019, pp. 414–424.

[140] David Budden, Alexander Matveev, Shibani Santurkar, Shraman Ray Chaudhuri, and Nir Shavit.
“Deep tensor convolution on multicores”. In: Proc. of the 34th International Conference on Machine
Learning. 2017, pp. 615–624.

[141] Athanasios Xygkis, Lazaros Papadopoulos, David Moloney, Dimitrios Soudris, and Sofiane Yous.
“Efficient Winograd-based convolution kernel implementation on edge devices”. In: Proc. of the 55th
Annual Design Automation Conference. ACM. 2018, p. 136.

109

1412.7024
1412.7580

[142] Hyunsun Park, Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. “Zero and data reuse-aware
fast convolution for deep neural networks on GPU”. In: Proc. of the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS). IEEE. 2016, pp. 1–10.

[143] Sheng Li, Jongsoo Park, and Ping Tak Peter Tang. Enabling sparse Winograd convolution by native
pruning. 2017. eprint: 1702.08597.

[144] Xingyu Liu, Jeff Pool, Song Han, and William J Dally. Efficient sparse-Winograd convolutional neural
networks. 2018. eprint: 1802.06367.

[145] Intel. PlaidML. 2019. url: https://www.intel.ai/plaidml (visited on 04/20/2021).
[146] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zach DeVito, William S.

Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. “Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions”. In: arXiv preprint arXiv:1802.04730
(2018).

[147] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. “DeepMon: Mobile GPU-based Deep Learning
Framework for Continuous Vision Applications”. In: Proc. of 15th Annual International Conference
on Mobile Systems, Applications, and Services. MobiSys’17. ACM, 2017, pp. 82–95.

[148] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman
Amarasinghe. “Halide: a language and compiler for optimizing parallelism, locality, and recomputa-
tion in image processing pipelines”. In: ACM Sigplan Notices 48.6 (2013), pp. 519–530.

[149] Simon Moser and Oscar Nierstrasz. “The effect of object-oriented frameworks on developer produc-
tivity”. In: Computer 29.9 (1996), pp. 45–51.

[150] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications”. In: CoRR abs/1704.04861 (2017). arXiv: 1704.04861.

[151] Mark Sandler, G. Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
“MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In: 2018, pp. 4510–4520.

[152] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. “Shufflenet: An extremely efficient
convolutional neural network for mobile devices”. In: Proc. of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 6848–6856.

[153] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. “Shufflenet v2: Practical guidelines for
efficient cnn architecture design”. In: Proc. of the European conference on computer vision (ECCV).
2018, pp. 116–131.

[154] Sachin Mehta, Hannaneh Hajishirzi, and Mohammad Rastegari. “DiCENet: Dimension-wise convo-
lutions for efficient networks”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2020).

[155] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. “Condensenet: An
efficient densenet using learned group convolutions”. In: Proc. of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 2752–2761.

[156] Microsoft. NNI (Neural Network Intelligence). July 1, 2021. url: https://github.com/
microsoft/nni.

[157] Wencong Xiao et al. “Gandiva: Introspective cluster scheduling for deep learning”. In: Proc. of 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2018, pp. 595–610.

110

1702.08597
1802.06367
https://www.intel.ai/plaidml
https://arxiv.org/abs/1704.04861
https://github.com/microsoft/nni
https://github.com/microsoft/nni

[158] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger, Qirong Ho, Hao
Zhang, Gregory R. Ganger, and Eric P. Xing. “Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning”. In: Proc. of 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 2021, pp. 1–18.

[159] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. “Optimus: an efficient
dynamic resource scheduler for deep learning clusters”. In: Proc. of the Thirteenth EuroSys Conference.
2018, pp. 1–14.

[160] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, Chen Meng, and Wei Lin. “Dl2: A deep learning-
driven scheduler for deep learning clusters”. In: IEEE Transactions on Parallel and Distributed Systems
32.8 (2021), pp. 1947–1960.

[161] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. “Firecaffe: near-linear
acceleration of deep neural network training on compute clusters”. In: Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016, pp. 2592–2600.

[162] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. “An empirical model of
large-batch training”. In: arXiv preprint arXiv:1812.06162 (2018).

