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D 17

Darmstadt, 2010





I

Acknowledgments

I wish to thank all people who have helped and inspired me during my doctoral study.

I especially want to thank Prof. Dr.-Ing. Abdelhak Zoubir for his supervision. It is

truly a pleasure being supervised by an outstanding researcher who shows such a high

degree of enthusiasm and motivation. Prof. Zoubir provided me with an inspiring mix

of freedom in research and guidance which made my time as a PhD student a pleasure.

I wish to thank Prof. Dr. Moeness Amin for his supervision, guidance and excep-

tional hospitality when visiting Villanova University. I benefitted greatly from our

interactions, and I am delighted to have such a renowned researcher as my co-advisor.

I also want to thank Prof. Dr.-Ing. Thomas Hartkopf, Prof. Dr.-Ing. Rolf Jakoby and

Prof. Dr.-Ing. Ralf Steinmetz who acted as chair and examiners in the PhD committee.

My thanks go to my colleagues at the Signal Processing Group at TU Darmstadt. I

was, and still am, very happy to work in such a convivial environment. Thanks to

Raquel Fandos, Philipp Heidenreich, Marco Moebus, Stefan Leier, Weaam Alkhaldi,

Michael Muma, Yacine Chakhchoukh, Ahmed Mostafa, Fiky Suratman, Zhihua Lu,

Waqas Sharif and Gebremichael Teame, as well as Renate Koschella and Hauke Fath.

I would also like to thank the former PhD students and postdocs Uli Hammes, Eric

Wolsztynski, Chris Brown, Luke Cirillo, Ramon Brcic, Christopher Kallenberger and

Said Aouada.

A special thanks to everybody at CAC at Villanova University for fruitful discussions

and great hospitality. Thanks to Fauzia Ahmad, Janice Moughan, Pawan Setlur and

Graeme Smith.

I was happy to supervise great students whose efforts have contributed to this thesis.

My sincere thanks go to Jesper Riedler, Christian Weiß, Jürgen Hahn, Feng Yin,

Michael Leigsnering and Nils Bornhorst.

I wish to thank my parents Ulrike & Hans Debes for their unconditional love and

support throughout my life. I would also like to thank the rest of my family, especially

Stephanie, Peter, Robin and Alexandre.

Finally, I am most grateful to my wife Katrin and my sons Cedric and Liam for their

understanding, love, encouragement, support and joy.

Darmstadt, 25.08.2010





III

Kurzfassung

In dieser Doktorarbeit wird das Problem der Detektion und Klassifikation stationärer

Ziele betrachtet. Die Anwendung konzentriert sich auf radarbildgebende Verfahren

durch lichtundurchlässige Materialien, wie etwa Wände. Es wird eine Konstellation

betrachtet, bei der eine dreidimensionale Szene aus verschiedenen Blickwinkeln abge-

bildet wird. Hierdurch können unerwünschte Reflektionen und Rauschen unterdrückt

und die Zieldetektierbarkeit verbessert werden.

Im Bereich der Zieldetektion werden zentralisierte und dezentralisierte Ansätze zur gle-

ichzeitigen Bildfusion und Detektion betrachtet. Insbesondere wird der für die Praxis

relevante Fall analysiert, in dem kein Wissen über die Bildstatistiken vorhanden ist

und Rückschlüsse nur aus den erfassten Daten gezogen werden können. Zur Prob-

lemlösung wird ein adaptiver Detektor eingeführt, der sich nichtstationären Statistiken

anpasst. Optimale Konfigurationen dieses Detektors werden basierend auf morpholo-

gischen Operatoren hergeleitet. Hierdurch wird eine systematisierte und zuverlässige

Zieldetektion erreicht.

In dezentralisierten Ansätzen werden lokale Entscheidungen zu einem Fusionszen-

trum übertragen, das daraufhin eine globale Entscheidung trifft. In diesen Szenar-

ien ist das Konzept der Konfidenzinformation lokaler Entscheidungen von fundamen-

taler Bedeutung, um akzeptable Detektionsergebnisse zu erhalten. Konfidenzinfor-

mationen basieren klassischerweise auf vorhandenem Wissen über Bildstatistiken oder

Eigenschaften der lokalen Detektoren, die häufig jedoch unbekannt sind. Ein neuar-

tiges, adaptives Fusionsverfahren wird zur Lösung vorgeschlagen. Es verwendet das

Bootstrap-Verfahren um systematisch Konfidenzinformationen der lokalen Detektoren

zu schätzen.

Im Bereich der Zielklassifikation wird ein allgemeines Rahmenwerk, bestehend aus Seg-

mentierung, Merkmalserfassung und Entscheidung vorgestellt. Die einzelnen Schritte

dieser Struktur werden an die Anwendung radarbildgebender Verfahren durch lich-

tundurchlässige Materialien angepasst. Der Fokus liegt hierbei auf der Vorstellung

statistischer und geometrischer Merkmalssätze, basierend auf Superquadrics. Es wird

demonstriert, dass die meisten Merkmalssätze abhängig von System- oder Szenenpa-

rametern, wie etwa der Systemauflösung oder der Distanz zum Ziel sind. Kompensa-

tionsmethoden, die eine auflösungsunabhängige Merkmalserfassung ermöglichen wer-

den als Konsequenz hieraus hergeleitet.
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Alle vorgestellten Verfahren werden sowohl mit simulierten, als auch mit experi-

mentellen Daten evaluiert. Letztere stammen von einem dreidimensionalen Radar-

bildgebungssystem unter Verwendung breitbandiger Strahlformung.
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Abstract

In this PhD thesis the problem of detection and classification of stationary targets in

Through-the-Wall Radar Imaging is considered. A multiple-view framework is used

in which a 3D scene of interest is imaged from a set of vantage points. By doing so,

clutter and noise is strongly suppressed and target detectability increased.

In target detection, centralized as well as decentralized frameworks for simultaneous

image fusion and detection are examined. The practical case when no prior knowledge

on image statistics is available and all inference must be drawn from the data at hand

is specifically considered. An adaptive detection scheme is proposed which iteratively

adapts in a non-stationary environment. Optimal configurations for this scheme are

derived based on morphological operations which allow for automatic and reliable target

detection.

In a decentralized framework, local decisions are transmitted to a fusion center to

compile a global decision. In these scenarios, the concept of confidence information of

local decisions is crucial to obtain acceptable detection results. Confidence information

is classically based on prior knowledge on either the image statistics or local detector

performance which generally are unknown in practice. A novel adaptive fusion scheme

based on the bootstrap is proposed to automatically extract confidence information of

local decisions given the acquired data at hand.

In target classification a general framework consisting of segmentation, feature extrac-

tion and target discrimination is proposed. The adaption of all these techniques to the

application of Through-the-Wall Radar Imaging is investigated, whereby the focus is

set on the feature extraction step. A combination of statistical and geometrical fea-

tures based on superquadrics is proposed. It is shown that most features depend on

system and scene parameters such as system resolution and target distance. Compen-

sation methods to allow for resolution-independent feature extraction are consequently

derived.

All proposed methods are evaluated using simulated as well as real data measurements

obtained from three-dimensional imaging measurements using wideband sum-and-delay

beamforming.
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Chapter 1

Introduction and Motivation

Through-the-Wall Radar Imaging (TWRI) is an emerging technology [1–6], allowing

to “see” through visually opaque material such as walls. It has numerous civilian, law

enforcement and military applications making it a highly desirable tool in, for example,

police and firefighter missions or search and rescue operations. TWRI can be used to

detect buried people after natural disasters, e.g. earthquakes. It allows police units to

detect and locate hostages, hostage-takers and weapons in a hostage crisis before even

entering the building and allows to detect and classify concealed weapons and explosives

in military actions or for homeland security purposes. In all these applications, it is

the ultimate aim to use radio frequency (RF) emission and reception to gain vision into

scenes which otherwise are nonaccessible physically, optically, acoustically, or thermally.

Images obtained from behind walls using electromagnetic propagation are subject to

strong distortions. Automatic schemes for target detection and classification thus are

of high practical interest in this area. It is the aim of this thesis to design such

schemes that need no or only marginal prior knowledge on scene statistics and that

simultaneously perform fusion and detection on a set of images obtained from multiple

vantage points. Developed classification schemes have to be invariant to system and

scene parameters, e.g. system resolution and target distance to allow for reliable results

in a variety of scenarios.

1.1 Motivation

Automatic detection of humans and objects of interest, e.g., concealed weapons or

explosive material, is of high practical interest [4,5] and fundamental to follow-on tasks

of target classification and tracking, image interpretation and understanding. Little

work thus far has been done in applying the principles of detection and classification

theory to the special characteristics of TWRI and indoor radar images. The image

statistics depend, among other things, on the target electric properties, size, shape,

and surroundings. With several possible indoor targets such as human, furniture, and

appliances, as well as the influence of wall impairing and multipath propagation effects,

robust detection in which the detector adapts itself to the changing and/or unknown

characteristics of the data is crucial.
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A set of TWRI images acquired from the same scene using different vantage points

has been shown [6,7] to increase detectability of targets. The question arises, however,

how to automatically perform simultaneous image fusion [8–10] and target detection

to obtain a single binary reference image which indicates the presence or absence of

targets. Practical methods have to take into account that the image statistics may

differ dramatically when using different vantage points. The radar cross section (RCS)

of targets is generally not invariant to rotation. Further, in a typical indoor scenario

it is likely that targets may only be visible from few vantage points and are shadowed

from others.

Classification is a follow-on task to detection. The aim is to divide a TWRI image into

a finite set of segmented objects which are labelled according to a certain class that may

depend on target material or shape, for example. This so called object occupancy map

can then be used by an image analyst to get a sophisticated description of the targets

being present in the scene of interest. One important issue in target classification is

robustness with respect to target coordinates and system parameters. TWRI images

change in pixel intensity as well as in shape when moving the target with respect to the

imaging system and/or change system parameters such as bandwidth and crossrange

resolution. Thus, a practical TWRI classification system has to be robust to changes

in resolution.

1.2 State-of-the-Art

TWRI involves cross-disciplinary research in electromagnetic propagation [11], antenna

and waveform design [12], beamforming [6,13–18], wall compensation [19–21] and image

processing [22–24] among others. Only little work has been accomplished in the area

of target detection in TWRI. Most contributions in this area deal with moving targets,

where Doppler shifts can be considered [25–28]. To the best of our knowledge the

only contribution, beside our own contributions [7,29–35] where detection of stationary

targets for TWRI is performed in the image domain is considered by Ahmad and Amin

in [6, 36] where a simple thresholding and multiplication scheme is used. Classically

the problem of target detection under unknown and possibly varying statistics in the

image domain could be treated by constant false-alarm rate (CFAR) detectors [37–39],

such as cell-averaging CFAR (CACFAR) [40] or order statistics CFAR (OSCFAR)

[38, 41] methods. These methods aim at providing a constant false-alarm rate while

the statistics may be time- and/or spacevarying. The drawback of these approaches

is that important parameters which have a strong impact on the detection result such

as cell size and guard cell size in CACFAR or the percentile in OSCFAR have to be
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chosen beforehand. Given the aim of automatic target detection, it is undesirable to

tune parameters, other than the false-alarm rate to be achieved.

The only work beside our own contributions [42,43] dealing with target classification in

TWRI is, to the best of our knowledge, by Rosenbaum and Mobasseri in [24] where the

principal component analysis (PCA) is applied. However, this approach is practically

limited as the authors provide features which are not resolution-independent.

1.3 Contributions

The contributions of this thesis are as follows:

• Centralized Target Detection: An adaptive target detector is developed,

which is applicable for stationary target detection in TWRI. The detector does

not assume prior knowledge of the image statistics and allows to adapt to space-

varying statistics. It is derived in detail, considering conditions of convergence

as well as optimal configurations. The detector can be used in single- as well as

multiple-view imaging scenarios.

• Decentralized Target Detection: Existing decentralized detection schemes

which assume prior knowledge of the image statistics are extended to cope with

unknown and varying statistics. Further, a new technique to obtain confidence or

quality information of local decisions using the bootstrap principle [44, 45] is in-

troduced. It improves the performance of classical decentralized target detectors

at the cost of slightly increased bandwidth requirements.

• Target Classification: A target classification framework, consisting of seg-

mentation, feature extraction and classification is formulated and adapted to the

application of TWRI. The usage of geometrical and statistical features is ex-

ploited and analyzed. Further, the problem of system- and scene-independent

features is considered. Transformation schemes that allow to obtain features

which are independent of system resolution and target distance are derived.

1.4 Publications

The following publications have been produced during the period of PhD candidacy.
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Book chapter

• C. Debes, A. M. Zoubir. Detection approaches in Through-Wall Radar Imaging,

in Through-the-Wall Radar Imaging, CRC Press, to appear.

Internationally Refereed Journal Articles

• C. Debes, J. Hahn, A. M. Zoubir and M. G. Amin. Segmentation, Feature

Extraction and Discrimination of Targets in Through-the-Wall Radar Imaging.

IEEE Transactions on Geoscience and Remote Sensing, submitted.

• C. Debes, J. Riedler, A. M. Zoubir, M. G. Amin. Adaptive Target Detection with

Application to Through-the-Wall Radar Imaging. IEEE Transactions on Signal

Processing, submitted.

• C. Debes, M. G. Amin, A. M. Zoubir. Target Detection in Single- and Multiple-

View Through-the-Wall Radar Imaging. IEEE Transactions on Geoscience and

Remote Sensing. vol. 47(5), pp. 1349 - 1361, May 2009.

Internationally Refereed Conference Papers

• C. Debes, C. Weiss, A. M. Zoubir, M. G. Amin. Wall-Clutter Mitigation using

Cross-Beamforming in Through-the-Wall Radar Imaging. 18th European Signal

Processing Conference (EUSIPCO), to appear.

• C. Debes, A. M. Zoubir. Image-Domain based Target Detection under Model

Uncertainties in Through-the-Wall Radar Imaging. American Electromagnetics

Conference, Ottawa, Canada, July 2010, to appear.

• C. Debes, C. Weiss, A. M. Zoubir, M.G. Amin. Distributed Target Detection

in Through-the-Wall Radar Imaging using the Bootstrap. In Proceedings of the

35th IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 3530 - 3533, Dallas, TX, USA, March 2010.

• C. Debes, J. Hahn, A. M. Zoubir, M.G. Amin. Feature Extraction in Through-

the-Wall Radar Imaging. IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 3562 - 3565, Dallas, TX, USA, March 2010.

• C. Debes, A. M. Zoubir, M.G. Amin, Optimal Decision Fusion in Through-the-

Wall Radar Imaging. In Proceedings of the IEEE Workshop on Statistical Signal

Processing (SSP), Cardiff, UK, August 2009
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• C. Debes, J. Riedler, M. G. Amin, A. M. Zoubir. Iterative Target Detection

Approach for Through-the-Wall Radar Imaging. In Proceedings of the 34th IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pg. 3061 - 3064 , Taipei, Taiwan, April 2009.

• C. Debes, M. G. Amin, A. M. Zoubir. Target Detection in Multiple-Viewing

Through-the-Wall Radar Imaging. In Proceedings of the 28th IEEE Interna-

tional Geoscience & Remote Sensing Symposium (IGARSS), Vol. 1, pp. 173-176,

Boston MA, USA, July 2008.

• C. Debes, R. Engel, A. M. Zoubir, A. Kraft. Quality assessment of synthetic

aperture sonar images. In Proceedings of the IEEE OCEANS ’09, Bremen, Ger-

many.

• C. Debes, A. M. Zoubir. The recursive maximum likelihood algorithm for non-

stationary signals. In Proceedings of the 33rd IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 3777 - 3780, Las Vegas

NV, USA, March 2008.

• C. Debes, A. M. Zoubir. Bootstrapping autoregressive plus noise processes. In

Proceedings of the 2nd IEEE International Workshop on Computational Advances

in Multi-Sensor Adaptive Processing, pp. 53 - 56, St. Thomas, US Virgin Islands,

December 2007.

1.5 Thesis overview

The thesis outline is as follows: Chapter 2 describes the image formation/beamforming

process used to obtain three-dimensional TWRI images. It further introduces the

experimental setup as well as a statistical analysis of typical TWRI images.

Chapter 3 considers the problem of centralized target detection in TWRI, where in-

dividual TWRI systems are allowed to send raw image data to a global detector. An

adaptive target detector is developed and successfully applied to experimental data.

In Chapter 4 the detection framework is modified to a decentralized scheme, where

individual TWRI systems are only allowed to send compressed information to a fusion

center. After adapting existing detectors to cope with unknown image statistics the

problem of confidence information of local decisions is treated. A new technique is

proposed which allows to extract confidence or quality information based only on the

data at hand.
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Target classification is considered in Chapter 5. A classification framework for TWRI is

introduced. Further, the problem of resolution-independent features describing target

objects is tackled.

