
Local Structures
Determine Performance
within Complex Networks
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Dipl.-Math. Lachezar Aleksandrov Krumov aus Pernik, Bulgarien
November 2010 — Darmstadt — D 17

Fachbereich Informatik
Fachgebiet Algorithmik

Local Structures
Determine Performance
within Complex Networks

Genehmigte Dissertation von Dipl.-Math. Lachezar Aleksandrov Krumov aus Pernik, Bulgarien

1. Gutachten: Prof. Dr. Karsten Weihe
2. Gutachten: Prof. Dr. Thorsten Strufe
3. Gutachten: Prof. Dr. Jussi Kangasharju

Tag der Einreichung: Oktober 15, 2010
Tag der Prüfung: Oktober 29, 2010

Darmstadt — D 17

Erklärung zur Dissertation

Hiermit versichere ich die vorliegende Dissertation ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den November 9, 2010

(L. A. Krumov)

1

Abstract
Networks are ubiquitous. We as individuals are part of various social networks and each of us
depends on multiple communication, traffic and supply networks in our everyday life. We are,
however, still far from completely understanding and controlling those networks.

Network motifs, few nodes (un)directed subgraphs, are a well-defined intermediate scale for
characterizing the local structure of networks beyond the scope of single nodes. Motifs have
so far been used only as a statistical measure. Their over- or under-representation in various
networks has been related to specific topological function within those networks.

This work investigates a so far unexplored perspective on complex networks. Namely, the
relation between their motif content and the dynamic processes taking place on top of those
networks. For this purpose, we project the dynamic output of a network back onto its topology
and investigate weighted motifs while keeping the network topology intact. This approach is
unique to this work and reveals a direct relation between the motif content and the output
pattern of complex networks.

We engage network motifs in two distinct ways. On the one side, as an analytical tool to
examine already emerged networks. On the other side, as an active mechanism to adapt and
improve human-made systems. A strong interplay is found between the local structures, the
motif content, within a network and the dynamic performance of that network. Those new
insights are used to develop a series of novel distributed topology control mechanisms.

First, we use networks motifs as an analytical tool on a subclass of complex networks with
large and easily accessible data sets: co-authorship networks. We address the question: Is there
a relation between the citation frequencies of publications and the motifs they are involved in?

Our analysis reveals a collaboration pattern much more successful than other collaboration
patterns: the box motif, a closed chain of four authors. The box motif has the highest success
measured as the average citation frequency per motif edge.

Our findings are confirmed on two large data sets and on data snapshots over the past 20
years. Segregation seems to be the key to success: separation in time, rank and discipline are
the major factors for the success of the box motif.

An analytical generative model for co-authorship networks is introduced that can reproduce
our findings and shreds light into the social factors shaping co-authorship networks.

The revealed interplay between the motif content of complex networks and the dynamic pro-
cesses taking place on those networks motivates a new perspective on distributed communica-
tion networks. We address the question: Instead to use network motifs just as a static analytical
tool, is it possible to engage them in online decision rules to improve human-made systems?

As a result we develop a novel topology control approach for Peer-to-Peer (P2P) networks.
Each peer steers its local motif content to a desired state. Consequently, the overall network
properties of the P2P overlay shifts towards a desired property. Fair load balancing in the
demonstrated cases. Our evaluation shows that the new approach highly improves the net-
work while causing negligible messaging overhead.

3

Motivated by our results, we address a more general question: Are network motifs indeed also
suitable for topology control within heterogeneous networks, where nodes play different roles?

We extend our distributed topology control mechanism to heterogeneous P2P overlays. A
novel approach for constructing highly resilient P2P live streaming networks is introduced. The
peers choose from a set of rules how to adapt their motif content. The new approach induces
resilience comparable to the state of the art methods. However, the topology of the constructed
networks is better balanced than those of existing methods, making the new approach better
performant under normal circumstances. Most importantly, the new approach requires no net-
work knowledge. Consequently, the new method is not only much faster, but it also provides
much higher privacy to the participating peers. Attacks by malicious parties are practically im-
possible. No peer can determine neither its position, nor the position of any other peer within
the network. In that sense, the new proposed approach clearly outperforms the state of the art.

Our findings so far clearly show that one can understand or even actively change the dynamic
performance of networks by looking at their local topology. It is natural to investigate the
opposite perspective: Is it possible to deploy suitable dynamic processes on a network with no
global network knowledge, in order to reveal its topology?

Consequently, we impose a dynamic process on top of a network in order to determine critical
topological constellations within the network. By deploying an extended gossiping protocol,
we show how one can detect communication bottlenecks in distributed manner. Our novel
approach clearly outperforms state of the art methods with respect to both, the precision of its
results and its performance. Last but no least, it has a guarding mechanism against malicious
peers trying to skew the network protocol.

So far we have shown that specific local structures lead to specific network properties and
performance. Finally, we argue that random graphs and their random local structures also have
unexploited potential. They have become notorious in the recent years for being poor null
models of real world networks. Nevertheless, they have topological properties highly desirable
within any P2P overlay. We introduce a novel P2P overlay based on random graphs. This new
overlay is the first one to support exhaustive search queries and exact key-value lookups within
the same overlay. Our overlay is both, highly scalable and efficient, and performs at least as
good as already established P2P overlays.

Throughout this work we repeatedly show that analyzing networks on intermediate scale
opens so far unexplored and very fruitful perspectives on complex networks. The introduced
new methodology for distributed topology control, advocated through this work, is just one of
those perspectives.

4 Abstract

Zusammenfassung
Netzwerke sind allgegenwärtig. Wir nutzen tagtäglich diverse Kommunikations-, Transport-
und Versorgungsnetzwerke und partizipieren an sozialen Netzwerken. Allerdings sind wir weit
davon entfernt diese Netzwerke vollständig zu verstehen und zu beherrschen.

Motive in Graphen - dies sind aus wenigen Knoten bestehende (un)gerichtete Untergraphen -
stellen ein wohldefiniertes intermediäres Maß zur Charakterisierung lokaler Strukturen eines
Netzwerks dar, welches über die Bedeutung einzelner Knoten hinausgeht. Bislang wurden Mo-
tive nur als statistisches Maß verwendet. Ihre Unter- oder Überrepräsentanzen in zahlreichen
Netzwerken konnte erfolgreich spezifischen topologischen Funktionen zugeordnet werden.

Diese Arbeit beschäftigt sich mit einer bislang unerforschten Perspektive komplexer Netzw-
erke: Sie betrachtet die Relation zwischen Motivgehalt und dynamischen Prozessen, die in
diesen Netzwerken stattfinden. Um dies zu analysieren führen wir das Ausgabemuster eines
Netzwerks zurück auf dessen Topologie und untersuchen dabei gewichtete Motive. Dieser bis-
lang einzigartige Ansatz zeigt eine direkte Relation zwischen Motivgehalt und Ausgabemuster
komplexer Netzwerke.

Wir setzen Motive in zwei unterschiedlichen Ansätzen ein: auf der einen Seite als analytisches
Werkzeug zur Erforschung bereits vorhandener Netzwerke, auf der anderen Seite als aktiver
Mechanismus zur Anpassung und Verbesserung von durch Menschenhand geschaffene Systeme.
Wir weisen einen starken Zusammenhang zwischen den lokalen Strukturen, dem Motivgehalt
eines Netzwerks und dessen Leistung nach. Diese neuen Einblicke werden später zur Entwick-
lung einer Reihe innovativer verteilter Ansätze zur Steuerung der Netzwerkstruktur eingesetzt.

Zu Beginn nutzen wir Motive als analytisches Werkzeug auf einer Unterklasse komplexer Net-
zwerke mit zahlreich vorhandenen und leichtzugänglichen Netzwerkdaten: Co-Autoren Netzw-
erke. Wir beschäftigen uns mit der Frage: Existiert ein Zusammenhang zwischen Zitathäufigkeit
der Publikationen und der daran beteiligten Motive?

Unsere Analyse zeigt ein Muster der Zusammenarbeit deutlich erfolgreicher als alle anderen:
das sogenannte Box-Motiv, eine geschlossene Kette aus vier Autoren. Das Box-Motiv hat den
größten Erfolg gemessen an der durchschnittlichen Zitathäufigkeit pro Motivkante.

Unsere Ergebnisse lassen sich auf zwei großen Datensätzen und auf Daten-Schnappschüssen
über den Zeitraum der letzten 20 Jahre bestätigen. Segregation scheint hier der Schlüssel zum
Erfolg zu sein: eine Trennung in der Zeit, im Rang und in der Disziplin sind die stärksten
Faktoren, die zum Erfolg des Box-Motivs führen.

Weiterhin stellen wir ein generatives Modell zur Erstellung gewichteter Co-Autoren Netzwerke
vor, welches unsere Ergebnisse reproduzieren kann und einen Einblick in die sozialen Faktoren
ermöglicht, die Co-Autoren Netzwerke beeinflussen.

Der entdeckte Zusammenhang zwischen Motivgehalt komplexer Netzwerke und dynamischer
Prozesse, die in diesen Netzwerken stattfinden, hat eine neue Sicht auf verteilte Kommu-
nikationsnetzwerke inspiriert. Wir haben uns folgende Frage gestellt: Ist es möglich, Motive

5

in Online-Entscheidungsprozesse so einzubinden, dass sie technische Netzwerke verbessern,
anstatt sie nur als analytisches Werkzeug zu verwenden?

Dem zu Folge haben wir einen innovativen Ansatz zur Steuerung der Netzwerkstruktur von
Peer-to-Peer (P2P) Netzwerken entwickelt. Jeder Peer steuert sein lokalen Motivgehalt in Rich-
tung eines erwünschten Zustands. Infolge dessen konvergieren die allgemeinen Netzwerkeigen-
schaften gegen eine erwünschte Beschaffenheit, in den gezeigten Beispielen nämlich gegen eine
gleichmässige Verteilung der Last im Netzwerk. Unsere Evaluation zeigt unumstritten, dass
dieser neue Ansatz die betrachteten Netzwerke deutlich optimiert und zugleich keinen oder
einen vernachlässigbar kleinen Kommunikationsmehraufwand verursacht.

Motiviert durch unsere Ergebnisse, haben wir uns eine allgemeinere Frage gestellt: Sind Net-
zwerkmotive auch zur Steuerung der Netzwerkstruktur in heterogenen Netzwerken geeignet, in
denen die Knoten unterschiedliche Rollen erfüllen?

Zu diesen Zweck haben wir unseren Ansatz für die verteilte Steuerung der Netzwerkstruktur
auf verschiedenartige P2P-Overlays erweitert: wir begründen eine innovative Vorgehensweise
zur Erzeugung stark elastischer P2P Live-Streaming Netzwerke. Die Peers wählen hierbei aus
eine Menge vorgegebener Richtlinien aus. Diese Richtlinien geben genau vor, wie die Peers
ihren Motivgehalt anpassen sollen. Dieser neue Ansatz induziert eine Elastizität vergleichbar
der aktueller Methoden in diesem Bereich. Weiterhin ist die Struktur der generierten Netzw-
erke besser balanciert als die der vergleichbaren aktuellen Methoden, was dazu führt, dass unser
Ansatz unter normalen Umständen besser funktioniert. Noch wichtiger ist, dass unserer Ansatz
kein Wissen über das Netzwerk voraussetzt. Dadurch ist er nicht nur deutlich schneller, sondern
auch garantiert sehr viel sicherer in Bezug auf die Daten. Folglich sind Angriffe durch böswillige
Parteien praktisch unmöglich. Kein Peer kann weder seine eigene, noch die Positionen eines an-
deren Peers im Netzwerk feststellen. Dadurch ist unser neuer Ansatz vergleichbaren Methoden
deutlich überlegen.

Wir haben nun deutlich gemacht, dass man Netzwerke besser verstehen kann oder sogar
aktiv ihre dynamische Leistungsfähigkeit verändern kann, indem man ihre lokalen Strukturen
näher betrachtet. Eine nahezu selbstverständliche Konsequenz ist es daher, sich auch mit der
umgekehrten Sichtweise zu beschäftigen: Ist es möglich, durch gezieltes Einbringen geeigneter
dynamischer Prozesse in ein Netzwerk seine Struktur zu erforschen, ohne globales Wissen über
das Netzwerk zu besitzen?

Um diese Frage zu beantworten, führen wir einen dynamischen Prozess in einem gegebe-
nen Netzwerk aus, um kritische topologische Konstellationen zu identifizieren. Wir zeigen wie
man verteilt Kommunikationsengpässe ermitteln kann, indem man ein erweitertes Gossiping-
Protokoll betreibt. Dieser neuartige Ansatz übertrifft aktuelle Methoden in diesem Bereich
sowohl bezüglich der Präzision seiner Ergebnisse als auch bezüglich seiner Leistung. Nicht
zuletzt hat unserer Verfahren Schutzmechanismen gegen böswillige Peers, die versuchen das
Netzwerkprotokoll zu stören.

Spezifische lokale Strukturen führen also zu spezifischen Netzwerkeigenschaften und spez-
ifischer Leistung und umgekehrt. Im letzten Teil der Arbeit zeigen wir, dass Zufallsgraphen
und deren zufällige lokale Strukturen grosses Potenzial besitzen. Zufallsgraphen sind in den
letzten Jahren als mangelhafte Nullmodelle realer Netzwerke zunehmend in Verruf geraten.
Dennoch haben sie strukturelle Eigenschaften, die für P2P-Overlays hochgradig erwünscht sind.

6 Zusammenfassung

Wir präsentieren einen innovativen und auf Zufallsgraphen basierenden P2P Overlay. Dieser
neue Overlay unterstützt als erster Overlay überhaupt sowohl flächendeckende Suchanfragen
als auch exakte Schlüsselwort-Suchläufe innerhalb ein und desselben Overlays. Unserer Over-
lay ist effizient und sehr gut skalierbar. Gleichzeitig ist er mindestens so leistungsfähig wie
etablierte P2P Overlays.

Die vorliegende Arbeit zeigt in vielerlei Hinsicht, dass es bislang unerforschte und vielver-
sprechende Perspektiven eröffnet, Netzwerke auf Basis eines intermediären Masses zu unter-
suchen. Die hier eingeführte Methodik zur verteilten Steuerung der Netzwerkstruktur, belegt
durch diese Arbeit, ist nur eine dieser Perspektiven.

7

Acknowledgments
At this point, I would like to thank my colleagues, friends and family members. This work would
not have been possible without their continuous support and encouragement over the last years.

First of and foremost, I would like to thank my supervisor, Karsten Weihe, for his faith in my
work and me. His excellent advices, inspiring comments and the great working environment he
has provided me play substantial role in putting this thesis together.

I am also deeply grateful to Thorsten Strufe and Jussi Kangasharju for guiding me through the
process of conducting solid scientific work. Our discussions over the last years have improved
my scientific attitude enormously.

Special thanks go to Marc-Thorsten Hütt for showing me what it takes to pursuit ambitious
scientific goals. He has provided me with invaluable knowledge on how to formulate and sub-
stantiate scientific findings across disciplines.

The great inspiration power of my dear friend and colleague, Dirk Bradler, have involved me
in numerous collaboration projects. Most of them have proved pure success and their various
outcomes are essential parts of this work.

Very special thanks go to the Volkswagen Foundation. Without their funding support, this
work would have never been possible, nor the numerous international and interdisciplinary
collaborations that have emerged over the past years.

Finally, I am deeply grateful to my parents and my brother. I sincerely appreciate all the
sacrifices you have made to give me the opportunity to stand where I am. My gratitude to you
is endless.

Last but not least, my most whole-hearted thanks go to Adriana Andreeva. Her mental support
and patience were invaluable to me. She helped me stay focused and gave me hope at the
moments I needed it at most.

Darmstadt, September 2010,

Lachezar Krumov

9

Contents

1 Introduction 15

1.1 Motivation and Scope . 20
1.1.1 Social Networks . 20
1.1.2 Distributed Systems and Adaptive Networks 20

1.2 Outline and Results . 21
1.2.1 Social Networks . 21
1.2.2 Distributed Systems and Adaptive Networks 21

2 Separation Leads to High Citation Frequencies: the Box Motif 23

2.1 Introduction . 23
2.1.1 Early History of Knowledge Production . 24
2.1.2 Modern Perspective . 24
2.1.3 Relevance to Complex Network Analysis . 24

2.2 Background on Co-authorship Networks . 25
2.2.1 Statistical Properties . 25
2.2.2 Small World and Average Network Properties 25
2.2.3 Community Structure . 25

2.3 Motivation and Related Work . 26
2.4 Graph Representation . 26
2.5 Findings: the Success of the Box Motif . 27

2.5.1 Converting Publication Impact to Edge Weight 27
2.5.2 Main Result . 28

2.6 Deeper Look: Separation . 31
2.6.1 Separation in Rank: Established Authors and Newcomers 32
2.6.2 Separation in Time . 33
2.6.3 Separation in Scientific Area: Interdisciplinary Collaborations 34

2.7 Supporting Experiments . 34
2.7.1 Network Properties . 35
2.7.2 Weight Distributions and Average Values . 36
2.7.3 Most Successful Motif Instances . 37
2.7.4 Eliminating Trivial Effects . 37

2.8 Further Analysis: Generative Model . 38
2.8.1 The Model . 39
2.8.2 Evaluation . 40

2.9 Technical Aspects . 43
2.9.1 Publication Data . 43
2.9.2 Citation Indices . 44
2.9.3 Co-authorship Graph Representation . 44

11

2.10 Summary and Outlook . 45
2.10.1 Summary . 45
2.10.2 Outlook . 46

3 Motif Based Optimization of Structured P2P Networks: Fair Load 49

3.1 Introduction . 49
3.2 Background on Load Balancing . 50
3.3 Determining Target Motif Signatures . 51

3.3.1 Target Motif Signature: CAN . 53
3.3.2 Target Motif Signature: Kademlia . 54

3.4 Motif Based Optimization . 55
3.4.1 Motif Based Optimization: CAN . 56
3.4.2 Motif Based Optimization: Kademlia . 56

3.5 Evaluation . 57
3.5.1 CAN . 57
3.5.2 Kademlia . 60

3.6 Summary and Outlook . 62
3.6.1 Summary . 62
3.6.2 Outlook . 63

4 Resilient Peer-to-Peer Live-Streaming Using Motifs 65

4.1 Introduction . 65
4.2 Background . 67
4.3 Related Work . 68
4.4 System Design . 69

4.4.1 Network Motifs . 69
4.4.2 Engaging Network Motifs in Topology Optimization 70
4.4.3 Implementation . 71

4.5 Evaluation . 72
4.5.1 Management Overhead . 73
4.5.2 Topological Properties . 73
4.5.3 Resilience to Attacks . 78

4.6 Method Comparison . 79
4.6.1 Topological Properties . 79
4.6.2 Convergence and Complexity . 79
4.6.3 Network Resilience . 80

4.7 Summary and Outlook . 81
4.7.1 Summary . 81
4.7.2 Outlook . 82

5 Finding Communication Bottlenecks in Distributed Environments 83

5.1 Introduction . 83
5.1.1 Network Prerequisites . 84
5.1.2 Application Domains . 84

12 Contents

5.2 Properties of Critical Peers . 84
5.2.1 Centrality Measures: Betweenness Centrality 85
5.2.2 Centrality Measures: Closeness Centrality . 86

5.3 The BridgeFinder Algorithm . 87
5.4 Evaluation . 89
5.5 Gossiping Convergence . 92
5.6 Related Work . 94
5.7 Security Issues . 95
5.8 Summary and Outlook . 97

5.8.1 Summary . 98
5.8.2 Outlook . 98

6 Efficient Search and Lookups in Peer-to-Peer Networks 101

6.1 Introduction . 101
6.2 Motivation . 103
6.3 System Design: PathFinder . 103

6.3.1 Challenges . 103
6.3.2 System Model and Preliminaries . 104
6.3.3 Storing Objects . 107
6.3.4 Key Lookup . 108
6.3.5 Searching with Complex Queries . 110
6.3.6 Node Join and Leave . 110
6.3.7 Node Crash . 111
6.3.8 Network Size Adaptation . 112

6.4 Comparison and Analysis . 114
6.5 Resilience Against Failures . 117
6.6 Security and Other Issues . 119
6.7 Summary and Outlook . 119

6.7.1 Summary . 120
6.7.2 Outlook . 120

7 Summary and Outlook 123

7.1 Summary . 123
7.2 Outlook . 124

8 Authors Publications 139

List of Figures 141

List of Tables 143

List of Algorithms 145

Index 147

Contents 13

Glossary 149

14 Contents

1 Introduction
Networks are ubiquitous. We are all part of numerous social networks: at home in our family
circle, at work with our colleagues, in the virtual space of online forums and many others.
Moreover, each one of us relies on a variety of technological networks in our everyday life by
using mobile phones, the Internet, the World Wide Web, public transport, just to list a few.
Basically, any system where entities interact with each other can be represented as a network.

Understanding the basic functional principles and the factors governing the evolution of the
networks surrounding us is a task of immense importance. Then, this will allow us to interact
more efficiently within social networks, e.g. co-authorship networks, and open a new horizon
for optimization of many already existing human-made systems like mobile networks, peer-to-
peer systems, live streaming and many others.

A network is a set of entities called vertices or nodes and the connections among them are
called edges. In most of the mathematical literature networks are called graphs. Examples
include food webs, social networks, co-authorship networks, the Internet, the World Wide Web,
peer-to-peer (P2P) systems, air transportation, etc. The analysis of networks goes back with
centuries and was carried out mainly by mathematicians. The most famous example dates back
at the 17th century, when Euler provided a solution of the Königsberg bridge problem. During
the 20th century, graph theory has turned into a major field of mathematics and a substantial
body of research has been developed.

In the recent few years, however, we have experienced new tremendous interest towards net-
work research. It resulted from the fast increasing availability of computational power together
with the improvement of communications networks. Both of which lead to the digitalization
of network data, making it easy to access and evaluate. The research focus shifted from the
analysis of single small graphs and the properties of single nodes or edges within those graphs
towards large-scale statistical properties. Instead of investigating graphs with just 30 or 40
nodes, as it is common in social network analysis, researchers are now able to access networks
of millions of nodes, which was considered science fiction just a few years back.

The new perspective on network research has lead to many unexpected discoveries about real
world networks. In order to better place the scope of this work into the already existing body of
research, we give a short summary of the different directions network research has taken.

Early History

One of the main discoveries on real world networks dates back to 1967 with the work of Milgram
[1]. He carried out the following experiment: a bunch of letters were distributed among people
resident on the east cost of the United States. The participants then had to pass their letters
to people they knew on first name basis and in such a way that the letters came closer to their
destinations on the west cost. Surprisingly, most of the letters traveling from person to person
arrived at their destination in a very small number of steps - around six. Those experiments
are the first confirmation of the small-world effect [2], which states that the average path length
between any two individuals on the planet is very short. Nowadays, the small-world effect has

15

been verified in a large number of other networks and it has been shown that the average path
length of those networks scales logarithmically with the network size.

Random graph models have as well always been in the center of network research as they
provide a testbed for any analytical work. The most famous random graph model is the one of
Erdős and Rényi [3]. Their model (ER) has a very simple construction principle: given N nodes,
connect each pair of nodes with probability p. The set of all such graph instances is denoted
by GN ,p. In fact, GN ,p is the collection of all graphs with N nodes and m edges appearing with
probability p(1 − p)M−m, where M = 1

2
N(N − 1) is the maximum possible number of edges.

Many properties of those graphs are exactly solvable for large N [4]. Since the absence or
presence of an edge is an independent event, for large n the degree distribution of those graphs
is well approximated by the Poisson distribution and therefore called Poisson random graphs.

Recent Research Progress

The ER random graphs remained the standard testbed for network analysis for over 40 years. It
was not short before the end of the last century, when it was discovered that many real world
networks have properties not reflected by the ER graphs. One of those properties is transitivity
or also called clustering. It represents the higher probability that two nodes are connected if they
have a common neighbor. For example, two of your friends have higher probability of knowing
each other than any other two individuals on the planet chosen at random.

It was the ground breaking work of Watts and Strogatz [5] that incorporated both, the loga-
rithmic average shortest path typical for real world networks and ER graphs, and high clustering.
Their model starts by ordering all nodes in a circle and connecting each node by a given number
of nodes on the lefthand and on the righthand side from it on that circle. Then by rewiring only
a very small portion of the links between randomly chosen nodes, they achieved both logarith-
mic path length and high clustering. Still, their model has one major limitation: it works only
for fixed networks. That is, the number of nodes must be given and no nodes join or leave the
network during the simulation time.

Motivated by the World Wide Web, Barabási and Albert [6] proposed a model incorporating
network growth. They observed that not only nodes join and leave the network all the time,
but that new nodes have affiliation towards connecting to older nodes, which are already part
of the network for a long time. Their model induces the so called preferential attachment: it
starts with a small number of connected nodes and then new nodes are continuously intro-
duced in the network. Each new node connects to a number of other nodes, selecting them
with probability proportional to their degree. That model not only reflected network growth
while possessing logarithmic average shortest path length, but also revealed that real world net-
works are scale free [7, 8], meaning that some of the topological properties of the underlying
network are independent from its size. Those include average shortest path, diameter, average
degree, clustering, etc. and those properties remain almost constant no matter how large the
network expands or shrinks. That was illustrated by investigating snapshots of the World Wide
Web differing in size within several orders of magnitude, all of which showed almost identical
topological characteristics [8].

The above model not only revealed the unsuspected scale-free property of real world net-
works, but it also confirmed a hypothesis circulating in the scientific community for a while
now: real world networks are not Poisson distributed. Their degree distributions follow rather
a power law [6, 9, 10, 11, 12], i.e. most of the nodes have small number of neighbors, but

16 1 Introduction

there are a few nodes with very large degree. More precisely, the probability that a node v has
degree k is given by Pv (k) = k−γ where γ ∈ [2, 4]. As a consequence, real world networks are
significantly less resilient to attacks and spread of diseases than their ER random counterparts.
Removing the few nodes with high degrees leads to drastic disruptions within the network.

After it was found that different nodes have different degrees, and with high probability car-
rying different function within their underlying network, another discovery was yet to be made.
Newman investigated what he called the assortativity of networks [13]. It reflects the portion of
high degree nodes connected to other high degree nodes and the portion of high degree nodes
connected to low degree nodes. If in a network the better portion of high degree nodes are
connected to similar nodes, it is called assortative, otherwise disassortative. Investigating as-
sortativity on a range of social networks, Newman discovered that social networks are in deed
assortative while biological and technological networks are on the other side disassortative.

The availability of network data and the shortly detected clustering and assortativity of
real world networks motivated researchers to investigate another widely assumed hypothesis.
Namely, that most social networks show community structure, meaning that there are groups
of nodes highly interconnected among themselves, while the groups on the other side are only
sparsely connected to each other [14]. Girvan and Newman introduced a new measure called
modularity [15]. It is based on the adjacency matrix of the network and measures the deviation
of connectivity among nodes in the investigated network from what one would expect uniformly
at random. Then, by starting with the whole network and by consequently removing edges one
can measure the modularity of the network at each step. The division of the network after the
step producing the highest modularity is the community structure of the network.

Finding a division of a network that maximizes its modularity is believed to be N P-hard [16].
Therefore, many heuristic methods have been proposed. Those include greedy algorithms [17],
spectral methods [18], extremal optimization [19], genetic algorithms [20], pass-the-parcel
methods [21] and many others. The most successful algorithms so far are those removing edges
from the network [15] based on their edge betweenness [22]. The betweenness of an edge
reflects the number of shortest paths among nodes in the network running through that edge,
for which Brandes have introduced a few very efficient algorithms [23, 24].

Independently of the approach at hand, it was undoubtedly shown that many real networks,
aside from social networks, possess very characteristic community structures, revealing a com-
pletely different perspective on networks and their analysis.

Our contribution

So far we have barely scratched the surface of the immense body of research dedicated to
network analysis in the last few years. We have shown a few of the research directions and their
ground breaking publications. Still, there is a huge number of network specific publications,
which investigate characteristic properties of the underlying real world networks at hand.

It is way beyond the focus of this work to present a complete chronology of all existing publi-
cations on network analysis. In this work we address one still pending question, that so far has
not been addressed by the research community: can local structures reveal deeper understand-
ing of the function of complex networks and what is their impact on the dynamic performance
of the underlying networks?

The main contribution of this work is to reveal the interplay between dynamic data and local
structures, also called network motifs, in complex networks. Then, to shift that knowledge on

17

dynamic self-organizing human-made networks and to deploy motif based live optimization of
P2P overlays as well as to present a novel approach for constructing resilient P2P live streaming
networks, competitive to the state of the art. We also involve a local decision rule for detecting
communication bottlenecks in distributed environments and show that random graphs possess
properties that make them suitable basis for a novel P2P overlay, supporting both: key based
lookups and broad range searches.

In the following we shortly discuss network motifs, a perspective on local network structures
introduced by the biological research community, as well as the functions they carry in biological
networks. Network motifs are one of the major tools we use in this work to achieve our goals.

Network Motifs

Network motifs are small subgraphs with a specific interaction pattern, usually constituting of
three or four nodes and are considered directed or undirected depending on the underlying
network. Figure 1.1 displays the eight three- and four-node undirected motifs:

Figure 1.1: The eight possible undirected three- and four-node motifs.

They have been introduced by Milo et al. [25] and one usually counts the number of occur-
rences of the different motifs and compare them to a randomized null-model network.

Network motifs have been particularly successful in providing interesting, unexpected rela-
tions between network architecture and topological function. In particular in systems biology,
an influential trend currently relates features of network performance to such small regulatory
devices [26, 27], serving e.g. as a noise buffer or providing a suitable amount of redundancy
for maintaining systemic function even under perturbations.

In particular such relations between the architecture of regulatory devices and topological
functions have been worked out for circuits of negative feedback loops [28], for feedforward
loops as noise filtering devices in gene regulation [29, 26], for interlinked feedback loops acting
on different time scales [30], for a particular composition of regulatory units [31] and their
relation to robustness [32, 33, 34, 35], and for the number of positive and negative feedback
loops in regulatory circuits [36].

Before we continue with the exact scope and the challenges upon this work, we give a short
introduction on one of our main application domains.

18 1 Introduction

Peer-to-Peer Systems

Peer-to-peer (P2P) is any distributed communication architecture where the participants con-
nect directly to each other and not to dedicated servers. Every participant shares parts of
her/his resources (bandwidth, disc space, even processing power) with the rest of the par-
ticipants in the system. In that way all participants are both suppliers and consumers, which
is exactly the opposite to traditional client-server models where only servers supply and clients
consume. Figure1.2 shows a small illustration of those two different architectures.

Figure 1.2: The traditional client-server architecture and a P2P architecture.

The resources in P2P networks grow with the network size as every new participant provides
new resources to the network. In that sense P2P have unlimited resources. Furthermore, all
participants are equally important for the network function, which eliminates the typical for
client-server models single point of failure and in the same time also drastically increases the
network robustness to perturbations.

Those are some of the reasons for the storm-like growth of P2P systems in the last few years.
As of 2009, P2P networks constitute the largest portion of traffic on the network. Applications
include file sharing networks like Gnutella and FastTrack; streaming media (P2PTV) like Cool-
Streaming and LiveStation; research projects like Chord; voice over IP (VoIP); internet phone
applications like Skype; and many others. Most of these networks have tens of millions of users.

The major drawback of P2P is that they are vulnerable to attacks by malicious peers. Fur-
thermore, the usually deployed basic protocols only have availability and connectivity as major
objectives. The resulting overlays are not optimized towards efficiency and performance and
there is no central authority controlling and steering the network function.

Overcoming some of those drawbacks of P2P in a distributed manner is one of the major goals
pursued in this work.

19

1.1 Motivation and Scope

In this work we inherit the simple perspective of network motifs to investigate social networks,
more precisely co-authorship networks. We show how one can use them to reveal the success of
collaboration patterns in terms of citation frequencies.

We then go one step further and propose a methodology for optimizing P2P overlays and
creating resilient P2P live streaming topologies by deploying network motifs in changing and
self-organizing environments.

In other words, we investigate social networks from the static perspective, as only fixed snap-
shots of the networks are available, and match local structures to dynamic performance. We then
transfer that knowledge to networks adaptable in real time, in our case diverse P2P systems as
communication infrastructures currently of great importance, to develop dynamic optimization
strategies for a range of human-made systems.

We explore the reverse direction of the relation topology - dynamic performance. We show
that deliberately inducing a dynamic process on top of a communication network can provide a
reliable scheme to detect communication bottlenecks in a distributed manner.

To this end, only the relation between specific local structures and specific network perfor-
mance is addressed. Finally, we argue that random graphs and their random local structures
still have unexploited potential. We engage their numerous beneficial properties in a new P2P
overlay, the first to support both broad-range queries and exact key-value lookups.

1.1.1 Social Networks

The search for fundamental relationships between network architecture and dynamical data
is the guiding principle underlying our investigation. In order to identify such links between
topology and dynamics for co-authorship networks, we explore the distribution of impact of
publications across few-node subgraphs in the co-authorship networks.

For this purpose we investigate two large co-authorship networks, DBLP [37] and CiteSeerX
[38], and use web crawlers to match citation frequencies onto publications by using CiteSeerX
[38] and Google Scholar [39]. We map the co-authorship networks onto graphs, where two
authors are connected if they have ever published together. The citation frequencies are then
mapped to edge weights. The question we addresses is: Is there a particular collaboration
pattern that is more successful then all others?

1.1.2 Distributed Systems and Adaptive Networks

To this point, motifs have been used only as a statistical measure for revealing the interaction
between architecture and topological function within networks. In this work, we move one step
further and engage network motifs in local decision rules.

Distributed and self-organizing system, such as P2P, allow for the network entities to alter
their local environment. In consequence, we tackle the following question: How do the global
network properties change if all network entities locally change their surrounding, reflected by
the motifs they are involved in, towards a desired local state? In other words, how motifs can
be used to create local decision rules for distributed network optimization.

20 1 Introduction

Next we tackle the opposite perspective of the topology - dynamics relation. We investigate
whether deliberately initiated dynamic processes on networks can be used to reveal their under-
lying topology. More precisely, whether one can use dynamic processes to construct a reliable
scheme for detecting communication bottlenecks in distributed environments?

