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Abstract  VIII 

Abstract 

The rising demand of express delivery service (EDS) and fierce market competition motivate EDS providers 

to improve service quality by modifying current networks. This project-based dissertation focuses on strategic 

planning of a large-scale, multi-modal and time-definite EDS network for a top nationwide EDS provider in 

China, based on its current network. 

An air-ground Hub-and-Spoke (H/S) network with a fully interconnected/star shaped structure was estab-

lished to provide trans-city overnight EDS among relatively developed cities in China. The corresponding 

models are a combination of the hub location problem with fixed cost and the hub set covering problem. The 

objective function is to minimize the sum of the hub-location fixed cost and transportation cost under the con-

straints that all demand nodes are covered by their “home” hub. First, the basic model with linear air cost was 

proposed. Next, the basic model was extended to include air service selection decisions (or aircraft fleet owner-

ship decisions) under the consideration of a cost select function for the backbone air service. Finally, two ex-

tension models were studied, one to obtain the optimal aircraft fleet composition (Ext.1) and the other under 

the constraints of current aircraft fleet composition (Ext.2).  

Due to the large scale of project instances, hybrid genetic algorithms (GAs) were applied to get desirable solu-

tions in an acceptable time period, but without the guarantee of finding optimal solutions. In particular, the 

overall problem includes three kinds of decisions: 1) hub location decisions, 2) demand allocation decisions and 

3) air service selection decisions. A specific algorithm was proposed for each kind of decision, namely, GAs, 

local search heuristics and integer programming, respectively. These three algorithms were invoked hierar-

chically and iteratively to solve the original problem. 5 improvement techniques were proposed to different 

procedures of the original algorithms in order to improve the performance of the algorithms.  

Computational tests were conducted to evaluate the performance of the proposed algorithms in terms of com-

putational time and solution quality. Tests under small-scale instances with CAB data sets were conducted to 

evaluate the overall performance of the proposed algorithm by comparing the solutions with the optimal solu-

tions generated by CPLEX. Tests under large-scale instances with AP data sets and project data sets were 

conducted to evaluate the performance of the proposed improvement techniques. Since neither the optimal 

solutions nor solutions by other algorithms under large-scale instances were available to serve as benchmarks, 

the performance of the tailored algorithms and that of the un-tailored simple GAs was compared. Information 

about the stability of the algorithms with values of the coefficient of variation (CV) and the reliability of the 

results with T-tests was also provided.  

The models and the tailored GAs were applied to real-life instances of the project. This study introduces how 

the input data were collected and modified and how to deal with pertinent problems. By analyzing and com-

paring the basic solutions of Ext.1 and Ext.2, the study not only reveals some important features of the net-

work, but also arrives at some general conclusions and provided a dynamic aircraft fleet update strategy to 

guide the implementation of the project. Finally, scenario planning was executed to help decision-makers bal-

ance between costs and corresponding decision risks by identifying critical uncontrollable and controllable 

factors.  
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Zusamenfassung 

Die steigende Nachfrage nach Express-Delivery-Service (EDS) sowie starker Marktwettbewerb  veranlassen 

die EDS-Dienstleister, ihre Service-Qualität zu verbessern, indem sie ihre derzeitigen Netzwerke modifizieren. 

Gegenstand der vorliegenden, projektbasierten Dissertation ist die strategische Planung  eines 

großmaßstäblichen, multimodalen und zeitbestimmten EDS-Netzwerks für einen Top-Anbieter für 

landesweiten EDS in China, basierend auf seinem derzeitigen Netzwerk. 

Es wird ein Luft-Boden-Netzwerk eingeführt, mit einer vollständig vernetzten, sternförmigen Struktur, um 

interstädtische  Über-Nacht Lieferung zwischen entwickelten Städten Chinas anzubieten. Die entsprechenden 

mathematischen Modelle kombinieren das Problem der geographischen Festlegung der Hubs und der damit 

einhergehenden Fixkosten mit dem Problem des Set-Covering. Dabei wird die Summe der Fixtenkosten der 

Hubs und der Transportkosten minimiert, mit der Bedingung, dass alle Knotenpunkte des Netzwerks (engl. 

demand nodes) von ihren „Heimat-Hubs“ versorgt werden. Zunächst wird das grundsätzliche Modell mit 

linearen Flugkosten vorgestellt. Dieses wird sodann um die zusätzliche Berücksichtigung der 

Entscheidungsprobleme der  Auswahl einer Fluggesellschaft bzw. Anschaffung einer eigenen Flugzeugflotte 

erweitert. Dabei wird eine Kostenwahlfunktion für das Hubnetzwerk zugrundegelegt. Es  werden zwei 

erweiterte Modelle untersucht, eines mit optimaler Flugzeugflottenzusammenstellung (Ext.1) und das andere 

unter der Bedingung der Beibehaltung der aktuellen  Flottenzusammenstellung (Ext.2). 

Wegen der Ausmaße  der zu untersuchenden Fälle wurde zur Lösung der gestellten Aufgabe auf  hybride GAs 

zurückgegriffen, um gute Lösungen in vertretbarer Zeit zu bekommen, aber ohne die Garantie, die optimalen 

Lösungen zu finden. Im Einzelen hat das Problem drei Entscheidungsbereiche: Entscheidungen zur 

Standortwahl für die Hubs, zur Zuordnung der Nachfrage und schließlich zur Auswahl des Luftfrachtdienstes. 

Für jeden Entscheidungsbereich wird ein spezifischer Algorithmus vorgeschlagen, nämlich GAs, lokale Such-

Heuristiken bzw. binäre Programmierung. Diese drei Algorithmen durchlaufen sukzessive einen 

vorgegebenen hierarchischen Ablaufplan, um das ursprüngliche Problem zu lösen. Um die Performance der  

Algorithmen  zu  verbessern, werden  5 Verbesserungstechniken entwickelt, die auf verschiedene 

Rechenschritte des ursprünglichen Algorithmus angewendet werden. 

Rechentests werden durchgeführt, um die Performance hinsichtlich der Rechenzeit und Effektivität der 

Algorithmen zu beurteilen. Tests in kleinem Maßstab mit Datenmaterial von CAB sollen die 

Gesamtperformance des entwickelten Algorithmus durch Vergleich der vorgeschlagenen Lösungen mit den 

durch CPLEX erzielten optimalen  Lösungen evaluieren.  Tests unter großmaßstäblichen Bedingungen mit 

dem AP-Datenmaterial und Projektdaten dienen der Evaluierung der Performance der entwickelten 

Verbesserungstechniken.  Da weder die optimalen Lösungen noch Lösungen von anderen Algorithmen für 

Fälle mit großem Ausmaß zur Verfügung stehen, um als Benchmark zu dienen, wird die Performance der 

angepassten Algorithmen mit derjenigen der einfachen GAs verglichen; mit Varianzen und Koeffizienten, um 

Informationen über die Stabilität der Algorithmen zu bekommen, bzw. mit T-Tests, um die Zuverlassigkeit 

der Ergebnisse zu überprüfen. 

Die Modelle und angepassten GAs werden auf reale Fallbeispiele im Rahmen des Projekts angewendet. Es 

wird gezeigt, wie Inputdaten gesammelt und modifiziert werden und wie auftretenden Problemen begegnet 

werden kann. Durch Analyse und Vergleich der Resultate von Ext. 1 und Ext.2 werden nicht nur einige 
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wichtige Eigenschaften des Netzwerks aufgezeigt, sondern es werden auch einige allgemeine 

Schlussfolgerungen gezogen sowie eine dynamische aktualisierte Strategie für die Flugzeugflotte erarbeitet. 

Schließlich soll Entscheidern durch Entwicklung von Szenarien geholfen werden, kritische Faktoren zu 

erkennen, Unsicherheiten zu beseitigen und zwischen Kosten, Risiken und Nutzen abzuwägen. 
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Chapter 1: Research background and preparation work                                                                                                          1 

1. Research background and preparation work  

1.1. Introduction of express delivery service (EDS)  

This chapter is a preparation for the research by introducing research background, the project and prior work 

for our research. In Sec.1.1 we generally introduce EDS and its development. In Sec.1.2 we introduce the pro-

ject sponsor and its motivation, and put our research topic in the project framework. In Sec.1.3 we introduce 

some preparation work for our research. Finally, in Sec.1.4 we propose the outline of the dissertation. 

1.1.1. Definition of EDS 

First of all, we would like to enumerate several well-acknowledged definitions of EDS to provider readers a 

general idea about what is EDS.   

The World Trade Organization (WTO) defines EDS as “a single or multi-model transportation service of-

fered by non-postal firms rather than national post offices, including collection, transport and delivery of mails 

and packages both internationally and nationally. This service can be accomplished by self-owned or public 

vehicles.”1       

The United States International Trade Commission (USITC) defines EDS as: “the expedited collection, 

transport and delivery of documents, printed matters, parcels or other goods, while tracking their location and 

maintaining control over them throughout the whole service process; relevant services include such as cus-

toms facilitation and logistics services; accessary and value-added services include, for example, collection 

from a location designated by the consignor, release upon signature, guaranteed specified delivery time, and 

delivery confirmation.”2 

According to the National Bureau of Statistics of China and the State Post Bureau of The People's Republic of 

China, “EDS is the service that a carrier transports or deliveries goods using the fastest transportation mode 

to the designated destination within specified time, keeps transportation and delivery under control and pro-

vides real-time information.” 3   

The Administrative Measures for Express Market defines EDS as “a service that involves expedited collection, 

transport and distribution of individually sealed/packed mails and parcels to consignee or designated place 

within specified time and release upon signature.” 4   

                                                      

1  This definition is contained in CPC7512. Definition and other related rules about the topic EDS, please refer to official website of WTO 

http://www.wto.org/. 

2 See the United States International Trade Commission (USITC) (2004), p.1-1. Available at website: 

http://www.usitc.gov/publications/332/pub3678.pdf  (access on 19.01.2013). 

3 See Research on Development of Express Market in China (2007), p.2. 

4 See the Administrative Measures for Express Market issued by Ministry of Transportation of the People’s Republic of China in July, 21, 2008. Also 

available at website: http://www.gov.cn/flfg/2008-07/30/content_1059671.htm (access on 19.01.2013). 

http://www.wto.org/
http://www.usitc.gov/publications/332/pub3678.pdf
http://www.gov.cn/flfg/2008-07/30/content_1059671.htm
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In this dissertation, EDS refers to nationwide mail and package delivery service within specified time with 

multi-modal transportation networks.    

1.1.2. Development of the EDS industry (EDSI) 

With the rapid development of international trades in the 1960s and 1970s, the delivery speed and service 

quality of regular postal services could not keep up with the pace of the modern economic development. In 

1969, three budding entrepreneurs - Adrian Dalsey, Larry Hillblom and Robert Lynn- founded DHL in San 

Francisco, personally shipping papers by airplane from San Francisco to Honolulu5. It’s the embryonic form of 

the modern EDS. 

At that time trading and banking industries required expedited information delivery in order to achieve higher 

efficiency. To fulfill this requirement, EDS boomed robustly all over the world, thanks to its swiftness and 

security. In the 1990s EDSI has taken shape in developed countries and/or regions, such as the United States, 

Japan and Europe. In recent years, EDSI has also thrived in developing countries, owing to the local social 

and economic development. In 2008 EDSI made a direct contribution of USD 80 billion to the world GDP 

(equivalent to the nationwide ship manufacturing industry) and also provided 1.3 million jobs in the world 

directly, in addition to another 2.75 million jobs indirectly6. 

Ten years after the first express company in the world came into shape, this new service philosophy and oper-

ational model was introduced to China. In June 1979 the first Chinese express delivery company was founded 

together by SINOTRANS from China and OSC from Japan7. China Post started to offer international and 

national EDS in 1980 and 1984 respectively. In October 1985, China Express Service Company was estab-

lished8. It had taken a dominant position in the Chinese EDS market till the first half of the 1990s, when it was 

the exclusive nationwide EDS provider. 

After the year 1992, the development of export-oriented economy in delta regions of Yangtze River and Pearl 

River motivated the growth of private economy in those regions. Enterprises in those regions participated 

more intensively in the international division of labor. Postal service could subsequently no longer meet the 

increasing requirement of fast, convenient, reliable but less expensive door-to-door delivery service of docu-

ments, samples and catalogues. Private and nongovernmental enterprises emerged in response to this re-

quirement. Some firms even began to use air-ground network in order to offer time-definite package delivery 

service.  

Later four magnates in the international EDSI entered into Chinese market consecutively. In Dec. 1986, 

DHL-SINOTRANS was founded in Beijing. A joint venture was established by TNT Express and SI-

NOTRANS Group. FedEx started its own direct flight to China and built its own logistic infrastructure in 

China quickly after that. Finally in Apr. 2001, UPS also expanded its business in China.9   

                                                      

5 See official website of DHL: http://www.dhl.de/de/ueber-uns/unternehmensportrait.html (access on 19.01.2013). 

6 See Oxford Economics (2009), p. 7.   

7 See Wang/ Liu (2000), pp. 36-37. 

8 See website: http://www.ems.com.cn/aboutus/fa_zhan_li_cheng.html (access on 19.01.2013). 

9 See Research on Development of Express Market in China (2009), pp.3-5. 

http://www.dhl.de/de/ueber-uns/unternehmensportrait.html
http://www.ems.com.cn/aboutus/fa_zhan_li_cheng.html
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After China’s accession to the WTO in 2001, China has promised that from Dec.11th, 2004 foreign-invested 

logistic enterprises can establish exclusively-founded enterprises in China and that from Dec. 18th, 2004 inter-

nal EDS market in China is officially opened to these exclusively-founded enterprises10. From that time major 

international EDS providers have intensively made investment, promoted market and enhanced service quali-

ty in China. China Post’s market share of internal EDS has decreased annually with an average rate of 4% 

since 2005, while the four international magnates, namely FedEx, UPS, DHL and TNT, keep the growth of 

annual sales volume for more than 30%.11  

1.2. Project introduction  

1.2.1. Introduction of Company A 

Company A, the sponsor of this project, is a state-owned enterprise in China. Its internal business covers more 

than 2000 cities in 31 provinces, autonomous regions and nationally administered municipalities all over Chi-

na with more than 30 thousand service points and sales agencies.  

To be more specific, internal EDS by Company A is based on a transportation network composed of a letter-

and-mail delivery network, express-exclusive flights and express handling centers. Its current air transporta-

tion network is supported by a self-owned aircraft fleet, a large number of commercial flights and 45 air trans-

portation handling centers. In July 2007 a new air hub was established in Nanjing. Fig.1-1 shows the business 

volume of internal EDS by Company A in recent years.          

 

Figure 1-1: Business volume of Company A  

(Source: based on company’s annual report)  

1.2.2. Project motivation 

1.2.2.1 Policy factors  

Policy pressure mainly comes from China’s commitment to the WTO. Foreign Market Access and National 

Treatment Clause are the two of the most important agreements among the General Agreement on Trade in 

                                                      

10 See official website of WTO: http://www.wto.org/ (access on 19.01.2013). 

11 See China Logistic Yearbook (2008), p.168. 

0

100000

200000

300000

400000

500000

600000
Quantity (thousand pieces)

http://www.wto.org/.(access


 

Chapter 1: Research background and preparation work                                                                                                          4 

Services (GATS) of the WTO.12 Form unilateral regulations and constraints that foreign firms had to follow 

have been eliminated according to China’s commitments to the WTO, such as the constraints on share ratios 

of logistics and freight forwarding companies, limited trucking licenses and limited integrated services in Chi-

na. Moreover, according to the National Treatment Clause in GATS, local EDS providers cannot enjoy pref-

erential policies, such as tax reduction, national subsidy, priority on highway, exemption from traffic control in 

metropolis and rapid channel for customs clearance. Otherwise the same preferential policies should also be 

applicable to foreign-invested service providers.      

1.2.2.2 Rise in demand    

It was estimated that the EDSI generated sales revenue (i.e. turnover) of USD 175 billion globally in 2008. 

Stripping out the inflation effect, the sales revenue of EDSI is estimated to have risen by over 20% since 2003 

at an average annual rate of 4%, slightly faster than the growth rate of the world economy (Fig.1-2 shows the 

increase percentage compared with 2003). According to the estimation by economists from Oxford University, 

the contribution of EDSI to the world GDP will reach USD 1350 billion in 201313. 

Fig.1-3 displays the fast growth of business volume of the EDS in China. Market size of EDS in China is 

strongly correlated to its GDP. Specifically, 1% increase in the GDP corresponds to 3% increase in the EDS 

market14. The hysteretic development of second-tier cites injects extra energy to the rise of EDS demand. 

Hence, the growth of EDS market in China will maintain over 25% in the following years. It is also estimated 

that the whole EDS market size in China will reach 163.2 billion USD in 2020, 82.5 billion of which comes 

from nationwide EDS15.  

 

Figure 1-2: Sales revenue of global EDSI versus global 

GDP(compared with 2003) 

(source : based on Oxford Economics(2009), p.5) 

 

Figure 1-3：Business volume of EDSI in China 16 

The fast expansion of the EDS market size in China results from the development of the high-tech, finance and 

service industries who are the major users of EDS (see Fig.1-4). Besides, two obvious trends also stimulate the 

                                                      

12 See http://www.wto.org/. 

13 See Oxford (2009), p.37. 

14 See Research on Development of Express Market in China (2009), p17. 

15 See Research on Development of Express Market in China (2009), p26. 

16 Data from 2002-2006 comes from Zhang/Zhao (2006), p34; Data from 2007-2011 comes from official website of China Post: 

http://www.spb.gov.cn/folder7/folder31/index_2.html (access on 19.01.2013). 
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demand of EDS in China.  

 

Figure 1-4: Major clients of EDSI  

(Source: based on Oxford Economics (2009), p.8)     

(1)Boom of E-Commerce  

Although EDS providers already partner with traditional catalog firms, C2C (consumer-to-consumer), B2B 

(business-to-business) and B2C (business-to-consumer) transactions over the Internet push up the EDS de-

mand. Private consumers in China begin to buy electric devices, toys, clothes and even furniture online. More-

over, enterprises purchase accessories and nonconventional raw material through online B2B platforms, such 

as Alibaba and Conghui36017.  

Following the development of E-Commerce, EDS in China has witnessed a rapid growth. Close cooperation 

between EDS providers and E-Commerce platforms, such as Alibaba and Taobao18, pushed C2C and B2C 

online sales volume to USD 21.3 billion in 2008, taking up nearly 1% of the total sales volume of the whole 

society. Statistical data show that E-Commerce in China created more than 500 million pieces of EDS order in 

2008, taking up almost half of all business volume of EDSI. Despite of the financial crisis in 2008, mid-size and 

large-size EDS providers in China achieved sales volume of about USD 6.65 billion (19.2% more than the year 

before) and accomplished 1.5 billion pieces of order19. 

(2) Prevalence of Just-in-time (JIT) and outsourcing strategy   

Demand for EDS is increasing rapidly as a result of the prevalence of JIT and outsourcing strategies among 

Chinese manufacturing enterprises. Compared with the high cost of large inventory, the cheap price of the 

EDS attracts manufacturers to use smaller but more frequent shipments for intermediate and final products.  

1.2.2.3 Current unreasonable service network  

                                                      

17 See their official websites http://www.alibaba.com/ and  http://www.hc360.com/ (both access on 19.01.2013). 

18 See its official website http://www.taobao.com/ (access on 19.01.2013). 

19 See Research on Development of Express Market in China, (2009) p.23. 
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As we have mentioned, Company A currently shares its service network with a letter-and-mail delivery ser-

vice provider, especially the ground transportation network. However, EDS and mail service are different 

essentially. Letter-and-mail service is widely offered to the whole society with relatively low price, while EDS 

is oriented to special requirements or even customized requirements, for instance, desk-to-desk and time-

definite delivery. Price of EDS is subject to the market discipline and depends on service level and also supply-

demand relations. Therefore, networks for letter-and-mail service should be widely spread, while networks for 

EDS should pay more attention to time efficiency and operational flexibility. A new service network with high 

air gateway density, seamless ground service and short road transportation is in demand.  

The above-mentioned factors motivate Company A to carry out the project and redesign its service network to 

meet the market challenge, allocate limited resources more efficiently and satisfy customer requirement, so 

that Company A can maintain its advantage and gain a larger market share.  

1.2.3. Project framework and research boundary  

The framework of the whole project is displayed in Fig.1-5.  
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Figure 1-5: Project framework  
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three planning levels. Strategic planning considers those decisions with long-term impacts on the network, 

including hub location and aircraft acquisition decisions. Tactical planning involves backbone network and 

tributary network planning under the constraints of the strategic decisions. Operational issues, such as rout-

ing and scheduling, are tackled at operational planning level.  

This dissertation is dedicated to the strategic planning of the network (the shadowed part in Fig.1-5), includ-

ing hub location, demand allocation and air service selection decisions. The input of our study is demand nodes 

and potential hubs sets, definition of services, demand volume and relevant cost information.   

1.3. Preparation work  

What kind of service Company A is going to provide determines the configuration and features of the trans-

portation network it needs. As preparation work of our research, this section briefly introduces how we posi-

tion the target service with marketing tools. Input data collection and modification will be introduced in 

Chap.6. 

1.3.1. Market segmentation  

Philip Kotler et al argued that market segmentation, target market selection and service positioning constitute 

the prerequisite steps in designing a successful marketing strategy.20 These steps guide the enterprise to focus 

its efforts on the right customers. We follow these three steps to position the target services.    

The concept of “market segmentation” was introduced by Wendell Smith in 195621. Although many defini-

tions of market segmentation have already been proposed, the original one proposed by Smith still keeps its 

value: “Market segmentation involves viewing a heterogeneous market as a number of smaller homogenous 

markets, in response to different preferences, attributable to the desires of consumers for more precise satisfac-

tion of their varying wants.”22 Market segmentation helps organizations to identify market opportunities, im-

prove the allocation of resources, develop a competitive market position and ultimately lead to more satisfied 

customers23.  

We divide the EDS market in China according to the geographical scope and service quality (see Fig.1-6). In 

the dimension of geographical scope, the EDS market in China has three market segments- international, na-

tionwide trans-city, and intra-city EDS. In the dimension of service quality, high, median and low service lev-

els are available in each market segment.   

International EDS is a capital and technology intensive business that also yields the highest profit. The re-

quirement of a wide-spread service network all over the world and advanced information systems excludes 

most service providers outside of this high-end market segment. More than 80% of the international EDS 

market in China is currently occupied by the four international express tycoons-DHL, TNT, UPS and FedEx.       

                                                      

20 See Chernev/Kotler (2008), pp. 1-2. 

21 See Smith (1956), p3. 

22 See Smith (1956), p.3. 

23 See Wind (1978), p.317. 
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Since nationwide trans-city EDS requires a service network all over China, this market segment is shared by 

few large enterprises. At the same time, 80% of the business volume centralizes in and between the delta re-

gions of Pearl River and Yangtz River, also Bohai Bay economical region. Meanwhile, some medium-size non-

governmental and private enterprises also provide trans-city but not totally nationwide EDS, focusing on one 

of these regional markets or connecting several major cities between areas.    

Intra-city EDS is a labor-intensive service that experiences the fastest growth in last few years. Without high 

technology and large investment on vehicles and distribution centers, many small nongovernmental and pri-

vate enterprises have entered into this fiercely competitive market, taking up nearly 80% of the market share.24 

Unbeatable operational flexibility and low labor cost enable these enterprises to offer fast desk-to-desk intra-

city EDS with quite low price. Fig.1-6 illustrates the major participants and their dominant positions in differ-

ent market segments.   

 

 

Figure 1-6: Market participants and their positions in market segments 

1.3.2. Target market selection 

Target market selection requires comprehensive understanding of the participants on the market. Different 

participants have corresponding strengths in different market segments. Every enterprise should understand 

the opportunity and risk outside, as well as the advantage and weakness of itself. It should make full use of its 

advantage and catch the opportunity, while eliminating its weakness and avoiding risk25. 

                                                      

24 See The First Statistic Survey on Express Delivery Service (2007), available online: http://www.spb.gov.cn/folder7/folder31/2007/07/2007-07-

24173.html (access on 19.01.2013). 

25 See Pfohl (2004), p.82. 
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Although Company A is still the leader in the nationwide trans-city EDS market, it has gradually lost its mar-

ket share, since it was reluctant to reform its inefficient service system and bureaucratic management mecha-

nism. Most customers could neither accept the high price nor bear the poor service. Meanwhile, some nongov-

ernmental and private enterprises expanded their business to nationwide scope. Some large state-owned en-

terprises began to reorganize and work together with local ground carriers to offer nationwide door-to-door 

EDS based on their resource advantages, taking China Railway Express (CRE) and China Air Express (CAE) 

as examples. Subject to the Chinese Postal Law issued in 1986, foreign-invested EDS providers were not al-

lowed to offer nationwide EDS in China until China’s accession into the WTO. That means they were only 

allowed to offer inbound and outbound delivery service that was directly triggered by their international ser-

vice. For this reason, at that time they could enter the Chinese internal EDS market only by cooperating with 

Chinese local companies, taking SINOTRANS as an example. However, this situation has changed after Chi-

na’s entry into the WTO. After Dec. 18th, 2004 when China’s internal EDS market was first opened to the 

outside world, foreign-invested enterprises began to expand their service network in China rapidly, from ma-

jor cities to second-tier cities.  

Currently, three major market participants, namely state-owned enterprises, nongovernmental and private 

enterprises and foreign-invested enterprises, share the nationwide trans-city EDS market in China. According 

to the statistics by the National Post Bureau, in 2006 state-owned, nongovernmental and private and foreign-

invested enterprises contributed 49.5%, 17.5% and 33% of the total sales volume of the trans-city EDS in Chi-

na, respectively (see Fig.1-7), and 58.4%, 27% and 14.6% of the total business volume(see Fig.1-8) 26. Follow-

ing after this analysis, we look deeper into the three players in the nationwide trans-city EDS market. Please 

refer to Tab.1-1 for the detailed comparison of their service networks.  

    

Figure 1-7: Composition of the sales volume of nationwide trans-

city EDS 

Figure 1-8: Composition of the business volume of nationwide 

trans-city EDS 

(Source: based on the first statistic survey on EDS (2007)) 

State-owned enterprises 

Although the number of state-owned enterprises, compared with that of private and nongovernmental enter-

prises, is quite small, most of them are well funded by the government and supported by different administra-

tive departments, such as the Ministry of Railways and Civil Aviation Administration of China. Based on the 

unique resources and infrastructures they control, they have corresponding overwhelming advantages in 

trunk transportation. They cooperate with local EDS providers to offer nationwide door-to-door EDS. Enter-

prises such as SINOTRANS, CRE and CAE are of this kind.       

                                                      

26 See the first statistic survey on EDS (2007). 
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Nongovernmental and private enterprises  

There are more than 6000 nongovernmental and private EDS enterprises in China, let alone those service 

providers who have not registered with the government27. More than 90% of them constrain their service in 

the local market, i.e. within an economical region such as delta region of Yangtz River, within a city or even 

within an industrial park. Nongovernmental and private enterprises that offer nationwide trans-city EDS 

mostly start their business from a regional market and expand their service network nationwide with the ad-

vantages of high reputation in the regional market and high operational flexibility. Enterprises that have done 

quite a good job and are thus nationally well known to the public are very limited, taking SF Express and 

SHENTONG Express (STO) as examples.  

International express magnates  

After China’s entry into the WTO, international express magnates, such as UPS, DHL, FedEx and TNT, 

consolidated and expanded their EDS in China through acquisition of Chinese homegrown enterprises or con-

struction of the service networks by themselves28. Taking advantages of their advanced IT system, fully-

fledged management and sufficient capital, they focus on the high-end market, by not only offering reliable 

services but also charging low prices, thus capturing more and more market share of the nationwide EDS.   

                                                      

27 See the first statistic survey on EDS (2007). 

28 We collect the information from home page of corresponding enterprises and compile as follows. All the information is updated till Nov. 2012. 

DHL announced on Mai 10, 2004 that it began to offer nationwide trans-city EDS officially in China. In order to expand its service coverage, in 2009 it 

purchased a native private company- Quanyi Express who had a widespread and profound service network. Service network of DHL in China now 

covers 318 cities, 123 of which are completely invested by DHL.  

In 2006 FedEx reinforced its ground network in China by purchasing the left 50% share in Datian Logistic, whose service network covered 89 cities 

and regions in China. FedEx officially entered into Chinese EDS market in Mai. 28, 2007 and began to offer Next Midday EDS among 19 cities in 

China by cooperating with a nongovernmental airline called Aokai Airline. FedEx locates its air hub in Xiaoshan Airport. Now it has service points in 

more than 220 cities in China and plans to cover another 100 cities in next 4 to 5 years.   

In order to develop EDS and logistic service in China rapidly, TNT purchased Huanyu, a leading LTL carrier in China in 2006. It has consequently a 

transportation network covering more than 1200 cities with more than 2000 service centers.  

UPS began to offer internal parcel delivery service in China from 2005 through cooperation with Yangtze River Express. 
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Enterprise  Profile of network Number of covered cities29 

Company A more than 45000 sales agencies, nearly 100 thousand employees 31 provinces and nearly 2000 cities 

DHL nearly 200 offices, about 7000 employees no information 

UPS 33 service centers  about 120 

FedEx30 118 affiliates  224, another 100 are planned  

TNT more than1600 operation sites and 21000 employees, only ground transpor-

tation 

more than 600  

CRE 26 daughter companies, 2030 agencies  1317 

CAR 33 affiliates, 3236 nationwide flight routes based on 140 airports, affiliated 

ground transportation networks 

about 300 

SF Express more than 2200 points of sales in 31 provinces, nearly 250 large and medium cities and 

1300 country-level cities   

STO 600 direct franchisees and more than 2000 indirect franchisees, about 4000 

points of sales, 50 distribution centers, 40 thousand employees      

nearly all prefectural-level cities  

YT Express 56 distribution centers, more than 60 thousand employees  more than 1300  

ZJS Express 32 affiliates, 3000 points of sales, 1000 agencies more than 2000 cities and regions  

Table 1-1: Network profile and service coverage of major nationwide trans-city EDS providers in China  

(Source: mainly based on home pages of corresponding enterprises, update in Nov, 2012) 

                                                      

29 We collect these data from home pages of corresponding enterprises and other official publications, which have different definitions of “city”. In China, we have municipality directly under the central government, 

prefectural-level city and county-level cities. Since not all publications provide clear definition on “city” they cite, we only list the number they mention.     

30 Information is updated till 2008.  
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Figure 1-9: Express business composition of Company A  

(Source: based on annual report of Company A in 2008)  

Fig.1-9 shows the express business composition of Company A in 2008. As we can identify, the primary busi-

ness of Company A is a standard express service. Specifically, it includes “next day EDS between major cities” 

and “2-3 day EDS across most parts of China”. Compared to Company A, its market competitors, such as SF 

and DHL, take “next morning EDS between major cities” (premium service defined in Company A’s current 

service system) as their primary business. In other words, the primary business of Company A is targeted to 

the mid-range and low-end market.  

 

Figure 1-10: SWOT analysis of nationwide trans-city EDS of Company A   

A profound SWOT analysis is conducted to help Company A position its target service in the nationwide 

trans-city EDS market (see Fig.1-10). Michael Porter’s theory “Competitive Advantage” illustrates that in 

order to create a defensible status and outperform competitors in a given industry, firms should orient towards 

the specific generic strategies- overall cost leadership, differentiation and focus31. In logistic industry, it is 

                                                      

31 See Porte (1998), p11. 
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practicable to carry out a hybrid strategy of cost leadership and focus, since the effect of EOS can be easily 

achieved32.  

Accordingly, Company A decides to focus on the high-end service in the primary market. To be more specific, 

Company A offers EDS of different service qualities simultaneously and focuses on high-end service in prima-

ry market. By focusing on the high-end service while offering standard service, Company A could serve its 

customers with lower cost, since the standard service can share the high fixed cost of the network and achieve 

economy of scale (EOS) and economy of scope (EOP).  

1.3.3. Service positioning 

New service system for nationwide trans-city EDS is defined according to the new market strategy (see 

Tab.1-2).  Company A will focus on the key services, i.e. overnight EDS, while offering the standard EDS sim-

ultaneously. The network planning in this dissertation only involves the key services.           

 

Service Type Delivery time Weight Price level Importance 

Overnight 

EDS 

Next 

Morning  

collected before cut-off time, deliv-

ered before 12:00 next business day 

<5kg premium key service 

Next 

Day  

collected before cut-off time, deliv-

ered before 18:00 next business day   

<30 kg medium key service 

Standard EDS collected before cut-off time, deliv-

ered within 2 or 3 business days  

<30 kg economical normal service 

Table 1-2: New service system of Company A  

1.4. Outline of the dissertation 

This dissertation is oriented towards the strategic planning of large-scale, multi-modal and time-definite net-

works for overnight trans-city EDS based on existing networks. The outline of the dissertation is illustrated 

in Fig.1-11.    

Chapter 1 is the preparation for our research. In Sec.1.1 we briefly introduce EDS and its development. In 

Sec.1.2, we introduce the project background and clarify our research boundary in the overall project frame-

work. In Sec.3 we define the new service system with marketing instruments based on the market strategy of 

the company. We also point out the target services for the network planning studied in this dissertation.   

Chapter 2 demonstrates the current research gaps and research focuses of this dissertation through literature 

review on network planning for EDS. In Sec.2.1 we first illustrate planning levels and common features of 

EDS networks. In Sec.2.2, we make literature review on HLPs in perspective of the advance, taxonomy and 

conventional assumptions. By indicating current research gaps, we point out the category of our models and 

research focuses of our study in Sec.2.3.   

                                                      

32 See Pfohl (2004), p.90. 
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Chapter 3 is devoted to the mathematical formulation of the models. In Sec.3.1 we describe in detail the net-

work structure, parcel paths and service policies. In Sec.3.2 we formulate the basic model with linear air cost 

rate. In order to model the air cost more correctly, we study flow-dependent cost function in Sec.3.3. In Sec. 

3.4 we propose two extension models with a cost select function for air backbone network.    

Chapter 4 proposes the framework of the solution process, algorithms for different decisions and five custom-

ized improvement techniques. After literature review on solutions of relevant HLPs in Sec.4.1.1, we decide to 

adopt meta-heuristics, particularly hybrid GAs, to solve our models. In Sec. 4.1.3 we divide our original prob-

lem into three hierarchical sub-problems and propose a framework for the overall solution process. From 

Sec.4.1.4 to Sec.4.1.6 we discuss algorithms for hub location, demand allocation and air service selection deci-

sions, respectively. In Sec.4.2 we propose five improvement techniques to different processes of GAs in order 

to improve the performance of the algorithms.   

In Chapter 5 computational tests with public data sets are carried out with the basic model to evaluate the 

performance of the proposed hybrid GAs and the first four improvement techniques. In Sec.5.1, we test the 

performance of the overall algorithms under small-scale instances with the CAB data set by comparing its 

solutions with the corresponding optimal solutions generated by CPLEX. Sec.5.2 involves computational tests 

under large-scale instances with the AP data set. We modify the AP data set in Sec.5.2.1, set parameters for 

GAs with preliminary computational tests in Sec.5.2.2 and test the performance of the first four proposed im-

provement techniques in Sec.5.2.3.  

Chapter 6 is dedicated to empirical study under real-life instances. Sec.6.1 specifies the preparation of input 

data for the models in the project. In Sec.6.2 we provide the solutions with extension model 1 (Ext.1) and ex-

tension model 2 (Ext.2) under the basic instance of the project data set and make some analysis and compari-

sons. We also conduct computational tests to see if the algorithms for Ext.2 can be further improved with Im-

provement technique 5. In Sec.6.3 Scenario planning is conducted to help decision-makers identify critical 

factors, capture uncertainty, weigh between costs and corresponding decision risks in order to make robust 

decisions. 

Chapter 7 summarizes the research and contribution of this dissertation. Equally important are the limitations 

and corresponding recommendations for future research.  
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2. Literature review on network planning for EDS  

This chapter is devoted to literature review on network planning for EDS. In Sec.2.1 we illustrate the plan-

ning levels and common features of EDS networks. In Sec.2.2 we make literature review on HLPs in perspec-

tive of the advance, taxonomy and conventional assumptions. By indicating current research gaps, we point 

out the category of our models and research focuses of our study in Sec.2.3.   

2.1. Network planning for EDS 

2.1.1. Planning levels of EDS networks 

The task for an EDS provider is to deliver mails and parcels from multiple origins to multiple destinations 

within a specified time period, which is called time-definite delivery service. On one side, customers in China 

constantly claim EDS of higher quality. In particular, they put great emphasis on delivery time and service 

reliability. On the other side, EDS providers have to face fierce market competition, increasing costs of fuel, 

toll and labor and an enhanced desire to protect the environment. To meet these challenges, they need an effi-

cient service network.   

For EDS providers that cover service region as large as China, multi-modal transportation networks are in-

dispensable. They operate large-scale transportation systems that are composed of aircraft, vehicles, consolida-

tion centers, sorting equipment and personnel to delivery mails and parcels between shippers and consignees. 

Thus, the network planning for EDS involves decisions about facility location and capacity, vehicle capacity, 

service quality (such as service frequency and delivery time), transport mode, vehicle routing and scheduling. 

In some cases, it also includes decisions about the reposition of empty containers and vehicles33. Traditionally, 

the planning of EDS network is carried out at three different levels in perspective of time horizon, i.e. strategic, 

tactical and operational planning. The following classification relates mostly to Teodor Gabriel Crainic34.  