Conclusions are drawn in Chapter 6 and an outlook for future work is presented.
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Chapter 2

Image formation and Statistical Analysis

In this chapter image formation for TWRI is discussed. We hereby consider wideband

sum-and-delay beamforming [6] used to obtain a 3D intensity map of the scene of

interest. Further, a statistical analysis of TWRI images is provided based on an em-

pirical study. This includes a description of the experimental setup used throughout

this thesis.

2.1 Beamforming in Through-the-Wall Radar

Imaging

Beamforming describes the process of how to obtain an image or intensity map out of

signals received by an antenna array. There exist many approaches for beamforming

for TWRI applications [46]. This includes tomographic approaches [13–15] where the

image formation is seen as an inverse scattering problem, differential SAR [47] and

adaptive beamformers [18, 48]. In this thesis we restrict ourselves to wideband delay

and sum beamforming [6]. However, we remark that the proposed detection and clas-

sification techniques introduced and derived in Chapters 3, 4 and 5 are postprocessing

methods and are therefore independent of the actual beamforming process.

In the following, we consider the same scheme as in [18], which has a strong link to high

resolution image reconstruction in inverse synthetic aperture radar (ISAR) [49,50]. For

simplicity the imaging scheme is first derived for freespace and then extended to imaging

behind a homogeneous wall. We consider known wall parameters for beamforming.

References [19–21] describe methods for estimating unknown wall parameters.

In the following we consider a line array for simplicity, acquiring a two-dimensional

image. This setup can be extended to two-dimensional arrays which will be used in

the experimental setup in Section 2.2.1. We consider K transceivers, being placed at

vk, k = 0, ..., K − 1, imaging a scene which is described by a local coordinate system

(u′, v′) as shown in Figure 2.1. Then, the distance from the k-th transceiver can be

approximated by [18]

Rk(u
′, v′) ≈ Rk(0, 0) + u′ cosϕk − v′ sinϕk (2.1)
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Imaged Scene

v

u, u′

v′

(u′p, v
′
p)

Rk(0, 0)

Rk(u
′
p, v

′
p)

R
ϕk

v0

v1

vk

Figure 2.1. Beamforming scheme for high resolution radar imaging

where Rk(0, 0) denotes the distance from the k-th transceiver to the center of the scene

and ϕk is the respective angle, as shown in Figure 2.1. Thus,

ϕk = sin−1

(

vk

Rk(0, 0)

)

(2.2)

where vk is the position of the k-th transceiver with respect to the array center. Con-

sequently, the two-way propagation delay is given by

τk(u
′, v′) ≈ 2

c
(Rk(0, 0) + u′ cosϕk − v′ sinϕk) (2.3)

with c denoting the propagation speed. Assume now a single point target being present

at (u′p, v
′
p). Its distance from the k-th transceiver as well as the corresponding two-way

propagation delay are given by

Rk(u
′
p, v

′
p) ≈ Rk(0, 0) + u′p cosϕk − v′p sinϕk (2.4)

τk(u
′
p, v

′
p) ≈ 2

c

(

Rk(0, 0) + u′p cosϕk − v′p sinϕk

)

(2.5)
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When using a stepped-frequency approach [6], a wideband pulse is approximated by

a finite number of narrowband pulses. The image formation using a sum and delay

beamformer is then the summation

I(u′, v′) =
P−1
∑

p=0

L−1
∑

l=0

K−1
∑

k=0

Γ(u′p, v
′
p)e

−jωl(τk(u′,v′)−τk(u′

p,v′p)) (2.6)

where ωl is the l-th frequency bin and P , L and K denote the number of targets,

frequency bins and array elements, respectively. Further, Γ(u′p, v
′
p) is the complex

reflectivity of the p-th target. The complex value Γ(u′p, v
′
p)e

−jωlτk(u′

p,v′p) can be obtained

via matched filtering as described in [6]. Reducing the problem to the case of a single

point target (P = 1) at (u′0, v
′
0) yields

I(u′, v′) = Γ(u′0, v
′
0)

L−1
∑

l=0

K−1
∑

k=0

e−jωl(τk(u′,v′)−τk(u′

0,v′0)) (2.7)

= Γ(u′0, v
′
0)

L−1
∑

l=0

K−1
∑

k=0

e−j
2ωl
c

((u′−u′

0) cos ϕk−(v′−v′0) sin ϕk) (2.8)

Using the notation ωl = ω0 + l∆ω, where ω0 is the lowest used frequency, the acquired

complex image can be written as

I(u′, v′) = Γ(u′0, v
′
0)

L−1
∑

l=0

K−1
∑

k=0

e−j
2(ω0+l·∆ω)

c
((u′−u′

0) cos ϕk−(v′−v′0) sin ϕk) (2.9)

= Γ(u′0, v
′
0)

L−1
∑

l=0

K−1
∑

k=0

e−j
2ω0

c
((u′−u′

0) cos ϕk−(v′−v′0) sin ϕk) ×

e−j 2l∆ω
c

((u′−u′

0) cos ϕk−(v′−v′0) sin ϕk)

= Γ(u′0, v
′
0)

K−1
∑

k=0

e−j
2ω0

c
((u′−u′

0) cos ϕk−(v′−v′0) sinϕk) ×

L−1
∑

l=0

e−j 2l∆ω
c

((u′−u′

0) cos ϕk−(v′−v′0) sinϕk)

= Γ(u′0, v
′
0)

K−1
∑

k=0

e−j
2ω0

c
((u′−u′

0) cos ϕk−(v′−v′0) sinϕk) ×

e−j
(L−1)∆ω

c
((u′−u′

0) cos ϕk−(v′−v′0) sin ϕk) ×
sin
(

L∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
)

sin
(

∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
)

which in fact represents a spatial convolution of the target reflectivity with the system

point spread function (PSF).

In wideband sum-and-delay beamforming for TWRI [6], the summation over all fre-

quencies and array elements still holds as per Equation (2.6), but the delay from the
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k-th array element to a point (u′p, v
′
p) in the local scene coordinate system now has to

incorporate the propagation through the wall as [6]

τk,wall(u
′
p, v

′
p) = (Rk,air,1(u

′
p, v

′
p) +

√
ǫRk,wall(u

′
p, v

′
p) +Rk,air,2(u

′
p, v

′
p))/c (2.10)

where ε denotes the dielectric constant of the wall and Rk,air,1(u
′
p, v

′
p), Rk,wall(u

′
p, v

′
p)

and Rk,air,2(u
′
p, v

′
p) represent respectively the traveling distances of the electromagnetic

wave from the k-th antenna to point (u′p, v
′
p) before, through and beyond the wall.
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Figure 2.2. Propagation before, through and beyond a homogeneous wall

The travelling distances Rk,air,1(u
′
p, v

′
p), Rk,wall(u

′
p, v

′
p) and Rk,air,2(u

′
p, v

′
p) can be esti-

mated as [6]

Rk,air,1(u
′
p, v

′
p) =

uoff

cos(ϕk,I(u′p, v
′
p))

(2.11)

Rk,wall(u
′
p, v

′
p) =

d

cos(ϕk,R(u′p, v
′
p))

(2.12)

Rk,air,2(u
′
p, v

′
p) =

u′p − uoff − d

cos(ϕk,I(u′p, v
′
p))

(2.13)

where uoff is the standoff distance from the system to the wall and ϕk,I(u
′
p, v

′
p) and

ϕk,R(u′p, v
′
p) are the angle of incidence and refraction, respectively. The corresponding
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geometry is depicted in Figure 2.2. Note that the above calculations hold only when

the transceiver and imaged point (u′p, v
′
p) are at the same height. For the general case,

a rotation transformation as in [6] has to be performed.

2.2 Statistical analysis of Through-the-Wall Radar

Images

Knowledge on the statistics of TWRI images is crucial for centralized and decentralized

image-domain based target detection (Chapters 3 and 4) as well as for target classi-

fication (Chapter 5). Given Equation (2.6) the theoretical image distribution can be

obtained by assuming the array response to be independent and identically distributed

(i.i.d.) from sensor to sensor and from frequency to frequency. Then, using the central

limit theorem, the image reflectivity at a particular point in space can be modelled as

a zero-mean complex random variable where the real and imaginary parts are indepen-

dently Gaussian distributed with a common variance. The absolute value of the image

considered in the subsequent chapters follows thus a Rayleigh distribution. However,

it shall be noted that the central limit theorem may not be applicable as the number

of array elements and/or frequencies used is too small in practice to allow drawing the

Gaussian assumption. Also, Gaussianity may be invalid in imaging scenarios which

deviate from the simple scenario treated in Section 2.1, e.g. when considering more

complex wall effects, violation of the far-field assumption and/or extended targets.

An empirical study of the image statistics is thus crucial and will be carried out in the

following.

2.2.1 Experimental Setup

The imaging system used throughout this paper is a SAR system [51], where a single

horn antenna in motion synthesizes a 57 × 57 element planar array. The interelement

spacing is 0.875 in. As described above, a continuous-wave (CW) stepped-frequency

signal is used to approximate a wideband pulse. Further, the background subtraction

technique [6] is used to increase the signal to clutter power ratio.

In this thesis three different scenarios are considered and briefly reviewed in the fol-

lowing. All images are acquired in a semi-controlled lab at the Radar Imaging Lab at
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Villanova University, Villanova, PA, USA. The first scene, depicted in Figure 2.3 con-

sists of a table with metal legs, a chair, a metal sphere, and a metal dihedral mounted

on a high foam column. The last two items represent indoor symmetric objects and

objects of corner reflection properties. This scene is recorded from two sides (front-

wall and sidewall) using a bandwidth of 2.4 GHz with a center frequency of 1.9 GHz.

The TWRI system is illuminating through a homogeneous concrete wall with thickness

d = 5.625 in and dielectric constant ε = 7.66. Data recorded from this scene is mainly

used in Chapter 3 to perform centralized single- and multiple view detection.

The second scenario considered in this thesis is depicted in Figure 2.4, consisting of

three calibration items: A metal sphere, dihedral and trihedral, mounted on high foam

columns. It is recorded from 8 different views, namely 0, 45, 90, 135, 180, 225, 270 and

315 using the same specifications and wall as for the first scene described above. Data

recorded from this scene is mainly used in Chapter 4 to perform decentralized target

detection where more than 2 vantage points are needed.

The third scenario is depicted in Figure 2.5, consisting of a single metal dihedral which

is illuminated at different standoff distances and different bandwidths. The TWRI

system here is illuminating through a wooden wall of thickness d = 2in. Data recorded

from this scene is used in Chapter 5 to study the effect of resolution on classification

results.

2.2.2 Empirical Study

In order to obtain knowledge on the image statistics we consider the setup shown in

Figure 2.3 which consists of room items as well as calibration items. Similar conclusions

can be drawn from the other two scenarios.

Different statistics can be obtained when focussing the array on various heights h in

the 3D scene image. In particular, we consider the following four cases with different

clutter:

• Case 1, h = h1 (−2 in). ‘No target’

We examine the image at the height between the dihedral and the metal sphere

where no target is present, and only a small amount of clutter due to targets at

other heights can be observed.
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(a) Indoor scene

(b) Layout

Figure 2.3. Imaged indoor scene consisting of a metal table, metal sphere, a chair and
a metal dihedral mounted on a high foam column
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(a) Indoor scene

(b) Layout

Figure 2.4. Imaged indoor scene consisting of a metal sphere, dihedral and trihedral,
mounted on high foam columns
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(a) Indoor scene

(b) Layout

Figure 2.5. Imaged indoor scene consisting of a metal dihedral imaged at different
standoff distances
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• Case 2, h = h2 (+7 in). ‘Dihedral’

The image at the height of the dihedral is examined. At this height, no other

targets are present, and only a small amount of clutter contributed by targets at

other heights is expected.

• Case 3, h = h3 (−20.5 in). ‘Table’

The image at the height of the table legs is examined. A medium amount of

clutter is expected due to, e.g., the metal sphere, the chair and reflections from

the ground. Note that the height at the top of the table legs is focused, such that

the chair leg is considered as clutter, not a target.

• Case 4, h = h4 (−15 in). ‘Metal sphere’

The image at the height of the center of the metal sphere is examined. A large

amount of clutter is expected, mainly due to the table legs.

The four resulting background-subtracted B-Scan images (two-dimensional cuts at a

particular height of interest), which are obtained by scanning the indoor scene behind

the solid concrete wall, are shown in Figure 2.6.

The background-subtraction has been performed by making use of reference or back-

ground data (here: a room without objects) and performing coherent subtraction.

This reference data may be secured in long-term surveillance operations where new

targets emerge over time. Targets of interest (e.g. the four table legs in Case 3 or

the metal sphere in Case 4) are indicated by dotted circles. Let in the following the

acquired TWRI image be denoted by Y (i, j, h), i = 0, ..., Ni − 1, j = 0, ..., Nj − 1 and

h = 0, ..., Nh − 1 where i, j and h are the coordinates in range, crossrange and height

and Ni, Nj and Nh are the total number of voxels in range, crossrange and height, re-

spectively. Given the precise locations of these targets of interest in each of the above

cases, the target image can be described as,

T (i, j, h) =

{

1, target present at location (i, j, h)
0, target absent at location (i, j, h)

(2.14)

with h ∈ {h1, ..., h4}. The image Y (i, j, h), i = 0, ..., Ni − 1, j = 0, ..., Nj − 1, h =

0, ..., Nh − 1 can be divided into a set of target samples Th and a set of noise samples

Nh:

Th = {Y (i, j, h)|T (i, j, h) = 1} (2.15)

and

Nh = {Y (i, j, h)|T (i, j, h) = 0} (2.16)
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(d) Case 4: Metal sphere

Figure 2.6. Typical B-Scan images obtained for different targets
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Figure 2.7. Estimated image statistics for different considered cases

The sets Th,Nh associated with the aforementioned experiment with h = h1, h2, h3, h4

are now used to evaluate the statistics of noise and target data in background-

subtracted TWRI images. The resulting estimated probability density functions

(pdf’s), which have been obtained using kernel density estimation (KDE) [52], are

shown in Figure 2.7. In KDE, a pdf is estimated by placing a kernel, e.g., a Gaussian

kernel, at each data point. The estimate of the pdf is then obtained by summation over

all kernels and subsequent normalization. This method is especially effective when only

a few data points are available, which is the case for target data in the above images.

It is evident from Figure 2.7 that the image statistics vary significantly from one case

to another. In Cases 1 and 2, the amount of noise and clutter is relatively small. The

noise pdf for Case 2 can well be separated from the target data pdf which improves

detection. On the other hand, in Cases 3 and 4, the amount of noise and clutter is

relatively large, yielding strong overlapping pdf’s which complicates detection. It can
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be observed that in Case 4, approximately 12% of the strongest reflections obtained

are not due to targets, but rather due to clutter.

The pdf’s, shown in Figure 2.7, strongly suggest modeling the noise as a truncated

Rayleigh distribution. The target pdf is highly dependent on the target size, material,

and shape which makes it difficult to draw general conclusions on its image statistics.

From the experimental data, however, the target image pdf appears to consistently

follow a truncated Gaussian distribution. The noise Rayleigh pdf and the target Gaus-

sian pdf have also been shown to be valid assumptions in extensive experiments that

have been conducted using different targets. These experiments maintained the same

semi-controlled lab environment and included various room items, such as chairs, ta-

bles, file cabinets and metal objects with different shapes. When evaluating the pdf,

all these objects were illuminated by the same array aperture.

It is noted that truncated Gaussian pdf’s have also been used in [10] for describing the

target distribution in multiple location SAR/ISAR image fusion. Further, as demon-

strated in [7], the truncated Gaussian and Rayleigh pdf’s can be well approximated

by their non-truncated counterparts, as the pdf’s have only little impact outside the

interval [0, 1]. This facilitates the detection procedure.

One can obtain the maximum likelihood estimates of the respective parameters, µ1 and

σ1, describing the mean and standard deviation of the Gaussian distribution, as well

as σ0, describing the scale parameter of the Rayleigh distribution as

µ̂1 =
1

NT

∑

Y (i,j,h)∈Th

Y (i, j, h) (2.17)

σ̂1 =

√

1

NT

∑

Y (i,j,h)∈Th

(Y (i, j, h) − µ1)
2 (2.18)

σ̂0 =

√

1

2NN

∑

Y (i,j,h)∈Nh

Y 2(i, j, h) (2.19)

where NT and NN are the number of target and noise samples, respectively. The results

of maximum likelihood estimation given the four heights presented above are obtained

as

Height σ̂0 µ̂1 σ̂1

h1 0.08 – –
h2 0.09 0.57 0.19
h3 0.19 0.53 0.18
h4 0.16 0.42 0.16
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As already demonstrated by the results of Figure 2.7, the image statistics may change

dramatically depending on the scene. Since detailed knowledge of the scene is un-

available in practice, the detection scheme needs to be robust against errors in the

parameter values of the assumed pdf’s.