Network motifs reflect the specific local structure of a network, but specific topologies have
their characteristic limitations in terms of robustness, communication flow, etc. Therefore, we
address the following question as well: What if we stick to randomized local structures and
random networks, such as the ER graphs? Will this allows us to profit from the numerous desir-
able for any P2P overlay properties of ER graphs, such as high robustness, short communication
paths, etc.? More importantly, is it possible to combine those with a similar to key-based lookup
function, such that we can unite the properties of structured and unstructured P2P systems
within one single overlay?

1.2 Outline and Results

In the following we shortly discuss the results presented throughout this work and to what
extend the goals listed above have been achieved, followed by a short outline.

1.2.1 Social Networks

Our results on co-authorship networks show that motif 6 (four nodes forming a closed chain,
see Figure 1.1), which we call the box motif, is more successful than all other motifs, measured
as the average citation frequency per motif edge. Furthermore, it has the highest ratio to its
counterpart in a null-model network with identical topology, but shuffled citation frequencies.
Our results are stable over two large databases, DBLP [37] and CiteSeerX [38] and over data
snapshots for the past twenty years.

We successfully eliminate trivial effects, such as authors per paper or papers per edge, as
possible explanation of our findings and show that all investigated distributions are monotone
and all extracted average values justified.

We even go one step further and investigate separation effects, such as time, rank and disci-
pline. We reveal that they to good extent explain the unexpected success of the box motif.

Finally, we introduce an analytical generative model for constructing co-authorship networks.
This model incorporates dynamic processes on co-authorship networks, such as publishing and
citing of scientific publications. Our model successfully reproduces the success of the box motif
and shreds light into the social factors shaping co-authorship networks.

1.2.2 Distributed Systems and Adaptive Networks

We engage network motifs in local optimization rules for distributed optimization of P2P over-
lays. Each peer alters its local surrounding towards a desired one, extracted from an optimal
topology with respect to a given network property. We investigate fair load balancing and uni-
form key space distribution in two different structured P2P overlays. Our results undoubtedly
show a global shift of both overlays towards the desired global properties, while causing almost
negligible overhead and operating in a fully distributed manner.

1.2 Outline and Results 21

Furthermore, we extend that approach to construct resilient P2P live streaming systems. Our
extensive simulations show that our novel approach is competitive to state of the art methods
with respect to attacks and failures. More importantly, it provides even higher privacy for the
network participants, making attacks by malicious peers almost impossible. Last but not least,
our approach relies on local decision rules which are extremely fast and straightforward to
calculate, making it applicable for devices with limited resources, such as mobile devices.

With respect to our next goal, we present a new approach, BridgeFinder, for detecting commu-
nication bottlenecks within distributed environments. It deploys a local decision rule based on
gossiping to detect critical for the communication flow participants. Our results show that the
peers detected by BridgeFinder with high accuracy overlap with the ones detected by combining
centrality measures from graph theory. Furthermore, BridgeFinder has a guarding mechanism
against malicious nodes and is more reliable and accurate than any existing approach. It can be
implemented as a background process and integrated within the existing communication flow,
causing no additional computational or communication overhead.

To address our last goal, we augmented random ER graphs with a deterministic lookup func-
tion. We deploy this graph on a top layer of virtual nodes, distributed among the actual peers
to construct a novel P2P overlay called PathFinder. PathFinder is the first overlay to combine
both structured and unstructured P2P systems within the same overlay by supporting broad-
range searches as well as key-based lookups. Our extensive simulations, shows that PathFinder
is extremely resilient to attacks and failures and scales to hundreds of millions of nodes, while
performing lookups at least as fast as already established structured P2P overlays.

The rest of this work is structured as follows: In Chapter 2 we investigate the success of
collaboration patterns in co-authorship networks. Based on our insights, we then present a
distributed topology control scheme in Chapter 3. In Chapter 4 we extend this approach to
construct resilient P2P live streaming topologies. Chapter 5 presents a scheme for detecting
communication bottlenecks in distributed environments. A novel P2P overlay based on random
graphs is introduced in Chapter 6. Chapter 7 summarizes our results and gives an extended
outlook on future work of scientific interest.

22 1 Introduction

2 Separation Leads to High Citation
Frequencies: the Box Motif

In this Chapter we investigate the interplay between citation frequencies and local structure in
co-authorship networks.

Co-authorship networks, where the nodes are authors and edges indicate joint publications,
are very helpful representations for studying the processes that shape the scientific community.
At the same time, they are networks with a large amount of available data and thus serve as
vehicles for analyzing complex networks in general.

Our findings give any scientist, concerned about the impact of her/his publications, insights
on the success of different collaboration patterns. They also deepen our understanding of the
function and performance of complex networks in general. Our findings furthermore address
a fundamental question in complex network analysis. Namely, how does the network topology
shape the dynamical processes taking place on top of that network and vice versa.

2.1 Introduction

Previous work on co-authorship networks can be divided in three different branches. The first
one focuses on the statistical properties of individual authors and individual publications, in-
cluding citation distribution, degree distribution, etc. The second branch concentrates on the
network as a whole, investigating its clustering, connectedness, etc. The last research direction
is dedicated to the topological function of single authors, including average distance to other
authors, number of shortest paths going through a given author, etc.

Here we show that the success of individual authors or publications in co-authorship net-
works depends unexpectedly strongly on an intermediate scale, i.e. beyond the scope of single
authors, but still in their surrounding environment. For two large-scale data sets, CiteSeerX
[25] and DBLP [31], we analyze the correlation of three/four node network motifs with citation
frequencies. We find that the average citation frequency of a group of authors depends on the
motifs these authors form. In particular, a box motif (four authors forming a closed chain with-
out chords) has the highest average citation frequency per edge. This result is robust across the
two databases, across different ways of mapping the citation frequencies of publications onto
the corresponding graph representations, and over time.

We also relate this topological observation to the underlying social and socio-scientific pro-
cesses that have been shaping the networks. We argue that the box motif may be an interesting
category in a broad range of social and technical networks.

Despite the static nature of our analysis, it clearly indicates a close interplay on intermedi-
ate level between the structure and the dynamic processes taking place on complex networks.
Later on in this work, we use that fact to develop novel and fully distributed topology control
mechanisms for steering and improving various technological networks.

23

2.1.1 Early History of Knowledge Production

One of the classical debates in the history of science is, whether the production of knowledge
can be viewed as an objective, content-driven process or is it rather dominated by the underlying
social patterns formed by the involved actors.

This work contributes to that debate as well. We show that the collaboration patterns of
authors indeed determine the success of their publications, measured as the number of citations
by other publications.

Ever since the groundbreaking work of Thomas Kuhn in the 60-ties, “The Structure of Sci-
entific Revolutions” [40], it is accepted that the social layer contributes heavily to scientific
progress. Expectations of individuals and the adherence to agreed-upon terminologies all have a
synchronizing effect, i.e. determine trends in scientific communities. These phenomena may be
considered a socially generated inertia, leading to the characteristic discontinuous time course
of scientific progress. The social layer plays an undeniable role in that process.

2.1.2 Modern Perspective

Nowadays, vast amounts of data on knowledge production are electronically available. There-
fore, the study of complex networks provides a unique opportunity to quantitatively assess the
contribution of the social layer to the production of knowledge.

From the network perspective, the strength of the contribution of the social layer can be re-
phrased as follows: Does the underlying interaction of authors and publications statistically
explain parts of the output pattern of the scientific community? Hence, do specific collaboration
patterns lead to higher citation frequencies. This question is at the core of our analysis.

2.1.3 Relevance to Complex Network Analysis

A fundamental topic of interest in complex systems theory and in the analysis of complex net-
works is currently, how network architecture shapes dynamical processes and vice versa.

Progress has been made over the last decade in identifying first ordering principles. One
example is the synchronization of oscillators on hierarchical graphs [41]. The time course of
the stepwise path towards a fully synchronized system seems to follow the pattern of gaps in
the spectrum of the graph, or more precisely its associated Laplacian matrix.

Furthermore, using stylized minimal models has been helpful in revealing some other rela-
tionships between network topology and dynamics [42, 43, 44]. Stylized minimal models are
null models which incorporate a given dynamic network process. Then through the model
one varies the topology of the generated null networks and investigates their influence on the
dynamic process at hand.

An interesting alternative to these simulation-driven studies is to explore the relationship be-
tween network architecture and dynamics from a data-analysis perspective. Namely, to extract
this relationship from large-scale data sets. They can be expected to be produced, at least partly,
by the dynamics of the network at hand.

24 2 Separation Leads to High Citation Frequencies: the Box Motif

Evidences for network architecture clearly contributing to the patterns observed in data, exist
from a diverse range of fields: gene expression patterns, both on the level of whole transcrip-
tional regulatory networks [45, 46, 47] and on the scale of small regulatory devices [25, 26], the
epidemic spread of diseases [48] and attack tolerance related to broad degree distribution [49].

The case study investigated here is a special case of complex networks. The authors are nodes
and edges represent joint publications, together defining the topology of the network. The
dynamic process then taking place on that network is the citation of scientific publications.

2.2 Background on Co-authorship Networks

Co-authorship networks are probably the most extensively studied subclass of complex net-
works. On the one side they represent large, well-defined social networks, almost a luxury
in the field of social science. On the other side, they are a prominent subclass of complex,
self-organizing networks and a suitable testbed for many general theories on complex networks.

Motivated by the large amount of electronically available data, scientists across numerous
fields have analyzed co-authorship networks. As a result, a substantial body of research dedi-
cated to those networks has emerged.

To better place the scope of our own work, it is therefore essential to give a short overview of
the already achieved main results.

2.2.1 Statistical Properties

Co-authorship networks are a snapshot of the knowledge production system. They are simulta-
neously shaped by the social aspects contributing to scientific activity and the topical organiza-
tion of knowledge [11, 50, 51].

Early studies in the mid-1970s [52], in spite of the limited access to data, already extracted
some surprising statistical properties within co-authorship and citation data, see [53, 54].

A giant leap towards analyzing the large-scale organizational features of the system came of
course with the shift towards electronically available publications, see [50, 55, 56].

2.2.2 Small World and Average Network Properties

One of the first large-scale analyses was conducted in [11]. It confirmed that co-authorship
networks indeed have the small world property, i.e. that any two scientists are separated only
by a very small number of intermediate collaborators.

More importantly, the above study revealed that there are some scientific fields, like high
energy physics, where the average network properties are dominated by a few individuals with
many collaborators. Still, in most scientific fields the average network properties are indeed
governed by the large number of scientists with just a few collaborators.

2.2.3 Community Structure

A very rich topic in the discussion of co-authorship networks is the centrality of authors and the
network’s community structure.

2.2 Background on Co-authorship Networks 25

Repeated removal of the most central edges (sum of the betweenness values of the end nodes)
is for example used in [15] to determine the community structures within the network.

Alternatively, [16] applies spectral theory to analyze the community structure. In fact, co-
authorship networks have frequently served as an application example for module detecting
approaches, including all ground breaking studies in this area.

2.3 Motivation and Related Work

The numerous studies described above clearly show that the topology of co-authorship networks
is an extremely interesting object of investigation.

However, they all so far leave unexplored a certain aspect of co-authorship networks. Namely,
the dynamic processes taking place on these networks. We believe that relating the topology to
dynamical processes can yield outstanding insights into the functioning of the scientific system
and some aspects of social dynamics.

The search for fundamental relationships between network architecture and dynamical data
is the guiding principle underlying our investigation. In order to identify such relationships for
co-authorship networks, we explore the distribution of impact of publications across few-node
subgraphs in those networks.

The main conceptual idea of few-node subgraphs as a means of exploring complex networks is
that one looks at network properties and network function at a well-defined intermediate scale
between the whole network and the individual node.

To our knowledge, the only study that indirectly and only partially addresses network orga-
nization at the level of constellations of few collaborators is [57]. They explore the connection
between team assembly mechanisms and the structure and performance of collaboration net-
works, including co-authorship networks.

The parameters of their team assembly model are the fraction of newcomers in a team and
the probability of repeating previous collaborations. In this way they have been able to identify
a phase transition towards a large connected component, as well as other structural network
properties directly linked to the underlying process parameters.

The general relation between team properties and impact has also been addressed by [55],
showing that teams produce more frequently cited research than individuals. This trend is
increasing over time, is visible across many disciplines (from the natural sciences to the human-
ities), and includes the very high-impact research. A domain so far traditionally, but obviously
falsely associated with the single-author “genius”.

Those two, most close to our work studies, still focus only on individual publications, rather
than the intermediate network scale of few-node constellations.

2.4 Graph Representation

Here we adopt a specific definition of co-authorship networks. The nodes are authors and two
authors are connected by an edge if, and only if, they have ever published together.

In this representation, one loses the separation of authors into distinct publication co-
authorships. This information would be retained in a bi-partite graph representation. In a

26 2 Separation Leads to High Citation Frequencies: the Box Motif

hyper-graph representation, one also would be able to retain the grouping of authors beyond
the two-author level, in terms of their institutions for example.

However, the uni-partite representation is particularly suited for our purposes, because of the
enormous amount of graph-theoretical methods and empirical intuition available for exploring
their statistical properties.

This very representation has already lead to remarkable successes in understanding systems
of scientific collaborations [11, 12, 50, 53, 55, 58, 59, 60, 61, 62, 63, 64].

2.5 Findings: the Success of the Box Motif

We define the success of a motif as the average citation frequency per edge of all involved
publications, i.e. all collaborations represented by this edge. By crawling Google Scholar [39]
and CiteSeerX [38], we extracted a database of citation frequencies for a large subset of the
publications entering our two co-authorship networks, DBLP [37] and CiteSeerX [38]. For more
technical details, see Section 2.9

The extracted citation frequencies serve as our surrogate measure for the impact of publica-
tions. We measure the success of a publication by the number of citations by other publications.

2.5.1 Converting Publication Impact to Edge Weight

A crucial step is to convert the impact of publications into edge weights in the co-authorship
network representation. This conversion can be done in several different ways.

For an edge e, let P(e) denote the set of publications represented by e. For a publication p, let
c(p) denote the citation frequency of p and A(p) the set of authors of p. The four possible edge
weight we definitions are then as follows:

we :=
∑

p∈P(e)

c(p) (2.1)

we :=
1

|P(e)|

∑

p∈P(e)

c(p) (2.2)

we :=
∑

p∈P(e)

c(p)
�

�A(p)
�

�− 1
(2.3)

we :=
1

|P(e)|

∑

p∈P(e)

c(p)
�

�A(p)
�

�− 1
(2.4)

where |S| denotes the number of elements in the set S.
The citation frequency of a publication can thus contribute to an edge weight either directly

or normalized via the number of authors of that publication. Similarly, the frequencies of all
publications contributing to an edge can either be summed up or averaged. These are the four
variants of converting publication frequencies into edge weights given above.

2.5 Findings: the Success of the Box Motif 27

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

Edge weight <w>

P
(x

 >
 w

)

(C)

12

14

16

18

20

22

24

26

28

(B)

A
verage edge w

eightA
ve

ra
ge

 e
dg

e
w

ei
gh

t

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

Edge weight <w>

P
(x >

 w
)

(D)

(A)

15

20

25

30

35

40

Figure 2.1: The average edge weight per motif compared to the null model for DBLP (A) and
CiteSeerX (B), according to edge weight definition from eqs. (1) and (3), respectively.
In order to resolve the data behind the averages from (A) and (B), the cumulative
distributions of the edge weights for two of the motifs are shown, namely the box
motif (motif 6) and motif 4, for DBLP (C) and CiteSeerX (D).

Note that it is not a priori clear which of the four normalizations is the most proper one for
mapping the citation frequencies onto the co-authorship network.

When some normalizing quantity depends on a network property which varies across motifs,
the normalization will affect the average edge weight per motif. Even when a motif has no
direct shaping influence.

For example the number of authors of a publication or the number of publications per edge
may depend on the degrees of the involved nodes. However, the degree of a node is a network
property which also varies across motifs, see Figure 1.1.

2.5.2 Main Result

For our main result shown in Figure 2.1, the average edge weights for the different motifs from
Figure 1.1, we select the normalization that most successfully eliminates the above described
residual dependences.

We need a proper null model in order to estimate which edge weight normalization most
effectively eliminates residual dependencies. For this purpose, we permutate the citation fre-
quencies of all publications. Then we convert them into edge weights again and re-compute the
average edge weights of the motifs in this null-model scenario of shuffled citation frequencies.
A uniform distribution of these null-model edge weights across the motifs indicates a successful
elimination of the residual influences, as demonstrated in Figure 2.1.

28 2 Separation Leads to High Citation Frequencies: the Box Motif

15

20

25

30

35

40
No normalization DBLP

No normalization SH
A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t

8

10

12

14

16

18

20

22

24

26

28

30

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t

Divide by # papers DBLP
Divide by # papers SH

5

10

15

20

25

30

35

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t

Divide by # authors DBLP
Divide by # authors SH

4

5

6

7

8

9

10

11

12

13

14

15

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t

Divide by both DBLP
Divide by both SH

Figure 2.2: The average link weight per motif in DBLP for all four edge weight definitions com-
pared to the shuffled null model denoted by SH.

0

100

200

300

400

500

600

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t No normalization CiteSeerX

No normalization SH

12

14

16

18

20

22

24

26

28

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t Divide by # papers CiteSeerX

Divide by # papers SH

0

20

40

60

80

100

120

140

160

180

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t Divide by # authors CiteSeerX

Divide by # authors SH

3

4

5

6

7

8

9

10

11

Divide by both CiteSeerX
Divide by both SH

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t

Figure 2.3: The average link weight per motif in CiteSeerX for all four edge weight definitions
compared to the shuffled null model denoted by SH.

Note that in contrast to many network analyses, we do not randomize the network architec-
ture, but rather shuffle the dynamical data on top of it. In this way we cannot discuss possible
deviations of motif counts from randomness, but only the effect the motifs have in shaping the
dynamical output of the network.

The distributions of average edge weights across the motifs for the remaining normalization
schemes and both databases is shown in Figure 2.2 and Figure 2.3 respectively.

2.5 Findings: the Success of the Box Motif 29

1

1.2

1.4

1.6

1.8

2

2.2

M
ot

if
w

ei
gh

t r
at

io DBLP

0.8

1

1.2

1.4

1.6

1.8

2

2.2

M
ot

if
w

ei
gh

t r
at

io CiteSeerX

Figure 2.4: Ratio of average edge weights real data/null model for the edge weight definitions
1, 2, 3 and 4, DBLP on the left side and CiteSeerX on the right side.

It is clearly visible that not all normalizations yield flat distinction across the motifs for the
shuffled citation frequencies. However, in all four normalizations and for both data sets, the
box motif (motif 6) has the highest ratio to its null model counterparts. This is clearly shown
in Figure 2.4.

Note that the average weight shown in Figure 2.1 is the weight per edge in a motif. Hence,
differences in the number of edges between the different motifs do not affect this quantity
directly. Furthermore, the unexpectedly high average weight observed for the box motif is not a
trivial consequence of the fact that the box motif needs a minimum of four distinct publications
for its construction. In fact, the box motif is no outlier with respect to the number of publications
nor the number of authors per edge, see Section 2.8.

Robustness of Our Findings over Time

As a main test of robustness of our finding, we construct time-truncated versions of the co-
authorship networks for the past 20 years. The network for year y includes all publications up
to that year. For all the time-truncated networks the full, i.e. current-day, set of citations is used.

In Figure 2.5 the result from Figure 2.1A is thus shown for the time-truncated DBLP networks
from 1990 up to 2008. The box motif clearly stands out as the motif with the highest average
edge weight across all years. It should be noted that this time-resolved analysis of motif-related
patterns in citation frequencies reveals some interesting additional features. For example the
change in importance of motif 7 with respect to motif 4, probably associated with a trend
towards denser collaborations and hence denser motifs.

30 2 Separation Leads to High Citation Frequencies: the Box Motif

10

20

30

40

50

60

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Motif 2
Motif 1

Motif 3
Motif 4
Motif 5
Motif 6
Motif 7
Motif 8

Years

A
v
e
ra

g
e
 e

d
g
e
 w

e
ig

h
t

Figure 2.5: The average weight per motif link over the years for the DBLP database.

2.6 Deeper Look: Separation

A typical occurrence of the box motif in the co-authorship networks is shown in Figure 2.6. This
example helps us to look deeper into the specific mechanisms behind the box motif.

year: 2000
cited by: 22

year: 1992
cited by: 399

year: 1997
cited by: 29

year: 1997
cited by: 74

Vineet
Gupta

Lalita
Jagadeesan

Thisan
Henzinger

Rajeev
Alur

Logics and Models of
Real Time: A Survey

Model-Checking of
Real-Time Systems

A Telecommunications
Application

A Constraint-Based
Framework for

Prototyping Distributed
Virtual Applications

Robust Timed
Automata

(B)

Motif 1 Motif 2 Motif 3

Motif 4 Motif 5 Motif 6

Motif 7 Motif 8

(A) A Constraint-Based Framework for P rototyping
Distributed V irtual A pplications

Vineet Gupta1, Lalita J ategaonkar J agadeesan2, Radha J agadeesan3,
Xiaowei J iang1, and Konstantin Läufer3

1 PurpleYogi.com
201 Ravendale, Mountain View, CA 94043

{vi neet , xj i ang}@purpl eyogi . com
2 Software Production Research Dept., Bell Laboratories, Lucent Technologies

263 Shuman Blvd., Naperville, IL 60566
l al i ta@research. bel l - l abs. com

3 Dept. of Mathematical and Computer Sciences, Loyola University Chicago
6525 N. Sheridan Road, Chicago, IL 60626

{radha, l auf er}@cs. l uc. edu

A bstract. This paper describes the architecture and implementation
of a constraint-based framework for rapid prototyping of distributed ap-
plications such as virtual simulations, collaborations and games. Our
framework integrates threecomponentsbased on (concurrent) constraint
programming ideas: (1) Hybri d cc, a (concurrent) constraint modeling
language for hybrid systems, (2) Si sl , a (discrete) timed constraint lan-
guage for describing interactive services with flexible user interfaces and
(3) Tri veni , a process-algebraic language for concurrent programming.
The framework is realized as a collection of tools implemented in J ava.
The utility of the ideas are illustrated by sketching the implementations
of simple distributed applications.

1 Introduction

The focus of this paper is rapid prototyping in the domain of systems that
include hybrid components, concurrency and reactivity, (virtual/ code) mobility
and distribution. The following systems exemplify the applications of interest:

– Consider the computer simulation aspects of NASA’s Airport Surface
Development and T est Facility (see http:/ / sdtf.arc.nasa.gov/ sdtf), an air-
port operations simulator. A typical virtual simulation in such a context
involves largenumbers of planes in largesections of airspacearound an air-
port.

– Consider theemergingareaof distributed collaborativeapplications. In their
simplest forms (Instant Messaging, MSN Messenger Service, ICQ etc.), this
consists of contact/ buddy lists and automatic notification of presence of

R. J agadeesan, X. J iang and K . Läufer weresupported in part by a grant from NSF.

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 202–218, 2000.
c Springer-Verlag Berlin Heidelberg 2000

Figure 2.6: (A) The eight possible undirected three- and four-node motifs. (B) Example of a sin-
gle occurence of motif 6 (box motif) based on only four publications and embedded
in the local network generated by these publications.

Topologically, the surprising feature of the box motif is the lack of the two cross links. The box
motif is in this sense an “anti-clustered” motif. This “anti-clustering” is related to a segregation
of the two pairs of involved authors, either geographically, temporally or with respect to their
scientific disciplines.

In other words, we expect that strong segregation in space, time or discipline exist. In the
following, we explore the nature of this separation from various angles.

2.6 Deeper Look: Separation 31

48

50

52

54

56

58

60

62

64

66

1000 2000 3000 4000 5000 6000

Top box motif instances

C
o
n

n
e
ct

e
d

 t
o
p

 t
w

o
 a

u
th

o
rs

 (
%

) Sorted by weight
Sorted by top author

Figure 2.7: Percentage of box motif instances in DBLP where the top two authors are connected
directly. The box motifs instances are divided in chunks of 1000 instances and sorted
in descending order with respect to their weight.

We first address the question whether in the successful box motif cases the two established
authors are directly linked or not.

2.6.1 Separation in Rank: Established Authors and Newcomers

One can use the number of citations of an author as a surrogate measure for how well this
author is established. Despite deviations from that rule, experienced and prominent authors are
expected to have more citations then newcomers to the scientific community.

In our co-authorship networks, we define the weight of an author as the total number of
citation of that author. According to the third normalization scheme for edge weights, see
equation 2.3 from Section 2.5, the author weight then corresponds to the sum of the weights of
all edge linked to that author. The computed node weights can be used to sort the authors in
box motif instances according to the number of their citations.

First, we partition all occurrences of the box motif into chunks of thousands. The first chunk
comprises the 1,000 motif occurrences with the highest commutative weight, the second chunk
contains the 1,000 next highest ones, and so on. Then we count the number of box motif
instances where the two authors with highest weights are directly linked by an edge.

Next, we repeat the same procedure, but this time we sort the box motif instances not accord-
ing to their weight, but rather according to the maximum weight of the involved authors. The
computed results are displayed in Figure 2.7.

32 2 Separation Leads to High Citation Frequencies: the Box Motif

Our results clearly show that the higher the weight of a chunk, the more boxes can be found
in this chunk such that the two strongest authors are adjacent. However, this is true only when
one sorts the box motifs according to their commutative weight. This effect vanishes when the
boxes are sorted according to the heaviest involved author. That is a clear indicator that it is the
collaboration pattern that matters and not the individual authors involved in that pattern.

Our results also indicate that the success of the box motif partially comes from the separation
of authors in rank. Well established authors publish together and eventually their students or
remote collaborators also publish together.

Unfortunately, the data available to us does not allow to inspect geography or discipline
structure directly. To substantiate our claim, we make two further computational studies to
understand how important the segregative features are for the success of the box motif.

2.6.2 Separation in Time

We look next at the construction time of motifs. The edge initiation is given by the year of the
first publication constituting this edge. For a motif occurrence, the construction time is the time
between the earliest and the latest year of initiation of an edge within this occurrence.

For example, if the authors A, B and C all have published with each other, A and B in year
2000, A and C in year 2002, and B and C in year 2004. Then, the construction time of the
clique A, B and C form is 4 years. Even if A and B, or any other pair combination publishes later
on, it is the fist time the two authors are connected that matters. That is, if A and B have also
published together in 2004, the initiation time of their edge stays 2000 and so the construction
time of their clique with C stays 4 years.

Figure 2.8 shows, for each motif and each construction time, the relative average weight of
all occurrences of this motif that have the same construction time.

0.001

0.01

0.1

1

10

0 5 10 15 20

Motif 2
Motif 3
Motif 4
Motif 5
Motif 6
Motif 7
Motif 8

Motif 1

Construction time in years

A
v
e
ra

g
e
 e

d
g

e
 w

e
ig

h
t

Figure 2.8: Relative average edge weight per motif. All motif instances are distributed in bins
according to their creation time and the average weight per bin is displayed.

2.6 Deeper Look: Separation 33

0

50000

100000

150000

200000

250000

300000

E
d

g
e
 b

e
tw

e
e
n

n
e
ss

Figure 2.9: Average number of shortest paths passing trough a motif edge for the 1990 snapshot
of the DBLP (all publications dating before or from 1990).

It is clear that the box motif has a significantly stronger tendency than all other motifs for its
heavy-weight occurrences to have long construction times. Thus, the heavy-weight occurrences
of the box motif seem to span a bridge over time.

2.6.3 Separation in Scientific Area: Interdisciplinary Collaborations

Finally, we look at how the motifs, and in particular the box motif, are distributed across the
co-authorship network. The aim is to investigate whether the box motifs lay dominantly within
clusters of connected nodes, or rather among such clusters, indicating a certain degree of inter-
disciplinary collaborations.

Edge betweenness is a centrality measure that estimates wether an edge lays within a cluster
of nodes, or connects two such clusters. The betweenness of an edge is the number of shortest
paths between node pairs that go through that edge. Edges between clusters have very high
betweenness, as all the shortest paths among both clusters go through those edges.

Obviously, edge betweenness is perfectly suitable for our analysis. Therefore, we compute the
edge betweenness of all edges in the co-authorship network and use them as edge weights.

Figure 2.9 shows the average number of shortest paths that use edges of occurrences of a
particular motif (normalized by the number of edges in this motif). Clearly, the box motif
edges, together with those of motif 3, constitute high betweenness values and hence lay often
on paths between larger communities within the network.

Our results are a strong indicator that the box motif is to a certain extent related to interdis-
ciplinary collaborations.

2.7 Supporting Experiments

In the following, we carry out a series of experiments showing that the network properties of
our two co-authorship networks comply with results from related work. We also show that the
computed and presented in Section 2.5 average values are well defined and legitimate. We also

34 2 Separation Leads to High Citation Frequencies: the Box Motif

exclude trivial effects, such as the number of authors per publication or publications per edge,
as responsible for the presented in Section 2.5 findings.

2.7.1 Network Properties

To assure that our two databases comply with already investigated co-authorship networks, we
compute a set of network properties usually discussed in related work. These include degree
distribution, citation distribution and average clustering coefficient.

None of the computed network measures shows a significant deviation from already published
results on collaboration databases. The results are displayed in Figures 2.10, 2.11 and Table 2.1.

Figure 2.10: Degree distributions of DBLP and CiteSeerX.

Figure 2.11: Citation distributions of DBLP and CiteSeerX.

2.7 Supporting Experiments 35

Network Authors per Paper Papers per Author Clustering Coefficient
DBLP 2.74 4.04 0.658

CiteSeerX 2.69 3.26 0.667

Table 2.1: Average number of authors per paper, papers per author and clustering coefficients
for the DBLP and CiteSeerX databases. All values comply with results on co-authorship
networks from related work.

The average number of authors per paper and papers per author are very similar to the same
quantities computed on many other co-authorship networks investigated in related work [11,
58, 65, 66]. The same holds for the high average clustering coefficient, typical for social and
co-authorship networks.

All four degree and citation distributions follow fat tail power law, characteristic for all so far
investigated co-authorship networks.

2.7.2 Weight Distributions and Average Values

In Section 2.5 we have presented our main finding, namely the difference in average weight per
edge across the various three- and four-node motifs. To assure that the computed average values
are well defined and legitimate, we investigate the whole motif weight distributions instead of
just looking at their average values. The results are displayed in Figure 2.12.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

P
(x

>
w
)

Motif weight <w>

Motif 1
Motif 2
Motif 3
Motif 4
Motif 5
Motif 6
Motif 7
Motif 8

Figure 2.12: The motif edge weight distributions for all eight motifs within the DBLP database.

All eight distributions are monotone and governed by the box motif as can be seen from
Figure 2.12. Therefore, the computed average value are also well defined. Furthermore, the

36 2 Separation Leads to High Citation Frequencies: the Box Motif

Figure 2.13: The effect on the average motif edge weight when one gradually removes the heav-
iest instances of that motif.

dominance of the box motif does not come from a few motif instances with extreme values, but
is rather dictated by the whole weight distribution.

The motif weights are computed over the whole database and with respect to edge weight
definition 2.3 from Section 2.5.

2.7.3 Most Successful Motif Instances

Our next step is to investigate how the average motif edge weight changes when one consistently
disregards the heaviest motif instances when computing the mean values. Aim of our analysis
is to show that it is not the top motif instances that make the box motif so successful, but rather
all of them taken together.

Again we investigate the whole DBLP database under edge weight definition 2.3 and take
motif 4 as a reference. The results are shown in Figure 2.13.

One observes that the average motif edge weight reduces gradually for the box motif as well as
the reference motif 4. The high average value of the box motif is not a result of a few extremely
heavy instances, but is rather dominated by the high number of intermediately heavy instances.

2.7.4 Eliminating Trivial Effects

Up to now we have shown that our two databases comply with related work on co-authorship
networks. Furthermore, the presented in Section 2.5 mean values are justified and are not
influenced by a few extreme values.

2.7 Supporting Experiments 37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

Motif 1
Motif 2
Motif 3
Motif 4
Motif 5
Motif 6
Motif 7
Motif 8

Number of papers on edge p

P
(x

>
p

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

Motif 1
Motif 2
Motif 3
Motif 4
Motif 5
Motif 6
Motif 7
Motif 8

P
(x

>
a
)

Number of authors on edge a

Figure 2.14: The number of papers respectively co-authors per motif edge for DBLP.

Finally, we want to tackle one last aspect. Namely, to exclude trivial effects as the number of
papers and the number of their authors as possible causes for the success of the box motif.

Note that the four edge weight definitions introduced in Section 2.5 implicitly address the
above issue. They integrate the number of papers between a pair of authors, the number of
co-authors on those publications, or both effects simultaneously. Otherwise, one can assume
that the high average value of the box motif comes from one of those two effects.

Recall from Section 2.5.2, that independently of the edge weight definition, the box motif
was still the most successful one. To exclude any doubt, we have calculated the average number
of publications between a pair of authors in all motifs, as well as the number of co-authors on
those publications. The results are displayed in Figure 2.14.

One clearly sees that the box motif neither profits from a high number of papers running
through its edges, nor have those publications significantly few authors. The box motif does not
dominate any of the two distributions and in both cases there is at least one other motif with
comparable values. The prevailing weight of the box motif is not a result of any trivial effects
one may suspect.

To conclude, we carried out a set of supporting experiments on the analyzed data. We have
observed that the properties of the investigated co-authorship networks comply with related
work. Furthermore, we showed that the presented results are well defined and justified, as well
as that they do not come from certain trivial effects.

Consequently, the success of the box motif revealed in Section 2.5 is apparent and undeniable.

2.8 Further Analysis: Generative Model

In this Section we briefly sketch a possible generative model. Generative models are null models
which incorporate the network properties or dynamic process one is interested in. Then through
the model one systematically varies the topology of the generated null networks, which reveals
their influence on the network observable at hand.

38 2 Separation Leads to High Citation Frequencies: the Box Motif

author

publication

Figure 2.15: Schematic representation of the content proximity plane. Distance among authors
and publications enters the computation of the scores, equations 2.5 and 2.6.

In that context, we use our generative model as a convenient analytical framework for ex-
ploring the relation between impact of scientific publications and topological properties of the
underlying co-authorship network.

2.8.1 The Model

We assume the authors and publications to be distributed on a plane, which we call the “content
proximity plane". The two elementary processes in our model are the writing of a publication,
paper production, and the citing of already existing publications in new ones, citing articles.

In the case of paper production, the content proximity plane is used to select authors from
with a probability α1. With probability (1 − α1) authors are selected at random. When the
proximity plane is used another parameter β1 regulates whether authors are selected according
to impact or proximity.