[163] Morris A. Jette, Andy B. Yoo, and Mark Grondona. “SLURM: Simple Linux Utility for Resource
Management”. In: Proc. of Job Scheduling Strategies for Parallel Processing (JSSPP). Lecture Notes in
Computer Science. Springer-Verlag, 2002, pp. 44–60.

[164] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy H Katz,
Scott Shenker, and Ion Stoica. “Mesos: A platform for fine-grained resource sharing in the data
center.” In: Proc. of Symposium on Networked Systems Design And Implementation (NSDI). Vol. 11.
2011. 2011, pp. 22–22.

[165] Vinod Kumar Vavilapalli et al. “Apache hadoop yarn: Yet another resource negotiator”. In: Proc. of
the 4th annual Symposium on Cloud Computing. 2013, pp. 1–16.

[166] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John
Wilkes. “Large-scale cluster management at Google with Borg”. In: Proc. of the Tenth European
Conference on Computer Systems. 2015, pp. 1–17.

[167] Ruben Mayer and Hans-Arno Jacobsen. “Scalable deep learning on distributed infrastructures:
Challenges, techniques, and tools”. In: ACM Computing Surveys (CSUR) 53.1 (2020), pp. 1–37.

[168] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian Brabete, and Peter
Pietzuch. “Kungfu: Making training in distributed machine learning adaptive”. In: Proc. of 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2020, pp. 937–954.

[169] Alexander Sergeev and Mike Del Balso. “Horovod: fast and easy distributed deep learning in
TensorFlow”. In: arXiv preprint arXiv:1802.05799 (2018).

[170] Tyler B Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. AdaScale SGD: A Scale-Invariant
Algorithm for Distributed Training. 2020.

[171] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional Net-
works”. In: Proc. of the International Conference on Learning Representations (ICLR). 2017.

[172] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. “Modeling Relational Data with Graph Convolutional Networks”. In: The Semantic Web. Ed.
by Aldo Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink,
Anna Tordai, and Mehwish Alam. Cham: Springer International Publishing, 2018, pp. 593–607.
isbn: 978-3-319-93417-4.

111

[173] Sheng Kai Tai, Richard Socher, and D. Christopher Manning. “Improved Semantic Representations
From Tree-Structured Long Short-Term Memory Networks”. In: International Workshop on the ACL2
Theorem Prover and Its Applications (2015).

[174] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. 2017. arXiv: 1707.06347 [cs.LG].

[175] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. “Continuous control with deep reinforcement learning”. In: arXiv
preprint arXiv:1509.02971 (2015).

[176] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. “AMC: Automl for model
compression and acceleration on mobile devices”. In: Proc. of the European Conference on Computer
Vision (ECCV). 2018, pp. 784–800.

[177] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: international conference on learning representations (2015).

[178] Yihui He, Xiangyu Zhang, and Jian Sun. “Channel pruning for accelerating very deep neural
networks”. In: Proc. of the IEEE International Conference on Computer Vision. 2017, pp. 1389–1397.

[179] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. “Pruning Filters for
Efficient ConvNets”. In: CoRR abs/1608.08710 (2016). arXiv: 1608.08710.

[180] Huan Wang, Qiming Zhang, Yuehai Wang, and Roland Hu. “Structured Probabilistic Pruning for
Deep Convolutional Neural Network Acceleration”. In: British Machine Vision Conference (2017).

[181] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. “Runtime neural pruning”. In: Proc. of the Advances
in Neural Information Processing Systems. 2017, pp. 2181–2191.

[182] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. “Mor-
phNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks”. en. In: Proc. of
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT: IEEE,
June 2018, pp. 1586–1595.

[183] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. “Learning Structured Sparsity
in Deep Neural Networks”. In: Advances in Neural Information Processing Systems. Vol. 29. Curran
Associates, Inc., 2016.

[184] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong Yang. “DSA: More
Efficient Budgeted Pruning via Differentiable Sparsity Allocation”. en. In: Proc. of European Conference
on Computer Vision (ECCV). Vol. 12348. Series Title: Lecture Notes in Computer Science. Springer
International Publishing, 2020, pp. 592–607.

[185] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. “Rethinking the Value of
Network Pruning”. In: International Conference on Learning Representations (ICLR) (2019).