It should also be noted that the conditional distributions depend on the image reso-

lution, i.e., the array aperture and the bandwidth of the signal used to illuminate the

scene. A high image resolution will lead to narrow pdf’s representing target and noise

distributions. A low image resolution on the other hand yields blurring effects, leading

to broader pdf’s.

It is noted that background-subtraction affects the statistics of targets and thus dif-

ferent conclusions have to be drawn when secondary data is not available. Further,

neither in the beamforming, nor the detection part, have we modelled or compensated

multipath propagation. Multipath propagation effects, if strong enough, can thus not

be discriminated from true target responses.

2.3 Conclusions

In this chapter the foundations for beamforming in TWRI have been reviewed. These

are of fundamental importance for the task of automatic target detection and classifi-

cation considered in the subsequent chapters of this thesis. The imaging procedure has

been derived in detail and analyzed in terms of the resulting image statistics. Further,

the three experimental datasets have been introduced, including the geometric layout

and system parameter settings. Based on these datasets an empirical study has been

performed to evaluate the distribution of target and noise samples in TWRI images.

Due to the large variety of possible targets in TWRI as well as the effect of the wall,

multipath propagation or other distortions it is practically impossible to draw general

conclusions on TWRI statistics which hold for every scenario. The Rayleigh distri-

bution for modelling noise samples is physically well motivated and matches with the

empirical results. Considering the target distribution it is noted that it strongly varies

depending on the target itself. Generally, a truncated Gaussian distribution seems to

be a reasonable choice to describe target samples and will be considered in the following

chapters.

The conclusion of this chapter regarding the tasks of target detection and classification

are as follows: It is acceptable to assume pdf models describing target and noise in
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TWRI images. However, TWRI images are highly non-stationary, yielding to varying

parameters even in simple, static scenarios. It is thus crucial to design algorithms

that do not require knowledge on these parameters and, furthermore, adapt to their

changes.
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Chapter 3

Centralized Target Detection

In this chapter, centralized target detection for TWRI applications is considered. The

aim is, given a set of acquired three-dimensional TWRI images to obtain a single

three-dimensional binary image, giving indication about the presence or absence of

targets. Section 3.1 motivates the usage of a centralized approach and its practicability

for TWRI. Two classical techniques, namely a simple thresholding scheme and the

Neyman-Pearson test are then introduced and reviewed in Sections 3.2 and 3.3. The

main contribution of this chapter is the derivation and analysis of an adaptive target

detector in Section 3.4 which allows for automatic target detection in unknown and

nonstationary environments. Experimental results, demonstrating the usability of the

developed detector are provided in Section 3.5. Conclusions are drawn in Section 3.6.

The material presented in this chapter is partly taken from [7, 29, 30, 33–35].

3.1 Motivation

Radar images acquired through walls typically show strong degradations which severely

affect the detection performance [6,7]. Degradations may e.g. be due to uncompensated

wall effects or multipath propagation effects which yield strong clutter objects in the

image domain. Often, these clutter objects are widely extended in space as well as

strong in amplitude and are thus likely to suppress target objects. One way to solve

this problem is a multi-view framework [6, 7, 29], where a set of TWRI images are

obtained from different vantage points, as shown in Figure 3.1. When illuminating the

scene of interest from multiple views, clutter assumes different RF signatures, whereas

targets appear at the same location in all images, provided that they have a small

physical cross-sectional area and are visible from all views.

When a set of TWRI images, representing the same physical content, is acquired, the

question arises, how to fuse this set of images to a single common reference image.

The approach considered in this chapter is a centralized framework which is depicted

in Figure 3.2. Here, a set of TWRI systems illuminates the same phenomenon. Beam-

forming and subsequent image registration are individually performed and the resulting

TWRI images are sent to a central detector which then performs the final decision.



24 Chapter 3: Centralized Target Detection

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Nj Nj

Ni Ni

Wall reference points

Figure 3.1. Possible Multiple-View scenarios

Phenomenon

TWRI
System 1

TWRI
System 2

TWRI
System M Preprocessing

Beamforming &
Preprocessing

Beamforming &
Preprocessing

Beamforming &

Detector

Y1

Y2

YM

B

Figure 3.2. Centralized detection scheme

The centralized detection approach offers the best performance, as raw image data is

used [53, 54]. Its drawback are high requirements on communication bandwidth and

computational complexity.

For simplicity, the detectors presented in this chapter are derived for B-Scans, i.e. two-

dimensional data at a particular height of interest, as depicted in Figure 3.3. Extension

to three-dimensional data is straightforward and will be treated later.

3.2 Simple Thresholding Technique

The work on multi-location wideband SAR imaging [6] by Ahmad and Amin was the

first one applying image-domain based target detection for TWRI by using a simple

thresholding and multiplication scheme to binarize and fuse a set of TWRI images.
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Figure 3.3. Acquiring a B-Scan image from a three-dimensional scene

In the following, we denote Ym(i, j) with i = 0, . . . , Ni − 1 and j = 0, . . . , Nj − 1 as

the TWRI image acquired from the m-th vantage point, m = 1, . . . ,M . We note that

the TWRI image is normalized by scaling with respect to the largest image value.

Further, we only consider the absolute value of the image after beamforming, such

that Ym(i, j) ∈ [0, 1] where (i, j) represents the pixel position with i and j denoting

the range and cross-range indices, respectively. A simple and intuitive way to perform

detection is to binarize each TWRI image for m = 1, . . . ,M, i = 0, . . . , Ni − 1 and

j = 0, . . . , Nj − 1 as,

BT
m(i, j) =

{

1, Ym(i, j) > βT

0, Ym(i, j) < βT
(3.1)

where βT is a normalized image threshold. The individual images can be fused by

applying, for example, a simple pixel-wise multiplication in order to obtain a single

reference image [6],

BT (i, j) =

M
∏

m=1

BT
m(i, j) (3.2)

The advantage of the pixel-wise multiplication scheme is the reduction of clutter in the

resulting binary reference image BT (i, j), i = 0, . . . , Ni − 1, j = 0, . . . , Nj − 1. When

illuminating the scene of interest from multiple views, clutter assumes different RF

signatures, whereas targets appear at the same location in all images, provided that

they have a small physical cross-sectional area in the i-j plane and are visible from all

views. Applying Equation (3.2), a pixel (i0, j0) is said to correspond to a target if and

only if a strong reflection at location (i0, j0) is observed in each radar image. Strong



26 Chapter 3: Centralized Target Detection

reflections, which can only be observed in one or a few TWRI images, are attributed

to clutter and will be mitigated by the multiplication operation. The shortcomings of

the pixel-wise multiplication scheme are given below.

• Choosing a ‘good’ threshold βT is a non-trivial task.

• When considering image formation from multiple views, a target might only be

visible from a few vantage points and is overshadowed, partially or completely,

by other targets, e.g., due to masking. Pixel-wise multiplication will fail and is

only effective when targets are visible from all vantage points and have a small

physical cross-sectional area in the i-j plane.

3.3 The Neyman-Pearson Test

An alternative to the simple thresholding scheme, as proposed in [6] and presented

in Section 3.2, is to formulate a hypothesis test and to apply the Neyman-Pearson

test [7, 37]. We define the pixelwise null and alternative hypotheses as,

H0: no target present at pixel (i, j)
H1: target present at pixel (i, j)

Assuming the data to be i.i.d. with respect to i, j and m, the likelihood ratio test

(LRT) is given by,

LR(i, j) =

M
∏

m=1

p(Ym(i, j)|H1)

p(Ym(i, j)|H0)

H1

≷
H0

γ (3.3)

where p(Ym(i, j)|H0) and p(Ym(i, j)|H1) are the conditional pdf’s of the acquired image,

given the null and alternative hypothesis, respectively. The parameter γ is the LRT

threshold which maximizes the probability of detection, while controlling the proba-

bility of false-alarm. Given the image statistics p(Ym(i, j)|H0) and p(Ym(i, j)|H1) and

the threshold γ, the fused binary image can easily be calculated as,

BNP (i, j) =

{

1, LR(i, j) > γ
0, LR(i, j) ≤ γ

(3.4)

Using the Neyman-Pearson theorem [37], the false-alarm rate can be fixed by evaluating

α =

∫ ∞

γ

fL(L|H0)dL (3.5)
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where α and fL(L|H0) are respectively, the preset false-alarm rate and the pdf of the

likelihood ratio under the null hypothesis.

Given the noise and target pdf’s, as obtained by the empirical study in Section 2.2.2,

i.e., a Gaussian distribution representing target pixels and a Rayleigh distribution

representing noise pixels, the two hypotheses can be formulated as,

p(Ym(i, j)|H0) =
Ym(i, j)

σ2
0

· exp

{

−Y
2
m(i, j)

2σ2
0

}

(3.6)

p(Ym(i, j)|H1) =
1√

2πσ1

· exp

{

−(Ym(i, j) − µ1)
2

2σ2
1

}

(3.7)

Based on the conditional probabilities p(Ym(i, j)|H0) and p(Ym(i, j)|H1), the likelihood

ratio test from Equation (3.3) can be written as

LR(i, j) =
M
∏

m=1

σ2
0

√

2πσ2
1Ym(i, j)

exp

{

−
(

Ym(i, j) − µ1

2σ2
1

)2

+
Y 2

m(i, j)

2σ2
0

}

H1

≷
H0

γ (3.8)

with m = 1, . . . ,M, i = 0, . . . , Ni − 1 and j = 0, . . . , Nj − 1.

The advantages of this detector compared to the thresholding scheme from Section 3.2

are:

• The statistics of TWRI images can be incorporated in the detection scheme

by choosing appropriate conditional density functions p(Ym(i, j)|H0) and

p(Ym(i, j)|H1), with parameters σ0, µ1 and σ1.

• There is a statistically meaningful way to choose the threshold γ by considering

an acceptable false-alarm rate.

• A target at location (i0, j0) which is invisible or masked from one or few vantage

points may still appear in the fused image, given that the likelihood ratio in

Equation (3.3) is higher than γ. This requires a sufficiently likely reflection

amplitude at (i0, j0) from a single view corresponding to one position of the

imaging system. The same statement holds for targets with a large cross-sectional

area which are illuminated in a different way from each vantage point.

3.4 Adaptive Target Detection

3.4.1 Motivation

In TWRI there is generally a large number of possible indoor targets which might

assume different sizes and shapes. Additionally, limited radar signal bandwidth due to
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wall attenuation issues [11] does not permit fine target resolution, which complicates

target recognition and detection. When examining and analyzing images, it is found

that the image statistics, even for the same target and background scene, may vary

significantly depending on the target range and cross-range positions [7]. A practical

detector, applied in the image domain, must then perform satisfactorily under changing

and unknown target statistics. The changes in target statistics from presumed or

reference values might be attributed to a change in either the imaging system and/or

in the imaged target. The former stems from a change in the receiver noise level and

may also be a result of a modification in the system standoff distance [21], which

induces different image fidelity and resolution. The latter, on the other hand, may be

a consequence of unknown target orientation. These variations induce ambiguities in

target image intensity and distribution, rendering prior knowledge of a reference pdf

for the target insufficient for its detection.

One way to address this problem is to use constant false-alarm rate (CFAR) detec-

tors [38, 39], which aim at providing a constant false-alarm rate while the statistics

may be space- and/or time-varying. The drawback of these approaches is that impor-

tant parameter, which have a strong impact on the detection result have to be chosen

beforehand. These are the cell size and guard cell size in cell-averaging CFAR [40] or

the percentile in order-statistics CFAR [38, 41]. In [7], we presented a target detec-

tion approach that iteratively adapts to varying statistics which has been successfully

applied in detection of targets behind walls. At the core of the detector in [7], an im-

age processing step is used which aims at separating target and noise data. Improved

detection was achieved by replacing the static two-dimensional median filtering in [7]

by static morphological operations [30]. However, these filtering operations are not

self-learning and require fixed preset values, which may not be the most suitable for

the underlying image. A procedure for choosing the optimal filtering step, given the

image data, is therefore required for a full automation of the detection process.

3.4.2 Simplified Adaptive Target Detection

Assume a one-dimensional signal y(i), i = 0, . . . , N − 1, which consists of target and

noise samples. The aim is to obtain a binary signal b(i), i = 0, . . . , N − 1, which

describes the presence and absence of targets, i.e.

b(i) =

{

1, target is present at sample i
0, target is absent at sample i

(3.9)

The data y(i) could represent one line or column in a radar image, and, as such, consists

of different, spatially isolated regions or groups [51,55]. Target detection in the image
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domain, e.g., based on the Neyman-Pearson test [37] can proceed by assuming each of

the data groups (in the simple case: target and noise) to be i.i.d. and by assigning

corresponding conditional distribution functions under the null and the alternative

hypothesis p(y(i)|H0) and p(y(i)|H1), respectively.

replacements

α

θ̂0,0, θ̂1,0

θ̂0,t, θ̂1,t

bD(i)

Detector

Nt

Tt

θ̂0,t

θ̂1,t

Sort

Convergence
Yes

No

Exit

Parameter
estimation

Parameter
estimation

Figure 3.4. Block diagram representation of the simple iterative detection approach

The problem of using a detector, which is based on p(y(i)|H0) and p(y(i)|H1), is the

need for having accurate estimates of the density functions under both hypotheses. A

possible solution to this problem, applied in the area of TWRI, is considered in [7,30],

where the detector still performs under unknown or varying statistics. A block diagram

of a simplified version of the iterative detection approach, presented in [7,30], is shown

in Figure 3.4. In this approach, the conditional distribution functions p(y|H0) and

p(y|H1), are characterized by the parameter vectors θ0 and θ1, respectively. Given a

nominal false-alarm rate α and initial estimates θ̂0,0 and θ̂1,0, which can be obtained

by using the generalized likelihood ratio test (GLRT) [37], target detection using the

Neyman-Pearson test, as described in Equation (3.3), can be performed. The result of

this detection operation is a binary signal bD0 (i), i = 0, . . . , N−1, where the superscript

D stands for ‘Detection’. The signal bD0 (i), i = 0, . . . , N − 1 can be viewed as a first

indication of target and noise samples. That is, it can be used as a mask on the

original data y(i), i = 0, . . . , N − 1, to sort the data into disjoint target and noise

sets. A parameter estimation scheme is then be applied on the obtained target and

noise sets to provide updated parameter estimates θ̂0,1 and θ̂1,1. Such schemes can be

based on maximum likelihood estimation [56]. The updates are finally forwarded to

the detector in order to obtain an improved binary signal bD1 (i), i = 0, . . . , N − 1. The
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iteration stops when a vanishing difference between subsequent parameter estimates,

e.g. ‖θ̂0,t − θ̂0,t−1‖+ ‖θ̂1,t − θ̂1,t−1‖ or a vanishing difference between the binary signals,

e.g.
∑N−1

i=0 |bDt (i) − bDt−1(i)| is observed.

The different steps of the above iterative detection approach are detailed below, using

two arbitrary conditional distribution functions p(y(i)|H0) and p(y(i)|H1). It is noted

that, given initial estimates θ̂0,0 and θ̂1,0 and a preset false-alarm rate α, an initial

threshold γ0 can be obtained by evaluating Equation (3.5).

We assume that the likelihood ratio threshold γ0 corresponds to a single sample thresh-

old β0, where the index 0 stands for the t = 0th iteration. This means that the test

can also be applied in the sample domain via y(i)
H1

≷
H0

β0. This assumption is true for

e.g. two Gaussian density functions with the same variance. We remark that this re-

striction is not necessary, but simplifies the mathematical descriptions of the iterative

scheme. The target and noise sets in the initial iteration step t = 0, T0 and N0, are

disjoint sets of samples, satisfying,

T0 = {y(i)|y(i) > β0}; N0 = {y(i)|y(i) < β0} (3.10)

The distributions of the so obtained noise and target data are expressed as,

f0,0(y(i)) = A0,0 · [(1 − ǫ)p(y(i)|H0) + ǫp(y(i)|H1)] ; y(i) < β0 (3.11)

f1,0(y(i)) = A1,0 · [(1 − ǫ)p(y(i)|H0) + ǫp(y(i)|H1)] ; y(i) > β0 (3.12)

where ǫ denotes the probability of target occurrence and A0,0 and A1,0 are scaling

factors fulfilling,
∫ ∞

−∞

f0,0(y)dy =

∫ ∞

−∞

f1,0(y)dy = 1 (3.13)

In the following, the parts of the pdfs resulting from false-alarm and missed detections

are defined as,

pFA
0 (y(i)) = p(y(i)|H0); y(i) > β0 (3.14)

pMD
0 (y(i)) = p(y(i)|H1); y(i) < β0 (3.15)

as illustrated in Figure 3.5.