For the second process, citing articles, the parameters α2 and β2 have the same function for
selecting publications to be cited, analogically to selecting authors.

To simulate the two processes, paper production and paper citation, the number of authors N
and the number of publications M has to be selected, as well as two distributions: authors per
paper and citations per paper. Furthermore, to reflect the process of aging we introduce another
parameter A as the maximal number of publications of an author.

Then, the workflow of the generative model is as follows: Choose the number of authors N
and place them in the content proximity plane. Choose the number of publications M . For
each publication choose the number of its authors, k, and place the publication into the content
proximity plane. Then, choose k authors from the plane according to their proximity and impact,
and publish the paper. Finally, choose the number l of existing publications the new publication
should cite and choose those publications similarly according to their proximity and impact.
This process is illustrated in Figure 2.15.

For a given publication p, we compute a score for each author in the plane. Then, we choose
the k authors who should write p from the distribution of all author scores. The score of an
author a is given by:

2.8 Further Analysis: Generative Model 39

Score(a) := α1(Rank(a) + 1)β1e−
∆ap

2 + (1−α1)
1

N
(2.5)

where ∆ap is the Euclidian distance between a and p in the proximity plane and Rank(a) is
the number of citations of all publications already published by a. In other words, α1 balances
between random assignment of authors to papers and between selecting the authors according
to their impact, large β1, or their proximity in the plane to p, small β1.

For α1 = 0 all authors are chosen at random with probability 1
N

. For α1 = 1 the probability of
an author a to be selected is governed solely by a’s rank and its distance to p. In that sense, α1
linearly balances between these two extremes. For β1 = 0 it is only the distance between a and

p, measured as e−
∆ap

2 , that determines the probability of a to get selected for p. By choosing
larger values for β1 one assumes that established authors may get selected as co-authors, even if
the paper is not in their concrete scientific area. I.e. an author a with a high rank still has good

chance to be selected for large β1, even if the distance e−
∆ap

2 of a to the paper p is significant.
After an author has published her/his first publication, it stays in the proximity plane for the

next A publications. Afterwards, the author is marked retired and taken down from the plane
and thus from the list of available authors for further publications.

In analogy to the paper production process, we select the papers each new publication should
cite from the distribution of all paper scores. The score of a paper p is given by:

Score(p) := α2(Rank(p) + 1)β2e−
∆ppnew

2 + (1−α2)
1

M
(2.6)

where ∆ppnew
is the Euclidian distance between p and the new publication pnew, and Rank(p)

is the number of citations of p. In other words, α2 balances between random citation of papers
and between citing papers according to their impact, large β2, or their proximity in the plane,
small β2.

Once all M papers have been published, we extract the collaboration network by connecting
any two authors that have published together and assign the citation frequencies as edge weights
according to definitions 2.1 through 2.4 from Section 2.5. Hence, our model produces weighted
co-authorship networks.

Although our model naturally reflects the paper production and paper citation processes, it
has a rather large and heterogeneous parameter space. One has to choose the lifetime of the
authors A, all α1, β1, α2 and β2, as well as the distribution of authors per paper and citations
per paper.

2.8.2 Evaluation

Our aim is to check whether our empirical findings can in principle be reconstructed through our
model. We take the DBLP snapshot from 1990 and approximate the network using simulated
annealing with respect to degree distribution, citation distribution and motif content.

40 2 Separation Leads to High Citation Frequencies: the Box Motif

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

W
ei

gh
t

ra
ti
o

of
th

e
m

ot
ifs

4
an

d
6

Evolution steps

Complete objective
Only topological objective

Figure 2.16: Approximating the DBLP snapshot from 1990. Once with respect to degree distri-
bution, citation distribution and motif content only, and once augmented with the
ratio in weight of motif 4 to motif 6.

We take the same number of authors and papers as the original network and the empirical
distribution of authors per paper. The distribution of citations per paper cannot be reconstructed
from our database. Therefore, each new paper in our model cites 10 already existing papers.

Indeed, the co-authorship networks generated by our model allow us to repeat the motif
analysis presented in Section 2.5. Therefore, we perform two different evolutions based on
simulated annealing.

In the first case we aim at the degree distribution, the citation distribution and motif content
of the real world network. The objective function is composed of the differences with respect to
those three measures between the real world and the generated networks.

In the second case the objective function is augmented with another term, which minizes the
difference between the ratio of the weight of motif 4 (i.e. its average citation frequency) to
the box motif in the real world and the generated networks. The results of both evolutions are
shown in Figures 2.16, 2.17, 2.18 and 2.19.

It is easy to observe that our model very well approximates the real world network with
respect to its topological properties. Most importantly, it is also capable of reconstructing the
unexpected high edge weight of the box motif (it produces the same dominance of the box motif
over the reference motif).

It is worthed to explore and determine the size and the form of the whole solution space.
Nevertheless, the preliminary results of our generative model already show that the right com-
bination of simple network processes like aging, paper production, paper citation, as well as
social factors like proximity and impact, can reproduce the success of the box motif, revealed
through our analysis.

2.8 Further Analysis: Generative Model 41

1

10

100

1000

10000

1 10 100

N
um

be
r

of
no

de
s

Node degree

DBLP 1990
Complete objective

Topological objective

Figure 2.17: Approximating the degree distribution of the DBLP snapshot from 1990. Once with
respect to topological properties only and once augmented with the ratio in weight
of motif 4 to motif 6.

1

10

100

1000

1 10 100 1000 10000

N
um

be
r

of
pu

bl
ic

at
io

ns

Citation frequency

DBLP 1990
Complete objective

Topological objective

Figure 2.18: Approximating the ciation distribution of the DBLP snapshot from 1990. Once with
respect to topological properties only and once augmented with the ratio in weight
of motif 4 to motif 6.

42 2 Separation Leads to High Citation Frequencies: the Box Motif

10

100

1000

10000

100000

1e+06

M
ot

if
co

un
t

DBLP 1990
Complete objective

Topological objective

Figure 2.19: Approximating the motif content of the DBLP snapshot from 1990. Once with re-
spect to topological properties only and once augmented with the ratio in weight
of motif 4 to motif 6.

Remark: the citation distributions in both evaluations, see Figure 2.18, differ from the original
one in their tails. A possible explanation is that we take a uniform distribution for the citations
per paper as the real world distribution is not available. Citation networks are known to obey
power laws, which very likely causes the deviations in our results.

2.9 Technical Aspects

In the following Section we provide the technical aspects of our study and the analyzed data.

2.9.1 Publication Data

In this work we have investigated two publication databases: CiteSeerX and DBLP.
Dumps of the DBLP database in XML format are provided on regular bases by the DBLP official

website: http://dblp.uni-trier.de. Each publication entry provided in the XML dump contains
at least the publication title, the publication year and the list of authors who have co-authored
the corresponding publication. The dump investigated in this work is as of May 2008, which
contains 599,734 authors and 978,786 publications.

The CiteSeerX is available for download and synchronization through the CiteSeerX official
website: http://citeseerx.ist.psu.edu. The data download and synchronization is available
through Open Archive Initiative Harvesters. We developed our own harvester to acquire the
publication data available in CiteSeerX as of October 2009. Each publication entry contains at
least the publication title, the publication year and the list of authors. That snapshot of the
online database contains 999,856 authors and 1,247,732 publications.

2.9 Technical Aspects 43

2.9.2 Citation Indices

In this work we investigate the success of collaboration patterns. We project the success of a
given publication as the number of citations by other publications. Successful, innovative and
ground breaking publications attract interest by other scientists, who then later on refer to those
publication in their own work.

Hence, the next step for our analysis was to acquire citation indices for the the publications
within the two investigated publication databases. For this purpose we deployed 107 web
crawlers compatible with the online publication search engines CiteSeerX and GoogleScholar
(http://scholar.google.com). All acquired data is publicly available through web interfaces of
both search engines. The web crawlers obeyed the time-out policies and request frequencies
provided by the search engines and ran as background processes, being even less intrusive than
a casual human user.

We requested the title of each publication within the two acquired databases and stored the
responses by both search engines (the responses are provided with citation indices by other
publications). A response is considered a match, if the title (by trimming white spaces and
special characters), the publication year and the list of authors (by trimming white spaces and
special characters) were identical to a publication within one of the two acquired databases.

The title of each publication was requested on both search engines. If both of them returned
a match, then the citation index for that publication was set to the maximum of both responses.

We were able to acquire non-empty citation indices for 192,688 of the papers within the
DBLP database, which is around 19% of all publications. That number excludes publications
which were found on the search engines, but still have not been cited by other papers. For
the CiteSeerX databases we found 434,794 papers with citation index of at least one, which
corresponds to 34% of all publication within the acquired database.

The lower match success for DBLP comes from the fact that it is actually a third party with
respect to the search engines. On the other side, we requested the publications provided by Cite-
SeerX by using the Open Archive Initiative protocol directly from the CiteSeerX search engine
itself, leading to a better match ratio.

Note that the citation indices considered in this work are as of their time of acquisition, which
for both databases was short after acquiring the publication data.

2.9.3 Co-authorship Graph Representation

In this work we use the natural graph representation of co-authorship networks where the
authors are the nodes and two nodes are connected if they have ever published together.

We parsed the publication lists in both databases with the following assumptions:

• A publication is considered unique through its title (trimmed from white spaces), publica-
tion year and list of authors. Publications without specified publication year are expelled
from our analysis.

• Multiple publication entries with different publication years, but the same title and authors,
are considered as distinct publications.

• An author is considered unique through her/his first and family names.

44 2 Separation Leads to High Citation Frequencies: the Box Motif

• Authors with identical first and family names (as they appear in the database) are consid-
ered the same author.

The above assumption may lead to considering two real world authors as the same author in
our database if they have the same names. On the other side, if an author uses different sig-
natures on her/his publications, the same real world author may be considered as two distinct
authors in our database. There is no way around this problem and its impact was already in-
vestigated by related work [11]. The number of authors and publications within both databases
presented in Section 2.9.1 are the result of the above assumptions.

Furthermore, both databases contain entries representing online reports and websites, listed
with several hundreds of authors. To clean up the databases from such entries, we excluded
from our analysis all publications with more than 8 authors. For DBLP those were less than
0.6% of all publications and 1.7% for CiteSeerX.

As we were interested in citation frequencies and their interplay with topology, we also ex-
cluded all publications with none or zero citations, i.e. publications that are not in the databases
or have yet no citations respectively. Thus, our analysis was performed on 190,893 of all
978,786 publication entries within the DBLP snapshot and 430,233 of all 1,247,732 publica-
tion entries within CiteSeerX.

After acquiring both databases and available citation indices, we build a graph representation
of each database based on the publication entries with citation index of at least one and less
than 9 authors. Each distinct author is represented by a node and two nodes are connected if
they have ever coauthored a publication together.

2.10 Summary and Outlook

In this Chapter we have analyzed co-authorship networks on a well-defined intermediate scale,
their motif content. We investigated the relation between the underlying topology of the net-
work and the dynamical processes taking place on top of that network. Those processes are the
production of new articles and the citation of already existing publications.

Our analysis revealed that some collaboration patterns are much more successful than others,
measured as the average number of citations. In particular, the box motif, four authors forming
a closed chain without chords. The segregative power of the box motif seems to be crucial. It is
the collaboration patterns that matters, rather than the involved collaborators.

2.10.1 Summary

We have analyzed two large publication data sets: CiteSeerX and DBLP. In order to measure
the success rate of different collaboration patterns, we projected the citation frequencies of
publications as edge weights on the graph representation of those two co-authorship networks.

We used four different mapping functions for the edge weights, eliminating various trivial ef-
fects. Independent of the mapping function and across both databases, there is one collaboration
pattern more successful than all others: the box motif, a closed chain of four authors.

2.10 Summary and Outlook 45

The box motif has the highest average citation frequency per motif edge. By constructing
retrospective snapshots of the DBLP for the past 20 years, we showed that our findings are
robust over time.

We then looked closer at the separation the box motif induces, the segregation its two miss-
ing cross edges indicate. It turned out that there are indeed three segregation factors leading
partially to the success of the box motif: separation in rank, in time and in discipline.

We sorted all box motif instances according to their weight and found out that the two heaviest
authors are often adjacent in heavy box motif instances. This effect vanishes when one sorts the
boxes according to their heaviest authors. I.e. it is the collaboration pattern that matters and
not the involved collaborators.

We then investigated the construction time of motifs, measured as the time needed for a motif
to be constructed. The construction time of a motif is the difference between the initiation year
of its first and its last edge. We found a clear tendency for box motifs with long constructions
times to be dominantly successful.

To measure whether the edges of the box motif span bridges among disciplines, we computed
the edge betweenness of all edges in the network. Edges with high betweenness usually connect
different clusters of densely connected nodes, rather than laying within such clusters. Investi-
gating the average edge betweenness per motif edge revealed that it is the box motif together
with motif 3 that have dominantly higher betweenness values than all other motifs. Hence, the
box motifs indicate interdisciplinary collaborations.

To further substantiate our findings, we carried out a series of supporting experiments. They
confirmed that the network properties of our databases fully comply with prior studies on co-
authorship networks. Furthermore, all derived average values are well defined and justified.
Last but not least, the box motif is not an outlier neither with respect to the number of publi-
cation per edge, nor the number of authors of those publications. The prevailing success of the
box motif is not a result of any trivial effect one could suspect.

Finally, we introduced a slightly complicated generative model incorporating production and
citation of publications. Despite its large solution space, preliminary results through simulated
annealing show that the right combination of simple network processes can reproduce the suc-
cess of the box motif. Those processes include aging, paper production, paper citation, as well
as social factors like proximity and impact.

2.10.2 Outlook

The “anti-clustering” of the box motif seems comparable with the theory of weak links [67, 68].
Namely, high scientific success is on average associated with publications outside the densely
clustered author collaborators. It would be worthwhile analyzing this from game-theoretical
perspective, similar to the work of [69] on structural holes [70]. In fact, due to its “anti-
clustering” feature, the box motif occurrences can be seen as small-scale versions of the struc-
tural holes distributed in the network.

46 2 Separation Leads to High Citation Frequencies: the Box Motif

Our generative model shed some light into the processes leading to the success of the box
motif. Unexplored feature of our model is that it gives one the opportunity to observe the
network evolution. The next level of data analysis to explore are the conversion rates of motifs as
the network evolves. Thus, one could not just observe the outcome of the network evolution, but
rather investigate how the success of the different collaboration patterns changes over time. One
could also let the system evolve beyond the current state of the network and derive predictions
which collaboration patterns will be successful in the future.

Another direction for continuing the line of research is to see the co-authorship networks as
an example of social networks. And at the same time as a representative of a more generic
class of production and distribution systems. In that way, the segregative capacity of the box
motif may prove it outstanding in other systems as well. Table 2.2 puts forward several areas of
application, where this hypothesis could be tested.

Network Type Dynamical Observable Potential Box Motif Role
Acquaintance networks Gossip Sites with maximal re-organization

Metabolic networks Metabolic fluxes New category of enzyme essentiality
Trust networks Recommendations Double reassuring of reliability

Peer-to-Peer Data exchange Alternative paths to target peer
Train Connections Passenger flow Alternative connections to destination

P2P Live Streaming Video/Music/TV on demand Concurrent frame exchange
Routing Package delivery Bandwidth separation along routing paths

Table 2.2: Expected applications of the box motif in diverse technological and social networks.

Later on in this work, we indeed show that motifs are important functional entities in techno-
logical and communication networks.

2.10 Summary and Outlook 47

3 Motif Based Optimization of Structured
P2P Networks: Fair Load

In the following Section we present a novel perspective on network motifs. Instead of using them
as a pure statistical measure for investigating static networks, we deploy them within adaptive
networks as a distributed approach for topology optimization. To the best of our knowledge, we
are the first to use network motifs from a dynamic point of view. Our results reveal the great
potential of this new perspective.

Topology adaptation is a vital operation in technological networks. It is frequently imple-
mented as either an external process or a distributed online optimization that relies on gather-
ing knowledge on the overall state of the system. In this Section we propose MBO (motif based
optimization), a novel approach that uses network motifs for distributed topology optimization
of arbitrary, adaptable networks. In order to give a proof of concept, we chose to optimize struc-
tured peer-to-peer overlays towards fair load balancing. MBO is parametrized using target motif
signatures, which are derived from exemplary, generated topologies with the desired properties
– fair load balancing in the demonstrated case. Our extensive simulations indicate that for CAN
[71] and Kademlia [72], two different types of P2P systems, MBO leads to well balanced load,
while being minimally intrusive.

3.1 Introduction

The topology of complex networks significantly affects their functional and non-functional prop-
erties. This leads to the problem of topology optimization, which in general aims at adapting a
complex network to achieve beneficial properties. The adaptation of these topologies, however,
is impossible for a variety of static networks and for networks bounded by functional, spatial or
other constraints.

Technological networks on the other hand, like logistic and communication networks, are
usually characterized by the freedom to alter their nodes and links, even though with different
levels of ease. Therefore topologies of communication networks [65], such as routing in infras-
tructure or wireless sensor networks, multicast trees [73] and all types of application overlays do
benefit from proper topology optimization. Load distribution, resilience and energy efficiency
for example are highly related to the network topology.

The optimization can either be achieved implicitly by systematic creation of the network,
or explicitly through alteration of the set of nodes or the connections between them. Explicit
adaptation requires either local or global knowledge about the network’s state. In the case
of large distributed networks like the World Wide Web (WWW), the Internet, or overlay net-
works, it causes significant effort to acquire a real time snapshot of the system, when feasible
at all. A centralized topology optimization algorithm that works on the global state is there-
fore unsuited for large distributed networks. Distributed topology optimization on the other

49

hand scales well with the network size as it only uses local information. However, current dis-
tributed algorithms [74, 75] require application specific knowledge such as position or distance
for geometric methods.

In contrast, our contribution MBO is a general approach for distributed topology optimization
without the need of any application specific knowledge. The main idea is to engage network
motifs, see Figure 3.1, in local decision rules. Using only local knowledge, each node detects
the motifs it is part of and hence can determine its local environment. Then, if necessary, any
node can take actions to improve its local environment.

A prerequisite of our approach is that given the underlying network and the properties to-
wards which the network should be optimized, one can construct at least a theoretical optimal
topology with respect to those properties. Then, a target motif signature is calculated based on
the optimal topology by measuring its motif content. The target motif signature is in the kernel
of the nodes’ local decision rules. Comparing its local motif content to the target signature,
each node determines whether it should adapt its local environment. In consequence of the
local changes, the overall topology of the underlying network shifts towards the topology of the
optimal network and so do its desired global properties as well.

Figure 3.1: Network motifs: (un)directed subgraphs of 3/4 nodes.

MBO is suited for any network in which the nodes have a certain degree of freedom to choose
their neighbors. A requirement which is fulfilled in most self-organizing and adaptive networks.
We select CAN and Kademlia, two different structured P2P systems, as target platforms and aim
at more balanced overlay topologies.

Our results indicate that the overlays adapted using MBO indeed show highly improved topo-
logical properties. While optimizing Kademlia, MBO causes only slight messaging overhead,
optimizing CAN does not cause any overhead at all. MBO implies only simple local computa-
tions and requires only knowledge about the local neighborhood of the nodes.

Before we show how one can calculate the target motif signatures for our two case studies
and thus construct the local decision rules for the MBO module, we give a short background on
P2P systems and the challenges they are facing with respect to load balancing.

3.2 Background on Load Balancing

P2P overlays with improper underlying topology suffer severely from inefficient load balancing.
This on the other side results in communication delay, poorly utilized network capacities and
increased vulnerability to targeted attacks.

Load balancing in P2P systems consists of two challenges: address-space balancing and object-
request balancing. The address-space of structured overlays, also known as Distributed Hash

50 3 Motif Based Optimization of Structured P2P Networks: Fair Load

Tables (DHT), is not evenly distributed among peers. Unlike regular hash-functions, a set of
peers are responsible for larger parts of the key space. Some peers are responsible for key space
areas in the size of O(logN) [76], where N is the number of peers in the overlay. Still, many
approaches disregard those imbalances and assume that the system is static and that the node
IDs are uniformly distributed [77] [78] [79]. The severe discrepancy between this assumption
and reality explains to a high extent the very often observed difference between the expected
and the actual performance of real world P2P systems.

On the other side, the object-request balancing refers to the user request popularity of objects.
It closely follows the Zipf distribution. Only the most popular objects are less popular than the
Zipf distribution predicts [80]. Both address-space distribution and object-request distribution
are severely skewed. These effects interfere closely and intensify the unfair load distribution.

MBO does not actively perform object-request balancing. Nevertheless a fair address-space
allocation reduces the adverse effect of the skewed object request distribution.

Furthermore, sophisticated load balancing protocols may still be applied on top of MBO. They
usually collect and disseminate usage information, rearrange neighborhood relations and some-
times even deploy a structured P2P overlay network on their own [81]. A common approach is
to introduce "virtual servers” [78] [82]. That is, overlay maintenance, routing and data storage
happens at the virtual server level. A physical node within a P2P network may be responsible
for one or several virtual servers [83], which are transparent to the underlying DHT overlay.

The crucial advantage of technological and especially P2P systems is that one can easily de-
ploy protocols changing their topology. The basic principle of our approach is to construct a
local optimization strategy for each node in the underlying network based on their local motif
signature. That is, each node tries to optimize its surrounding motif content towards an optimal
one, which significantly alters the overall network topology and thus the dynamic performance
of the system.

In the following Section we show precisely how one can calculate the motif target signatures
needed for the local decision rules in MBO for both our case studies.

3.3 Determining Target Motif Signatures

The main idea behind our distributed topology optimization approach is to use pre-calculated
target motif signatures. Given a desired topology, the objective is to shift the topology of the
underlying network towards the targeted one by shifting the local environment of each node. In
this Section we describe how a target motif signature is derived and integrated in a local decision
rule. This rule dictates when a node needs to make any changes to its local environment.

First of all, each node needs a language to read its surrounding environment. This is done
by counting the number of instances of different k-node motifs the given node is involved in,
called the motif signature of the node. Second, and more importantly, the node needs a target
motif signature towards which to adapt its own motif signature.

Given an initial topology I , the first step is to measure the motif frequency FI of I . FI repre-
sents the number of all different k-node motifs (where k is usually 3 or 4) found in I . Different
motif instances may share nodes or edges, but are considered induced subgraphs.

3.3 Determining Target Motif Signatures 51

The second step involves the construction of the target topology T . This step has to be carried
out manually once. Then the motif frequency of T is measured and denoted by FT . FT is then
provided to all nodes as their target motif signature.

To measure the relative change between the initial and the target topology we define the
Φ-Score for each motif m as:

Φ(m) := FT (m)− FI(m) (3.1)

The Φ-Score for each motif m is then normalized as:

SPΦ(m) :=
Φ(m)

p
∑n

i=1Φ(mi)2
(3.2)

The vector SPΦ is called the target significance profile.

Naturally, there are networks where different nodes play different roles within the topology.
Nodes with different roles may need to be treated differently. Therefore, we distinguish two
classes of target signatures: common and multiple target signatures. The second class is divided
further into two subclasses deterministic and probabilistic.

In the case of common target signatures, all nodes in the network use the same target sig-
nature FT . Multiple target signatures means that there is not only one, but a set of target
signatures available. In the deterministic subclass each node, based only on local knowledge,
decides which of those signatures to follow. In the probabilistic subclass each node picks its
target motif signature Φi from the set of available target signatures with a probabilty pΦi

. The
total target signature Φn is given by:

Φn :=
1

n

n
∑

i=1

pΦi
Φi (3.3)

where Φi is the i-th of the n available target signatures and pΦi
the probability of Φi.

Throughout this work we use common target signatures to optimize P2P overlays towards load
balancing and multiple deterministic signatures to construct resilient live-streaming topologies.
In both cases, the target motif signatures just reflect the local content of a network optimal with
respect to a desired network property and suggest necessary changes to the local environment
of the nodes in the actual network.

For our study, as a proof of concept, we optimize two different structured P2P networks, CAN
and Kademlia, with respect to fair load balancing. In the following we illustrate how to derive
target motif signatures for those two cases.

52 3 Motif Based Optimization of Structured P2P Networks: Fair Load

3.3.1 Target Motif Signature: CAN

CAN is a content addressable network where the key space is divided into a multi-dimensional
torus Θ and each node is mapped onto some fraction of Θ. When a node wants to join CAN it
picks a random point P in Θ and contacts the node v that currently is responsible for P. The
key space of v is then evenly divided between v and the new node.

Since this process is probabilistic, the key spaces of the nodes is typically unevenly distributed
and the registration and lookup load thus unbalanced [78]. Hence, the desired property for
CAN is an evenly distributed key space, leading to a better load balancing. For a CAN network
with N nodes and key space with volume V one can write N = 2x+ r where 0≤ r < 2x . The key
space is then evenly distributed when 2x − r nodes are responsible for areas of volume V ′ = V

2x

and 2r nodes are responsible for areas with volume equal to V ′′ = V
2(x+1) .

Figure 3.2: A suboptimal and optimal CAN topologies with 15 nodes.

Given the number of nodes N in the network, a topology satisfying the above conditions is very
easy to build. Imagine the key space as a plane. Then, starting with the initial plane, one can
divide its area into four equal quadrants. Consequently, each quadrant is divided in four equal
quadrants and so on until N quadrants emerge. Finally, each network node is assigned a distinct
quadrant and nodes which quadrants share a mutual quadrant facet are considered neighbors.
Figure 3.2 displays a standard CAN topology on the lefthand side and on the righthand side is a
topology constructed as just described.

It is straight forward that the constructed topology is optimal with respect to the above de-
scribed space distribution conditions. Then, to construct the three-node motif target signature
TCAN for CAN one just need to count all instances of the directed three-node motifs in the gen-
erated topology. Since in CAN all neighbor connections are bidirectional, there are only two
possible directed three-node motifs, see Figure 3.1.

Motif
FI(m) 0.92463 0.07537
FT (m) 1.0 0.0
Φ(m) 0.07537 -0.07537
SPΦ(m) 0.71 -0.71

Table 3.1: Initial and target motif signatures, Φ-Score and SPΦ for CAN.

3.3 Determining Target Motif Signatures 53

Investigating the constructed topology shows that one of the motifs disappears completely
(when N is a power of two) and that T is a common target signature. The calculated results are
displayed in Table 3.1.

Deriving the common target signature and target significance profile for CAN from Table 3.1
leads to:

TCAN := {m0 = 1, m1 = 0} (3.4)

SPΦCAN
:= {m0 = 0.71, m1 =−0.71} (3.5)

Now we have TCAN , the target motif signature for CAN, and in the following we show how to
derive a target motif signature for our second test case: Kamdelia.

3.3.2 Target Motif Signature: Kademlia

Kademlia is a distributed hash table that uses the XOR (exlusive or) metric as a distance measure
between nodes. Every node v is a leaf in a virtual tree and has a maximum of k neighbors in
every subbranch rooted at the path from v to the root of the tree. The neighbors for every
subbranch are organized into buckets and the factor k is called the bucket size. When a new
node joins the network it contacts its bootstrap node and starts a lookup on its own ID (each
node is provided with an unique for the overlay ID). All nodes found by this procedure are
added to the corresponding bucket, as long as it contains less than k contacts.

Kademlia creates topologies in which the out-degree of a node is approximately k · log(N)
for all N nodes in the network. The in-degree, however, is unevenly distributed since well
connected, older nodes gain enormous in-degrees. The hidden preferential attachment built into
the Kademlia’s join protocol, results from bootstrap nodes transferring neighbor information to
new joining nodes. When a given bootstrap node has a node in a tree subbranch from which a
new joining node also needs a neighbor, then the bootstrap node recommends that neighbor to
the new joining node. In that way, old nodes land in the neighbor list of almost all nodes in the
network. As a result, the few old nodes must process a very high portion of the requests traveling
through the network. Hence, the hidden preferential attachment produces unnecessary waiting
times, denial of service due to overloading and extremely unevenly distributed workflow among
the network participants.

The desired property for Kademlia is therefore defined as an uniform in-degree distribution.
To construct such an optimal topology with N nodes evenly distributed in the key space, all
nodes are connected according to the following scheme: a node v randomly picks another node
w in a subbranch that it is not currently connected to. If w has no connection into v ’s subbranch
it allows the connection from v and an edge v → w is established. This leads to a topology with
bucket size k = 1 and outdegree = indegree = log(N) for all nodes. If a larger bucket size k is
required, then the procedure can be repeated k times for each tree subbranch. It is only crucial
that nodes do not take recommendations from other nodes, but rather connect to random nodes
within that subbranches. Note that due to the XOR metric, it is a priory known which node IDs
lay in which tree subbranch and each node can pick k of those IDs uniformly at random.

The results from investigating a standard Kademlia topology and an optimal topology of the
same size, constructed as described above, are displayed in Table 3.2. The resulting target

54 3 Motif Based Optimization of Structured P2P Networks: Fair Load

Motif
FI(m) 0,015 0,023 0,025 0,785 0,008 0,007 0,014 0,001 0,000 0,110 0,006 0,003 0,003
FT (m) 0,192 0,419 0,087 0,192 0,003 0,000 0,007 0,007 0,004 0,087 0,000 0,000 0,000
Φ(m) 0,177 0,396 0,062 -0,592 -0,004 -0,007 -0,006 0,007 0,004 -0,023 -0,006 -0,003 -0,003
SPΦ(m) 0,240 0,537 0,084 -0,803 -0,006 -0,009 -0,009 0,009 0,005 -0,031 -0,008 -0,004 -0,004

Table 3.2: Initial and target motif signatures, Φ-Score and SPΦ for Kademlia.

signature TKad for Kademlia is common and contains the 13 directed three-node motifs, see
Figure 3.1. From Table 3.2 it is straightforward to derive TKad := FT .

Now that we have derived the target motif signatures for both our case studies, in the follow-
ing we show how they are used within the MBO module.

3.4 Motif Based Optimization

In this Section we show how our topology optimization approach can indeed be deployed. As a
testbed we again consider the two structured P2P overlays CAN and Kademlia, for which target
motif signatures have already been derived in the previous Section.

The MBO is a topology control module that uses a target signature as an input. MBO changes
the local signature of every node so that the global target signature is approximated. To achieve
that goal it plugs into the protocol by intercepting all messages between the original implemen-
tation and the network. That is illustrated in Figure 3.3.

MBO

Application Layer

Conventional
P2P substrate

Target signature

Network

Figure 3.3: System Architecture of MBO

In order to use MBO with k-node motif signatures, the underlying network has to fulfill just
two simple prerequisites:

1. Any node in the network must have a certain degree of freedom in the choice of its neigh-
bors without destroying the network funtionallity.

2. MBO must be able to calculate the (k-1)-hop neighborhood of its associated node.

In the following we show how exactly to apply MBO on our first test case: CAN.

3.4 Motif Based Optimization 55

3.4.1 Motif Based Optimization: CAN

To apply MBO the target signature TCAN for CAN has to be computed first (see Section 3.3 for
more details). Then, MBO is designed such that an instance of the 3-node clique motif (see
Table 3.1) is destroyed whenever a new node joins the network. That de facto leads to a slight
change of the join process. When a join message for a new node v is routed from the bootstrap
node w towards the point P, the MBO module on every node on the way calculates the local
motif signature. When the local signature at a node on the joining path requires optimization,
v joins at this exact position. In case that no node on the path to P needs to optimize its
neighborhood, v repeats the join process at a new random point. The join process for v is
repeated up to r different times. That is, v tries to optimize a local motif signature along r
different paths in the network. If all attempts are unsuccessful, v ultimately joins according to
the original CAN protocol. In consequence, the undesired 3-node clique motif is subsequently
suppressed, which leads to a global approximation of the target signature.

Setting r = 1 produces no additional messaging overhead. This not the case for r ≥ 2. The
trade-off between optimality and messaging overhead is investigated in details in Section 3.5.
Our results show that one can indeed achieve significant topology optimization with very modest
messaging overhead.

Before we proceed with the evaluation of MBO, we fisrt show how it can be applied on our
second test case: Kademlia.

3.4.2 Motif Based Optimization: Kademlia

Recall from Section 3.3 that the target signature of Kademlia is slightly more complex than that
of CAN and consists of the 13 directed 3-node motifs, see Table 3.2. Therefore, applying MBO
on Kademlia is a bit more complicated, but in the same time much more generic.

When a node v wants to add another node w to its own routing table, v constructs the 2-hop
neighborhood for w and calculates its motif content. If the new edge v → w shifts the motif
content of w towards the target signature, the edge v → w is established. Otherwise, the edge
is rejected and v has to search for another partner within the subbranch of w.

This process inevitably produces computational and communication overhead. Still, in the
next Section we show that there is a good balance between optimization overhead and topology
improvement, leading to much better network performance on the cost of very modest overhead.

Remark: it is straightforward to generalize that approach to any other distributed system
beyond the two cases investigated here. At the bottom line, an edge between two nodes is
established if none of their local motif contents contradicts that decision.

Remark: note that MBO causes only local computations and decisions. Therefore, the larger
is the underlying network, the higher is the benefit of applying MBO. The overhead per node
caused by MBO is merely dependent on the network size, making it extremely scalable.

56 3 Motif Based Optimization of Structured P2P Networks: Fair Load

3.5 Evaluation

After we have presented our novel approach MBO, in this section we show that MBO indeed
effectively changes the topology towards the desired properties.

For this purpose, MBO is implemented on the PlanetSim framework [84]. Networks of dif-
ferent sizes are generated, where churn is modeled as described in [85]. Lookups obey the
Zipf distribution and the networks are kept running for 24h in simulation time. Three topology
snapshots pro network are taken for analysis: (i) as soon as the simulation leaves the transient
phase and the network is stable, (ii) after the warmup phase and (iii) at the end of the 24 hours.

Our results show that MBO achieves significant topology improvement while producing only
modest computational and messaging overhead. Naturally, the more precise and aggressive is
the optimization strategy, the higher is the overhead produced by MBO. It depends on the exact
application scenario to choose the right balance between these two competing aspects.

However, we once again emphasize that the overhead per node induced by MBO is practically
independent of the network size. All nodes base their decision rules only on simple local com-
putations, which complexity is exclusively affected only by the nodes connectivity. As a result,
MBO is highly scalable and can directly be applied to networks of millions of nodes, leaving
MBO as one of the few choices for topology adaptation in large scale application scenarios.