 Strategic planning: Strategic or long-term planning looks several (sometimes dozens) years into the fu-

ture. The planning is not constrained by resources at hand. It involves decisions on the physical structure 

with regards to resources, locations and infrastructure. The management decides e. g. where terminals 

and hubs shall be built, the volume of personnel to be employed, and how many vehicles of which type 

shall be bought. The strategic planning level sometimes also deals with the definition of customer service 

types and tariff policies.35  

 Tactical planning: Tactical or medium-term planning deals with problems spanning from several weeks 

to several months with the aim of the design of the transportation network for the carriers. Given service 

policies, facility capacity and a finite number of vehicles and aircraft, tactical planning involves a set of in-

terrelated decisions to optimally allocate and utilize resources to achieve the economic and customer ser-

vice goals of the company36. Main decisions made at the tactical level concern the following issues: service 

                                                      

33 See e.g. Jansen et al (2004), pp.41-53. 

34 See Crainic / Laporte (1997), p.409; Cranic (2000), pp.272-288; Cranic (2003), pp.451-516; 

35 See Wieberneit (2008), p.80. 

36 See Crainic (2000), p.272. 
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selection, traffic distribution, terminal policies and general empty balancing37.  It is to be mentioned that 

researches under the name Service Network Design Problem (SNDP) 38or Express Shipment Service 

Network Design Problem (ESSNDP)39 actually deal with tactical and operational planning problems.  

 Operational planning: Operational or short-term planning involves day-to-day decisions in a highly dy-

namic environment where the time factor plays an important role. It is based on the output of the tactical 

planning. The planners (usually local management, dispatchers) are confronted with a dynamic environ-

ment, where the orders may arrive dynamically or the time windows for pickup and delivery alter from 

customer to customer. It includes the implementation and adjustment of schedules for vehicles, crews and 

maintenance activities, and the control of the shipment.  

Besides the three above-mentioned planning levels, there is a newly-proposed planning level called contingent 

planning40. While the traditional planning levels are oriented towards day-to-day situation, contingency plan-

ning aims at events of small probability. It prepares the system quick reaction to and recovery from accidents 

or even disasters, such as traffic accident, sudden demand volume change, weather disruption, breakdown of 

equipment, etc. It has become an increasingly hot topic in research circles to handle uncertainty or even disas-

ters. With regard to this, planning levels of EDS networks can be summarized in Fig.2-1.      

 

Figure 2-1: Planning levels of EDS networks   

                                                      

37 See Crainic (2000), p.275. 

Service selection: The routes on which services will be offered and the frequency and characteristics of each service. 

Traffic distribution: The itineraries (routes) and vehicles used to move the traffic of each demand: services used, vehicles used, terminals passed through, 

operations performed in these terminals. But actually routing planning can belong to either tactical or operational planning level, depending on the 

planning horizon. For example, routing planning can take into account the interactions between different transportation models over a medium term 

planning horizon. See e.g. Crainic et al (1984), pp.165-184; Roy et al (1992), pp.31-44; But routing planning can also be for short planning horizon, e.g. 

five working days. See Mourgaya/ Vanderbeck (2007), pp.1028-1041. 

Terminal policies: General rules that specify for each terminal the consolidation activities to perform. 

General empty balancing: It indicate how to reposition empty vehicles to meet the forecast needs of the next planning period. 

38 See Crainic (2000), p.272; Wieberneit  N. made a review on this problem. See Wieberneit (2008), pp.78-112.  

39  See Barnhart et al. (2002), p.239; Armacost et al. (2002), p.2; Kim (1997), p.685; Barnhart (1997), p.391; Grünert / Sebastian (2000), p.290; 

Büdenbender et al (2000), p. 364. 

40 See Barnhart et al. (2002), p. 244. 
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2.1.2. Common features of strategic network planning for EDS  

In order to fulfill delivery tasks over a large area in a tight time window with minimum cost, EDS providers 

need time and cost efficient transportation networks. We list some common features of network planning for 

EDS, mainly at strategic level, by reviewing case studies on this or similar topics41.  

 Network structure 

Network for multi-commodities42 or many-to-many transportation service is commonly with a hybrid hub-

and-spoke (H/S) configuration43. A typical H/S network consists of several tributary networks that connect 

demand nodes to hubs and a backbone network that connects the hubs. Depending on application domains, 

tributary networks are also called “local”, “feeder” or “access” networks. Backbone networks may sometimes be 

referred as “long haul”, “global” or “hub” networks. Hubs are named as “switches”, “gateways”, “control points” 

or “access points”.    

The impetus of applying H/S structure to multi-commodities networks comes from the considerations of cost, 

efficiency and operational flexibility. It is well-acknowledged that the H/S configuration is suitable for net-

works, in which it is expensive or impractical to establish a direct link between each origin-destination (O-D) 

pair. Traffic from different origins is consolidated at hubs and transported in bulk between hubs, since in-

creased volume of inter-hub traffic brings economies of scale (EOS). Barges, vessels or larger trucks are used 

on inter-hub links for cost efficiency, while aircraft are for time efficiency. Moreover, when the H/S system is a 

nonrestrictive one44, it has more flexibility for certain special requirement. Fig.2-2 shows a typical multi-

allocation nonrestrictive H/S network in practice with the background of the US. Solid lines represent one-

hub-stop and two-hub-stop service routes, and the dashed lines represent the nonstop service routes.  

 
Figure 2-2: Multi-allocation nonrestrictive H/S transportation network in practice 

(source: based on Aykin (1995), p.204) 

 Objective functions & constraints 

                                                      

41 We also go through case studies on network planning for postal service and less-than-truck service.  We pay closer attention to case studies that are 

of real-life applications, are multimodal or cover large geographical area.  

42 All shipments from the same origin to the same destination with the same service level can be defined as a commodity. 

43 Hybrid H/S network refers to network with stopover in spoke network or with direct link between two non-hub nodes.  

44 In nonrestrictive H/S network, there are direct links between any non-hub nodes.  
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Providers of premium EDS always pay more attention to service quality, most importantly, delivery time. The 

latest arrival hub location problems are studies accordingly, taking the minimization of the maximum delivery 

time as the objective and the number of hubs as constraints.45    

However, nearly every EDS provider should be responsible for its own profit and loss. Cost minimization is 

always regarded as the objective function in the strategic EDS network planning under the constraints of ser-

vice quality. Since service providers can capture their market share by offering similar services as their com-

petitors while charging lower prices.  

 Problem size & solution methods46 

Problems in real-life always mean large instance scale. Aggregation and clustering of demand nodes are two 

effective methods to reduce the instance scale. For example, in case of network restructuring for Swiss parcel 

delivery service, 3,700 Swiss postcode regions are aggregated to about 200 demand points as input of the 

model47.  

Even though, problems are still so large that heuristics or meta-heuristics, which can handle large-scale prob-

lems, are applied, although optimal solutions are not guaranteed. For example, an iterative hubbing –routing 

heuristic is applied to a network in Turkey with 81demand nodes.48 In the case of configuring a H/S network 

for a less-than-truck (LTL) trucking company in Brazil, genetic algorithms (GAs) is applied on HLPs with 46 

demand nodes and 46 potential hubs.49      

2.2. Literature review on HLPs  

The strategic network planning for EDS in this dissertation will simultaneously determines hub location, de-

mand allocation and air service selection. In this section we make literature review on HLPs that involve the 

first two decisions, i.e. hub location decisions and demand allocation decisions. The last type of decisions, i.e. 

air service selection decisions, actually aircraft fleet ownership decisions, will be discussed in Chapter3. 

2.2.1. Participants in H/S networks 

 Carriers  

The primary motivation for carriers to adopt H/S network structure is to seek cost efficiency from EOS50. For 

one thing, by consolidating flows through hubs inter-hub transportation cost rate by larger vehicles is lower 

than the transportation cost rate of moving commodities directly from origin to destination by smaller vehi-

                                                      

45 See e.g. Kara / Tansel (2001), pp.1408–1420. 

46 For details about solution methods for HLPs, please see Chapter 4.1.1. 

47 See Bruns et al. (2000), pp.285–302. 

48 See Cetiner et al (2010), pp.109-124. 

49 See Cunha/ Silva (2007), pp.747-758. 

50 See Pfohl (2004), p.127. 
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cles51. For another, by bundling flows H/S networks need much less links to serve all O-D pairs than fully 

interconnected networks 52. H/S networks with feeder routes and stopovers need even less vehicles than pure 

H/S networks53. However, this cost efficiency is based on the premise that the cost saving from bundling and 

consolidation can compensate the cost increase resulting from detour and transshipment54.  

With regard to management, hubs, as transshipment nodes for all shipments, become the core of whole system. 

Maintaining smooth flow at hubs is a tough but critical task for service providers. The reliability of the H/S 

system is more sensitive than fully interconnected network, since the paralysis of hubs will be a disaster to the 

whole system rather than only breakdown of a part of O-D pairs.     

 Network users      

H/S networks have both positive and negative impacts on their users. On the one hand, the cost saving from 

H/S networks for the carriers is partly at the cost of users, although it must not be a zero-sum game. For air 

passengers, it means longer travel time, inconvenient stopover at a third airport or even higher probability of 

luggage delay. For air freight, it means longer delivery time and more risk from transshipment. Therefore, 

users must be compensated with low fares. Otherwise they will turn to other direct service providers.  

On the other hand, H/S network adopter usually benefits users with high service frequency, which obviously 

increases the network access55. This strategy can make up part of its deficiency and help the service provider 

to seize market share56.  

2.2.2. Advance of HLPs  

The research topic HLP originated from aviation industry. After the Air Cargo Deregulation Act was issued 

in 1978 by Civil Aeronautics Board (CAB) in the U.S., most airlines began to transform their air networks to 

H/S structure, which invoked academic research in this area57.  

First, studies put more emphasis on market strategy, profitability of airlines and passenger welfare (such as 

frequency of flights and fares)58. In most cases air hub location problems came under the research area of eco-

                                                      

51 A similar research topic of HLPs is facility location problems (FLPs). The fundamental difference between these two topics is link between facilities. 

In FLPs, service is offered at or from the facilities. So the network planning problems determine where to locate the facilities and how to connect de-

mand nodes to their “home” facilities. However, demand in HLPs is specified as flow between origin and destination (e.g. flow of passengers, infor-

mation or commodities). The facilities (here hubs) serve as consolidation nodes along the flows that connect pairs of O-D. Although these two prob-

lems are quite similar in other aspects, there is no EOS on hub links in FLPs.      

52 Daskin illustrated this mechanism by a sample network with six nodes. See Daskin (1995), p.3. To be more general, if we have N nodes and if each 

node can be either origin or a destination, we need N(N-1) direct links in a network to compose a fully interconnected network. If we designate one of 

the nodes as hub and connect it to the rest nodes, we need only 2(N-1) links to serve all O-D pairs. The saving becomes larger as N increases. 

53 See Lin/Chen (2004), pp.271-283; Kuby /Gray (1993), pp. 1-12.  

54  See Domschke/ Krispin (1999), pp.279-304. 

55 See Butler/Huston (1990), pp. 3-16. 

56 See e.g. Borenstein (1989), pp. 344-365; Borenstein (1991), pp.1237–1266; Berry (1990), pp.394–399. 

57 See Jaillet et al (1996), p.195. 

58 See Morrison/ Winston (1986). 
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nomics. Air hubs were selected with regression models or other econometric models by considering a number 

of economic factors, such as population, per capita income and Gross Domestic Product (GDP)59.  

Later, the topic HLP was introduced by a number of pioneering researchers into the domain of management 

science (MS) and operations research (OR). More attention was paid to network structure (i.e. hub number 

and demand location), total costs and constraints on service quality and capacity. We confine the following 

literature review on HLPs within the domain of MS and OR.  

O’Kelly60 presented in 1987 the first recognized mathematical formulation for HLP by studying a passenger 

airline network. This pioneering work attracted the attention of researchers from a wide variety of fields. 

Since then HLP has become an active topic in MS. Campbell61 played a major role in completing modeling on 

HLPs. His papers are among the most important studies on hub modeling. Some authors also made great con-

tributions to improving this topic, including Aykin62 and Klincewicz63. In an effort to organize the growing 

number of papers on HLPs, O’Kelly & Miller64, Daskin65, Skorin-Kapov & Skorin-Kapov66, ReVelle67 , Klince-

wicz68 and Bryan & O’Kelly 69 made literature reviews on this topic.  

Early researches were based on rather strict assumptions on the network. The problem scale was quite small, 

probably owing to the limitation of computer technology at that time. Recognizing that the complexity of the 

HLPs prevented many important characteristics of real-life H/S networks from being modeled, some re-

searchers simplified the problem by holding the hub locations fixed, so that they could pay attention to incor-

porating more realistic characteristics of hub networks into models. Such extensions included the use of direct 

links between non-hub nodes70, mini or regional hubs for EDS systems71, network planning with profit maxi-

mization as objective72, and congestion problems at hubs73.            

However, one must keep in mind that hub location decision is always the key issue for strategic network plan-

ning. As computer technology improved and knowledge on HLPs grew, hub location and other decisions be-

gan to be made simultaneously. Several researchers developed models that incorporated additional important 

characteristics within the HLP framework. For example, models with hub fixed costs, capacity constraints to 

                                                      

59See Bauer (1987), pp.13-19. 

60See O’Kelly (1987), pp. 393–404. 

61 See Campell (1994), pp.31-49. 

62 See Aykin (1994), pp. 501-523; Aykin (1995), pp.201-221.  

63 See Klincewicz (1991), pp. 25-37; Klincewicz (1992), pp. 283-302. 

64 See O’Kelly et al (1994), pp. 31-40. 

65 See Daskin (1995), Chapter8.7. 

66 See Skorin-Kapov/ Skorin-Kapov (1995), pp.183-192.    

67 See ReVelle (1997), pp.3-13. 

68 See Klincewicz.(1998), pp.307-335. 

69.See Bryan/ O’Kelly (1999), pp. 275-295. 

70 See O’Kelly/ Miller (1994), pp. 31-41; O’Kelly (1998a), pp. 171-186; Jeng (1987); Flynn/ Ratik (1988), pp. 139-147; Kuby/ Gray (1993), pp. 1-12. 

71 See Hall (1989), pp.139-149; O’Kelly/ Lao (1991), pp. 283-297; O’Kelly (1998b), pp.77-99. 

72 See Daskin/Panayotopoulos (1989), pp. 91-99; Dobson/ Lederer (1993), pp. 281-297. 

73 See Grove/ O’Kelly (1986), pp. 103-119. 
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reduce congestion at hubs, threshold constraints to prevent links from being underutilized and modified cost 

function for inter-hub links74. Moreover, the objective of minimizing network cost may not be appropriate for 

all applications. Research efforts were also directed towards designing networks with various objectives. For 

instances, the p-hub center problem was proposed to minimize the maximum service time. Maximal hub cover-

ing problem was to cover as many demands as possible with a predefined number of hubs.  

Some recent reviews on HLPs summarize in detail the research status quo75. The statistics by Hekmatfar M. 

and Pishvaee M.76 show that the number of published papers on HLPs has increased significantly since 1985. 

We extend their work by updating the data till recently (see Fig.2-3). We collect the data with the search en-

gine “web of knowledge”77. We search papers with the key words “hub location”, “hub and spoke” and “net-

work planning” and include the papers that take HLPs as the main topic by reading through all the abstracts. 

We must note that the only one database has limited coverage. However, the purpose of this work is to distin-

guish the advance trend of research on HLPs.  Our results for the years 1985-2006 are quite similar to those 

by Hekmatfar M. and Pishvaee M., with small discrepancies in several years. 

 

Figure 2-3: Annual number of papers on HLPs (compiled by author)   

Research focus of HLPs was on modeling in early years, on improvement of models in the following years and 

on solution techniques in recent years78. Moreover, three obvious trends have appeared in recent works, i.e. 

more researches on multi-level network planning problems, on hierarchical network planning problems and 

more considerations on time constraints.    

Multi-level network planning problems  

                                                      

74 See e.g. Chou (1990), pp.243-258; O’Kelly (1992), pp. 293-306; Campbell (1993), pp.473-482; Aykin (1994), pp.501-523; Campbell (1994b), pp.31-49; 

Akyin (1995), pp.201-221; Jaillet et al. (1996), pp.195-212; O’Kelly (1998a), pp. 171-186; O’Kelly (1998b), pp.77-99; O’Kelly/ Bryan (1998), pp. 605-

616.   

75 See Hekmatfar /Pishvaee (2009), p.247; Thomadsen / Larsen (2007), pp.2520-2531; Alumur / Kara (2008), pp.1-21; ReVelle /Eiselt (2005), pp.1-15; 

ReVelle et al. (2008), pp.817-814. 

76 See Hekmatfar /Pishvaee (2009), p.247.  

77 URL: http://wokinfo.com/..  

78 See Hekmatfar /Pishvaee (2009), p.247. 
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Multi-level network planning problems79 here refers to the expansion of conventional HLPs from strategic 

planning to compound strategic-tactical planning by incorporating routing problems into location problems. 

It had been found that the conventional H/S network structure, i.e. fully interconnected/ star shaped struc-

ture, is effective in reducing transportation cost. But additional cost saving effects could be achieved if a tribu-

tary trip starts from a hub and covers many customers to make a tour and if a backbone trip covers many hubs. 

It would definitely reduce the number of vehicles operating in the system. With regards to this, locating hubs 

and generating multi-stop routes for tributary and backbone networks are combined together as hub location-

routing problems (HLRP) 80.  

In addition to identifying the location of hubs and the allocation of customers to the hubs in conventional 

HLPs, HLRPs must determine the allocation of customers to the routes, the order of visiting customers in 

tributary routes and the order of visiting hubs in backbone routes. Hence, HLRPs contain both location prob-

lems and vehicle-routing problems (VRRs) 81. HLRP is essentially a location problem with the distinguishing 

property of paying special attention to underlying issues of VRP. In order to achieve the optimization of the 

location problem (master problem), VRP (sub-problem) must be simultaneously considered82. The networks 

for conventional HLPs and HLRPs are compared in Fig.2-4 and 2-5 respectively.  

 

Figure 2-4: Network for conventional HLPs 

                                                      

79 The literal synonyms “level”, “layer”, “stage” and “hierarchy” here imply different meanings. The word “level” is used to distinguish planning horizon 

in this dissertation, namely strategic, tactical, operational and contingent planning as defined in Sec.2.1.1, while the words “layer”, “stage” and “hi-

erarchy” in the next bold tip are synonymously applied to describe network structure or architecture. 

80 We follow the name proposed by Cetiner et al. (2010), pp. 110. However, the HLRP defined by the author includes only multi-stop routes in tributary 

network but not in backbone network. 

81 The VRP is concerned with the determination of the optimal routes used by a fleet of vehicles to serve a set of customers. See Min et al (1998), pp.1-

15; Lin/ Kwok (2006), pp.1833-1849; Nagy/ Salhi (2007), pp. 649. 

82 It was formerly proposed to LRP. But it is also applicable to HLRP. See Nagy/Salhi (2007), p.650.  
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Figure 2-5: Network for hub location-routing problems (HLRPs)  

Actually, similar compound problems appeared first in FLPs as location-routing problems (LRPs) 83 .LRPs pay 

special attention to the underlying VRPs within FLPs. In addition to identifying the number and the location 

of facilities, LRPs also determine the allocation of customers to the facilities, the allocation of customers to the 

routes, and the order to visit the customers in routes. The popularity of research on LRPs almost parallels the 

advent of an integrated logistics concept84. Compared with LRPs, routing problems in HLRPs are not only 

involved in tributary networks but also in backbone networks. The relationship between conventional location 

problems and their expansions is displayed in Fig.2-6.  

 

 

Figure 2-6: Extensions of conventional location problems  

                                                      

83 See e.g. Or/ Pierskalla (1979), pp. 86–95; Jacobsen/ Madsen (1978), pp.378–387; Laporte / Norbert (1981), pp.224–226. For overview, please see 

Nagy/Salhi (2007), pp. 649-672. 

84 See Barreto et al. (2007), pp. 968-977; Sambola et al. (2005), pp.407-428. 
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To the best of our knowledge, routing possibilities within HLPs were first considered by Kuby and Gray85. 

Their formulation is to determine the least cost set of direct and stopover routes for the traffic from demand 

points to a hub. However, in their model the only hub is predetermined and there is no inter-hub link. Nagy 

and Salhi86 are the first ones to study HLRP, simultaneously determining hub locations and multi-stop feeder 

routes. They proposed a hierarchical heuristic, in which hub locations are determined in a master problem and 

routings are determined with neighborhood search in a sub-problem. Bruns et al 87 investigated the restructur-

ing of the Swiss postal services and the problem was composed of decisions on the number, capacity, and loca-

tion of transshipment points. Although there was no routing problem, they estimated the routing costs for the 

location model. Wasner and Zäpfel88 studied HLRP for parcel services. The model considers the possibility of 

direct transport between two non-hub points.  

There are also HLRPs, in which hubs are connected with tours while customers are connected to hubs directly. 

For example, Maheshwari89 developed a model for multi-zone truckload shipments. Direct shipments were 

assumed between a spoke and a hub, but loads could be sent through several hub-to-hub shipments. A con-

struction heuristic with tabu search (TS) framework was developed to solve larger sized problems. The study 

by Labbe et al 90 is to determine a simple cycle through a subset of vertices of a graph involving two types of 

costs: routing costs associated with the cycle itself and costs of assigning vertices not on the cycle to visited 

vertices. The objective is to minimize the routing costs, subject to an upper bound on the total assignment 

costs. Gunnarsson et al 91 considered a combined terminal location and ship routing problem for pulp distribu-

tion in Scandinavia. The purpose is to satisfy customers' annual demand of pulp products while minimizing the 

distribution costs. 

More complicated HLRPs include those with tours occurring at both hub and customer levels. Melechovsky et 

al92 dealt with a location-routing problem with non-linear cost functions. The proposed heuristics algorithm is 

a combination of a p-median approach to find an initial feasible solution and a meta-heuristic to improve the 

solution. It is a hybrid meta-heuristic merging Variable Neighborhood Search (VNS) and TS principles.  

Hierarchical network planning problems   

Hierarchical network in this dissertation can be also named as multi-layer or multi-stage network. One layer 

means one type of consolidation facilities in the network, either primary layer, secondary or even third layer. 

Conventional studies on HLPs are primarily concerned with one-layer models that include hubs and demand 

nodes. However, recent studies are more likely to extend the network span by considering two layers or even 

three layers in the network. That is to say, the network includes more than one kind of consolidation facilities, 

                                                      

85 See Kuby/ Gray (1993), 1–12. 

86 See Nagy /Salhi (1998), pp. 261–275. 

87 See Bruns et al (2000), pp. 285–302. 

88 See Wasner / Zäpfel (2004), pp. 403-419. 

89 See Maheshwari (2004), pp. 16-31.  

90 See Labbe et al. (2005), pp. 457–470. 

91 See Gunnarsson et al. (2006), pp.928-938. 

92 See Melechovsky et al. (2005), pp. 375-391.  
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for example hubs, depots, stations or centers. There are already a few HLPs dealing with two layers of facili-

ties93. Those related to EDS are by Wasner & Zäpfel, Lin & Chen, and Yaman & Ben-Ayed94.  

Considerations on time constraints  

With the development of HLPs, more considerations are included into models gradually. Service time becomes 

a main concern, which can be either the constraints in the model or the objective of the model95. This trend is 

triggered by requirement from customers and fierce market competition. 

For example, hub set covering problems involve H/S networks, in which commodities are delivered within 

certain time window between all O-D pairs. The objective is to minimize costs for hubs to be opened.96 The 

latest arrival hub network design problem, also called p-hub center problem97, is the problem to determine the 

location of hubs, the allocation of non-hubs to hubs and the associated routes between non-hubs and hubs with 

multiple stopovers. The objective is to minimize the maximum delivery time.98  

2.2.3. Taxonomy of HLPs 

HLPs can be categorized according to different criteria99, three of which are most commonly applied: objective 

function, allocation criterion and network architecture.  

2.2.3.1 Objective function 

As research branch of facility location problems (FLPs), almost all HLPs can find their counterparts in FLPs 

(see Tab.2-1). So the classification of FLPs according to objective function can be generally applied to HLPs100.   

We distinguish them into two categories, one with exogenous facility number and the other with endogenous 

facility number.   

 

 

 

                                                      

93 The corresponding problem in FLP is e.g. the pq-median problem proposed by Serra and ReVelle, which seeks to locate hierarchical facilities at two 

levels so as to obtain a coherent structure. See Serra/ ReVelle (1993), pp. 299-312; Serra/ ReVelle (1994), pp.63-82; Alminyana et al (1998), pp.1-

23.  

94 See Wasner / Zäpfel (2004), pp.403–419; Lin/ Chen (2004), pp.271-283; Yaman (2009), pp.643–658; Ben-Ayed (2010), pp.250–269; Ben-Ayed (2011), 

pp. 1-22. 

95 See Lin/ Chen (2008), pp. 986–1003; Chen et al (2008), pp. 493–515; Campbell (2009), pp.3107-3116.  

96 See Wagner (2007), p.932. Other researches on hub set covering problems, please refer to Campbell (1994), pp.387-405; Calik. et al (2009), pp.3088-

3096; Alumar/ Kara (2009), pp.1349-1359. It is also discussed in Sec.2.2.4. 

97 See Kara/ Tansel (2003), pp. 59-64; Kratica/ Stanimirovic (2006), pp.425-437; Campbell, et al. (2007), pp.819-835; Ernst (2009), pp. 2230-2241; 

Campbell (2009), pp. 3107-3116; Calik et al (2009), pp. 3088-3096.  

98 See Yaman et al. (2007), pp. 906-919. 

99 Please refer to some recent reviews on HLPs. See Hale/Moberg (2003), pp.21-35; Alumur/Kara (2008), pp.1-21; ReVelle/Eiselt, (2005), pp.1–19; 

Campbell (1994b), pp.387-405. 

100 See ReVelle et al. (2008), pp. 817–848; Nagy/ Salhi (2007), pp.649-672.  
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  FLPs HLPs 
E

x
o
g

en
o
u

s 
P

 

P-median 

Minimize the total transporta-

tion cost between demand 

nodes and facilities 

P-hub 

median 

Minimize the total transportation cost 

( including backbone network) 

P-center 

Minimize the maximum dis-

tance or time between any de-

mand node and its home facility  

P-hub cen-

ter 

Minimize the maximum distance or 

time between any origin-destination (or 

origin-to-hub, hub-to-hub or hub-to-

destination) pair  

Maximal 

covering 

Maximize covered demand with 

P facilities  

Maximal 

hub-

covering  

Maximize covered demand with P hubs  

E
n

d
o
g

en
o
u

s 
P

 

Total 

covering 

All demands are covered with 

least number of facilities 

Hub set- 

covering  

All demands are covered with least 

number of hubs  

Hub loca-

tion with 

fixed cost 

All demands are covered with minimum 

cost (both transportation and hub fixed 

cost).  

Table 2-1: Classification of HLPs according to objective (with counterparts in FLPs) 

However, HLPs are different from FLPs in three aspects, namely decision-making mechanism, allocation con-

siderations and service region101. 

(1) Decision-making mechanism 

The difference between some FLPs102 (such as location of hospitals and supermarkets) and HLPs is that FLP 

involves a user attraction system, while HLP concerns a goods delivery system. This distinction was first 

mentioned by O’Kelly and Miller103. For delivery systems, the networks are planned from the perspective of 

carriers in terms of both location and routing problems. In such model it makes sense for the entire problem to 

be treated as a unified simple objective optimization task. The end users (or customers, i.e. shippers or con-

signees) have no interest in the path of the goods. Only the cost of the system may impact on the price charged 

for the service. In user attraction systems, in contrast, facilities are located by service providers, while the end 

users decide which facility to use. In other words, in some FLPs, location and allocation (routing) decisions are 

decentralized. The network planner has to make some reasonable guesses on how the public will make use of 

those facilities. So the inconvenience and consumer behavior cannot be ignored in some FLPs. 

(2) Allocation considerations  

The fundamental difference between HLPs and FLPs is that demand in FLPs is represented by a point or area, 

while demand in HLPs is represented by a pair of nodes. In other words, facilities must be interconnected in 

                                                      

101 Some ideas were mentioned by O’Kelly. See O’Kelly (1998), pp.172-173.    

102 They are referred to certain kind of FLPs, in which customers are served at facilities. Facilities, such as fire station or newspaper distribution centers, 

do not belong to this kind.    

103 See O’Kelly/ Miller (1994), pp.31-40. 
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HLPs to serve all O-D pairs, while facilities are independent in FLPs. When the cost of traveling across the 

inter-hub link is free, HLPs reduce to FLPs104.  

For this reason, in some FLPs105 demands are allocated with nearest-distance criterion, since the travel cost or 

travel time consists of a single component: the segment from demands to the facility. However, in HLPs with 

restrictive H/S structure106 the travel cost or travel time of each demand consists of at least three components: 

(1) the travel cost from the origin to the hub, (2) the cost between hubs (if necessary) and (3) the travel cost 

from the hub to the destination. In this sense, the total travel cost must be considered for allocation decisions 

in HLPs.  

(3) Service region 

Nearest-distance allocation decisions in FLPs guarantee non-overlapping service regions. In turn, single allo-

cation criterion is not appropriate for all H/S systems by considering time constraints. Service regions in 

HLPs are sometimes overlapping.    

The comparison between HLPs and FLPs is summarized in Tab.2-2.  

 HLPs FLPs 

Demand  O-D pair Node or area 

Decision-making 

mechanism  

Delivery system with centralized decisions  User attraction system with decentral-

ized decisions  

Allocation consider-

ations  

Least travel cost  Nearest distance 

Service region Probably over-lapping  Non over-lapping 

Table 2-2: Comparison between HLPs and FLPs     

2.2.3.2 Allocation criterion：single or multi-allocation  

How many hubs a customer/demand node can be served, one or more? The answer to the question implies 

whether the network adopts single allocation criterion or multi-allocation criterion. H/S networks with single 

allocation criterion require any demand node to be uniquely assigned to an exclusive hub, while H/S networks 

with multi-allocation criterion allow demand nodes to be connected to several or all hubs. Different allocation 

criteria, whether single or multiple, result from different planning consideration and organization structure, 

and result in different transportation costs, system flexibility and reliability.   

Planning consideration 

In most cases a hub network that adopts multi-allocation criterion takes users’ benefit as one of the most im-

portant considerations, since the system may give up EOS on feeder and even backbone transportation to offer 

                                                      

104 See O’Kelly (1987), pp. 393-404. 

105 FLPs here are referred to the kind of FLPs, in which customers are served at facilities. 

106 That is all demands must be consolidated at hubs.  
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service with less travel time107. An air passenger network is best represented as a multi-allocation network, in 

which each demand node is potentially linked to a variety of hub cities, and therefore a passenger has the op-

tion to pick up a more convenient hub, through which to make a transfer.  

When cost efficiency of the system is under consideration, single-allocation models are a better choice for 

freight or communications networks, although sometimes multi-allocation models are also adopted by freight 

networks due to time or other constraints. The EOS on inter-hub links gives carriers the incentive to direct 

flows towards few hubs and make allocation decisions to minimize the transportation cost, while ignoring 

detours and inconvenience during the travel108. 

Organization structure  

Organization structure should be in line with the structure of the transportation network. As a matter of fact, 

most LTL truck companies and EDS providers adopt single-allocation network, allowing for the non-

overlapping supervision and clear responsibility between the hub regions 109.  

Transportation cost  

Under the multi-allocation criterion, the traffic originating from or ending at a certain demand node is divided 

into several parts that are transshipped through different hubs. Even the traffic with the same O-D can be 

divided and each part selects the path that minimizes its own travel cost. A single allocation model can be re-

garded as a special case of a multi-allocation model, when traffic can only go from the origin to its exclusive 

“home” hub and from “home” hub to the destination. Hence the variable transportation cost of multi-allocation 

models is at least as low as its corresponding single-allocation versions110. However, when fixed costs of spoke 

links are considered, this is not always the case. It will result in less spoke links in the network. And the high-

er the fixed cost is, the less multi-allocation happens111. 

System flexibility 

Moreover, multi-allocation policy can serve as an effective cost-saving measure in face of rise on inter-hub 

discount rate ( ). O’Kelly et al found that there is an increase in the number of multiple allocations as the 

inter-hub discount rate increases. The single-allocation model cannot employ this cost-saving strategy and 

may respond only by (1) changing hub location or (2) changing allocation decisions. Comparatively speaking, 

these two measures are not as efficient as the increase of multiple allocations that is only available to multi-

allocation models. As a result, the discrepancy of total cost between the two models increases as the inter-hub 

discount rate increases112. In this respect, single-allocation systems are not as flexible as multi-allocation sys-

tems under of uncertainty of transportation cost rate.   

                                                      

107 See O’Kelly (1998), p.174. 

108 See O’Kelly/ Morton (1998), p.171. 

109 See Bruns et al. (2000), p.290. 

110 See O'Kelly / Bryan (1996), p.126. Also see the result from Ernst/ Krishnamoorthy (1996), pp.139-154. and Ernst/ Krishnamoorthy (1998), pp. 100-

112.       

111 See Jaillet et al. (1996), p. 210. 

112 See O'Kelly / Bryan (1996), pp.125-138. 
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System reliability 

If it is permissible, or even required, that a demand node is connected to more than one hub, this provides al-

ternate routes in case of a spoke link failure. When a hub breaks down in multi-allocation networks, the de-

mands served by this hub can be partially or even totally served by other hubs. However, in single-allocation 

systems all the service for its subordinate nodes is interrupted. In this case, the negative impact on the multi-

allocation system is much less than that on the single-allocation system.    

The comparison of single allocation and multi-allocation criterion is summarized in Tab.2-3. 

  Single allocation Multi-allocation 

Applicable service  Passenger network Freight and communications network 

Planning consideration High efficiency in carrier’s perspective    Convenience in travelers’ perspective 

Organization structure Single supervision& clear responsibil-

ity 

Over-lapping service region  

Total variable transporta-

tion cost  

Relatively high Relatively low 

System flexibility Relatively low Relatively high 

System reliability  Relatively low Relatively high 

Table 2-3: Comparison between single-allocation and multi-allocation criterion 

2.2.3.3 Configuration of the network  

A H/S network is composed of one backbone network and several tributary networks, both of which can take 

different configurations summarized as follows.  

 

In most cases backbone network is assumed to be fully interconnected. But if one or more of those backbone 

links are not presented, it would be a “mesh” network as illustrated in Fig.2-7. The tributary network associ-

ated with hub A is a so-called “star” network, in which every other node is directly linked to hub A. The tribu-

tary network associated with hub B is a “tree” network and the tributary network associated with hub C is a 

simple “path” network. Finally, the tributary network associated with D has a “ring” structure. In a ring struc-

ture, traffic can travel around the ring in two directions. 

Backbone network: fully interconnected /mesh/star/tree/ring 

Tributary network: star/ tree/ path/ ring   
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Figure 2-7: Illustration of backbone and tributary networks  

So this can result in many different combinations for different modeling purposes. For example, star/star net-

works113, tree/star networks114, fully interconnected/star networks115, mesh/ star networks116, ring/star net-

works117 and different backbone networks with tree tributary networks118. 

2.2.4. Review on classical HLPs 

In this section we introduce in detail four classical HLPs. We take uncapacitated single-allocation ones as ex-

amples. 

P-hub median problem  

                                                      

113 In star/star network, a number of demand nodes are connected directly to intermediate hubs; the intermediate hubs, in turn, are connected directly 

to a central hub. It is already a well-studied problem. See Minoux (1989), pp. 313-360; Balakrishnan et al. (1991), pp. 237-284; Lee (1993), pp. 471-

482; Sridharan (1993), pp.305-312. 

114 It is a network, in which central hub can be connected to other intermediate hubs in a hierarchical fashion. See e.g. Pirkul/ Nagarajan (1992), pp.247-

261; Chamberland et al. (1996), pp. 525-536. 

115 This network structure is a common one that has been well discussed. See e.g. Campbell (1994b), pp.1-19; Sohn /Park(1997), pp.617-622 . 

116 See e. g. Boorstyn/ Frank (1977), pp.29-47; Gavish (1992), pp. 149-172. 

117 See Current/ Schilling (1994), pp.114-126; Gendreauet al. (1997), pp. 568-576. 

118 Example for path/ tree, see Pirkul et al. (1991), pp. 175-182; Example for tree/ tree, see Balakrishnan et al. (1994), pp.567-581. 
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The objective of the p-hub median problem is to minimize the total transportation cost to serve all demand, 

given n demand nodes, demand flow between all O-D pairs and the number of hubs to be located (p). 

Single allocation p-hub median problem was the first recognized mathematical formulation of HLP by 

O’Kelly119. Campbell120 produced the first linear integer programming formulation for this problem by defin-

ing four-subscript variables. Since the LP relaxation of Campbell formulation results in highly fractional solu-

tions, Skorin-Kapov et al.121 proposed a new mixed integer formulation for the problem. Other formulations 

were also proposed by Ernst and Krishnamoorthy122 and Ebery123.  

We introduce the p-hub median problem with the formulation by Skorin-Kapov et al.124. We adopt this four-

subscript formulation method to formulate our own models in later chapter. Let ijw be the flow between nodes 

i and j and ijc be the transportation cost of a unit of flow between i and j. Define ikx  as 1 if node i is allocated 

to hub k, and 0 otherwise; kkx takes on the value 1 if node k is a hub and it is 0 otherwise. Also define xijkm as 

flow from node i to j that is routed via hubs at locations k and m in that order. Parameter   is the factor for 

EOS; the unit cost of flow between hubs must be smaller than that between hubs and demand nodes since hubs 

concentrate flow, so 0 1  . The formulation is as follows. 