Consequently, the true noise and target distributions p(y|H0) and p(y|H1) can be writ-

ten as,

p(y(i)|H0) =
1

1 − ǫ

[

f0,0(y(i))

A0,0

− ǫpMD
0 (y(i))

]

+ pFA
0 (y(i)) (3.16)

p(y(i)|H1) =
1

ǫ

[

f1,0(y(i))

A1,0

− (1 − ǫ)pFA
0 (y(i))

]

+ pMD
0 (y(i)) (3.17)
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pFA(y)

pMD(y)

Figure 3.5. Illustration of the truncated and distorted pdfs

Within the t-th iteration of the proposed iterative detection algorithm, updated esti-

mates θ̂0,t and θ̂1,t are obtained via

θ̂0,t = arg max
θ

∏

y(i)∈Nt

f0,t(y(i)) (3.18)

and

θ̂1,t = arg max
θ

∏

y(i)∈Tt

f1,t(y(i)) (3.19)

The biases in the parameter estimates, i.e.,

lim
t→∞

arg max
θ







∏

y(i)∈Nt

(1 − ǫ)p(y(i)|H0) + ǫpMD
t (y(i))







− θ0 (3.20)

and

lim
t→∞

arg max
θ







∏

y(i)∈Tt

(1 − ǫ)pFA
j (y(i)) + ǫp(y(i)|H1)







− θ1 (3.21)

are generally nonzero. Further, the difference between the true and estimated target

and noise pdfs, as demonstrated in Equation (3.17) are generally dependent on the true

parameters and thus cannot be corrected for. Except for overly simplified examples,

e.g. with ǫ = 0, or non-overlapping noise and target pdfs, the above simple iterative

detection approach provides biased parameter estimates and, thus, does not converge

to the desired probability of false-alarm α.



32 Chapter 3: Centralized Target Detection

3.4.3 Adaptive Target Detection Using Morphological Oper-

ations

The values pFA
t (y) and pMD

t (y) distort the estimated pdfs and thus lead to biases in

the distribution parameters when applying the iterative detection scheme. We seek

methods which eliminate these biases. Since neither the true distribution parameters

nor the percentage of targets and noise in a signal are known, an analytical reversal

of the bias cannot be achieved. Below, we apply morphological filtering as means to

mitigate the errors in the target and noise pdfs [30, 57].

Given the case when the radar cell size is smaller than the targets radar cross sec-

tion, target samples appear in groups forming target objects, whereas noise samples of

high intensity are not necessarily adjacent. In this respect, pFA
t (y), which mistakenly

expands the target set Tt, also truncates the noise set Nt. This expansion comprises

high intensity pixels that are isolated and non-contiguous. On the other hand, pMD
t (y),

which truncates Tt, and at the same time mistakenly expands Nt comprises grouped

contiguous target pixels with low intensity. In radar imaging, the target image inten-

sity fades from the center of a target object towards its rim [55]. This fading mainly

depends on the properties of the system point spread function. For example, high res-

olution systems lead to sharp images. As such, the samples inherent to pMD
t (y) should

be sought at the edges and boundaries of the imaged target.

The above properties are key in the design of the filtering operation as part of the

iterative detection approach. Let bFA(i) and bMD(i), i = 0, . . . , N − 1 denote the

binary signals, resulting from the false-alarms and missed detections, respectively, as

described by pFA(y) and pMD(y). Then, similarly to Equations (3.16) and (3.17) we

can write

bD(i) = b(i) + bFA(i) − bMD(i), i = 0, . . . , N − 1 (3.22)

The filtering operation V(·) should then satisfy

V(bD(i)) = bD(i) − bFA(i) + bMD(i) = b(i), i = 0, . . . , N − 1 (3.23)

The above operation entails removing and adding the binary signals representing false-

alarms and missed detections, respectively. We apply morphological filtering [30] for

finding both binary signals bFA(i) and bMD(i), i = 0, . . . , N − 1. The basic morpholog-

ical dilation and erosion operations (see e.g. [57, 58]) are used for this purpose. Let b,

bD, bFA and bMD be the N × 1 vector representations of b(i), bD(i), bFA(i) and bMD(i),

i = 0, . . . , N − 1. Mathematically, the dilation operation can be described by,

b⊕ E = {z|[(Er)z ∩ b] ⊆ b} , (3.24)
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The variable E is referred to as the structuring element and (E)z is its translation

by point z. The reflection of E, i.e., the part of the signal being covered by the

structuring element is denoted by Er. The variable z marks the origin of the structuring

element. The erosion operation between b and the structuring element E is defined by

all positions of z where the structuring element is completely contained in b. Formally,

b⊖ E = {z|(E)z ⊆ b} . (3.25)

b

b⊕ E

b⊖ E

b ◦ E

E

Figure 3.6. Basic morphological operations

In Equations (3.24) and (3.25), we applied set operations, viewing each vector as a set

of ordered elements. We further define the morphological opening b ◦ E as an erosion

followed by a dilation operation. The basic morphological operations are illustrated in

Figure 3.6, where a structuring element of size 3 is used.

In the following, morphological opening is employed to identify and eliminate the dis-

torting signal bFA. Hereby, we consider the detected signal bD consisting of a finite

number of non-overlapping target and noise objects, i.e.,

bD =
P
∑

p=1

Op, (3.26)

with Op being the pth object in bD and P being the total number of objects in bD. As

indicated by Equation (3.22), bFA consists of all noise samples or objects in bD. Thus,

with an adequate structuring element, ED,

bD ◦ ED = (bD ⊖ED) ⊕ ED =
P
∑

p=1

Op ◦ ED =
P
∑

p=1

(Op ⊖ ED) ⊕ ED (3.27)

Op ◦ ED = ∅ , ∀p where |ED| > |Op| (3.28)

Op ◦ ED ≈ Op , ∀p where |ED| ≤ |Op| (3.29)

bFA =
∑

p∈P

Op with P := {p | |ED| > |Op|} (3.30)

bD ◦ ED ≈ bD − bFA (3.31)
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with |ED| and |Op| being the length of the structuring element and the p-th object,

respectively. An example of the application of Equations (3.27)-(3.31) is illustrated in

Figure 3.7. We consider a binary signal bD that consists of P = 6 objects, three target

and three noise objects. By choosing a structuring element as defined by Equation

(3.29), i.e., the one with the size of the smallest target object (in this case |ED| = 3),

the morphological opening successfully eliminates all noise objects and leaves all target

objects unaltered.
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Target objects Noise objects

bD

bD ⊖ E

bD ◦ E

Figure 3.7. Choosing the adequate structuring element

The estimation of the truncating signal bMD can be accomplished via a dilation op-

eration with an adequate structuring element ET . The dilation extends the objects

remaining in the signal (ideally only target objects) attempting to encompass the pix-

els located at the target image boundaries. Formally,

bMD ≈
[(

bD − bFA
)

⊕ET

]

−
(

bD − bFA
)

. (3.32)

Therefore,

V(bD) =
(

bD ◦ ED

)

⊕ET ≈ bD − bFA + bMD (3.33)

as required by Equation (3.23).

The block diagram of the iterative target detector using morphological operations is

depicted in Figure 3.8. It is noted that the only difference between Figure 3.8 and

Figure 3.4 is the inclusion of the morphological filtering after the detection operation.

3.4.4 Conditions for Convergence

Having discussed the nominal behavior of the filtering step, the conditions under which

V(·) in combination with the other steps of the iterative algorithm will lead to con-

vergence towards the true distribution parameters is now examined. We consider a
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α

θ̂0,0, θ̂1,0

θ̂0,t, θ̂1,t

bDt (i)

V(bDt (i))
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Nt

Tt

θ̂0,t

θ̂1,t

Sort

Convergence
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No

Exit

Parameter
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Parameter
estimation

Figure 3.8. Block diagram representation of the iterative detection approach using
morphological filtering

signal y(i), i = 0, . . . , N − 1, with N0 noise samples and N1 target samples such that

N0 +N1 = N .

In order to determine the conditions of convergence, it is primarily important to know

the limitations which are due to the size of the structuring element ED. The size |ED|,
which represents the length of the structuring element for the one-dimensional case,

must be determined in consideration of the pixel-allocation error η that is likely to

incur. This error is given by,

η = α|ED| + α|ED|+1 + α|ED|+2 + α|ED|+3 + . . . (3.34)

where α is the false alarm rate. It is measured by the probability of |ED| or more noise

samples in a row having an intensity higher than the determined threshold. Given

α ≪ 1 the above expression can be simplified by only considering the largest term in

the sum, i.e., η ≈ α|ED|.

The N0 noise samples can further be divided into three possible outcomes:

• The number of samples, which correctly have been detected as noise, NC
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• The number of samples, which represent false-alarms with a limited spatial extent

of maximum |ED| − 1, denoted as NF

• The number of samples, which represent false-alarms with a spatial extent larger

than or equal to |ED|, which in the following will be referred to as allocation

errors, denoted as NA

Clearly, the equality N0 = NC + NF + NA holds. The morphological opening with

structuring element ED will successfully eliminate the NF samples with limited spatial

extent, whereas it fails to remove the NA allocation errors. Thus, in order to fulfill

Equation (3.28) in one iteration, the total number of allocation errors must be smaller

than one. Therefore, we require

NA ≤ η · (N0 − |ED| + 1) ≈ η ·N0 < 1, (3.35)

with N0 − |ED| + 1 being the maximum (the targets being located at the edge of the

scene) number of locations where a false alarm could occur. For simplification, we

invoke the assumption N0 ≫ (|ED| − 1), which is valid in most images encountered.

Accordingly, we can replace the term N0 − |ED| + 1 by N0, as in (3.35). The upper

constraint to ED is given by,

|ED| ≤ min{Op} (3.36)

This limitation can be deduced from Equation (3.29). Obviously, missed detection may

also lead to the inaptness of the iterative approach to detect all targets. However, as

stated above, it can be expected that pixels subject to missed detections appear at the

image boundaries of targets. Therefore, it is unlikely that these errors are so significant

such that the detection of spatially extended targets is compromised.

Denote β as the true sample threshold resulting from Neyman-Pearson, given exact

knowledge of the distribution functions under the null and alternative hypothesis.

Then, for an initial threshold β0 < β, associated with the initial parameters θ̂0,0, θ̂1,0,

convergence will occur, by definition, if more noise samples are eliminated by the oper-

ator V(·) than when the initial threshold assumes the correct value β. If α0 is the false

alarm rate resulting from a low threshold β0, then the new allocation error η0 becomes

η0 = α
|ED|
0 , (3.37)

It follows from Equation (3.34) that, for the same |ED|, η0 > η, since α0 > α for

β0 < β.

With η0 > η, the filtering operation will not always yield a convergence towards the

true parameters in all cases, since it is conceivable that allocation errors persist through

the iterative scheme. Three possible cases can be identified:



3.4 Adaptive Target Detection 37

1. The number of allocation errors is zero, NA = 0. Thus, all noise samples are

successfully removed and the true parameters can be estimated from the resulting

sets. In this case, the number of false-alarms is reduced from NF to 0 and

convergence occurs after the first iteration.

2. Allocation errors occur, but NA is smaller than the number of false alarms with

a limited spatial extent, i.e., NA < NF . In this case, the operation V(·) will

yield an improvement of the estimated distribution parameters, but not the true

parameters, as the number of false-alarms is reduced from NA + NF to NA.

Further iterations will be needed until convergence towards the true parameters

occurs. The new threshold β1 will be higher than or equal to β0, thus yielding a

new false alarm rate α1 with α ≤ α1 ≤ α0.

3. In the case NA > NF convergence towards the true parameters will generally not

occur. Under this condition, the new parameters will result in a new threshold

β1 ≤ β0, which will elicit even more allocation errors η1 ≥ η0 until all noise is

potentially classified as a target.

For the case that β0 > β, similar conclusions to those discussed above can be drawn.

In this case a false-alarm rate α0 that is lower than the preset α is obtained, possibly

leading to allocation errors in the target set. As shown above, again three cases can

be considered

• No target allocation errors occur. In this case, the morphological dilation via ET

will restore the target signal in one iteration.

• Target allocation errors occur, but their number is smaller than the number of

unaffected target samples. In this case, a new iteration yields β1 ≤ β0 and thus

α ≥ α1 > α0

• More target allocation errors occur than the number of unaffected target samples.

In this case, convergence towards the true parameters generally will not occur.

The new threshold β1 will be even higher than β0, yielding α1 < α0. Thus, further

iterations will eliminate target objects, until all targets are potentially classified

as being noise.

The practical implication of this section is that the initial parameters of the iterative

algorithm should be chosen rather pessimistically, but not too pessimistic, since this

could lead to the third case described above. Details on how initial parameters, or,

equivalently, an initial binary signal can be chosen will be provided in Section 3.5.
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3.4.5 Optimizing the Structuring Element

As shown in the previous section, the expected number of pixel-allocation errors (≈
N0 · η) in the processed signal is dependent on the size and, in the case of two or

three dimensional images, shape of the structuring elements. A structuring element

of the same size and shape as the smallest target object will minimize the expected

errors, thus rendering the best possible estimation of the parameters under the null

and alternative hypothesis. Unfortunately, it is not always valid to presume a priori

knowledge of the size and shape of target objects in the scene of interest. For this

reason, a method for finding the correct structuring elements is vital for the success of

the iterative detection approach.

In [30], we have suggested that the estimates for bFA and bMD can be used for the

purpose of finding an appropriate structuring element. The employment of a non-ideal

structuring element ẼD will by definition lead to truncated and/or distorted target and

noise data sets T̃ and Ñ respectively.

Here, we propose to detect such corrupted sets via a comparison of parametric and

non-parametric density estimators. We compare a parametric model, e.g., p(y|H0; θ̂0,T )

and a non-parametric model f0,T (y), where the index T stands for the T -th, i.e., final

iteration. This comparison, which can be based on the MSE, is suitable for detecting

non-comprehensive estimates for bFA and bMD, if the following inequality holds true

(the noise set is considered exemplarily):

E
[

(f0(y) − p(y|H0; θ0))
2
]

< E
[

(f̃0,T (y) − p(y|H0; θ̂0,T ))2
]

(3.38)

Here, f0(y) denotes a non-parametric estimate of the noise pdf and p(y|H0; θ0) denotes

the parametric pdf under the null hypothesis, given the true parameters θ0. f̃0,T (y) is a

non-parametric pdf estimate of the noise at the T -th, i.e., final iteration, as detailed in

Equation (3.11), whereas p(y|H0; θ̂0,T ) is the parametric pdf under the null hypothesis

given the parameter estimates from the T -the iteration step. The non-parametric

density estimator has to be chosen in accordance with the postulated inequality of

Equation (3.38). We suggest the employment of a kernel density estimator [52] as

f0(y) =
1

hBN

N−1
∑

i=0

Q

(

y − y(i)

hB

)

(3.39)

with Q(·) and hB being the kernel function and bandwidth, respectively. By defini-

tion, p(y|H0; θ0) describes the true distribution of N with the true set of distribution

parameters θ0. The expected value of f0(y) being
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E [f0(y)] =

∫ ∞

−∞

1

hB

Q

(

y − y′

hB

)

p(y|H0; θ0)dy
′ = p(y|H0; θ0) (3.40)

and

lim
N→∞

NhB · Var[f0(y)] = p(y|H0; θ0)

∫ ∞

−∞

Q2(y)dy (3.41)

Proof and conditions for Equations (3.40) and (3.41) are presented in [59].

The MSE is thus lower bounded by the left side of Equation (3.38), since

E
[

(f0(y) − p(y|H0; θ0))
2
]

= 0 (3.42)

It remains to show, that the MSE for any f̃0,T (y) resulting from the set ÑT is asymp-

totically greater than zero. The non-parametric distribution model of the underlying

data can be expressed as follows

f̃0,T (y) =
N

N +NFA
T −NMD

T



f0(y) +
1

hBN

∑

{i|bF A
T

(i)=1}

Q

(

y − bFA
J (i)

hB

)

− 1

hBN

∑

{i|bMD
T

(i)=1}

Q

(

y − bMD
J (i)

hB

)



 ,

(3.43)

with NFA
T and NMD

T being the number of detected samples in bFA
T (i) and bMD

T (i),

i = 0, . . . , N − 1 respectively. Considering Equation (3.40), the expected value of

Equation (3.43) can be written as

E[f̃0,T (y)] = a1p(y|H0; θ0) + a2fFA(y) − a3fMD(y), (3.44)

with a1, . . . , a3 being scaling factors and fFA(y) and fMD(y) being the distribution

functions of the remaining distorting and truncating sets. As per definition, fFA(y)

has no impact below the respective threshold βT and on the other hand, fMD(y) has

no impact above βT , the case that

a2fFA(y) − a3fMD(y) ∼ p(y|H0; θ0) (3.45)

can practically be excluded. In any other case, there will exist a Bias[f̃0,T (y)] =

E[f̃0,T (y)] − p(y|H0; θ̂0,T ) greater than zero and therefore

E
[

(f̃0,T (y) − p(y|H0; θ̂0,T ))2
]

> 0 (3.46)
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With the validity of Equation (3.38) shown, the structuring element may be opti-

mized by repeating the iterative detection procedure with structuring elements Es
D,

s = 1, . . . , S, and then choosing

ÊD = arg min
Es

D

G
(

MSE
[

f̃1,T (y), p(y|H1; θ̂1,T ) | Es
D

]

,MSE
[

f̃0,T (y), p(y|H0; θ̂0,T ) | Es
D

])

,

(3.47)

withG(·) being a function merging the mean squared errors computed for the iteratively

estimated target and noise densities. The exact technique of merging the MSEs can be

chosen according to the measure of confidence regarding the validity of the noise and

target density class models, respectively. If, for example, one is fairly confident that

noise stems from a Gaussian distribution, but less confident about the target density

class, then it is advisable to design a function G(·), which assigns a greater weight

to the MSE resulting from the noise models. Furthermore, because its variation is

not confined to individual pixels it may be of advantage to vary the false-alarm rate

α instead of the structuring element ED as suggested by Equation (3.47). For the

one-dimensional case the relation between the two parameters is expressed in Equation

(3.34).