In the following we present the exact results and management overhead produced by MBO
on our two test cases: CAN and Kademlia.

3.5.1 CAN

MBO alters the join process in CAN. This may, but not necessarily does increase the messaging
overhead during the join process.

Messaging Overhead

In order to measure the messaging overhead induced by MBO, we conducted simulations with
different values of the retry parameter r in a network with 2,048 nodes. The results are dis-
played in Table3.3.

Network Average Minimum Maximum
Original CAN 13.8 13.6 14.1
CAN (MBO) r = 1 9.5 8.9 10.0
CAN (MBO) r = 2 13.2 12.8 13.8
CAN (MBO) r = 3 17.0 16.1 18.8
CAN (MBO) r = 4 20.0 18.7 21.2

Table 3.3: Join Process CAN: Number of messages for CAN with MBO compared to original CAN.

Setting the retry parameter to r = 1 actually decreases the cost for joining the network with
MBO compared to the original CAN. Indeed, using MBO with r = 1 eventually terminates the
join process before the final position of the initially planned path is reached. As a result, the

3.5 Evaluation 57

joining path becomes shorter and therefore causes smaller join costs. With r = 1 in MBO, the
join path is at most as long as the one in the original CAN overlay.

Investigating the results for r = 2, one observes two effects on the number of join messages.
MBO leads to a possible early termination of join messages, but on the other hand can also
cause nodes to join a second time. For r = 2 both effects are roughly balanced. In consequence,
choosing r = 2 produces the same messaging overhead, regardless whether the topologies are
optimized using MBO or not. The messaging overhead increases roughly linearly with r > 2.

Since choosing r = 2 yields high degree of optimization without increasing the cost of the
join process, we keep this parameter constant in our further experiments, aimed at estimating
the quality of the results produced by MBO.

Key Space Distribution

In the following, we evaluate to what extent MBO improves the scope size distribution within
CAN, our optimization goal, which inevitably leads to more fair load distribution.

We compare the original CAN to CAN with MBO. Both overlays are equipped with two CAN-
dimensions and the retry parameter is fixed to r = 2. With that configuration we generate
multiple networks with sizes ranging between 28 and 215 nodes.

Since the desired property for CAN is a uniform distribution of the key space, we measure
the size distribution of assigned name spaces in the topologies. That is, the distribution of how
many nodes are responsible for areas of a given size. Figure 3.4 shows the area sizes relative to
the smallest encountered area in the investigated networks with sizes ranging from 256 up to
32,768 nodes.

Independent of the network size, for the original CAN the area sizes differ from 27 up to 29

while the peak is covered by only about 40% of the nodes in the network. Hence, there are
nodes responsible for very small key areas whereas there are nodes responsible for enormous
parts of the key space.

On the other hand, the CAN augmented with MBO has a drastically different key space distri-
bution. Independent of the network size, the peak is covered by over 80% of all nodes, while
the remaining 20% nodes practically cover areas only within a multiplicative factor of two.

Thus, Figure 3.4 unambiguously shows that applying MBO on CAN produces much more
closer to uniform key space distribution than the original CAN overlay and hence assures signif-
icantly more fair load balancing among the network participants.

Remark: Our simulation also revealed that churn has no impact on MBO. The damage caused
by suddenly departing nodes, is then repaired by new joining nodes. All results presented above
remained stable under churn.

In the following Section, we investigate the impact of MBO on our second test case: Kademlia.

58 3 Motif Based Optimization of Structured P2P Networks: Fair Load

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

F
ra

ct
io

n

Scope Size (x2)

Group Size: 256

Motif−Optimized
Normal CAN

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Scope Size (x2)

Group Size: 512

Motif−Optimized
Normal CAN

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Scope Size (x2)

Group Size: 1024

Motif−Optimized
Normal CAN

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Scope Size (x2)

Group Size: 2048

Motif−Optimized
Normal CAN

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Scope Size (x2)

Group Size: 4096

Motif−Optimized
Normal CAN

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Scope Size (x2)

Group Size: 8192

Motif−Optimized
Normal CAN

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

F
ra

ct
io

n

Scope Size (x2)

Group Size: 16384

Motif−Optimized
Normal CAN

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

F
ra

ct
io

n

Scope Size (x2)

Group Size: 32768

Motif−Optimized
Normal CAN

Figure 3.4: Probability of occurrence of scope in CAN with and without MBO.

3.5 Evaluation 59

3.5.2 Kademlia

Optimizing Kademlia using MBO implies the calculation of a motif signature whenever an edge
between two nodes is established. Since MBO needs the 2-hop neighborhood information to cal-
culate the motif content, the neighborhood information is piggy-backed on all messages routed
in the network. This information is then used by MBO without the need to explicitly request
2-hop information from the nodes.

Messaging Overhead

To calculate the overhead induced by MBO, all messages within the network are counted. The
messages directly related to lookups (request/reply) are counted separately from all other mes-
sages. They are denoted as maintenance messages. The results for a network with 2,048 nodes
averaged over 100 simulation runs are displayed in Table 3.4.

Network Maintenance Lookup Path Length
Original Kademlia 629.6 131.0 6.48
Kademlia (MBO) 654.0 128.1 6.85

Table 3.4: Kademlia compared to Kademlia with MBO with respect to maintenance messages,
necessary lookups and average lookup length.

One observes that the maintenance and lookup messages per node remain almost constant.
That is also the case for the average path length, measured as the number of lookup messages
per lookup.

There is a straightforward explanation for the observed results. The neighborhood informa-
tion needed for computing the local motif content required by MBO is piggy-backed through the
already existing communication flow. I.e. no additional messaging is required for MBO to oper-
ate and the few simple local computations per node cause negligible computational overhead.

Remark: although the number of messages transported through the network is the same,
their size increases due to the piggy-backing. This causes small additional network load.

Uniform Degree Distribution

We have just shown that MBO produces no additional messaging overhead, but how effective
is it within Kademlia? The original Kademlia creates hub-nodes that are known by almost the
entire population, leading to very skewed indegree distribution. Therefore, the goal for MBO
is to produce an indegree distribution as close to uniform as possible. Figure 3.5 displays the
indegree distribution of both the original Kademlia and the one augmented with MBO.

The indegree distribution of the optimized network clearly posseses the desired exponential
cut-off, which upper bound is around 75. Hence, in contrast to the original network, there are
no nodes with extreme indegrees, neither too small nor too large. About 90% of the nodes

60 3 Motif Based Optimization of Structured P2P Networks: Fair Load

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10 100 1000

Em
pi

ric
al

 C
om

pl
em

en
ta

ry
 In

-D
eg

re
e

In-degree

Plain Kademlia
Kademlia with MBO

Figure 3.5: Indegree distribution Kademlia (ECD with 500 nodes)

have indegree between 30 and 50, making the network much more balanced. Most importantly,
the typical for the original Kademlia hub-nodes, constituting around 10% of the nodes in the
network, see Figure 3.5, are practically not present.

That has two effects on the communication flow within the underlying network. First, the
communication flow does not go mainly through the few hub-nodes, avoiding node overloading,
which can result in long waiting times or even node crashes. Second, the network is much more
resilient to attacks by malicious parties aiming at disabling the few most important network
nodes and hence damaging or even completely destroying the communication flow.

To evaluate the impact of attacks on both, the original Kademlia and Kademlia with MBO, we
measure the average path length within the topologies while consequently removing the nodes
with highest indegreee. The results are shown in Figure 3.6. As one would expect, the optimized
topology posses shorter characteristic path length, which is also less susceptible to the attack.
This is a direct result of the more balanced topology.

At the bottom line, MBO can be integrated within the existing communication flow of Kadem-
lia, causing no additional messaging overhead. Furthermore, the necessary simple local compu-
tations produce negligible computational overhead and basically only the size of the exchange
messages is slightly increased.

The benefit of using MBO is however significant. The resulting topology has close to uniform
degree distribution, assuring fair load distribution and much higher resilience to attacks by
malicious parties.

3.5 Evaluation 61

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

C
ha

ra
ct

er
is

tic
 P

at
h

Le
ng

th

Number of removed nodes in %

Plain Kademlia
Kademlia with MBO

Figure 3.6: Characterisitc path length under perfect attack (500 nodes).

3.6 Summary and Outlook

In this Chapter we have explored a completely different perspective on network motifs and local
structures. We were motivated by the findings presented in Chapter 2, which clearly show close
interplay between the local structures of complex, self-organizing networks and the dynamics
taking place on top of these networks.

Instead of using network motifs as a purely statistical tool to analyze already emerged static
networks, we engaged them in online local decision rules within distributed human-made sys-
tems. A prominent example of such systems are P2P, for which we have presented a novel motif
based topology control approach.

3.6.1 Summary

In this Chapter we have introduced MBO, motif based optimization, a general approach for
distributed topology optimization. MBO utilizes network motifs in order to optimize arbitrary,
adaptable topologies towards any desired and well defined structural property. For the purpose
of optimizing networks using MBO a topology, optimal to the desired objective, has to be syn-
thesized first. Taking this network as a reference, a target motif signature, which represent the
distribution of motifs in the network, is derived and subsequently used to parametrize the local
optimization module at each node.

For our analysis we have selected two structured P2P overlays with inherently different pro-
tocols and characteristics: CAN and Kademlia. The uneven partition of the name space of CAN
and the uneven in-degree distribution due to preferential attachment of Kademlia have been
identified as the main adverse properties that lead to unfair load distribution in these systems.

62 3 Motif Based Optimization of Structured P2P Networks: Fair Load

We consequently have synthesized optimal sample topologies for both cases and derived the
target motif signatures as parameters for the MBO module.

Subsequently, simulation models of MBO both for CAN and Kademlia have been implemented
to examine the performance of our approach. The evaluation results show that optimizing
topologies locally by engaging motif signatures significantly improves the topology balance in
both investigated systems, expressed through even key space distribution for CAN and uniform
indegree distribution for Kademlia.

MBO induces negligible messaging overhead in both cases. Even more importantly, MBO is
extremely scalable as no information on the network state has to be exchanged at any time. It
is based entirely on local information and computations. Therefore, with respect to complexity,
MBO outperforms any current methods for distributed topology control.

3.6.2 Outlook

Optimizing topologies based on motifs so far has only been tested for common target motif sig-
natures. However, topologies that are optimal with respect to other objectives may be charac-
terized by a set of significance profiles which deviate for different nodes. Especially in networks
where the nodes are not all peers, but rather play different roles within the underlying topology.
One such example are optimally DoS-resistant overlay streaming topologies [86].

It is the objective of the next Chapter to explore whether network motifs still can successfully
be engaged in local decision rules, despite the diversity of the system participants.

3.6 Summary and Outlook 63

4 Resilient Peer-to-Peer Live-Streaming
Using Motifs

In the following Chapter we show how one can engage network motifs not just as an online
topology control mechanism, but also to provide substantial resilience to attacks and high level
of privacy to the involved participants in P2P based live-streaming networks.

High robustness against churn and resilience towards adverse behavior are the key require-
ments for reliable P2P live-streaming systems. Their highly inter-dependent nature, based on
the cooperative service delivery between all peers, necessitates a systematic and structural re-
silience. This is very challenging to assure because of the self-organization and decentralized
control of such systems. Reliable services, and hence a structural resilience, still are a vital pre-
requisite for any commercial deployment of P2P live-streaming systems or IPTV infrastructures.

We propose an entirely distributed motif-based topology optimization to this end. Concise
comparisons show that it creates resilient topologies comparable to state of the art, yet causing
significantly less, almost negligible overhead with respect to both computation and messaging.

Our new approach also has another property of immense importance: it neither gathers nor
forwards any information about the underlying network. Thus, it renders actions by malicious
parties, aimed at disturbing the network operation, almost impossible as no peer can determine
her/his position nor the position of any other peer in the network.

Such privacy is not guaranteed by any other state of the art method for P2P live-streaming
networks, which makes our method outstanding in its area.

4.1 Introduction

Creating resilient topologies, and thus achieving high robustness of P2P streaming systems, is
one of the main challenges when designing a new approach for this comparably new class of
content distribution schemes.

P2P streaming promises to greatly relieve server load and aid in supplying large audiences
with broadband multimedia content [87].

Two different services, video on demand and live streaming, create two fundamentally differ-
ent problems in this field. While content can be distributed to some or all of the audience in
advance in the first case [88, 89], it is delivered directly upon creation in the latter, making it
much more difficult to guarantee satisfactory provision without deficits.

Introducing the cooperative delivery of P2P systems, in which the streaming packets are re-
layed between the nodes, further complicates the task. Forwarding peers are not only less
performant than dedicated servers, but they additionally exhibit a much less reliable character-
istic with high churn of frequently joining/leaving or even failing parties. Still, each node relies
on the correct service of all preceding nodes on the packet path from the source, since failures
and delays are propagated from peer to peer.

65

Moreover, using the system to deliver controversial content, or simply considering any com-
mercial deployment, makes the system a worthwhile target for parties with malicious intent.
However, service degradation or even disruption, be they caused by churn, failure, or DoS
attack is unacceptable. Especially when the service is targeted at deployment in commercial
scenarios.

Achieving robustness and resilience with P2P streaming systems hence is a challenging task.
They represent interdependent large complex networks, composed of highly heterogeneous
nodes with extremely dynamic behavior. Resilience in these systems consequently has to be
achieved by decreasing the interdependence between the nodes while exploiting their resources
to increase scalability. For reasons of complicated attacks by malicious parties, this task must be
achieved with minimum disclosure of the system state.

In general, topology adaptation can either be implemented in a central oracle or by means
of cooperative, distributed optimizations. Central instances represent single points of failure
and potential bottlenecks, which makes them unfavorable when implementing large scale dis-
tributed systems. Distributed adaptation, on the other side, is traditionally based on broad
information on the overall state of the system, which is costly to gather and may be misused by
malicious parties.

An alternative approach for cooperatively adapting topologies is to use metrics based on lo-
cal information only and by optimizing the local state, indirectly to approximate the overall
desirable network characteristics.

In summary, we see the need to provide a scalable topology adaptation for live P2P streaming
systems that successfully creates topologies of very low interdependency while considering only
a bare minimum of local information.

The best distributed method (with respect to resilience) is currently a cost-based method.
It creates highly resilient topologies by considering aggregated information on succeeding
nodes [86]. However, the engaged cost metrics are computationally demanding and knowl-
edge about parts of the topologies has to be gathered. That knowledge may potentially be
exploited by malicious parties.

Network motifs on the other hand represent a metric much simpler to calculate. They also
have the ability to reveal the complex interplay between topology and dynamics, see Chapter 2,
and are a very promising application in topology adaptation, see Chapter 3.

In this Chapter, we propose to harness their ability to reproduce complex characteristics of
networks for the purpose of adapting highly robust and resilient live streaming topologies.

We make the following contributions: we (i) present an innovative approach using network
motifs to build local decision rules for the self-optimization of the network; (ii) improve the
resilience of the topology to be close to the resilience of optimal topologies; (iii) evaluating our
design in simulations, illustrate the benefits of our approach compared to the state of the art.

In order to better understand the challenges upon live-streaming applications, we first give a
short background.

66 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

4.2 Background

It is important to understand the basic principles and the major problems upon live-streaming
systems. Within such systems there is one source which provides the original streaming signal.
All other participating peers are subscribing to that signal. The main goal is to build a topology
providing each peer with the signal while being resilient to failures and misbehaving partici-
pants. To decrease the impact of failures as few dependencies among peers as possible should
exist. This has the consequence, that the failure of a single or a subset of peers has the least
possible impact on the service of the remaining peers.

Brinkmeier et al. [86] have defined a class of optimal topologies with proven resilience to
DoS attacks. They also proposed a fully distributed approach for constructing nearly optimal
streaming topologies, which is currently the most effective method in the field.

We use their approach as a reference throughout this Chapter and hence adopt their mathe-
matical definition of the problem: Consider s being the source, or the originator of the streaming
content, the system can be modeled as an undirected graph G = (V, E) with finite set of N ver-
tices V = {v1, . . . , vN}, the data source s and a set of edges E = {(u, v) : u, v ∈ V} along which
the content is forwarded.

The multimedia content can be modeled as a packet stream S = {p1, ..., pp} of p packets. All
p packets can be replicated at each vertex and originate at the data source s. The bitrate of the
stream is denoted as R0. To decrease the dependency between nodes, and hence vulnerability to
attacks, the packet stream can alternatively be split into partial streams, with l sequences of k
stripes: S = {{p11

, . . . , p1k
}, . . . , {pl1, . . . , plk}}. Each stripe in consequence has an average bitrate

of R0
k

. The source s has a bandwidth capacity of C times the bitrate R0. That is, s can deliver the
whole bitrate R0 of the stream simultaneously C times, i.e. it can directly serve C · k stripes. We
assume that all participating peers share at least R0+ c bandwidth in order to participate in the
live streaming, and that in consequence they are able to receive the complete stream once and
forward c · k stripes. In accordance with the state of the art, we assume c to be 2 and hence that
each node is able to receive the stream once and to forward its bitrate at least twice. All joining
nodes locate nodes already part of the topology, select them as initial parents and request the
stream from them.

The benefit of the system is the number of stripes that are successfully and timely received at
all nodes. An at tacker is considered to aim at causing the highest possible damage to the system
with the least necessary resources. The damage is measured as the fraction of stripes that are
not successfully delivered in the system after the failure or removal of an arbitrary set of nodes.
For this purpose the attacker is assumed to exploit knowledge used in the protocol to identify
valuable targets: nodes on which depend a large set of other nodes. The attacker additionally
is assumed to be able to either relocate itself to an identified position and subsequently stop the
service, or to be able to launch attacks on identified nodes, thus disconnecting them from the
system completely. Since disabling the source will result in immediate loss of the whole signal,
the source is assumed to be hidden and cannot be attacked.

We have just reviewed the basics of live-streaming systems. We next shortly survey already
existing approaches, in order to better place this work in the existing body of research.

4.2 Background 67

4.3 Related Work

P2P streaming systems, commonly also referred to as overlay or application layer multicast
(ALM) [90], are usually divided into two groups of pull- and push-based systems [91, 92].

In pull-based ALM the video is split into chunks and each peer requests all chunks using
some P2P system (like different distributed hash tables, or more frequently BitTorrent-like ap-
proaches [93, 94]). The chunks then are delivered to all peers along the reverse path of their
issued requests, which may vary quite notably depending on the P2P method used. Although
pull-based approaches are naturally more resilient to churn and attacks, they induce significant
delays to the content distribution. Thus, they are not viable for live-streaming scenarios [95].

Push-based approaches follow the strategy of creating longer lived distribution topologies over
the participating nodes, along which all streaming packets are delivered. They are characterized
by significantly lower delay penalties for two main reasons: (i) received packets are forwarded
to succeeding nodes in the topology directly on reception; and (ii) since no per-packet man-
agement messages are needed, the stream can be split into smaller chunks, which then can be
delivered in parallel. Since these approaches rely on the created topology, they generally are
less resilient to churn and attacks. Node departures as well as node failures have to be detected
first and then encountered by repairing and reconstructing the distribution topology.

The main strategy to increase the resilience of push-based ALM, besides using different encod-
ing or other forward error correction mechanisms [96, 97, 98], is to decrease the dependency
on potentially failing, preceeding nodes in the topology [99]. This is achieved by two generally
different strategies: feedback based predecessor selection or pro-active topology optimization.

The feedback based predecessor selection leverages on different types of reputation mech-
anisms in order to increase the dependency on highly reliable and available nodes. Re-
spectively, to decrease the dependency on unreliable, weak-performant, or potentially failing
nodes [100, 101, 102, 103]. Although these approaches lead to quite good results, they cause
significant communication and computational overhead. Hence, they are of very limited practi-
cal use, especially in scenarios with large number of participating peers.

A slightly orthogonal concept is to split the stream into different partial streams (commonly
named stripes). Then, to deliver these stripes along multiple paths, which are at best node and
link disjoint. Split-Stream [104], DagStream [105] and BCBS [106] all follow this methodology.
However, they all lead to reasonably high topologies with long paths of inter-dependencies
among the nodes. Furthermore, they in practice fail to establish node disjoint paths [86].

Another way of decreasing the interdependency between nodes is to create topologies of very
short paths, thus generating potentially very fat trees[107].

All so far described approaches are prone to massive damages in case of attacks: with knowl-
edge on the protocol and through accumulating information on the topology, attackers are able
to easily identify highly relevant nodes with large sets of successors. Consequently, malicious
parties are given the opportunity to heavily disrupt the system by targeting such nodes.

Brinkmeier et al. [86] have successfully defined a class of balanced topologies having short,
node disjoint paths and hence are optimally resilient to attacks. They also proposed an approach

68 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

that creates topologies resembling this class, locally optimizing each node’s neighborhood, based
only on local knowledge. That approach currently provides the highest resilience to attacks
and failures in P2P live-streaming systems. However, it still gathers information about some
properties of the succeeding subtrees and causes significant computational overhead.

After we have discussed the challenges upon P2P live-streaming systems and already existing
methods in that field, we proceed with our new approach.

4.4 System Design

In this Section we describe the basic outline of our novel distributed approach and how it en-
gages network motifs in local decision rules for constructing robust streaming topologies.

4.4.1 Network Motifs

In streaming networks, due to security implications, it is important that the peers know as
little about the network topology as possible. Network motifs provide exactly the required
non-intrusive way of looking at the surrounding environment of a given peer. Therefore, we
engage them in a simple decision rule. When the participating peers obey that rule they improve
their local environment. More importantly, those multiple local changes lead to significant
improvement of the global properties of the underlying overlay network.

From the problem description, see Section 4.2, it can be derived that the best case, thus the
theoretically optimal solution, is to create an optimally balanced spanning tree of minimum
height for each of the k stripes. An example of such a topology is displayed in Figure 4.1, it
consists of N = 37 nodes and maximum number of neighbors (outgoing and ingoing) nmax = 4.

Figure 4.1: Example of an optimal topology, N = 37, nmax = 4 (cmp. [86]).

Our key observation is that the nodes in an optimal topology can be divided in three groups.
In the first group are the internal nodes. They have the full number of direct successors: d =
nmax − 1 = c · k and each of the successors has d direct successors on their turn. The group of
internal nodes includes the root s. The second group of nodes are the intermediate nodes. Those
are the nodes which all have d direct successors, but some/all of those successors are leaves.

4.4 System Design 69

The intermediate nodes are the nodes on the last but one layer in the topology. The last group
of nodes are the leaves of the topology, which have no successors.

One observes that in the optimal topology only the first and third directed three-node motifs
are present, see Figures 3.1 and 4.1. Throughout this Chapter we refer to these two motifs as
motif 1 and motif 3 respectively.

Furthermore, the three groups of nodes have very distinct local motif signatures, i.e. the type
and number of motifs a node is involved in. If one computes the local motif signature of each
node in the optimal topology and sort them in ascending order with respect to the ratio of motif
1 to motif 3, one gets a clear three phase transition of local motif signatures, see Figure 4.2.

-1

0

1

2

3

4

5

6

7

0 50 100 150 200 250

R
at

io
 o

f m
ot

if
1

to
 m

ot
if

3

Motif ratio values of the nodes in ascending order

Ratio of Motif 1 to Motif 3 in Ascending Order

Figure 4.2: Motif ratio phase transition of an optimal topology.

Note that when a node is not involved in any motif 3 instances, then its ration is set to zero.
When it is not involved in any motif 1 instances, its ratio is set to d!. In this way the motif ratio
is always well defined.

From the three phase transition in Figure 4.2 one can easily distinguish the three classes of
nodes. All leaves have ratio value of six, the intermediate nodes ratio value of zero and the
internal nodes have ratios between these two values.

In the next Section we show how one can benefit from the above observed phase transition.

4.4.2 Engaging Network Motifs in Topology Optimization

To construct local decision rules for optimizing live-streaming topologies, we consider the phase
transition shown in Figure 4.2. One observes that the few internal nodes have a specific motif
ratio. Its value can be computed from the maximum number of successors d, representing the
bandwidth capacities of the nodes. The number of motif 1 instances an internal node is involved
in is equal to all pair combinations of its successors without repetition and is given by

∑d−1
i=1 i.

The number of motif 3 instances is given by
∑d

i=1 di because each successor has d successors on
its turn and this results in d instances of motif 3 per successor. Thus, the ratio θ of motif 1 and
motif 3 for each internal node, which we call the threshold, is then given by:

70 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

θ =

∑d−1
i=1 i

∑d
i=1 d

=
d(d−1)

2

d2 =
d − 1

2d
=

1

2
−

1

2d
(4.1)

This threshold θ is in then used in the local decision rules of our approach.

4.4.3 Implementation

In this Section we present the workflow of our new motif-based approach.

The source node s is the initial bootstrap node. It estimates the minimum bandwidth d the
participating peers should provide depending on their expected configuration. Then, it divides
the original signal in k stripes and waits for the rest of the participants to join the network. The
value of θ is derived from the estimation of d and provided to the joining peers.

Each node is provided with a Node Manager (NM). When a node joins the overlay, it randomly
joins at all k stripes as a leaf. The NM monitors that the overall used bandwidth over all k stripes
is less than the available bandwidth of its node.

The outline of the algorithm is as follows: for each stripe tree the NM computes the motif
ratio of its node within that tree. When it is not equal to the pre-given threshold θ , the NM
makes changes to the local environment of its node in that tree so that its motif ratio improves.
For that purpose the NM make exchange operations with the node’s predecessor/successors.

The following is a pseudocode outline of the balance operation carried out by the NM of each
peer p. The balance operation is repeated for each stripe tree Ti in some predefined time step.

Input: p, Ti,θ ,ChildsTi
(p)← {w child of p in Ti}

Pred(p)← {w predecessor of p in Ti};1

M1 =

�

�

�ChildsTi (p)
�

�

�

�

�

�ChildsTi (p)+1
�

�

�

2
;2

M2← 0;3

R← 1;4

foreach w ∈ ChildsTi
(p) do5

NumChildsTi
(w)← {number of childs of w in Ti};6

M2← M2+NumChildsTi
(w);7

end8

if M2 6= 0 then R← M1
M2

;9

if R> θ then10

requestSuccessors(pickOne(ChildsTi
(p)));11

else if R< θ then12

giveUpSuccessors(Pred(p));13

end14

Algorithm 1: Topology Control

4.4 System Design 71

All nodes only make requests (procedures requestSucc and giv eU pSucc) to their predeces-
sors/successors and all transfers are made from successors to predecessors. This constraint
guarantees that the resulting structures are indeed spanning trees as they are invariant to the
transfer operations. The nodes have the right to reject requested transfers. For example when
their bandwidth does not permit serving another successor, or the requested exchange operation
is unfavorable to their own motif content. Figure 4.3 illustrates the two transfer operations.

Figure 4.3: Successor exchange operations.

The only exception to the local decision rule is the root, which in general always denies
giving up successors and pushes its bandwidth utilization to the maximum. It requests as many
successors as bandwidth is available, and allocates it uniformly over all k stripes.

The algorithm has converged when each of the stripe trees has converged. The algorithm
has converged in a stripe tree when all nodes in that tree either have motif ratios equal to the
threshold or no more improvements are possible due to local deadlocks.

Our approach improves the topology in each step and does not need to converge explicitly.
The trees are functional at any time, it is just their resilience that increases over time.

4.5 Evaluation

In this Section we present the results from extensive evaluations of our novel approach. They
include the management overhead, the structural properties of the produced topologies and
most importantly their resilience to attacks.

In all of our experiments we use the following scenario: There is one root node providing the
system with the original streaming signal. It decides in how many stripes the signal should be
divided and estimates d, the number of maximum successors per node. To enable comparison to
our reference system we keep c = 2 fixed and divide the source signal into k = 10 stripes. Net-
works with 300 to 3,000 nodes are simulated for all experiments. All results are averaged over
100 repetitions of each experiment and all results are indicated with their standard deviation.

In our resilience simulations we evaluate worst case attacks, causing maximum damage to the
topology. Since churn is a subset of that attack and no time measurements are taken, we refrain
from packet level simulations and use a turn based simulator to generate the topologies.

We investigate our new approach from three different perspectives: management overhead,
topological properties and resilience to attacks.

72 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

4.5.1 Management Overhead

Recall from Section 4.4.3 that each node is provided with a Node Manager optimizing its motif
content within each stripe. Therefore, the overhead produced by our approach is given by the
number of exchange operations per node and per stripe caused by the Node Managers. That is,
how many exchanges each node has to perform on average for the approach to converge. The
results are displayed in Figure 4.4, the error bars are smaller than the data points.

Average Number of Exchange Operations per Node

N
u
m

b
e
r

o
f

e
xc

h
a
n
g
e
 o

p
e
ra

ti
o
n
s

Figure 4.4: Number of exchange operations per node per stripe.

One observes that the average number of exchange operations per node per stripe depends
only marginally on the network size and in total it grows sublinearly with the network size. It
increases from 1.5 to just a bit over 2 while the network size grows with one order of magnitude.
Even more important is the small number, just around two, of required exchange operations per
node which represents a negligible overhead per node.

4.5.2 Topological Properties

Now we know that the overhead per node produced by our approach is very small and more
importantly independent of the network size.

Our next step is to investigate the quality of the produced topologies. For this purpose we use
a set of four topological metrics: ToPo metric, tree height, Balance metric and vertex connectivity.
Additionally, we measure their resilience towards perfect attacks.

The first measure we apply to the generated topologies is a simple topological measure, which
we call the ToPo metric. Given a tree, it reflects the balance in height of the subtree starting at
each node. For each node the ToPo metric is defined as the difference between the longest and
shortest branches of the succeeding subtree, starting at that particular node in the overall tree.
Figure 4.5 shows a sample tree with the ToPo metric values of the nodes within the tree.

4.5 Evaluation 73

0

1 5

2 4

3 0

00

1 0

2

Figure 4.5: Sample tree with corresponding ToPo metric values.

The ToPo metric value of a tree is defined as the sum of the ToPo metric values of its nodes.
In our example 0+ 0+ 0+ 0+ 1+ 2 = 3. It follows, that in a tree with N nodes, which with
respect to its height is perfectly balanced, the ToPo metric is zero. In the worst case where the
whole tree is just a list, the ToPo metric value is equal to N(N+1)

2
.

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

T
oP

o
m

et
ric

 v
al

ue
s

Network size

Reference Approach ToPo Metric Values
Motif Approach ToPo Metric Values

0

0.1

0.2

0.3

500 1500 2500

T
oP

o
m

et
ric

 v
al

ue
s

Network size

Normalized

Figure 4.6: ToPo metric values of streaming topologies (with std. deviation). Inset: the ToPo
metric results of the motif approach normalized with respect to the network size.

The ToPo metric is measured for each stripe tree and the value for the whole topology is the
average over all its stripes. The results are displayed in Figure 4.6.

One observes that the normalized ToPo metric values of the generated topologies are inde-
pendent of the network size. Furthermore, the motif based approach produces better balanced

74 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

trees than the reference approach. Recall from Section 4.2 that we use the most effective existing
method of Brinkmeier et al. [86] as a comparison benchmark.

The smaller is the ToPo metric value of a given tree, the better are all nodes distributed among
the tree branches (under the constraint of maximum number of successors per node). This on
the other hand means shorter paths among the nodes. In the context of P2P live streaming net-
works this means shorter delivery paths and hence smaller delays as the signal travels through
the network.

Recall from Section 4.2 that streaming topologies should have minimum predeces-
sor/successor dependencies. In that way fewer peers are effected in case of a failure or
overloading of a peer. Thus, the streaming topology should be as flat as possible. There-
fore, we also investigate the height of the generated topologies. It is defined as the average
height of all stripe trees within the topology. The results are displayed in Figure 4.7.

4

6

8

10

12

14

16

500 1000 1500 2000 2500 3000

T
op

ol
og

y
he

ig
ht

Network size

Reference Approach Topology Height
Motif Approach Topology Height

Optimal Height

0

0.025

0.05

500 1500 2500

Network size

Normalized

Figure 4.7: Height of streaming topologies (with standard deviation). Inset: topology height of
the motif approach normalized with respect to the network size.

Once again our results are independent of the network size, confirmed by the inset in Fig-
ure 4.7. They are also clearly flatter than those of the reference approach and very close to
optimal. For a perfectly balanced tree with N nodes and maximum allowed successors per node
d, the height of the tree is given by dlogd Ne.

Note that the cost functions used in the reference approach is targeted at the higher levels of
the toplogy. Therefore, it achieves almost uniform distribution of the nodes among the direct
successors of the root and becomes suboptimal near the leafs of the topology.

On the other hand, the motif-based approach treats all nodes equivalent. That not only leads
to better performance with respect to global topological properties, but also has further impor-

4.5 Evaluation 75

tant advantages as shown in Section 4.6. The drawback of the motif-based approach is that
exhibits partially skewed distribution of the nodes among the direct neighbors of the root.

To investigate the difference between the two approaches with respect to the distribution of
the nodes among the direct neighbors of the root, we measure their Balance metric. For a tree
with N nodes and |Nroot | direct neighbors of the root, the optimal distribution is N−1

|Nroot |
nodes

per subtree starting at each direct neighbor of the root. The balance metric for a given tree is
then defined as:

B(T) :=
∑

i∈Nroot

�

�

�

�

suc(i)−
N − 1

|Nroot |

�

�

�

�

(4.2)

where T is the given tree, Nroot the set of direct neighbors of the root, |Nroot | the size of Nroot ,
suc(i) the number of nodes in the subtree starting at node i, including i, and N the number of
all nodes in T . The balance metric values of both approaches are displayed in Figure 4.8.

0

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000 2500 3000

B
al

an
ce

 m
et

ric
 v

al
ue

s

Network size

Reference Approach Balance Metric Values
Motif Approach Balance Metric Values

Figure 4.8: Balance metric values of streaming topologies normalized with respect to the net-
work size (with standard deviation).

One observes that the Balance metric values of our approach are independent of the network
size. As it was to be expected, they are not as stable and close to optimal as those of the reference
approach. This is because the cost functions in the reference approach punish more severely
imbalances closer to the root. The motif approach treats all nodes equally and therefore suffers
from imbalances all over the topology and not only at the leaves. In fact our new approach does
not rely on any other knowledge on the underlying topologies but the direct neighborhood of
each node. That dramatically increases the privacy of the participating peers as we discuss in
detail in Section 4.6.

76 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

The next topological measure we apply to our topologies is the vertex connectivity. It counts
the number of nodes that have to be removed from a given graph, such that it disintegrates
into two disjoint parts. In the context of P2P live streaming, the vertex connectivity reflects the
minimum number of malfunctioning peers such that a subset of the remaining peers is cut off
from the content stream.