[186] A Krizhevsky and G Hinton. “Learning multiple layers of features from tiny images”. In: (2009).
[187] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International

Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-
0816-y.

[188] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms for hyper-parameter
optimization”. In: Advances in neural information processing systems 24 (2011).

112

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1608.08710
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

[189] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and
Frank Hutter. “Efficient and Robust Automated Machine Learning”. In: Proc. of the 28th International
Conference on Neural Information Processing Systems - Volume 2. NIPS’15. Montreal, Canada: MIT
Press, 2015, pp. 2755–2763.

[190] Aditya Devarakonda, Maxim Naumov, and Michael Garland. “Adabatch: Adaptive batch sizes for
training deep neural networks”. In: arXiv preprint arXiv:1712.02029 (2017).

[191] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. “Don’t decay the learning rate,
increase the batch size”. In: arXiv preprint arXiv:1711.00489 (2017).

[192] Lukas Balles, Javier Romero, and Philipp Hennig. “Coupling adaptive batch sizes with learning
rates”. In: arXiv preprint arXiv:1612.05086 (2016).

[193] Juncheng Gu,Mosharaf Chowdhury, Kang G Shin, Yibo Zhu,Myeongjae Jeon, Junjie Qian, Hongqiang
Liu, and Chuanxiong Guo. “Tiresias: A GPU cluster manager for distributed deep learning”. In:
Proc. of 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI). 2019,
pp. 485–500.

[194] Yun Seong Lee Lee, Markus Weimer, Youngseok Yang, and Gyeong-In Yu. “Dolphin: Runtime
optimization for distributed machine learning”. In: Proc. of ICML ML Systems Workshop. 2016.

[195] Haoyu Zhang, Logan Stafman, Andrew Or, andMichael J Freedman. “Slaq: quality-driven scheduling
for distributed machine learning”. In: Proc. of the 2017 Symposium on Cloud Computing. 2017,
pp. 390–404.

[196] Peng Sun, Yonggang Wen, Nguyen Binh Duong Ta, and Shengen Yan. “Towards distributed machine
learning in shared clusters: A dynamically-partitioned approach”. In: IEEE International Conference
on Smart Computing (SMARTCOMP). IEEE. 2017, pp. 1–6.

[197] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. “Online job scheduling in distributed
machine learning clusters”. In: IEEE Conference on Computer Communications. IEEE. 2018, pp. 495–
503.

[198] Mark Sandler, G. Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
“MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In: CVPR (2018), pp. 4510–4520.

[199] Antonio Polino, Razvan Pascanu, and Dan Alistarh. “Model compression via distillation and quanti-
zation”. In: ICLR (2018).

[200] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. “Relational knowledge distillation”. In: Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 3967–3976.

[201] E. Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowledge in a Neural Network”.
In: CoRR (2015).

[202] Xu Lan, Xiatian Zhu, and Shaogang Gong. “Knowledge Distillation by On-the-Fly Native Ensemble”.
In: Advances in Neural Information Processing Systems. 2018, pp. 7527–7537.

[203] Sridhar Swaminathan, Deepak Garg, Rajkumar Kannan, and Frederic Andres. “Sparse Low Rank
Factorization for Deep Neural Network Compression”. In: Neurocomputing (2020), pp. 185–196.

[204] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. “Low-rank matrix
factorization for Deep Neural Network training with high-dimensional output targets”. In: Proc. of
IEEE International Conference on Acoustics, Speech and Signal Processing. 2013, pp. 6655–6659.

[205] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. “Speeding up convolutional neural networks
with low rank expansions”. In: arXiv preprint arXiv:1405.3866 (2014).

113

[206] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. “Accelerating very deep convolutional
networks for classification and detection”. In: IEEE transactions on pattern analysis and machine
intelligence 38.10 (2015), pp. 1943–1955.

[207] J. Wang, H. Bai, J. Wu, and J. Cheng. “Bayesian Automatic Model Compression”. In: IEEE Journal
of Selected Topics in Signal Processing 14.4 (2020), pp. 727–736. doi: 10.1109/JSTSP.2020.
2977090.