( )ij ijkm ik mj km

i j k m

Min w x c c c   (2-1) 

S.T. 1ik

k

x   for all i (2-2) 

 kk

k

x p  (2-3) 

 0,1ikx    for all i and k  (2-4) 

ij jjx x  for all i and j (2-5) 

ijkm ik

m

x x  for all i, j, k (2-6) 

ijkm jm

k

x x  for all i, j,m (2-7) 

 0,1ijkmx   for all i, j, k, m. (2-8) 

                                                      

119 See O’Kelly (1987), pp.393-404. 

120 See Campbell (1994b), pp.387-405. 

121 See Skorin-Kapov et al. (1996), pp.582-593. 

122 See Ernst/ Krishnamoorthy (1996), pp.139-154.  

123 See Ebery (2001), pp.447-458. 

124 See Skorin-Kapov et al. (1996), pp.582-593. 
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The p-hub median problem is NP-hard125. Moreover, even if the locations of the hubs are fixed, the allocation 

part of the problem is proved to be NP-hard by Kara126. 

P-hub center problem 

The p-hub median problem can sometimes lead to unsatisfactory results when worst-case O-D distances are 

excessively large. In order to avoid this drawback, p-hub center problems provide one option. It is a minimax 

problem. Campbell was the first to formulate and discuss the p -hub center problem. He defined three different 

types of problems.127 

(I) The maximum cost (or time) for any O-D pair is minimized. 

(II) The maximum cost (or time) for movement on any single link (origin-to-hub, hub-to-hub and hub-to-

destination) is minimized. 

(III) The maximum cost (or time) of movement between a hub and an origin (or a destination) is minimized. 

The first type is applied to a hub system involving perishable or time sensitive items. The second type in-

volves items that require some preserving/processing such as heating or cooling which is available at the hub 

locations. The third type is applied to the cases, in which feeder transportation is subject to a time limit.  

Kara and Tansel provided a combinatorial formulation of the single-allocation p-hub center problem128. Ernst 

et al. developed a new two-index formulation for this problem129. Compare with that by Kara and Tansel, 

Ernst’s formulation has more continuous variables but fewer constraints and requires less CPU time.  

Ernst et al130 defined a new variable kr  as the maximum collection/distribution cost (or time) between hub k 

and the nodes that are allocated to hub k. Z is a free variable to represent the objective. The objective is to 

minimize the maximum of the costs (or time) between any pair of nodes i and j. With previously defined pa-

rameters and decision variables, the formulation based on the first definition of the problem is expressed as:   

Min Z  (2-9) 

S.T. k ik ikr c x   for all i, k (2-10) 

k m kmZ r r c     for all k, m (2-11) 

0kr    for all k  (2-12) 

Also constraints (2-2)-(2-5).  

                                                      

125 See e.g. Alumur/ Kara (2008), p.5; Campbell (1996), p.926. 

126 See Kara (1999).  

127 See Campbell (1994b), pp.387-405.  

128 See Kara/ Tansel (2000), pp.648-655. 

129 See Ernst et al. (2009), pp.2230-2241. 

130 See Ernst et al (2009), pp.2230-2241. 
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Kara and Tansel 131 have proved that it is NP-complete by a reduction from the dominating set problem. Ernst 

et al. 132studied the allocation sub-problem of the single allocation p-hub center problem when hub locations 

are fixed. They also proved the NP-hardness of this problem. 

Hub set covering problem  

The hub set covering problem is to locate least number of hubs to cover all demand. In FLPs, demand nodes 

are considered to be covered if they are within a specified distance of a facility that can serve their demand. 

Campbell defined three coverage criteria for HLPs just as for the p-hub center problem133. The O-D pair (i , j ) 

is covered by hubs k and m if 

(I) the cost from i to j via k and m does not exceed a specified value, 

(II) the cost for each link in the path from i to j via k and m does not exceed a specified value, and 

(III) each of the origin-hub and hub-destination links meets separate specified values. 

Campbell134 presented the first mixed integer formulations for hub set covering problem. Kara and Tansel135 

presented and compared three different linearization of the original quadratic model and presented a new line-

ar model. Ernst et al.136 strengthened the formulation of Kara and Tansel by replacing a constraint with its 

aggregate form. This formulation performs better in terms of CPU time requirement than the formulation by 

Kara and Tansel. Wagner137 proposed new formulations for both single and multiple allocation hub set cover-

ing problems. By his proposed preprocessing techniques he rules out some hub assignments and thus the for-

mulations require less number of variables and constraints than that of Kara and Tansel’s formulation. We 

introduce the hub set covering problem with the formulation by Ernst for the sake of brevity.     

kk

k

Min x  (2-13) 

S.T. k m kmr r c     for all k, m (2-14) 

s.t. (2-2), (2-4),(2-5), (2-10), and (2-12)  

where   is the cover radius.  

Kara and Tansel138 proved that the single allocation hub set-covering problem is NP-hard.  

                                                      

131 See Kara/ Tansel (2000), pp.648-655. 

132 See Ernst et al (2009), pp.2230-2241. 

133 See Campbell (1994b), pp.387-405. 

134 See Campbell (1994b), pp.387-405. 

135 See Kara/ Tansel (2003), pp.59-64. 

136 See Ernst et al (2005). 

137 See Wagner (2007), pp.932-938.  

138 See Kara/ Tansel (2003), pp.59-64. All in the recent researches. See Alumur/Kara (2008), pp.9-11 and p.14.   
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Hub location problem with fixed cost 

Hub location problem with fixed cost discussed in this paper is discussed by some former studies in two sub-

problems, i.e. uncapacitated hub location problem (UHLP) and capacitated hub location problem (CHLP)139.  

O’Kelly140  introduced the single-allocation hub location problem with fixed costs by adding fixed costs of 

opening hubs into the p-hub median problem and making the number of hubs as a decision variable. He formu-

lated the problem as a quadratic integer program. Campbell presented the first linear programming formula-

tions for multiple/single-allocation uncapacitated/capacitated hub location problems141. Other formulations 

were also proposed by Abdinnour-Helm and Venkataramanan142, Ernst and Krishnamoorthy143. 

The hub location problem with fixed cost can be formulated as follows.  

( )+ij ijkm ik mj km k kk

i j k m k

Min w x c c c F x    (2-15) 

S.T. (2-2), (2-4)-(2-8)    

where kF is the fixed cost of opening a hub at node k.  

When the locations of the hubs are fixed, the allocation sub-problem is the same as the allocation sub-problem 

of the p-hub median problem, which has been proved to be NP-hard by Kara144. So the hub location problem 

with fixed cost is also NP-hard. 

Actually, all of the four classical HLPs discussed above are NP-hard (except for some special cases145). Thus 

the exact solution potential for these problems is limited. 

2.2.5. Conventional assumptions and corresponding extensions 

As we go through conventional models in early studies, we find three strict assumptions for model simplifica-

tion that are extensively cited in later researches146:  

(1) Hubs are fully interconnected with direct links147;  

                                                      

139 See the pertinent literature review by Hekmatfar/ Pishvaee (2009), pp. 243-270. 

140 See O’Kelly (1992), pp. 293–306. 

141 See Campbell (1994b), pp.387-405. 

142 See Abdinnour-Helm/ Venkataramanan (1998), pp.31-50. 

143 See Ernst/ Krishnamoorthy (1999), pp.141-159.  

144 See Kara (1999).  

145 For example, Sohn and Park have proved that the single allocation p-hub median problem in a two-hub system has a polynomial time algorithm. 

They also showed that it is NP-hard as soon as the number of hubs is three. See Sohn/ Park (2000), pp.17-25. 

146 For example in p-HLP by O’Kelly (1987), pp.393-404, in multi-allocation p-hub median location model by Campbell(1996), pp.923-925, in p-hub 

median location problem with fixed costs by O’Kelly (1992), pp.292–306,  in p-hub center location problem by Campbell (1994), pp. 387–405. 

These three assumptions were summarized by Alumur/ Kara (2008a), p.2.   
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(2) EOS on inter-hub link is incorporated in models with a fixed discount factor 148 ;  

(3) There is no direct link between any non-hub nodes, namely strict and restrictive H/S network.  

As we can see, these assumptions are so strict and simplified that they can hardly comply with reality. Some 

researchers have made efforts to relax one or more of these assumptions and incorporate more realistic charac-

teristics into hub location models.  

Extension 1: incompletely connected backbone network    

One relaxation to the conventional assumptions is that hubs are not completely interconnected149. This relaxa-

tion was extended as hub arc location problems that seek to locate certain number of discounted hub arcs to 

minimize the total transportation cost150.  

This assumption was also relaxed by introducing fixed or setup cost of inter-hub links in the network. The 

cost may depend on the length of the links or the geographical location of the links. If links are possible with 

different capacities, the setup cost may vary accordingly. When fixed cost of inter-hub links is considered, it 

may result in incompletely connected backbone network when other constraints are not violated. However, 

when fixed cost of link is included, the corresponding transportation cost is no longer linear but concave.    

Extension 2: variable discount rate on links 

Conventional H/S network models also make some simplifications on the cost structure of links. It is assumed 

that the discount rate on inter-hub links is exogenously fixed, i.e. discount rate on inter-hub links is independ-

ent of flow. It is also assumed that only flow on inter-hub links is discounted. These assumptions can simplify 

the modeling for the pure ground H/S network without much loss of reality, since inter-hub links are always 

served by trucks with higher efficiency. However, these assumptions can hardly be applied to air-ground H/S 

networks, since the air cost rate on inter-hub links is much higher than that on feeder links. Moreover, some-

times cost rate on both backbone and feeder links depends on flow151. It should be pointed out that the as-

sumption of flow-independent cost function not only miscalculates the total network cost but also may errone-

ously select hubs and make suboptimal allocation decisions152. More rational transportation cost calculation 

may be with a cost function that rewards the higher volume with lower cost rate.153 

Extension 3: nonrestrictive and nonstrict H/S network configuration 

                                                                                                                                                                                     

147 This implies that p hubs are connected by p(p-1)/2 undirected hub links or p(p-1) directed hub links.   

148 See O’Kelly/ Miller (1994), p.31; Skorin-Kapov et al (1996), pp.582-593; Ernst/ Krishnamoorthy (1996), pp.139-154. 

149 It was first studied by Chou. See Chou (1990), p.247.  

150 See Campbell et al. 2005(a), pp.1540–1555; Campbell et al. (2005b), pp.1556–1571; Campbell et al (2003), pp.555–574. 

151 See Horner/ O’Kelly (2001), p.255. 

152 See Repolho et al. (2010), p.957. 

153 That means the inter-hub link cost function is concave. Therefore, total network cost is minimized by forcing some interacting pairs to use non–

least-cost path. Passenger inconvenience (in terms of travel time) makes the network with the flow-dependent cost function inappropriate for pas-

senger air network. However, this gives freight network the opportunity to maximize load factors and EOS regardless of routing. See O’Kelly 

(1998), p.610. 
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In restrictive and strict H/S networks, all non-hub nodes are directly connected to hub(s), i.e. there is no di-

rect link between any non-hub nodes154. With less links, this network configuration has the advantage of con-

tracture simplicity, high resource utilization and low setup costs. In many applications, however, this rigid 

restriction may be undesirable concerning longer service time. In the case of passenger air network, for exam-

ple, most passengers prefer more convenient direct service, and would not make a stopover at a third airport. 

In EDS network, this restriction may lead to losing important niche market to rivals because of the inability to 

offer direct service. Sometimes it is even not economical to make transshipment through hub(s). Actually, 

when EOS by aggregating cannot compensate the detour, it is more economical to delivery directly.   

Thereby one variation of the restrictive and strict H/S network allows direct links between non hubs so that 

channeling flows through hubs is not required but adopted if the cost is lower and time constraints are not 

violated. Another variation is to include stopovers or tours in tributary networks. Models including non-hub 

to non-hub direct links or/and stopovers on feeder routes find that they always incur lower transportation 

cost and require fewer feeder vehicles with higher load factors than their strict counterparts155. Fig.2-8 shows 

an example of nonrestrictive and nonstrict H/S network with incompletely connected backbone network. 

When parcels travel from Hub A to Hub C, it must be transshipped at either Hub B or Hub D. Demand node 1 

and 2 forms a tributary route with one stopover. Demand nodes 3, 4, 5 and 6 form a ring route, which only 

needs one feeder truck. Demand 7 serves as a regional consolidation center with a tree-formed sub-network. It 

is also connected directly with Demand node 6. Demand node 11 is multi-allocated to both Hub A and D.    

 

Figure 2-8: Example of nonrestrictive and nonstrict H/S network 

                                                      

154 See O’Kelly/ Miller (1994), p.32; Bryan/ O’Kelly (1999), p.276; Zäpfel/Wasner (2002), p.208.   

155 See Aykin (1995), p.217; Kuby /Gray (1993), p11. 
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2.3. Current research gaps and research focuses of this dissertation 

2.3.1. Current research gaps 

 Multimodal transportation networks for EDS  

Multimodal transport (also known as combined transport) is “transport of goods under a single contract, but 

is performed with at least two different means of transport. The carrier is liable (in a legal sense) for the entire 

service, even though the service is performed by several different modes of transport (by rail, sea and road, for 

example)”.156 Under the background of globalization and a highly competitive market environment, multimod-

al transportation networks are integral to EDS providers who offer time-definite service over a large area. 

Carriers have to decide which transport mode to select so that all delivery tasks can be fulfilled in specified 

time window with minimum cost. Air transport implies fast delivery over long distance but at high cost, while 

ground transport has the opposite implication. In addition, trucking allows more flexibility in scheduling.  

The research topic “intermodal transport” shares some similarity with “multimodal transport” in our research. 

Intermodal transport is defined in 1993 by the European Conference of Ministers of Transport (ECMT) as 

“the carriage of goods by at least two different modes of transport in the same loading unit (an Intermodal 

Transport Unit or ITU) without stuffing or stripping operations when changing modes. It emphasizes the 

integrated use of two or more modes of transportation to deliver goods from origin to destination in a seam-

less flow.”157 However, practically most of the route is traveled by rail, inland waterway or ocean-going vessel 

and with the shortest possible initial and final journeys by road.158  In academic research it also has different 

emphasis, such as seamless transshipment, mode connectivity costs159, transit delays160 and mode choice161. 

However, researches under these two topics are based on similar H/S network structures, in which hubs (con-

solidation terminals, rail yards, intermodal platforms, and so on) serve as mode connection point.162  So re-

searches on intermodal networks can also be referred by researches on multimodal transportation networks 

for EDS.    

However, after we search papers on both of these two topics, i.e. “intermodal transport” and “multimodal 

transport”, we find that OR has focused mostly on transport problems of uni-modal transport modes. The 

number of studies on both topics is very limited.  In network planning for EDS or postal service that adopt 

multimodal transport, researchers first divide the whole network into several sub-networks according to 

transport modes and then study the sub-network(s) individually and separately163. The shortage of researches 

                                                      

156 See Macharis/Bontekoning (2004), p.400-416. It also includes classification and application of this problem.  

157 See Crainic et al (2007), p. 468. 

158 See Macharis/ Bontekoning (2004), p.400. 

159  See Groothedde et al. (2005), pp.567–583. 

160 See Ziliaskopoulos/Wardell (2000), pp. 486–502. 

161 See e.g. Kreutzberger (2008), pp.973-993; O’Kelly/ Lao (1991) , pp.283-297; McGinnis (1989), pp. 36-46.  

162 See Macharis/ Bontekoning (2004), p.408. 

163 See e.g. Grünert / Sebastian (2000), pp.289-309;  Grünert/ Sebastian/Thärigen (1999), p.16 ; Büdenbender/ Grüner/ Sebastian (2000), pp.364–380; 

Armacost et al. (2004), p.15; Kuby / Gray (1995), pp.1-12. 
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on multimodal network planning, especially those for EDS, may result from both theoretical and practical 

reasons.  

Since 1990 a substantial number of analytical publications specifically addressing intermodal transport issues 

have appeared. However, the use of OR in intermodal transport papers were still very limited until about 10 

years ago164. Theoretically, the planning for intermodal freight transport is more complicated than that for 

uni-modal systems. It involves at least two modes, which have their own specific characteristics in perspective 

of infrastructure and transport vehicles.  

EDSI itself is an emerging industry165 and the corresponding academic studies are less than those for tradi-

tional industries. In practice, EDS is often partially performed by sub-carriers (in legal language it is referred 

as "actual carriers")166, except when some large EDS providers own the whole service network by themselves. 

Carriers focus on one transport mode and outsource the left to other service providers, who have their own 

resource advantages. Or sometimes EDS providers have local agencies that are responsible for their own prof-

its and losses, so that the carriers have difficulty or no impetus to reorganize the whole network. Moreover, 

the requirement to plan multimodal transportation networks is not strong. Multimodal networks are only 

necessary for large countries or regions. At the same time those areas should be relatively developed so that 

the requirement for premium EDS is strong and intensive.167  

 Strategic planning for EDS networks 

Compared with studies on tactical planning, studies on strategic planning for EDS or postal service networks 

are relatively less. Hubs are always predetermined so that most studies are conducted at the tactical planning 

level168. The main reason may be that HLP is a relatively new ramification of FLP, which has a long history. 

Fruitful research results of FLPs can shed light on researches on HLPs169. Another reason may be that strate-

gic planning covers a quite long horizon, while tactical and operational planning is in demand more often.  

 Large-scale HLPs  

As we have mentioned in Sec.2.1.2, problems from real-life application are always of large scale. Although 

techniques for OR have been developed and new heuristics have been developed, due to the problem type, size 

and complexity, most researches on HLPs with OR are based on the CAB data set with 25 nodes. Some are 

based on the AP data set with 50 nodes and few are with 100 nodes170 and 200 nodes171. The largest instances 

                                                      

164 Researches on network models for terminal location decisions include those by e.g. Ishfaq/Sox (2011), pp.213-230; Groothedde/ Tavasszy (1999), 

pp.43-57; Van Duin/ Van Ham (1998), pp.11-14.  

165 See Sec.1.1.2 for the development of the EDSI. 

166 See Macharis/ Bontekoning (2004), p.414. 

167 Even for countries like Turkey, we cannot find research on multimodal network planning for nationwide EDS until 2010. See Çetiner et al (2010), 

pp.109–124. 

168 See e.g. Grünert/ Sebastian(2009), pp. 289-309; Lin/Chen (2004), pp. 271–283; Kim et al. (1999), pp. 391-407. 

169 For readers who are interested in FLPs, please refer to recent literature reviews, e.g. Liu (2009), and also books. See Liu (2009), pp.157-165; Klose/ 

Drexl (2005); Drezner/Hamacher (2001); Domschke (1997). 

170 See Labbe/ Yaman (2008), pp.19-33. 
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that are involved in OR, to the best of our knowledge, are those by Resende and Werneck, who proposed a 

heuristic combining fast local search and path-relinking within a multi-start heuristic for the uncapciated facil-

ity location problem and test its performance under instances with 1000 nodes.172 Wager proposed an exact 

cluster solution procedure for a cluster hub location problem (capacitated hub location problem under a non-

restrictive policy) and provided optimal results for instances with maximum 500 nodes.173 

2.3.2. Research focuses of this dissertation 

This project-based dissertation is applicable to strategically rebuilding or modifying the current network to 

offer trans-city overnight EDS in most part of China with a large-scale, multi-modal and time-definite net-

work. 

First, the network planning is conducted at a strategic level. We simultaneously determine the hub location, 

demand allocation and air service on hub arcs. The first two are involved in HLPs. The last one, which is actu-

ally aircraft fleet ownership decision, will be embedded in our hub network planning problem, since it has a 

quite long planning horizon. However, service network design problems (SNDP), such as routing and schedul-

ing, are not included in this dissertation174.        

Second, the planning is for an air-ground multimodal network. China is a quite large country. The network 

planned in this dissertation supports nationwide trans-city overnight EDS175 so that an air-ground multimodal 

transportation network is a must. In order to simplify the problem, we predefine the network with a fully in-

terconnected/star H/S structure. The backbone network is served by air, while the feeder networks are served 

by trucks. We consider important aspects of the multimodal transportation network, such as transshipment 

time, location of connection points, overall transportation cost and overall delivery time.  

Third, we plan a network for time-definite EDS. Delivery time has become a critical competitiveness for EDS 

providers and, therefore, is an important consideration in the network planning. Pertinent researches on this 

topic include “the latest arrival HLPs”176 and “hub set covering models”177. However, both of them take the 

total delivery time as coverage criterion178, resulting in different coverage radius for different hubs. In this 

dissertation, we define coverage constraints for both tributary and backbone networks179. There are two rea-

sons. For one thing, we roughly presume a fully interconnected backbone network during the strategic plan-

ning. Thus, we define a quite loose time window for the air network so that in practice there is still cost-

                                                                                                                                                                                     

171 See Contreras et al (2011), pp.41-55; In the case for Swiss parcel delivery service, the demand nodes in the models are about 200. 

172 See Resende/ Werneck (2006), pp.54-68. 

173 See Wagner (2007), pp.391-401. 

174 SNDPs require the determination of a set of routes for the assets and a set of shipments on the asset network, that satisfy all customer  demand with 

an acceptable level of service at minimum cost. and without violating capacities of service legs. See Barnhart et al. (2002), p. 239.     

175 For readers who are interested in pickup and delivery systems in metropolis, please refer to Hall (1996), pp.173-187; Hall (2001), pp.331-338. 

176 See e.g. Yaman (2007), pp. 906-919; Kara/ Tansel (2001), pp.1408-1420; Wagner (2004), pp.1751-1755.  

177 See e.g. Tan/ Kara (2007), pp.28-39; Kara/ Tansel (2003), pp.59-64; Alumur/Kara (2008), pp.1349-1359. 

178 Three well-acknowledged coverage criteria were defined by Campbell. See Campbell (1994b).pp. 387-405. Also see Sec.2.2.4.  

179 Since we assume that the time window for backbone air network is enough for direct flight between any of the potential hubs, we just omit these 

constraints in the model formulation.      
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saving opportunity by transshipment at a third airport. The corresponding air routing problem will be studied 

in tactical planning. For another, in practice the to-be-planned network also supports the Same Day EDS 

within each hub region, which makes the definition of the maximal hub coverage radius necessary. We plan 

the network for the whole service system from the top by considering the two key services in a nationwide 

scope. As the Same Day EDS only involves feeder networks, it is not included in this dissertation. 

Fourth, we base our planning on the current network by considering the current facilities with “Sunk Cost 

Theory” and aircraft fleet with flow-dependent cost function. We study two extension models, one with the 

optimal aircraft fleet composition and the other one under the constraints of the current fleet composition. 

Finally, our research is aim at strategically planning a large-scale network with 281 demand nodes. With re-

gard to this, we resort to hybrid GAs to get good solutions in bearable time but without the guarantee of find-

ing optimal solutions. We try to improve the performance of the algorithm with customized improvement 

techniques for different procedures of GAs. We also evaluate their performance with public test data sets. 

 

The models studied in this dissertation are a combination of hub location problem with fixed cost and hub set 

covering problem which have been introduced in Sec.2.2.4. Since neither of the two problems addresses both of 

the two issues :(1) the time constraints and (2) the total cost, especially transportation cost. In particular, the 

hub location problem with fixed cost, on the one hand, decides the optimal hub number, hub location and allo-

cation of demand nodes to hubs with the objective of minimizing the hub fixed cost and transportation cost. 

But it does not account for time constraints. The hub set covering problem, on the other hand, takes the cov-

erage criterion as constraints, while neglecting transportation cost, which is an important consideration for 

EDS providers.   

In this dissertation we combine these two problems together to complement each other. We minimize both 

hub fixed cost and transportation cost under the constraints that all demand nodes are covered by their “home” 

hub, by assuming that the time window for the air network is feasible for direct flight between any potential 

hubs. Actually we are not the first one to make this combination. The initial work, to our knowledge, is pro-

posed by Sim180, who named it as Hub Covering Flow Problem (HCFP). The author studied the best configu-

ration of H/S network that minimizes the total cost of opening hubs and transportation cost, while satisfying 

a maximum flying distance constraint between the hub and non-hub airports. The author provided two formu-

lations for the HCFP and compared the results by using the 50-node Australia Post (AP) data set and com-

mercial solver Xpress-MP. Later Campbell181 included the coverage constraints into the multi-allocation p-

hub median model and the hub arc location model to reflect the situations encountered during his work with 

the trucking industry. However, these are the only two works we can find that study a similar model as ours.  

By combining the hub set covering problem and hub location problem with fixed cost, we first propose the 

basic model, which conforms to the three conventional assumptions in Sec.2.2.5, i.e. fully interconnected hubs, 

fixed discount rate on hub arcs and no direct link between non-hub nodes. Then we extend the basic model by 

                                                      

180 See Sim (2007), available on internet: http://ir.uiowa.edu/etd/124. 

181 See Campbell (2009), pp. 3107-3116. 

http://ir.uiowa.edu/etd/124
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eliminating the assumption of fixed discount rate on hub arcs. Air service selection problem for the backbone 

air network is included by considering a cost select function that can be easily transformed into a piecewise 

linear cost function. We consider two different situations- whether the air service selection is subject to the 

current fleet composition (Ext.2) or not (Ext.1) (see Fig.2-9). 
 

 

Figure 2-9: The basic model and its extensions  
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3. Model formulation 

3.1. Network and service description  

We plan a transportation network to support nationwide trans-city overnight EDS, which is defined as key 

service in the service system182. Any order placed by the end of one business day (e.g. before 6:00 P.M.) should 

be accomplished in the morning (e.g. before12:00 A.M.) of the next business day or next business day (e.g. 

before 6:00 P.M.). This service will be offered in target market defined by Company A, including most of the 

economically developed cities in China183. In this section, we describe in detail the network structure, parcel 

paths and service on the target market.     

3.1.1. Network structure 

In order to provide a nationwide trans-city overnight EDS, we resort to a multimodal H/S network. We de-

fine it with a fully interconnected/star shaped H/S structure for the strategic planning in this dissertation. 

Particularly, several cities in the potential hub set are chosen as hubs, while all the other cities belonging to 

the target market are allocated to one of these hubs subject to the maximum direct distance constraints. All 

the hubs also serve as gateways for the air network, which are fully interconnected by direct air service. The 

non-hub cities are connected to their “home” hubs by direct ground service184. 

Single allocation criterion is adopted here under management and cost considerations. This decision is made 

by the management of Company A to maintain a non-overlapping organization structure and clear responsi-

bility for subsidiaries. Furthermore, additional feeder links also increase fixed cost of the network.  

Every hub is per se a demand node, which is also called in-hub demand node in this dissertation. Other de-

mand nodes that are not chosen as hubs are also called normal demand nodes. Service area of a hub, i.e. all the 

cities allocated to it together with the hub itself, is defined as a hub region. Every normal demand node is 

equipped with a city station, in which all parcels from and to that city are consolidated and sorted (called local 

sorting). Every hub is equipped with a regional ground consolidation center, in which all parcels from or to 

that region are consolidated and sorted (called regional sorting). It also serves as a gateway of the air network 

for all the demands from or to other hub regions to make air-ground transshipment. Because it also consoli-

dates and sorts parcels from and to that in-hub demand node, the city station and the regional consolidation 

center in the hub city is geographically coincident.  

The network structure is illustrated in Fig.3-1. The dashed line encloses ground the tributary/feeder net-

works, while the bold line encloses the air backbone network. Ground feeder links are represented by the fine 

dashed arrows and air backbone links are represented by the bold arrows. 

                                                      

182 See Tab.1-2 in Sec. 1.3.3. 

183 See Sec.6.1.1. 

184 As we have mentioned in Sec.2.2.5, hubs can be connected by air routes with stopovers if time permits. Moreover, several cities in one hub region can 

be served by one truck route with several stopovers. However, routing problems are not included in this dissertation. The network is simplified 

with fully interconnected/star H/S structure.  
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Figure 3-1: Multimodal H/S network for the overnight EDS     

3.1.2. Parcel paths185 

The EDS begins from orders online or through service hotline from customers. A fleet of vans responds to the 

requests before the local cutoff time in the late afternoon and picks up the parcels from shippers and deliver to 

the city station. After twilight local sorting, parcels with destination in other cities are loaded on a truck and 

transported from the city station to the consolidation center in the hub city through highway. However, this 

feeder transportation to consolidation center can be saved for a hub city, since the city station and the consoli-

dation center is identical so that the twilight local sorting is implemented in the consolidation center. That 

also means the cut-off time for an in-hub demand node can be later than other normal demand nodes in that 

hub region. After twilight regional sorting in the consolidation center, parcels with destination in other re-

                                                      

185 We differentiate several related concepts in this dissertation. An “arc” or a “link” is a node-to-node direct connection by vehicles or aircraft. A “path” 

is defined as a sequence of arcs used to deliver a parcel from its origin to its destination. A “route” is defined as a sequence of arcs traveled by the 

same vehicle. In this dissertation all the arcs, paths and routes are directed, i.e. in only one direction.   
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gions are transported by direct flights to destination hubs. Parcels with destination in the same region are left 

in the consolidation center. Early in the morning of the next business day, after all trans-regional parcels ar-

rive at their destination hub by air, both trans-regional and intra-regional parcels are sorted in the consolida-

tion center according to their destinations, called sunrise regional sorting. A fleet of trucks is then dispatched 

from the regional consolidation center to every city station in that region. After the parcels arrive at their 

destination cities, city stations unload the parcels from trucks, conduct sunrise local sorting and reload them 

onto a fleet of vans for city distribution. Likewise, feeder transportation to city station is saved if the destina-

tion city is that hub city. In this respect, after sunrise regional sorting parcels with destination in this hub city 

go directly into sunrise local sorting procedure.  

Different nodes along a parcel path play different roles, which are described in Tab.3-1. Although hubs and in-

hub demand nodes are geographically identical, they play different roles in the network. So we consider them 

as two different types of nodes in the network planning.  

 

Nodes  Roles in parcel 

path 
Attributes 

Hub 

Origin Hub 
Cut-off time: the latest time that feeder trucks  arrive at the 

hub, the earliest time that twilight regional sorting starts   

Destination Hub 
Set-up time: the latest time that aircraft arrive at the hub, the 

earliest time that sunrise regional sorting starts  

Demand 

node 

Normal 

demand 

node 

Origin city 
Cut-off time: the latest time that parcels arrive at city station, 

the earliest time that twilight local sorting starts  

Destination city 
Set-up time: the latest time that feeder trucks arrive at city 

station, the earliest time that sunrise local sorting starts 

In-hub 

demand 

node 

Origin city 

Cut-off time: the latest time that parcels arrive at regional con-

solidation center, the earliest time that twilight local sorting 

starts (later than the cut-off time for normal demand node)  

Destination city 

Set-up time: the latest time that sunrise regional sorting finish-

es, the earliest time that sunrise local sorting starts (earlier 

than the set-up time for normal demand node) 

Table 3-1: Nodes along parcel path and their attributes 

In this regard, there are 4 different kinds of paths for trans-regional parcels, i.e. normal demand node to nor-

mal demand node, normal demand node to in-hub demand node, in-hub demand node to normal demand node 

and in-hub demand node to in-hub demand node. Without the stretch of backbone air transportation, intra-

regional parcel paths are quite similar to those for trans-regional. Or we can regard it as a degenerated hub 

arc in intra-regional parcel paths. Consequently, totally there are 8 different parcel paths, 4 for trans-regional 

parcels and 4 for intra-regional ones (see Fig.3-2). Fig.3-3 and Fig.3-4 illustrate in detail the parcel paths from 

a normal demand node to a normal demand node and from an in-hub demand node to an in-hub demand node, 

respectively.    
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Figure 3-2: Description of parcel paths 
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Figure 3-3: Parcel path from a normal demand node to a normal demand node 
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Figure 3-4: Parcel path from an in-hub demand node to an in-hub demand node 
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3.1.3. Service specifications in the target market  

According to the market strategy of the company, the key services will be offered to the target market. But 

actually there are two kind of key services, i.e. next morning and next day EDS186. In other words, the service 

quality in terms of delivery time for each city in the target market depends on its role in the network, namely 

hub or non-hub city. Tab.3-2 specifies the services in the target market according to the origin and destination 

of delivery orders. Hub A and Hub B represent different hub nodes or in-hub demand nodes, while Region A 

and Region B are different regions covered by Hub A and Hub B. The first column stands for origins, while 

the first row stands for destinations. We can check the service policy according to the origin and destination of 

a delivery order. As we can see from the table, the arrival time depends on whether the destination is hub or 

not, no matter the delivery order is an intra-regional or a trans-regional one. Hub cities are provided with 

EDS with shorter delivery time, i.e. later cutoff time and earlier arrival time than other non-hub cities, since 

feeder ground transportation by truck is saved.  

 

O-D Hub A  Non-hub in region A  Hub B  Non-hub in region B  

Hub A next morning
187

 next day next morning next day 

Non-hub in region A next morning next day next morning next day 

Hub B next morning next day next morning next day 

Non-hub in region B next morning next day next morning next day 

Table 3-2: Service specifications in the target market 

3.2. Basic model 

3.2.1. Model assumptions 

In the basic model, two decisions are made simultaneously to minimize the overall cost: (1) the location of the 

hubs and (2) the allocation of non-hub nodes to “home” hubs. We follow the three conventional assumptions in 

HLPs listed in Sec.2.2.5: (1) a fully interconnected backbone network, (2) a fixed discount factor on hub arcs 

and (3) a strict and restrictive H/S network structure. Other assumptions are listed as follows. Most of them 

are also applicable to the extension models. If relaxed, they are pointed out accordingly.  

(1) All non-hub cities are directly connected to their unique “home” hubs. That is, the tributary network is 

“star” shaped with the single-allocation criterion.  

(2) Hubs are fully linked by direct flight. That is, the backbone network is fully interconnected. 

(3) The time window for the earliest departure and the latest arrival of aircraft is the same for all potential 

hubs.    

(4) Air cost is linearly dependent on distance and traffic volume. 

(5) There are no capacity constraints on hubs or arcs. 

                                                      

186 For next morning EDS, parcels arrive before 12:00 next business day. For next day EDS, parcels arrive before 18:00 next business day. Also see 

Tab.1-2 in Sec.1.3.3. 

187 It is actually intra-city EDS, which is not studied in this dissertation. 
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(6) Demand volume between all O-D pairs is deterministic. 

(7) Time window for air transportation satisfies the longest direct flight between hubs.  

(8)  All the distance applies to the triangle inequality.  

It is also to underline that there is no assumption on symmetric demand volume, which is an assumption quite 

commonly applied by previous studies188.  

3.2.2. Model formulation  

In this section, we propose a 0-1 integer programming model for our network planning problem. HLPs can be 

formulated in a variety of ways, depending on the form of decision variables. Different formulation methods 

for the same problem result in different numbers of variables and constraints189. In this dissertation, we use the 

four-subscript formulation method introduced by Campbell for a linear model190. 

The model is based on a network, in which the demand node set N and the potential hub set H ( H N ) are 

identified. The model is to locate hubs in the potential hub set H and allocate the remaining demand nodes in 

N to the located hubs under the constraints of the maximum hub coverage radius with the objective of mini-

mizing the total cost. The hub coverage radius is considered in the form of distance by transforming the time 

window for the feeder transportation into a distance bound with an average speed of truck on highway. The 

decision variables and parameters for the basic model are listed in Tab.3-3 and 3-4.  

 

Decision variables Description  

ikx ( , )i N k H   Refer to both location and allocation variable. 1ikx  if  node i is allocated to 

hub k, otherwise 0. When 1kkx  , k is a hub. 

ijkmy ( , , , )i j N k m H   Refer to path variable. 1ijkmy  , if  flow from node i to j via hubs k and m  in 

that order. Otherwise 0. Note ijkm ik jmy x x .  

Table 3-3: Decision variables in the basic model
 

 

 

 

 

 

 

Parameters Description  

                                                      

188 See e.g. Kuby /Gray (1993), pp. 1-12; Lin et al. (2003), pp.255-265. 

189 Campbell et al (2005b) listed three different integer programming formulations appeared in former studies: binary allocation variable by O’Kelly, 

four-subscript formulation by Campbell (1994) and flow tracking variable by Ernst and Krishnamoorthy (1996, 1998a). The first one is for single 

allocation problems. Because of the quadratic terms in the objective function, it was proved to be a poor choice for solution. The second and third 

ones are applicable to multiple-allocation problems. See Campbell et al.(2005b), p.1557; O’Kelly (1987), pp. 394-404; Campbell (1994), pp. 387-405; 

Ernst/Krishnamoorthy (1996), pp.139-154;  Ernst/Krishnamoorthy (1998a), pp.100-112.  

190 See Campbell (1994), pp. 387-405. It is also to be pointed out that the linear model is at the cost of more variables and constraints. 



 

Chapter 3: Modal formulation   52 

N  Set of  demand nodes  

H  
Set of  potential hubs, H N  

ijw  Demand volume from node ( )i i N to node  ( )j j N  
 

kfh  Fixed cost of  opening a new hub or expanding an existing hub at potential hub node 

( )k k H   

km  Cost rate by air in backbone network (per kilo- kilometer), ,k m H  

ik
 

Cost rate by truck in feeder network  (per kilo- kilometer), i N , k H
 

ikd  Distance by highway between non-hub node ( )i i N and its “home” hub ( )k k H   

kmd  Distance by air from hub node k to m , ,k m H , km mkd d  

kD  Distance bound as hub coverage radius of  potential hub node k, k H  

Table 3-4: Parameters in the basic model 

With the defined parameters and decision variables, we formulate the objective function as follows: 

Minimize  k kk ij ijkm ik ik km km mj mj

k H i N j N k H m H

fh x w y d d d  
    

     
(3-1) 

In the objective function, the first term sums the fixed costs of hubs either for new establishment or expansion. 

The second term calculates the total transportation cost. The demand volume and costs are calculated on daily 

basis.  