Note that due to the division in 10 stripe trees, the theoretically optimal node connectivity lies
at exactly 10 nodes. Figure 4.9 shows the evaluation results of both approaches.

8

8.5

9

9.5

10

10.5

11

500 1000 1500 2000 2500 3000

N
od

e
co

nn
ec

tiv
ity

Network size

Reference Approach Average Node Connectivity
Motif Approach Average Node Connectivity

Optimal Node Connectivity

Figure 4.9: Average node connectivity of streaming topologies (with std. deviation).

One observes that the node connectivity even increases with the network size. For networks
with more than 1000 nodes it is independent of the network size around 9.7. Our approach
once again outperforms the reference one.

In summary, we have observed that the our motif based approach outperforms the reference
approach on a set of crucial topological measures. The new method generates topologies that
are flatter, more balanced and stronger connected. For P2P live-streaming topologies that means
shorter delivery paths, i.e. smaller signal delays, and less node interdependencies, i.e. higher
robustness to failures. The bottom line is: the new method promises better performance under
normal circumstances.

For a commercial deployment of a P2P live-streaming systems a good resilience to attacks is
indispensable as intervention by malicious parties is very likely, see Section 4.2. Therefore, in
the next Section we investigate the resilience of our approach to perfect attacks.

4.5 Evaluation 77

4.5.3 Resilience to Attacks

We have so far investigated the topological measures that reflect the dependencies among the
participating peers. Finally, we evaluate the resilience of our topologies toward perfect attacks
with a metric called stability [86].

The stability of a topology is given by the number of still received stripes after removing the
set of the most important nodes in the topology. The most important nodes are those nodes
whose absence leads to the highest damage to the service of the overall system. To determine
the set of the most important nodes for increasing set-sizes, we use exhaustive enumeration
and branch and bound methods. That is a highly unrealistic scenario for streaming networks,
but represents the worst case attack and thus an upper bound for possible damages through
correlated failures, churn or any conceivable attack.

The BCBS [106] method has been shown to provide an upper bound with respect to resilience
in the field of P2P live-streaming networks. Consequently, in addition to the reference approach,
we also take BCBS as a comparison benchmark for the resilience to attacks of the existing
methods in this field.

We divide the source signal into 10 stripes and allocate a source bandwidth of C = 2. It
follows that even in the perfect case, where each direct successor of the root in one of the stripe
trees is a leaf in all other trees, it is the 20 nodes directly connected to the source that need to
be removed to completely disrupt the service. The evaluation results are shown in Figure 4.10.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
ra

ct
io

n
of

 o
pe

ra
tio

na
l n

od
es

Number of removed nodes

BCBS

Motif Approach

Reference Approach

Motif Approach Topology with 900 Peers
Motif Approach Topology with 2100 Peers
Motif Approach Topology with 3000 Peers

Reference Approach Topology with 900 Peers
Reference Approach Topology with 2100 Peers
Reference Approach Topology with 3000 Peers

BCBS Topology
Optimal Case

Figure 4.10: Stability of streaming topologies (with standard deviation).

One observes that our approach is practically independent of the system size. It produces
similar results for network sizes varying by one order of magnitude. One also observes that

78 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

there is a clear gap between the new approach and the reference [86], which achieves almost
perfect results. That is no surprise considering the differences with respect to the balance met-
ric, see Figure 4.8. Still, our results are significantly better than any other current streaming
topologies [86]. This is confirmed by the significantly worse performance of the BCBS method.

It is clear that our approach is not as optimal as the reference with respect to stability, but it
still produces excellent results. More importantly, it has some other crucial advantages, which
are discussed in detail in the next Section.

The bottom line is: We have tested the streaming topologies generated by our new approach
for their topological properties as well as their resilience to attacks. In all of the test cases the
achieved results are very close to optimal and independent of the network size.

Consequently, our new method assures outstanding performance under normal circumstances
and excellent resilience to attacks, both on the cost of modest overhead, and thus clearly out-
performing the state of the art methods.

4.6 Method Comparison

In this section we directly compare the motif based approach to the reference method [86].
They both share some similar features, but each one of them has its advantages and drawbacks.
To point out the most important of them we compare the methods on three different criteria:
optimality of the constructed topologies; convergence and complexity; and their resilience and
vulnerability to attacks by malicious parties.

4.6.1 Topological Properties

We have shown in Section 4.5 that with respect to three different topological metrics (the ToPo
metric, average three height and vertex connectivity, see Figures 4.6, 4.9 and 4.7) the mo-
tif approach produces results close to optimal and clearly outperforms the reference method.
The motif based approach merely leaves space for further improvements and guarantees better
performance under normal circumstances.

The complex cost functions used in the reference approach are targeted at the direct neighbors
of the source. Therefore, with respect to the Balance metric it outperforms the new approach,
see Figure 4.8, and has better prerequisites with respect to resilience under perfect attacks,
which we discuss extensively in Section 4.6.3.

4.6.2 Convergence and Complexity

Both approaches provide streaming topologies functional throughout the whole network oper-
ation, i.e. they do not have to converge for the live streaming to take place. Still, the longer
the algorithms run, the better the topologies become. Therefore, it is crucial to compare their
convergence time as it is well known that P2P networks have a constantly changing nature.

4.6 Method Comparison 79

Our new approach requires only a few exchange operations per node, see Figure 4.4. The local
decision rule is based only on a few simple computations, in O(1) computational complexity, and
hence requires negligible effort from the participating peers. The messaging overhead over all
stripes per peer is in O(kd), since it requires one value from each neighbor in each stripe.

On the other side, the reference approach causes a computational complexity in O(d2) and
produces the same messaging overhead O(kd).

Therefore, the new approach is clearly better suited for devices with little or constrained re-
sources, e.g. most mobile devices, or for application scenarios with highly fluctuating underlying
network topologies.

4.6.3 Network Resilience

The resilience against attacks and failures is the outstanding feature of the two approaches we
discuss and therefore our main point of comparison.

We first tested the node connectivity of the generated topologies, see Figure 4.9. That is, the
minimal number of nodes that have to be removed, such that the underlying topology breaks
down into two separate fragments. In this test the new approach outperformed the reference
approach. However, they both produce close to optimal results, leaving almost no space for
further improvements.

Subsequently, we have performed perfect attacks on the topologies generated by the two
approaches. Both attacks rely on complete network knowledge. The possession of such knowl-
edge is highly unrealistic for distributed systems, but is indeed the ultimate challenge for both
approaches. This attack tests the stability of the generated topologies, see Figure. 4.10). It mea-
sures the number of residually received stripes after a perfect attack on the network has been
performed. The perfect attack considers global knowledge and is carried out through exhaus-
tive enumeration and branch and bound methods. Being unrealistic, it definitely represents an
upper bound of possible damage through correlated failure or attacks.

In this test the reference method outperformed the new approach, managing almost perfect,
linear decay of the operational nodes. Nevertheless, the stability of the topologies generated
by the motif approach is significantly higher than those of topologies generated by other ALM
approaches.

The bottom line is that the reference approach provides higher resilience to attacks. Our new
approach, on the other hand, performs very well too, while causing significantly less computa-
tional and messaging overhead.

A clear advantage of the new approach is the fact that no knowledge about the topologies is
gathered nor forwarded. In contrast, the reference approach aggregates and forwards informa-
tion about the underlying topologies. Furthermore, in the new approach the behavior of the
root node with respect to its successors is no different than any other node. Thus, even when
a malicious node is as high as being a direct successor of the root, there is no way for it to
determine that.

Any miscreant capable of gathering knowledge about the topologies represents a threat. It
might be allowed to infer facts on its current location in the topology and consequently estimate
at least partly the current state of the system .

80 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

Consequently, our new approach provides much higher privacy to the participating peers, ren-
dering attacks by malicious parties almost impossible. This is an advantage over the reference
approach of immense importance for any commercial deployment.

4.7 Summary and Outlook

This Chapter studies the resilience of P2P live-streaming topologies. The considered scenario
consists of a source peer, which provides the original signal, and a set of peers that are inter-
ested in the stream and provide parts of their available bandwidth to cooperatively distribute it
among each other. Hence, these systems harness the resources at the end-hosts and thus greatly
decrease the server load and aid scalability to large audiences.

With each peer relying on the correct service of all preceding peers on the packet path from
the source, these systems are prone to experience service disruption due to delays or departing
peers. Especially considering a commercial deployment, service degradation or disruption are
unacceptable. Taking into account the existence of malicious parties complicates the problem
even further due to the cooperative and open nature of these systems.

4.7.1 Summary

To this end, we propose a novel approach for constructing streaming topologies that are resilient
to node failures and DoS attacks. It employs network motifs in online topology control and not
just as a statistical measure, for what they have been exclusively used so far. Hence, our new
approach relies on decision rules based on local knowledge of the nodes, only.

Our approach consequently does not provide the participating parties with any knowledge
on their position within the network nor its overall state. Hence, attackers have no means of
inferring the position of other nodes nor their importance and are therefore unable to identify
valuable targets for attacks.

In extensive evaluation we compare our new approach to the currently most effective ap-
proach in this field. It has been shown to produce streaming topologies that are almost optimally
resilient towards DoS attacks [86]. The comparison includes series of topological measures as
well as their response to perfect attacks.

The evaluation results indicate that both approaches achieve comparable performance. Both
approaches create topologies significantly more resilient to DoS attacks than other methods
from related work.

The reference approach achieves a slightly better resilience to attacks. Yet it relies on gathering
some knowledge on the succeeding topologies of each node and is characterized by much higher
computational and messaging complexity.

The motif based approach on the other hand achieves better topological properties and is
independent of any information on the topology other than the direct neighborhood of each
node. Therefore, the new approach crucially guarantees better performance under normal
circumstances and provides higher privacy to the participating peers, rendering intrusions by
malicious parties almost impossible. Both these properties are of immense importance to enable
possible commercial deployment.

4.7 Summary and Outlook 81

4.7.2 Outlook

Our new approach currently only aims at creating resilient live-streaming topologies. However,
common objectives in this scenario are to decrease the end-to-end delay and to achieve location
awareness to efficiently use the infrastructure of the underlying network. We are currently in
the process of extending our approach to incorporate location information in order to provide
network efficient streaming topologies. We are additionally adapting protocol and local decision
rules to decrease overlay path lengths and the observed delays. On a broader view we are pursu-
ing the question, whether such simple local decision rules can be applied in other decentralized
settings, such as routing and topology adaptation in wireless sensor networks.

82 4 Resilient Peer-to-Peer Live-Streaming Using Motifs

5 Finding Communication Bottlenecks in
Distributed Environments

Throughout the previous Chapters we have shown that by looking at the local structures of
complex networks one can understand the dynamic processes taking place on those networks.
In Chapters 3 and 4 we went one step further and showed that one can even control the dynamic
performance of networks by intentionally steering their local structures in live time.

In this Chapter we investigate the reverse perspective: Is it possible to deliberately use dy-
namic processes to reveal the topological structure of distributed complex networks? Our
answer to that question is yes. As we show shortly, one can indeed engage gossiping (a typ-
ical dynamic process in social networks) to find communications bottlenecks in a prominent
subclass of distributed complex networks: multihop wireless networks.

The results of our extensive evaluation show that our novel approach is indeed very effective
in detecting the few crucial for the network operation nodes and that it clearly outperforms
existing state of the art methods.

Nodes in mobile networks are usually unevenly distributed over space. Several dense clusters
of nodes are interconnected by a few nodes in sparsely occupied areas. Removing vital nodes
along such bridges would partition the network and severely reduce the overall connectivity.
Consequently, detecting and protecting those few vital nodes in live time is crucial for keeping
the network operational.

In order to achieve this task, we present our novel approach: BridgeFinder. It is based on an
extended gossiping protocol and is significantly faster and more precise than any existing mech-
anisms. On the one side, BridgeFinder allows us to calculate good estimates for global graph
measures while operating as a fully distributed algorithm and causing only modest messaging
overhead. On the other side, in contrast to conventional gossiping algorithms, it has an efficient
guarding mechanism against malicious nodes trying to screw the protocol operation.

5.1 Introduction

Our main target environments are distributed wireless environments, such as wireless multihop
networks. They impose severe challenges upon any distributed application. Established con-
nections or even nodes may suddenly disappear due to many unpredictable factors. Because
communication flow depends on the network connectivity, it is crucial to identify and protect
the few critical peers within the network. Those are the articulation points which failure leads to
malfunction or complete breakdown of the network, as they constitute the few bridges keeping
the network connected.

Standard approaches for identifying such vital links require global network knowledge, which
is unavailable in mobile multihop networks. Even if it were, one would require O(N3) running
time, where N is the number of nodes within the network (by using Floyd-Warshall algorithm
for example). Obviously, such approaches are of extremely limited practical use.

83

In order to overcome these challenges, we developed BridgeFinder. It is compliant with the
Push-Sum gossiping algorithm [108]. BridgeFinder identifies critical paths between densely
connected clusters based only on local knowledge. The basic idea is to let a floating value
diffuse through the network and then detect the communications bottlenecks by examining the
diffusion speed of the single nodes.

Our extensive evaluation shows that BridgeFinder very efficiently identifies the critical nodes.
Furthermore, it can be integrated in the regular maintenance and application traffic and there-
fore produces almost no additional messaging overhead.

Last but not the least, BridgeFinder is augmented with efficient guarding mechanism, provid-
ing it with solid resilience against malicious nodes trying to screw the protocol operation. That
makes our approach outstanding in the field of gossiping based methods.

5.1.1 Network Prerequisites

There are two requirements the underlying network has to fulfill in order for BridgeFinder
to function. First, a node must be able to communicate with other nodes in the network,
at least with its direct neighbors. Second, the links in the network must be undirected, i.e.
communications must be bi-directional.

In general, BridgeFinder operates on any network that meets these two criteria. Both criteria
are fulfilled by mobile multihop networks, at least to the extent required by BridgeFinder.

5.1.2 Application Domains

BridgeFinder detects critical peers, crucial for communication within the network. Therefore,
the fewer the nodes on which communication depends, the higher the benefit of using our ap-
proach. Compared to algorithms based on global knowledge in static networks, BridgeFinder
is less accurate than standard approaches for detecting critical nodes. However, its most sig-
nificant advantage is that it requires no global knowledge and can operate on continuously
changing underlying networks. That makes it very attractive for distributed environments, like
wireless ad-hoc networks, P2P overlay networks and wireless sensor networks.

Once the critical peers are known, partitioning can be avoided by establishing additional
links among susceptible clusters connected by those critical peers. In any complex network,
maintaining information flow is equal to the critical nodes remaining operational. The higher
the importance of a node, the higher is the impact of losing it and reversely the higher is the
benefit of detecting and protecting that node a priori.

5.2 Properties of Critical Peers

There are two categories of critical peers: global and local [109]. If a global critical peer fails,
the network disassembles into two or more components. If a locally critical peer fails, this peer
along with its neighbors are isolated from the network. The rest of the network is operational.

There is a set of specialized algorithms for detecting the second type of peers [109, 110, 111].
They produce different computational overhead, depending on the accuracy of their results.
Still, all of them require only the neighbor list of each peer and no further network knowledge.

84 5 Finding Communication Bottlenecks in Distributed Environments

Global critical peers are much more important. Their failure affects the function of the whole
network. There are no local and hence efficient algorithms for detecting such peers.

The crucial observation on which our approach relies is that critical peers play a significant
role in distributing information within the underlying network. Our results show that with very
high probability a critical peer either lies on many communication paths among other nodes or
has very short communication paths to almost all other nodes, and often even both. Detecting
peers with such properties is equivalent to detecting global critical peers.

A straightforward question arises: How do we describe and detect peers playing such an
important role in supporting communication flow? The intuitive answer is to use centrality
measures from graph theory. Note that these measures require global network knowledge and
are very expensive to compute. Overcoming these two issues in a distributed manner is the
main contribution of BridgeFinder.

5.2.1 Centrality Measures: Betweenness Centrality

One of the important topological measures from graph theory for describing nodes in complex
networks is betweenness centrality or simply betweenness [22, 23].

The betweenness of a node is proportional to the number of shortest paths going through this
node. Nodes that occur on many shortest paths within the network have higher betweenness.
Consider a graph G = (V, E), where V is the set of nodes and E the set of edges connecting
them. The betweenness CB(v) of a node v ∈ V is given by:

CB(v) :=
∑

s 6=v 6=t,s 6=t

σst(v)
σst

(5.1)

where s, t ∈ V and σst(v) is the number of shortest paths from s to t going through v and σst
the number of all shortest paths between s and t. The higher the betweenness of a given node,
the more important is this node for communication within the network.

Note that the betweenness of a node v could be zero if it is even one single edge away from
a node with high betweenness. That is because no shortest path goes through v as this auto-
matically increases the path length by one, see Figure 5.1. Still, that node plays an important
role for the communication flow. It can be used as a backup in case that the direct connection
between the two high betweenness nodes vanishes.

To overcome that problem we introduce the following measure:

Definition 1 The average betweenness of a node v is equal to the average betweenness of its own
and the betweenness of its neighbors:

CAB(v) :=
CB(v) +

∑

w∈N CB(w)
|N |+ 1

(5.2)

where N is the set of neighbors of v and |N | its size.

5.2 Properties of Critical Peers 85

Figure 5.1: Betweenness does not always reflect the central role of a node. The displayed values
represent the betweenness coefficients of the corresponding nodes.

In other words, not only nodes with high betweenness but also their neighbors have high
average betweenness. This more accurately reflects their central position in the network for two
reasons. First, these are the nodes which must overtake the information flow if the leader node
fails. Second, they can serve as a backup for the leader node before it fails by interconnecting
among each other and thus reducing its load. That also significantly reduces the impact of
suddenly losing the leader node due to some unexpected reasons.

5.2.2 Centrality Measures: Closeness Centrality

Another important measure is closeness centrality [112, 113], here referred to just as closeness.
Using closeness we can identify those nodes within a network which are responsible for fast
communication flow. The closeness of a node v is defined as the mean geodesic distance (i.e.
the shortest path) between the node v and all other nodes reachable from it:

Cc(v) :=
1

n− 1

∑

t∈M\v

dG(v , t) (5.3)

where dG(v , t) is the geodesic distance between v and t in G and n is the size of the connected
component M reachable from v . Closeness is a measure of how long it will take for a particular
information to spread from a given node to all other reachable nodes.

Remark: when G is not connected, dG becomes infinity. In that cases equation (5.3) is
no more well defined. In such cases one usually takes the reciprocal distance measure 1

dG
.

Consequently a node has short communication paths to other nodes when it has high closeness
coefficient. However, in our analysis we consider only connected networks, see Section 5.4, and
therefore we stick to the definition of closeness as in equation (5.3).

Nodes with small closeness are fast in distributing information through the network. Still,
closeness is a linear measure. In large networks there are whole regions of nodes with very
similar closeness values. That makes the standard closeness measure in some cases imprecise in
highlighting the nodes with significant closeness coefficients.

86 5 Finding Communication Bottlenecks in Distributed Environments

In order to sharpen the precision of the standard closeness measure, we introduce square
closeness. It also computes all shortest distances among all nodes in the network, but squares
them before the average is computed:

Definition 2 The square closeness of a node v is the sum of the square distances from v to all other
reachable nodes:

Csqc(v) :=
1

n− 1

∑

t∈M\v

dG(v , t)2 (5.4)

where dG, M and n are defined as in equation (5.3).

Nodes with best closeness have significantly higher squared closeness than the rest of the
nodes. That makes it easier to detect outstanding nodes within clusters of nodes with relatively
similar closeness coefficients.

Although all these metrics are useful in identifying the global critical nodes, they are: (i)
very expensive to compute and (ii) are not applicable without global network knowledge, for
example in distributed environments.

To overcome that problem is the main contribution of BridgeFinder. Our results show that the
nodes BridgeFinder identifies agree to large extent with the nodes one identifies by applying the
analytical measures discussed above.

5.3 The BridgeFinder Algorithm

Gossiping works in the following manner: at an arbitrary position in the network a node starts
a gossip. It sends the information of interest to all its neighbors. Then each node on its turn
shares the information it has just received with its neighbors and so on. Eventually, all nodes
become aware of the new gossip.

To detect global critical peers, BridgeFinder does extended gossiping. Instead just to spread a
piece of information among the nodes, it rather lets a given value diffuse through the network.
Some node A picks a random floating number d and divides it uniformly among its neighbors
and itself. If A has N neighbors, then after the first iteration, all of them as well as A have value
of d

N+1
. In the next iteration, each node that just has received a value (including A) distributes

its value among its neighbors as well and so on. Each node also keeps track of the number
of iterations it has exchanged values. In Section 5.5 we show in detail how to avoid multiple
instances of BridgeFinder running simultaneously.

To estimate when d has successfully diffused through the network, we introduce a tolerance
parameter ε. Overall in our simulations we set ε= 0.02. When the current exchanged value of a
node v does not differ from its previous value with more than 2%, it sets its status to converged.
The whole network has converged, when all of its nodes have converged.

The following is a pseudocode illustration of the exchange operation for a node v which just
has received a value din from some of its neighbors:

5.3 The BridgeFinder Algorithm 87

Input: v , din, Neighbors(v)← {w : (v , w) ∈ G}
if hasConverged(v) is false then1

M ←
�

�Neighbors(v)
�

�;2

dold ← getValue(v);3

dnew ←
dold+din

M+1
;4

if
�

�dold − dnew

�

�> ε then5

setValue(v , dnew);6

iterationCount(v)← iterationCount(v) + 1;7

foreach w ∈ Neighbors(v) do8

sendValue(w, dnew);9

end10

else11

markConverged(v);12

end13

end14

Algorithm 2: BridgeFinder Exchange Operation

The workflow of the the central value exchange operation can be described as follows: If the
node v still has not converged, it checks if its old value dold is more than an ε away from its
new value dnew. In the negative case, v marks itself as converged. Otherwise, it posts its new
value to all its neighbors. The node v repeats exchanging values with its neighbors until it has
converged. The algorithm stops when all nodes have converged.

Each node also keeps a list of the k fastest converging nodes, in our simulations k = 10, and
the number of exchange steps they required to converge. When a node v has converged, it
checks if it has not been faster than some of the nodes in its top list. If this is the case, v sends
to its neighbors the information that it has converged and that it qualifies for the top k nodes
list. The neighbors of v then respectively adapt their lists of top converging nodes, on their turn
propagate the change to their neighbors and so on.

Assume that a node w receives a message that v has qualified for the top k list. Then, if
not already done so, w adapts its top list (note that w can receive the update message along
different paths). Next, w on its turn builds the update request in its next exchange messages to
its neighbors and so on. When BridgeFinder is started for the first time, every node has only one
entry in its list: the node itself. Distributing an update message to every node in the network is
integrated in the exchange messages and in worst case needs as many exchange operation as the
network diameter (a relatively small number for many communication and social networks).

After each run of the BridgeFinder algorithm, every node knows the fastest converging nodes.
The results of the previous run are distributed in parallel to the value exchange operation of the
next run and so on. Figure 5.2 illustrates the situation. As we show in Section 5.4, the fastest
converging nodes are also the critical nodes. Once they have been identified, measures can be
taken to protect them.

88 5 Finding Communication Bottlenecks in Distributed Environments

Figure 5.2: Phases of the BridgeFinder algorithm and interleaving among multiple runs.

Figure 5.3: Three different obstacle scenarios. Examples show 1, 2, and 3 bridges respectively.

5.4 Evaluation

Wireless multihop networks are usually modeled with unit disk graphs (UDG) [114]. The con-
struction principle is as follows: given N nodes and a distance threshold ϑ, distribute all N
nodes uniformly at random within an area of a fixed size. Then, all nodes among which the
geometric distance is less than ϑ are connected by edges. In other words, all nodes which lay
close enough to each other are considered neighbors in the resulting wireless ad-hoc network.
This model is valid for wireless networks within a perfect surrounding environment. In practice
the entities usually move in groups, have favorite spots and there are areas that they avoid.

We extend the UDG model by inserting obstacles of different sizes within the area where we
place the nodes. These obstacles represent unpopular or unaccessible areas. The generated
graphs represent real world ad-hoc wireless networks more precisely. The approach for more
realistic network models is based on the work of Jardosh [115]. We call the network model
ODG (obstacle disk graph), see Figure 5.3 for an illustration.

We evaluate BridgeFinder using the ODG model for four different network types with none
(equivalent to the standard UDG model), one, two and three bridges.

5.4 Evaluation 89

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5%

Pa
rti

tio
ne

d
N

et
w

or
ks

Number of Removed Top Converging Nodes

One Bridge
Two Bridges

Three Bridges
Unit Disk Graph

Figure 5.4: Destroying networks by removing the fastest converging nodes.

Note that nodes are distributed uniformly at random within the areas around the obstacles.
Therefore, there is no guarantee how many of the existing bridges are actually used to connect
the different clusters, nor how many different paths run through each bridge. However, net-
works generated in this manner are very vulnerable. The few nodes lying on the paths among
clusters are exactly the few nodes keeping the network together.

There are two important questions that need to be addressed. What topological properties
do these few nodes have? More importantly, how effective is indeed BridgeFinder in detecting
those very nodes?

We evaluate our approach on 500 networks of each type. Each network consists of 250 nodes
placed in a physical area of 100x100 units. The maximum edge length is set to 12 units, i.e.,
we place edges among all nodes within distance of 12 units from each other. We create multiple
obstacles with dimensions of 25x25, 30x30 and 50x50 units (see Figure 5.3 for an example
setup). Because of the obstacles and the random placement of nodes, the resulting networks
are not always connected. Therefore, during the generating process we discard non-connected
networks and generate new ones until 500 connected instances of each type were acquired.

Now that we have diverse test scenarios, we finally can address the central question of this
Chapter: what role do the nodes identified by BridgeFinder play for keeping the network con-
nected. For this purpose, one by one we remove the fastest 3.5% converging nodes. The results
are displayed in Figure 5.4. The x-axis shows the percentage of removed nodes. The y-axis
shows the fraction of partitioned networks from the 500 instances of each type. We consider a
network partitioned if more than 25% of the remaining nodes are not able to communicate with
the rest of the network.

Figure 5.4 shows averaged results for all four different network types. Removing only 2%
(equivalent to just 5) of the fastest converging nodes breaks 90%, 70% and 50% of the one, two
and three bridge networks respectively. BridgeFinder finds with very high probability exactly
the few nodes that keep the networks together.

90 5 Finding Communication Bottlenecks in Distributed Environments

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 2 3 4 5 6 7 8 9 10 11 12 13

N
um

be
r o

f N
et

w
or

ks
 in

 %

Number of Overlapping Nodes

One Bridge
Unit Disk Graph

Two Bridges
Three Bridges

Figure 5.5: Intersecting best centrality measure nodes with 5% of the fastest converging nodes.

Note that the standard UDG graph does not partition. This is not surprising. In such graphs,
there are no critical nodes at all. Depending on the density of the nodes, there are two pos-
sibilities. Either each node is very strongly interconnected with the rest of the network, or all
links are so sparse that each node is critical. Thus, in UDG graphs there are no “special” nodes.
They all have very similar convergence rates. Removing fastest converging nodes is equivalent
to removing randomly chosen nodes. Figure 5.4 just confirms the well known fact that UDG
graphs are resilient to random failures.

The next question we tackle is whether there is an analytical explanation for the above pre-
sented empirical results? Recall the two global measures we defined in Section 5.2: average
betweenness and square closeness. They describe the importance of nodes for distributing infor-
mation within a network. To answer the above question we test to what extent the top nodes
identified by BridgeFinder overlap with the best nodes identified by the two global measures.

For each of our test networks we compute two sets: A and B. A consists of 5% (i.e. 13 of
all 250 nodes) of the highest average betweenness nodes and B contains the highest 5% square
closeness nodes. The nodes in the union of A and B, A∪ B, have either the highest average
betweenness, or the highest square distance coefficients in the network, or in most of the cases
both. Note that A and B are not necessarily disjoint. On the contrary, averaged over all generated
networks, A and B overlapped to over 80%. The overlapping factor is almost identical for the
four different network types.

The set A∪ B contains the nodes with the “best” topological properties in the network. The
question is how many of those nodes are within the nodes identified by BridgeFinder. We
intersect A∪ B with 5% (13 nodes) of the fastest converging nodes. Figure 5.5 displays the
results. At least half of the fastest converging nodes lay on key topological positions in their
networks. This is the case in more than 80% of the two-bridge networks and in over 90% of the
one-bridge networks.

5.4 Evaluation 91

Our results clearly show that with very high probability BridgeFinder identifies the same nodes
one would get by using global network measures. In both cases those are the few nodes keeping
the network together, see Figure 5.4.

There is however a huge difference between the two approaches. We had to use global
network knowledge in centralized algorithms to compute the above discussed topological prop-
erties of the nodes. Such global knowledge is unavailable in distributed environments, rendering
that kind of algorithms useless in practice.

The striking advantage of BridgeFinder: It relies only on information directly exchanged
among the participating peers in a fully distributed manner. That makes it not only applica-
ble in distributed environments, while still being compatible to centralized approaches, but the
results it produces are also simultaneously available to all participating peers.

All this together makes BridgeFinder outstanding in the area of distributed algorithms for
detecting communication bottlenecks, as we discuss in detail in Section 5.6.

5.5 Gossiping Convergence

The convergence speed of the BridgeFinder algorithm is determined by the diffusion speed of
the underlying network. The diffusion speed characterizes how fast a value starting from an
arbitrary node diffuses through the whole network.

Another gossiping protocol based on diffusing values through the underlying network is Push-
Sum [116]. We use it as a benchmark in our comparison as BridgeFinder similarly relies on a
basic value exchange operation.

In graphs with high expansion the convergence speed of Push-Sum has been proven to be
O(log N + log 1

ε
) [116], where N is the number of nodes and ε the relative convergence error.

For geometric networks with “roughly" uniform distribution of nodes in the Euclidian space the
diffusion speed is shown to be O(log1+ε D) [117], where D is the diameter of the network.

Many complex networks have a different topology than the networks described above. They
consist of densely connected clusters which are only sparsely interconnected. An O-notation
solution for the running time of Push-Sum in such networks is only available for special metric
spaces. A general proof is not yet available [117]. Both, their irregular structure and varying
number of clusters, make it very unlikely that a general solution for mobile multihop networks
could ever be derived.

Therefore, we investigate the convergence of Push-Sum through extensive simulations on all
500 instances of each ODG network type that we investigated in Section 5.4. The averaged
results are displayed in Table 5.1. The result for a single network is measured as the required
for the network to converge average number of exchange operations per node. We observe a
large discrepancy in the required exchange operations between the ideal case, the UDG graph,
and the most demanding case with one bridge.

Note that the gossiping protocol of Push-Sum is indeed information diffusion within the net-
work. Therefore, the faster the node that starts the algorithm distributes information within the
network, the better is the convergence time of the protocol. From Section 5.4 we know that
those are with high probability exactly the fastest converging nodes of BridgeFinder.

92 5 Finding Communication Bottlenecks in Distributed Environments

Network Type Push-Sum BridgeFinder
3 Bridges 469 214
2 Bridges 597 282
1 Bridge 823 367

UDG 94 72

Table 5.1: Convergence speed on different network types measured in average number of ex-
change steps per node.

An intuitive solution for optimizing the original Push-Sum protocol arises. After running the
algorithm once, the fastest converging node from the last run is responsible for starting the next
run. If it is not able to do that, the second fastest converging node becomes responsible for
starting the algorithm and so on.

This modification is integrated in BridgeFinder. Recall from Section 5.3 that the list of the
fastest converging nodes is constantly exchanged among the participating nodes and that at the
end of the algorithm each node possesses the list of the k fastest converging nodes. Thus, all
nodes within the network are aware which node should start the next run.

We only have to overcome one last problem: starting the algorithm for the first time while
avoiding different nodes from starting and running BridgeFinder simultaneously. To achieve
that each node which decides to start the algorithm and has not already participated in it, picks
a random number and sends it over the network together with its values.

When a node receives values with different random numbers, this means that two simulta-
neous instances of BridgeFinder are running. The node ignores the gossiping messages with
the smaller random number and processes only the larger values. Thus, BridgeFinder instances
started with larger random numbers take priority over those started with smaller numbers. This
produces a slight overhead during the first run of the algorithm, as initially computed values are
being thrown away, but still gives each node the possibility to start the algorithm. This resolves
the problem of having to pick a starting node within a distributed environment. Any node can
start the algorithm.

The benefit of starting BridgeFinder from the fastest converging nodes from previous runs of
the algorithm can be seen in Table 5.1. We run the algorithm over the 500 instances of each
network model and average the results. The values of BridgeFinder are always measured at the
end of the second run as the first one is used to determine the top converging nodes within the
network. Thanks to our modification BridgeFinder performs better than the original Push-Sum
algorithm in all four network models. The acquired speed-up ranges from 20% to 220%.

In summary, even in hostile environments like one bridge network models, our algorithm
requires just a few more exchange operations per node than the number of nodes in the network.

It is to be noted, that after BridgeFinder has converged, the computed results are known to
all participating peers. That is a clear advantage of BridgeFinder over current distributed algo-
rithms for detecting critical peers, i.e. communication bottlenecks. More details are provided in
the next Section.

5.5 Gossiping Convergence 93

5.6 Related Work

Gossiping is used in many network applications. One of them is the Push-Sum algorithm [108].
Its original epidemic protocol is called anti-entropy and is used for database replication [118].
Another application of the Push-Sum algorithm is counting peers in P2P overlay networks [119].
An overview of actual epidemic protocols is given by Eugster [120].

Our contribution, BridgeFinder, is fully compliant with the Push-Sum based algorithm pro-
posed in [119]. Our modification enables BridgeFinder to detect global critical peers in a
distributed manner. Global critical peers have significant impact on the connectivity of the
underlying network. The absence even of a small number of those nodes may easily render the
network completely unusable [121].

There is a large body of recent research dedicated to identifying critical peers. The common
approach is to send probe messages from a node, lets say C , to other nodes in the network. When
a node receives a probe message, it must send it back to C . C contacts iteratively a chosen set
of nodes [122] or just floods the network [110]. After all probe messages have returned back
to C , it computes how fast the single messages have returned. Based on its results, C decides
if it is a critical peer or not. Short return times mean C is critical, otherwise it is not. After the
procedure is finished the computed results are known solely to C .