3.5 Experimental Results

In order to evaluate the performance of the proposed detectors, we consider the problem

of detecting and estimating the location of the four table legs from the scene depicted

in Figure 2.3. We consider single- as well as multiple-view imaging using background-

subtracted TWRI images.

In addition to a comparison between the standard Neyman-Pearson test and the pro-

posed iterative detection scheme, we also compare the proposed detector to the order

statistic constant-false alarm rate (OSCFAR) detector, introduced by Rohling [38],

which has also been derived under the assumption of Rayleigh distributed clutter.

Following Rohling, we use the 75th percentile to obtain the image threshold.

The image acquisition is performed using a wideband synthetic aperture TWRI radar

system as detailed in Section 2.2.1. In order to perform multiple-view imaging, the

objects are mounted on a turntable which has been turned by 90◦ to emulate imaging

from a side wall.
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3.5.1 Single-view imaging

Consider a single vantage point. Then, the LRT reduces to

LR(i, j) =
σ2

0
√

2πσ2
1Y1(i, j)

exp

{

−
(

Y1(i, j) − µ1

2σ2
1

)2

+
Y 2

1 (i, j)

2σ2
0

}

H1

≷
H0

γ (3.48)

with i = 0, . . . , Ni −1, j = 0, . . . , Nj −1. It is easier to evaluate the log-likelihood ratio

test (LLRT) which can be written as,

LLR(i, j) = ln

(

σ2
0

√

2πσ2
1

)

− ln(Y1(i, j)) −
(

Y1(i, j) − µ

2σ2
1

)2

+
Y1(i, j)

2

2σ2
0

H1

≷
H0

ln(γ) (3.49)

with i = 0, . . . , Ni−1, j = 0, . . . , Nj −1. Using a desired false-alarm rate α, the param-

eter γ can be calculated, as per Equation (3.5). The maximum likelihood estimates

for µ1, σ0 and σ1 are obtained from the statistical evaluation of the true target and

noise/clutter samples as described in Section 2.2.2 (µ̂1 = 0.53, σ̂0 = 0.19, σ̂1 = 0.18).

The wall parameters d and ε are assumed to be known.

In Figure 3.9, the resulting binary images for various false-alarm rates (α =

0.001, 0.01, 0.05 and 0.1) are shown. The circles indicate the true position of the table

legs. It is evident from this specific example that a false-alarm rate of at least 1% is

needed in order to identify all four table legs. Further, a strong amount of clutter, even

for small false-alarm rates, can be observed in all images.

For a more objective measure of quality of the proposed method, the receiver operating

characteristic (ROC) obtained from the experimental data is evaluated, representing

the probability of detection pD as a function of the probability of false-alarm pFA. This

empirical ROC can be obtained by choosing various nominal pFA and estimating the

corresponding probability of detection pD based on the true target locations and the

estimated pdf’s shown in Section 2.2.2. The empirical ROC is then compared to the

theoretical ROC, derived using the likelihood ratio densities fL(L|H0) and fL(L|H1)

and the expressions

pFA =

∫ ∞

γ

fL(L|H0)dL, pD = 1 −
∫ γ

0

fL(L|H1)dL (3.50)

Both ROC curves are shown in Figure 3.10. It can be observed that the empirical

ROC closely follows the theoretical ROC which may suggest that the chosen pdf’s

under the null and alternative hypothesis reasonably match the estimated functions

experimentally.
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(a) α = 0.001
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(b) α = 0.01
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(c) α = 0.05
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(d) α = 0.1

Figure 3.9. Detection results for various false-alarm rates. Circles indicate the true
position of the table legs
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Figure 3.10. Receiver operating characteristic for single-view imaging
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(a) Initialization, BD
0

(i, j), p̃FA ≈ 0.26

Downrange (ft)

C
ro

ss
ra

ng
e 

(f
t)

681012141618

−6

−4

−2

0

2

4

6

(b) Cleaned image, BC
0

(i, j), p̃FA ≈ 0.24
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(c) Iteration 1, p̃FA ≈ 0.05
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(d) Iteration 5, p̃FA ≈ 0.01

Figure 3.11. Detection results of the iterative detection scheme for single-view images,
α ≈ 0.01

One should note that the parameter estimates µ̂1, σ̂1 and σ̂0 which where chosen for

the Neyman-Pearson test are the maximum likelihood estimates, given the true target

and noise/clutter data. In practice, these parameters are usually unknown.

Below, we demonstrate the performance of the iterative detection scheme from Section

3.4. To detect the location of the four table legs, the iterative detection scheme is

applied using the following initial parameter estimates: µ̂0
1 = 0.3, σ̂0

0 = 0.1 and σ̂0
1 = 0.1.

Note that these initial parameters largely differ from the maximum likelihood estimates

obtained from the true target and noise/clutter data.

In Figure 3.11, the resulting binary images of the proposed scheme obtained after

1 − 5 iterations are shown for a preset false-alarm rate pFA = 0.01. In Figure 3.11 (a)

the initial target indication image BD
0 (i, j), i = 1, . . . , Ni, j = 1, . . . , Nj is shown. It

can be seen that, due to the large errors introduced when using a wrong distribution
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Figure 3.12. Detection results using OSCFAR, α ≈ 0.01

parameter set, the image threshold assumes a very low value such that the targets of

interest cannot be detected (the actual false-alarm rate p̃FA is ≈ 26%). After applying

a 2D order statistics filter (we chose a 5×5 2D median filter for this purpose) a cleaned

version BC
0 (i, j) is obtained as shown in Figure 3.11 (b). Note that due to the outlier

removal, the false-alarm rate can already be decreased by 2%. When estimating the

parameter set based on the first rough target and noise indication image BC
0 (i, j), i =

1, . . . , Ni, j = 1, . . . , Nj , the Neyman-Pearson test can be used to extract a revised

binary image shown in Figure 3.11 (c). The four table legs as indicated by circles, are

now visible and separated from the clutter contributions (the actual false-alarm rate is

≈ 5%). In Figure 3.11 (d), the revised binary image is shown after 5 iterations, giving

an even better visibility of the targets and approaching the desired false-alarm rate of

1%. However, we still note significant false detections, especially in the bottom right

part of the image.

Figure 3.12 shows the detection result obtained when using the OSCFAR. It can be

seen that the amount of clutter is higher when compared to the final result of the

iterative detection scheme. However, we note that the OSCFAR result could be used

as an initialization step to improve the performance of the iterative detection scheme.

The convergence of the iterative detection scheme can be shown by observing the pa-

rameter estimates µ̂1, σ̂0 and σ̂1, the empirical probability of false-alarm p̃FA, and the

empirical probability of detection p̃D versus the number of iterations. These plots are

shown in Figure 3.13 (a) and (b). Convergence can be observed after 3 − 5 iterations.

The parameter estimates obtained after convergence are close to the maximum like-

lihood estimates. Furthermore, the empirical false alarm rate p̃FA converges to the

desired one.
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Figure 3.13. Convergence of parameters using the iterative detection scheme

The limiting empirical probability of detection is relatively low (≈ 43%) which coincides

with the ROC from Figure 3.10.

3.5.2 Multiple-view imaging

In addition to the presentation of the Neyman-Pearson test and the iterative detection

scheme, we will now consider the scenario when the scene of interest is illuminated by

M = 2 vantage points, rotated by 90 degrees. In this case the LRT can be written as,

LR(i, j) =

(

σ2
0

√

2πσ2
1

)2
1

Y1(i, j) · Y2(i, j)
· exp

{

−
(

Y1(i, j) − µ1

2σ2
1

)2

+
Y 2

1 (i, j)

2σ2
0

−
(

Y2(i, j) − µ1

2σ2
1

)2

+
Y 2

2 (i, j)

2σ2
0

}

H1

≷
H0

γ2

(3.51)

with i = 0, . . . , Ni − 1, j = 0, . . . , Nj − 1. The LLRT which is used for implementation

purposes can be written as

LLR(i, j) = 2 ln

(

σ2
0

√

2πσ2
1

)

− ln(Y1(i, j) · Y2(i, j)) −
(

Y1(i, j) − µ1

2σ2
1

)2

−
(

Y2(i, j) − µ1

2σ2
1

)2

+
Y1(i, j)

2 + Y2(i, j)
2

2σ2
0

H1

≷
H0

2 ln(γ)

(3.52)

with i = 0, . . . , Ni − 1 and j = 0, . . . , Nj − 1. The image fusion result using the LRT

is shown in Figure 3.14 (a), for a nominal false-alarm rate of α = 0.01. Compared to

Figure 3.9 (b), a reduction of clutter can be observed when using two TWRI images.
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(a) LRT
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(b) Simple multiplication

Figure 3.14. Image fusion results for α = 0.01

Figure 3.14 (b) shows the resulting binary image one would obtain when using the

simple multiplication scheme described in Section 3.2. It should be noted that in this

specific case the four table legs cannot be detected because strong reflections occur only

in one of the TWRI images and will thus be blanked out by simple multiplications.

The ROC for the multi-view imaging scenario is shown in Figure 3.15. It is clear that,

although the ROC of the sidewall image (dash-dotted curve) is considerably worse

than the ROC of the frontwall image (dotted curve), fusion provides superior results.

Additionally, the theoretical ROC for M = 2 is shown which can be derived using the

relation from Equation (3.50).

3.5.3 3D imaging

The Neyman-Pearson test as well as the iterative approach and the OSCFAR can easily

be extended to 3D imaging by performing the proposed detection techniques on a set

of B-Scan images at different heights [15]. In this section we consider the 3D scene

depicted in Figure 2.3 using the complete height from −40 in (bottom of the table) to

+20 in (top of the dihedral) with respect to the antenna array center. The 3D detection

results of the scene depicted in Figure 2.4 are provided in Appendix A. Figure 3.16(a)

displays the 3D detection result when using the LRT with a false-alarm rate of 1% and

only considering the data measured from the frontwall (M = 1).

The parameter set used to tune the LRT are the maximum likelihood estimates ob-

tained in Section 2.2, Case 3 (µ̂ = 0.53, σ̂0 = 0.19, σ̂1 = 0.18), which represent the
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Figure 3.15. Receiver operating characteristic for multi-view imaging

ideal parameters for the table legs height. These can be seen as average statistics of

the whole 3D scene (medium amount of clutter, still visible targets). It can be seen

that the 3D detection result is rather poor, which is due to the fact that the same

statistics are used for every height of the 3D image. Although the dihedral at height

0 in,. . . ,+15.5 in is resolved (indicated by a green circle), the amount of clutter at

the table’s height (−40 in,. . . ,−20in, indicated by a red circle) is rather large. This

coincides with the 2D results described above.

When extending the LRT to M = 2, i.e., also considering the data measured at the

sidewall, the 3D detection result is depicted in Figure 3.16(b). As already demonstrated

for the 2D case, the amount of clutter is reduced and the table response (red circle)

is now visible at approx. 12 − 14 downrange. The drawback however is that the

dihedral, which has a very small RCS from 90 is not resolved anymore. This is due

to the fact that the parameter choice for the LRT is ’tuned’ to the pdf’s expected at

the table height. As shown in Section 2.2, the ideal parameters for the dihedral height

significantly differ from those at other heights.

The 3D result when using the OSCFAR detector is depicted in Figure 3.16(c). As for

the two-dimensional case, we observe an increased amount of clutter which complicates

detection.

The performance of the iterative approach using a static 5 × 5 median filter is shown

in Figure 3.16(d). The main advantage of this procedure is that it adapts itself to

the image statistics which are varying with height. It is clear that both the dihedral
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(b) LRT, both views

(c) OSCFAR
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(d) Iterative approach using static image pro-
cessing
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(e) Iterative approach using adaptive image pro-
cessing

Figure 3.16. 3D detection results
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(green circle) and the table (red circle) can be resolved. Further, one can observe an

additional response above the table which is due to the metal sphere (yellow circle).

This object can be seen neither in Figure 3.16(a) nor in Figure 3.16(b) or (c). However,

we also observe an increasing amount of clutter at height h > 0in.

In Figure 3.16(e) the iterative approach using an adaptive image processing step as pre-

sented in Section 3.4 is considered. Here, the optimal structuring element according to

Equation (3.47) is obtained for every height, whereby we restricted ourselves to square

structuring elements. As for the choice of the optimization function we considered

ÊD = arg min
ED

(

MSE
[

f̃T (y), p(y|H1; θ̂1)
]

+ MSE
[

f̃N(y), p(y|H0; θ̂0)
]

| ED

)

(3.53)

where f̃T (y) and f̃N (y) are non-parametric density estimates of target and noise, re-

spectively, obtained by kernel density estimation [52]. Parametric density estimates

p(y|H0; θ̂0) and p(y|H1; θ̂1) are obtained by estimating the parameters under the null

and alternative hypothesis θ̂0 and θ̂1, respectively, resulting from the iterative detection

approach. In other words this means that for every BScan we choose the structuring ele-

ment which results in target and noise sets which are in accordance (in the mean-square

sense) with the postulated distribution functions (in our case a Rayleigh distribution

for noise and a Gaussian distribution for targets). Figure 3.16(e) clearly shows the

best detection result, as all targets can clearly be distinguished and clutter is strongly

suppressed.

In Figure 3.17, the varying image statistics as well as the Goodness-of-fit measure

from Equation (3.53) and the optimal size of the structuring element are depicted as

a function of height. One can observe that the noise scale changes dramatically with

height, ranging from a very low level (σ̂0 ≈ 0.05 at the dihedral height) to a strong

presence (σ̂0 ≈ 0.25 in the lower region of the scene). The iterative detection approach

adapts itself to these changes by varying the structuring element size from 1×1 (which

has no effect at all) to 6×6 (which effectively removes all objects smaller than 7.38×7.38

square inch.

Considering computation time, we note that one iteration of the iterative detection

scheme needs approximately as much computation time as the OSCFAR, i.e. for 4− 5

iterations, which was sufficient in our experiments, the iterative detection scheme needs

4−5 times more computations compared to the OSCFAR. When choosing an adaptive

image processing step, the computation time increases by the number of structuring

elements under test.
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Figure 3.17. Image statistics changing with height

3.6 Conclusions

In this chapter, target detection in a centralized detection framework has been consid-

ered. After reviewing a simple thresholding scheme and deriving a Neyman-Pearson

test for target detection in TWRI, the problem of unknown and nonstationary image

statistics has been considered. An iterative target detector has been presented which

adapts itself to different and unknown image statistics. We have shown that there

is need for an additional morphological filtering step to reduce the bias in parame-

ter estimation, which typically occurs when using a simple version of the detector.

Properties of the proposed detector such as conditions for convergence, optimal choices

of the structuring element for morphological filtering and practical issues such as the

choice of initial parameters were examined. The proposed detector was applied to tar-

get detection in TWRI, where the image statistics vary with space. When using the

proposed iterative detector with an optimum choice of the structuring element, targets

have been clearly detected which enhances subsequent steps such as feature extraction

or classification of targets.



51

Chapter 4

Decentralized Target Detection

Decentralized target detection for TWRI applications is considered in this chapter. The

aim is, given a set of 3D TWRI images, acquired from a set of distributed systems,

to obtain a single 3D binary reference image, giving indication about the presence or

absence of targets.

Section 4.1 motivates the usage of a decentralized approach in TWRI applications.

At the core of decentralized detection a fusion center is used which compiles a global

decision. A classical (static) fusion approach is considered in Section 4.2. The main

contribution of this chapter is then the development of a new adaptive fusion rule in

Section 4.3, applicable when no knowledge on the TWRI image statistics is available.

Experimental results, demonstrating the performance of the static and adaptive fusion

approaches are shown in Section 4.4 whereas Section 4.5 provides conclusions.

The material presented in this chapter is partly taken from [31,32, 34].

4.1 Motivation

A centralized scheme, as described in Chapter 3 is one way to fuse a set of TWRI

images to a common reference image. It yields the best possible detection result, as

raw data is transmitted to a central detector.