S. T. 1ik

k H

x


    
i N 

   
(3-2) 

ik kkx x
  

,i N k H     

 

(3-3) 

 0,1ikx 
   

,i N k H   

 

(3-4) 

0 ik ik kd x D  
  

,i N k H   
   

 

(3-5) 

ijkm ik

m H

y x


  , ,i j N k H   
 

(3-6) 

ijkm jm

k H

y x


  , ,i j N m H   
 

(3-7) 

1ijkm

m H k H

y
 


     

,i j N 
 

(3-8) 

 0,1ijkmy   , , ,i j N k m H   
 

(3-9) 

Constraints (3-2) and (3-4) ensure that every non-hub node is allocated to exactly one hub in conformity to the 

single-allocation criterion. Constraints (3-3) state that non-hub node cannot be allocated to another node un-

less that node is a hub. And when a node is hub itself, it is allocated to itself. Constraints (3-5) make sure that 

all non-hub nodes are allocated to their “home” hubs subject to the distance criteria. Constraints (3-6) state 
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that if node i is allocated to hub k, all the demand from node i to any other node j must go through some hub m. 

If node i and j are in the same hub region, m=k. Constraints (3-7) have a similar interpretation involving the 

demand from any node i to node j, which is assigned to hub m. Constraints (3-8) guarantee that there is one 

path for each O-D pair. Note that constraints (3-8), together with constraints (3-6) and (3-7), ensure that every 

node is allocated to only one hub. Constraints (3-9) are the constraints of path variables.  

In the basic model, when the hub locations are fixed, the allocation sub-problem is the same as the allocation 

sub-problem of the single allocation p-hub median problem, which has been proved to be NP-hard by Kara191. 

So the basic model here belongs to the class of NP-hard problems. If we set n N  and h H , the model 

has
2 2( )n h nh  binary variables and 

2 2(2 2 )n h n nh n   linear constraints.  

3.3. Flow-dependent air cost  

3.3.1. HLPs based on current network  

Virtually the vast majority of HLPs planned at the strategic level are based on the premise that the network is 

planned from scratch. That is to say, there is no need for planners to consider facilities and other fixed assets, 

such as vehicles and equipment, in current networks. However, in many real-life cases the planning is based on 

current networks that may need to be expanded, merged or even shrunk192, i.e. modification or reconstruction 

of current networks.    

This is the pragmatic problem that is faced by many EDS providers. In our case the to-be planned network is 

partially owned by a relatively large EDS provider in China and is at present supporting its nationwide ex-

press delivery business. Besides the resources that the company shares with its partner, a lot of proprietary 

assets have been invested in the current service network. Specifically, due to capacity bottleneck and market 

competition, it has built dozens of regional ground hubs, consolidation centers and air gateways consecutively 

without globally planning the network in the past few years. Built specially for express delivery business, 

these facilities are invested by Company A alone and not shared by its partner. Moreover, it owns several air-

craft exclusively for EDS. We must take these resources into account, when we globally plan the new network.     

 Current facilities   

Current facilities can sometimes be considered in the network planning with conditional facility location prob-

lems or facility relocation problems. Conditional facility location problem, whose name is acknowledged in 

literatures, actually deals with facility expansion problems. It tries to find the best location for p new facilities, 

when some existing facilities are already located in the area. Customers are assumed to get service from the 

closest facility whether existing or new, so most probably they are conditional p-center problem or conditional 

p-median problem193. Since they are dependent on the number of existing facilities, q, they are also called the 

conditional (p, q)-median/center problems194. Facility relocation problem handles with both facility expansion 

                                                      

191 See Kara (1999). Sohn and Park also proved it NP-hard when the hub number is larger than 2. See  Sohn/ Park (2000), pp.17-25. 

192 See e.g. ReVelle (2007), pp.533-540. 

193 See Tamir (2005), p.50.     

194 See e.g. Drezner (1995), p.525.  
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and phase-out problems. As a matter of fact, it is taken up as a reactive strategy for the organization to adjust 

itself in time to reality. This problem is also discussed with dynamic location methods195.   

In this dissertation we resort to the “Sunk Cost Theory” to consider current facilities with static models. We 

regard the value of the facilities that cannot be transferred into the new network or cannot be retrieved by 

transferring on the market as sunk cost. In the model we only consider extension cost of the potential hub 

nodes that are currently equipped with consolidation centers or regional ground hubs.  

 Current aircraft  

Aircraft is another kind of important fixed assets for EDS providers. Compared with truck and van, it incurs 

much higher purchase price and maintenance cost and has less chance to change hands on the market. Acquisi-

tion, possession, mothballing or selling of an aircraft is a relatively long-term decision compared to decision of 

other ground vehicles and equipment.      

As is anticipated, more hubs will be installed in the new network, indicating that more flight routes are neces-

sary. Actually, it is unnecessary and also uneconomical to satisfy all the air freight demand by self-owned air-

craft due to the small volume on most of the inter-links. Company A intends to continue to adopt a mixed air 

freight service strategy by out-sourcing and self-owned aircraft with the objective of minimizing the air cost. 

That means air freight tasks are fulfilled by both self-provided and commercial air services. Therefore, the 

strategic planning of the EDS network is also faced up with the following issues: how to assign current air-

craft in the new air network; is it more economical to purchase new aircraft and what type to choose or stop 

using current aircraft.      

The air service selection decision, basically speaking, aircraft fleet ownership decision, is seldom included in 

HLPs. However, in perspective of management the decision on whether outsourcing or self-provided service 

has much longer planning horizon than other tactical decision, such as vehicle routing and scheduling prob-

lems. For this reason, we include this decision in our network planning. The rest of this chapter is dedicated to 

research on air service selection decision and aircraft ownership decision by distinguishing cost functions of 

different air freight services196. In other words, the air cost is no longer as simple as that in the basic model. 

We separate different air services with flow-dependent cost functions, including service from self-owned air-

craft, normal suppliers on air freight market and contracted suppliers with quantity discount rate. The objec-

tive is to minimize the total cost by optimally determining the aircraft fleet ownership (Ext.1) or by making 

full use of the current self-owned aircraft (Ext.2). Meanwhile, we also investigate if air service selection deci-

sions can in turn impact on hub location decisions.   

Incorporating flow-dependent air cost functions into HLPs will break the one of the three classical assump-

tions197, i.e. fixed discount rate on hub arc, which means that the average cost rate of inter-hub links is fixed or 

                                                      

195 For example, Melachrinoudis and Min determined the optimal timing of relocation and phase-out in the planning horizon using a dynamic, multiple 

objective, and mixed-integer programming model. Wang et al. studied a budget constrained location problem in which they simultaneously con-

sider opening some new facilities and closing some existing facilities. See Melachrinoudis/Min (2000), pp.1-15; Wang et al. (2003), pp. 2047-2069. 

196 This method is also applicable to tributary network with ground transportation.  

197 For details, please refer to Sec.2.2.5. 
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independent on the flow and it is also lower than that on feeder route. In our case, this simple but arbitrary 

assumption will seriously distort the problem.  

For one thing, the travel cost is not always proportional to the flow. It is obvious that the average air cost 

decreases with the increase of the flow, when we consider link fixed cost. Moreover, contracted air freight 

suppliers always offer discount to the order that is above the predetermined minimum quantity (or threshold).   

For another, backbone cost rate is not always lower than feeder cost rate. The classical assumption is con-

sistent with the fact that travel cost in ground backbone network is lower than that in feeder network due to 

the possibility to utilize larger vehicles by bundling parcel streams in backbone transportation198. Economies 

of scale (EOS) typically result in lower cost rate on backbone links in comparison to that on tributary links. 

Higher cost in tributary networks may be the reason why nearly all HLRPs include vehicle routing problems 

(VRPs) for tributary networks rather than for backbone networks. However, the case in air-ground networks 

for EDS seems to be on the opposite side. Globalization and economic development propel the multimodal 

transportation systems to offer faster and seamless service. In EDSI, parcels and mails are consolidated for the 

sake of faster transportation mode rather than only for the sake of lower transportation cost. Backbone 

transport is more often than not accomplished by air with higher cost rate rather than by more economical 

lorry. Therefore, the backbone network, a vital factor of the cost and delivery time for the EDS, must be paid 

more attention. 

For these reasons, we put more emphasis on the backbone network and study service selection problem on 

backbone network rather than on tributary networks. 

3.3.2. Review on flow-dependent cost function    

As we have illustrated in the last section, exogenously determined and fixed travel cost rates oversimplify the 

problem and sometime run counter to real-life situations. In most real-life cases, transportation cost rates de-

pend on the flow, when the fixed cost of the links is under consideration. In particular, average cost decreases 

with the increase of the flow, or the cost (per kilometer) increases at a decreasing rate when the flow increases. 

In mathematical terminology, the cost function is concave rather than linear as commonly assumed.199 The 

mathematical definition of a concave function is:  

0
d

df


  

(3-10) 

2

2
0

d

df




 

(3-11) 

where  denotes the cost in per kilometer and f denotes the inter-hub flow.     

                                                      

198 Former studies estimated that backbone ground transportation cost for parcel delivery service takes up about 15%-25% of the total cost, while pickup 

and delivery cost takes up 35–60%. See Wasner/Zäpfel (2004), p.406; Salhi/ Rand (1989), pp.150–156. 

199 See e.g. Ben-Ayed (2012), p.7; Kimms (2005), p.301. 
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Fig.3-5 shows typical examples of total cost (per kilometer) of concave cost function and linear cost function, 

respectively. Fig.3-6 shows examples of average cost (per kilometer*kilo). The dashed line in both figures 

represents concave cost function, while the solid line represents the linear cost function assumed in traditional 

HLPs. The linear cost function in this dissertation is used to represent the cost function of ordinary service 

from the air freight market, while the concave cost function represents the situations when the fixed cost of 

self-owned vehicle is taken into account or when discount with minimum order quantity is offered by con-

tracted suppliers.  

Fig.3-5 demonstrates clearly the error resulting from the oversimplification of the discount rate by the classi-

cal assumption. The point where the two lines intersect represents the minimum flow (or threshold) to achieve 

the discount rate in traditional models. When the inter-hub flow is less than this threshold, the discount rate 

in traditional models is too large so that the transportation cost is underestimated. When the flow is larger 

than this threshold, the constant discount rate is not enough to reward the volume. Both of these two situa-

tions distort the backbone link cost. In addition, a constant cost rate can in no way encourage flow agglomera-

tion through inter-hub links so that the network does not make full use of the benefit from EOS. What is even 

more serious is that the oversimplification of the discount rate may lead to wrong decisions on hub location 

and demand allocation, since the location and allocation decisions are largely dependent on discount factors200.     

 

Figure 3-5: Total cost of concave cost function and linear cost function  

(Source: O’Kelly/Bryan (1998), p.607)  

                                                      

200 See O’Kelly /Bryan (1998), pp.605-616. 
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Figure 3-6: Average cost of concave cost function and linear cost function 

(Source: O’Kelly/Bryan (1998), p.607)  

In light of these considerations, transportation cost function that is more close to reality is called for by HLPs. 

By noting that applying a discount rate on inter-hub links while disregarding the flows contradicts the inten-

tion of EOS in H/S networks, some researchers introduced different approaches to model the transportation 

cost rate in H/S networks, including flow-dependent cost rate201 and flow threshold-based cost rate202. It is 

also believed that besides inter-hub links, spokes (links between hub and non-hub) can also bring about EOS 

with sufficient flow203.   

O’Kelly and Bryan204 set up a model called FLOWLOC, which is dedicated to modeling EOS on inter-hub 

links. The nonlinear cost function monotonically increases with the flow. The nonlinear function is then ap-

proximated by a piecewise linear function in such a way that the lower envelope of this piecewise linear func-

tion approximates the nonlinear function. The authors solved the hub location model with 20 nodes and 2-4 

hubs to optimum by using a standard mixed integer programming package. In their computational tests, each 

non-linear cost function was approximated by only two pieces of linear function. However, a single instance 

required as much as several days of computational time. Later, Klincewicz proposed a location enumeration 

procedure that is based upon TS and GRASP for the linearized FLOWLOC model. When the hub location is 

fixed, the remaining multi-allocation problem can be solved as an uncapacitated facility location problem 

(UFLP). 205  

                                                      

201 See e.g. Bryan (1998), pp.315–330; O’Kelly/Bryan (1998), pp.605–616; Horner/ O’Kelly (2001), pp.255-265. 

202 See e.g. Podnar/ Skorin-Kapo (2003), pp.207-228; Podnar et al (2002), pp.371-386; Campell (1994b), pp. 387-405. 

203 See Kimms (2005), pp.293-317; Racunicam/ Wynter (2005), pp. 453–477; Horner/ O’Kelly (2001), pp.255-265. 

204 See O'Kelly/ Bryan (1998), pp.605-616. 

205 See Klincewicz (2002), pp.107-122. 
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Racunicam and Wynter also defined a nonlinear concave cost function. Based on research results on polyhe-

dral properties of this problem, a linearization procedure along with two variable-reduction heuristics was 

developed. 206 It has been proved by Hamacher et al. that when polyhedral properties of the linear hub location 

model are adopted, the cuts in the mixed-integer programming are quite efficient at removing non-integer 

solutions.207 

Besides linearization of nonlinear cost functions, the most commonly used technique to handle concave cost 

function is approximating it with a piecewise linear function so as to allow the use of linear programming 

solvers, just as O'Kelly and Bryan208 did. In this respect, the network planning with concave cost is actually 

the minimum concave-cost network flow problem (MCNFP), which is also called concave piecewise linear 

network flow problem (CPLNFP) in some papers209.   

However, when the cost function is piecewise linear, the search for the optimal solution might be still very 

difficult, since this problem possesses high dimension of feasible region in network and thus a large number of 

local optima.210 A reference of the exact solution of MCNFP defined over polytope is that of Horst and Tuy211. 

In this book, numerous versions are presented for partitioning or covering the polytope of feasible solutions 

by polyhedral cones, and then solving one-dimensional problems over each cone. The method works much like 

a branch and bound (B&B) algorithm by enumerating wisely the extreme points that are likely to provide a 

global optimal solution of the problem. Consequently, it is inappropriate to solve large-scale MCNFP. More 

recent references for exact algorithms include variable disaggregation by Croxton et al.212 and bilinear relaxa-

tion-based algorithm by Nahapetyan and Pardalos213. Other works on exact solutions include those by Bala-

krishnan and Graves214, Verter and Dincer215, Cominetti and Ortega216 and Kim and Pardalos217. While exact 

methods can be only applied to small-scale problems, heuristics are for large-scale MCNFPs. An important 

contribution in this respect is that from Minoux218, who presented a path flow exchange algorithm based on 

repeated calculations of shortest path and shifts of flow across the shortest paths. This algorithm, which has 

the additional benefit of being very easy to implement, is still widely used today by many MCNFPs. 

                                                      

206 See Racunicam/ Wynter (2005), pp. 453–477. 

207 See Hamacher et al (2004), pp. 104-116. 

208 See O'Kelly/ Bryan (1998), pp.605-616. 

209 See e.g. Kim/ Pardalos (2000), pp.225-234; Croxton et al (2007), pp.146-157; Nahapetyan/ Pardalos (2007), pp.71-91;   

210 See Nahapetyan/ Pardalos (2007), p.72. 

211 See Horst/ Tuy (1996). 

212 See Croxton et al. (2003), pp.1268-1273; Croxton et al. (2007), pp.146-157.   

213 See  Nahapetyan/ Pardalos (2007), pp.71-91; 

214 See Balakrishnan/ Graves (1989), pp. 175–202. 

215 See Verter/ Dincer (1995), .pp.1141–1160. 

216 See Cominetti/ Ortega (1997). 

217 See Kim/ Pardalos (2000), pp.216–222. 

218 See Minoux (1989), pp.313-360. 
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3.3.3. Cost select function 

As we have mentioned in Sec.3.3.2, several methods have been adopted to model transportation cost in H/S 

networks, including piecewise linear cost function, nonlinear concave cost function and threshold-based dis-

count cost rate. In our opinion, the economic explanation for applying nonlinear concave cost function is 

somewhat weak, at least in our case, since the parameters in the function can hardly find economic interpreta-

tion in reality. Meanwhile, the threshold-based discount cost rate still depends on an exogenously fixed dis-

count rate . The solid line in Fig.3-7 presents a typical threshold-based cost function commonly applied in 

many studies. As a matter of fact, the threshold-based cost function has an unreasonable gap at the threshold 

point; the bold line implies that the cost is higher with less flow than the cost with more flow in certain inter-

val on the right side of the threshold point.  

 

Figure 3-7: Threshold-based discount cost rate  

 

Parameters Description  

P  set of  services   

pk  fixed cost of  service ( )p p P  (per kilometer)  

p  variable cost of  service ( )p p P  (per kilo*kilometer) 

l

pu  lower bound of  feasible domain for service ( )p p P  

u

pu  upper bound of  feasible domain for service ( )p p P  

Table 3-5: Parameters for the cost function 

In this dissertation, we employ a cost select function that can be calculated easily into a piecewise linear func-

tion if all cost parameters are defined. We specify the parameters in the cost select function in Tab.3-5. We use 

p to index the linear cost functions that represent different services in set P. We define service with a specific 

cost structure as one service, such as service with normal cost rate, service with quantity discount rate and 

services by different types of self-owned aircraft. The cost function for each one kind of service can be de-

scribed with an intercept 
pk (the fixed cost), a slope

p  
(the variable cost), a lower bound of feasible domain
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l

pu  and an upper bound
u

pu . Air service selection problem determines the service type for each hub link by min-

imizing the air cost with cost select function ( )klSF w  (see Eq.3-12). 
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 1,2, ,p P  , ,k l H  

(3-12) 

In some studies a specific cost function with variable cost and fixed cost is defined for each link219. In this dis-

sertation, we separate the distance factor from the cost rate so that the travel cost for each link can be estimat-

ed with the same cost function for the sake of simplicity. But these two methods share the common concern 

that the variable cost depends on the volume while the fixed cost dose not.  

However, actually the fixed cost is not completely proportional to the flight distance due to the considerable 

taking-off and landing cost incurred for every flight and other costs such as crew cost. Some works consider 

fixed cost based on time, e.g. annual fixed cost or daily fixed cost220. It may be more accurate to adopt daily 

fixed cost in this dissertation if the aircraft fleet is exclusive for the target EDS, i.e. key services, and one air-

craft conduct one flight every day. However, in our case, when a self-owned aircraft finishes the job of over-

night EDS, it will be dispatched for other business if possible. Moreover, in real-life instances aircraft may 

follow routes with one stopover if time permits. For these reasons, we have to fairly allocate the fixed cost to 

the overnight express delivery business. So considering the fixed cost based on distance is more reasonable for 

our case.   

When all the cost parameters in Eq.3-12 are defined, the cost select function can be easily transformed into a 

piecewise linear cost function, which is the lower envelope of all the linear cost functions, such as the solid line 

in Fig.3-8. For example, when the cost select function ( )klSF w is defined as Eq.3-13, the corresponding piece-

wise linear function ( )klPW w is expressed as Eq.3-14 and is illustrated in Fig.3-8. As we can see, the first 

turning point (0.5)of the piecewise linear cost function is determined by the intersection of slope 1 and slope 2, 

while the second intersection (1) is determined by the upper capacity of slope 2.        
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219 See e.g. Kimms (2005), p.301; O’Kelly (1998), p.609. 

220 See e.g. Ben-Ayed (2012), p.7. 
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Figure 3-8: Example for piecewise linear cost function  

Note that when parameters
p  

and 
pk  in Eq.3-12 satisfy the following inequalities, the corresponding piece-

wise linear cost function is a concave one, i.e. unit cost is monotonically increasing at a decreasing rate.  

1 2 0P         (3-15) 

1 2 Pk k k  
 

(3-16) 

3.3.3.2 Smooth treatment of the cost select function 

The piecewise linear cost function described in Fig.3-8 is relatively perfect that after each threshold the cost 

function comes to a more economical one. But cost select functions under real-life instances are most often not 

so perfect (see e.g. Fig.3-9). 

 

Figure 3-9: Normal piecewise linear cost function with constraints on feasible domain  
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spectively. Consequently, 1 2 0k k  , 1 0lu  and 1 2

u uu u   . Slope 3 and 4 represent air services by 
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maximum capacity constraints 
3

uu and
4

uu . Owing to the minimum quantity for the discount rate required by 

service providers, the first cost function jumps down to the second one with a gap described in Fig.3-9. But in 

reality service providers often fairly charge the same price when the flow lies in the interval of
2I, ul   . In this 

respect, we modify the cost select function into a more rational one with the horizontal solid line in the inter-

val
2I, ul    (see the horizontal bold line Fig.3-9).  

Therefore, we introduce a parameter  to smooth the cost select function and make up such unreasonable gap 

by dividing each former cost function into two segments if necessary and redefining lower and upper bounds 

(see Eq.3-18, 3-19 and Eq. 3-20) for the cost select function. The modified cost select function ' ( )klSF w is 

defined as Eq.3-17).  
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 1,2, ,p P ,k l H  ,  

(3-17) 

where  

1

l

p pu   (3-18) 

2 1

l

p pu   (3-19) 

3

u

p pu   (3-20) 

The modified cost select function has several advantages. First, the cost select function is less artificial and can 

be economically explained better than those nonlinear ones in our case. Every parameter in the cost select 

function has a corresponding economical meaning and can be estimated accordingly. Second, when all the cost 

parameters are determined, the cost select function can be easily transformed into a piecewise linear cost func-

tion, in which the cost rate is endogenously determined by the flow and  the turning points of the cost rate are 

determined mutually by all parameters. Third, only one kind of service is allowed on each link, which is re-

quired by the management out of operational reasons. So combination of different services is forbidden even 

when it is more economical. Fourth, the cost select function is in a generalized form, which can simultaneously 

include as many cost functions as possible for self-owned vehicles and outsourced service with different quanti-

ty discount policies. Finally, the cost select function undergoes a special smooth treatment to generate more 

reasonable cost rate. This method can be easily applied to other flow-dependent cost function formulation, e.g. 

threshold-based cost rate. 
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3.4. Extension models   

3.4.1. Extension model 1  

The basic model assumes that the air cost for all inter-hub links is proportional to the traffic volume. Exten-

sion model 1 (Ext.1) is to minimize the total cost of the network by considering different cost functions for 

different service types but without numerical constraints on these service types. The modified cost select func-

tion for inter-hub links proposed in last section is incorporated into the basic model to determine the hub loca-

tion, demand allocation, and most importantly here, the optimal aircraft fleet composition.      

We continue to apply all assumptions of the basic model in Section 3.2.1 except the 4th one, which is about the 

inter-hub link cost function. We list the additional assumptions for Ext.1 in the following.    

(1) Commercial air freight service is uncapacitated. In other words, there are no constraints on the upper 

bounds. 

(2) The cost select function is the same for all inter-hub links. 

(3) All direct flights satisfy the time window for the air network.   

We define two more decision variables for Ext.1 (see Tab.3-6). They are also applied in Ext.2. M is a very 

large constant. 

 

Decisions Description  

kmf  Flow on inter-hub link (k,m) , ,k m H  

p

kmz
 

1p

kmz    if  service ( )p p P  is applied on hub link ( , )k m , otherwise 0.  

Table 3-6: Decision variables for extension models 

Ext.1 is formulated as follows. 

                            

 

Minimize 

 

( ) ' ( ) p

k kk ij ijkm ik ik mj mj km km km

k H i N j N k H m H k H m H p P

fh x w y d d SF f z 
       

      

 

(3-21) 

In the objective function Eq.3-20, the first term represents the hub fixed cost. The second and third terms 

represent the tributary and backbone transportation cost respectively. The constraints of the model are as 

follows.     

 S.T. km ijkm ij

i N j N

f y w
 

    ,k m H   

(3-22) 

l p

p km kmu z f ,k m H  , k m  ,  1,2 ,p P  (3-23) 

(1 )u p

km p kmf u z M   ,k m H  , k m  ,  1,2 ,p P  (3-24) 

                 
2

1

ijkm

i N j N p

km

p P

y

z
n

 



 


   ,k m H  , k m , n N  

(3-25) 
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p

km kkz x  ,k m H  , k m ,  1,2 ,p P         (3-26) 

p

km mmz x   ,k m H  , k m ,  1,2 ,p P        (3-27) 

 0,1p

kmz    ,k m H  ,  1,2 ,p P  (3-28) 

0p

kkz  k H   1,2 ,p P
  

Also Constraints (3-2)-(3-9), (3-17)-(3-20).   

(3-29) 

Constraints (3-22) calculate the flow on the inter-hub link (k, m). Constraints (3-23) and (3.24) guarantee the 

flow falls in the feasible domain of the corresponding air service. Constraints (3-25) force the model to choose 

only one service for each hub link. Constraints (3-26) and (3-27) guarantee that this concave cost function is 

applied only to inter-hub links. Constraints (3-28) force the decision variables to be binary. Constraints (3-29) 

denote that when the origin hub and the destination hub are the same, air service is not necessary. Constraints 

(3-2)-(3-9) have the same meaning as those in the basic model. After the flow on the inter-hub link (k, m) is 

calculated, the only one cost function that charges the least cost is identified by minimizing the objective func-

tion. The corresponding binary variable
p

kmz  is set to be 1, in which the index p determines the optimal air ser-

vice, i.e. the fixed cost (intercept
pk ) and its corresponding variable cost (slope

p ), in the objective function.     

HLP with cost select function studied in this dissertation shares some similarities with previous researches. 

The most similar previous research is the FLOWLOC model by O’Kelly and Bryan221. Our model differs from 

the FLOWLOC model in several major aspects.  

(1) The biggest difference between the FLOWLOC model and ours is that FLOWLOC is a multi-allocation 

one, while ours is a single-allocation one;  

The single-allocation criterion and flow-dependent cost functions are especially appropriate for air freight 

networks, since the opportunity to maximize load factors regardless of routing gives the carrier every incen-

tive to capture EOS222. When the inter-hub cost function is concave and the single-allocation criterion is ap-

plied, the total network cost is minimized by forcing some interacting pairs to use non–least-cost paths. Pas-

senger inconvenience, e.g. longer travel time and congestion at airports, makes such network inappropriate for 

passenger airlines223. As far as solution method is concerned, even when the hub location is fixed, the single-

allocation sub-problem remains NP-hard224, while the multi-allocation sub-problem can be converted to an 

uncapacitated facility location problem (UFLP)225.  

(2) The piecewise linear cost function in the FLOWLOC model is an approximation of a nonlinear function, 

while each piece of the cost function in this dissertation denotes one kind of air service. All the intercepts, 

slopes and turning points have economic meaning.    

                                                      

221 See O’Kelly/ Bryan (1998), pp.605-616.  

222 See O’Kelly (1998a), pp. 171-186. 

223 See O’Kelly (1998), p.610. 

224 It has been proved by Kara (1999). 

225 See Klincewicz (2002), pp.107-122. 
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Another similar research is defined as hub arc location problems by Campbell et al.226. The authors studied 

models that minimize the total cost by selecting so-called hub arcs, which connect two hubs and on which cost 

rate is discounted by . In other words, whether the cost rate between two demand nodes is discounted by  

depends on the model. The total number of such discounted hub arcs is predefined in the model. The most 

significant difference between hub arc location problems and ours (also most HLPs) is that hub arc location 

problem takes an arc-oriented rather than node-oriented point of view and locates certain number of discount-

ed arcs rather than locates certain number of hub nodes. As we can see, in hub arc location problem the cost 

rate is dependent on arc type but independent on the flow through the arc. 

Podnar et al227 also questioned traditional hub location models and studied modeling approaches, by which the 

discount rate is applied under flow-dependent circumstances, i.e. if the flow through a link exceeds the pre-

scribed threshold, the cost is discounted by . The model also focuses on the links rather nodes. However, 

both hub arc location problem and model by Podnar et al are still based on the fixed discount factor , which 

is not a convincing approach to model EOS. Moreover, such cost structure can only define two cost rates. 

Among all the available researches on HLPs with piecewise linear cost function, we have not found any one 

that points out the irrational gap in the current definition of piecewise linear cost function228 and makes corre-

sponding remedy. We seem to be the first one to treat this problem through the formulation of a cost select 

function that can be easily transform into a piecewise linear cost function when all cost parameters are defined.   

3.4.2. Extension model 2   

As we have mentioned at the beginning of this chapter, the network planning studied in this dissertation is 

based on the current network. Since Company A has no intention to purchase as many aircraft as necessary for 

the new network in the near future, the number and the type of current self-owned aircraft should be also con-

sidered in the model. 

First, we would like to check if the constraints on currently self-owned aircraft fleet can distort the hub loca-

tion decisions in the long run. Second, we also want to check how these constraints affect the demand alloca-

tion decisions. Later, daughter companies will be established according to the decisions on hub location and 

demand allocation. Each daughter company is responsible for one hub region. For this reason, the allocation 

decisions are regarded by the management as long-term decisions, whose change will involve a series of issues, 

such as the change of the shareholding. Third, we would like to provide the self-owned aircraft fleet updating 

strategy, which is based on the assumption that all the hubs are linked by direct flight.   

On accounts of these three motivations, we insert the numerical constraints on the current aircraft in Ext.1to 

formulate extension mode 2 (Ext.2). We introduce the parameters listed in Tab. 3-7 to distinguish the air ser-

vice provided by self-owned aircraft and that from commercial air freight market.  

 

                                                      

226 See Campbell et al. (2005a), pp.1540-1555; Campbell et al. (2005b), pp.1556-1571. 

227 See Podnar et al. (2002), pp. 371-386. 

228 See Gap2 in Fig.3-9. 



 

Chapter 3: Modal formulation   66 

Decisions Description 
 

S  Set of  service by self-owned aircraft S P ,  

C  Set of  service from air freight market C P , C S P  , C S   

sq  
The number of  self-owned aircraft type  ( )s s S  

Table 3-7: Parameters for Ext.2 

All the assumptions for Ext.1 are also applied here. Moreover, we have the following assumptions especially 

for Ext.2. 

(1) The number of the self-owned aircraft is not enough to fully connect all hubs. Suppose hub number is

kk

k H

h x


 , then ( 1) / 2s

s S

q h h


   .  

(2) All self-owned aircraft can be used in the new network. In other words, the situation that some aircraft 

cannot be used in the new network due to the capacity constraint is eliminated.  

(3) Commercial air freight service is available on all inter-hub links. In other words, there are no constraints 

on cq . 

The Ext.2 is formulated as follows.   

Minimize  (3-21)  

S.T.
s

km s

k H m H

z q
 

     1,2,...,s S P 
 

Also Constraints (3-17)-(3-20), (3-23)-  (3-29). 

(3-30) 

Constraints (3-30) impose numerical constraints on each type of self-owned aircraft.    

3.5. Summary  

This chapter is dedicated to the formulation of the basic model and its extensions.  

In Sec.3.1 we propose a fully interconnected/star shaped H/S network for the multi-modal, time-definite na-

tionwide trans-city overnight EDS. Particularly, dozens of cities in the potential hub set are chosen as hubs, 

while all the other cities belonging to the target market are allocated to one of these hubs subject to the con-

straints of maximum hub coverage radius. All hubs also serve as gateways for the air network, which are fully 

connected by direct flight. Non-hub cities are connected to their “home” hubs by direct ground service. Based 

on the network, we illustrate 8 different parcel paths and specify the services in the target market. 

In Sec.3.2 we propose the basic model, which is formulated as a 0-1 integer program with the four script for-

mulation method.    

In Sec.3.3 we base the planning work on the existing network by considering current facilities with “Sunk 

Cost Theory” and current self-owned aircraft fleet with flow-dependent cost function. To distinguish different 

air services, a cost select function is adopted, which can be easily transformed into a piecewise linear cost func-
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tion when all cost parameters are defined. We point out the irrationality in current piecewise linear cost func-

tion that is widely applied in previous studies and make a special smooth treatment to remedy this problem.  

In Sec. 3.4 we propose two extension models by modifying the air freight cost with the cost selection function 

proposed in Sec.3.3.3. Ext.1 determines the optimal air freight on each hub link besides the hub location and 

demand allocation decisions. Ext.2 further considers the constraints on current self-owned aircraft fleet based 

on the assumption that all hubs are connected by direct flight.  It aims to check whether these constraints can 

affect the hub location and allocation decisions and provide aircraft fleet updating strategy. We also point out 

the difference between our model and other HLPs with flow-dependent cost function in previous studies.   
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4. Solution design and improvement techniques  

4.1. Solution review and design 

4.1.1. Literature review on solutions of related problems 

As we have mentioned in Sec.2.3.2, up till now only two published studies involve similar models as ours- one 

is named as Hub Covering Flow Problem (HCFP) by Sim and the other one is by Campbell. Sim solved the 50-

node instances from the Australia Post (AP) data set by using the commercial solver Xpress-MP and 25-node 

instances from the CAB data set by CPLEX.229 The tests by Campbell are based on the CAB data set with 

CPLEX.230 However, it is beyond the capability of CPLEX to solve the large-scale instances with 281 demand 

nodes from the project.231. In the following, we make reviews on solutions for related problems to enlighten 

our research.     

Since the models in this dissertation are combinations of hub location problems with fixed cost and hub set 

covering problems, we try to list all studies we can find on these two problems in Tab.4-1 and 4-2. We have 

also referred several recent literature reviews, including those by Alumur & Kara and Hekmatfar & Pishvaee232. 

We briefly describe models and solution techniques. Hub location problems with fixed cost are categorized 

according to the allocation criterion and hub capacity constraints. Hub capacity constraints are exclusive for 

the ramification of HLPs, since the number of hubs is not fixed. Hub capacity is considered in former studies in 

two different ways. One is constraint on the traffic that passes through hubs233. The other is constraint on the 

number of demand nodes that can be connected to hubs.  

 

Problem 

category 

Author and 

reference 

Model and solution technique 
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O’Kelly 234 quadratic integer program, heuristic algorithm to estimate a good 

upper bound   

Campbell 235 the first linear programming  formulation  

Abdinnour-Helm 

/Venkataramanan 

236 

new quadratic formulation, branch and bound (B&B) procedure to 

obtain lower bounds, GAs 

                                                      

229 See Sim (2007), available on internet: http://ir.uiowa.edu/etd/124.  (access on 20.01.2013). 

230 See Campbell (2009), pp. 3107-3116. 

231 IBM ILOG CPLEX Optimizer can solve problems with millions of constraints and variables. However, the numbers of variables and constraints are 

billions under the instances with 281 demand nodes. See the official website of IBM ilog cplex: 

 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (access on 20.02.2013). 

232 See Alumur/Kara (2008), pp.1-21; Hekmatfar/ Pishvaee (2009), pp.243-270. 

233 See e.g. Yaman / Carello (2005), p.3230. 

234 See O’Kelly (1992), pp.292–306. 

235 See Campbell (1994b), pp. 387–405. 

http://ir.uiowa.edu/etd/124
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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Abdinnour-Helm 

237 

hybrid heuristic algorithm of GAs and tabu search (TS) 

Labbe /Yaman238  valid and facet defining inequalities 

Topcouglu et al239  GAs 

Chen 240 TS and SA method 

Cunha/ Silva 241 hub discount rate according to traffic volume, GAs combined with 

simulated annealing (SA) 

Thomadsen/ 

Larsen242    

Branch-and-Price (combination of column generation and set par-

titioning) 

Silva/ Cunha243  Multi-start TS and two-stage integrated TS 
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Campbell244  first linear integer formulation 

Ernst 

/Krishnamoorthy

245  

new formulation, two heuristics, B&B algorithm 

Labbe et al246  B&B algortithm 

Costa et al 247  bi-criteria problems minimizing total cost and service time, inter-

active decision-aid approach developed for bi-criteria integer linear 

programming problems to generate non-dominated solutions 
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Campbell248  first linear integer formulation 

Klincewicz249  dual ascent and dual adjustment technique within a B&B scheme 

Marianov /Serra250 TS 

Mayer /Wagner251  new B&B method, dual ascent approach  

Boland et al 252 preprocess procedures, tight constraints 

Hamacher et al253  polyhedral study, new formulation 

                                                                                                                                                                                     

236 See Abdinnour-Helm/ Venkataramanan (1998), pp.31–50. 

237 See Abdinnour-Helm (1998), pp. 489–499. 

238 See Labbe et al (2005), pp. 371–405. 

239 See Topcuoglu et al (2005), pp.467–984. 

240 See Chen (2007), pp.211–220. 

241 See Cunha /Silva (2007), pp.747–758. 

242 See Thomadsen/ Larsen (2007), pp.2520–2531. 

243 See Silva/ Cunha (2009), pp.3152–3165. 

244 See Campbell (1994b), pp.387–405. 

245 See Ernst/ Krishnamoorthy (1999), pp. 141–159. 

246 See Labbe et al (2005), pp. 371–405. 

247 See Costa et al (2008), pp.3671–3695. 

248 See Campbell (1994b), pp.387-405.  

249 See Klincewicz (1996), pp.173–184. 

250 See Marianov/ Serra (2003), pp.983–1003. 

251 See Mayer/ Wagner (2002), pp.715–739. 

252 See Boland et al (2004), pp.638–653. 



 

Chapter 4: Solution design and improvement techniques  70 

Marin 254 valid inequalities, relax-and-cut algorithm 

Marin et al 255  new universal formulation, preprocess to reduce problem size 

Canovas et al256  heuristic-based and dual ascent technique, B&B algorithm 

Camargo et al257  benders decomposition 
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Campbell258  first linear integer formulation 

Ebery et al259  new formulation, customized heuristic, B& B algorithm 

Boland et al260  reprocess procedures, tight constraints 

Marin 261  tight integer linear programming formulations with some proper-

ties of the optimal solutions to speed up the solution 

Rodriguez-Martin/ 

Salazar-

Gonzalez262  

mixed integer linear programming with branch-and-cut based on 

decomposition method  

Table 4-1: Literature review on hub location problems with fixed cost263 

The studies on HLPs with endogenous hub number, mainly hub location problems with fixed cost and hub set 

covering problems, are not so rich compared to HLPs with exogenous hub number p, mainly p-hub median 

problem and p-hub center problem264. Nevertheless, it is also indicated clearly by the review that there is a 

significant increase of such researches since the year 2004, most of which resort to meta-heuristics265.  