Another approach is the detection algorithm based on the Midpoint Coverage Circle [109]. It
also has a simple workflow. Assume that the node C wants to estimate whether it is a critical
peer. It chooses random pairs of nodes within the network and asks them to contact each other.
If the message exchanged by the two nodes on its way goes through C , then C considers itself
critical and not otherwise. The computational overhead for C is smaller than the one in the
previous approach. However, in order to guarantee reliable results C has to test a very large
number of node pairs. This produces a large messaging overhead for testing just a single node.
The acquired information is still solely available to C .

BridgeFinder does not test just some nodes, but rather evaluates in parallel all nodes in the
network. When the algorithm is finished, the results are known to all nodes, in sharp contrast
to the current methods discussed above. Even with a small state per peer and based only on
local computations the results of BridgeFinder are highly accurate.

In networks with expander topology the overhead for finding all critical nodes with Bridge-
Finder scales with O(logN), where N is the number of nodes in the network [119]. This is faster
than all known approaches, even though they make calculations for only one single node instead
of the whole network. Our results show that in wireless multihop networks with arbitrary
topologies BridgeFinder is slower just within a factor between 2 and 3 compared to expander
graphs, see Section 5.5.

In summary, BridgeFinder outperforms current distributed approaches for detecting critical
peers, i.e. communication bottlenecks, on several criteria: it is faster, more reliable and the
computed results are known to all participating peers.

The last but not the least, it has an efficient guarding mechanism against malicious nodes,
which is presented in the next Section.

94 5 Finding Communication Bottlenecks in Distributed Environments

5.7 Security Issues

All gossiping-based approaches are unfortunately vulnerable to attacks and malicious behaving
parties. BridgeFinder is also based on gossiping and is therefore similarly vulnerable.

Still, it has one major advantage: it does not depend on the exact values exchanged among
nodes, but rather on the convergence speed of that process. Relying on the convergence speed
instead on the values is sufficient for us to develop highly efficient guarding mechanism for
BridgeFinder. That is another significant difference between BridgeFinder and other approaches
in its field.

The main idea behind our solution is that no node converges on its own. A node can only
claim it has successfully converged when the fluctuations in the values of the surrounding nodes
become relatively small. Vice versa, a node can only claim it has still not converged, when the
values maintained by its neighbors are still varying significantly.

Therefore, each node just needs a scheme for estimating the fluctuations in the neighbors
values either as acceptable or not acceptable. Then, it can protect both itself and the whole
network from the following two types of possible attacks.

The first attack is when a compromised node falsely claims it has converged (lies to its neigh-
bors about its real value), in order to qualify for the list of fastest converging nodes. The second
type of attack is when a node neglects the values sent to it by its neighbors and keeps flooding
the network with higher/smaller values and thus hindering the algorithm from converging.

When a node receives suspiciously small or high values from one of its neighbors, let say X ,
it reacts by warning its other neighbors. If its suspicions are confirmed by any other node, they
send a message through the network that X has been compromised. All nodes having X in their
neighbor list exclude X from their future communication flow.

To estimate if the values received from its neighbors are legitimate, each node calculates their
mean value. The local decision states: a value is legitimate when it differs from the mean value
only by a given factor. Now all we need is a scheme to determine that factor.

We know that the fluctuations in the values are significant at the beginning of the algorithm
and decrease progressively with each iteration. The speed of that progression for a node v at
time i can be expressed through the difference of its new and its old value:

sv (i) :=
x i − x i−1

x i
(5.5)

where x i and x i−1 are the current and the last value of v respectively. We call sv the speed
coefficient of v . As the algorithm converges, sv goes to zero for all nodes in the network.

Furthermore, each node knows the number of exchange operations it has already carried out,
see Section 5.3. Based on that number and the speed coefficients of the values it receives, each
node qualifies them as suspicious or not suspicious.

The local guarding mechanism for a node v works in three steps. When at iteration l, v
receives a new value x from its neighbor w, then: (i) v computes the speed coefficient of w at
timestamp l, namely sw(l); (ii) v computes the mean value of the speed coefficients of the rest
of its neighbors MSv ; and (iii) v checks if the following inequality holds:

5.7 Security Issues 95

Figure 5.6: Average speed coefficient within 100 runs of BridgeFinder on all four network types

�

�sw(l)−MSv

�

�≤
1

l
(5.6)

When the inequality (5.6) holds, v accepts the new value x of w. Otherwise, it marks x as
suspicious and reports it to its other neighbors. If enough nodes (one can vary the number of
required votes from one to all neighbors) confirm the suspicions of v , then w is excluded from
further communication flow within the network.

Figure 5.6 shows the progression of the speed coefficients averaged over all nodes in the
corresponding network and the function 1/x . All plots are averaged results over 100 instances
of each network type investigated in Section 5.4. The speed coefficients in all network types
have similar gradient. They are all dominated by 1/x for x > 70.

One can easily conclude that the decision rule proposed in inequality 5.6 is inadequate within
the first 70 iterations, but is very tight afterwards. That is, we allow compromised nodes to lie
about their values at the beginning of the algorithm. The huge fluctuations in the beginning
of the algorithm make it highly unlikely that a meaningful mechanism for that phase of the
algorithm exists. At the beginning large values are exchanged with very small values and that
makes every exchange operation suspicious.

Our security mechanism is still successful if it overcomes the following three issues: (i) detects
nodes falsely claiming they have converged; (ii) detects nodes that manipulate their values after
the network has stabilized; and (iii) malicious nodes changing their values always within the
tolerance interval should not influence the convergence speed of the whole network.

We directly address the first issue. A node cannot possibly lie it has converged. Once the
network has stabilized, its neighbor will detect that its speed coefficient is extremely close to
zero in comparison to its surrounding nodes.

96 5 Finding Communication Bottlenecks in Distributed Environments

Figure 5.7: Perfect attack at every 5th iteration of BridgeFinder with 10% of malicious peers

Regarding the second issue, it is also possible to derive the magnitude to which a given value
can be manipulated from inequality (5.6). One can easily calculate that after only 100 iterations
even discrepancies within 5% of the real value will be detected as suspicious. The size of that
buffer drastically decreases with each next exchange operation.

To address the final issue, we simulate the following scenario: 10% of the nodes behave as
malicious parties. They all have an oracle that provides them with the mean value of the speed
coefficients of their neighbors (these mean values are not known under realistic circumstances,
but represent an upper bound for possible unsuspicious behavior by malicious nodes). Then we
let all malicious nodes lie within the maximum buffer at each 5th iteration.

The results are displayed in Figure 5.7. Even under the above described perfect attack, the
overall convergence time of BridgeFinder for all four network types stays intact. Compromised
nodes affect the convergence speed only marginally. This guarantees the proper function of our
approach even under substantial presence of compromised nodes.

In summary, the key observation that BridgeFinder does not rely on the actual exchanged
values, but only on the convergence speed of that process, provides our approach with efficient
guarding mechanism against malicious parties. In that sense, BridgeFinder clearly outperforms
other approaches in its area.

5.8 Summary and Outlook

Throughout the previous Chapters of this work we have shown that by closely investigating the
topology and more precisely the local structures of complex networks, one can acquire an inside
into the nature of the dynamic processes taking place on those underlying networks.

5.8 Summary and Outlook 97

We then have utilized that knowledge in online topology control mechanisms. We have shown
that by carefully steering the local structures of complex networks, it is indeed possible to control
the dynamic performance of those networks in a distributed manner.

Because many communication networks have distributed nature, that is actually the only
available efficient and still not demanding type of topology control. Consequently, we were able
to derive highly competitive to the state of the art approaches for load balancing in P2P and
resilient P2P live-streaming.

In this Chapter, we have adopted the reverse perspective. Instead of steering the dynamic
processes taking place on distributed networks by carefully adapting their topology, we have
shown that one can deliberately deploy a dynamic process on its own, in order to reveal weak
articulation points in the underlying network topology.

Consequently, we were able to derive a novel distributed approach for detecting critical peers,
i.e. communication bottlenecks, in decentralized communication networks, multihop networks
in the demonstrated case. As we have shown, our approach outperforms current state of the art
methods with respect to several perspectives.

5.8.1 Summary

In this Chapter we have presented BridgeFinder, a distributed algorithm for identifying critical
nodes in complex networks. Critical nodes are nodes whose disappearance would partition the
network. Our extensive evaluation shows high consistency between the critical nodes identified
with classic graph theory and the ones identified in a distributed manner by BridgeFinder. De-
tecting and protecting those few nodes is vital for keeping the network operational. The benefit
of using BridgeFinder is significant in fast changing distributed environments such as wireless
ad-hoc networks, sensor networks and P2P networks.

Furthermore, BridgeFinder relies only on simple exchange of information among the partici-
pating nodes. Being as generic as it is, it can be integrated in any maintenance or other existing
communication flow already utilized by the network and hence cause no additional overhead.

Another advantage of our approach is that it does not rely on the actual information ex-
changed among the participating nodes, but rather only on the convergence speed of that
process. This approach is completely transparent to the gossiping process and allows the de-
ployment of efficient guarding mechanism against malicious nodes.

To the best of our knowledge, there is no equivalent distributed approach. BridgeFinder is
fast, reliable, produces almost no additional messaging overhead and has high resilience to
malicious behaving parties.

5.8.2 Outlook

Alike many novel approaches, BridgeFinder also has some minor issues to be resolved.
The first one is in the context of its first run. Although augmenting initial iterations with

random identifiers resolve the problem of starting the algorithm in a distributed environments,
it causes unnecessary overhead, see Section 5.3. In case of multiple instances of BridgeFinder

98 5 Finding Communication Bottlenecks in Distributed Environments

running simultaneously during the first run, already computed results of instances with smaller
initial numbers are discarded. Instead of disregarding already available results, one could merge
results between different instances and thus avoid unnecessary overhead during the first run of
the algorithm.

The second issue of BridgeFinder are attacks by multiple malicious parties working together.
If the overlay running on top of the underlying network allows peers to change their positions,
a group of malicious peers may surround a targeted peer. Then, they could eventually claim
that peer misbehaving and try to ban it from the network. Similar attacks are possible in many
other distributed application. In such cases one relies on trusted authorities and reputation
mechanism to detect false claims by third parties. Such reputation mechanism can be adopted
in BridgeFinder as well, which will increase its resilience even further.

The last issue concerns the convergence of our algorithm. Independent of the solid empirical
results, analytical estimate of its convergence speed will help indicate if any further speed-up
techniques would be necessary for large application scenarios. Unfortunately, the diverse and
improper topology of distributed communication networks leaves very little spare hope that
such analytical proof does exist.

Despite the just listed open issues, it should be noted that BridgeFinder already outperforms
current state of the art distributed methods for detecting communication bottlenecks with re-
spect to several perspectives: speed, reliability, messaging overhead and resilience.

5.8 Summary and Outlook 99

6 Efficient Search and Lookups in
Peer-to-Peer Networks

Through the previous Chapters we have shown that local structures can reveal unexpected re-
lations between dynamics and topology in complex networks, high citation frequencies in the
demonstrated case of co-authorship networks, see Chapter 2. We also have investigated local
structures from previously unexplored and very promising perspective: How to engage them in
local decision rules for online topology control, see Chapters 3 and 4.

With the help of local structures we have been able to provide much better load distribu-
tion within existing P2P overlays with none or very modest overhead, see Chapter 3. We also
have been able to provide a framework for very robust and highly resilient P2P live-streaming,
outperforming the current state of the art methods, see Chapter 4.

However, the potential of local structures is not limited to the relation between specific local
topology and specific network performance. In this Chapter we investigate a slightly orthog-
onal perspective and show that random local structures and their random graphs still have
unexploited potential.

Recently, random graphs have become notorious for being poor null models and simulation
testbeds of various real world networks. Nevertheless, random graphs have many outstanding
properties, most of which are highly desirable in any technological network. Those include short
average path length, several disjoint paths among nodes, high error tolerance, etc.

In this Chapter we show that random graphs, and their local structures can effectively be
utilized in local decision rules, which provide a unique platform for the first P2P overlay that
supports efficient exhaustive search and DHT alike key lookup within the same P2P overlay.

P2P networks are divided into two main classes: unstructured and structured. Overlays from
the first class are better suited for exhaustive search, whereas those from the second class offer
very efficient key-value lookups. In this Chapter we present a novel overlay, called PathFinder,
which for the first time combines the advantages of both classes within one single overlay. Our
evaluation shows that PathFinder is comparable or even better in terms of lookup and complex
query performance than existing P2P overlays and scales to hundreds of millions of nodes.
Peers in PathFinder are arranged as Erdös Renyi random graphs. Consequently, all overlay
operations such as key-value lookup, complex queries and maintenance messages greatly benefit
from the short average path length, the high number of alternative paths and the robustness of
the underlying random graph topology.

6.1 Introduction

P2P overlay networks can be classified into unstructured and structured networks, depending on
how they construct and manage the overlay [123].

101

In an unstructured network the peers are free to choose their overlay neighbors and what they
offer to the network.1 In order to discover if a certain piece of information is available a peer
must somehow search through the overlay. There are several implementations of such search
algorithms. The original Napster used a central index server, Kazaa relied on a hybrid network
with supernodes and the original Gnutella used a decentralized flooding of queries [123]. The
BubbleStorm network [119] is a fully decentralized network based on random graphs and is
able to provide efficient exhaustive search over all peers. The query evaluation is performed
locally by a peer holding the document and receiving the search query. In that sense every
query evaluation method available (e.g. full text, XQuery, SQL, etc.) may be applied.

Structured networks, on the other hand, have strict rules about how the overlay is formed and
where content should be placed within the network. Structured networks are also often called
distributed hash tables (DHT) and the research world has seen several examples of DHTs [71,
77, 124, 125, 126, 127, 128, 129, 130]. DHTs are based on hashing peer and object identifiers
and distributing the ID space among the peers. A DHT-specific routing algorithm defines how
peers can route through the overlay when they want to retrieve a certain object. Typically, the
number of messages needed to locate an object in a DHT grows logarithmically with the number
of peers in the system. Thus, DHTs are very efficient for simple key-value lookups (for which
they have been designed). Because objects are addressed with their unique names, searching
in a DHT is hard to be made more efficient [131, 132, 133]. However, DHTs require the use
of (globally) unique object identifiers, for example SHA-1 hashes, which are not very suitable
for human users. In addition, wildcard searching and complex queries either impose extensive
complexity and costs in terms of additional messages or are not supported at all.

Given the attractive properties of these two different network structures: (i) human-friendly
keyword searches in unstructured networks and (ii) computer-friendly and efficient lookups in
DHTs, a crucial question arises: Is it possible to combine these two properties in one single network?

Naturally, it would be possible to run two overlays in parallel, but that would require as
much as twice the maintenance traffic and state keeping as well as space when objects are
replicated. On the other side, a single overlay is much more desirable since it has considerably
lower overhead, both in terms of overlay maintenance and replication effort.

Our answer to the above question is PathFinder, a P2P overlay which combines an unstruc-
tured and a structured network in a single overlay. PathFinder is based on a random graph
which gives it short average path length, large number of alternative paths for fault tolerance,
and highly robust and reliable overlay topology. Furthermore, the number of neighbors in Path-
Finder does not depend on the network size. Therefore, the load of individual peers in Path-
Finder remains constant even if the network grows up to 100 million or more peers. The main
contribution of this Chapter is the efficient combination of exhaustive searching and key-value
lookups in a single overlay.

We evaluate PathFinder analytically as well as empirically and investigate its resistance to
churn and its robustness. Our results clearly show that PathFinder is highly scalable, fast, robust
and requires only a small per-peer state. In terms of exhaustive search performance PathFinder

1 In this Chapter we focus on networks where peers store and share content, e.g., files, database items, etc.

102 6 Efficient Search and Lookups in Peer-to-Peer Networks

is comparable to BubbleStorm [119]. In terms of DHT-like lookup performance, our results
show that PathFinder is at least as good as current DHTs and in most cases is able to retrieve
objects with even less overlay hops than other DHTs.

6.2 Motivation

Unstructured networks are very suitable for human-friendly keyword searches. Note that the
search is not limited to simple keywords, any query which can be evaluated locally on a peer is
possible. However, unstructured networks offer little or no guarantee about finding the object
neither it is possible to identify identical objects in an easy manner.

It is of course possible to compare two objects by downloading them both or comparing hashes
of their contents. However, this assumes that both hashes have been calculated by trusted
entities, which may not be the case in a P2P network.

Structured networks, on the other hand, offer very efficient means of looking up known ob-
jects, but their ability to perform widely spanning searches is limited and costly.

Being able to combine both efficient lookups and efficient search is extremely useful for dis-
tributed applications and human users. An efficient search allows users to discover what content
is available. An efficient lookup allows them to retrieve the content later on or forward it to their
friends, knowing that the friends will see the same content. Analogically on the Web is making
a Google search and then bookmarking the resulting web page. The bookmark can then be
retrieved later or sent to friends. The key difference of PathFinder is that there is no need for
a centralized indexing service. The search and lookups are both built into the same system
architecture.

6.3 System Design: PathFinder

In this Section we present the system design and preliminaries of PathFinder. We also describe
how basic processes like key-value lookup and exhaustive search work as well as how our over-
lay manages nodes joining/leaving the network and handles crashed nodes. Finally, we discuss
how PathFinder can be built in a practical scenario.

6.3.1 Challenges

We designed PathFinder to be fully compliant with the concept of BubbleStorm [119], namely
an overlay structure based on random graphs. We augment the basic random graph with a
deterministic lookup mechanism (see Section 6.3.4) to add efficient lookups to the exhaustive
search provided by BubbleStorm.

As shown in [119] and discussed in [134], overlays based on random graphs are highly re-
silient even to large simultaneous crashes of peers. At the same time, they provide short average
path lengths among the participating peers.

The challenge and one of the key contributions of this Chapter is to develop a deterministic
mechanism for exploiting these short paths in order to implement DHT-like lookups.

6.2 Motivation 103

PathFinder meets the following key requirements:

• Scalability: The average path length of an object lookup grows with ln(N)/ln(c), where
N is the number of peers and c the average number of neighbors per peer.

• Constant per-peer state: The list of neighbors maintained by each peer does not depend
on the network size.

• Flexible exhaustive search: Thanks to its underlying random graph topology, PathFinder
supports exhaustive search with tunable success probability [119]. Any type of queries,
which can be processed locally are supported.

• Key lookup: Locating an object in the network is competitive or even faster (in terms of
overlay hops) than in current DHT implementations.

6.3.2 System Model and Preliminaries

All processes in PathFinder benefit from the properties of its underlying random graph and the
routing scheme built on top of it.

In the following, we summarize the properties of random graphs that PathFinder relies on.
Then we show the main principle of the routing approach. Finally, we present an example of a
small PathFinder overlay network.

Erdös-Rényi random graphs

Erdös-Rényi random graphs2 have many attractive features. Those include short average dis-
tance between the nodes and small diameter (both increase only logarithmically with the net-
work size), high resistance against node failures, and the existence of several disjoint paths
between any two nodes in the network [4].

The average path length of a random graph can be estimated by L = log(N)
log(c)

, where c is the
average number of neighbors per node and N the number of nodes in the network. All these
properties are highly desirable in any P2P overlay.

The challenge in building a P2P overlay on top of a random graph is that they have no char-
acteristic structure, which implies that there is no rule stating which peer is a neighbor of which
other peer. This is exactly the opposite of DHT overlays, which have construction principles
allowing each node in the network to compute its neighbors in an unambiguous manner. This
property enables DHTs to perform extremely efficient key lookups.

PathFinder’s main contribution lies in defining a mechanism for reconstructing the neighbor
list of another node in an Erdös-Rényi random graph. That provides a very robust network
topology with straight-forward exhaustive search and exact key-value lookup mechanisms. Our
solution allows for a completely local reconstruction of the neighbor lists, no additional net-
work communication is required.

2 In the remainder of this Chapter we use simply the term random graph

104 6 Efficient Search and Lookups in Peer-to-Peer Networks

Construction Principle of PathFinder

The basic idea of PathFinder is to build a robust network of virtual nodes on top of the physical
peers (i.e. actual physical nodes). Routing among peers is carried out in the virtual network.
The actual data transfer still takes place directly among the physical peers. PathFinder builds a
random graph of virtual nodes and then distributes them among the actual peers. At least one
virtual node is assigned to each peer. From the routing point of view, the data in the network is
stored on the virtual nodes.

When a peer A is looking for a particular piece of information it has to find a path from
one of its virtual nodes to the virtual node containing the requested data. Then A contacts the
underlying peer B, responsible for the targeted virtual node, and A retrieves the requested data
directly from B. This process is described in detail in Section 6.3.4.

It is known that the degree sequence in a random graph is Poisson distributed. Therefore,
we need two pseudo random number generators (PRNG), which initialized with the same ID
always produce a deterministic sequence of numbers. Given a number c, the first generator
returns Poisson distributed numbers with mean value c. The second PRNG, given a node ID
produces a deterministic sequence of numbers which we use as IDs for the neighbors of the
given node.

The construction principle of PathFinder is then as follows. First we fix a number c (see
Section 6.3.8 on how to chose c according to the number of peers and how to adapt it once the
network becomes too small/large). Then, for each virtual node we determine the number of
neighbors with the first number generator. The actual nodes IDs to which the current virtual
node should be connected are then chosen with the second number generator. The number
generator is started with the ID of the virtual node. The process can be summarized in the
following steps:

1. The underlying peer determines how many virtual nodes it should handle. Section 6.3.6
provides more details.

2. For every virtual node handled by the peer:

a) The peer uses the poisson number generator to determine the number of neighbors of
the current virtual node.

b) The peer then draws as many pseudo random numbers according to the number
drawn in the previous step.

c) The peer selects the virtual nodes with IDs matching to those numbers as neighbors
for its current virtual node.

The following is a pseudo code implementation: The function nextPoisson is initialized with
the current virtual node ID and returns a pseudorandom number from a Poisson distribution to
determine the number of neighbors. The function nextRandom is initialized with the current vir-
tual node ID as well and returns a deterministic random numbers uniformly distributed between
0 and N , where N is the number of virtual nodes in the network.

6.3 System Design: PathFinder 105

Input: c
foreach v Node do1

numNeighbors = nex tPoisson(c, v Node.get I D());2

random_seed = ini t_random_seed(v Node.get I D());3

while i < numNeighbors do4

neighbor I D = random_seed.nex tRandom();5

v Node.store(neighbor I D);6

i = i+ 1;7

end8

end9

Algorithm 3: PathFinder Neighbor List Construction

The construction mechanism of PathFinder allows the peers to build a random graph out of
their virtual nodes. It is of crucial importance that a peer only needs a PRNG to perform that
operation. There is no need for network communication. Analogically, any peer can determine
the neighbors of any virtual node, by simply seeding the pseudo random number generator
with the ID corresponding to that virtual node.

Now we have both, a random graph topology suited for exhaustive search and a mechanism
for each node to compute the neighbor list of any other node. As we discuss in detail in Sec-
tion 6.3.4, that is sufficient (disregarding the local computation the peer has to perform) for any
peer to contact any other targeted peer in the network by traversing just one single path. Thus,
we can guarantee an efficient DHT-similar behavior within the PathFinder overlay.

Note that neighbor links in the random graph are directed. The routing table of a peer is
determined by the neighbors of its virtual nodes. It contains all the direct neighbors of all of its
virtual nodes in the random graph. These tables are easy to maintain, because all peers hold
only between one and two virtual nodes on average (i.e. c to 2c virtual neighbors). As our
results show, value of c = 20 is sufficient for good performance and better performance can be
obtained for even higher values of c. One entry in the routing table contains just the virtual node
ID and its IP address. Hence, the value of c could possibly be set much higher. Routing tables
with more than hundred entries are common in e.g. Kademlia, Pastry and other P2P overlays.

PathFinder Routing Table Example

Figure 6.1 shows a small sample of PathFinder with a routing table for the peer with ID 11.
The random graph has 5 virtual nodes (1 through 5) and there are 4 peers (with IDs from 11
through 14). Peer 11 handles two virtual nodes (4 and 5) and the rest of the peers have one
virtual node each. The arrows between the virtual nodes show the directed neighbor links.

Each peer keeps track of its own outgoing links and of the incoming links from other virtual
nodes. A peer notices incoming links from other peers when they initiate communication. Keep-
ing track of the incoming links is strictly speaking not necessary, but makes key lookups much
more efficient (see Section 6.3.4). The routing table of peer 11 consists of all outgoing links

106 6 Efficient Search and Lookups in Peer-to-Peer Networks

2
1

4

5

3

12 1114 13

Virtual
Nodes

Peers

Routing Table Peer 11

Node ID
Peer

Outgoing Links Incoming Links
3 1
13 12 13

3

Figure 6.1: A small example of the PathFinder overlay.

from its virtual nodes 4 and 5 and the incoming link from virtual node number 3. In general,
every peer is responsible for keeping its outgoing links alive. In contrast to established DHTs, the
maintenance costs of PathFinder does not depend on the network size as the average number of
neighbors within the random graph is fixed.

6.3.3 Storing Objects

Each object stored in PathFinder has a unique identifier. This identifier is derived by hashing
the contents of the object with some hash function (e.g. SHA-1). That provides some degree
of security against object modifications since any peer can verify that the content is what it is
supposed to be. Objects such as news sites, which have changing content but would prefer to
remain under a single identifier, are free to compute their hashes in any other manner.

An object is stored on the virtual node (i.e. on the peer responsible for the virtual node) which
matches the object’s identifier. If the hash space is larger than the number of virtual nodes, as
with SHA-1, then the object is mapped to the virtual node whose identifier matches the prefix
of the object hash.

There is no need for an additional lookup service since PathFinder provides exhaustive search
over all the objects (see Section 6.3.5). When a peer is looking for an exact object, like a
concrete file, it uses the hash function to compute the object’s identifier. Then the peer performs
an efficient key lookup to the corresponding virtual node (DHT similar behavior). When the peer
is looking for a range of objects, like all files containing a given regular expression in their titles,
the peer performs exhaustive search which returns the object and its identifier (unstructured
overlay similar behavior). Subsequent retrievals as well as parallel requests to replicas of the
same object can be done by using the identifier to perform a lookup (Section 6.3.4). This is a
strong advantage of PathFinder. As soon as one copy of an object is found through exhaustive
search, all remaining copies can easily be accessed in parallel through a subsequent key lookup.

6.3 System Design: PathFinder 107

2

3

4

2

3

1

2

3

2

1

2

Source

Target

3

4

3

4

4

Figure 6.2: Key lookup with local expanding search rings from both the source and the target.

6.3.4 Key Lookup

Key lookup is the process when a peer contacts another peer possessing a given data of interest.
Using the structure of the network, the requesting peer traverses only one single and usually
short path from itself to the target peer.

Key lookup is the main function of a DHT. In order to perform quick lookups, the average
number of hops between peers as well as the variance needs to be kept small. We now show
how PathFinder achieves efficient lookups and thus behaves as any other DHT. Suppose that the
peer A wants to retrieve an object O. A determines the virtual node w responsible for the object
O by using the hash function described above. Now A has to route in the virtual network from
one of its virtual nodes to w and directly retrieve O from the peer responsible for w.

Denote with V the set of virtual nodes managed by the peer A. For each virtual node in V , A
calculates the neighbors of those nodes. A checks if any of those neighbors is the virtual node
w. If yes, A contacts the underlying peer to retrieve O. If none of peer A’s virtual node neighbors
is responsible for O, A calculates the neighbors of all of its neighbors, i.e. its second neighbors.
Because the neighbors of each virtual node are pre-known (see Section 6.3.2), this is a simple
local computation. Again, peer A checks if any of the new calculated neighbors is responsible
for O. If yes, peer A sends its request to the virtual node whose neighbor is responsible for O. If
still no match is found, peer A expands its search by calculating the neighbors of the nodes from
the previous step and checks again. The process continues until a match is found. In the worst
case, A has to calculate the neighbor list of each node in the network, but a match is guaranteed.

For an average degree of c per virtual node, the above process requires us to compute c i

nodes for each step i. This becomes unwieldy for large networks which may require several
number of steps. For example, with c = 20 and 100 million nodes we need about 8 steps, i.e.,
208 = 2.5 · 1010 nodes. We mitigate this problem by expanding the search rings from both A
and w simultaneously, as illustrated in Figure 6.2.

Because peer A is able to compute w’s neighboring virtual nodes, A can expand the search
rings locally from both the source and target sides. This process is called forward/backward
chaining. In every step the search depth of the source and target search ring is increased by one.
In that way the number of rings around the source are divided between the source itself and the
target. This leads to exponential decrease in the number of node IDs that have to be computed.

108 6 Efficient Search and Lookups in Peer-to-Peer Networks

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
um

ul
at

iv
e

Lo
ok

up
s

Path Length

10k nodes
1M nodes

100M nodes

Figure 6.3: Distribution of complete path length for 5000 key lookups with c = 20.

Note that for efficiency reasons, peer A can keep the search rings on its own side pre-computed
in memory. This way, peer A only needs to start expanding the ring on the target side.

Now assume that the virtual node v is the intersection among the search rings around the
source and the target. Recall that the edges among virtual nodes are directed, but that the
underlying peers also keep track of their incoming links. That is, we now have a path from one
of the virtual nodes of A to v and a path from w to v . But how do we construct a path from A to
w? All the nodes between w and v keep track of their incoming links. Therefore, they can also
traverse the path backwards from v to w and thus provide A with a routing path to w.

A passes the discovered path along with the lookup message. Thus, every peer on the path
knows immediately to which of its neighbors it should forward the query. In essence, PathFinder
uses source routing for key lookups. Note that the whole computation of the path happens
locally on the source peer. No additional messages have to be communicated. All costs come
in the form of memory usage and computation time on the source peer. Those are however
negligible for any regular computer: around 3.2 Megabytes of memory storage and simple
integer computations on hashtables with several thousand entries. That was the maximum
computer power required for carrying out the experiments described below.

We generate various PathFinder networks from 103 up to 108 nodes with average degree
20. In all of them we perform 5000 arbitrary key lookups. It turns out that expanding rings
of depth 3 or 4 (i.e. path length between 6 and 8) are sufficient for a successful key lookup,
as shown in Figure 6.3. In the figure the x-axis shows the path length and the y-axis shows
the cumulative fraction of observed paths. For example, for 1 million nodes the average path
length is concentrated around 6. The theoretical average shortest path length for a random
graph with 1 million nodes and average degree 20 is 4.6. The slight difference is caused by the
forward/backward chaining.

6.3 System Design: PathFinder 109

Figure 6.3 also shows that increasing the network size by a factor of 100 leads to only two
additional hops for key lookups. The key lookup performance depends mainly on the average
number of neighbors c and only slightly on the number of virtual nodes N . It has been shown
that the average path length scales with O(ln(N)/ ln(c)) [4].

6.3.5 Searching with Complex Queries

PathFinder supports searching with complex queries with tunable success rate analogical to
BubbleStorm [119]. In fact, since both PathFinder and BubbleStorm are based on random
graphs, we implemented the search mechanism of BubbleStorm directly into PathFinder. In
BubbleStorm both the data and the queries are sent to some number of nodes, where the exact
number of messages depends on how we set the probability of finding a match. We use exactly
the same algorithm in PathFinder for searching and the reader is referred to [119] for details.

The only difference is that the success probability in PathFinder is known a priori because it
depends on the size of the random graph. The size of the random graph of virtual nodes is
known to all peers.

6.3.6 Node Join and Leave

We now describe how peers join and leave the PathFinder overlay. The following invariants
must hold at any time:

• All virtual nodes are assigned to peers.

• Outgoing links are maintained by the peer responsible for the corresponding virtual nodes.

• Incoming links are kept in the peer’s state.

The purpose of the node join process is to integrate a new peer into the PathFinder overlay.
The join process can also be used to automatically rebalance the network load, because virtual
nodes may be unevenly distributed among the peers. When a new peer B wants to join the
network it contacts a peer A that is already part of the network. The first virtual node assigned
to B is calculated as the hash of its IP address. Peer A routes the join request using the key
lookup procedure (Section 6.3.4) to the virtual node which matches B’s identifier. Let this node
be handled by the peer C . C hands one or more of its virtual nodes over to B and informs its
neighbors about the new peer B.

In Section 6.3.8 we consider the case where C has no excess virtual nodes so that B has to
contact several other peers to find a free virtual node and how the network adapts to such cases.

A successful join means that: (i) a peer releases some of its assigned virtual nodes to the
new peer, but keeps at least one virtual node for itself; and (ii) the new peer has successfully
established connections to its neighbors. After the join process is completed, the new peer has at
least one virtual node and an up-to-date neighbors table. It is straightforward to verify that the
three invariants from above hold throughout the whole join procedure, assuming the absence
of node failures. We handle them shortly.

When a peer leaves the network, it hands over all of its virtual nodes to its neighbors, which
are then responsible for establishing connections to the underlying peers. Note that a peer is

110 6 Efficient Search and Lookups in Peer-to-Peer Networks

allowed divide its virtual nodes evenly among its neighbors, as opposed to most existing DHTs
where the responsibilities are transferred to a single node.

Observation: A peer joining/leaving the network causes on average c+ln(N)/ ln(c)messages.

When a peer joins the network, it is routed to an arbitrary position determined by the hash
function of its IP address. This costs one key lookup, which on average takes ln(N)/ ln(c)
messages. The outgoing neighbors are directly transferred from the issuing node. Then, on
average c incoming links transfered from the issuing node need to be updated, which causes
additional c update messages.

6.3.7 Node Crash

A node crash is the sudden departure of a peer from the network without correctly following the
departure protocol from above. A crash violates the invariants from Section 6.3.6 and results in
incorrect neighbor tables.

The absence of the failed peer is recognized by its neighbors when they stop receiving keep-
alive messages from it. The time for detecting a failed peer depends on the interval used for
keep-alive messages.

When a peer detects another failed peer it calculates locally all neighbors of its virtual node(s).
The first peer in the sorted neighbor list has to take over the abandoned virtual node(s). There-
fore the peer which has detected the failed peer sends the first virtual node in the list its own IP
address and a message that it should start a recovery process.

If the first peer in the neighbor list is not responding, it is replaced by the next peer in the list.
Each peer which has detected the missing peer and still has not received a recovery message,
also follows the above protocol. In case of concurrent attempts for taking over an abandoned
virtual node, the peer with the smallest position in the list continues the recovery process.