[208] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. “Quantization and training of neural networks for efficient integer-
arithmetic-only inference”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 2704–2713.

[209] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. “Xnor-net: Imagenet
classification using binary convolutional neural networks”. In: Proc. of European Conference on
Computer Vision. Springer. 2016, pp. 525–542.

[210] Babak Hassibi and G. David Stork. “Second Order Derivatives for Network Pruning: Optimal Brain
Surgeon”. In: NIPS (1992), pp. 164–171.

[211] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. “Importance estimation for
neural network pruning”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 11264–11272.

[212] Houxiang Ji, Linghao Song, Li Jiang, Hai Halen Li, and Yiran Chen. “ReCom: An efficient resistive
accelerator for compressed deep neural networks”. In: Proc of. Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2018, pp. 237–240.

[213] Song Han et al. “ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA”. In: Proc. of
the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2017), pp. 75–84.

[214] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. “AutoPrun: Automatic Network Pruning by
Regularizing Auxiliary Parameters”. In: Advances in Neural Information Processing Systems (NIPS)
(2019), pp. 13681–13691.

[215] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye. “AutoCompress: An
Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates.” In: Proc. of
Artificial Intelligence Conference (AAAI). 2020, pp. 4876–4883.

[216] Salem Alqahtani and Murat Demirbas. “Performance analysis and comparison of distributed machine
learning systems”. In: arXiv preprint arXiv:1909.02061 (2019).

114

https://doi.org/10.1109/JSTSP.2020.2977090
https://doi.org/10.1109/JSTSP.2020.2977090

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Data-intensive applications
	Deep-learning applications

	Performance engineering
	Performance profiling
	Performance portability
	Performance scalability

	Contributions
	Structure of this dissertation
	Statement of originality

	Performance profiling: Unveiling communication bottlenecks
	Background and motivation
	Communication in shared memory systems
	Reuse distance analysis
	DiscoPoP profiler

	Characterizing the communication behavior of parallel programs
	Instrumentation and profiling
	Communication pattern detection
	CRD: Communication reuse distance
	Communication bottleneck analysis

	Experimental results
	Communication analysis validation
	Communication scalability analysis
	Communication bottleneck analysis

	Related work
	Discussion
	Conclusion

	A primer on deep learning
	Algebraic data structures – Tensors
	Deep neural networks
	Training phase
	Inference phase

	Performance analysis of deep-learning models
	Convolutional neural networks
	Building blocks of convolutional neural networks
	Winograd convolution

	Neural architecture search
	Reinforcement learning
	Graph convolutional networks (GCN)

	Performance portability: Efficient and performance-portable ConvNet deployment
	Motivation
	Why do we need different convolution types?
	How can we make ConvNets more efficient?
	How can we achieve performance portability in ConvNets?

	Background on Boda
	Comparison of CUDA, OpenCL, and Vulkan
	Programming conventions

	Boda+ framework
	MetaGPU abstraction layer
	Winograd transformation optimization
	Code generation
	Variant selection and auto-tuning

	Experimental results
	Programmability analysis
	Winograd accuracy analysis
	Winograd transformation optimization results
	Performance portability analysis

	Related work
	Discussion
	Design trade-offs
	Generalization and extensibility

	Conclusion

	Performance scalability: An adaptive and scalable neural architecture search platform
	Motivation and background
	Quantitative analysis of distributed DL training
	The necessity of DL-aware scheduling
	Dealing with large deep-learning models
	A holistic approach for network design and training

	Scalability via DL-aware scheduling
	Job-level scheduling
	Cluster-level scheduling

	Scalability via network pruning
	Computational graph coarsening
	Automated graph encoder-decoder
	Network pruning using reinforcement learning

	Experimental results
	Evaluating the DL-aware job scheduler
	The impact of adaptive batch size tuning on NAS
	Evaluating the network pruning

	Related work
	Hyper-parameter tuning
	DL-specific job schedulers
	DNN model compression and acceleration

	Discussion
	Distributed gradient synchronization method
	The real benefit of adaptive batch size tuning
	Further insights on network pruning using RL

	Conclusion

	Conclusion and outlook
	Summary of contributions
	Outlook
	Extended application domain
	Supporting other hardware
	Full-stack AI

	Final remarks