Moreover, compared to models with multi-allocation criterion, models with single-allocation criterion is more 

difficult to solve. In the case of problems with multi-allocation and no capacity constraints, once the location of 

hubs is fixed, the allocation problem can be efficiently solved with an all-pairs shortest path/least cost prob-

lem266. However, in the corresponding problem with single-allocation criterion, even when hub location is 

                                                                                                                                                                                     

253 See Hamacher et al (2004), pp.104–116. 

254 See Marin (2005), pp.393-422. 

255 See Marin et al (2006), pp.274–292. 

256 See Canovas et al (2007), pp. 990–1007. 

257 See De Camargo et al (2008), pp.1047–1064. 

258 See Campbell (1994b), pp.387-405.  

259 See Ebery et al (2000), pp.614–631. 

260 See Boland et al (2004), pp. 638–653. 

261 See Marin (2005a), pp.3093–3109. 

262 See Rodriguez-Martin/ Salazar-Gonzalez (2008), pp. 468–479. 

263 It is to be noted that in the literature review by Hekmatfar & Pishvaee the hub location problem with fixed cost is categorized under the name unca-

pacitated hub location problem (UHLP) and capacitated hub location problem(CHLP), without mentioning the name hub location problem with 

fixed cost. It is also to be noted that hub location problems with fixed cost and exogenous hub number p are not included here. See two examples, 

Aykin (1995), pp.201–221; Sasaki/ Fukushima (2003), pp.409-428.  Actually they are the extensions of p-hub median problems by including hub 

fixed cost in objective function. 

264 See Hekmatfar/ Pishvaee (2009), p.260. 

265 See Hekmatfar/ Pishvaee (2009), p.261. 

266 See Ernst/ Krishnamoorthy (1998), pp.146-162. 
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known, the resulting allocation problem is equivalent to a quadratic semi-assignment problem, which is 

proved to be NP-hard267.  

 

Author and 

Reference 

Model and Solution Techniques 

Campbell268  first mixed integer formulation for hub covering problems with single and multi-

ple allocation 

Kara/ Tansel 269 new formulation for single allocation and  multiple allocation with quantity-

independent discount rates, three different linearization of quadratic model  

Wagner270  improved model formulation from Kara and Tansel, reduce problem size by re-

moving redundant constraints 

Ernst et al 271  a novel formulation focused on hub radius, enumerative solution method  

Hamacher/ 

Meyer272  

identified facet defining valid inequalities, binary search algorithm 

Tan/ Kara 273 latest arrival hub covering formulation, iterative location-routing heuristic  

Weng /Wang274 improve multiple allocation hub covering problem, scatter search and GAs     

Qu/ Weng 275  multiple allocation hub maximal covering problem, path relinking approach 

Hatice Calik et al 

276 

single allocation over incomplete hub network, TS  

Alumur et al277 linearization, incorporate valid inequalities, optimization with CPLEX 

Table 4-2: Literature review on hub set covering problems  

Tab.4-2 shows that the number of papers on hub set covering problems is even fewer compared with hub loca-

tion problems with fixed cost reviewed in Tab.4-1. After this problem was proposed by Campbell278 in 1994, it 

remained untouched until the year 2003 by Kara and Tansel. They also proved that single-allocation hub set 

covering problem is NP-hard279. 

                                                      

267 See Kara (1999). Sohn and Park also proved it NP-hard when the hub number is larger than 2. See  Sohn/ Park (2000), pp.17-25. 

268 See Campbell (1994b), pp.387-405. 

269 See Kara/ Tansel (2003), pp.59–64. 

270 See Wagner (2007), pp.932-938. 

271 See Ernst (2005), pp.1-18.  

272 See Hamacher/ Meyer (2006), pp.1-18. 

273 See Tan/ Kara (2007), pp. 28–39. 

274 See Weng/ Wang (2008), pp.408–411. 

275 See Qu/Weng (2009), pp.1890-1894. 

276 See Calik et al (2009), pp. 3088-3096. 

277 See Alumur et al (2009), pp.936–951. 

278 See Campbell (1994b), pp.387-405. 

279 See Kara/ Tansel (2003), pp.59–64. 
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Two categories of solution methods 

Most of the HLPs are studied with mixed-integer programming (MIP) models or 0-1 integer programming 

(IP) models. As we go through solution methods for HLPs, they can be roughly divided into two categories 

according to the master algorithms280, i.e. exact methods and heuristics, mainly meta-heuristics281.  

(1) Exact methods  

Advanced exact algorithms that have been used for solving HLPs include: 

 cutting-plane method,  

 branch and bound (B&B),  

 branch and cut,  

 branch and price,  

 Lagrangian relaxation, 

 column generation, 

 partitioning method, 

 Benders’ Decomposition, 

 dual-ascent and 

 combination of these282. 

HLP was first formulated as a quadratic model by O’Kelly283. Linearization was a great advance that allows 

the use of linear programming methods to find the optimal solution and prove its optimality284. Techniques 

                                                      

280 With the development of algorithms for combinatorial optimization problems, more and more algorithms are hybrids of exact methods and (meta-) 

heuristics, which will be discussed in Sec.4.1.2. For this reason, it is better to categorise solution methods according to the master algorithm. For 

example, the method by Ernst and Krishnamoorthy is essentially an exact algorithm incorporated with meta-heuristics. They used upper bound 

obtained from the SA heuristic to develop a LP-based B&B algorithm. See Ernst /Krishnamoorthy (1996), pp. 139–154. Readers who are interest-

ed in hybridized algorithms may refer to Raidl/ Puchinger and Jourdan et al. See Raidl/ Puchinger (2008), pp.31-62; Jourdan et al (2009), pp.620-

629. 

281 Heuristics can be categorized mainly into three classes: constructive heuristics, improvement heuristics and incomplete exact heuristics. Constructive 

heuristics generate solutions from scratch by adding opportunely defined solution components to an initially empty partial solution. This is done 

until a solution is complete or other stopping criteria are satisfied. Improvement heuristics, e.g. local search, start from some initial solution and 

iteratively try to replace the current solution by a better solution in an appropriately defined neighborhood of the current solution. Incomplete 

exact heuristics generate feasible solutions for early stage of exact solutions, e.g. B&B.  Meta-heuristics are solution methods that orchestrate an 

interaction between the basic heuristics and higher level strategies to create a process capable of escaping from local optimal and performing a ro-

bust search of a solution space. See e.eg Mayer (2001), p.90; Domschke (1997),Chapter1.3; Domschke/ Drexl (1998), p.120; Dorigo / Stützle. 

http://www.metaheuristics.net/( access on 20.01.2013). 

282 Exact methods can also be combined with other exact methods. For example, Thomadsen and Larsen inserted column generation into branch-and-

price algorithm to solve a hierarchical network problem. Canovas et al embeded dual-ascent technique in B&B framework to solve uncapacitated 

multi-allocation HLP. Rodriguez et al. based branch-and-cut algorithms on Benders’ Decomposition method. Sasaki and Fukushima presented a 

model for the capacitated 1-stop multi-allocation HLP, which was solved by a B&B algorithm with Lagrangean relaxation bounding strategy. See 

Thomadsen/Larsen J (2007), pp.2520–2531; Canovas et al (2007), pp.990–1007; Rodriguez et al (2007), pp. 495–505; Sasaki/ Fukushima (2003), 

pp.409-428. 

http://en.wikipedia.org/wiki/Cutting-plane_method
http://en.wikipedia.org/wiki/Branch_and_bound
http://en.wikipedia.org/wiki/Branch_and_cut
http://en.wikipedia.org/wiki/Branch_and_price
http://www.metaheuristics.net/
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have been proposed to accelerate the solution speed and improve the performance of algorithms, including 

tailored heuristics in linear programming285, tightening constraints to improve the linear programming relax-

ation286, preprocessing techniques287, eliminating redundant and impractical routes288, multi-start nodes for 

B&B289 , hublocater to obtain lower bounds290  and analyzing feasibility polyhedron and identifying facet-

defining valid inequalities291. 

Solution time with exact methods, however, often increases dramatically with the instance scale. For this rea-

son, exact methods for HLPs are popular for instances with less than 50 nodes. Up till now, we have only 

found few studies involving medium or large scale hub location problems with fixed cost (i.e. more than 50 

nodes) with exact methods, e.g. Wagner (500 nodes)292, Contreras et al (200 nodes)293, Ebery et al (200 

nodes)294, Camargo et al (200 nodes)295 and Canovas et al (120 nodes) 296. The largest hub covering problem 

that has been studied with exact methods so far, to the best of our knowledge, is that by Hamacher and Meyer 

with 50 nodes297. 

(2) (Meta-) heuristics 

While exact methods can hardly be employed for large-scale problems without much effort on customized 

improvement on both models and algorithms, meta-heuristics follow relatively standard solution frameworks 

                                                                                                                                                                                     

283 See O’Kelly (1992), pp.292–306. 

284 For example, Campbell proposed the first linear programming formulation. However, Campbell’s model resulted in fractional solutions. Skin-Kapov 

et al (1996) obtained a tight linearized version of the HLP that resulted in integer solutions for the hub locations. Ernst and Krishnamoorthy de-

vised a linearized variation of O’Kelly’s quadratic model. See Campbell (1994b), pp. 387-405; Skorin-Kapov et al (1996), pp. 582-593; Ernst/ 

Krishnamoorthy (1996), pp.139-154. 

285 See Pirkul/ Schilling (1998), pp.235-242; Campbell (1996), pp. 923-935; Ernst/ Krishnamoorthy (1998a), pp.100-112. 

286 See Boland et al. (2004), pp. pp. 638–653. 

287 See Wagner (2007), pp. 932-938. 

288 By eliminating redundant and impractical routes and by exploiting the symmetry of the available test data, O’Kelly et al. modified the model by Skin-

Kapov et al, reducing computation time and the number of variables without sacrificing integrality. See O’Kelly et al (1996), pp. 125–138; Skorin-

Kapov et al (1996), pp. 582-593. 

289 See Ernst/ Krishnamoorthy (1998b), pp.149-162. 

290 See Mayer/ Wagner (2002), pp.715-739. 

291 See Labbe/ Yaman (2004), pp.84-93; Hamacher et al (2004), pp.104-116; Hamacher/ Meyer (2006), pp.1-18. 

292 See Wagner (2007), pp.391-401. 

293 This paper presents a branch-and-price algorithm for the capacitated single allocation HLP, in which Lagrangean relaxation is used to obtain tight 

lower bounds of the restricted master problem. This method can solve instances of up to 200 nodes to optimality, which seems to be the largest 

instances that have been solved for this problem. See Contreras et al (2011), p.41-55. 

294 Ebery et al considered capacitated multi-allocation HLP. The authors solved the problem with 200 nodes by incorporation the upper bound obtained 

from shortest paths in a linear programming-based B&B solution procedure. See Ebery et al (2000), pp. 614–631. 

295 See Camargo et al (2008), pp. 1047–1064.  

296 The paper deals with the uncapacitated multi-allocation HLP. The authors designed a heuristic method based on a dual-ascent technique to embed in 

an exact B&B framework. This algorithm can solve instances with up to 120 nodes. See Canovas et al (2007), pp. 990-1007.  

297 See Hamacher/ Meyer (2006), pp.1-18. 
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and can provide good solutions within reasonable time by sacrificing the guarantee of finding optimal solu-

tions. 

Meta-heuristics are solution methods that orchestrate an interaction between the basic heuristics and higher 

level strategies to create a process capable of escaping from local optimal and performing a robust search of a 

solution space298. The class of meta-heuristics includes-but is not restricted to- Simulated annealing (SA), tabu 

search (TS), genetic algorithms(GAs), ant colony optimization, scatter search, path relinking, greedy random-

ized adaptive search procedure (GRASP), multi-start methods, guided local search (GLS) and variable neigh-

borhood search(VNS).  

Generally speaking, meta-heuristics can handle much larger problems than exact methods, although no opti-

mal solutions are guaranteed. The computational time always increases with the instance scale mildly with 

meta-heuristics rather than exponentially with exact methods. Second, meta-heuristics are more flexible in the 

sense that additional concerns can be incorporated into problems without much increase in the running time 

and deterioration to the solution quality. Third, meta-heuristics provide uniform solution framework so that 

different problems can be easily shaped into the framework by only changing parameters accordingly. With-

out comprehensive understanding of the specific model, one can still obtain relatively good solutions in a rea-

sonable time.  For these reasons, meta-heuristics have been regarded as an ideal instrument to solve large and 

complicated NP-hard problems. Actually, research on large-scale combinatorial optimization problems was 

not abundant and intensive until recently, after fast development of meta-heuristics299.   

Heuristics and meta-heuristics for HLPs  

HLP, to be precise, single-allocation p-hub median problem, was first formulated as a quadratic integer pro-

gram by O’Kelly. The author was also the first one to develop two heuristics to solve it300. Klincewicz 301 

solved this problem by using clustering heuristics and TS. Later, further improvement on location decisions 

was made with TS and GRASP302.  Skorin-Kapov and Skorin-Kapov 303 proposed a TS heuristic for both loca-

tion and allocation phases. Aykin304 developed a SA-based interchange heuristic to solve this problem. Ernst 

and Krishnamoorthy305 also resorted to SA heuristic. Smith et al 306 used neural networks, which yielded dis-

appointing results.  

                                                      

298 See Gendreau/ Potvin (2010), p.vii. Other definitions proposed in the literature please see Dorigo/ Stützle (2000); Osman/ Laporte (1996), pp.513-

623; Voß et al (1999); Stützle (1999).  For detailed introduction to meta-heuristics, please refer to Blum/ Roli (2003), pp.268–308. 

299 See Hertz/Widmer (2003), p.247. 

300 One is to assign all non-hub nodes to their nearest hub, whereas the other is to assign to either nearest or second-nearest hub. See O’Kelly (1987), 

pp.393-404. 

301 See Klincewicz (1991), pp.25-37. 

302 See Klincewicz (1992), pp.283–302. 

303 See Skorin-Kapov/ Skorin-Kapov (1994), pp. 502-509. 

304 See Aykin (1995b), pp.200-219. 

305 See Ernst/ Krishnamoorthy (1996), pp. 139-154. 

306 See Smith et al (1996), pp.155-171. 
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Since (meta-) heuristics can neither guarantee optimal solutions nor prove their optimality, researches on the 

solution of HLPs shifted to linearization, new formulations and linear programming algorithms to find opti-

mal solutions and to prove the efficiency of meta-heuristics by offering benchmark. Recently, especially after 

2005 the research focus seems to come back to meta-heuristics perhaps out of the requirement to solve large-

scale and complicated real-life HLPs307. More and more hybrid ones came into being, taking advantage of the 

strengths of each individual meta-heuristic components to explore the solution space better. Hybrids of meta-

heuristics with other exact optimization algorithms, like B&B, are also increasingly popular308. 

In the following, we make a brief review on the meta-heuristics for HLPs with endogenous hub number- hub 

location problem with fixed cost and hub set covering problem.  

(1) Hub location problem with fixed cost 

Abdinnour-Helm proposed a heuristic method for UHLP-S based on a hybrid of GAs and TS. 309  Firstly, GAs 

is used to determine the number and the location of hubs and then each demand point is assigned to its closest 

hub to generate an initial solution for the TS heuristic which finds the optimal allocation decisions. The author 

compared her results with the GAs by Abdinnour-Helm and Venkataramanan310 and found that the algorithms 

using TS in combination with GAs performance much better algorithms using GAs alone. 

Topcuoglu et al. proposed a GAs-based method for the UHLP-S. 311 Each chromosome in GAs consists of two 

arrays: HubArray and AssignArray. The lengths of these arrays are equal to the number of nodes. They ap-

plied roulette sampling for fitness selection, single-point crossover operator and two mutation operators- shift 

and exchange. The authors compared their solutions with the best solutions presented in the literature and 

demonstrated that both the solution quality and the running time surpass former works with CAB data set 

(small-scale problem) and AP data set (large-scale problem). 

Cunha and Silva312 combined GAs with SA. Specifically, after GAs determines the hub location, the demand 

points are first allocated to the nearest hub. LS with shift and swap movements is then applied for the alloca-

tion decisions. SA is also incorporated into LS to prevent it from being stuck at local optimal. This hybrid 

heuristic was proved to outperform the GAs by Abdinnour-Helm313. 

Another algorithm for this problem was proposed by Chen314. His hybrid heuristic is based on the SA method, 

tabu list and improvement procedures, named by the author SATLUHLP. The proposed heuristics are divided 

into three levels: the first level is to determine the number of hubs; the second level is to select hub locations 

for a given number of hubs; the third level is to allocate the non-hubs to the chosen hubs. Specifically, the up-

                                                      

307 See Cunha /Silva (2007), pp.747–758; Chen (2007), pp.211–220; Silva/ Cunha (2009), pp.3152–3165. 

308 See e.g. two recent reviews on this topic: Raidl/ Puchinger (2008), pp.31-62; Jourdan et al (2009), pp.620-629. 

309 See Abdinnour-Helm (1998), pp. 489–499. 

310 See Abdinnour-Helm/ Venkataramanan (1998), pp. 31-50. 

311 See Topcuoglu et al (2005), pp. 967-984. 

312 See Cunha /Silva (2007), pp. 747-758. 

313 See Abdinnour-Helm (1998), pp. 489–499. 

314 See Chen (2007), pp.211-220. 
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per bound for the number of hubs is determined with SA mechanism by calculating the trend of the marginal 

reduction of the transportation cost. Restricted single location exchange procedure with tabu list is applied for 

hub location level. At the third level, non-hub nodes are allocated to the nearest hub followed by a LS proce-

dure. The tests under medium and large scale instances (100-node and 200-node instances with the AP data 

set) showed that SATLUHLP could yield the best known solutions with less running time. 

The latest research on this problem was conducted by Silva and Cunha315. Three variants of a multi-start TS 

heuristics as well as a two-stage integrated TS heuristic were proposed. With multi-start heuristics several 

different initial solutions are constructed and then improved by TS, while the two-stage integrated TS heuris-

tic is applied to improve both the location and allocation part of the problem. Computational tests with the 

CAB data set and the AP data set showed that these approaches consistently returned the best-known results 

in very short running time. The authors also reported the integer optimal solutions for all 80 CAB data set 

instances and the 12 AP data set instances up to 100 nodes 

(2) Hub set covering problem 

To the best of our knowledge, up till now there are only three studies on hub covering problem using meta-

heuristics. Meanwhile, one of them is maximal hub covering problem with exogenous hub number316. We list 

the other two hub set covering problems in the following.  

Weng and Wang 317 considered the multi-allocation hub set covering problem. The study provided two evolu-

tionary approaches by scatter search and GAs. The computational tests show that GAs get a better perfor-

mance than scatter search with perspective of both solution quality and computational time. 

Calik et al318 considered the HLRP for postal delivery systems and developed an iterative two-stage solution 

procedure. In the first stage, hub locations are determined and postal offices are multiply allocated to the hubs. 

In the second stage, routes in hub regions are planned to alter the distances used in the hub location problem. 

The procedure then iterates between the two stages by updating the distances used in the hub location prob-

lem till certain termination criterion is satisfied.  

 

On the one hand, the tremendous number of variables and constraints under large-scale instances restricts the 

use of exact method only to small instances. On the other hand, meta-heuristics can yield a few near-optimal 

solutions for large-scale instance in a reasonable time. Moreover, they have standard overall procedures that 

are not only easy to use but also flexible to be tailored with problem-specific knowledge.  

Meta-heuristics will be adopted in this dissertation under several specific considerations.  

                                                      

315 See Silva/ Cunha (2009), pp.3152–3165.  

316 Qu and Weng considered the multi-allocation hub maximal covering problem. The authors provided an evolutionary approach based on path relink-

ing. The Computational experiences were based an AP data and on hub airports location of Chinese aerial freight flows between 82 cities. See Qu/ 

Weng  (2009), pp.1890-1894. 

317 See Weng/ Wang (2008), pp.408–411.  

318 See Calik et al (2009), pp. 3088-3096.  
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 (1) Instance scale   

The overwhelming reason for us to adopt meta-heuristics is the scale of our real-life instances. The aim of our 

research is to design a multi-modal H/S network for nationwide trans-city overnight EDS in China. The 

problem is to select hubs from 281demand nodes and singly allocate the rest demand nodes to hubs, belonging 

to the few largest instances among our available studies. Almost all the tests in former studies on HLPs under 

large-scale instances are based on the AP data set (maximum 200 nodes) with few exceptions319. Under the 

consideration of instance scale, meta-heuristics is an ideal instrument for us to obtain near optimal solutions 

within reasonable computational time.    

 (2) Management preference   

In order to support strategic decision, our research is much better to offer managers several near-optimal solu-

tions for tradeoff than the only one optimal solution with the minimum total cost of the network we can find. 

Strategic decision-makers must consider not only the cost but also other factors, such as organization struc-

ture, local economic situation and governmental policies. With meta-heuristics the management can thus 

choose from several near-optimal solutions with different hub location and demand allocation decisions by 

considering other managerial and social factors. These solutions, in perspective of managers, may be more 

attractive, although they result in higher cost than the best one. 

4.1.2. Hybrids of meta-heuristics  

For combinatorial optimization problems (COPs) that are NP-hard, no polynomial time algorithm exists, as-

suming that P NP . Therefore, complete methods might need exponential computational time in the worst-

case.320 By using approximate methods, such as meta-heuristics, we sacrifice the guarantee of finding optimal 

solutions for the sake of getting good solutions in a significantly reduced amount of time. Thus, the use of 

meta-heuristics has received more and more attention in the last 30 years. In the first two decades the applica-

tions were confined to rather standard meta-heuristics. However, recent researches have shown that a skilled 

combination of a meta-heuristic with other optimization techniques, a so-called hybrid meta-heuristic, can 

provide a more efficient behavior and a higher flexibility when dealing with real-world and large-scale prob-

lem321. 

 Classification of hybrid meta-heuristics 

Nowadays we can observe a common agreement on the advantage of combining components from different 

search techniques. The tendency of designing hybrid techniques is widespread in the fields of OR and artificial 

intelligence (AI), mostly based on the no free lunch theorems322. 

                                                      

319 For example, Wagner’s exact solution procedure for HLPs with 500 nodes, and Resende & Werneck solved the uncapacitated facility location prob-

lem with hybrid multi-start heuristic under instance with 1000 nodes.  See Wagner (2007), pp.391-401;.Resende/ Werneck (2006), pp.54-68. 

320 See Blum/Roli (2008), p.1. 

321 See Blum/Roli (2008), p.1. 

322 See Wolpert. Marready (1997), pp.67-82; Raidal (2006), p.3. 
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We may distinguish hybrid heuristics in two dimensions, i.e. hybrid contents and hybrid level. A matrix is 

adopted to illustrate their relationships (see Fig. 4-1). 

 

Figure 4-1: Classification of hybrid meta-heuristics 

Dimension of hybrid contents   

In terms of hybrid contents, we may distinguish between three categories: the first one combines meta-

heuristics strategies; the second one combines meta-heuristics with certain algorithms specific for the problem; 

the third one combines meta-heuristics with other more general techniques coming from fields like OR and 

AI.323 

A prominent example of the first category is the use of trajectory methods324 into population-based tech-

niques325. The reason becomes apparent by analyzing the respective strengths of trajectory methods and popu-

lation-based methods. The power of population-based methods lies in the capability of recombining solutions 

to obtain new ones. This enables the search process to perform a guided sampling of the search space and 

identify promising areas. Meanwhile, the strength of trajectory methods lies in the way they explore a promis-

ing region in the search space. A promising area in the search space is searched by trajectory methods in a 

more structured way than by population-based methods so that the search is driven towards local optima or 

confined areas of the space in which many local optima are condensed326. In sum, population-based methods 

are better in identifying promising areas in the search space, from which trajectory methods can quickly reach 

good local optima. Therefore, meta-heuristic hybrids can effectively combine the strengths of both population-

                                                      

323 See Raidl (2006), p.4. 

324 Generally speaking, algorithms that work on a single solution are referred to as trajectory methods. They comprise all meta-heuristics that are based 

on local search, such as TS, iterated local search and variable neighborhood search. See Blum/Roli (2008), p.6. 

325 Population-based meta-heuristics deal at each algorithm iteration with a set of solutions rather than with a single solution. From this set of solutions 

the population of the next iteration is produced by the application of certain operators.  

326 See Chiarandini et al (2006), p. 118. 
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based methods and trajectory methods. Successful examples for the third category are hybrids of meta-

heuristics with OR methods, such as linear programming327, branch & bound, tree-based search techniques328, 

dynamic programming and neutral networks. A recent literature review on this topic was made by Jourdan et 

al329.  

Dimension of hybrid level  

In terms of hybrid level, we may distinguish between two categories: collaborative combinations and integra-

tive combinations330.  

Collaborative combinations are based on the exchange of information about states, models, entire sub-

problems, solutions or search space characteristics between several optimization techniques run sequentially 

(or in parallel). This kind of combination is more related to cooperative and parallel search and it in principle 

retain the individual identities of the original algorithms331. On the contrary, original algorithms in integrative 

combinations strongly depend on each other. One technique is a subordinate or embedded component of the 

other technique. Thus, there is a distinguished master algorithm, and at least one integrated algorithms332.  

 Hybrid principle  

The motivation of hybridization of different algorithmic concepts is to obtain systems with better performance 

by exploiting and uniting advantages of the individual algorithm333. Hybridization is also a way to inject prob-

lem-specific knowledge according to No-Free-Lunch Theorem by Wolpert and Macready334. Of great im-

portance of hybridization is the dynamic balance between intensification and diversification, i.e. local exploita-

tion and global exploration. They are two contrary but also complementary forces that largely determine the 

effectiveness of the algorithms335.In other words, local and intensive exploitation focuses on examining neigh-

bors of elite solutions, while global and extensive exploration is to encourage the search process to examine 

unvisited regions and to generate different solutions. Therefore, the hybrid meta-heuristics can, on the one 

side, quickly identify regions in search space with high quality solutions and, on the other side, not waste too 

much time in regions of search space which have already been explored or which do not provide high quality 

solutions.  

                                                      

327 Linear programming is often used either to solve a sub-problem or to provide dual information to a meta-heuristic in order to select the most prom-

ising candidate solution or solution component. See e.g. Blum (2005), pp.1565-1591; Ibaraki/ Nakamura (2006), pp.13-27; Maniezzo (1999), 

pp.358-369. 

328 See e.g. Focacci et al (2003), pp.369-403. 

329 See Jourdan et al (2009), pp.620-629. 

330 See e.g. Raidl (2006), p.3; Puchinger/ Raidl (2005), pp.41-53;  Jourdan et al (2009), pp.620-629. Collaborative combination is also called parallel, 

cooperative or high level combination. Integrative combination is also called low level combination.  

331 For interested readers, please refer to Alba (2005); Grainic/ Toulouse (2002), pp.247-249; Sondergeld/ Voß (1999), pp.297-312.  

332 See Talbi (2002), p.543; Puchinger/ Raidl (2005), p.42. 

333 See Puchinger/ Raidl (2005), p.42. 

334 See Wolpert / Macready (1997), p.68. 

335 See Yagiura/ Ibaraki (2001), pp.33-55.  
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4.1.3. Solution process review and design  

The overview of meta-heuristics in last section indicates that it is not problem-specific but an iterative master 

process that guides and modifies the operations of subordinate algorithms to find better solutions336. In this 

section, after we review the solution process of compound location problems, we divide the original problem 

into several hierarchical sub-problems and propose a framework of overall solution process, in which the meta-

heuristics guides the subordinate algorithms that are designed specifically for each sub-problem.  

3.3.3.1 Literature review on solution process of compound location problems 

Constrained by solution technique or understanding to the problem, earliest researches focused on one single 

problem, either location, allocation or routing problem, in the network under strict assumptions of other influ-

encing factors. For example, some studies focused on VRPs in tributary network with the assumption that 

hubs are fully interconnected337, while others planed the backbone network with a predetermined set of hubs338. 

Later, researchers proposed compound problems by realizing that these problems are actually interrelated.  

On accounts of the complexity of compound location problems, it is a common way to divide the whole prob-

lem into several sub-problems (or stages), which are easier to solve separately than the former complete one. 

Different sub-problems of HLP/ FLP take up different positions in the solution process of the complete prob-

lem with the evolution of understanding to the involving problems. In the following, we make literature re-

view on this issue. As researches on HLRPs began much later than those on LRPs339, most of the literatures 

we cite here are LRPs. 

Sequential method 

Sequential methods were first introduced. For example, Jacobson/ Madsen and Nambier et al340 first solved 

the location problem by minimizing the sum of hub-to-customer distances and then solved the resulting route-

planning problem based on the hub location decision. A more sophisticated method is to estimate beforehand 

the route length connecting hub and customers with certain formulation for location problem341. However, 

since there is indeed no feedback or information exchange between location problem and routing problem, 

suboptimal solution for the problem is inevitable342.   

Cluster method 

                                                      

336 See Voss et al (1999), p. i. 

337 For example, Gavish and Balakrishnan et al studied algorithms for tributary network design. See Gavish (1991), pp.17-71; Balakrishnan et al (1991), 

pp.237-284; Balakrishnan et al (1995), pp.58-76. 

338 See e.g. Agarwal (1989), pp.64-76; Altinkemer/Yu (1992), pp. 365-381; Balakrishnan/ Altinkemer (1992), pp.192-205; Baybars/ Edahl (1988), pp. 

503-528; Chang /Gavish (1993), pp.99-131; Gavish /Altinkemer (1990), pp. 236-245. 

339  The earliest research on HLRP we can find is from Nagy and Salhi. See Nagy /Salhi (1998), pp. 261–275. However, research on LRP began as 

early as 1970s. See e.g. Waston-Gandy/ Dohrn (1973), pp. 321-329; Or/ Pierskalla (1979), pp. 86-94; Bednar/ Strohmeier (1979), pp.89-104. 

340 See Jacobson/Madsen (1980), pp. 378–387; Nambier et al. (1989), pp.14–26. 

341 See Daganzo (2005) 

342 See Balakrishnan et al (1987), p.37; Salhi/ Rand (1989), pp.150-156; Sahlhi/ Nagy (1999), pp.3-19.  
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In contrast to up-down approach as sequential method, cluster method takes up down-up process by grouping 

nodes into clusters with some statistical techniques. It first partitions the customer set into clusters, then lo-

cates a facility /hub in each cluster and finally solves VRP for each cluster343. Just as sequential method, no 

feedback takes place.  

Iterative method 

Realizing this pitfall, Bookbinder& Reece and Perl& Daskin344 introduced iterative method. This method itera-

tively solve location, allocation, backbone routing and tributary routing problems by feeding information from 

one phase to another until some stopping criteria are met. A typical iterative framework is as follows345. 

Step 1: Choose hub nodes, perhaps based on available information from an incumbent solution 

Step 2: Assign non-hub nodes to tributary networks 

Step 3: Design the tributary networks 

Step 4: Design the backbone network 

Step 5: Evaluate the solution 

Step 6: If solution is acceptable, stop. Otherwise, feed information of current solution back to step 1, and repeat 

the process. 

This method has been demonstrated to improve the solution quality compared with that of a sequential meth-

od346. It is widely adopted by many studies with variations and omission347.     

Hierarchical method   

Nagy and Salhiargued that hierarchical method arose because the FLP (here also HLP) is essentially a location 

problem that takes the routing decision into consideration as well, and this leads to a hierarchy between locat-

ing and routing348. The idea conforms to the view of management that location problem is the crux that has 

much longer planning horizon than allocation and routing problems. Based on the concept of “nested method”, 

they proposed a hierarchical heuristic solution framework, in which the master algorithm is devoted to solving 

the location problem and refers in each step to a subordinate heuristic that solves the routing problem. They 

                                                      

343 See e.g. Kleinrock/ Kamoun (1980), pp. 221-248; Klincewicz (1991), pp.25-37; Saha/ Mukherjee (1995), pp.378-383. Recent researches include e.g. 

Barreto et al (2007), pp. 968-977; Billionnet et al (2005), pp.968-977. 

344 See Bookbinder/Reece (1988), pp. 204–213; Perl/Daskin (1985), pp. 381–396. 

345 See Klincewicz (1998), p.314. 

346 See e.g. Salhi/ Nagy (2009), pp. 287-296. 

347 See e.g. Boorstyn/ Frank (1977), pp.29-47; Gerla/ Kleinrock (1977), pp. 48-60; Gavish (1982), pp.355-377; Monma /Sheng (1986), pp.946-965; Lin/ 

Rath (1987), pp. 18-25; Gavish (1992), pp.167-191.  

348 See Nagy/Salhi (1996a), pp.1166–1174; Nagy/Salhi (2007), pp.649-672. 
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reported a 6% improvement from hierarchical over the sequential approach but with longer computation 

time349.   

Both iterative and hierarchical methods give feedback between sub-problems. However, sub-problems in itera-

tive method are independent and parallel and are treated with equal importance, while location problem in 

hierarchical method is usually taken as the master problem which is incorporated with other sub-problems. In 

our opinion, the fundamental difference between hierarchical method and iterative method is the division ap-

proach for the sub-problems. In iterative method one sub-problem may be contrary in certain aspect to anoth-

er one, while in hierarchical method the sub-problem at lower stage is coherent with those at higher stage. 

Moreover, the result of the problem at higher stage depends on the outcome from lower stage. Sub-problems 

in other methods mentioned above can be solved individually, while the sub-problem at higher stage in hierar-

chical method cannot be solved until the problems at lower stage are solved. We would like to explain this 

with an example that one HLP consists of two decisions: (1) where to locate the hubs so as to minimize the 

transportation costs; (2) how to construct a routing system for tributary network so as to satisfy the given 

service level. The iterative two-stage solution process proposed in the study repeatedly updates the transpor-

tation cost rate in the location problem with the result from routing problem. In other words, the location sub-

problem with direct spoke assumption is solved repeatedly by modifying the estimation of feeder link cost rate 

from the multi-stop routing problem. However, when this problem is solved with hierarchical method, the 

location problem must include routing decision rather than take direct feeder link as assumption. So the loca-

tion problem cannot be solved until the feeder routes are determined.  

Actually before Nagy and Salhi gave it the well-acknowledged name “hierarchical approach”, this method had 

already been adopted in former studies. For example, Nambiar et al.350 presented a method that uses the result 

of their simple depot clustering heuristic as the starting point. Then, they consider in turn p =1, 2,…m depots 

being open. For each value of p, they reformulate the LRP as a p -median problem with tour lengths as varia-

ble costs and solve it with an exact method. Routing is then solved with a savings method. If the cost of the 

LRP with p depots is more than that with p-1, the procedure is stopped. This can be viewed as a hierarchical 

method, since the routing costs are explicitly included in the location model. Nagy and Salhi’s351 “nested 

method” consists of a location algorithm with LS that refers to a routing method when evaluating neighboring 

solutions. The location algorithm is based on TS and an add/drop/shift neighborhood. After each move, the 

routing solution is fully evaluated using a multi-depot VRP algorithm. Lin et al.352 first determine the mini-

mum number of facilities. Then the VRP solution is completely evaluated for all combinations of facilities. 

Vehicles are allocated to trips by completely evaluating all allocations. If the best routing cost found is more 

than the setup cost for an additional depot, the algorithm moves on to evaluating all sets of facilities that con-

tain one more depot. In method by Albareda-Sambola et al353 an initial solution is found via the linear pro-

gramming relaxation of the model. The master algorithm for location decision follows the TS framework with 

                                                      

349 See Nagy/Salhi (1996a), pp.1166–1174. 

350 See Nambiar et al. (1981), pp. 183-189. 

351 See Nagy/Salhi (1996a), pp.1166–1174. 

352 See Lin et al (2002), pp. 5-25.  

353 See Albareda-Sambola et al (2005), pp. 407-428. 
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LS moves of add, drop and shift. However, infeasible routing solutions are allowed and a penalty is included in 

the locational objective function for the violation.  

3.3.3.2 Solution process design 

 Division of the original problem   

Three decisions are involved in the original problem, i.e. the hub location decision, the allocation decision and 

the air service selection decision. Actually our original problem is essentially a hub location problem, which is 

embedded with an allocation problem and an air service selection problem. In the first place, we would like to 

divide the original problem into three hierarchical sub-problems and clarify the relationship between the three 

sub-problems and the three decisions in original problem (see Fig. 4-2) 

 

 

Figure 4-2: Hierarchical sub-problems of the original problem   

(1) Hub location problem (upper problem ) 

The hub location problem takes the objective of minimizing the total cost under the constraint that the dis-

tance between all demand nodes and their nearest hub is within the hub maximum coverage. The input of hub 

location problem includes the location of all demand nodes, potential hub set, demand volume between all O-D 

pairs, hub fixed cost, transportation cost rate for both backbone and tributary network, and number and capac-

ity of aircraft. In order to calculate the total cost of the network, the hub location problem involves all the 

three decisions, i.e. hub location decision, allocation decision and air service selection decision.   

(2) Demand allocation problem (median problem) 

When the hubs are determined, all the demand nodes are singly allocated to “home” hubs with the objective of 

minimizing travel cost. The input of allocation problem includes the location of hubs and other demand nodes, 

demand volume between all O-D pairs, transportation cost rate for both backbone and tributary network, and 
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number and capacity of aircraft. The corresponding decisions involve allocation of demand nodes to predeter-

mined hubs and service selection for backbone link.                 

(3) Service selection problem (lower problem)  

Once the hubs are determined and all the demand nodes are allocated to “home” hubs, the optimal air service 

can be determined for each hub link directly in Ext.1, while in Ext.2 the service selection problem is actually a 

flow problem with the objective of minimizing air cost and under the constraint of self-owned aircraft number 

and capacity. So it is exclusive for Ext.2. The input of the flow problem is outcome of allocation problem, air 

cost function, self-owned aircraft number and capacity.  

The description of the three sub-problems manifests that they are “hierarchical” or “nested”. The lower prob-

lem includes only air service decision, while the median problem includes extra decision on allocation besides 

air selection decision. The upper problem-hub location problem- is actually original problem and involves all 

the decisions.   