After a responsible peer has been determined a new routing table for the failed virtual node
has to be generated. For this purpose c key lookups have to be performed. After this step, which
needs c ln(N)

ln(c)
hops on average, a routing table containing all outgoing links of the abandoned

virtual node is established.
The remaining incoming links are recovered automatically by the nodes pointing to the failed

node. They notice timeouts of keep-alive pings sent to the failed node, because they still have
the IP address of the crashed peer. They update their routing tables by performing a regular
key lookup to the virtual node. This reveals the IP address of the new responsible peer in c ln(N)

ln(c)
steps on average.

Observation: A failed peer causes 2c ln(N)
ln(c)

messages on average to repair the network overlay.

Figure 6.4 shows the volume of recovery messages for a simulated PathFinder network with
5,000 peers and different fractions of crashed peers. The x-axis shows the time in steps from the
crash to full recovery. One step is at least one roundtrip time between two peers in real time.
The y-axis shows the total amount of maintenance messages for each step in the whole system.
The crash occurs at step 0 when the failed peers, 10–50% of all peers, disappear at once.

6.3 System Design: PathFinder 111

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200 250 300 350 400

M
ai

nt
en

an
ce

 M
es

sa
ge

s
in

 S
ys

te
m

Time Steps (1 Step = 120ms)

50% fail
40% fail
30% fail
20% fail
10% fail

Figure 6.4: Repair costs for network with 5,000 peers

Moderate crashes (up to 30% crashed peers) are healed in about 100 simulated time units,
and even a crash of half the peers is practically healed in 300 time units. The message load also
remains reasonable, with about 36 messages per peer on average (half of 5,000 peers crashed in
worst case and total number of messages in system is under 18,000). Considering the real-world
time to heal the system, if 1 time unit is 120 milliseconds then the system would heal itself in
12 seconds for the smaller crashes and in 36 seconds for the 50% crash.

The main determining factor is the ability of peers to send all the required messages in one
step, so the recovery could potentially take longer. However, recovery times are still very short,
on the order of a few minutes at maximum. Similar performance was observed as well in
BubbleStorm [119].

6.3.8 Network Size Adaptation

Because virtual nodes can easily be transferred between peers, PathFinder is able to adapt itself
to the current workload. Weaker peers may give up virtual nodes to stronger peers. To keep a
reasonable ratio between peers and virtual nodes we have to keep track of the number of peers
in the network. We estimate the number of peers in PathFinder with the push-sum gossiping
protocol [108]. In [116] this procedure was extended to make it applicable for P2P networks.

Recall the join process from Section 6.3.6. When a new peer joins the network, it receives a
number of virtual nodes. However, when most of the peers in the network have only one virtual
node, the joining node has to make several requests before finding a peer which still has spare
virtual nodes.

The probability of finding a peer with more than one virtual nodes is described through a
hypergeometric distribution f (1; N , m, c). A peer can ask any of its c neighbors for virtual nodes
and success depends on the number of peers (m) with more than 1 virtual nodes within the

112 6 Efficient Search and Lookups in Peer-to-Peer Networks

network. When the ratio of peers in the network to average number of neighbors N/c is higher
than 0.95, which is true in most of the cases, the process can also be approximated through the
binomial distribution. A ratio of virtual nodes to peers of 1.15 establishes a successful join for
80% of all requests within 10 hops (B(10,0.15)) and over 96% after 20 hops.

We want to keep the cost for a node join reasonable. Therefore, when the threshold of 1.15
virtual nodes per peer is reached, the network starts a transition phase in which the amount of
virtual nodes is doubled. Assume that a virtual node w has just run the gossiping protocol and
notices that the above threshold is reached. Then w starts the transition phase by generating
two new virtual nodes, w1 and w2, by attaching a new bit to the left side of its own ID. The IDs
of w1 and w2 are computed by attaching 0 respectively 1 to the old ID.

Now w1 and w2 have to calculate their neighbors. They proceed as in Section 6.3, but use the
new ID space. The IDs of the calculated neighbors also have one extra bit. Let x1 be one of the
neighbors w1 has calculated. At this moment w1 still does not have a routing table and cannot
route to x1. Therefore, w1 disregards the left-most bit of x1’s ID and uses the routing table of w
to determine the node x corresponding to this ID.

The peer responsible for x will be responsible for x1 when the transition phase is over, because
the ID of x1 is the ID of x with one bit added on the lefthand side. Therefore, w1 adds this peer
to its new routing table. If x has not yet started the transition phase, then it does so now.

When the above procedure is carried for all new neighbors of w1 and w2, the transition phase
for w is completed. When the pushsum protocol confirms that the number of virtual nodes has
been indeed doubled, i.e. all virtual nodes have completed the transition, the old routing tables
are abandoned.

We expect the transition phase to be a rare event in an operational network. Furthermore, it
is not a time critical process. In a large network it can be artificially stretched out to hours or
even days, since both the old and the new networks are operational during the transition phase.
Actual measurements within the Skype network [135] show that the number of regular users
almost doubled between 2006 and 2009, i.e. Skype would have needed only one transition
phase within 3 years.

Shrinking the ID space is also possible and works analogically. If the virtual node to peer ratio
is higher than 4 to 1, the amount of virtual nodes can be reduced in order to improve lookup
performance. The procedure is the reverse of expanding the network, whereby peers strip one
bit from left of their IDs.

In case two different peers map to the same stripped ID (quite likely), the one who has leading
bit 0 takes over. The peer who has leading bit 1 has to find another virtual node to take over. If
we set the threshold of shrinking high enough, like 4 to 1, then there are enough virtual nodes
for all peers, but a peer might have to search for a free one.

Note that the average path length and thus routing performance does not substantially change
if the network grows or shrinks by a factor of 2, which is a property of Erdös-Rényi random
graphs. Still, having the right number of virtual nodes carefully balances between fast join
process and modest computational effort per peer.

6.3 System Design: PathFinder 113

Protocol Number of Neighbors Latency

CAN 2d (d/2)N1/d

Chord 2ln2(N) log2(N)/2
Viceroy 10 log2(N)
Pastry (2b − 1)(log2 N)/b log2(N)/b

Symphony 2k+ 2 log2(n)/k
PathFinder c log(N)/c

Table 6.1: Comparison of various DHTs to PathFinder.

6.4 Comparison and Analysis

Most DHT overlays provide the similar functionality, since they all support the common interface
for key based routing. The main differences between various DHT implementations are the
average lookup path length, the resilience to failures, and the load balancing.

In this Section we compare PathFinder to other DHTs presented in the literature. We perform
the comparisons both with simulations and analytically for networks which are too large to be
simulated (over 1 million nodes). All simulations are performed on the P2P simulator Planet-
Sim [84]. All overlays performed exactly as described in their corresponding publications.

Overlay Scalability

The lookup path length of Chord is well studied [136]. It is asymptotically given by: Lav g(N) =
1

(1+d) log(1+d)−d log(d)
log N , where N is the number of peers in the network. The parameter d

tunes the finger density. Usually Chord has finger density d = 1 and therefore Lav g =
log(N)

2
. The

maximum path length of Chord is log(N)
log(1+d)

.

The average path length of PathFinder is log(N)
log(c)

, where c is the average number of neighbors.
In other words, even for relatively small c, PathFinder has much shorter path length than Chord.

The path length of the Pastry model can be estimated by dlog2b(N)e [127], where b is a
tunable parameter. The authors recommend b = 4. In this model, there are log2b(N) levels
and 2b − 1 neighbors per level. This results in 96 neighbors for a network of 50 million peers.
PathFinder achieves comparable results with only c = 20 neighbors on average. For c = 50 the
average path length of PathFinder drops to 2/3 the path length of Pastry. Theoretically, Path-
Finder should achieve Pastry’s performance for c = 16. Since our results show that PathFinder
matches Pastry already for c = 20, we suspect that Pastry’s real-world performance for large
networks would not be quite as good as the theoretical model let one expects.

The Symphony overlay is based on a small-world graph. This leads to key lookups in O(log2(N)
k
)

hops [130]. The variable k refers only to long distance links. The actual amount of neighbors is
indeed much higher [130].

The diameter of CAN is 1
2
dN

1
d with a degree for each node 2d, with a fixed d. For large d the

path length distribution becomes gaussian, like Chord [137].

114 6 Efficient Search and Lookups in Peer-to-Peer Networks

 0

 20

 40

 60

 80

 100

 5 10 15 20 25

C
um

ul
at

iv
e

Lo
ok

up
s

Path Length

Pastry
PathFinder (c=20)

SkipNet
Chord

Symphony

Figure 6.5: Average number of hops for 5,000 key lookups in different DHTs.

The butterfly network has close to optimal diameter and average path length. The average
distance in a butterfly network is µd ≈

3 logk(N)
2

[138]. An implementation of the butterfly
network, Viceroy [126], has an average path length of 3 log2(N). The theoretical average path
length of PathFinder is L = log(N)

log(c)
, a property of its underlying random graph, see Section 6.3.

Table 6.1 summarizes the characteristics of PathFinder and established P2P overlays.

In summary, most well known DHTs and PathFinder have a path length scaling (up to a
multiplicative factor) as log(N). In this sense, PathFinder performs similar, but it also has a small
and fixed number of neighbors, independent from the network size. This is a clear advantage of
PathFinder over other DHTs.

Average Path Length

We use simulations to evaluate the practical effects of the various scaling factors described
above. We compare PathFinder with Pastry, Chord, Symphony, and SkipNet [139]. Figure 6.5
shows the results for a 20,000 nodes network. We perform 5,000 lookups among random pairs
of nodes and measure the number of hops it takes for each of the DHTs to find the object. We
plot the number of hops on the x-axis and y-axis shows the fraction of requests which were
successful within the corresponding number of hops.

Pastry and PathFinder have very similar performance, with the maximum number of hops
being around 4. Chord and SkipNet perform worse, requiring on average 7 additional hops.
Symphony’s performance is extremely poor, some lookups requiring up to 40 hops (not shown
in the figure). CAN and Viceroy have even worse performance and were thus dropped from
further comparison.

6.4 Comparison and Analysis 115

 1

 2

 4

 6

 8

 10

 1⋅103 1⋅104 1⋅105 1⋅106 1⋅107 1⋅108

N
um

be
r

of
 H

op
s

Number of Nodes

Chord
Pastry

PathFinder (c=20)
PathFinder (c=50)

DeBruijn

Figure 6.6: Average number of hops for different DHTs measured analytically. The values for
PathFinder are from actual simulations.

We also perform an analytical comparison using the equations from the literature summarized
in Table 6.1. Our goal is to gain some understanding about how well the different networks
scale to hundreds of millions of peers. We compare PathFinder with Pastry and Chord. We
ignore Symphony due to its poor performance in the previous experiment and SkipNet due to
the lack of well-understood analytical model for its performance. We as well test a DeBruijn
graph, because they are known to have optimal diameter.

Note that the PathFinder results come from actual simulation, not analytical calculations.
For the other overlays we have to resort to analytical modeling in order to estimate scalability
for network sizes over 106 peers. Figure 6.6 displays the results. The x-axis shows the system
size and the y-axis shows the average path length. As expected, Chord’s performance is clearly
poorer than that of Pastry and PathFinder. Pastry and PathFinder are very similar in performance
for c = 20. Rising c to 50 gives PathFinder a similar to Pastry neighbors tables and yields about 1
hop less in systems over 100 million nodes. The line for the DeBruijn graph shows the ultimate
possible shortest path for the PathFinder network with c = 20. PathFinder needs only a bit over
1 hop longer.

To summarize, with respect to average path length PathFinder performs very similar and at
least as good as other known DHTs. In terms of scalability it benefits from the small and fix
number of neighbors per peer. Even networks of up to several millions peers do perform well
with just 20 neighbors on average.

The major difference between PathFinder and other DHTs is that instead of following a routing
protocol, the peers have to perform only local computations to acquire a path to other peers in
the overlay. That is exactly what makes PathFinder a modern and highly competitive overlay. It
keeps the communication flow to a minimum, but takes advantage of the computational power

116 6 Efficient Search and Lookups in Peer-to-Peer Networks

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25

C
um

ul
at

iv
e

S
uc

ce
ss

 o
f F

in
di

ng

Number of Tries

5% Failed Nodes
15% Failed Nodes
25% Failed Nodes
35% Failed Nodes
45% Failed Nodes

Figure 6.7: Required lookup retries between each couple of nodes under churn.

available in modern computers. The few Megabytes of storage media and hashtable lookups of
a few hundreds of thousands of integers, see Section 6.3.4, is already negligible for any regular
notebook.

Keep in mind that PathFinder is the first DHT that also supports exhaustive search queries.

Exhaustive Search

PathFinder also inherits the exhaustive search mechanism of BubleStorm. Hence, as an un-
structured overlay it performs identical to BubleStorm and the reader is referred to [119] for
thorough comparison to other unstructured systems.

6.5 Resilience Against Failures

High churn rates [140] are common in P2P networks. Therefore, alternative paths may be
needed to find a particular node. This is where PathFinder benefits from its random network
topology. There are always as many alternative disjoint routes between any two nodes as the
minimum of their degrees [134].

The challenge then is: How difficult is it to find a valid alternative path? Note that a peer A is
not aware if there is a failed node on its path to peer B. It is first when A tries to reach B when
A notices that it has to search for an alternative path. Due to the high number of alternative
independent paths (paths which have only common start and end node) between each two
nodes, the number of the required retries is very small.

We evaluate the performance of PathFinder under churn by generating a network of 50,000
virtual nodes and then consequently failing different fraction of them. Then we perform a key
lookup using the procedure from Section 6.3.4 between each pair of remained nodes. For each
pair we count the number of retries we have to make to get from the one node to the other. The
results are shown in Figure 6.7.

6.5 Resilience Against Failures 117

2

2.5

3

3.5

4

4.5

5

5.5

6

5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 S
ho

rt
es

t P
at

h

Percentage of Removed Nodes

Simulated, c 20

Simulated, c 50
Optimal, c 20

Optimal, c 50

=

=

=

=

Figure 6.8: Increase of the average shortest path length under churn.

One observes that 5 retries are sufficient to connect over 90% of the remaining node pairs
even when 25% of all nodes in the network have failed. In case that almost half of the nodes
have failed, then 12 retries lead to successful lookup in 80% of the cases. In both cases the
success rate is excelent. Note that in our tests we perform no maintenance in the overlay. After
repairing all failed virtual nodes the number of retries drops back down to zero.

We have just shown that between each pair of nodes in our network there are enough alter-
native independent paths. Only a few attempts are necessary even under massive node crashes.
However, there is still one crucial question remaining: How does the average path length change
with the number of failed nodes? We know from Section 6.3.4 that the computational effort per
peer is very sensitive to the average path length among nodes.

Figure 6.8 displays the average shortest path length for N = 50, 000 and different values of
c. The x-axis shows the fraction of failed nodes and the y-axis shows the average shortest path
length. One observes that the average shortest path length increases only marginally, even when
half of the nodes suddenly disappear.

From Section 6.3 we know that key lookups not always follow the shortest paths. Therefore,
we also evaluated the average lookup length under 25% node failure for N = 50, 000 and
c = 20. The maximum number of required hops merely increased from 6 to almost 7.

In short, the average path length and the number of required retries for key lookups in Path-
Finder stays stable even for severe fractions of failed nodes. Such a robust resilience is more
than desirable in any P2P overlay.

118 6 Efficient Search and Lookups in Peer-to-Peer Networks

6.6 Security and Other Issues

In terms of security, PathFinder faces the same challenges as most of the P2P overlays presented
in the literature. The peers get their node IDs as a hash of their IP address, which is the
same as in other DHTs. Note that an attacker with access to a large pool of IP addresses may
place herself/himself in a strategic position and discard or alter messages on their way to the
destination. This is a common weakness of all DHTs.

If a malicious peer drops messages that are routed through it, the sending peer will eventually
notice that because it does not get a reply. Recall from Section 6.5 that there are as many node-
disjoint paths between the sender and the receiver as the minimum of their degrees. Thus, the
sender can simply try again using a different path. The attacker is unlikely to be present on all
the alternative paths.

A simple approach for detecting malicious peers is always to send a message along two disjoint
paths. Comparing the results will immediately indicate if the original message or the reply have
been modified. Given the short average path length of PathFinder, a second or a third parallel
request barely impose additional network load. The Kademlia overlay for example sends parallel
lookup requests by default.

One approach for handling malicious peers deleting information stored on them is to provide
replicas, whereby an object is always handled by several independent peers. In PathFinder one
can use an approach similar to Tapestry [128], namely a constant sequence of salt when hashing
the object names.

Because PathFinder builds an overlay network with randomly selected neighbors, it is very
likely that the virtual nodes do not match well with the underlying IP network. That is, first
neighbors in the overlay may be very remotely placed actual peers and messages among them
have to travel significant physical distances. Other DHTs suffer from the same problem as well,
since their routing algorithms also require contacting arbitrary peers in the network.

DHT routing is typically optimized by selecting neighbors with small round trip times (RTT),
with the goal of reducing the overall path latency. A similar approach is applicable in PathFinder
as well. When a peer needs to route a message in PathFinder, it computes the shortest path as
in Section 6.3.4. If the peer notices that another of its neighbors has considerably shorter RTT
than the “correct” peer, it can send the message to that neighbor. This may increase the path
length in terms of hops as well as the required computational effort per peer, but might reduce
the latency. An evaluation of this scheme is part of ongoing work.

6.7 Summary and Outlook

Throughout the previous Chapters we have shown that local structures reveal a clear relation
between dynamics and topology in complex networks. Furthermore, we successfully applied
them in online topology control schemes, providing approaches for fair load distribution in P2P
and resilient P2P live-streaming outperforming state of the art methods.

In this Chapter we have revealed that the potential of local structures is not limited to their
specific architecture only, as in the above demonstrated case studies. Random graphs and their

6.6 Security and Other Issues 119

random local structures have many vital for any technological network properties: short average
path length, numerous disjoint paths among nodes, robustness, etc.

We have show that random graphs provide an unique platform for the first P2P overlay that
supports both, efficient exhaustive search and DHT similar key lookup within the same overlay.

6.7.1 Summary

In this Chapter we have presented PathFinder, a novel overlay which combines efficient ex-
haustive search and efficient key-value lookups in the same overlay. Combining these two
mechanisms in the same overlay is important, since it allows efficient and overhead-free im-
plementation of natural usage patterns.

PathFinder is the first P2P overlay to combine exhaustive search and key-value lookups in an
efficient manner.

Because PathFinder is based on a random graph, we directly benefit from the existing search
mechanism of BubbleStorm to enable efficient exhaustive search. On the other side, PathFinder
utilizes two PRNGs to provide DHT similar key-value lookups.

Our results show that PathFinder has at least comparable and often even better performance
than established P2P overlays. Its key lookup performance in large networks outperforms exist-
ing DHTs. Furthermore, it scales easily to hundreds of millions of nodes, while keeping the state
per peer independent of the network size. In contrast to other P2P overlays, the routing mech-
anism of the system is able to expand respectively shrinks according to the size of the physical
network, allowing one to carefully balance between efficiency and reliability. Still, routing is
based on local computations only and no additional communication overhead is required.

Furthermore, the randomized structure of the underlying network provides excellent robust-
ness against failures, keeping the system efficient even under severe churn rates.

Last but not least, the numerous disjoint paths among the peers allow for effective mechanisms
against malicious parties.

In short, randomized local structures and the random graphs they build have let us design
PathFinder. A novel P2P overlay which clearly outperforms established P2P overlays with respect
to several criteria, shown here through both, exhaustive simulations and analytical means.

6.7.2 Outlook

To this end, PathFinder faces several issues common for all existing P2P overlays.
Peer communication is not position aware, i.e. first neighbors in the overlay may be dis-

tributed over several continents. Resolving that problem, will shorten latency and minder
unnecessary router load and bandwidth usage.

PathFinder has effective guarding mechanisms against malicious parties, determined to dis-
turb the overall network operation. Still, massive attacks by multiple malicious parties towards
the same peer, even though very hard to accomplish, are still theoretically possible. Additional
guarding mechanism in such cases will improve the resilience of PathFinder even further.

120 6 Efficient Search and Lookups in Peer-to-Peer Networks

Our novel overlay provides all the functionality required in a P2P overlay, but alike other
existing overlays, it does not consider secondary objectives. These include fair network load
among the peers. Making the system aware of the peer load can reduce latency and as well
increase efficiency. It is an interesting question, whether the topology control tools developed
in the previous chapters can be applied here as well.

Despite the above describred open issues, PathFinder already possesses many outstanding
properties and advantages over established overlays. A natural next step is to implement an
end-user application that takes PathFinder out from the research labs and introduces it in the
field of widely spread real world P2P systems.

6.7 Summary and Outlook 121

7 Summary and Outlook
In the following we shortly summarize the results presented throughout this work. We also
point out various directions for future work of scientific interest.

7.1 Summary

A major scientific contribution of this work is the revealed, and so far unexplored, interplay
between the performance of complex networks and their local structures. More precisely, the
direct relation between the motif content and the output pattern of complex networks.

Network motifs are a well-defined intermediate scale for characterizing the local structure of
networks beyond the scope of single nodes. Multiple times throughout this work we have shown
that the dynamic performance of various complex networks directly depends on the number and
types of motifs within these networks.

We have engaged networks motifs from two different aspects. First, as an analytical tool
to better describe and understand already emerged real world networks. Second, to develop
distributed topology optimization methods for technological systems.

We have applied network motifs as an analytical tool on two large co-authorship networks.
Our analysis revealed that there is one collaboration pattern more successful than all others:
the box motif. The box motif has the highest citation index per motif edge than all other motifs.

The structure of the box motif induces a certain degree of segregation. Through a series of
experiments, we have been able to high extent to relate the success of the box motif to separation
of its edges either in time, in rank or in scientific discipline.

Inspired by our findings, we have explored a novel perspective on network motifs. Instead
of using them as a static analytical tool, we have engaged them in active topology control
mechanisms. Our guiding principle was that there is a direct relation between the motif content
of a given network and the dynamic processes taking place on top of that network. Then,
by steering its motif content to a desired state, one should be able to control the dynamic
performance of the network in a distributed manner.

The first distributed topology control mechanism that we have developed uses motifs to as-
sure fair load balancing in structured P2P networks. It produces none or negligible messaging
overhead, while successfully repairing skewed key space and degree distributions. Our novel
mechanism is easy to deploy and does not alter the overlay layout nor its operation.

Next, we have tackled a more sophisticated subclass of complex networks. Namely, hetero-
geneous networks where nodes play different roles for the network operation. We have suc-
cessfully extended our distributed topology control mechanism to heterogenous P2P overlays.
Consequently, we have developed a novel approach for constructing resilient P2P live-streaming
networks. Our new approach induces resilience competitive to state of the art methods. More
importantly, our method requires no network knowledge, making it much faster than already

123

established methods. In the same time, it also provides much higher privacy to the participating
peers, rendering attacks by malicious parties practically impossible. In that sense, our approach
clearly outperforms the state of the art.

The so far presented results explore only one side of the relation between dynamic processes
on top of complex networks and their local topology. Next, we have investigated the reverse
perspective. Namely, whether it is possible to deploy a suitable dynamic process on a network
with no global knowledge in order to reveal its topology. More precisely, to determine critical
topological constellations within the network.

We have indeed successfully deployed extended gossiping protocol to detect communication
bottlenecks in a distributed manner. Our novel approach clearly outperforms state of the art
methods with respect to both, the precision of its results and its performance. Evenly impor-
tant for distributed applications, our approach has an effective guarding mechanism against
malicious parties trying to skew the protocol operation.

Up to this point we have shown that specific local structures lead to specific dynamic per-
formance of the underlying network and vice versa. Finally, we have investigated a slightly
orthogonal perspective and have shown that random graphs and their random local structures
still have unexploited potential. Although they are poor null-models of real world networks,
random graphs have many outstanding properties. Most of them are highly desirable in any
technological network.

We have introduced a novel P2P overlay based on random graphs. It is extremely scalable
and very efficient, and performs at least as good as already established P2P overlays. More
importantly, the introduced overlay is the first overlay to support both, exhaustive search queries
and key-value lookups within the same overlay.

To summarize, in this work we have repeatedly shown that exploring networks on interme-
diate scale opens a so far unexplored perspective on complex networks. We have transferred
that perspective to various technological networks, resulting in numerous novel approaches for
distributed topology control, competitive or even better than state of the art methods.

Nevertheless, this work has just barely scratched the surface of this new research direction,
leaving behind many important scientific questions unexplored, yet.

7.2 Outlook

Despite the various findings and results presented in this work, it is far from fully exploring the
potential of local structure analysis in complex networks. On the contrary. In the following we
give at least a few further research directions, which are worth exploring with respect to the
general methodology as well as in our particular case studies.

General Methodology

In this work we have revealed a relation between the dynamic performance of a network and
its local structures, i.e. its motif content. To steer the performance of a given network we have
deliberately altered its motif content. It is worth investigating how this strategy performs when

124 7 Summary and Outlook

one tries to control two, three or even more network properties simultaneously. Especially in
the case when some of those properties are competitive to each other. For example low node
degree and low node inter-dependencies. Low node degrees means longer average shortest
paths, as a path between two nodes usually takes several intermediate hops. In the same time,
long shortest paths means higher node inter-dependencies, as the communication between two
nodes depends on all intermediate nodes on the path between them.

Another open question is whether there is a strong correlation between particular motif con-
tent and specific network properties. In other words, if one is to quantify a set of networks
into families according to a given network property, e.g. error tolerance, how similar are the
motif contents of networks within the same families? If such relation indeed exists, one would
be able to estimate global network properties by just looking at the motif content of the net-
works. Not only is that significantly less computationally demanding, but it also can be achieved
in a distributed manner. Furthermore, one would be able to easily compare the properties of
different networks by just comparing their motif contents. It will not be necessary to perform
computationally demanding and time consuming experiments.

A general relation between particular network properties and specific motif content may open
another research direction. Constructing a network with a desired property becomes equivalent
to constructing a network with a particular motif content. It is a priory not clear, how computa-
tionally demanding such an algorithm will be, but it is undoubtedly worth investigating.

In that context, for a given number of nodes and edges, one would be able to construct the
whole space of networks with the same number of nodes and edges but different motif contents.
In that way, one would be able to estimate to what extent networks with similar motif contents
differ in some other rationale, e.g. average shortest path, clustering, etc. Having that, one
would be able to project real world networks into that network space and estimate how the
properties of those real world networks could possibly change.

The above listed open questions are far from trivial. Confirming or rejecting the above hy-
pothesis will in both cases improve our understanding of complex networks in general and in
particular of the networks around us.

Concrete Application Scenarios

The methodology advocated throughout this work is based on a few different case studies. In
the following we give a short overview of the remaining open questions within those concrete
application scenarios.

We have revealed that the box motif is the most successful collaboration pattern in co-
authorship networks, measured as the average citation frequency per motif edge. To better
understand the social factors leading to this phenomenon we have introduced an analytical
model for constructing co-authorship networks. Our model replicates the dynamic process of
publishing and citing of scientific publications, while incorporating proximity, aging, impact etc.

However, one could use that model beyond the simple purpose of verification. Through our
model one could observe the network evolution. More precisely, the changes in the motif con-
tent as the network evolves. In that sense, one would not only be able to see the outcome of

7.2 Outlook 125

the network evolution, but also to investigate how the success of the different collaboration
patterns changes over time. Ultimately, one could use our method to derive predictions which
collaboration patterns are going to be successful in the future.

In the context of the box motif, one could also investigate its role in a more generic class
of production and distribution systems. That is, whether the box motif edges comply with the
theory of weak links. In social networks it has been shown that the most valuable information
is transferred along only occasionally used acquaintances and not along everyday-based collab-
orations, as one would expect. Those occasional acquaintances are called the weak links and
have been proven crucial for the communication flow within social networks. So far we have
only preliminary, but already promising results concerning the box motif within trust networks.

In this work we also have introduced a new approach for constructing resilient live-streaming
topologies. Resilience was the primary objective. However, for such applications it also crucial
to decrease the end-to-end delay. To achieve that one could incorporate location awareness to
efficiently explore the underlying infrastructure.

Another interesting direction for further development is to augment our approach with an
upper bound for signal delivery. In other words, to assure that no participating party experiences
delay in signal beyond some acceptable threshold. For that purpose the edges in the network,
representing signal exchanges, have to be augmented with realistic delay values. Then, the
method should be extended to weighted graphs. The motif based decisions rules should be
adapted from binary (an edge is either there or not) to weighted, i.e. the edge weights have to
be incorporated into the motif ratios.

Although the idea seems straightforward, only a thorough investigation will reveal if there are
some unexpected complications.

In this work we also have presented BridgeFinder, a novel approach for detecting communi-
cation bottlenecks in a distributed manner. As we have shown earlier, it is augmented with a
guarding mechanism against malicious parties, trying to screw the protocol operation.

Although they are very hard do deploy, attacks by multiple malicious parties working together
still represent a thread to BridgeFinder. More precisely, to casual participating parties. A group
of malicious parties may surround a targeted peer. Then they can claim that this peer is misbe-
having and try to ban it from the network. One could engage trusted authorities and reputation
mechanism to detect false claims by third parties. The challenging task here will be to keep
intact the distributed nature of BridgeFinder.

Finally, we have presented a novel P2P overlay: PathFinder. It supports both, exhaustive
search queries and exact key-value lookups. PathFinder performs at least as good as established
overlays, but is the first overlay to combines these two operations within the same overlay.

For a commercial deployment there is still one open issue that needs to be addressed: Peer
communication is not position aware. Direct neighbors in the overlay may be distributed over
several continents. Under realistic circumstances that could lead to higher latency just because
any piece of exchanged information has to travel significant physical distances. Resolving that
problem will shorten latency and minder unnecessary router load and bandwidth usage.

Many distributed real world applications face the same issue and a whole range of optimiza-
tion techniques has already beed developed. The challenge here will be to select the proper

126 7 Summary and Outlook

technique to effectively relieve the communication traffic caused by PathFinder, while keeping
the deterministic nature of its neighbor-selecting mechanism.

Final Words

At first sight this work seems to have raised more questions than it may has answered. However,
one should keep in mind that it has presented unexpected findings on social networks, more
precisely co-authorship networks, despite the immense body of research dedicated to them.

Furthermore, this work also advocates a new, and so far unexplored, perspective on complex
networks: The motif content of a network is related to its output pattern. It is exactly this
new perspective that has motivated a series of novel distributed approaches. Each one of them
addresses known problems in an innovative manner and is highly competitive to state of the art
methods in their respective fields.

All this together simply confirms the fact that this work is just a first step in a new promising
research direction, which is far from being fully explored.

7.2 Outlook 127

Bibliography
[1] S. Milgram, “The small world problem,” Psychology Today, vol. 2, pp. 60–67, 1967.

[2] I. de S. Pool and M. Kochen, “Contacts and influence,” Social Networks, vol. 1, pp. 1–48,
1978.

[3] P. Erdős and A. Rényi, “On random graphs,” Publicationes Mathematicae, vol. 6, pp. 290–
297, 1959.

[4] B. Bollobás, Random Graphs. New Work: Cambrige University Press, 2 ed., 2001.

[5] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature,
vol. 393, pp. 440–442, 1998.

[6] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, pp. 509–512, 1999.

[7] A.-L. Barabási, R. Albert, and H. Jeong, “Mean-field theory of sclae-free random net-
works,” Physica A, vol. 272, pp. 173–187, 199.

[8] A.-L. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics of random networks:
The topology of the world wide web,” Physica A, vol. 281, pp. 69–77, 2000.

[9] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes of small-world
networks,” PNAS, vol. 97, pp. 11149–11152, 2000.

[10] A.-L. Barabási, R. Albert, H. Jeong, and G. Bianconi, “Power-law distribution of the wolrd
wide web,” Science, vol. 287, p. 2115, 2000.

[11] M. E. J. Newman, “The structure of scientific collaboration networks,” PNAS USA, vol. 98,
pp. 404–409, 2001.

[12] S. Redner, “How popular is your paper? an empirical study of the citation distribution,”
Eur. Phys. J. B, vol. 4, pp. 131–134, 1998.

[13] M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett., vol. 89, no. 20,
p. 208701, 2002.

[14] C. P. Wasserman and K. Faust, Social Network Analysis. Cambridge: Cambrigde University
Press, 1 ed., 1994.

[15] M. Girvan and M. E. J. Newman, “Community structure in social and biological net-
works,” PNAS USA, vol. 99, pp. 7821–7826, 2002.

[16] M. E. J. Newman, “Modularity and community structure in networks,” PNAS USA,
vol. 103, pp. 8577–8582, 2006.

129

[17] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large
networks,” Phys. Rev. E, vol. 70, p. 066111, 2004.

[18] M. E. J. Newman, “Finding community structure in networks using the eigenvectors of
matrices,” Phys. Rev. E, vol. 74, p. 036104, 2006.

[19] J. Duuch and A. Arenas, “Community detection in complex networks using extremal
optimization,” Phys. Rev. E, vol. 72, p. 027104, 2005.

[20] M. Tasgin, A. Herdagdelen, and H. Bingol, “Community detection in complex networks
using genetic algorithms,” arXiv:cond-mat/0604419, 2008.

[21] C-Houghton, “Finding community structures in networks by playing pass-the-parcel,”
http://hdl.handle.net/2262/26359, 2008.

[22] L. Freeman, “A set of measures of centrality based upon betweenness,” Sociometry,
vol. 40, pp. 35–41, 1977.

[23] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Mathematical So-
ciology, vol. 25, pp. 163–177, 2001.

[24] U. Brandes, “On variations of shortest-path betweenness centrality and their generic com-
putation,” Social Networks, 2008.

[25] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network mo-
tifs: Simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp. 824–
827, 2002.

[26] U. Alon, “Network motifs: theory and experimental approaches,” Nature Reviews Genetics,
vol. 8, pp. 450–461, 2007.

[27] O. Brandman and T. Meyer, “Feedback loops shape cellular signals in space and time,”
Science, vol. 322, pp. 390–395, 2008.

[28] S. Pigolotti, S. Krishna, and M. Jensen, “Oscillation patterns in negative feedback loops,”
PNAS, vol. 104, pp. 6533–6537, 2007.

[29] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the transcriptional
regulation network of escherichia coli,” Nature Genetics, vol. 31, p. 688, 2002.

[30] O. Brandman, J. E. Ferrell, R. Li, and T. Meyer, “Interlinked fast and slow positive feed-
back loops drive reliable cell decisions,” Science, vol. 310, p. 496, 2005.