Phenomenon
Center
Fusion

TWRI
System 1

TWRI
System 2

TWRI
System M Preprocessing

Beamforming &
Preprocessing

Beamforming &
Preprocessing

Beamforming &

Detector 1

Detector 2

Detector M

Y1

Y2

YM

B1

B2

BM

B

Figure 4.1. Decentralized detection scheme

An alternative to a centralized detection scheme is a decentralized scheme as depicted

in Figure 4.1, where a set of local detectors is used to compile individual decisions
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B1, ..., BM . The decisions from all systems are then forwarded to a fusion center which

compiles the overall decision. Compared to centralized systems, distributed systems

provide higher system reliability and reduced computational complexity at the cost

of a lower probability of detection [53, 54]. Decentralized frameworks are especially

useful when using low-cost, mobile devices which e.g. due to energy and hardware

considerations are restricted in terms of sending bandwidth.

4.2 Static Decision Fusion

Given a set of binary decisions for one single pixel, B1(i, j), B2, (i, j), ..., BM(i, j), which

in the following will be denoted as B1, B2, .., BM , the Neyman-Pearson test at the fusion

center given output B takes the form [60]

Λ(B) =
p(B1, B2, ..., BM |H1)

p(B1, B2, ..., BM |H0)

H1

≷
H0

γF (4.1)

which reduces to

Λ(B) =

M
∏

m=1

Λ(Bm) =

M
∏

m=1

p(Bm|H1)

p(Bm|H0)

H1

≷
H0

γF (4.2)

when assuming independence over m. The variable γF is the likelihood ratio threshold

at the fusion center used to tune the preset global false-alarm rate, α. Given an α, γF

can be found via

α =
∑

Λ(B)>γF

p(Λ(B)|H0) =
∑

Λ(B)>γF

M
∏

m=1

p(Λ(Bm)|H0) (4.3)

The likelihood ratio Λ(Bm) can take values

Λ(Bm) =

{

PD,m

αm
for Bm = 1

1−PD,m

1−αm
for Bm = 0

(4.4)

where PD,m and αm denote the probability of detection and the probability of false-

alarm for the image m, respectively. Further

p(Λ(Bm)|H0) =

{

αm for Bm = 1
1 − αm for Bm = 0

(4.5)

The optimal decision scheme for three dissimilar sensors will be shown in the follow-

ing. Let αm = α0 ∀ m, i.e. all local detectors operate at the same false-alarm rate.
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Figure 4.2. p(Λ(b)|H0) for three dissimilar sensors in a decentralized setting

Further, let PD,1, PD,2 and PD,3 denote the corresponding probabilities of detection

where, without loss of generality, we assume PD,1 > PD,2 > PD,3. Note that the image

statistics vary from vantage point to vantage point which causes different probabilities

of detection given the same false-alarm rate at all detectors.

The corresponding distribution of the likelihood ratio for three dissimilar sensors can be

obtained by evaluating Equations (4.4) and (4.5). The resulting distribution is depicted

in Figure 4.2. It can be shown [60] that in order to achieve a global false-alarm rate

identical to the local false-alarm rates, i.e. α = α0, a randomized Neyman-Pearson test

with threshold

γF =
PD,1(1 − PD,2)(1 − PD,3)

α(1 − α)2
(4.6)

and randomization constant

χ =
2α− 1

α− 1
(4.7)

need to be chosen, leading to

b =















1 for Λ(B) > γF

1 for Λ(B) = γF with probability (1 − χ)
0 for Λ(B) = γF with probability χ
0 for Λ(B) < γF

(4.8)

4.3 Adaptive Decision Fusion

A simple fusion rule for a distributed detection scheme has been presented by Chair

and Varshney in [61]. Given a set of M detectors, which provide local decisions

Bm ∈ {−1; 1}, m = 1, ...,M , where Bm = 1 represents the presence of a target and

Bm = −1 indicates its absence, local decisions are transmitted to a fusion center

which computes the global decision b = f(B1, ..., BK). Further, as the observations for

m = 1, ...,M are seen as independent, but not identically distributed, each detector
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may work at a different probability of detection PD,m, m = 1, ...,M . Assuming equal a

priori probabilities for target presence and absence, the optimal fusion rule according

to [61] can then be expressed as,

B = f(B1, ..., BM) =







1 if
M
∑

m=1

amBm > 0

−1 otherwise

(4.9)

where

am = log

(

PD,m

α

)

, if Bm > 0 (4.10)

am = log

(

1 − α

1 − PD,m

)

, if Bm < 0 (4.11)

4.3.1 Decision Fusion using the iterative detection approach

One problem using the simple decision fusion rule (4.9), is the need to know the prob-

ability of detection of every local detector. This information is generally not available,

as in many practical situations, additional data is not available or the target statistics

may change with time and space.

We propose to use the iterative detector derived in Section 3.4 which aims at separating

target and noise data, estimating the underlying statistics then proceeding with per-

forming a Neyman-Pearson test. In essence, the byproduct of the iterative detection

approach are the estimates of the conditional density functions under both hypotheses

p(Y |H0; θ̂0) and p(Y |H1; θ̂1), where θ̂0 and θ̂1 denote the estimated parameter vectors

under the null and alternative hypothesis, respectively. Given θ̂0 and θ̂1, the probability

of detection can be estimated as,

P̂D,m =

∫ ∞

γm

p(L|H1; θ̂0, ; θ̂1)dL (4.12)

with γm being the likelihood ratio threshold at the m-th detector. For a practical

distributed detection TWRI system, our proposed approach is to apply the iterative

detection approach at each sensor and transmit Bm and P̂D,m, m = 1, ...,M to the

fusion center and evaluate the global decision using Equation (4.9) with

am = log

(

P̂D,m

α

)

, if Bm > 0 (4.13)

am = log

(

1 − α

1 − P̂D,m

)

, if Bm < 0 (4.14)
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4.3.2 Decision Fusion using the bootstrap

Two schemes for multiple sensor data fusion have been considered so far. One uses a

high data rate and complexity, yielding the best detection result (centralized detection

approach), whereas the other is of very low data rate and complexity, but leads to a

much less favorable detection result (decentralized detection approach).

In order to tradeoff between the above two extremes, one could use quality information

in distributed detection [53]. A new method to extract quality information is proposed,

stating how confident the respective detector is about its decision.

The idea is to draw inference about γm and therefore the level of confidence of the

detector m. The distribution of the likelihood ratio threshold γm is used to draw

inference about the detector’s level of confidence. In order to obtain the distribution

of γ in practice, one would typically make use of repeating the experiment and using

Monte Carlo simulations. However, in applications such as TWRI, data acquisition and

beamforming are a very time demanding procedure, which would be a critical factor in

many applications such as rescue missions or urban operations. Further, it is unlikely

that one is able to rerun the experiment under the same conditions.

The bootstrap [44,45] is an attractive tool for this type of problems, where experiments

cannot be repeated and inference must be drawn from small data segments. In Ta-

ble 4.1, the bootstrap procedure for estimating the threshold distribution is detailed,

whereby we only consider the independent-data bootstrap.

Table 4.1. Bootstrap procedure

Step 0. Data Collection. Conduct the experiment and apply the iterative detec-
tor [7] to obtain noise and target vectors n and t

Step 1. Resampling. Apply the bootstrap and resample n and t F times with
replacement to obtain n∗f and t∗f , f = 1, ..., F .

Step 2. Parameter estimation. Estimate the noise and target statistics θ̂
∗f

0 and

θ̂
∗f

1 , f = 1, ..., F using maximum likelihood estimation.

Step 3. Threshold distribution. From θ̂
∗f

0 and θ̂
∗f

1 , obtain γ∗fm via α =
∫∞

γ
∗f
m
p(L|H0; θ̂

∗f

0 , θ̂
f∗

1 )dL, f = 1, ..., F

Step 4. Confidence intervals: Sort the thresholds in increasing order, i.e. γ∗1m <
... < γ∗Fm and apply u1 =

⌊

F cB

2

⌋

and u2 = F − u1 + 1 which represent
the (1 − cB)100% confidence interval bounds.

Given a confidence interval for γF as [u1, u2], one can extract quality information con-

ditional on data Ym by checking whether the realization of the likelihood ratio pm(yk|H1)
pm(yk|H0)
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is inside [u1, u2] (low confidence decision) or outside (high confidence decision). Re-

turning to the distributed detection scenario described earlier, we will modify Chair

and Varshney’s method [61] using the bootstrap-based quality measure as,

B = f(B1, ..., BM) =







1 if
M
∑

m=1

qmamBm > 0

−1 otherwise

(4.15)

with qm being the quality information for the m-th sensor as

qm =

{

1, u1 <
pm(Yk |H1)
pm(Yk |H0)

< u2

0, otherwise
(4.16)

which means that an unsure decision (when the likelihood ratio is close to γ) will have

no influence to the overall decision.

4.3.3 Simulation Results

In the following, the performance of three detection techniques is assessed, namely

centralized detection, decentralized detection using no quality information (Equation

(4.9)) and decentralized detection using the bootstrap-based quality information (Equa-

tion (4.15)). M = 3 simulated images Ym(i, j), m = 1, ...,M , i = 0, ..., Ni − 1,

j = 0, ..., Nj − 1 are synthesized as

Ym(i, j) =

{

t(i, j) + n(i, j), target present
n(i, j), target absent

(4.17)

where, as in [7], t(i, j) and n(i, j) follow a Gaussian (with fixed mean and standard

deviation: µ = 0.6, σ1 = 0.2) and Rayleigh distribution (varying scale parameter

σ0 ∈ {0.18, 0.12, 0.08}), respectively. A typical image resulting from the simulation is

depicted in Figure 4.3 as well as the threshold distribution, including the 90% con-

fidence interval, when using the boostrap-based quality metric. For target detection,

the iterative detector described in [7] was used with a square morphological structuring

element of size 5× 5 [30]. This detector was applied to extract the image statistics for

all three methods and, as such, no prior statistical knowledge was assumed. For the

bootstrap-based quality information extraction, F = 200 resamples were used. Simu-

lation results, measuring the probability of detection, and obtained by averaging over

1000 Monte Carlo runs are as shown in Table 4.2.

It is evident that, the bootstrap-based quality information is able to improve the per-

formance of the distributed detector with no quality information added. For small
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Figure 4.3. Synthesized image and threshold distribution

Table 4.2. Probability of detection, Simulation results

Centralized No Quality Bootstrap
α = 0.01 0.92 0.76 0.84
α = 0.05 0.98 0.84 0.89
α = 0.1 0.99 0.93 0.95
α = 0.2 0.99 0.97 0.99
Data rate reduction 0% ≈ 87.5% ≈ 75%

false-alarm rates, the bootstrap-based approach yields a considerably higher probabil-

ity of detection. The reduction in data rate when using the two decentralized schemes

is shown in the last line of Table 4.2, whereby we assumed the original image pixel

values to be represented by 8bit.

4.4 Experimental Results

In this section the two distributed approaches are tested using experimental data. It is

noted that the static fusion approach from Section 4.2 requires a priori knowledge on

the image statistics which might be obtained via secondary data. The adaptive fusion

approach from Section 4.3 on the other hand requires no a priori knowledge, as the

required image statistics are estimated from the data at hand. Both approaches might

be applicable in different situations and are also treated separately in this section.
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4.4.1 Static decision fusion

We consider imaging a metal dihedral, which is mounted on a high foam column, in

the upper part of the room (cf. Figure 2.3). Three B-Scans have been obtained with

the following configurations:

• Image 1: Acquired from the front wall, using a stepped-frequency CW signal

with bandwidth 800 MHz and a center frequency of 1.1 GHz.

• Image 2: Acquired from the front wall, using a stepped-frequency CW signal

with bandwidth 800 MHz and a center frequency of 1.9 GHz.

• Image 3: Acquired from the side wall, using a stepped-frequency CW signal with

bandwidth 2.4 GHz and a center frequency of 1.9 GHz.

The acquired images after background subtraction are shown in Figure 4.4 where the

reflection due to the metal dihedral is marked in the upper left quarter. Given the

distribution function under the null and alternative hypothesis for the images shown

above, the probabilities of detection can be calculated via PD =
∫∞

γ
p(L|H1)dL. Due

to the different statistics for all images, the following probabilities of detection are

obtained for a fixed false-alarm rate α = 0.01%: 89.8% (Detector 1), 91.6% (Detector

2) and 73.0% (Detector 3).
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Figure 4.4. B-Scans of a metal dihedral obtained using different vantage points and
frequency bands

The detection result when using the Neyman-Pearson test as in Equation (3.3) is shown

in Figure 4.5(a). As can be seen, the metal dihedral is clearly detected. The clutter,

which is visible in Figure 4.4 is strongly reduced by the image fusion.

The distributed detection result using the optimal decision fusion derived in Equation

(4.8) is shown in Figure 4.5(b). The metal dihedral is detected in the upper left quar-

ter, but a slightly increased amount of clutter remains in the detected image. This
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Figure 4.5. Detection Results using a centralized and decentralized framework

stems from the fact that the Neyman-Pearson test uses the raw data set {Ym(i, j)}M
m=1,

whereas in the case of distributed detection highly compressed information is trans-

mitted to the fusion center, yielding a performance loss.

4.4.2 Adaptive decision fusion

In order to test the adaptive decision fusion we consider the scene depicted in Figure 2.4

at a height of 6ft above ground. The scene was illuminated from three vantage points,

0, 45 and 90 degrees. Three B-Scans as shown in Figure 4.6(a)-(c) can be obtained. At

this height, the reflection of the sphere is very weak, thus only the dihedral (solid circle)

and the trihedral (dashed circle) can be seen. We further observe a strong amount of

clutter present, due to multipath propagation and wall effects.
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Figure 4.6. Acquired B-Scans from multiple vantage points

The detection results using the considered detection schemes with a false-alarm rate

of 1% are depicted in Figure 4.7. The iterative detection approach with a structuring
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element of size 5 × 5 is used in all cases so that no a priori knowledge of the image

statistics is needed. By fusing the three images using the centralized scheme (Figure
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Figure 4.7. Detection results

4.7(a)), clutter can be removed and the two targets of interest are clearly visible.

Using the decentralized detector with no additional quality information, a rather poor

detection result is obtained, as shown in Figure 4.7(b). Although clutter is strongly

reduced, the probability of detection is far too low to detect the two targets. When the

bootstrap-based quality information using a 90% confidence interval is added, a quality

map, representing
∑M

m=1 qmam for each pixel can be obtained and is depicted in Figure

4.7(c). This quality map represents the joint confidence of all local detectors (dark

regions represent pixels with a high joint confidence, bright regions represent pixels

with a low joint confidence), which is then processed as in Equation (4.15) to obtain

the final detection result per Figure 4.7(d). Both targets can be clearly detected. One

can observe a slight decrease in performance compared to the centralized detection

scheme.
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4.5 Conclusions

In this chapter target detection for TWRI in a decentralized framework has been consid-

ered. After reviewing a static decision fusion approach which requires prior knowledge

on the image statistics, a new adaptive decision rule was derived. This rule is based on

confidence estimation of local detectors using the bootstrap principle. Based on this

confidence estimation a quality bit indicating the degree of confidence of the local de-

tection is sent along with the actual decision. The set of all local decisions and quality

information bits is then collected at a fusion center which compiles the global decision.

Experimental as well as simulation results show that the performance of simple decen-

tralized detectors can be significantly improved by allowing the use of bootstrap-based

quality information.
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Chapter 5

Classification Approaches

In this chapter, image-domain based classification of stationary targets in TWRI is

considered. The aim is to divide a TWRI image into a finite set of segmented objects

which are labelled according to a certain class that may depend on target material or

shape, for example. This so called object occupancy map can then be used by an image

analyst to get a sophisticated description of the targets being present in the scene of

interest.

Section 5.1 motivates a target classification chain consisting of segmentation, feature

extraction and classification in TWRI applications. Section 5.2 details different ways

of segmenting TWRI images into a finite number of candidate objects. Given these

candidate objects, the next step is the extraction of features as described in Section

5.3. Feature extraction maps objects from the image domain to a feature vector which

is a parsimonious object descriptor. We consider statistical as well as geometrical

feature extraction. Given an object under test and its extracted features, we then

demonstrate how to perform discrimination between the target of interest and clutter

returns in Section 5.4. Finally, Section 5.5 provides conclusions.

5.1 Motivation

As for target detection in Chapter 3 and 4 strong artefacts in TWRI images complicate

visual inspection and require systematic tests and methods based on a computer rather

than a human image analyst. The problem of target classification is generally more

sophisticated compared to target detection as it involves a mapping from the image

domain to a feature and finally a label space.

To keep target classification tractable we propose a classification chain as in Figure 5.1.

Its first step is beamforming or image formation as reviewed in Chapter 2. The output

is a two- or threedimensional TWRI image. A mapping to a binary object space is

performed by a segmentation step. The output is a set of binary candidate objects.