 Corresponding algorithms   

As a matter of fact, the original problem is divided according to the three decisions, i.e. hub location, allocation 

and service selection decisions. We propose for each decision specific algorithms. One works incorporated in 

another, so that the original problem can be solved near optimally in hierarchical approach with optimal and 

near-optimal solution of lower and median problems.  

(1) Air service selection decision: integer programming 

When the hub location and demand allocation decisions are made, the volume through each hub link is deter-

mined. So service selection decision in Ext.2 can be easily made with an integer programming. This decision is 

passed over in the basic model for there is only one type of air service without capacity constraint, and also is 

passed in Ext.1 for there is no numerical constraint on each service type.  

(2) Allocation decision: LS heuristics 

It has been proved that the allocation decision is NP-hard even when hub locations are determined354. The 

travel cost of each O-D pair of demand consists of three components: (a) the travel cost from the origin to the 

hub, (b) the cost between hubs (if necessary) and (c) the travel cost from the hub to the destination. We resort 

to LS heuristics which will be discussed in detail in Sec.4.1.5. 

(3) Hub location decision: GAs 

The hub location decision problem is NP-hard so that we resort to GAs which will be discussed in details in 

Sec.4.1.4. 

 Overall solution process  

                                                      

354 This has been proved by Kara. See Kara (1999).  
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We propose three specific algorithms for the three decisions, which have different roles in different sub-

problems. As sub-problems are hierarchical or nested, the algorithms also work in hierarchical order. In per-

spective of solution process, the integer programming for air service selection is incorporated into LS for allo-

cation decision, while the LS is again embedded in GAs for hub location decision. Therefore, GAs serves as the 

master algorithm for the original problem.  

We apply the word “stage” to describe the solution process. A uniform hierarchical framework of solution pro-

cess is proposed in Fig.4-3 for both basic and extension models in this dissertation. The upper, median and 

lower solution stages are highlighted with light, median and dark background respectively. We divide the 

whole solution process into three hierarchical and iterative stages according to the three sub-problems. Each 

stage solves the corresponding sub-problem described above.  

    

Figure 4-3: Overall solution process 

In the whole solution process the three stages are interrelated with two hierarchical feedback cycles. In this 

sense the upper algorithms do not simultaneously solve all the underlying problems, but work cooperatively 

with lower algorithms. The two feedback cycles are repeated until certain stop criteria are met.  

Specifically, Feedback cycle 2 is impelled by LS for allocation decision. First, the hub number and locations are 

fixed by GAs. On the basis of the selected hubs, demand nodes are allocated to the “home” hubs according to 

certain criterion. The volume through each hub link is thus determined, and the service on each hub link can 

be optimally determined with simplex algorithm. However, the allocation decision at allocation stage (median 

stage) restricts the optimal solution of service selection stage. Therefore LS of allocation decision serves as 

Feedback cycle 2 to seek better solution under the determined hub location.  

Meanwhile, Feedback cycle 1 is impelled by GAs for hub location decision. Hub location decision at location 

stage restricts the optimal decision of allocation stage. We can also expect sub-optimization of the original 

problem if there is no iteration between allocation stage and hub location stage. GAs process takes up the role 

of Feedback cycle 1. 
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In sum, LS at allocation stage, i.e. Feedback cycle 2, attempts to minimize the travel cost based on determined 

hubs, while GAs at hub location stage, i.e. Feedback cycle 1, attempts to minimize the total cost of the network. 

With the hierarchical iteration of the subordinate algorithms the original problem is solved to near optimal 

finally.      

4.1.4. Genetic algorithms for hub location decision  

On accounts of our considerations mentioned at the end of Sec.4.1.1, we decide to take up meta-heuristics, 

which can yield a few near optimal solutions to the large-scale problem in a reasonably amount of time. More-

over, among dozens of meta-heuristics we adopt GAs as our master algorithms at hub location stage.  

GAs is a search algorithm to find near-optimal solutions in large space. Inspired by population genetics, this 

idea was introduced into research field of mathematics by Holland in 1975355. The main thought of GAs is to 

employ the mechanics of natural selection to evolve a population. In the last three decades GAs has gradually 

become an effective and robust method for combinatorial optimization problems. There are quite a few books 

about GAs for reference356. 

Several factors attract us to use GAs. Firstly, GAs is widely adopted for solving various HLPs and FLPs357. 

Especially, it is a quite ideal algorithm for location problem with endogenous hub number p due to its search 

capability in extensive solution space, compared with other individual-based meta-heuristics. Secondly, GAs 

allows high degree of flexibility in the definition of the flow-dependent travel cost functions, including discrete 

and nonlinear functions358, which is exactly the case in our extension model. Finally, local search for demand 

allocation decision can easily be incorporated into GAs, which is referred as hybrid GAs or memetic algo-

rithm359.  

In this section, we specify customized procedures of SGAs to our problem. In Tab.4-3 we list the parameters 

for the algorithms in advance, also including those for improvement measures in Sec.4.2. 

 

 

 

 

 

 

 

 

 

                                                      

355 See Holland (1975). 

356 See e.g. De Jong (2006); Haupt et al (2004); Gen/Cheng (2000).  

357 Besides what we have listed in Tab. 11 and 12, there are a lot more studies on GAs for p-hub median problem and p-hub center problem, e.g. Kratica/ 

Stanimirovic (2006), p.425; Kratica et al (2007), pp.15-28. 

358 This is also mentioned by Cunha/ Silva (2007), p.748.  

359 It has been widely applied in GAs for HLPs, such as “hub location problem with fixed cost” by Abdinnour-Helm/ Venkataramapan (1998),pp.31-51 

and Cunha/ Silva (2007), pp.747-758 and hub set covering problem by Topcuoglu et al. (2005), pp.467-984. 
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Parameter  Description  

popN  Population size 

max_ genN  Maximum number of generation  

croP  Crossover probability 

mutP  Mutation probability 

newP  Injection  rate 

maxT  Maximum running time 

impN
 

Maximum number of iteration without improvement 

Table 4-3: Parameters for GAs 

 Encoding   

One solution corresponds to one individual (or chromosome in genetic terminology) in GAs. Encoding is nec-

essary to translate the information of the solution in the form which can be recognized by GAs. And the indi-

viduals generated by GAs must be decoded into solution for us to read.  

Conventional methods of encoding include binary encoding, permutation encoding, value encoding and tree 

encoding. Among them binary encoding is the most popular and the most feasible method for HLPs. It also 

requires simple procedures during the crossover and mutation operations, since the number of hubs here is 

variable during the reproduction.    

We adopt GAs for hub location decision (not for hub location problem, see their difference in Fig.4-2 in Sec. 

4.1.3). So chromosome representation includes only location decision. The length of string equals to the num-

ber of nodes in potential hub set H .The value 1 indicates that the corresponding node is selected as hub and 

the value 0 indicates otherwise 

 Preprocessing  

This is a problem-specific procedure to GAs in this dissertation due to uneven distribution of demand in China. 

Demand nodes locate more intensively in relatively developed East China than that in less developed West 

China. Or in other words, demand in West China concentrates mainly on several large cities. Some demand 

nodes in Western China may be so remote that they can only be covered by one potential hub or be covered by 

themselves if they are also in potential hub set. As we have mentioned in model assumptions in Sec.3.2.1, all 

demand nodes are assumed to be covered by at least one candidate hub, including itself. In view of such situa-

tion, this candidate hub is determined as hub in this preprocessing procedure and is ignored in later proce-

dures of GAs. That is, the corresponding value in chromosome will be fixed to 1 during the crossover and 

mutation procedure. Meanwhile, the demand nodes that can be covered by this hub will be ignored during the 

initialization of solutions. But in the allocation procedure, they are treated the same as other demand nodes.  

 Generating  initial solutions and solution pool  
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In SGAs initial solutions are randomly generated. That is, initial solutions are generated with arbitrary num-

ber of hubs at arbitrary location. Solution pool is composed with a fixed number of initial solutions and is up-

dated at each generation. 

 Feasibility adjustment  

Randomly generated initial solutions, as well as offspring after crossover and mutation operations, may be-

come infeasible, i.e., some demand nodes cannot be covered by any hub. There are basically three different 

methods to handle infeasibility. The simplest method is to reject infeasible individuals. Nevertheless, in our 

problem it might be very difficult to find feasible individuals. So it is impractical to abandon all infeasible solu-

tions. The second method is to penalize infeasible individuals a with lower fitness value360. The third method is 

to try to repair those infeasible solutions361, which is the only method we can resort to, since the incorporated 

allocation problem takes feasible solution as a premise.  

Feasibility adjustment in this dissertation includes two phases- adding and dropping. In adding phase, for 

every demand node i that is not covered by selected hubs. We search candidate hubs k that can cover it. As we 

can anticipate, there are at least two candidate hubs conforming to this condition, since there is preprocessing 

procedure beforehand. We designate the node k with the largest value of the following index (see Eq.4-1) as 

hub. 

  f ( ) /i

k ij ji ik ik

j N

I w w y d


  or 
1

0

ik

ik

d D
y

otherwise


 


 
(4-1) 

However, this procedure is quite likely to bring redundant hubs in the solutions. So the adding phase is fol-

lowed by a dropping phase with PLS, which tries to drop redundant hubs if possible. For every added hub, we 

drop the hub that is geographically nearest to it unless that hub is fixed during the reprocessing procedure. 

Then we reallocate the demand nodes formerly covered by the dropped hub to other hubs without violating 

feasibility. No matter whether a current hub can be dropped or not, the drop phase terminates and the algo-

rithm goes back to adding phase for next uncovered node until all demand nodes are covered by at least one 

hub.  

 Fitness function  

A value is necessary for every feasible solution to measure its fitness to survive to the next generation. Ac-

cording to Darwin’s evolution theory, an individual has more chance to be selected for reproduction if it is 

fitter.  

This can be objective value of the problem, but it is not always practicable or rational. When the value of ob-

jective function is negative or unevenly distributed (either widely spread or convergent) or when there is no 

objective function, the fitness function is thereby adopted to evaluate the fitness of individual. It has been 

pointed out that the performance of GAs can be substantially improved if we use fitness function, i.e. use 

                                                      

360 See e.g. Michalewicz/ Schoenauer (1996), p.1; Runarsson/Yao (2000), p.284. 

361 See e.g. Chootinan/Chen (2006), pp. 2263-2281; Osman et al. (2004), pp.391-405. 
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( ( ))if j x instead of ( )ij x  to represent fitness of individual, where ( )j x  can be objective value or other 

measurement and ( )f x is fitness function 362 . Conventional fitness functions include linear scaling

( )f x ax b  , power law scaling ( ) af x x 363
 and exponential scaling ( ) exp( )f x x   364.  

The fitness function applied in this dissertation is based on linear scaling of the total cost derived from the 

objective function of the model (see Eq. 4-2).  

0 cos

1 cos /

if t zerofit
fitness

t zerofit otherwise


 


 

(4-2) 

The parameter zerofit serves as an upper bound that eliminates some weak solutions from the process. There 

is no well-acknowledged approach to determine an appropriate value for the zerofit  parameter365. In this 

dissertation zerofit is set with the maximum objective value among initial solutions.  

 Selection operation  

The selection criterion stipulates the method to choose parents for reproduction according to the fitness value. 

The criterion should comply with Darwin’s evolution theory that the better the chromosomes are, the more 

chances they have to be selected for reproduction. 

Many methods, both deterministic and probabilistic, to select the best chromosomes are available. Determinis-

tic method is also called truncation selection, which just eliminates the weakest candidates at the end of each 

generation. In probabilistic selection there is still small chance for weaker solutions to survive in the selection 

procedure, bringing more diversification to GAs. Conventional selection methods for GAs include roulette 

wheel selection, tournament selection, rank selection, and so on.  

We adopt roulette wheel selection in this dissertation. The idea behind this method is to allocate pie-shaped 

slices on a roulette wheel to each individual in the population, with each slice proportional to the correspond-

ing individual’s fitness value. Choosing individuals for reproduction in a population can be viewed as a spin of 

the wheel. The slice where the pointer stops is the winning one366. That is, if if   denotes the fitness value of 

individual i  in the population, its probability of being selected for reproduction is

pop

i
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j N

f
p

f





 , where 
popN  

is population size. In this regard, the fitter individuals have greater chance to survive than the weaker ones. 

Here we can find the important effect of fitness function for this selection operation, for fitness function with 

Eq.4-2 standardizes and evens the selection probability.   

 Crossover operation 

                                                      

362 See Kreinovich et al. (1993), p.9. 

363 See Goldberg (1989), ch.4. 

364 See Sirag / Weisser (1987), pp.116-122.  

365 See Lim et al (2000), p.251. 

366 See Abdinnour-Helm (1998), p.491. 
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Crossover and mutation are the most important reproduction procedures of GAs. More specifically, crossover 

helps to speed up convergence rates for the search of GAs, while mutation diversifies the population. In this 

respect, crossover and mutation operation are two major procedures for GAs and always take place one after 

another (see Fig.4-4)367. The parameters that control how many individuals/ how much percentage of individ-

uals undergoes crossover and mutation operation are Crossover Probability croP and Mutation Probability mutP .  

 

Figure 4-4: Reproduction procedure  

(source: based on Lim et al (2000), p.260)  

In nature environment crossover exchanges corresponding genetic material from the two parents, allowing 

good genes on parents to be combined in their offspring. One-point, two-point and uniform crossovers are 

three commonly used crossover methods. In one-point crossover one crossover point is randomly chosen. 

Everything after this point is exchanged in the two offspring, while everything before this point is kept the 

same as their parents. In uniform crossover bits are randomly copied from the first or the second parent. Uni-

form crossover exchanges bits of a string rather than segments of string. Studies have compared the merits of 

these crossover techniques both empirically and theoretically368. One-point and two-point crossover methods 

maintain low disruption rates, whereas uniform crossover is the most disruptive. Empirical evidence suggests 

that uniform crossover is more suitable for small population size, while the less disruptive crossover methods 

are better for large population size.  

                                                      

367 In other words, crossover operation can be carried out either before or after mutation operation.  

368 See e.g. Song/ Chou (1997), p.288. 
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We use two-point crossover technique in this dissertation, which may be more exploratory than the one-point 

crossover when the population converges. Since the number of hubs is not fixed in GAs, we can randomly 

choose two points and exchange the segments in the middle (see Fig.4-5).  

 

 

Figure 4-5: Two-point crossover procedure  

 Mutation operation 

After crossover, mutation procedure changes bit(s) of the chromosomes randomly. The aim of mutation is to 

increase diversification in the population so that search space is spread out and local optimal is prevented. 

First, the mutation target is selected with the same criterion as that for crossover operation. One bit of the 

target chromosome is then randomly chosen. If it is 0-bit, we turn it into 1-bit; and if 1-bit, we turn it into 0-

bit.  

 Update – Plus Strategy  

At the beginning of the GAs popN individuals are randomly generated and dropped into solution pool. The 

solution pool will be updated later at each generation. There are two update strategies, i.e. Plus Strategy and 

Comma Strategy. With the former strategy, the descendant population is selected from aggregate set of in-

cumbent generation and the newly generated offspring. With the latter strategy, the descendant population is 

composed merely with incumbent offspring, which requires enough offspring to put some selective pressure on 

the update369.  Theoretical studies have proved that Comma Strategy is totally inefficient when the number of 

                                                      

369 See Gottlieb/ Kruse (2000), pp.415-421; Jägersküpper/ Storch (2007), p.1. 
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offspring is not large enough, whereas the two strategies behavior equivalently with large number of off-

spring370.   

Since it is also quite time-consuming to repair infeasible solutions, we adopt Plus Strategy here (see Fig.4-6). 

Another reason to adopt Plus Strategy is that if a new generation is merely composed with newly-generated 

offspring, it is likely to lose the best solutions in the incumbent generation. However, best individuals (elite 

individuals) in the incumbent generation should be reserved for the descendant population, which is called 

Elitism Strategy or Steady-State Selection. In other words, some individuals can be passed over for the update 

procedure and go directly into the next generation. For this reason, Elitism Strategy is a method to speed up 

convergence toward optimum371.  

 

Figure 4-6: Update procedure with Plus Strategy 

 Termination criterion 

Improvement heuristics372 always require a termination criterion to stop the algorithm at proper time, i.e. 

when search space falls into a local optimum. Only minor improvements in the solution quality can be ex-

pected when prolonging the runs. So the most widely used termination criterion of GAs is Maximum Genera-

tion max_ genN . It is often associated with criterion of Maximum number of iteration without improvement, for 

example “no better solution or no more than 0.001% improvement after 5 iterations”.  

                                                      

370 See Jansen et al (2005), p. 440; Jägersküpper/ Storch (2007), p.1. 

371 See Jozefowiez et al.(2009), p.761.  

372 Heuristics process can be classified into three categories, i.e. constructive process, improvement process and incomplete exact process. See Domschke 

(2010), Chap.1.3; Domschke/ Drexl (1998), p.120.     
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The customized overall process of SGAs is illustrated in Fig.4-7. The allocation procedure will be discussed in 

detail in Sec.4.1.5.  

 

Figure 4-7: Customized overall procedure of SGAs  

Like other meta-heuristics, the above-described SGAs can be easily combined with other meta-heuristics, 

greedy algorithm or even exact methods at both collaborative and integrative levels373, which is called hybrid 

                                                      

373 Collaborative (high) level and integrative (low) level are two hybrid methods, distinguishing the level or strength, with which different algorithms 

are combined. High-level combinations in principle retain the individual identities of the original algorithms. Algorithms exchange information, 

but are not part of each other. On the contrary, algorithms at low-level combinations strongly depend on each other. One technique is a subordi-

No 

Yes 

Yes 

Yes 

No 

No 

Encoding 

Preprocessing 

Randomly generating initial solutions  

Feasible? 

Establishing solution pool and calculate fitness   

Let: G=0   

Reproduction (crossover and mutation)   

Feasibility adjustment   

Offspring Feasible? Feasibility adjustment   

Allocation  

Update solution pool 

G=G+1 

Termination criterion? 

Output best solution 

Stop 



 

Chapter 4: Solution design and improvement techniques  94 

GAs. We incorporate subordinate algorithms into GAs for the sub-problems. Moreover, other heuristics will 

also be combined with GAs to improve the overall performance, which will be discussed in Sec.4.2 and be 

computationally tested in Chapter 5.  

4.1.5. Local search for allocation decision   

In multi-allocation HLP, when hubs are fixed, the allocation problem can be solved as the shortest path prob-

lem374. But in case of single allocation, when hub location is determined the allocation problem remains NP-

hard375. Rather than simply following the least cost path, single allocation problem has to consider simultane-

ously three components of travel cost for each O-D pair demand, i.e. the cost from the origin to the hub, the 

cost between hubs (if necessary) and the cost from the hub to the destination. 

The demand allocation problem is always studied as a sub-problem of HLP. In the beginning the allocation 

problem was treated roughly with heuristics for allocation pattern. The first two heuristics for the allocation 

problem were proposed by O’Kelly376. One of these, Heur 1, assigns all non-hub nodes to their nearest hubs, 

whereas the other, Heur 2, evaluates the objective value of both the nearest allocation and the second-nearest 

allocation before determination. In a discussion of O’Kelly’s heuristics, Klincewicz377 developed a new heuris-

tics that uses a multi-criteria distance and flow-based allocation procedure to determine the allocation of nodes 

to hubs rather than relying on distance alone. This enhanced allocation rule recognizes the importance of 

flows in determining allocation in single allocation HLP. Given the hub locations, Campbell378 proposed two 

methods for the single allocation. The first method assigns a node to the hub, through which it has its maxi-

mum flow, whereas the second allocates a node to a hub so that total transportation costs are minimized. It 

was shown that these two heuristics perform better than both O’Kelly’s distance-based allocation pattern and 

Klincewicz’s multi-criteria allocation pattern, and the latter method consistently provides a tighter bound then 

the first one. 

Klincewicz379 enhanced the algorithm for allocation by following the nearest-distance allocation pattern with 

exchange method. This is a great progress for the solution of allocation problem, since allocation pattern alone 

is destined to yield suboptimal solution. LS is followed after to correct this bias. Later more advanced tech-

niques and algorithms have been applied to allocation LS, such as TS380 and VNS381. It is believed that the 

quality of allocation solution depends on both starting point-the allocation pattern and the LS heuristics.   

                                                                                                                                                                                     

nate or embedded component of the other technique. Thus, there is a distinguished master algorithm, and at least one integrated algorithms. See 

Talbi (2002), p.543; Puchinger/ Raidl (2005), p.42. 

374 See e.g. Klincewicz (2002), p.112. 

375 This has been proved by Kara. See Kara (1999). 

376 See O’Kelly (1987), pp.393-404. 

377 See Klincewicz (1991), pp.25-37. 

378 See Campbell (1996), pp.923-935. 

379 See Klincewicz (1992), pp.283-302. 

380 See e.g. Calik et al (2009), pp. 3088-3096. 

381 See e.g. Ljubic (2007), pp.157-169. 
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However, the improvement from LS usually comes at the cost of longer computational time. Since allocation 

solution stage must be invoked by every individual in each generation, allocation LS procedure must be effi-

cient in terms of time. Two measures are adopted here, i.e. Improvement Index and PLS, to improve the time 

efficiency.   

(1) Improvement Index 

LS procedures improve the solution with small moves in the predetermined neighborhood. Each small move 

requires the complete evaluation of the newly-generated chromosome, resulting in tremendous increase in 

computational time especially in large problems. It is therefore desirable to calculate the change of the objec-

tive value rather than objective value itself to accelerate the computation speed382.  

Such computational saving depends on the neighborhood structure of the LS. The most commonly used 

neighborhood structures for allocation include such as add-swap neighborhood, 2-swap neighborhood, and the 

Permutation. We adopt shift moves383, which switch the allocation of multi-covered nodes from one hub to 

another. As long as the new solution achieves lower cost than the former one, the shift move is adopted. 
i

hkS in 

Eq.4-3 refers to an Improvement Index for the cost change of the move. When demand node i  is reallocated 

from hub h  to hub k , it is calculated to determine whether the switch results in an improved solution or not.  

( )( ) ( ) ( )
jl

i

hk ij ji ki hi ij ji kl hl

j N l H j N

S w w d d w w x d d 
  

        (4-3) 

0i

hkS   implies that the new solution has a lower cost and should therefore replace the former one, i.e. node 

i  will be reallocated from hub h  to hub k . Otherwise, the move will be ignored and LS goes on to the next 

move. 

(2) Partial local search (PLS) 

Another measure to balance between computational time and solution quality is to make distinction on how 

thorough the LS is to be carried out. The procedure of LS can be terminated once an improved solution is 

found (called first-improvement LS) or it can be repeated as many times as possible until no further improve-

ment is possible (best-improvement LS). These are two typical examples of PLS and FLS respectively384. FLS 

puts emphasis on performing thorough search within the neighborhood of the explored solution. With each 

LS, the current solution is replaced by a better solution if it exists. The procedure is repeated until there is no 

better solution. It implies that the procedure can find the best solution in the localized area around the solu-

tion that is being explored. Compared with FLS, PLS has the advantage of simplicity and owns more potential 

in terms of flexibility. It is less computationally demanding so that it is especially suitable for complicated 

situation. With regards to this, LS procedure can be carried out more frequently in order to spread out the 

search by exploring many small-localized regions, thus reducing the likelihood of the algorithm being trapped 

in a local optimum.  

                                                      

382 See e.g. Hansen/ Mladenovic (1997), pp.207-226; Resende / Werneck (2007), pp.205-230.   

383 See Skorin-Kapov et al. (1996), pp. 582-593. 

384 See e.g. Blum/ Roli (2008), p.1-30; Lim/ Omatu (2000), p.258.  
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PLS is adopted here for allocation decision mainly out of two reasons, namely computational time and im-

provement impact. For one thing, LS procedure for allocation is invoked by every individual at each genera-

tion. When population size is 50, this procedure will be called at least 2500 times with termination criterion of 

at least 50 generation. It must be time efficient. For another, optimization of allocation decision can make little 

advance to the solution of the overall problem unless the hub location decision is optimal in advance.  

4.1.6. Integer programming for service selection decision  

In order to solve Ext.2, the solution process follows the process framework in Fig. 4-3 in section 4.1.3. We 

have introduced the algorithm for hub location decision and allocation decision in section 4.1.4 and 4.1.5 re-

spectively. In this section, we introduce the algorithm for service selection decision.   

After hubs are selected and all the demand nodes are allocated to “home” hubs, the inter-hub flow is deter-

mined. We denote it as kmw , where km ijkm ij

i N j N

w x w
 

 , 1kkx  and 1mmx  . Air service is selected for each 

hub link with the objective of minimizing air cost and under the constraint of aircraft number and capacity. 

Since the backbone network is fully connected by direct flight, the remaining problem becomes an integer 

programming. The Integer Programming Toolbox in Matlab is applied and embedded in our algorithm.   

Minimum ' ( )km km

k H m H p P

SF w
  

  (4-4) 

S.T.
l p

p km kmu z w  ,k m H  , k m ,  1,2 ,p P  (4-5) 

(1 )u p

km p kmw u z M    ,k m H  , k m ,  1,2 ,p P  (4-6) 

Also constraints (3- 25), (3-28) and (3-29)   
  

4.2. Improvement techniques 

The relationship between all the improvement techniques proposed in this section and customized SGAs in-

troduced in Section 4.1.4 are illustrated in Fig.4-8. Improvement techniques 1 and 4 are integrative combina-

tion with meta-heuristics, while Improvement techniques 3 belongs to cooperative combination with meta-

heuristics (see Fig.4-1).  
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Figure 4-8: Relationship between SGAs and improvement techniques 

4.2.1. Improvement 1: constructive procedure for initial solution generation 

The choice of starting point is very crucial for the performance of iterative improvement heuristics such as 

GAs. In this section, we try to improve the performance of GAs with a “good” initial population.  

It is common and easy for SGAs to randomly generate initial population for HLPs, if the hub number p is ex-

ogenously fixed. However, for HLPs with endogenous hub number, such as hub set covering problem or hub 

location problem with fixed cost, it is quite unreasonable and arbitrary to choose random number of hubs at 

random place from the candidate hub set H. For the hub set covering problem, the primary problem is the 

feasibility of the solutions. Randomly generated solution has low possibility that all demand nodes can be cov-
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ered by the selected hubs, so that the program spends a lot of time to judge the feasibility of the new generated 

solution and to repair the unfeasible solutions. For hub location problem with fixed cost, the primary problem 

is too large search space, so that the program is likely to run randomly and yields pool solution even after 

many generations. Moreover, randomly generated solutions are also not applicable for network with unevenly 

spread demand nodes, which is exactly the situation in our case. 

In the light of these problems, we replace the random procedure for generating initial solutions in SGAs with 

“constructive procedure” borrowed from GRASP, by which feasible solutions can be generated. We name GAs 

incorporated with “constructive procedure” Constructive GAs (CGAs) in the following. This “constructive 

procedure” is iterative, greedy, random and adaptive. It is iterative because every initial solution is constructed 

by choosing one element at a time until the solution is feasible. It is greedy because the addition of each ele-

ment is guided by the myopic criterion or greedy function. It is random because every element is chosen ran-

domly from a Restricted Candidate List (RCL). The RCL technique allows the procedure to be repeated but to 

generate different initial solutions every time. Finally, it is adaptive because the RCL is updated after each 

choice. 

An appropriate composition of RCL signifies a good balance between the diversity and the intensity of initial 

population. The RCL is constructed by repeatedly calculating the greedy function ( )f k  (see Eq.4-7) and 

ranking the results in decreasing order. Actually the function ( )f k  denotes the distance-weighted flow of 

those still uncovered nodes that hub k can cover. This greedy function is based on the assumption that the 

busier a hub is and the nearer a hub to demand nodes is, the more value it will bring to the network and the 

more travel cost it will save.  

 ( ) ( ) /
crasp

ij ji ik ik

i N j N

f k w w y d
 

       for    craspk H 　
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(4-7) 

In the beginning, the to-be-assigned hub set craspH  contains all potential hubs in H ; the to-be-allocated de-

mand node set craspN contains all elements in N . The to-be-constructed location solution is . We calculate 

the objective value of ( )f k  for every ( )craspk k H .Then we assign 
maxf  and 

minf

 

with the largest and the 

smallest values of ( )f k  respectively. We also define a threshold parameter  ( 0,1 )   . The RCL is com-

posed of all elements in craspH , whose objective values of ( )f k  are superior to the threshold, i.e.

min max min max( ),f f f f    . After one node is randomly and uniformly selected from the RCL as hub 

node, it is deleted from craspH  and added in the location solution. At the same time all demand nodes in craspN

that can be covered by this selected hub are eliminated from craspN . So craspH , craspN ,
maxf , 

minf and the loca-

tion solution are updated after each selection. This procedure goes on until all demand nodes are covered, i.e. 

craspN is  (see Fig.4-9). It will be repeated popN  times to generate enough initial solutions for the solution 

pool.   

As we can see, this constructive procedure can not only yield feasible solutions, but also control the random-

ness of the initial population. Borrowed from GRASP, it can be regarded as a repetitive sampling technique. 

Each reiteration produces a sample from a distribution, whose mean and variance are dependent on the param-
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eter . The parameter  controls the greediness and randomness or, in other words, intensity and diversity 

of the population. The case 1  corresponds to a pure greedy algorithm, while the case 0  corresponds 

to a pure random algorithm.   

 

Figure 4-9: Constructive procedure for initial solution generation 

4.2.2. Improvement 2: injection mechanism  

The injection mechanism is to introduce new chromosomes into the population at every generation or at regu-

lar generation intervals. Contrary to the constructive procedure that controls the diversity of the initial popu-

lation, the injection mechanism controls the diversity of the population during the GAs process. Some new 

generated individuals are injected into the solution pool to increase the diversity of the population throughout 

generations and to prevent premature of the algorithms. This idea is borrowed from the natural phenomenon, 

simulating the immigration of people between countries or regions. This scheme has been proved effective 

when embedded in GAs to solve location problems385.  

The parameter newP  is applied to control the diversity of the population during the GAs process. In order to 

keep the population size constant, (1 )new popP N  best individuals are selected from the former generation 

with “Plus update strategy”, together with the new generated individuals, to compose the next generation (see 

Fig.4-10).  

 

                                                      

385 See Salhi/ Gamal (2003), p214. 
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Figure 4-10: Plus update strategy with the injection mechanism  

4.2.3. Improvement 3: local search after GAs 

As a population-based algorithm, SGAs is good at quickly locating the regions with high performance in vast 

and complex search space. Once those regions are located, it may not be able to explore the complex space 

sufficiently386. That is to say, it is relatively weak in exploiting the regions that have been found. It is believed 

that GAs can be more efficient (i.e. need less time) and more effective (i.e. find better solutions) for most com-

binatorial optimization problems when embedded with LS techniques 387 . One possible reason given by 

Jaszkiewicz388 is that in many cases local optimum constitutes a relatively small part of the search space and 

thus can be achieved in an efficient way. LS provides the potential to cover the weakness of GAs in searching 

local areas after GAs efficiently find the vicinity of the optimal solution from a wide range.   

GAs, which use certain kind of interaction with local searchers, are named Memetic Algorithms (MAs)389. The 

name MAs is inspired by Richard Dawkin’s concept of a meme390, which in GAs refers to the strategies (e.g. 

                                                      

386 This may be one of the reasons why the performance of SGAs deteriorates significantly as the size of the problem increases. See Lim et al (2000), 

p.249.  

387 See e.g. Merz /Freisleben (1997), pp.159-164; Galinier /Hao (1999), pp.379-397; Jaszkiewicz (2002), pp.50-71; Goldberg/ Voessner (1999), pp.220-

228; Galinier/ Hao (1999), pp.379–397. 

388 See Jaszkiewicz (2002), pp. 50–71. 

389 It was so named firstly by Moscato (1989), p.2003;  

390 See Dawkins (2006), p.189. 
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local refinement, perturbation, etc.) that are employed to improve individuals. It combines the evolutionary 

adaptation with individual learning during the whole process. That is, the memes reshape the search space and 

they themselves can adapt to the reshaped space. In different contexts and situations, MAs are also called Hy-

brid GAs391, Genetic Local Searchers (GLS)392, Baldwinian GAs393 or Lamarkian GAs394. 

LS starts from a given initial solution as the current solution and checks its neighborhood for a better solution. 

If such solutions exist, the algorithm replaces the current solution with the best solution found in the neigh-

borhood and repeats this procedure. In case the LS cannot find solution better than the current solution in the 

neighborhood, the algorithm returns the current solution and terminates. This method does not guarantee 

globally optimal solutions if it does not search as fully as enumeration. But most of time it returns relatively 

good solutions. 

The effectiveness of LS depends on several aspects, such as the neighborhood structure, search technique, the 

evaluation of neighbors, and its starting point. To this end we are faced up with the problem how to tradeoff 

between computational time and effectiveness? This problem results in a series of questions: Where and when 

should LS be invoked? Which individuals in the population should be improved by LS? How much computa-

tional effort should be allocated?  

In this dissertation LS is attached after GAs to improve the final solutions of GAs, i.e. we apply LS on both 

hub location decisions and allocation decisions to each individual in the final solution pool of GAs. That is to 

say, the LS works collaboratively with GAs395.   

 LS for hub location decisions 

The LS is applied for hub location decisions to check if the final solutions from GAs can be further improved 

by LS. We use the 2-swap neighborhood for the LS, since it always yields the best result in short time396. It is 

also named single-relocation algorithm397. The algorithm looks for a pair of hubs: one to be inserted into cur-

rent solution, the other to be removed. If the new solution is not feasible, we just delete it and find another 

pair. When a feasible hub location solution is found, the remaining demand allocation problem is solved with 

the same process as illustrated in Fig.4-3 in Sec.4.1.3. The fitness of this solution is then calculated and com-

pared with the incumbent best solution to check if it needs to be updated. Finally, the LS returns the best solu-

tion.    

Even after the neighborhood structure of LS is determined, various tactics can be employed in this context to 

tradeoff between the search depth in the neighborhood space and the computational resource. Accounting for 

the good performance of GAs in former researches, we use FLS, which tries to improve the target solution 

                                                      

391 See He/ Mort (2000), p.42; Vazquez/ Whitley (2000), p.135; Fleurent/ Ferland (1994), p.173; Lim/ Omatu (2000), p.258. 

392 See Merz (2000).  

393 See Ku/ Mak (1998), pp. 481-490. 

394 See Morris et al (1998), p.1641. 

395 See Sec. 4.1.2. 

396 See Resende/ Werneck (2007), p.207. 

397 See Pamuk/ Sepil (2001), p.402. 
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until all hub pairs have been checked.  However, FLS does not mean enumeration, since we only explore one 

specific neighborhood. 

 LS for allocation decisions  

We adopt PLS for allocation decisions during GAs process under the consideration of computational time and 

effectiveness to the final solution398. Here we adopt FLS for allocation decision after GAs for the same consid-

erations. For one thing, this process is invoked only one time after GAs rather than at the end of every gener-

ation of GAs. For another, there is still potential to further improve the allocation decision even after PLS for 

each generation. Therefore, a FLS for allocation decision is followed after GAs, i.e. after LS for hub location 

decision, so that the updated solutions from FLS for hub location decision can be further improved by alloca-

tion FLS (see Fig.4-11). 

We still use shift moves399, which switch the allocation of multi-covered nodes from one hub to another until 

all the possibilities have been considered and no improvement could be made. Improvement Index of 
i

hkS  (see 

Eq.4-3) can still be applied to save computational resource.   

 

Figure 4-11: Full local search after GAs  

4.2.4. Improvement 4: initial solution for allocation local search 

This improvement technique is aimed at providing a relatively “good” starting point for LS for allocation deci-

sions at each generation, which is studied in Sec.4.1.5. Since the strength of LS is to exploit better solution in a 

relatively small solution space, a “good” starting point is essential to the result of LS400.    

                                                      

398 For details, please see Sec.4.1.5.  

399 See Sec. 4.1.5. 

400 See Blum/ Roli (2008), p.7. 
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According to the literature review on allocation decision in Sec.4.1.5, the most commonly used allocation pat-

terns (or allocation criteria) include “distance-based” allocation, “multi-criteria” allocation, “maximum flow” 

allocation and “minimum cost” allocation. Except the first one, all the allocation patterns are constructive heu-

ristics, by which the elements in the solution are added one by one401. Actually, the right choice of allocation 

pattern for different HLPs needs specific knowledge of the problems.      

(1) Distance-based allocation pattern by O’Kelly402 

This allocation pattern, including both “nearest distance” and “second-nearest distance” allocation, was initial-

ly proposed by O’Kelly, who pointed out later that when the “nearest-distance” allocation criterion is always 

the best for incapacitated p-median problem, it is not always true for interacting facility location problems, 

since it ignores the flows among facilities403. However, later studies on HLPs find that the “nearest distance” 

allocation pattern is still an effective method, especially for p-hub median problem, under the consideration of 

short computational time404.    

(2) Multi –criteria allocation pattern by Klincewicz 405 

A “multi-criteria” allocation pattern to the p-hub median problem was proposed by Klincewicz: initial alloca-

tion of a given node is based on the sum of common traffic with certain hub and the distance to that hub. We 

carry out this idea by allocating non-hub nodes to “home” hub according to the two steps as follows. 

(a) For the non-hub node that is covered by only one hub, it will be allocated to that hub directly; 

(b) For the non-hub node i  that can be covered by more than one hub, Index 1A  (Eq.4-8) will be used as the 

criterion for the allocation decision. 

( )
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ij ji jh
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(4-8) 

This index considers not only the distance ihd between node i  and hub h but also the interchange volume 

( )ij ji jh

j N

w w x


 between node i  and all nodes that have already been allocated to hub h. This index implies 

that if a node has heavier flow with a candidate hub and/or shorter distance from that hub, it is probably more 

economical to allocate this node to that hub.  