[31] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and
U. Alon, “Superfamilies of evolved and designed networks,” Science, vol. 303, no. 5663,
pp. 1538–1542, 2004.

[32] K. Klemm and S. Bornholdt, “Topology of biological networks and reliability of informa-
tion processing,” PNAS, vol. 102, pp. 18414–18419, 2005.

[33] P. Kaluza, M. Ipsen, M. Vingron, and A. S. Mikhailov, “Design and statistical properties of
robust functional networks: A model study of biological signal transduction,” Phys. Rev.
E, vol. 75, p. 015101, 2007.

130 Bibliography

[34] P. Kaluza, M. Vingron, and A. S. Mikhailov, “Self-correcting networks: Function, robust-
ness, and motif distributions in biological signal processing,” Chaos, vol. 18, p. 026113,
2008.

[35] P. Kaluza and A. Mikhailov, “Evolutionary design of functional networks robust against
noise,” Europhys. Lett., vol. 79, p. 48001, 2007.

[36] Y.-K. Kwon and K.-H. Cho, “Quantitative analysis of robustness and fragility in biological
networks based on feedback dynamics,” Bioinformatics, vol. 24, pp. 987–994, 2008.

[37] DBLP, “Available online,” http://dblp.uni-trier.de, Online Search Engine.

[38] CiteSeerX, “Available online,” http://citeseerx.ist.psu.edu, Online Search Engine.

[39] Google Scholar, “Available online,” http://scholar.google.com, Online Search Engine.

[40] T. S. Kuhn, The Structure of Scientific Revolutions. Chicago: University of Chicago Press,
1 ed., 1962.

[41] A. Arenas, A. Diaz-Guilera, and C. J. Perez-Vicente, “Synchronization reveals topological
scales in complex networks,” Phys. Rev. Lett., vol. 96, p. 114102, 2006.

[42] S. Bornholdt, “Less is more in modeling large genetic networks,” Science, vol. 310, p. 449,
2005.

[43] M. Müller-Linow, C. Hilgetag, and M.-T. Hütt, “Organization of excitable dynamics in
hierarchical biological networks,” PLoS Comput. Biology, vol. 4, p. e1000190, 2008.

[44] C. Marr and M.-T. Hütt, “Outer-totalistic cellular automata on graphs,” Phys. Lett. A,
vol. 373, pp. 546–549, 2009.

[45] N. M. Luscombe, M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann, and M. Gerstein,
“Genomic analysis of regulatory network dynamics reveals large topological changes,”
Nature, vol. 431, pp. 308–312, 2004.

[46] M. J. Herrgard, M. W. Covert, and B. O. Palsson, “Reconciling gene expression data with
known genome-scale regulatory network structures,” Genome Research, vol. 13, no. 11,
pp. 2423–2434, 2003.

[47] C. Marr, M. Geertz, M.-T. Hütt, and G. Muskhelishvili, “Dissecting the logical types of
network control in gene expression profiles,” BMC Systems Biology, vol. 2, p. 18, 2008.

[48] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Phys.
Rev. Lett., vol. 86, pp. 3200–3203, 2001.

[49] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of complex networks,”
Nature, vol. 406, p. 378, 2000.

[50] M. E. J. Newman, “Coauthorship networks and patterns of scientific collaboration,” PNAS,
vol. 101, no. 1, pp. 5200–5205, 2004.

[51] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal
community structure,” PNAS, vol. 105, no. 4, pp. 1118–1123, 2008.

Bibliography 131

[52] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social Networks,
vol. 1, pp. 215–239, 1978.

[53] A. F. J. Vanraan, “Fractal dimension of co-citations,” Nature, vol. 347, no. 6294, p. 626,
1990.

[54] P. O. Larsen and M. von Ins, “Lotka’s law, co-authorship and interdisciplinary publishing,”
WIS, 2008.

[55] S. Wuchty, B. F. Jones, and B. Uzzi, “The increasing dominance of teams in production of
knowledge,” Science, vol. 316, no. 5827, pp. 1036–1039, 2007.

[56] J. Bollen, H. V. de Sompel, A. Hagberg, L. Bettencourt, R. Chute, M. A. Rodriguez, and
L. Balakireva, “Clickstream data yields high-resolution maps of science,” PLoS ONE, vol. 4,
no. 3, p. 4803, 2009.

[57] R. Guimerà, B. Uzzi, J. Spiro, and L. A. N. Amaral, “Team assembly mechanisms
determine collaboration network structure and team performance,” Science, vol. 308,
no. 5722, pp. 697–702, 2005.

[58] A. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution of
the social network of scientific collaborations,” Physica A, vol. 311, no. 3, pp. 590–614,
2002.

[59] K. Börner, J. T. Maru, and R. L. Goldstone, “The simultaneous evolution of author and
paper networks,” PNAS, vol. 101, no. 1, pp. 5266–5273, 2004.

[60] J. J. Ramasco, S. N. Dorogovtsev, and R. Pastor-Satorras, “Self-organization of collabora-
tion networks,” Phys. Rev. E, vol. 67, no. 3, p. 036106, 2004.

[61] M. E. Newman, Complex Networks, vol. 650/2004, pp. 337–370. Springer Berlin / Hei-
delberg, 2004.

[62] M. E. J. Newman, “Clustering and preferential attachment in growing networks,” Phys.
Rev. E, vol. 64, no. 2, p. 025102, 2001.

[63] A. Inzelt, A. Schubert, and M. Schubert, “Incremental citation impact due to international
co-authorship in hungarian higher education institutions,” Scientometrics, vol. 78, no. 1,
pp. 37–43, 2009.

[64] T. Velden and C. Lagoze, “Patterns of collaboration in co-authorship networks in chemistry
- mesoscopic analysis and interpretation,” ISSI 2009, 2009.

[65] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Rev. Mod.
Phys., vol. 74, pp. 47–97, 2002.

[66] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review,
vol. 45, p. 167, 2003.

[67] M. Granovetter, Getting a job: A study of Contacts and Careers. Chicago: The University
of Chicago Press, 2 ed., 1995.

132 Bibliography

[68] M. Granovetter, “The strength of weak ties,” American Journal of Sociology, vol. 78, no. 6,
pp. 1360–1380, 1973.

[69] S. Goyal and F. Vega-Redondo, “Structural holes in social networks,” Journal of Economic
Theory, vol. 137, no. 1, pp. 460–492, 2007.

[70] R. S. Burt, Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard
University Press, 1 ed., 1992.

[71] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” SIGCOMM, pp. 161–172, 2001.

[72] P. Maymounkov and D. Maziéres, “Kademlia: A peer-to-peer information system based
on the xor metric,” LNCS, pp. 251–260, 2002.

[73] M. Brinkmeier, M. Fischer, S. Grau, G. Schäfer, and T. Strufe, “Methods for improving
resilience in communication networks and p2p overlays,” PIK, vol. 32, pp. 64–78, 2009.

[74] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay con-
struction and server selection,” INFOCOM, pp. 1190–1199, 2002.

[75] M. Waldvogel and R. Rinaldi, “Efficient topology-aware overlay network,” SIGCOMM,
vol. 33, no. 1, pp. 101–106, 2003.

[76] D. R. Karger and M. Ruhl, “Simple efficient load-balancing algorithms for peer-to-peer
systems,” Theory of Computing Systems, vol. 39, no. 6, pp. 787–804, 2006.

[77] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” SIGCOMM, vol. 31, no. 4, pp. 149–
160, 2001.

[78] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in
structured p2p systems,” LNCS, vol. 2735, pp. 68–79, 2003.

[79] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing for distributed hash
tables,” LNCS, vol. 2735, pp. 80–87, 2003.

[80] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan,
“Measurement, modeling, and analysis of a peer-to-peer file-sharing workload,” SOSP,
pp. 314–329, 2003.

[81] K. Graffi, A. Kovacevic, S. Xiao, and R. Steinmetz, “Skyeye. kom: An information man-
agement over-overlay for getting the oracle view on structured p2p systems,” ICPADS,
pp. 279–286, 2008.

[82] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in
dynamic structured p2p systems,” INFOCOM, pp. 2253–2262, 2004.

[83] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooperative
storage with cfs,” SOPS, pp. 202–215, 2001.

[84] P. García, G. Pairot, R. Mondéjar, J. Pujol, H. Tejedor, and R. Rallo, “Planetsim: A new
overlay network simulation framework,” SEM, pp. 123–137, 2005.

Bibliography 133

[85] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer networks,” SIGCOMM,
pp. 189–202, 2006.

[86] M. Brinkmeier, G. Schäfer, and T. Strufe, “Optimally dos resistant p2p topologies for live
multimedia streaming,” TPDS, vol. 20, pp. 831–834, 2009.

[87] T. Small, B. Liang, and B. Li, “Scaling laws and tradeoffs in peer-to-peer live multimedia
streaming,” Proc.14th annual ACM international conference on Multimedia, pp. 539–548,
2006.

[88] S. Annapureddy, C. Gkantsidis, and P. Rodriguez, “Providing video-on-demand using peer-
to-peer networks,” IPTV Workshop, WWW, 2006.

[89] K. Graffi, S. Kaune, K. Pussep, A. Kovacevic, and R. Steinmetz, “Load balancing for mul-
timedia streaming in heterogeneous peer-to-peer systems,” NOSSDAV, 2008.

[90] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system multicast,” JSAC, vol. 20,
no. 8, pp. 1456–1471, 2002.

[91] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr, “Chainsaw: Eliminating
trees from overlay multicast,” IPTPS, pp. 127–140, 2005.

[92] D. Carra, R. L. Cigno, and E. W. Biersack, “Graph-based analysis of mesh overlay stream-
ing systems,” JSAC, vol. 25, no. 9, pp. 1667–1677„ 2007.

[93] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J. Epema, M. Rein-
ders, M. R. van Steen, and H. J. Sips, “Tribler: a social-based peer-to-peer system,” Con-
currency and Computation: Practice and Experience, vol. 20, no. 2, pp. 127–138, 2008.

[94] D. Carra, G. Neglia, and P. Michiardi, “On the impact of greedy strategies in bittorrent net-
works: the case of bittyrant,” 8th IEEE International Conference on Peer-to-Peer Computing,
pp. 311–320, 2008.

[95] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will iptv ride the peer-to-
peer stream?,” Communications Magazine, pp. 86–92, 2007.

[96] D. Nguyen, T. Tran, T. Pham, and V. Le, “Internet media streaming using network coding
and path diversity,” IEEE Globecom, 2008.

[97] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient multicast using over-
lays,” ACM SIGMETRICS Performance Evaluation Review, vol. 31, pp. 102–113, 2003.

[98] V. N. Padmanabhan and K. Sripanidkulchai, “The case for cooperative networking,” IPTPS,
vol. 2429, pp. 178–190, 2002.

[99] S. Grau, S. Fischer, M. Brinkmeier, and M. Schaefer, “On complexity and approximability
of optimal dos attacks on multiple-tree p2p streaming topologies,” TDSC, vol. 99, 2010.

[100] W. Wang, Y. Xiong, Q. Zhang, and S. Jamin, “Ripple-stream: Safeguarding p2p streaming
against dos attacks,” IEEE International Conference on Multimedia and Expo, pp. 1417–
1420, 2006.

134 Bibliography

[101] J. Yang, Y. Li, B. Huang, and J. Ming, “Preventing dos attacks based on credit model
for p2p streaming system,” Proc. 5th international conference on Autonomic and Trusted
Computing, pp. 13–20, 2008.

[102] W. G. Conner, K. Nahrstedt, and I. Gupta, “Preventing dos attacks in peer-to-peer media
streaming systems,” Annual SPIE/ACM Conference on Multimedia Computing and Network-
ing (MMCN), 2006.

[103] M. Rossberg, T. Strufe, and G. Schäfer, “Using recurring costs for reputation management
in peer-to-peer streaming systems,” SecureComm, 2007.

[104] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Splitstream:
High-bandwidth multicast in cooperative environments,” 19th ACM. Symposium on Op-
erating System Principles (SOSP), pp. 298–313, 2003.

[105] J. Liang and K. Nahrstedt, “Dagstream: Locality aware and failure resilient peer-to-peer
streaming,” Multimedia Computing and Networking, vol. 6071, pp. 1–15, 2006.

[106] T. Strufe, G. Schäfer, and A. Chang, “Bcbs: An efficient load balancing strategy for coop-
erative overlay live-streaming,” Proc. IEEE ICC, 2006.

[107] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda, “Fatnemo: Building a resilient
multi-source multicast fat-tree,” Proc. 9th International Workshop on Web Content Caching
and Distribution, 2004.

[108] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate infor-
mation,” 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS03),
pp. 482–491, 2003.

[109] M. Sheng, J. Li, and Y. Shi, “Critical nodes detection in mobile ad hoc network,” Advanced
Information Networking and Applications, vol. 2, pp. 336–340, 2006.

[110] X. Liu, L. Xiao, A. Kreling, and Y. Liu, “Optimizing overlay topology by reducing cut
vertices,” Internatoinal Workshop on Network and Operating Systems Support for Digital
Audio and Video, pp. 1–6, 2006.

[111] R. Wattenhofer and A. Zollinger, “Xtc: A practical topology control algorithm for ad-
hoc networks,” Proceedings of the 18th International Parallel and Distributed Processing
Symposium, 2004.

[112] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31, pp. 581–603,
1966.

[113] C. Dangalchev, “Residual closeness in networks,” Phisica A, vol. 365, no. 2, pp. 556–564,
2006.

[114] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Unit disk graph approximation,” Proceedings
of the 2004 Joint Workshop on Foundations of Mobile Computing, pp. 17–23, 2004.

[115] A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri, “Towards realistic mo-
bility models for mobile ad hoc networks,” Proceedings of the 9th annual international
conference on Mobile computing and networking, pp. 217–229, 2003.

Bibliography 135

[116] W. Terpstra and C. L. anf A. P. Buchmann, “Practical summation via gossip,” Proc. 26th
Annual ACM Symposium on Principles of Distributed Computing, pp. 390–391, 2007.

[117] D. Kempe, J. Kleinberg, and A. Demers, “Spatial gossip and resource location protocols,”
Journal of the ACM (JACM), vol. 51, no. 6, pp. 943–967, 2004.

[118] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry, “Epidemic algorithms for replicated database maintenance,” Proceedings of
the Sixth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–12, 1987.

[119] W. Terpstra, C. Leng, and A. P. Buchmann, “Bubblestorm: Resilient, probabilistic, and
exhaustive peer-to-peer search,” Proc. SIGCOMM, pp. 49–60, 2007.

[120] P. T. Eugster, R. Guerraoui, A. M. Kermarrec, and L. Massoulie, “From epidemics to dis-
tributed computing,” IEEE Computer, vol. 37, no. 5, pp. 60–67, 2004.

[121] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and analyzing the characteristics
of napster and gnutella hosts,” Multimedia Systems, vol. 9, no. 2, pp. 170–184, 2003.

[122] T. Qiu, E. Chan, and G. Chen, “Overlay partition: Iterative detection and proactive re-
covery,” IEEE International Conference on Communications 2007 (ICC), pp. 1854–1859,
2007.

[123] R. Steinmetz and K. Wehrle, Peer-To-Peer Systems and Applications. Heidelberg: Springer,
1 ed., 2005.

[124] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal distributed hash
table,” Proc. 2nd International Workshop on Peer-to-Peer Systems (IPTPS03), pp. 98–103,
2003.

[125] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a common api
for structured peer-to-peer overlays,” Proc. 2nd International Workshop on Peer-to-Peer
Systems (IPTPS03), pp. 33–44, 2003.

[126] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and dynamic emulation of the
butterfly,” Proceedings of the 21st ACM Symposium on Principles of Distributed Computing,
pp. 183–192, 2002.

[127] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems,” IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pp. 329–350, 2001.

[128] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure for fault-tolerant
wide-area location and routing,” Computer, vol. 74, pp. 11–20, 2001.

[129] C. G. Plaxton, R. Rajaraman, and A. W. Rich, “Accessing nearby copies of replicated ob-
jects in a distributed environment,” Theory of Computing Systems, vol. 32, no. 3, pp. 241–
280, 1999.

[130] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed hashing in a small
world,” Proc. 4th USENIX Symposium on Internet Technologies and Systems, pp. 127–140,
2003.

136 Bibliography

[131] Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper, “Performance of full text search in
structured and unstructured peer-to-peer systems,” Proc. IEEE INFOCOM, pp. 1–12, 2006.

[132] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger, and R. Morris, “On the feasibility
of peer-to-peer web indexing and search,” Proc. 2nd International Workshop on Peer-to-
Peer Systems (IPTPS), pp. 20–21, 2003.

[133] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,” Middleware,
pp. 21–40, 2003.

[134] C. Greenhill, F. B. Holt, and N. Wormald, “Expansion properties of a random regular graph
after random vertex deletions,” European Journal of Combinatorics, vol. 29, pp. 1139–
1150, 2008.

[135] H. Barton, “Skype users online now,” http://idisk.mac.com/hhbv-Public/OnlineNow.htm,
2009.

[136] L. Zhuang and F. Zhou, “Understanding chord performance,” Technical Report CS268,
2003.

[137] D. Loguinov, A. Komar, V. Rai, and S. Ganesh, “Graph-theoretic analysis of structured
peer-to-peer systems: routing distances and fault resilience,” Proc. Conference on Applica-
tions, technologies, architectures, and protocols for computer communications, pp. 395–406,
2003.

[138] M. G. Hluchyj and M. J. Karol, “Shuffle net: An application of generalized perfect shuffles
to multihop lightwave networks,” Lightwave Technolology, vol. 9, no. 10, pp. 1386–1397,
1991.

[139] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, “Skipnet: A scalable
overlay network with practical locality properties,” Proc. of the 4th USENIX Symposium
on Internet Technologies and Systems, 2003.

[140] S. Saroiu, K. Gummadi, and S. Gribble, “A measurement study of peer-to-peer file sharing
systems,” Proceedings of Multimedia Computing and Networking (MMCN), 2002.

Bibliography 137

8 Authors Publications
[1] Lachezar Krumov, Christoph Fretter, Matthias Müller-Hannemann, Karsten Weihe, Marc-
Thorsten Hütt, “Motifs in co-authorship networks and their relation to the impact of scientific
publications”, Submitted to E. P. J. B (the European Physical Journal B), 2011, see Chapter 2.

[2] Dirk Bradler, Lachezar Krumov, Max Mühlhäuser and Jussi Kangasharju, “BridgeFinder:
Finding Communication Bottlenecks in Distributed Environments”, Submitted to ICOIN 2011,
2011, see Chapter 5.

[3] Dirk Bradler, Lachezar Krumov, Jussi Kangasharju and Max Mühlhäuser, “PathFinder: Effi-
cient Lookups and Efficient Search in Peer-to-Peer Networks, ICDCN 2011, 2011, see Chapter 6.

[4] Lachezar Krumov, Immanuel Schweizer, Dirk Bradler and Thorsten Strufe, “Leveraging Net-
work Motifs for the Adaption of Structured Peer-to-Peer Networks”, GlobeCom 2010, 2010, see
Chapter 3.

[5] Lachezar Krumov, Adriana Andreeva and Thorsten Stufe, “Resilient Peer-to-Peer Live-
Steaming Using Motifs”, WoWMoM 2010, 2010, see Chapter 4.

[6] Christoph Fretter, Lachezar Krumov, Karsten Weihe, Matthias Müller-Hannemann, Marc-
Thorsten Hütt, “Phase Synchronization in Railway Timetables”, E. P. J. B (the European Physical
Journal B), 2010.

[7] Dirk Bradler, Lachezar Krumov, Michael Wagner and Jussi Kangasharju, “Hierarchical Data
Access in Structured P2P-Networks”, SpringSim/CNS 2009, 2009, see Chapter 6.

[8] Lachezar Krumov, “Degree and Diameter Bounded Minimum Spanning Trees”, Diploma The-
sis, Technical University Darmstadt, October 2007.

139

List of Figures
1.1 The eight possible undirected three- and four-node motifs. 18
1.2 The traditional client-server architecture and a P2P architecture. 19

2.1 The average edge weight per motif compared to the null model for DBLP (A)
and CiteSeerX (B), according to edge weight definition from eqs. (1) and (3),
respectively. In order to resolve the data behind the averages from (A) and (B),
the cumulative distributions of the edge weights for two of the motifs are shown,
namely the box motif (motif 6) and motif 4, for DBLP (C) and CiteSeerX (D). . . . 28

2.2 The average link weight per motif in DBLP for all four edge weight definitions
compared to the shuffled null model denoted by SH. 29

2.3 The average link weight per motif in CiteSeerX for all four edge weight definitions
compared to the shuffled null model denoted by SH. 29

2.4 Ratio of average edge weights real data/null model for the edge weight defini-
tions 1, 2, 3 and 4, DBLP on the left side and CiteSeerX on the right side. 30

2.5 The average weight per motif link over the years for the DBLP database. 31
2.6 (A) The eight possible undirected three- and four-node motifs. (B) Example of

a single occurence of motif 6 (box motif) based on only four publications and
embedded in the local network generated by these publications. 31

2.7 Percentage of box motif instances in DBLP where the top two authors are con-
nected directly. The box motifs instances are divided in chunks of 1000 instances
and sorted in descending order with respect to their weight. 32

2.8 Relative average edge weight per motif. All motif instances are distributed in bins
according to their creation time and the average weight per bin is displayed. . . . 33

2.9 Average number of shortest paths passing trough a motif edge for the 1990 snap-
shot of the DBLP (all publications dating before or from 1990). 34

2.10 Degree distributions of DBLP and CiteSeerX. 35
2.11 Citation distributions of DBLP and CiteSeerX. 35
2.12 The motif edge weight distributions for all eight motifs within the DBLP database. 36
2.13 The effect on the average motif edge weight when one gradually removes the

heaviest instances of that motif. 37
2.14 The number of papers respectively co-authors per motif edge for DBLP. 38
2.15 Schematic representation of the content proximity plane. Distance among au-

thors and publications enters the computation of the scores, equations 2.5 and 2.6. 39
2.16 Approximating the DBLP snapshot from 1990. Once with respect to degree dis-

tribution, citation distribution and motif content only, and once augmented with
the ratio in weight of motif 4 to motif 6. 41

2.17 Approximating the degree distribution of the DBLP snapshot from 1990. Once
with respect to topological properties only and once augmented with the ratio in
weight of motif 4 to motif 6. 42

141

2.18 Approximating the ciation distribution of the DBLP snapshot from 1990. Once
with respect to topological properties only and once augmented with the ratio in
weight of motif 4 to motif 6. 42

2.19 Approximating the motif content of the DBLP snapshot from 1990. Once with re-
spect to topological properties only and once augmented with the ratio in weight
of motif 4 to motif 6. 43

3.1 Network motifs: (un)directed subgraphs of 3/4 nodes. 50
3.2 A suboptimal and optimal CAN topologies with 15 nodes. 53
3.3 System Architecture of MBO . 55
3.4 Probability of occurrence of scope in CAN with and without MBO. 59
3.5 Indegree distribution Kademlia (ECD with 500 nodes) 61
3.6 Characterisitc path length under perfect attack (500 nodes). 62

4.1 Example of an optimal topology, N = 37, nmax = 4 (cmp. [86]). 69
4.2 Motif ratio phase transition of an optimal topology. 70
4.3 Successor exchange operations. 72
4.4 Number of exchange operations per node per stripe. 73
4.5 Sample tree with corresponding ToPo metric values. 74
4.6 ToPo metric values of streaming topologies (with std. deviation). Inset: the ToPo

metric results of the motif approach normalized with respect to the network size. 74
4.7 Height of streaming topologies (with standard deviation). Inset: topology height

of the motif approach normalized with respect to the network size. 75
4.8 Balance metric values of streaming topologies normalized with respect to the

network size (with standard deviation). 76
4.9 Average node connectivity of streaming topologies (with std. deviation). 77
4.10 Stability of streaming topologies (with standard deviation). 78

5.1 Betweenness does not always reflect the central role of a node. The displayed
values represent the betweenness coefficients of the corresponding nodes. 86

5.2 Phases of the BridgeFinder algorithm and interleaving among multiple runs. . . . 89
5.3 Three different obstacle scenarios. Examples show 1, 2, and 3 bridges respectively. 89
5.4 Destroying networks by removing the fastest converging nodes. 90
5.5 Intersecting best centrality measure nodes with 5% of the fastest converging nodes. 91
5.6 Average speed coefficient within 100 runs of BridgeFinder on all four network types 96
5.7 Perfect attack at every 5th iteration of BridgeFinder with 10% of malicious peers . 97

6.1 A small example of the PathFinder overlay. 107
6.2 Key lookup with local expanding search rings from both the source and the target. 108
6.3 Distribution of complete path length for 5000 key lookups with c = 20. 109
6.4 Repair costs for network with 5,000 peers . 112
6.5 Average number of hops for 5,000 key lookups in different DHTs. 115
6.6 Average number of hops for different DHTs measured analytically. The values for

PathFinder are from actual simulations. 116
6.7 Required lookup retries between each couple of nodes under churn. 117
6.8 Increase of the average shortest path length under churn. 118

142 List of Figures

List of Tables
2.1 Average number of authors per paper, papers per author and clustering coeffi-

cients for the DBLP and CiteSeerX databases. All values comply with results on
co-authorship networks from related work. 36

2.2 Expected applications of the box motif in diverse technological and social networks. 47

3.1 Initial and target motif signatures, Φ-Score and SPΦ for CAN. 53
3.2 Initial and target motif signatures, Φ-Score and SPΦ for Kademlia. 55
3.3 Join Process CAN: Number of messages for CAN with MBO compared to original

CAN. 57
3.4 Kademlia compared to Kademlia with MBO with respect to maintenance mes-

sages, necessary lookups and average lookup length. 60

5.1 Convergence speed on different network types measured in average number of
exchange steps per node. 93

6.1 Comparison of various DHTs to PathFinder. 114

143

List of Algorithms
1 Topology Control . 71
2 BridgeFinder Exchange Operation . 88
3 PathFinder Neighbor List Construction . 106

145

Index
ALM, 68
anti-clustering, 31
application domain, 84
application layer mutlicast, 68
assortative, 17
assortativity, 17
attack, 61, 67, 73
attacker, 67
attacks, 95
author score, 39
average betweenness, 85, 91

balance, 73
Balance metric, 73, 76
bandwidth, 71
betweenness, 85

edge, 17
betweenness centrality, 85
bitrate, 67
bootstrap node, 54
box motif, 21, 31, 33, 34, 37
bridge, 83
BridgeFinder, 83
bucket size, 54

CAN, 49
chunk, 68
churn, 57
citation frequency, 23, 27
closeness, 87
clustering, 16
co-authorship networks, 23
complex query, 101
construction time, 33
control, 71
converge, 72, 73
convergence, 79, 97
correction mechanism, 68
critical peers, 83, 84

damage, 67
data source, 67
dependency, 68
DHT, 101–104, 114
disassortative, 17
distributed algorithm, 83
dynamic process, 83

edge

betweenness, 34
initiation, 33
weight, 27

encoding, 68
error forward, 68
exchange operation, 71, 73
exhaustive search, 101, 106
expansion, 92

forward/backward chaining, 109

gossiping, 83
algorithm, 84

graph, 15
guarding mechanism, 95

hub-nodes, 61

impact, 27
interdependence, 66
intermediate nodes, 69
internal nodes, 69

join, 110

Kademlia, 49
key lookup, 101

lookup, 108
key space, 51

leaves, 70
live streaming, 65
lookup, 101, 103, 108

maintenance, 101
malicious nodes, 83
malicious parties, 95
management overhead, 73
mobile networks, 83
modularity, 17
motif, 49

based optimization, 49
frequency, 51
signature, 51

motifs, 18
multihop networks, 89
multimedia content, 67

network motifs, 18
node crash, 111

147

Node Manager, 71

optimality, 79
overhead, 73
overlay, 101

structured, 101
unstructured, 101

P2P, 19
packet stream, 67
peer-to-peer (P2P), 19
perfect attack, 97
PlanetSim, 57
power law, 16
predecessor, 68, 72

selection, 68
preferential attachment, 16
PRNG, 105
pro-active optimization, 68
pull-based system, 68
push-based system, 68

random graph, 16, 101
reputation mechanism , 68
resilience, 66, 68, 73, 79
robustness, 66, 101

scale free network, 16
score, 52
small-world effect, 15
speed coefficient, 95
square closeness, 87, 91
stability, 78, 80
streaming, 66
stripe, 67, 68
success, 27, 33, 38
successor, 72

target motif signature, 50
target significance profile, 52
target topoloty, 52
ToPo metric, 73
topology

adaptation, 49
control, 71
optimization, 49
quality, 73

torus, 53
transfer, 72
transitivity, 16
tree height, 73, 75

UDG, 89
unit disk graph, 89

vertex connectivity, 73, 77

weak links, 126

XOR metric, 54

zipf distribution, 51

148 Index

Glossary
N the number of nodes in a graph (network)

M the number of edges in a graph (network)

p the probability that two nodes are connected

GN ,p the set of all graph instances of N nodes connected with probability p

ER Erdős-Rényi random graph

Pv (k) the probability that a node v has degree k

P2P peer-to-peer

MBO motif based optimization

FI the number of all different k-node motif instances within a topology I

SPΦ the target significance profile of a network

Θ the multiple dimensional torus representing the key space of CAN

CAN content addressable network (a structured P2P overlay)

PlanetSim a framework for P2P overlay simulations

V the set of nodes in a graph (network)

E the set of edges in a graph (network)

S the packet stream in a live streaming system

R0 the bitrate in a live streaming system

θ the motif ratio threshold (directed motif 1 to motif 3)

NM the Node Manager of each peer within the overlay network

nmax the maximum number of neighbors (outgoing plus ingoing in undirected graphs)

d the maximum number of direct successors

BCBS an efficient load balancing strategy for cooperative overlay live streaming

DHT Distributed Hash Tables, used for key lookups in P2P overlays

PathFinder a novel P2P overlay that combines both: exhaustive search and key lookups

PRNG a pseudo random number generator

BridgeFinder a novel distributed approach for detecting communication bottlenecks

CB(v) the betweenness centrality of a node v

σst(v) the number of shortest paths from a node s to a node t going through the node v

CAB(v) the average betweenness of a node v

149

Cc(v) the closeness centrality of a node v

Csqc(v) the square closeness of a node v

UDG Unit Disk Graph

ODG Obstacle Disk Graph

ϑ neighborhood threshold in unit disk graphs

sv the speed coefficient of a node v in BridgeFinder

P(e) the set of publications represented by the edge e

c(p) the citation frequency of the publication p

A(p) the set of authors of the publication p

we the weight of the edge e

150 Glossary

Wissenschaftlicher Werdegang des Verfassers2

09/2001 – 4/2007 Studium Mathematics with Computer Science
Technische Unversität Darmstadt

09/2001 – 10/2007 Studium der Mathemaik,
Nebenfach Informatik
Technische Unversität Darmstadt

4/2007 Abschluss: Bachelor of Science
Bachelorarbeitsthema: Approximation Algorithm
for the Minimum Degree Spanning Tree Problem

10/2007 Abschluss: Diplom-Mathematiker
Diplomarbeitsthema: Degree and Diameter Bounded
Minimum Spanning Trees

seit 11/2007 Wissenschaftlicher Mitarbeiter am
Fachbereich Informatik, Fachgebiet Algorithmik
Technische Unversität Darmstadt

2 gemäß §20 Abs. 3 der Promotionsordnung der TU Darmstadt

	Introduction
	Motivation and Scope
	Social Networks
	Distributed Systems and Adaptive Networks

	Outline and Results
	Social Networks
	Distributed Systems and Adaptive Networks

	Separation Leads to High Citation Frequencies: the Box Motif
	Introduction
	Early History of Knowledge Production
	Modern Perspective
	Relevance to Complex Network Analysis

	Background on Co-authorship Networks
	Statistical Properties
	Small World and Average Network Properties
	Community Structure

	Motivation and Related Work
	Graph Representation
	Findings: the Success of the Box Motif
	Converting Publication Impact to Edge Weight
	Main Result

	Deeper Look: Separation
	Separation in Rank: Established Authors and Newcomers
	Separation in Time
	Separation in Scientific Area: Interdisciplinary Collaborations

	Supporting Experiments
	Network Properties
	Weight Distributions and Average Values
	Most Successful Motif Instances
	Eliminating Trivial Effects

	Further Analysis: Generative Model
	The Model
	Evaluation

	Technical Aspects
	Publication Data
	Citation Indices
	Co-authorship Graph Representation

	Summary and Outlook
	Summary
	Outlook

	Motif Based Optimization of Structured P2P Networks: Fair Load
	Introduction
	Background on Load Balancing
	Determining Target Motif Signatures
	Target Motif Signature: CAN
	Target Motif Signature: Kademlia

	Motif Based Optimization
	Motif Based Optimization: CAN
	Motif Based Optimization: Kademlia

	Evaluation
	CAN
	Kademlia

	Summary and Outlook
	Summary
	Outlook

	Resilient Peer-to-Peer Live-Streaming Using Motifs
	Introduction
	Background
	Related Work
	System Design
	Network Motifs
	Engaging Network Motifs in Topology Optimization
	Implementation

	Evaluation
	Management Overhead
	Topological Properties
	Resilience to Attacks

	Method Comparison
	Topological Properties
	Convergence and Complexity
	Network Resilience

	Summary and Outlook
	Summary
	Outlook

	Finding Communication Bottlenecks in Distributed Environments
	Introduction
	Network Prerequisites
	Application Domains

	Properties of Critical Peers
	Centrality Measures: Betweenness Centrality
	Centrality Measures: Closeness Centrality

	The BridgeFinder Algorithm
	Evaluation
	Gossiping Convergence
	Related Work
	Security Issues
	Summary and Outlook
	Summary
	Outlook

	Efficient Search and Lookups in Peer-to-Peer Networks
	Introduction
	Motivation
	System Design: PathFinder
	Challenges
	System Model and Preliminaries
	Storing Objects
	Key Lookup
	Searching with Complex Queries
	Node Join and Leave
	Node Crash
	Network Size Adaptation

	Comparison and Analysis
	Resilience Against Failures
	Security and Other Issues
	Summary and Outlook
	Summary
	Outlook

	Summary and Outlook
	Summary
	Outlook

	Authors Publications
	List of Figures
	List of Tables
	List of Algorithms
	Index
	Glossary