As a parsimonious object description is necessary, the segmentation step is followed by

feature extraction in which each candidate object is represented by a so called feature

vector. Finally, classification is performed by mapping each feature vector to a label

which corresponds to a specific physical object.
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Figure 5.1. Through-the-Wall Radar Imaging Classification chain

One important issue in target classification is robustness with respect to target coordi-

nates and system parameters. As will be shown later, TWRI target images change in

pixel intensity as well as in shape when moving the target with respect to the imaging

system and/or change system parameters such as bandwidth and crossrange resolution.

Thus, practical TWRI classification system has to be robust to changes in resolution.

5.2 Segmentation

Let Y (i, j, h) with 0 ≤ i < Ni, 0 ≤ j < Nj and 0 ≤ h < Nh denote a 3D TWRI

image with Y (i, j, h) ≥ 0, whereby Ni, Nj and Nh are the number of voxels in range,

crossrange and height, respectively.

Given a set of labels G, it is the aim of segmentation to assign a label x ∈ G to each

voxel Y (i, j, h), 0 ≤ i < Ni, 0 ≤ j < Nj , 0 ≤ h < Nh. For TWRI applications, we

consider G = {0; 1}, i.e. each voxel is assigned to belong to either background (x = 0)

or target (x = 1).

In this section, it will be demonstrated how to use two common segmentation algo-

rithms, the Iterated Conditional Modes (ICM) [62] and the Levelset Method (LSM) [63]

for segmenting TWRI images. In the following, we consider vectorized images, where

the elements are in lexicographic notation. A 3D TWRI image is thus represented as

a vector y, where yn denotes its n-th element, n = 0, ..., N − 1, with N = Ni ·Nj ·Nh.

5.2.1 Segmentation using ICM

The ICM algorithm was initially proposed by Besag in 1986 [62] as a method to clean

images and it has extensively been used as a segmentation tool in the past 20 years.
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In scenarios where the pdf classes for the different segments are known, which often

is the case in SAR imaging applications [64–68], ICM turns out to be a useful and

computationally attractive method. Let x denote the true underlying label field with

xn denoting its n-th element, n = 0, ..., N − 1 and xn ∈ [0; 1]. Using a maximum a

posteriori (MAP) approach, x can be estimated as

x̂ = arg max
x

{p(x |y)} (5.1)

which, using Bayes’ theorem and assuming conditional independence, can be written

as

x̂ = arg max
x

{p(x)p(y |x)} = arg max
x

{

N−1
∏

n=0

p(xn)p(yn|xn)

}

(5.2)

Here, p(y |x) is a conditional distribution which can be chosen according to the pdf class

of the different segments and p(x) denotes the prior distribution. Using the Markovian

property [69], p(xn) can be simplified by assuming that the prior probability of a voxel

xn only depends on its neighborhood rather than the whole image, e.g.

p(xn) = exp (̺#{xt ∈ Nxn
|xt = xn}) (5.3)

where ̺ > 0 is the so called attraction parameter, #{·} denotes the cardinal number

of the set and Nxn
is the neighborhood of element xn. It is noted, that the assumption

of independence in Equation (5.2) is only an approximation as the width of the point

spread function yields correlation in the measurement of neighboring samples.

The estimate in Equation (5.2) is calculated iteratively to approximate the MAP es-

timate. ICM starts with an initial estimate of the label field x, which can, e.g., be

obtained via simple thresholding or more advanced methods such as the minimum

cross-entropy thresholding technique [70]. A new label field is then obtained by it-

eratively maximizing the posterior distribution for every voxel, i.e. deciding for the

new label x̂n which maximizes exp (̺#{xt ∈ Nxn
|xt = xn}) p(yn|xn). The procedure is

continued until convergence is achieved.

The question that arises is how to choose p(yn|xn) and the neighborhood Nxn
for the a

priori distribution. Considering the 3D neighborhood, different possibilities exist [58],

depending on the desired degree of smoothness in the segmented image. In the follow-

ing, we restrict ourselves to a 26-neighborhood for simplicity, meaning that a voxel is

said to depend only on its direct neighbors. Considering the conditional distribution

p(yn|xn), the image formation for TWRI has to be recalled, as per Equation (2.6).

Assume the array response to be i.i.d. from sensor to sensor and from frequency to

frequency. Then, using the central limit theorem, the image reflectivity at a particular

point in space can be modelled as a zero-mean complex random variable where the real
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and imaginary parts are independently Gaussian distributed with a common variance.

The absolute value of the image considered in this and subsequent sections follows

thus a Rayleigh distribution. However, it shall be noted that the central limit theo-

rem may not be applicable as the number of array elements and/or frequencies used

is too small in practice to allow drawing the Gaussian assumption. Also, Gaussianity

may be invalid in imaging scenarios which deviate from the simple scenario treated in

Section 2.1, e.g. when considering more complex wall effects, violation of the far-field

assumption and/or extended targets. In the sequel, we therefore consider the Weibull

distribution as a generalization of the Rayleigh distribution, allowing more flexibility

for data modelling. Thus, the pdf of yn is given by

p(yn|xn) =
κxn

λxn

(

yn

λxn

)κxn−1

exp

{

−
(

yn

λxn

)κxn
}

; yn ≥ 0 (5.4)

where κxn
and λxn

are the shape and scale parameter of the Weibull distribution given

label xn, respectively. In each iteration they can be estimated for every segment via

the maximum likelihood principle as

(κ0, λ0) = arg max
(κ,λ)

∏

{yn|xn=0}

κ

λ

(yn

λ

)κ−1

exp
{

−
(yn

λ

)κ}

(5.5)

(κ1, λ1) = arg max
(κ,λ)

∏

{yn|xn=1}

κ

λ

(yn

λ

)κ−1

exp
{

−
(yn

λ

)κ}

(5.6)

A typical segmentation result of a metal dihedral (Figure 2.5) using the experimental

data from Section 2.1 is shown in Figure 5.2(a). Here, minimum cross entropy thresh-

olding [70] was applied to initialize the segmentation, and an attraction parameter

̺ = 1.5 was used, which is a typical value also in other imaging applications [62].

5.2.2 Segmentation using the Level Set Method

In addition to the ICM, we also consider an alternative segmentation approach, namely

the Level Set Method (LSM), which was developed by Osher and Sethian [63]. Instead

of relying on statistical models, the LSM is a topology-based approach which makes

it a highly attractive tool in volumetric data reconstruction, e.g. in medical image

processing.

Image data in TWRI and other radar imaging applications does typically not show clear

boundaries between target regions and background. The images are rather blurred,

as the image is the outcome of a 3D convolution of the target reflectivity and the

system point spread function. Thus, classical LSM approaches, such as the geodesic
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(a) Iterated Conditional Modes (b) Levelset Method

Figure 5.2. Segmentation Results

contours [71], which rely on image derivatives are not applicable here. Instead, we

consider the energy function developed by Zhang et al. [72], which does not rely on

image derivatives.

A typical segmentation result using the same example as above can be seen in Figure

5.2(b). For initialization of the LSM, a threshold on the normalized image of 0.3 was

chosen, which gave the best result in all cases. It is evident that both segmentation

algorithms perform equally well in this scenario.

5.3 Feature Extraction

The output of segmentation is a set of 3D candidate objects, which in the following

are denoted as Op, p = 0, ..., P − 1 with P denoting the total number of objects after

segmentation. It is the aim of feature extraction to map each candidate object onto a

feature space, where it is represented by a preferably small number of parameters. In

this section, we present two approaches for feature extraction, one based on statistical

features and the other one based on geometrical features. In both cases, it is demon-

strated how to map an object on the respective feature space and how to transform

the obtained feature vector such that resolution-independent features can be obtained.
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5.3.1 Dependence on target resolution

In the following, we provide derivations for the change of target pixel intensity and

target shape. These are based on the beamforming equations in Section 2.1 where the

acquired image was expressed as the convolution of the system PSF with the target

reflectivity as

I(u′, v′) = Γ(u′0, v
′
0)

K−1
∑

k=0

e−j
2ω0

c
((u′−u′

0) cos ϕk−(v′−v′0) sin ϕk) ×

e−j
(L−1)∆ω

c
((u′−u′

0) cos ϕk−(v′−v′0) sinϕk) sin
(

L∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
)

sin
(

∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
)

We are interested in the change of the target pixel intensity when changing the reso-

lution, i.e. the number of frequency bins L for downrange resolution or the number of

array elements for crossrange resolution. Let us, therefore, consider the image at the

target position (u′0, v
′
0)

I(u′0, v
′
0) = lim

u′→u′

0
v′→v′0

I(u′, v′) (5.7)

= Γ(u′0, v
′
0)

K−1
∑

k=0

lim
u′→u′

0
v′→v′0

sin
(

L∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
)

sin
(

∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
) (5.8)

= Γ(u′0, v
′
0)

K−1
∑

k=0

L (5.9)

= Γ(u′0, v
′
0)K · L (5.10)

The magnitude image at the target position, which will be used in subsequent sections

is then

|I(u′0, v′0)| = KL · |Γ(u′0, v
′
0)| (5.11)

In words, this means that for the simple scenario of a point target, an increase in

resolution, either by using more array elements or by using a larger bandwidth, results

in a linear scaling of the pixel intensity. The same concept holds when changing

resolution by moving the target at different standoff distances from the system.

In addition to a change in pixel intensity, system resolution will also affect the object

shape in the image. It is known [73] that the range resolution is inversely proportional

to bandwidth. For the stepped-frequency approach considered here:

∆R =
c · 2π
2L∆ω

(5.12)
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where ∆R denotes the minimum distance between two targets which is necessary in

order to distinctly detect them. Thus, the target image extent in range is proportional

to 1/L.

Similarly, the change in target image extent when moving the target at different standoff

distances from the system can be compensated for by considering the transformation

from the cartesian to the polar coordinate system

u = Rk(u, v) cosϕk (5.13)

v = Rk(u, v) sinϕk (5.14)

which is again a linear relationship. Table 5.1 summarizes the three system and scene

parameters treated in this section, i.e. bandwidth, array elements and target distance

and lists the effect on the image in terms of pixel intensity and target image extent.

Changing parameter Affects

Bandwidth Pixel intensity linearly
Target image extent in range inverse proportionally

Array elements Pixel intensity linearly
Target image extent in crossrange inverse proportionally

Target distance Pixel intensity inverse proportionally
Target image extent in range/crossrange proportionally

Table 5.1. Effect of system or scene parameters on the radar image

5.3.2 Statistical Feature Extraction

As detailed in Section 5.2, the Weibull model offers high flexibility to model target

returns in TWRI images and is physically well motivated. It is thus intuitive to use

the respective distribution parameters (κp, λp), representing the p-th object as object

descriptors. The parameters (κp, λp) can be estimated via maximum likelihood esti-

mation as,

(κp, λp) = arg max
(κ,λ)

∏

yn∈Op

κ

λ

(yn

λ

)κ−1

exp
{

−
(yn

λ

)κ}

(5.15)

It is important to note that Equation (5.15) can not directly be used for target dis-

crimination because the obtained features are not resolution-independent. Different

objects at different resolution/location may have a similar pdf which renders target

discrimination unreliable.
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As derived above and summarized in Table 5.1, image intensity is proportional to the

bandwidth, proportional to the number of array elements and inverse proportional to

the range. We can thus obtain resolution-independent features by choosing

(κ̃q, λ̃q) = arg max
(κ,λ)

∏

ỹn∈Op

κ

λ

(

ỹn

λ

)κ−1

exp

{

−
(

ỹn

λ

)κ}

(5.16)

instead of Equation (5.15), where

ỹn =
1

maxp{yn}
yn (5.17)

with maxp{yn} denoting the maximum voxel value in the p-th object. Practically, this

means that each object is normalized before feature extraction such that scaling factors

due to bandwidth, aperture or range are compensated for.

5.3.3 Geometrical Feature Extraction

Statistical features such as the parameters of a Weibull distribution provide important

information about an object under test, but also have a limited performance, as they

completely neglect object features such as shape, extent in range, crossrange and height,

etc. Superquadrics (SQs) [74] present a comfortable method for the description of 3D

objects by means of only a few parameters. SQs will be used in the sequel as an

alternative or additional way of feature extraction. For simplicity, we restrict ourselves

to superellipsoids where the implicit definition without considering rotation is given

as [74]:

FSQ (i, j, h) =

(

(

i

ai

)
2
ǫ1

+

(

j

aj

)
2
ǫ1

)

ǫ1
ǫ2

+

(

h

ah

)
2
ǫ2

(5.18)

where ǫ1 and ǫ2 influence the circularity are the squareness parameters in east-west

and north-south direction, respectively. Most real objects can be assumed to possess

a convex shape, which means that ǫ1, ǫ2 ∈ (0, 1]. The parameters ai, aj and ah denote

the size in range, crossrange and height, respectively.

Let

φ
B

= (ai, aj, ak, ǫ1, ǫ2) (5.19)

denote the basic parameter vector of one superquadric without considering rotation.

This parameter can be estimated by non-linear least squares fitting as

φ̂
B

= arg min
φ

∑

i,j,k∈Shell

(√
aiajah(FSQ(i, j, h;φ)ǫ2 − 1)

)2
(5.20)



5.3 Feature Extraction 71

where the superquadric representation given a parameter vector φ is denoted as

FSQ(i, j, h;φ). The sum is evaluated for all voxels on the object shell, further, scaling

by
√
aiajah and exponentiation by ǫ2 is typically applied [75] to avoid local minima.

The optimization problem in Equation (5.20) can be solved by e.g. the Levenberg-

Marquardt method [76, 77]. Due to the non-linear optimization, the end result of

superquadric fitting may strongly depend on the initialization. Determining an initial-

ization of the size parameters ai, aj and ah is an easy task since the size of the segment

in range, crossrange and height can be considered here. Further, Solina [75] explains

that the initial value of the shape parameters ǫ1, ǫ2 is not critical and suggests therefore

the value 1 which would consider an ellipsoid shape for initialization.

5.3.3.1 Rotation and global deformations

Equation (5.18) denotes a simplified superquadric, which may not be suitable to rep-

resent the diversity of possible target objects arising in TWRI applications. We thus

extend the model by considering rotation as well as global deformations to allow a

more flexible superquadric fitting.

The rotation is performed by means of the tensor product, represented by a 3 × 3

matrix IT [75]. The orthogonal rotation matrix R is then the matrix that diagonalizes

IT as

D = R−1ITR (5.21)

where D is a diagonal matrix. A multiplication by R and R−1 leads to

RDR−1 = IT . (5.22)

Hence, R can be computed by eigenvalue decomposition.

The roll-pitch-yaw angles, also referred to as XYZ angles, are used to represent the

rotation of a superquadric. They are denoted as αi, αj and αh, representing rotation

around the i, j and h-axis, respectively. First, αj is determined by

αj = arctan(−R31,
√

R2
11 + R2

21)). (5.23)

where Rr1,r2 is the (r1, r2)-th entry in the 3×3 rotation matrix and arctan(·, ·) denotes

the two-argument arctangent [78]. The remaining angles are then given as

αh =

{

0, αj = ±π/2
arctan

(

R21

cos(αj )
, R11

cos(αj)

)

, otherwise
(5.24)
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αi =















arctan(R12,R22), αj = π/2

−arctan(R12,R22), αj = −π/2
arctan

(

R32

cos(αj)
, R33

cos(αj)

)

, otherwise

(5.25)

Note that by convention of the roll-pitch-yaw angles an object is first rotated around the

i, then j and finally h-axis. The case differentiation is required to avoid singularities.

Although superquadrics can model a great variety of objects, there exist shapes that

cannot be fitted, such as cones. Therefore, Solina recommends [75] the use of global

deformations tapering and bending. Due to computational complexity, only tapering

is considered here.

For tapering along the h-axis, two further parameters, Ti and Tj , are introduced. The

coordinates (i, j, h) have to be transformed as:

itaper =
i

Ti

ah
h+ 1

jtaper =
j

Tj

ah
h+ 1

htaper = h

The order of performing the superquadric fitting steps translation, rotation and defor-

mation is critical. In general, global deformations should be always performed before

translation and rotation [75].

As a result of the resolution-dependent single superquadric fitting, we consider the

following parameter vector

φ
SQ,R

= (ai, aj, ak, ǫ1, ǫ2, αi, αj, αh, Ti, Tj) (5.26)

representing all size, shape, rotation and deformation parameters. The parameter

vector φ
SQ,R

can be estimated via nonlinear Least-Squares Optimization as in Equation

(5.20).