As we can anticipate, part of non-hub nodes is covered by only one hub. After step one, each hub already has 

some subordinate demand nodes. For every not-yet-allocated demand node i , we calculate the Index 1A  for 

                                                      

401 See Mayer (2001), p.91. 

402 See O’Kelly (1987), pp.393-404. 

403 See O’Kelly (1992), p.303. 

404 See e.g. Kratica (2007), pp.15-28. 

405 See Klincewicz (1991), pp.25-37. 
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all hubs h that can cover it. We allocate the demand node to the hub with the highest index value. Every dou-

ble- or multi-covered non-hub node is under this consideration till all find their “home” hub.  

(3) Maximum flow allocation pattern by Campbell  

The success of multi-criteria allocation pattern implies that traffic volume to potential “home” hub could also 

serve as a criterion for allocation. Travel cost by air between hubs is normally higher than that by truck, mak-

ing this idea more attractive for air-ground network than multi-criteria allocation pattern. The corresponding 

index for the to-be allocated non-hub node i  is as Eq.4-9.  

2 = ( )i

h ij ji jh

j N

A w w x


  (4-9) 

 

(4) Minimum cost allocation pattern by Campbell 406 

Campbell proposed another allocation pattern called “minimum cost allocation”, which allocates a node to a 

hub so that total travel costs are minimized. It was shown that this method consistently provides a tighter 

bound then the above one. The corresponding index for the to-be allocated non-hub node i  is as Eq.4-10. 

3 ( ) ( )i

h ij ji mj ih ih km km mj mj

j N m H

A w w x d d d  
 

     (4-10) 

 

In Chap.5 we will test all these four allocation patterns to evaluate their performance under our instance. 

4.2.5. Improvement 5: approximate of integer programming in early stage 

In the basic model and Ext.1, the demand volume on each hub link can be calculated when the hub location and 

allocation is determined, so that the best service type can be easily chosen directly according to the cost func-

tion of each service type. In other words, integer programming is not necessary. However, the air service se-

lection decision in Ext.2 is determined with an integer programming problem due to the numerical constraints 

on the aircraft in current fleet.   

If the integer programming for the service selection decision is time-costly, the total running time will grow 

exponentially. This is always the bottleneck to adopt hierarchical algorithm to large-scale instances. So we 

propose the following method, trying to make the overall algorithm more time-efficient and keep its perfor-

mance at the same time. Our method is like this: if the improvement on the solution by solving the embedded 

sub-problem is relatively small compared with the improvement by solving the overall problem, we use an 

approximate result of the sub-problem in the master algorithm rather than solving the sub-problem until the 

master algorithm find the near-optimal region.  

Generally speaking, if the algorithm for the sub-problem is time-costly and must be invoked frequently, this 

time-saving method can be efficient with quite small negative impact on the performance of the overall algo-

rithm.     

                                                      

406 See Campbell (1996), pp.923-935. 
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4.3. Summary 

This chapter is contributed to the design of solution process, individual algorithms for decisions and im-

provement techniques.  

After we make a relatively thorough literature review on solution methods for related HLPs in Sec.4.1.1, we 

decide to adopt meta-heuristics under the consideration of instances scale and management requirement. In 

Sec.4.1.2 we briefly discuss the classification of hybrid meta-heuristics and hybrid principle. Sec.4.1.3 designs 

the solution process. The literature review on solution process of compound location problems demonstrates 

that our problem is essentially a location problem with embedded allocation and service selection problems.  

We divide the original problem into three hierarchical sub-problems and propose an overall solution process, 

connecting all subordinate algorithms with two hierarchical feedback cycles. Form Sec.4.1.4 to Sec.4.1.6 we 

propose specific algorithms for individual decisions. Specifically, in Sec.4.1.4 we propose the customized proce-

dure of GAs for hub location decisions. In Sec. 4.1.5 we illustrate LS algorithms for allocation decisions. In 

order to balance the solution quality and computational time, we take up two measures, i.e. Improvement In-

dex and partial LS. In Sec. 4.1.6 we use integer programming for the service selection problem with predeter-

mined hub location and allocation decisions.  

In Sec.4.2 we propose five improvement techniques for different procedures of SGAs. Improvement 1 is ori-

ented towards initial solution generation procedure. We incorporate constructive procedure borrowed from 

GRASP to generate initial solutions for GAs. This method can not only yield feasible solutions but also bal-

ance the diversity and intensity of the initial solution pool. Improvement 2 is oriented towards the update 

strategy of the solution pool. In contrast to constructive procedure for initial solution generation, injection 

mechanism balances the diversity and intensity of the solution pool during the whole process of GAs.  Im-

provement 3 tries to further improve the solutions from GAs by attaching LS after GAs for both hub location 

decisions and allocation decisions. Improvement 4 tries to provide a “good” initial solution for allocation LS.  

We list four different initialization methods. Improvement 5 is to raise the computational efficiency with no or 

little negative impact on the solution quality. These improvement techniques can be classified into the follow-

ing categories of the hybrid heuristics according to Fig.1-4    
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Figure 4-12: Classification of improvement techniques  
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5. Computational tests for algorithms   

In this chapter, we test the performance of the tailored algorithms we have proposed in last chapter. Perfor-

mances are evaluated in terms of solution quality, i.e. deviation from the best-known solution, and running 

time. All the computational tests for algorithms are based on basic models. The test results are also applicable 

to the two extension models under the same instance, since air service selection problem is solved to optimum 

if invoked. For this reason, we believe that the results based on basic model can represent the performance (in 

terms of solution quality) of the algorithms.     

Sec.5.1 is dedicated to tests on the overall performance of the proposed hybrid GAs under small-scale instanc-

es with the CAB data set. The performance is evaluated by comparing its solutions with optimal solutions 

generated by CPLEX. Computational tests are carried out with various instance dimensions of hub coverage 

radius, hub fixed cost and instance scale.     

Sec.5.2 focuses on evaluating the performance of the proposed improvement techniques under large-scale in-

stances with the AP data set.  Since the optimal solutions or even benchmark solutions for large-scale instanc-

es are not available, we test if those techniques can further enhance the performance of algorithms. We first 

modify test data and make preliminary tests to set parameters for GAs. Then we test whether and how each 

improvement technique can improve the performance of GAs. Finally, we compare the overall performance of 

proposed hybrid GAs with SGAs.       

In all computational tests in this chapter and next chapter, we apply the following assumptions for the sake of 

simplicity.    

(1) The twilight and sunrise regional sorting time is the same for all potential hubs. Together with the as-

sumption for the model formulation that time window between the earliest departure and the latest arrival 

of aircraft is the same for all potential hubs, it denotes that the twilight cutoff time and sunrise setup time 

for every potential hub is the same. 

(2) The coverage radius for all potential hubs is the same. 

(3) The cost rate for each backbone link is the same. So is the cost rate for each feeder link.   

(4) Both the fixed cost and variable cost for one type of aircraft are assumed to be the same (for Chap.6). 

5.1. Tests for small-scale instances  

 As we have mentioned in Sec.2.4.2, up till now we have only found two similar works that study a similar 

model as ours. Thaddeus Kim Teck Sim, who studied a similar model as our basic model in his doctor disserta-

tion407, has made some progress on this problem recently408 and provides us a series of benchmark solutions 

under small-scale instances generated by CPLEX.  

 Description of test instances and algorithm parameters    

                                                      

407 See Sim (2007), available on internet: http://ir.uiowa.edu/etd/124 

408 See Lowe/ Sim (2012).  

http://ir.uiowa.edu/etd/124
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The benchmark solutions are based on well-known Civil Aeronautics Board (CAB) data set409. O’Kelly first 

introduced the data set that is based on the airline passenger interactions between 25 US cities in 1970 evalu-

ated by the Civil Aeronautics Board (CAB)410. This data set has been widely used for testing HLPs. It includes 

demand flow and travel distance between 25 large cities in the United States.  

Lowe and Sim411 made some specifications on the input of the computational tests. We illustrate them in the 

following with the parameters adopted in this dissertation. The travel cost rates in backbone and tributary 

network  and   are taken as 0.75/25000 and 1/25000, respectively. Two different hub fixed cost data sets 

are created: “constF” and “diffF” fixed cost data sets. We only adopt the “constF” data set, which assumes that 

the cost of opening a hub is the same regardless of where the hub is located. Computational tests are carried 

out with hub fixed cost kfh as 5000 and 50000, respectively. The coverage radius of hub in the tests is propor-

tional to the length of the longest link in the corresponding network. Specifically,  in Tab.14 represents the 

longest links in the networks with 10, 15, 20 and nodes respectively. Hub coverage radii in our tests are taken 

10% and 50% of the longest links in the corresponding networks, which are denoted as R1 and R2 in Tab.5-1. 

      R1=0.1   R2=0.5  

n=10  1764.791  176.4791  882.3955 

n=15  2600.078  260.0078  1300.039 

n=20  2600.078  260.078  1300.039 

n=25  2725.79  272.579  1362.895 

Table 5-1: Hub coverage radii under small-scale test instances with the CAB data set       

Several probe runs are carried out to roughly determine the algorithm parameters for tests under small-scale 

instances. Preference is then given to Population size 50popN  , Mutation probability 0.9croP  and Crossover 

probability 0.3mutP   . Concerning the improvement techniques, we adopt CGA (75%)412 with “maximum flow 

allocation pattern” followed by PLS during the process of GAs but without “injection mechanism”. The algo-

rithm is forced to run at least 30 generations and is terminated when there is no more than 0.001% improve-

ment of the solution pool after 5 generations. We also make FLS of allocation decision on best solution after 

GAs.  

The comparison with optimal solutions generated by CPLEX includes four instance scales with 10, 15, 20 and 

25 nodes respectively. Under each scale, there are 4 different combinations of hub coverage radius (2 varia-

tions) and hub fixed cost (2 variations). Considering these three instance dimensions, we have totally 16 test 

instances. 

 Stability of the algorithm   

We run the algorithms 10 times under each instance. Besides the best, worst and average solutions, we also 

show the stability of the algorithm under these small-scale instances. In probability theory and statistics, the 

                                                      

409 It is available on internet:  http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/phub4.txt. （access on 20.01.2013） 

410 See O’Kelly (1987), pp.393- 404. 

411 See Lowe/ Sim (2012). 

412 75% refers to the parameter  for constructive procedure illustrated in Sec.4.2.1. 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/phub4.txt
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coefficient of variation (CV) is a normalized measure of dispersion of a probability distribution. It can be ap-

plied to indicate the stability of individuals in the group. Normally, CV is defined as the ratio of the standard 

deviation ( ) to the mean ( ) (see Eq.5-1).  The smaller the value of CV is, the more stable the individuals 

in the group are.   

cv



  

(5-1) 

 Test results and analysis  

The proposed hybrid GAs is coded in Matlab6.5. The execution is conducted on Intel(R) Core(TM) Duo CPU 

P8600 2.4GHz with 2G RAM. The benchmark solutions of HCFPs were obtained by using CPLEX 12.3 on an 

Intel Core 2 2.13GHz PC with 2GB of RAM.   
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Problem 

size 

Radius 

(delta) 

Fixed 

cost 

Total cost Calculation time (s) 

Optimal GAs(best) 
Dev. 

best (%) 

Dev.worst 

(%) 

Dev.avg. 

(%) 
CV 

Optimal 

times  
CPLEX GAs (avg.) 

n=10 

0.1 
5000 6.4106E+04 6.4106E+04 0.00% 0.64% 0.45% 0.0031  3 0.014411 0.9782 

50000 4.6911E+05 4.6868E+05 0.09% 0.09% 0.09% 0.0000  0 0.014082 0.9641 

0.5 
5000 4.1024E+04 4.1024E+04 0.00% 13.01% 3.25% 0.0502  2 0.086582 0.1888 

50000 1.3102E+05 1.3102E+05 0.00% 4.08% 0.69% 0.0119  2 0.0812 0.1871 

n=15 

0.1 
5000 1.2894E+05 1.2355E+05 4.18% 4.18% 4.18% 0.0000  0 0.062865 1.4476 

50000 6.2795E+05 6.2795E+05 0.00% 0.22% 0.11% 0.0012  5 0.06027 1.4661 

0.5 
5000 1.1345E+05 1.1291E+05 0.47% 10.85% 2.55% 0.0426  0 0.88197 0.2449 

50000 2.1321E+05 2.1321E+05 0.00% 2.60% 0.48% 0.0076  3 0.65473 0.2464 

n=20 

0.1 
5000 2.2945E+05 2.2431E+05 2.24% 2.24% 2.24% 0.0000  0 0.25745 1.8207 

50000 7.7755E+05 7.7047E+05 0.91% 0.91% 0.91% 0.0000  0 0.21868 1.8346 

0.5 
5000 2.2008E+05 2.2008E+05 0.00% 30.07% 6.04% 0.0845  4 1.9693 0.2949 

50000 3.7041E+05 3.7041E+05 0.00% 4.42% 2.20% 0.0139  2 1.7556 0.2901 

n=25 

0.1 
5000 3.3379E+05 3.2114E+05 3.79% 3.79% 3.79% 0.0000  0 0.70742 2.2213 

50000 9.3570E+05 9.3570E+05 0.00% 0.83% 0.33% 0.0043  6 0.73232 2.2279 

0.5 
5000 3.3056E+05 3.1449E+05 4.86% 5.14% 4.97% 0.0014  0 4.7378 0.2932 

50000 5.3413E+05 5.3413E+05 0.00% 0.64% 0.32% 0.0034  6 24.357 0.2932 

Table 5-2: Results of computational tests under small-scale instances  



 

Chapter 5: Computational testes for algorithms      111 

The test results, together with benchmark solutions, are displayed in Tab.5-2. In the first three columns in-

stance’s dimensions (problem size, radius parameter and hub fixed cost) are given. The overall performance of 

the proposed algorithms is evaluated in terms of solution quality and running time. The columns 4 to 9 con-

tain information about solution quality, while the last two columns concern running time. The benchmark 

solutions generated by CLPEX are expressed in scientific notation with four decimals. The best, worst and 

average values of the 10 runs of the hybrid GAs are expressed in the form of deviations from the correspond-

ing optimal solutions generated by CPLEX (in %) according to Eq.5-2. We record the frequency reaching the 

optimum among the 10 runs and also calculate the CV of the 10 best solutions.  

op

100%
t

opt

F F
dev

F


   

(5-2) 

where 
optF  denotes the best known solution of each instance scale and  F denotes the corresponding result 

for each instance.  

Hybrid GAs has reached the optimal solutions under 7 of 16 instances. For those instances, under which the 

optimal solutions have not been reached, the deviations under 3 instances are less than 1%. In worst case 

where n=25, delta=0.5 and fixed cost 5000, the best solution among 10 runs of hybrid GAs deviates 4.86% 

from the optimal solution. On average the deviations of the best solutions are 1.03% from the corresponding 

optimal solutions. Smaller CV indicates the solutions are more stable. However, small CV does not guarantee 

good performance of the algorithm. It is found that in 4 out 16 instances, e.g. instance where n=10, delta=0.1 

and fixed cost 50000), CV equals to 0 for the best results of the10 runs are the same but not optimal. It indi-

cates that the hybrid GAs is easy to fall into local optimum. Moreover, it seems that the solution quality of the 

hybrid GAs depends on neither instance scale (between n=10 and n=25) nor hub coverage radius and hub 

fixed cost.       

Concerning running time, CPLEX takes less running time than the hybrid GAs under 10 instances. However, 

the running time of CPLEX increases rapidly with the instance scale，nearly 25 seconds for instances with 25 

nodes. On the other side, none of the instances by hybrid GAs reaches 2 seconds. Moreover, no strong correla-

tion can be distinguished between instance scale and running time of hybrid GAs. One reason is that although 

the string of the chromosome is shorter under small-scale instance, the crossover and mutation operations are 

almost the same as those for large-scale instances. Another reason is that we impose the constraint of at least 

50 generations on hybrid GAs.    

Generally speaking, CLPEX (exact method) outperforms the proposed hybrid GAs under small-scale instanc-

es both in running time and solution quality. However, with the increase of the instance scale, our hybrid GAs 

can get relatively good solutions in a significantly reduced amount of time compared with exact methods that 

might need exponential computation time in the worst case413. 

                                                      

413 See Blum/Roli (2003), p.269. 
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5.2. Tests for large-scale instances 

5.2.1. Modification of input data 

We choose Australia Post (AP) data set414 for tests on large-scale instances. AP data set is first used by Ernst 

and Krishnamoorthy415. It is based on postal delivery in Sydney, Australia and consists of 200 nodes represent-

ing postal districts. Compared with other two commonly used test data sets for HLPs (CAB and Turkish data 

set), it has much larger demand node set with dissymmetrical flow matrix. Another feature of this data is that 

it displays a central business district located in the north, which means there is a large volume flowing into 

and out of the nodes in this district.   

AP data set contains information about node coordinates, demand flow, costs for collection, transfer and dis-

tribution and hub fixed costs. We make some modifications to the data set for the computational purpose.   

 Potential hub set H and corresponding fixed cost  

In the AP data set, nodes are listed with increasing ordinate values. In order to test instance, e.g., (H=50, 

N=100), we cannot simply take the first 50 nodes as potential hub set H, since they aggregate in the south part 

of the network. It is intuitively believed that nodes with large in-and-out demand flow are good locations for 

hubs. In this respect we take the following steps to determine the potential hub sets for different test instances. 

Firstly, we calculate the total demand flow originating at and destined to every demand node i with Eq.5-3. 

( )i

ij ji

j N

f w w


   (5-3) 

Then we order 
if decreasingly and take the first 50, 80 and 100 nodes respectively as potential hub sets for 

the following tests. Although one can easily create potential hub sets by randomly choosing certain number of 

nodes from the whole data set, it makes the tests not repeatable and the corresponding results incomparable. 

Meanwhile, AP data set includes two data sets, i.e. “tight” and “loose”, of hub fixed cost for only 50 nodes, 

which is not enough for our test instances. We assign the fixed cost for nodes in potential hub set with “loose” 

fixed cost data set provided in AP data repeatedly. The first 100 nodes with the largest in-and-out demand 

flow and corresponding “loose” fixed cost values are listed in App.1, from which potential hub sets are taken 

for the following computational tests.  

 Scaled data in AP data set  

AP data set contains no measure unit for all data. We scale them up or down and assign unit to them (see 

Tal.5-3), so that the scale among them is more reasonable for our test instances. The symbols with superscript 

“star” denote original AP data, while the corresponding symbols without “star” denote the data in our test 

instances.         

                 

                                                      

414 The data is available from the OR-Library http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/phub1.txt. 

415 See Ernst/ Krishnamoorthy (1996), pp.139-154. 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/phub1.txt
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Symbol Description Unit Conversion  

ijw  Daily demand  ton 
* 100ij ijw w   

kf  
Hub fixed cost USD 

* 100p pf f   

ijd  Distance kilometer 
* /100ij ijd d  

Table 5-3: Scaled data in the AP data set 

 Cost for collection, transfer and distribution 

The collection, transfer, and distribution cost rates in original AP data set are 3, 0.75 and 2, respectively. 

However, such cost rates combination is unreasonable for air-ground transportation system. We set ground 

and air cost rate as 0.7 (per ton*kilometer) and 0.5 respectively, just as in our real-life instances.   

 Hub coverage radius   

This is a special parameter for our covering problem. After we have scaled and adjusted the original AP data, 

we set hub coverage as 300 kilometers.   

5.2.2. Parameter setting for hybrid GAs  

How to choose control parameters for heuristics and meta-heuristics has been studied in both analytical and 

empirical researches. Appropriate parameters are critical for efficient algorithms. Determination of those in-

teractive parameters itself can be a tough task416.  

We set control parameters roughly and even somewhat subjectively for tests on the performance of hybrid 

GAs under small-scale instances. However, the performance of GAs under large-scale instances is largely af-

fected by control parameters. We can regard the job of GAs as a combination of exploration of new promising 

regions in search space and exploitation of already sampled regions. The balance of the combination, which 

determines the performance of GAs, is enhanced by the right choice of those important control parameters. In 

this section, we make preliminary tests to set control parameters for GAs under large-scale instances.  

Former experiments indicate that no particular value for a parameter can be determined as the best for all 

instances417. We try to find compromise algorithm parameters that yield maybe not the best but relatively 

good solutions under all concerned test instances. All the tests in this section are based on SGAs that includes 

none of the improvement techniques proposed in Sec.4.2. In other words, the solutions are initially randomly 

generated and updated in every generation without injection mechanism. After hubs are determined by repro-

duction procedures in GAs, demand nodes are allocated to “home” hub according to “maximum flow pattern” 

and a PLS is followed directly afterwards. No LS on hub location decision or demand allocation decision is 

implemented on the final solution pool of the SGAs. Three instance scales, i.e. ( =50 200)H N ， , 

( 80, 200)H N   and ( 100, 200)H N  , are considered in each test group. 

                                                      

416 Schäffer et al. conducted a factorial experiment and analyzed variance to identify and quantify the influence of the control parameters, including 

population size, crossover probability, and mutation probability on the performance of genetic search. See Schäffer et al (1989), pp. 51-60. 

417 See Resende/Ribeiro (2002), pp. 219-249. 
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 Parameters for reproduction  

Population size
popN , Crossover probability

croP  and Mutation probability mutP
 
are three interactive parameters 

for reproduction procedure in GAs.  

Population size says how many chromosomes or individuals are in one generation. On the one hand, when 
popN  

is small, GAs run fast by searching in a relatively small solution space. But it results in lower population di-

versification; hence the algorithms converge fast to local optimum, which is also called premature. On the oth-

er hand, if there are too many individuals in the solution pool, GAs presents somewhat randomness and hesi-

tates to converge. Former studies indicate that the best population size depends on the encoding method and 

the length of encoded string. It also interacts with crossover probability and mutation probability418.    

Crossover probability determines how much percent of parents will undergo crossover operation. Crossover is 

implemented in the hope that offspring can combine good parts from their parents and can be better than their 

parents. It is the primary operator in GAs to generate new individuals. In this ground, Crossover probability 

croP  is usually high.  

Mutation probability determines how much percent of individuals are mutated. Mutation serves as a second-

ary operator to explore new search region by altering bits of gene randomly. It is also an important mecha-

nism to prevent GAs from falling into local extreme. “Large” Mutation probability increases diversification of 

the solution pool during the process of GAs, but may destroy building blocks in individuals thus disturb con-

vergence of the algorithm. “Too large” Mutation probability tends to drive the GAs to search randomly419, 

while “too small” Mutation probability may result in premature of the algorithm.  

Although the choice of control parameters is case by case, researchers have proposed two combination strate-

gies that show relatively good performance. One has large Population size but small Crossover and Mutation 

probabilities, while the other has small Population size but large Mutation and Crossover probabilities420. Both 

of the two combinations of parameters setting can maintain the dynamic balance between diversification and 

intensification of the solution pool.                      

As it is quite time consuming to find feasible solutions in our case, we take up the second strategy by creating 

a relatively small solution pool with large Crossover and Mutation probabilities. We fix Population size popN  

at 50 subjectively. We consider three instance scales, i.e., ( =50 200)H N ， , ( 80, 200)H N   and

( 100, 200)H N  . For each instance scale, we take a combination of croP with variations of 0.5, 0.7 and 0.9 

and mutP  with variations of 0.01, 0.1, 0.2 and 0.3. We run the preliminary tests 10 times for each instance. The 

programming runs at least 50 generations and at most 200 generations. It also terminates when the average 

objective value of individuals in the solution pool has less than 0.001% improvement after 5 generations.  

Tab.17 summarizes the results of 10 runs for each instance. The best solutions under each instance scale, i.e.

( =50 200)H N ， , ( 80, 200)H N  and ( 100, 200)H N  , we have found are 62743272, 61017632 and 

                                                      

418 See DeJong/ Spears (1991), pp.38-47. 

419 See Xu et al (2006), p.600.  

420 See DeJong/ Spears (1991), pp.38-47; Grefenstette (1986), pp.122-128. 
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60622912, respectively. To make it easy to read, we fill the table with the deviation of corresponding values 

from the best known solution 
*F of each instance scale (calculated with Eq.5-4). The column headings list 

Mutation probability for different problem scales and the line headings illustrate “deviation of best solution in 

solution pool” (in %), “deviation of average value of solutions in the solution pool” (in %) and CV of 10 best 

solutions for each Crossover probability.  

*

*
100%

F F
dev

F


   

(5-4) 

where 
*F  denotes the best known solution of each instance scale and  F denotes the corresponding result for 

each instance.  
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Crossover probability 

0.5 0.7 0.9 

B. dev. A. dev. CV(best) B. dev. A. dev. CV(best) B. dev. A. dev. CV(best) 

Mutation 

probability 

H=50 

0.01 0.87% 13.39% 0.0003  1.33% 12.77% 0.0131  0.29% 11.00% 0.0046  

0.1 0.68% 12.46% 0.0046  2.25% 13.67% 0.0153  0.64% 11.95% 0.0046  

0.2 0.33% 10.41% 0.0105  0.00% 10.30% 0.0000  0.10% 10.49% 0.0030  

0.3 0.01% 9.47% 0.0001  0.02% 9.42% 0.0030  0.67% 11.49% 0.0298  

H=80 

0.01 1.47% 9.81% 0.0013  0.00% 9.36% 0.0000  1.25% 9.00% 0.0146  

0.1 0.01% 8.64% 0.0002  0.88% 8.67% 0.0141  0.29% 9.09% 0.0093  

0.2 0.59% 8.07% 0.0123  0.00% 8.26% 0.0000  0.00% 9.89% 0.0000  

0.3 0.00% 8.22% 0.0000  0.76% 8.26% 0.0132  0.00% 9.34% 0.0000  

H=100 

0.01 3.60% 10.49% 0.0265  3.55% 10.89% 0.0238  2.01% 9.95% 0.0000  

0.1 0.35% 7.28% 0.0051  1.46% 8.36% 0.0119  1.65% 8.00% 0.0240  

0.2 0.11% 8.09% 0.0037  0.09% 7.00% 0.0030  1.06% 6.88% 0.0114  

0.3 0.20% 8.29% 0.0035  2.71% 9.94% 0.0171  1.02% 10.16% 0.0135  

Table 5-4: Deviation from the best-known solution under each instance scale (tests for reproduction parameters) 

A. dev.: average deviation of 10 runs of the average solution in the final solution pool from the best-known solution of that instance scale 

B. dev.: average deviation of 10 runs of the best solution in final solution pool from the best-known solution of that instance scale 

CV (best): CV values of the best solutions of 10 runs 
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After checking the results of all the combinations of ( , )cro mutP P  under different instance scales (see Tab.5-4), 

we empirically conclude that when the Crossover probability croP and Mutation probability mutP   is 0.7 and 0.2 

respectively, GAs can yield relatively good solutions under pertinent instance scales. Comparatively speaking, 

it is an ideal parameter combination, although it is not the best for all instances. Particularly, when H=50, (0.7, 

0.2) performs the best in both “B. dev.” and “A. dev.”, although (0.5, 0.3) and (0.7, 0.3) also yield almost the 

same “best solution”; when H=80, the “B. dev.” of (0.5, 0.3) and (0.9, 0.2) is the same as (0.7, 0.2); when H=100, 

the “A. dev.” of (0.7,0.2) is larger than that of (0.9, 0.2) and it generate the best “B. dev.”. 

When we consider the index of CV, the results of instances with ( , )cro mutP P as (0.7, 0.2) under different scales 

are quite stable. However, low values of CV do not guarantee good performance of the algorithm. The CV 

values of instances ( =50, =0.5, 0.01)cro mutH P P  and ( =80, =0.5, 0.01)cro mutH P P  are relatively low, but the 

solution qualities are not good. This may indicate that the algorithm tends to be premature with small crosso-

ver and mutation probability.  

We make T-tests with SAS421 on both “B. dev.” and “A. dev.” between (0.7, 0.2) and other parameter combina-

tions under different instance scales to support this selection. The test results show that the differences are not 

always significant, taking examples of the best and average solutions between ( =50, =0.7, 0.2)cro mutH P P 

and ( =50, =0.9, 0.2)cro mutH P P   (see App.2).               

With regards to these reasons, reproduction parameters combination of (0.7, 0.2) can stably yield good solu-

tions under different instance scales, although it is not significantly better than all the other parameter combi-

nations under all pertinent instance scales. Hence, a Crossover probability of 0.7 and a Mutation probability of 

0.2 are hereafter used in the later tests for GAs.  

Generally speaking, the solutions under different instance scales conform to the trend that the total cost of the 

network decreases with the increasing size of the potential hub set H. However, there is also anomaly, which is 

reflected by, e.g. ( =100 0.5, 0.01)cro mutH P P ， . It probably results from the premature of the algorithms. 

As we can observe in Tab.18, those instances with “bad” solutions, compared with others under the same in-

stance scale, terminate more often than not at earlier generation. It can be inferred that the corresponding 

reproduction parameters are irrational. Since we force the programming to run at least 50 generations, we can 

anticipate that those instances with generations only few over 50 are premature in most runs.      

 

Generation 
Crossover probability  

0.5 0.7 0.9 

Mutation 

probability 

H=50 

0.01 51.3 53.0 54.4 

0.1 67.5 57.8 64.0 

0.2 61.8 60.7 60.9 

0.3 65.2 62.5 63.5 

H=80 
0.01 52.0 63.0 52.9 

0.1 58.0 62.8 53.6 

                                                      

421 T-test, more specifically speaking, independent two-sample t-test is used to test whether two population means are different.  
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0.2 56.4 59.4 53.8 

0.3 55.7 60.9 55.6 

H=100 

0.01 53.4 52.5 51.8 

0.1 73.7 53.0 59.3 

0.2 64.6 61.9 63.0 

0.3 72.0 63.9 69.5 

Table 5-5: Average generation number under each instance 

At the first glance of Tab.5-5, we cannot find obvious correlation between generation number and Mutation 

probability, Crossover probability or instance scale. After we make summaries according to instance scale (see 

Tab.5-6), Crossover probability (see Tab.5-7) and Mutation probability (see Tab.5-8) respectively, we find 

some interesting results. 

 

H 50 80 100 

Generations  60.22 57.01 61.55 

Table 5-6: Average generation number according to instance scale 

 

Crossover probabil-

ity 
0.5 0.7 0.9 

Generations  60.97 59.28 58.53 

Table 5-7: Average generation number according to Crossover probability 

Mutation rate 0.01 0.1 0.2 0.3 

Generations  53.70 61.11 60.29 63.21 

Table 5-8: Average generation number according to Mutation probability  

The generation number does not increase with instance scale (see Tab.5-6), which seems to be a little surpris-

ing at first. It was supposed to be difficult for GAs to converge when search space is large. However, the fea-

ture of our problem may be the reason of this phenomenon. Once a node is chosen as hub, it can cover many 

other potential hubs, dramatically narrowing the search space for GAs. Consequently, the computational time 

does not dramatically increase with the size of potential hub set H.  

We also find that the generation number is roughly inversely proportional to Crossover probability (see 

Tab.5-7). It may be explained that large Crossover probability intensifies the search strength and accelerates 

the convergence of the algorithms.   

On the contrary, generation number roughly increases with Mutation probability, with a small deviation from 

this trend between the instances of 0.1mutP   and 0.2mutP   (see Tab.5-8). On the one hand, “large” Muta-

tion probability increases the diversification of solution pool and broadens the search space of the algorithm, 

hence increasing the odds of finding the global optimum. However, the impact of large Mutation probability 
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can be slow convergence of the algorithm and too large Mutation probability may lead the algorithms to run 

randomly. On the other hand, “small” Mutation probability is liable to be the cause of prematurity. As we can 

observe, the phenomenon of prematurity is exacerbated under instances with 0.01mutP  , when most runs stop 

at 50th generation, which is the minimum generation we impose on the algorithm. We can therefore infer that 

0.01 is a too small Mutation probability value.  More rational Mutation probability is a medium one that can 

not only bring divergence to the solution pool but also prevent early convergence of the algorithm. 

When we analyze Tab.5-4 and 5-5 together, we cannot find positive correlation between generation number 

and solution quality, especially in terms of “average values of solutions in the final solution pool”. In other 

words, if the algorithm convergences at an early stage (premature), the result is always not so good, for in-

stance ( =100 0.5, 0.01)cro mutH P P ， , ( =100 0.7, 0.01)cro mutH P P ，  and

( =100 0.9, 0.01)cro mutH P P ，  . However, the solutions are not guaranteed to be good when generation 

number is large, for instance ( =100 0.7, 0.1)cro mutH P P ， and ( =100 0.7, 0.2)cro mutH P P ， . 

Running time (s) 
Crossover probability  

0.5 0.7 0.9 

Mutation 

probability 

H=50 

0.01 283.0/5.52 360.7/6.79 523.7/9.63 

0.1 359.3/5.32 398.3/6.89 575.6/8.98 

0.2 398.9/6.44 467.7/7.71 596.8/9.79 

0.3 426.5/6.54 500.1/8.00 616.7/9.71 

H=80 

0.01 309.7/5.96 403.7/6.41 414.3/7.83 

0.1 337.3/5.82 429.7/6.84 419.7/7.83 

0.2 336.7/5.97 468.1/7.88 429.4/7.97 

0.3 330.9/5.94 477.5/7.84 444.2/7.99 

H=100 

0.01 237.4/4.44 279.7/5.31 356.3/6.88 

0.1 342.3/4.64 301.0/5.68 458.3/7.73 

0.2 323.0/5.00 360.5/5.82 496.7/7.88 

0.3 368.5/5.12 367.2/5.75 567.6/8.17 

Table 5-9: Total running time & running time per generation  

Tab.5-9 displays the “total running time” and “running time per generation” with separation by slash. The 

later one is calculated by dividing the “total running time” with the corresponding “generation number”. 

Higher Crossover and Mutation probability are likely to entail more computational time, which is easy to un-

derstand.  

We also compare the running time for large-scale instances in Tab.5-9 with that of small-scale instances in 

Tab. 5-2. It grows mild with the instance scale, from less than 2 seconds for N=25 to about 300-600 seconds 

for N=200. However, CPLEX takes less than 0.1 second for N=10, but nearly 25 seconds for N=25. In other 

words, the running time of exact algorithms grows exponentially with the instance scale, while the running 

time for proposed hybrid GAs experiences a linear increase with the instance scale. This is the major motiva-

tion for us to adopt GAs for our real-life large-scale instances. 

 Parameters for termination   
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We try to set a value for parameter “Maximum generation
max_ genN ” to guarantee the algorithm has fallen into 

local optimum. Meanwhile, we timely stop the algorithm with the parameter “Maximum number of iteration 
without improvement

impN ” to save computational resource. Moreover, we force the algorithms to run at least 

min_ genN
 
number of generations to prevent the prematurity of the algorithms.  

In preliminary tests for setting reproduction parameters croP  and mutP  , we set the termination criterion like 

this: the programming runs at least 50 generations and at most 200 generations. It also terminates when the 

average value of solutions in the solution pool after 5 generations makes less than 0.001% improvement. As we 

can observe from Tab.18, the average generation of all instances is about 60. Among all the 360 runs of the 

algorithms, there are only 1 case with more than 100 generations, 1 between 90-100 generations, and 3 be-

tween 80-90 generations. So this termination criterion allows GAs to converge to local optimum under all the 

instances we consider. 

Fig.5-2 and 5-3 record “average” and “best” solution values in the solution pool during one implementation of 

GAs under the instances of ( =50 0.7, 0.2)cro mutH P P ， , ( =80 0.7, 0.2)cro mutH P P ， and 

( =100 0.7, 0.2)cro mutH P P ， respectively. The X-coordinate represents “number of generations”. The 

“average value of solutions in the solution pool” in Fig.38 shows the convergence of the algorithms. The test 

results show that the solution pool converges fast before 30th generation. The speed of convergence slows 

down afterwards. The programming terminates before 70th generation under all the three instances. In other 

words, individuals in the solution pool can’t be improved even the programming is prolonged. Furthermore, 

the best solution in final solution pool occurs at about 30th generation. It can be hardly improved with further 

iteration. We believe it has reached the local optimum. 

 

Figure 5-1: Average value of solutions in the solution pool(with Crossover and Mutation probability as 0.7 and 0.2) 

65000000

70000000

75000000

80000000

85000000

90000000

95000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

H=50 H=80 H=100



 

Chapter 5: Computational testes for algorithms      121 

 

Figure 5-2: Best solutions in the solution pool (with Crossover and Mutation probability as 0.7 and 0.2) 

5.2.3. Tests for improvement techniques  

In this section, we test the performance of the first four improvement techniques proposed in Sec.4.2 based on 

basic model, leaving the last one in the next chapter, which must be tested on extension models. All the tests 

are based on data set ( 200, 50)N H  . 

Concerning the instance scale of ( 200, 50)N H  ,  we have more than 2 billion binary variables and 1 billion 

linear constraints with the basic model, which are beyond the capacity of CPLEX422 and also our ability to 

solve it optimally with other customized algorithm. For this reason, we evaluate the performance of the pro-

posed improvement techniques under large-scale instances by comparing the corresponding solutions with the 

solutions by the untailored SGAs, since the optimal solutions are not available.    

5.2.3.1 Tests on constructive procedure  

In this section we test if constructive procedure proposed in Sec.4.2.1 can improve the performance of GAs by 

producing “good initial solutions”.  

It is anticipated that a “good” parameter  is dependent on the solution space of the instance423. So we consid-

er two instances, with hub coverage radius as 300 kilometers and 200 kilometers, respectively. We denote 

them as Hub (300) and Hub (200) in the following. The solution of the latter case contains more hubs, which 

denotes larger solution space.  

It can be expected that CGA (100%)424 yields the same initial solution each iteration if the first element is also 

selected from RCL as other cases. In order to generate enough solutions for the initial solution pool, we trav-

erse through set H  rather than take the top node in RCL as the first node.  