Again, φ̂
SQ,R

cannot directly be used for target discrimination, as the object shape

is position- and resolution-dependent. As shown in Section 5.3.1 and summarized in

Table 5.1, the target image extent in range is inversely proportional to the bandwidth

and proportional to the resolution. Further, the target image extent in crossrange and

height is inversely proportional to the number of array elements and proportional to

the resolution. We thus can obtain resolution-independent features by normalizing the
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superquadric size parameters as

ãi = B
Rp
ai (5.27)

ãj =
Kj

Rp
aj (5.28)

ãh = Kh

Rp
ah (5.29)

where Rq is the resolution of the q-th object andKj andKh denote the array aperture in

crossrange and height, respectively. Note that the other parameters, such as rotation,

global deformation and squareness are per se resolution-independent and do not need

to be compensated for. The final single superquadric parameter vector is thus denoted

as

φ
SQ

= (ãi, ãj, ãk, ǫ1, ǫ2, αi, αj, αh, Ti, Tj) (5.30)

5.4 Experimental Results

We consider the scenario presented in Figure 2.5 for evaluation of the proposed tech-

niques. It includes a metal dihedral imaged through a wooden wall. Using the three

different target distances (4, 7 and 11 ft) and the four different bandwidths (0.3, 0.5, 0.7

and 1.0 GHz), a total of 12 3D TWRI images are obtained. In what follows, these im-

ages are segmented using the Levelset method, although it should be noted that similar

results are obtained using the ICM.

Figure 5.3(a) plots the histograms of the 12 segments, obtained using kernel den-

sity estimation [52]. The histograms differ in scale, as derived earlier in Equation

(5.11). Performing compensation, i.e. normalizing the image data between 0 and 1,

yields the histograms in Figure 5.3(b), which now align and can be used for resolution-

independent target discrimination.

As proposed in Section 5.3, we consider the scale and shape parameters of the Weibull

distribution as features to represent an object under test. The results are depicted

in Figure 5.3(c) (uncompensated) and (d) (compensated). Again, it can be observed

that the parameter estimates move closer together when using compensation which

facilitates target discrimination.

As an alternative to the statistical feature extraction, we have proposed in Section 5.3

geometrical feature extraction using superquadrics. Two superquadric features, namely

the volume and the tapering parameter Ti are depicted in Figure 5.4(a). Here, the tar-

get volume dramatically changes with bandwidth. A small target volume size around
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(a) Target histograms, uncompensated (b) Target histograms, compensated
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(c) Parameter estimates, uncompensated (d) Parameter estimates, compensated

Figure 5.3. Statistical feature compensation

500 voxels is obtained when using 1.0 GHz bandwidth (depicted as green crosses).

When changing the bandwith to e.g. 0.3 GHz, the volume increases to approx. 1300

(red crosses). Performing compensation as per Equation (5.29), we obtain the scatter-

plot as in Figure 5.4(b) where the estimated target volume is concentrated in a small

area.

Finally, we consider the problem of discriminating the object of interest from clutter

returns, which is of primary practical interest. Clutter objects are obtained from

various TWRI experiments containing e.g. chairs and tables. In Figure 5.5(a) the

Weibull parameter estimates are plotted for clutter objects (black crosses) and the

dihedrals (blue triangles). It can be seen that target discrimination is difficult as both

classes are spread in the same range. The same holds when considering the superquadric

parameters as shown in Figure 5.5(c). Performing the proposed compensation, we
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(a) Superquadric parameters, uncompensated (b) Superquadric parameters, compensated

Figure 5.4. Geometric feature compensation

obtain scatterplots as in 5.5(b) and 5.5(d) where the dihedral features are now strongly

concentrated and discriminable from the clutter returns.

For the task of automatic target classification we consider the resolution-dependent

(RD) and resolution-independent (RI) feature vectors

ψ
RD

= (κq, λq, ai, aj, ak, ǫ1, ǫ2, αi, αj , αh, Ti, Tj) (5.31)

ψ
RI

= (κ̃q, λ̃q, ãi, ãj, ãk, ǫ1, ǫ2, αi, αj , αh, Ti, Tj) (5.32)

which consist of statistical as well as geometrical features. Classification is performed

using the Mahalanobis distance [79], assuming the feature vectors ψ
RD

and ψ
RI

to

follow a multivariate Gaussian distribution, respectively. The setup consists of 12

target and 40 clutter objects. A Leave-One-Out approach is considered in which suc-

cessively one of the 52 objects is removed and the remaining 51 objects are used for

training. Table 5.2 depicts the probabilities of correct classification (a dihedral is clas-

sified as dihedral) and false-alarm (a clutter object is classified as dihedral) for the

resolution-dependent and resolution-independent features, as well as for the ICM and

LSM segmentation algorithms.

Resolution-Dependent Resolution-Independent

ICM
Correct Classification 100% 100%
False Alarm 10% 2.5%

LSM
Correct Classification 100% 100%
False Alarm 7.5% 0%

Table 5.2. Classification results
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(c) Superquadric parameters, uncompensated (d) Superquadric parameters, compensated

Figure 5.5. Target/clutter clusters

As already suggested by the scatterplots in Figure 5.5 the proposed resolution-

independent features perform a compression in the feature space. This ultimately

yields a smaller false-alarm rate. For the simple example considered here, 100% correct

classification with 0% false-alarm can be achieved when using resolution-independent

features. Further, it is noted that the LSM algorithm performs slightly better than the

ICM.

5.5 Conclusions

The problem of target segmentation, feature extraction and discrimination for

Through-the-Wall Radar Imaging was considered. Statistical as well as geometrical
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features have been proposed to discriminate targets from clutter returns. Compensa-

tion methods aiming at resolution-independent features have been derived and applied

to real data measurements. The experimental results demonstrate the usefulness of the

proposed methods as desired target returns appear in clusters which are discriminable

from clutter returns.
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Chapter 6

Conclusions and Future work

In this thesis the problem of detecting and classifying stationary targets in Through-

the-Wall Radar Imaging has been considered. In the area of target detection, central-

ized and decentralized frameworks have been used to jointly detect targets from a set

of vantage points. Specifically the problem of varying image statistics has been treated.

In the area of target classification, a processing chain consisting of segmentation, fea-

ture extraction and classification has been proposed for TWRI. A focus has been set

on resolution-independent feature extraction.

A summary and the main conclusions of the work performed in this thesis are provided

in Section 6.1. Finally, Section 6.2 provides an outlook for possible future work.

6.1 Conclusions

6.1.1 Centralized Target Detection

In the area of centralized target detection for TWRI a framework has been introduced

that allows to jointly binarize and fuse a set of radar images obtained from different

vantage points. The image statistics in TWRI have been found to be highly varying in

space. As a consequence, an adaptive detector has been proposed, which estimates the

image statistics and adapts the detector accordingly. The proposed adaptive detector

is based on morphologic image processing to separate target and noise regions. The

optimal choice of the morphologic structuring element based on goodness-of-fit tests,

as well as a qualitative convergence analysis have been carried out.

The proposed detector allows for automatic three-dimensional target detection and

shows superior performance when compared to static approaches and classical CFAR

detectors.

6.1.2 Decentralized Target Detection

The problem of fusing decisions of local detectors has been considered for multiview

TWRI in order to perform joint image fusion and binarization under energy/bandwidth
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constraints. We have introduced a new scheme which allows for automatic fusion

of local decisions without the need of knowing the local image statistics or detector

properties. Further, the bootstrap principle has been used to obtain quality information

in the form of bits, indicating the confidence of local decisions. These quality bits are

then used to perform optimal decision fusion.

The proposed scheme for automatic decentralized three-dimensional target detection

allows to strongly reduce the required transmission bandwidth while keeping the de-

tection performance at an acceptable level.

6.1.3 Classification

In the area of target classification for TWRI we have considered a framework consisting

of segmentation, feature extraction and classification. Each of these steps has been

addressed individually and modified to cope with the special nature of TWRI images.

We have considered statistical as well as geometrical features and demonstrated that

they are generally dependent on system and scene parameters. A compensation method

in the feature domain has thus been proposed to obtain reliable estimates. Finally,

classification has been performed by means of the Mahalanobis distance.

The proposed classification scheme allows for automatic three-dimensional target clas-

sification/discrimination. The proposed compensation scheme yields a compression in

the feature space and results in more reliable classification results.

6.2 Future Work

6.2.1 Beamforming

In this thesis we have restricted ourselves to the wideband sum-and-delay beamform-

ing approach for imaging. The radar image quality could, however, be improved by

using other, e.g. data-adaptive, beamforming algorithms, yielding higher probability

of detection. Further, the statistical and geometrical features used for classification

are generally dependent on the imaging algorithm. The question on how the actual

beamforming algorithm affects target detection and classification is still unanswered.
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6.2.2 Centralized Target Detection

Prefiltering. A lot of work has been done in the area of prefiltering radar images

to reduce noise and clutter effects [64, 65, 80, 81]. The problem of most image

prefilters is that the optimal filter coefficients generally depend on the target and

noise distribution parameters. Thus, a joint detection and filtering scheme could

help to improve the detection result.

Optimization of the structuring element. In Section 3.4.5 the optimal structur-

ing element ED was found by considering the MSE between a non-parametric and

parametric pdf estimate. The structuring element ET used to compensate for

missed detections was found empirically. This scheme can be extended to a joint

optimization of [ED, ET ] and a more general function, based on e.g. goodness-of-

fit tests [82] or the Kullback-Leibler divergence [83].

Density models. The adaptive detection approach in Section 3.4 can be extended

by using either a more general class of pdfs such as the Generalized Bessel K-

Distribution [84, 85] or by considering a non-parametric approach in which the

pdfs are estimated via kernel density estimation in each iteration step. A first

step in this direction was considered in [35].

6.2.3 Decentralized Target Detection

Distributed CFAR. There is important work done in the field of distributed detec-

tion with CFAR constraints [54], including extensions of the OSCFAR detec-

tor [86–88] and the CACFAR [89–91]. Their application to TWRI would be of

high interest.

Distribution Detection without a Fusion Center. We have focused on dis-

tributed detectors where a central fusion center is present. Other approaches

in this area consider the situation when no fusion center is present and the local

detectors communicate among themselves to converge to a global solution.

Quality information. We have considered computation of a single-bit quality infor-

mation for every sample. This scheme can easily be extended to allow for more

than one quality bit by quantizing the likelihood ratio distribution. Further, one

can save bandwidth by assigning quality bits not to every sample, but to image

regions.
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6.2.4 Classification

Segmentation. The ICM and LSM algorithm, considered in this thesis, consistently

provided desirable segmentation results. However, recently a new class of seg-

mentation algorithms originating from graph theory has emerged. The most

prominent of these methods is Graph Cut [92, 93] which quickly became a stan-

dard tool in image segmentation. Graph Cut does not directly rely on parametric

models, its application to TWRI images would be of great interest for future work.

Feature Extraction. In this thesis, simple geometric and statistical features have

been used. Other feature sets, e.g. parameters based on more advanced paramet-

ric models such as the Generalized Bessel K-Distribution [84,85] could be of inter-

est when the two-parameter Weibull distribution fails in target and clutter mod-

elling. Superquadrics, which are used to describe three-dimensional bodies, can

be extended via global deformations [75], sets of concatenated superquadrics [94]

or even free-form deformations [95–97].

Feature Selection. It is well known [98] that the classification performance often

degrades in practice with an increasing number of features. This is known as

the curse of dimensionality [99]. It is thus desirable to have few but discriminant

features. An extensive study about the usefulness of different features, e.g. based

on PCA, Fourier analysis [100,101], texture [102,103], geometrics, statistics, etc.,

should be investigated for the application of TWRI.

Classification. In this thesis we have restricted ourselves to density-based classifica-

tion approaches in which the class-conditional densities are estimated via super-

vised learning. As an extended supervised learning may not be an appropriate

choice in TWRI, it is worthwile considering the area of unsupervised learning,

e.g. cluster analysis approaches [104].

Further, we have restricted ourselves to the Mahalanobis distance for classifica-

tion. The Mahalanobis distance has successfully been used for the simple example

of discriminating a metal target from clutter but it may fail in more complex sce-

narios. Using Support Vector Machines [105, 106] and Neural Networks [107]

might be more appropriate.

Rotation-independence. The proposed methods for feature compensation are in-

variant to translation and system resolution. No attempt so far has been made

to consider rotation-invariance or at least robustness with respect to deviations

in the viewing angle. Slight deviations could be compensated by training the

classifier with data collected from slightly different vantage points. This would,

however, increase the misclassification rate. Larger deviations have to be tackled
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by compensation methods, e.g. model-based approaches in which the target RCS

is modelled as a function of the viewing angle.

Subaperture-based classification. The classification performance could be in-

creased by considering imaging a target by dividing the aperture into subaper-

tures, yielding a set of low-resolution radar images from different viewing angles.

Classification of a target can then be performed by considering its feature vector

to be a function of viewing angle.

6.2.5 Wall Removal

All detection and classification methods are tested using background-subtracted data.

Having empty room measurements available is an ideal case which may be inappropriate

in practical scenarios. First studies on the effect of wall removal on detection are

published in [33] and [108]. The general question on how wall removal techniques

affect detection and classification results is still unanswered.





85

Appendix

3D detection results

(a) Static morphological filtering
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(b) Adaptive morphological filtering

Figure A.1. Detection results using the iterative detector

Figure A.2. Detection result, OSCFAR



Figure A.3. Image statistics changing with height



87

List of Acronyms

CACFAR Cell-Averaging Constant False-Alarm Rate

CFAR Constant False-Alarm Rate

CW Continuous-Wave

EM Electromagnetic

GLRT Generalized Likelihood Ratio Test

i.i.d. independent and identically distributed

ICM Iterated Conditional Modes

ISAR Inverse Synthetic Aperture Radar

KDE Kernel Density Estimation

LLRT Log-Likelihood Ratio Test

LRT Likelihood Ratio Test

LSM Levelset Method

MSE Mean Square Error

OSCFAR Order Statistics Constant False-Alarm Rate

PCA Principal Component Analysis

pdf probability density function

PSF Point Spread Function

RCS Radar Cross Section

RF Radio Frequency

ROC Receiver Operating Characteristic

SAR Synthetic Aperture Radar

SQ Superquadric

SNR Signal-to-Noise Ratio

TWRI Through-the-Wall Radar Imaging
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List of Symbols

ai Superquadric size in range

aj Superquadric size in crossrange

ah Superquadric size in height

A pdf scaling parameter

b(i) true 1D binary signal

B(i, j) true binary image

bD(i) detected 1D binary signal

BD(i, j) detected binary image

bFA
t binary detected signal in the t-th iteration stemming from false-alarms

bMD
t binary detected signal in the t-th iteration stemming from missed detections

c Speed of light

d wall thickness

E structuring element

f bootstrap resample variable

f0,t(y) non-parametric noise density estimate in the t-th iteration

f1,t(y) non-parametric target density estimate in the t-th iteration

F total number of Bootstrap resamples

G Fitting function

h Pixel in height

hB Bandwidth for KDE

i Pixel in range

I(u′, v′) Complex image after beamforming

j Pixel in crossrange

k Antenna variable

K Total number of antennas

l frequency variable

L Total number of frequencies

m vantage point variable

M Total number of vantage point/images

N total number of pixels (= Ni ·Nj ·Nh)

Ni Number of pixels in range

Nj Number of pixels in crossrange

Nh Number of pixels in height
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N0 Number of noise samples

N1 Number of target samples

Op p-th binary Object

pFA
t (y) pdf in the t-th iteration stemming from false-alarms

pMD
t (y) pdf in the t-th iteration stemming from missed detections

p point target variable

P Total number of point targets

PD Probability of detection

Q Kernel function

R Distance from the array center to the scene center

Rk(u
′, v′) Distance from the k-th antenna

s structuring element variable

S Total number of structuring elements

t iteration variable

T Total number of iterations

u scene variable in range

[u1, u2] confidence interval bounds

uoff standoff distance

v scene variable in crossrange

vk Position of the kth antenna

u′ local scene variable in range

v′ local scene variable in crossrange

x true vectorized label field

y acquired, vectorized image

Y (i, j) acquired image

G set of labels

N set of noise pixels

P set of all targets bigger than the structuring element

T set of target pixels

V image processing/filtering operation

α false-alarm rate

αi Superquadric rotation around the i-axis

αj Superquadric rotation around the j-axis

αh Superquadric rotation around the h-axis

β sample threshold
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γ LR threshold

γF LR threshold at the fusion center

Γ target reflectivity

ǫ Prob. of target occurence

ǫ1 Superquadric squareness parameter east/west

ǫ2 Superquadric squareness parameter north/south

ε dielectric constant of the wall

η pixel allocation error

θ0 parameter vector under H0

θ1 parameter vector under H0

κ Weibull shape parameter

λ Weibull scale parameter

Λ Likelihood ratio

µ mean value of the Gaussian distribution

̺ attraction parameter

σ0 Rayleigh scale parameter

σ1 standard deviation

τk(u
′, v′) Travelling time from the k-th antenna

φ
SQ,R

Resolution-dependent Superquadric parameter vector

φ
SQ

Resolution-independent Superquadric parameter vector

ϕk Angle from the k-th antenna to the scene center

ϕk,I Angle of incidence from the k-th antenna

ϕk,R Angle of refraction from the k-th antenna

ψ
RD

Resolution-dependent feature vector

ψ
RI

Resolution-independent feature vector

χ randomization constant

ωl l-th frequency component

∆ω Frequency step size
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