                                                      

422  IBM ILOGCPLEX Optimizer has solved problems with millions of constraints and variables. See http://www-

01.ibm.com/software/integration/optimization/cplex-optimizer/ (access on 20.01.2013). 

423 See Delorme (2004), p.566. 

424 We denote CGAs with parameter   as CGAs ( ) in the following. 
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We test the influence of parameter  to the performance of GAs under instance ( 200, 50)N H  . We set 

  from 0 to 100% with a step length of 25%. In SGAs most of the randomly generated initial solutions are 

infeasible. We just delete the infeasible solutions until enough feasible initial solutions are generated. We keep 

the other parameters for all the instances the same as follows: Population size 
popN 50, Maximum generation 

max_ genN  200, Minimum generation min_ genN 50, Maximum number of iteration without 0.001% improvement

impN  5, Crossover probability croP 70%, and Mutation probability mutP 20%.  

We test the performance of the proposed algorithms with the hub radius as 200 and 300 respectively. We also 

compare CGAs with SGAs. There’re 6 instances under each hub radius, with 10 independent replications for 

each instance. As a matter of fact, we first test the instance of Hub (300), whose results are somewhat disap-

pointing: all the 10 best solutions designate the same 3 nodes as hubs. We believe that it is the limited search 

space leads to the inefficacy of our improvement technique. Then we test the instance of Hub (200), whose 

results display clear tendency and strongly support our idea. The best solutions of Hub (200) are with 5 or 6 

hubs. In other words, Hub (200) has larger search space for GAs than Hub (300) so that there is larger im-

provement space for GAs under Hub (200) than under Hub (300). It may be because of this reason that GAs 

can take advantage of its strengths more effectively under instance Hub (200).  

In Fig.5-4 we plot the running time (in second) with different hub radii and values of   to generate initial 

solutions by constructive procedure. We can observe that it is more time consuming for instances with larger 

randomness, i.e. larger search space. Specifically, when  decreases from 100% to 0, the constructive proce-

dure turns from greedy one into random one. Moreover, for a fixed choice of , feasible solution space be-

comes larger as hub radius decreased. In both cases, the algorithms become more time consuming.     

 

Figure 5-3: Running time (in second) to generate initial solutions with constructive procedure  

First of all, we analyze the results of tests under Hub (200). The best-known result of Hub (200) we have 

found is 73391458. Tab.5-10 reports the deviation of the initial best solution & final best solution from the 

best-known solution calculated across the 10 runs with Eq.5.4. Tab.5-10 also reports the CV values of the 

10best initial and finial solutions under each instance.    
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Initial solution Final solution Imp on 

Avg. B. dev. CV(best) A. dev. B. dev. CV(best) A. dev. 

SGAs 68.48% 0.1737 91.57% 0.87% 0.0129 6.65% 44.33% 

CGAs(0%) 40.12% 0.0519  85.03% 0.67% 0.0062  6.05% 42.68% 

CGAs(25%) 28.66% 0.0673  82.38% 0.56% 0.0098  5.96% 41.90% 

CGAs(50%) 18.87% 0.0427  78.40% 1.32% 0.0079  7.39% 39.81% 

CGAs(75%) 18.62% 0.0490  67.09% 1.98% 0.0256  7.83% 35.47% 

CGAs(100%) 8.08% 0.0146  42.98% 0.20% 0.0018  5.53% 26.19% 

Average of all 30.47% 0.0665  74.57% 0.93% 0.0107  6.57% 38.40% 

Average 

without SGAs 
22.87% 0.0451  71.18% 0.95% 0.0103  6.55% 37.21% 

Table 5-10: Deviation of initial solution & final solution from the best-known solution (Hub (200)) 

A. dev.: average deviation of 10 runs of the average solution in the solution pool from the best-known solution of that instance scale 

B. dev.: average deviation of 10 runs of the best solution in final solution pool from the best-known solution of that instance scale 

CV (best): CV values of the best solutions of 10 runs 

Imp on Avg.: the improvement on the average solutions in the solution pool by GAs (see Eq.5-5) 

CGAs (100%) perform the best on both “best” solution and “average solution” in the final solution pool. 

Meanwhile, it also starts from the best initial solution pool. It strongly supports the discipline that “good ini-

tial solution” can improve the performance of GAs425. Moreover, it is the most stable one with the least CV 

values for both initial and final best results. It is believed that CGAs (100%) performances the best. This con-

clusion is also verified by the results of T-tests between CGAs (100%) and all the other instances.        

The tendency of the results is also obvious that the initial solutions are getting better with increasing in 

terms of best and average solution in initial solution pools. A higher  means more greediness, which is also 

reflected by the CV values. Specifically, the greedy algorithm constructs initial solutions of the best quality 

and least CV when =100% , followed by those in the middle, and then by the random algorithm when

=0% . The randomly generated initial solutions of SGAs are of the worst quality and largest CV value 

among all the instances.  

However, the initial solutions obtained by the constructive procedure are still far from the best-known solu-

tions (22.87% on average and up to 40.12% larger than the best-known solution). The GAs phase improves 

these solutions significantly, 37.21% on average. Actually, iteration of GAs works with different strength on 

different initial solution pools. To analysis this effect, we calculate the improvement of average solution in the 

pool from initial to final one, with the table head “Imp on Avg.” (see Eq.5-5).  

. .
. 100%

.

Initial avg Final avg
Improvement in avg

Initial avg


   

(5-5) 

                                                      

425 See e.g.Talbi (2002), p.545. 
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where “Initial avg.” denotes the average solution in the initial solution pool and “Final avg.” denotes the aver-

age solution in the final solution pool. 

The tendency can be easily found that the improvement from initial solution pool to final one is higher for 

worse initial solutions, since the difference of solution quality among final solution pools for pertinent instanc-

es is much smaller than that among initial solution pools. For example, CGAs (0%) is improved by 42.68% and 

SGAs is improved by 44.33%, while CGAs (100%) is only improved by 26.10%. For this reason, GAs are quite 

good at searching good solution in a wide space. 

 

  
Initial solution Final solution Imp on 

Avg. B. dev. CV(best) A. dev. B. dev. CV(best) A. dev. 

SGAs 30.83% 0.1858 79.36% 0.19% 0.0181  10.30% 38.51% 

CGAs(0%) 9.51% 0.0287  44.32% 0.19% 0.0040  10.32% 23.56% 

CGAs(25%) 11.92% 0.0240  46.00% 0.38% 0.0049  11.37% 23.72% 

CGAs(50%) 9.55% 0.0218  44.80% 0.10% 0.0030  10.17% 23.92% 

CGAs(75%) 7.87% 0.0031  40.61% 0.10% 0.0030  9.17% 22.36% 

CGAs(100%) 18.70% 0.0478  73.63% 0.19% 0.0040  10.31% 36.47% 

Average 14.73% 0.0519  54.79% 0.16% 0.0062  10.27% 28.09% 

Table 5-11: Deviation of initial solution & final solution from the best-known solution (Hub (300))  

Then we analyze the test results under Hub (300) (see Tab.5-11). The table titles have the same meaning as 

those in Tab.5-10. The best-known result of Hub (300) we have found is 62743272. The tendency we have 

mentioned in analysis for instance Hub (200) is also applicable to instance Hub (300) with few exceptions. The 

tendency of initial solution quantity among different instances is faint compared with that of Hub (200). The 

improvement function of GAs that is reflected by the index “Imp on Avg.” is also moderate under Hub (300). 

Moreover, most of the T-tests on final best solutions between different instances are not significant. All of 

these may result from the limited solution space of Hub (300), compared with that of Hub (200).  

When we compare the results of CGAs with SGAs, we find that CGAs does not always work positively on the 

performance of the algorithms (see Tab.5-12 and 5-13). The values listed in the two tables, i.e., the improve-

ment of best solution and average solution in the final solution pool by CGAs based on SGAs, are calculated 

with Eq.5-6. Take Hub (200) as an example, the instances CGAs (50%) and CGAs (75%) even have worse solu-

tions than SGAs. For Hub (300), SGAs have a similar performance as CGAs (0%) and CGAs (100%), while it 

has a better performance than CGAs (25%). So a rational parameter    is vital for the algorithm performance.  

100%SGA CGA

SGA

F F
improvement

F


   

(5-6) 

where SGAF  denotes the best or average result in the final solution pool of SGAs, while
CGAF  denotes the 

counterparts of CGAs. 
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Hub (200) Best solution Average in solution pool 

SGAs 0.00% 0.00% 

CGAs(0%) 0.19% 0.56% 

CGAs(25%) 0.30% 0.64% 

CGAs(50%) -0.45% -0.69% 

CGAs(75%) -1.11% -1.11% 

CGAs(100%) 0.86% 1.05% 

Table 5-12: Improvement of CGAs on SGAs (Hub (200)) 

Hub (300) Best solution Average in solution pool 

SGAs 0.00% 0.00% 

CGAs(0%) 0.00% -0.02% 

CGAs(25%) -0.19% -0.98% 

CGAs(50%) 0.09% 0.12% 

CGAs(75%) 0.09% 1.02% 

CGAs(100%) 0.00% -0.01% 

Table 5-13: Improvement of CGAs on SGAs (Hub (300)) 

However, half of the CGAs instances generate improved results in terms of both best and average solutions, 

and 80% of the instances improve in either one. Moreover, although SGAs have the potential to generate as 

good solutions as CGAs, its performance is not stable since it always has the largest CV values under all in-

stances. Thus the solution of CGAs is more stable than that of SGAs in this sense.   

Although the running time of CGAs is longer than SGAs under all instances, the time is worthy for better 

solutions. Better solutions from CGAs imply that constructive procedure works well to enhance the perfor-

mance of GAs by finding “good” initial solutions. Observe that, the randomness in constructive procedure 

brings diversity in the initial solution pool, while the greedy function is to generate “good” solutions. High 

quality solutions as well as large solution diversity are desirable characteristics of initial solutions for GAs426.  

5.2.3.2 Tests on injection mechanism  

Injection mechanism increases the diversity of the solution pools during the process of GAs, while construc-

tive procedure adds the diversity to the initial solution pool. It is anticipated that these two measures have 

interrelated influence on the final solution quality, i.e. both of them act on the balance of diversification and 

intensification of the solution pool of GAs. In this respect, we make computational tests with different combi-

nations of Injection rate newP  and constructive parameter . Specifically, to distinguish the impact of injec-

tion intensity on the performance of GAs, we take newP  as 0%, 4%, 8% and 12%. Each injection rate is consid-

ered together with 6 different initial solution generation procedures, namely those in SGAs, CGAs (0%), 

CGAs (25%), CGAs (50%), CGAs (75%) and CGAs (100%). There are totally 24 instances, 10 tests for each 

instance. 

                                                      

426 See e.g. Hertz/ Kobler (2000), pp.1-12.      
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For all these tests427, we eliminate the termination criterion “at least 50 generations” to check the convergence 

of algorithms without disturbance. We use the same parameters as those in SGAs, that is, Population size 50, 

Maximum generations 200, Maximum number of iteration without 0.001% improvement 5, Crossover proba-

bility 70%, Mutation probability 20%, Hub radius 300 and “maximum flow allocation” pattern. It is believed 

that injection mechanism may impact on the best choice of Crossover and Mutation probability. However, it is 

beyond our research to find the best parameter combination of Crossover probability, Mutation probability 

and Injection rate, or even together with Population size. Our intent here is to check if injection mechanism 

can further enhance the performance of GAs. Tab.5-14 summarizes the results of 240 tests expressed in devia-

tion from the best-known solution (62743272) for injection mechanism. The title “Gen.” denotes the average 

generation number of the 10 runs under each instance, while others have the same meaning as those in Tab.5-

10.  

                                                      

427 The instances under Injection 0% are just those for constructive procedure. We do these tests again here but without the termination criterion “at 

least 50 generations”. The resultant solutions are quite similar as before.  
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Initial solution 

Injection 0% Injection 4% Injection8% Injection 12% 

Gen. 
B. 

dev. 

CV 

(best) 
A. dev. Gen. 

B. 

dev. 

CV 

(best) 

A. 

dev. 
Gen. 

B. 

dev. 

CV 

(best) 

A. 

dev. 
Gen. B. dev. 

CV 

(best) 

A. 

dev. 

Constructive(0%) 31.5  0.19% 0.0040  10.78% 31.2 0.00% 0.0000  8.37% 34.6  0.00% 0.0000  8.17% 39.0  0.19% 0.0040  11.30% 

Constructive(25%) 32.3  0.38% 0.0049  11.01% 30.4 0.00% 0.0000  8.26% 31.8  0.00% 0.0000  8.17% 32.8  0.00% 0.0000  8.22% 

Constructive(50%) 39.8  0.19% 0.0040  10.17% 27.8 0.00% 0.0000  8.20% 22.8  0.00% 0.0000  8.12% 38.5  0.19% 0.0040  10.15% 

Constructive(75%) 40.4  0.10% 0.0030  9.36% 32.2 0.00% 0.0000  7.83% 32.9  0.00% 0.0000  7.83% 31.2  0.00% 0.0000  7.93% 

Constructive(100%) 36.5  0.19% 0.0040  10.99% 47.4 0.00% 0.0000  8.98% 41.4  0.00% 0.0000  9.35% 35.0  0.00% 0.0000  9.66% 

SGAs 36.1  0.21% 0.0040  10.46% 31.8 0.58% 0.0049  9.42% 28.0  0.00% 0.0000  8.38% 41.2  0.19% 0.0040  8.46% 

Table 5-14:  Test results of injection mechanism 
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The test results show that the introducing the injection operator into CGAs (see the first 5 rows) can bring 

much better solutions than solutions by CGAs without injection. In particular, CGAs with injection find the 

best-known solution for all 10 runs under all instances except the instance [Constructive (0%), Injection 12%]. 

Moreover, all these average solutions in final solution pools are better than those without injection. For each 

initial solution generation procedure (each row), we test the significance between instance of Injection 0% and 

instance of Injection 4%, 8% and 12% in terms of both best and average solution in the final solution pool. All 

the T-test results support the conclusion except the results in terms of average solution relating instances 

[Constructive (0%), Injection 12%].  

However, the test results actually do not indicate which Injection rate is better for our instance. Although the 

results in Tab.5-14 show that the average solution in final solution pool first decrease then increases with the 

increasing Injection rate, the results by T-tests indicate that the difference between Injection 4% and 8% is not 

significant under all instances in terms of both best and average solution. We may only conclude that a mod-

erate Injection rate is preferred by GAs. Injection operator brings diversity to the solution pool, for the case 

where the injection operator is not used the solution seems to be easier to stagnate at a local optimum. How-

ever, too high Injection rate may break up the balance between diversity and intensity, leading GAs to ran-

domness.  

 

Figure 5-4: Average objective value of final solution pool with different initiation policies      

The test results also show that the improvement of injection mechanism on SGAs is not as obvious as that on 

CGAs. This conclusion is verified by the T-test results between (SGAs, Injection 0%) and (SGAs, Injection 4%) 

and results between (SGAs, Injection 0%) and (SGAs, Injection 12%).   

When Injection rate is fixed, average solution in final solution pool first decreases then increases, with the 

exception of instance [Constructive (25%), Injection 0%]. All instances achieve the best average solutions at 

Construction (75%) (see Fig.5-5), which is not totally supported by the results of T-tests of average solutions 

on some instances between Construction (75%) and corresponding instances of Construction (100%) and Con-

struction (50%). But results of the most T-tests support the idea that the diversity in the solution pool during 

the GAs process is as important as that in the initial solution pool. Contrary to our anticipation, the effect of 
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injection mechanism and constructive procedure is relatively independent and can hardly compensate to each 

other.       

 

Figure 5-5: Average objective value of final solution pool with different injection policies      

In terms of convergence rate, we cannot find strong correlation of generation number among different Injec-

tion rates. But under the preferred instance of Constructive (75%), the difference between instances with injec-

tion and without injection is obvious. Fig.5-6 describes typical examples of best and average solutions with 

Injection rate 8% and without injection, respectively. We impose the terminate criterion “at least 50 genera-

tions” to see the behavior of the algorithms more clearly. The X-coordinate denotes the number of generation, 

which can also be viewed as a representation of the computational time, while the Y-coordinate is the best and 

average solutions in solution pool. This result indicates the effectiveness of incorporating injection mechanism 

into GAs in terms of solution quantity and convergence rate. GAs with injection operator converges obviously 

faster than that without injection in both best and average solutions even they are initially similar. Although 

both cases find the best-known solutions, GAs without injection find the best-known solution at 51th genera-

tion, while GAs with injection at 16th generation. The average solution in final solution pool is much better 

for GAs with injection than that without injection. If the termination criterion “at least 50 generations” is 

eliminated in GAs without injection, the chance to find the best solution is much less.        

 

Figure 5-6: Discrepancy in solutions with and without injection mechanism (constructive 75%)  
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5.2.3.3 Tests on LS after GAs  

In this section, we test if LS on hub location and demand allocation decisions after GAs can further improve 

the best solution.  

Test 1: FLS on hub location and demand allocation decision  

First of all, we follow the improvement techniques proposed in Sec.4.2.3. LS on hub location and demand allo-

cation decisions is carried out fully. In particular, FLS on demand allocation decision is embedded in FLS on 

hub location decision until all the hub swap possibilities have been tried428.  

This test is carried out after GAs under instances of Hub (300) and Hub (200), respectively. Parameters for 

GAs with Hub (300) are set as follows: Constructive (75%), Population size 50, Injection 8%, Mutation proba-

bility 20% and Crossover probability 70%. Constructive parameter is changed to 100% under instance Hub 

(200). These are the most efficient parameters we have found for these two instances. Tab.5-15 displays the 

results of tests on one final solution pool of GAs under both instances (not summary of 10 runs).       

 

  Hub (300) Hub (200) 

GAs result 

Average solution  64150008 75036932 

Best solution 62743272 73391458 

Selected hubs (best solution) 27    35   140 7    24    27    93   154 

Running time (s) 280.848 233.378 

LS 1 Average solution 64095193 74972814 

 

Best solution 62689660 73263979 

Selected hubs (best solution) 27    35   140 7    24    27    93   154 

Running time (s) 113.054 122.148 

Table 5-15: Test results of full local search on hub location and demand allocation decisions 

The test results are somewhat surprising. After the FLS on both hub location and demand allocation decisions, 

the selected hubs do not change under both instances. Such results confirm the effective exploration of GAs. 

Although FLS has made no improvement on best hub location decision, it has made substantial improvement 

on other individuals in the solution pool. More specifically, 86% of the individuals in the two final solution 

pools have changed the hub location. Meanwhile, nearly all the individuals are improved by allocation LS. It is 

shown in Tab.28 allocation LS improves the best solution in final solution pool for both instances by 0.086% 

and 0.174%, respectively.  

However, the overall FLS procedure is computationally expensive, although small improvement means huge 

money in reality. The FLS takes up between one fourth and one third of the total running time (28.7% and 

34.4%). 

                                                      

428 FLS does not equal to enumeration, since we only explore the specific neighborhood.   
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Test 2: FLS on demand allocation decision   

The findings of Test 1 indicate that FLS may be not suitable for GAs in our case, considering computational 

time and improvement effect. In this respect, we apply only FLS on demand allocation decision after GAs. As 

we can easily expect, FLS on demand allocation decision runs much faster than FLS on hub location decision. 

Tab.5-16 displays the test results of FLS on demand allocation decision under instances of Hub (300) and Hub 

(200). 

 

  Hub (300) Hub (200) 

GAs 

result 

Average solution  64150008 75036932 

Best solution 62743272 73391458 

Selected hubs (best solution) 27    35   140 7    24    27    93   154 

Running time (s) 280.848 233.378 

LS 2 

Average solution  64095193 74972814 

Best solution  62689660 73263979 

Selected hubs (best solution) 27    35   140 7    24    27    93   154 

Running time (s) 2.293 2.169 

Table 5-16: Test results of full local search on demand allocation decisions 

The best solutions under both instances after Test 1 and 2 are the same, since the LS on hub location decision 

does not make any improvement. But the running time for FLS on allocation decision is much less than that 

on hub location decision, i.e. 0.81% and 0.92% of the total running time under the two instances respectively. 

The FLS on allocation decision improves nearly all the individuals in the final solution pool.  

When we compare the average solutions in Test 1 and Test 2, we find that the improvement by FLS on allo-

cation decision is tiny if hub location decision is not enhanced. In other words, the hub location decisions play 

a decisive role in determining the solution quality. This consolidates the idea to apply PLS on demand alloca-

tion decision during the process of GAs, since it is not worth much effort to improve the demand allocation 

decision until the hub location decision is good enough.       

5.2.3.4 Tests on different allocation patterns before LS  

In this section, we test how a starting point of LS on demand allocation decision can impact on the solution 

quality. We would like to find the best allocation pattern for our algorithm by comparing the solutions of hy-

brid GAs with different allocation patterns, i.e. “the nearest-distance”, “multi-criterion”, “maximum-flow” and 

“minimum cost” allocation patterns. The tests are implemented under H (300) and
 
( 200, 50)N N  .We use 

the same parameters as those in tests for CGAs and injection mechanism: Population Size
popN  50, Maximum 

generation
max_ genN  200, Minimum generation

min_ genN  50, Maximum number of iteration without 0.001% 

improvement
impN 5, Crossover probability

croP 70%, and Mutation probability mutP 20%. For SGAs, we do not 

adopt constructive procedure for initial solution generation, injection mechanism or LS after GAs. But CGAs 

(75%) is conducted with Injection 8% and followed with FLS on demand allocation decision. We summarize 

the results of 10 runs under each instance in Tab.5-17 based on the updated best-known solution (62689660) 

by the tests on “LS after GAs”.   
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  Allocation pattern  
Running 

time(s) 
Gen. Time/Gen. B. dev. CV(best) A. dev. 

SGAs 

  

  

  

Nearest distance 40.591  56.8  0.71  89.00% 0.0646  169.29% 

Multi-criterion 325.406  76.8  4.24  28.52% 0.1395  59.85% 

Maximum flow 467.723  60.7  7.71  0.28% 0.0182  10.39% 

Minimum cost 498.632  62.8  7.94  0.06% 0.0124  8.13% 

CGAs 

(75%) 

   

  

Nearest distance 38.916  56.4  0.69  98.16% 0.1052  179.84% 

Multi-criterion 378.607  72.5  5.22  20.32% 0.0287  44.34% 

Maximum flow 398.081  78.2  5.09  0.18% 0.0029  9.26% 

Minimum cost 586.612  75.4  7.78  -0.08% 0.0030  7.98% 

Table 5-17: Test results of different allocation patterns (H (300))  

The best-know solution for Hub (300) is updated by instance CGAs (75%) with “minimum cost” allocation 

pattern to 62633239. For this reason, the corresponding value in Tab.5-17 is negative. The test results show 

that the demand allocation pattern of “minimum cost” performs the best, followed by the pattern of “maximum 

flow”, and then by “multi-criterion” and “nearest-distance”. Performance differences between them are proved 

to be significant by T-tests.    

The test results conform to the conclusion by O’Kelly that the demand allocation pattern of “nearest-distance” 

ignores the flow between hubs so that it is not suitable to HLPs429. However, the performance of “multi-

criterion” allocation pattern is not so good and even worse than that of “maximum flow” allocation pattern, 

which seems to be contrary to the conclusion of Klincewicz430. However, as we can see from Eq.4-5 and 4-6, 

these two greedy functions only consider the feeder transportation cost, while ignoring the expensive inter-

hub air cost. Moreover, this kind of distortion may be aggravated in networks with unevenly-distributed de-

mand nodes, since the multi-covered demand nodes can be aggregated in few hub regions, leading to higher 

air cost. In our case, and maybe also in most H/S systems, in which backbone travel cost is higher than feeder 

cost, the allocation pattern of “minimum cost” performs better.      

Since the LS on demand allocation decision after CGAs (75%) is tiny, compared with running time for GAs, 

we neglect it when calculating the values of “running time per generation”. The running time for algorithms 

with “nearest-distance” allocation pattern is significantly less than the other three. The calculation of ex-

change flow between demand node and potential “home” hub is quite time consuming. As we have anticipated, 

the running time for GAs with “minimum cost” allocation pattern is the longest.  

When we take a deeper look at the solutions, we find that all solutions contain three hubs, although they may 

choose different hubs. It refers that the solution is not sensitive to hub number but hub location. We also find 

all solutions have a common feature that most of the demand nodes are still subordinated to one of the selected 

                                                      

429 See O’Kelly (1987), pp.393-404. 

430 See Klincewicz (1991), pp.25-37. A multi-criteria assignment procedure to the p-Hub Median Problem were proposed by author: initial assignments 

for a given node i is based on a weighted sum of a common traffic measure with hub k   (measured in units of traffic interchanged with nodes al-

ready assigned to k ) and a distance measure to hub k   (measured as the inverse distance from i to k , so that the closest hub has the largest meas-

ure). 
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hubs even with “minimum cost” allocation pattern. This may come from two reasons. One is that the hub radi-

us is large enough to create large common area among different hub regions. As a result, a majority of demand 

nodes are multi-covered. The other reason is that demand nodes are unevenly distributed, which we have al-

ready mentioned in Sec.5.2.1. In order to save the expensive air cost, the model allocates as many as multi-

covered nodes to one “home” hub. These two reasons may explain why most demand nodes are subordinated 

to one hub.  

5.2.3.5 Overall improvement on SGAs 

To the best of our knowledge, no other meta-heuristic has been proposed for our problem, whose result can 

serve as a benchmark for the hybrid GAs proposed in this dissertation. In this regard, we evaluate the perfor-

mance of the improvement techniques under large-scale instances by comparing the results by the hybrid GAs 

with those by the untailored SGAs.  

Part of the test results in Tab.5-17 can be used directly for the comparison, i.e. results by SGAs (with “multi-

criterion” and “nearest distance” allocation pattern but without injection mechanism or LS after GAs) and 

results by CGAs (75%) (with injection rate 8%, “minimum cost” demand allocation pattern and FLS on de-

mand allocation decision after CGAs). We choose the demand allocation patterns of “multi-criterion” and 

“nearest distance” for SGAs, since they are widely applied in HLPs and their performance has been verified by 

former studies431.  

 

  Allocation pattern  Running time(s) Best solution CV(best) Average Solution 

SGAs 
Multi-criterion 325.406  80494934  0.0646  100118962  

Nearest distance  40.591  118376976  0.0646  168662861  

Hybrid GAs Minimum cost 586.612  62585891  0.0030  67632792  

Table 5-18: Comparison between solutions by untailored SGAs and those by tailored hybrid GAs 

As can be observed in Tab.5-18, the proposed hybrid GAs outperforms the two untailored SGAs significantly. 

The best solutions of hybrid GAs are 28.6% better than SGAs with “multi-criterion” allocation pattern and 

89.1% better than SGAs with “nearest distance” allocation pattern, while the average solutions of hybrid GAs 

are 48% and 149.4% better than the two untailored SGAs respectively432. Moreover, the solutions generated 

by hybrid GAs are much more stable than those generated by untailored SGAs (see CV values).  

The computational time required by hybrid GAs is about 9 times that of SGAs with “nearest distance” alloca-

tion pattern and 1.8 times that of SGAs with “multi-criterion” allocation pattern. But the longer computational 

time is justifiable since the proposed improvement techniques are able to improve the solution quality signifi-

cantly. 

                                                      

431 See e.g. Kratica (2007), pp.15-28; Klincewicz (1991), pp.25-37. 

432 The gap is calculated with this equation:  gap = (SGAs- hybrid GAs)/SGAs. 
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The results of the comparison also conform to the “no free lunch theorems”433. Although meta-heuristics pro-

vide a generalized framework, its performance can be improved by embedding specific knowledge of the prob-

lem under consideration. 

5.3. Summary of the test results  

This chapter is dedicated to computational study on the overall performance of the proposed hybrid GAs un-

der small-scale instances with CAB data set and the performance of proposed improvement techniques under 

large-scale instances with modified AP data set.   

To evaluate the performance of the proposed hybrid GAs, we compare the results from hybrid GAs with opti-

mal solutions generated by CPLEX. CPLEX (exact method) generally outperforms the hybrid GAs both in 

terms of running time and solution quality under instances with no more than 25 nodes.  

To evaluate the performance of proposed improvement techniques under large-scale instances, we first modify 

the input data. Preliminary computational tests are then implemented to set efficient parameters for GAs. We 

reveal some relationship between Crossover probability, Mutation probability, running time, generation num-

ber and solution quality by comparing the test results under different instances. By comparing the running 

time of CPLEX and the hybrid GAs under small-scale instances and running time of the hybrid GAs under 

both small-scale and large-scale instances, we verify that the running time of exact algorithms grows expo-

nentially, while meta-heuristics, such as GAs, experiences a moderate increase with the increase of instance 

scale.  

The tests on the four improvement techniques not only reveal whether or how they can further improve the 

performance of the SGAs but also provide some general conclusions for GAs and other (meta-)heuristics for 

HLPs. 

(1) Constructive procedure for initial solution generation   

Constructive procedure borrow from GRASP is a quite effective measure to improve the solution quality of 

GAs. The randomness in constructive procedure brings diversification in the initial solution pool, while the 

greedy function leads to good solutions. Our test results prove that high quality and large diversity are desir-

able characteristics of initial solution pool for GAs. Although the running time for CGAs is longer than that 

for SGAs, the time is worthy for better solutions. However, a good parameter and a large solution space are 

prerequisites for the positive effectiveness of constructive procedure on GAs.  

(2) Injection mechanism  

Injection mechanism can improve the solution quality of CGAs by increasing the diversity of the solution pool 

during the process of GAs. CGAs with injection mechanism may converge faster than that without injection 

with certain constructive parameters. Meanwhile, the improvement effect of injection mechanism on SGAs is 

not obvious. Although the test results do not suggest an optimal injection rate for our test instance, they indi-

cate that a moderate injection rate is usually preferred, while too high injection rate breaks up the balance 

between diversity and intensity, leading GAs to randomness.        

                                                      

433 See Wolpert. Marready (1997), pp.67-82; Raidal (2006), p.3. 
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While constructive procedure increases the diversity of the initial solution pool, injection mechanism increases 

the diversity of the solution pool during the process of GAs. However, the test results indicate that the impact 

on the GAs performance from injection mechanism and constructive procedure is relatively independent and 

can hardly compensate to each other.  

(3) Local search after GAs 

The FLS on hub location decision after GAs does not change the best hub location decision. It may indicate 

that the time-consuming FLS does not work so efficiently after GAs with regard to the computational re-

source and the potential improvement. 

Meanwhile, FLS on demand allocation decision after GAs can further improve the best solution with less time 

than FLS on hub location decision. We also find that the improvement by FLS on allocation decision is tiny if 

hub location decision is not improved. This consolidates the idea to apply PLS on allocation decision during 

the GAs, since it is not worth much effort to improve the demand allocation decision until the hub location 

decision is good enough.       

(4) Demand allocation pattern before local search  

The test results indicate that the demand allocation pattern of “minimum cost” performs the best, followed by 

the pattern of “maximum flow”, and then by “multi-criterion” and “nearest-distance”. The test results conform 

to the conclusion of O’Kelly that the allocation pattern of “nearest-distance” ignores the flow between hubs so 

that it is not suitable to HLPs. Moreover, the patterns of “multi-criterion” and “maximum flow” only consider 

travel cost in tributary network, while ignoring the more expensive air cost between hubs. They are also not 

suitable for H/S network with unevenly distributed demand nodes, otherwise the multi-covered demand nodes 

will be aggregated in few hub regions, leading to higher air cost. For air-ground H/S system, in which back-

bone cost rate is higher than feeder cost rate and demand nodes may be unevenly distributed, the “maximum 

flow” allocation pattern is more suitable, although the running time is a little bit longer.    

Finally, we evaluate the overall performance of the four proposed improvement techniques by comparing the 

solutions by the hybrid GAs with those by untailored SGAs. Although the hybrid GAs requires longer com-

putational time, it can provide better and more stable solutions. The results of the comparison also conform to 

the “no free lunch theorems” that the performance of meta-heuristics can be improved by embedding specific 

knowledge of the problem.   

However, there are some flaws for our computational studies. The first one lies in the lack of benchmark to 

evaluate the performance of the proposed GAs under large-scale instances. Although we run the algorithm 10 

times for each test instance and offer information about its stability in terms of CV values and reliability in 

terms of results of T-test, we do not know the deviation of the best-known solution by our algorithm from the 

optimal solution of the instance.  

The second flaw is that we do not account for the interrelationship between parameters of GAs and those pro-

posed improvement techniques, such as constructive process and injection mechanism, although we have made 

a lot of effort to find a relatively good parameter setting. In other words, we only check the performance of the 
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proposed improvement techniques with a fixed GAs parameter setting. However, parameter setting itself is 

complicated enough to become a research topic434.   
 

 

 

                                                      

434 For study on parameter of GAs, reader may refer to Goldberg. See Goldberg (1989).   
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6. Empirical study on real-life problem 

6.1. Input data preparation 

The primary motivation of the proposed algorithm is to apply it to a real-life problem involving an EDS pro-

vider. As an application-oriented research, we try to provide our readers with an overview of the project, alt-

hough not all the details are possible or permitted. We are aimed at not only theoretically solving the models 

by proposing some solution algorithms and improvement measures but also practically introducing some per-

tinent skills and techniques we have used during the implementation of the project. In Sec.1.3 we have already 

introduced how we position the target service with marketing instruments. The application of the proposed 

algorithm to our real-life problem requires comprehensive data collection, analysis and modification. In this 

section we introduce how we collect and modify the input data for the models. All data are compiled on daily 

basis. 

6.1.1. Demand nodes set    

After we position the target service- Next Morning and Next Day EDS 435, we should allocate limited re-

sources and efforts to the right customers. In this section, we illustrate how the target market-demand nodes 

set N- is defined quantitatively, from which most high-end nationwide trans-city EDS demand can generate.  

 Methods and steps 

We consecutively employ a series of multivariate techniques, i.e. correlation analysis, principal component 

analysis (PCA) and cluster analysis (CA), to identify the target market. The pertinent methods and steps are 

illustrated in Fig.6-1.  

                                                      

435 Please refer to Tab.1-2. 
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Figure 6-1: Methods and steps for identifying the target market 

(1) Indicator system 

Market analysis by the project committee is based on information from expert interviews, official publications 

and questionnaires handed out to corporate and private clients. Indicator system (see Tab.6-1) was designed 

accordingly in order to distinguish the high-end market under the consideration of the availability of the sta-

tistical data.       

 

General indicators  Subordinate indicators 

GDP 
Contribution from secondary industry 

Contribution from tertiary industry 

Export-oriented economy 
Total export and import volume  

Foreign capital utilized 

Freight volume 

Highway freight volume 

Railway freight volume 

Air freight volume by civil aviation 

Industrial economy 
Industry output 

High-tech enterprises output 

Commercial economy 
Number of wholesalers and retailers 

Sales volume of consumer goods 

Living standard Disposable income of urban residents 

Population size Urban population size  

Related business volume  Business volume of postal delivery service and EDS   

 

Indicator system  

Correlation analysis  

Principal component analysis  

Input 

Cluster analysis  

Target market  

Output 
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Road traffic Highway mileage 

Table 6-1: Indicator system for identifying target market 

(2) Correlation analysis 

First of all correlation analysis is applied to check the co-linearity of variables with a correlation matrix table. 

The result of the correlation analysis by SAS shows that variables in the indicator system are highly correlat-

ed. 

(3) PCA 

PCA is therefore adopted to eliminate the co-linearity. It replaces the original difficult-to-interpret and corre-

lated variables with fewer conceptually meaningful and independent components or factors in order to simplify 

the evaluation, while retaining most of the information in original data. In our case two independent indicators 

(or principle components in statistical terminology) abstract more than 80% of the information from the indi-

cator system and explain most of the difference among cities (see App.3). The two component scores generated 

by PCA are taken as clustering variables. 

(4) CA 

CA is the kern step in the procedure illustrated in Fig.6-1. Many researches and books have pointed out that 

CA is a useful statistical instrument to identify group with similar characteristics436. 

CA, more specifically speaking, non-overlapping hierarchical method437, we use here is a widely adopted meth-

od, which typically results in a dendrogram, i.e. a tree structure that represents the hierarchical relations 

among all objects being clustered. The dendrogram in Fig.6-2 is an example based on Ward’s method (one 

kind of agglomerative clustering) with the modified project data set438. The X-coordinate represents the joint-

ed cluster and the Y-coordinate indicates the loss of homogeneity439. The dendrogram is organized bottom-up 

that the merger of every possible cluster pair is considered and first minimizes the increase of within-cluster 

variance when groups are merged and then continues until all cities are clustered in one group.  

Actually, clusters themselves are not directly derived by the hierarchical methods. Researchers seeking a solu-

tion with a certain number of clusters need to decide how to arrive at those clusters from the tree representa-

                                                      

436 See Churchill/ Iacobucci (2007), p 351; Myers /Mullet (2003), p.15; Wedel/Kamakura (1999) p.39. Books include such as McDonald/ Dunbar (2004) 

and Weinstein (2004). 

437 See e.g  Everitt et al. (2011), Sec1.1; Romesburg (2004), p.2;  

438 Hierarchical structures can be basically derived from two types of algorithms: agglomerative and divisive methods. Agglomerative methods start 

with single-subject clusters, and proceed by successively merging those clusters at each stage of the algorithm until one single group is obtained. Divi-

sive methods start with all subjects in one single group, and successively separate each group into smaller groups until single-subject groups are ob-

tained. The latter category of methods is less popular in applied segmentation research. 

439 The semi-partial R-squared (SPR) measures the loss of homogeneity resulting from merging two clusters into a new one at each step. If the value is 

small, it suggests that the cluster solution derived at this step results from merging two very homogeneous clusters. On the other hand, large values 

of SPR suggest that two heterogeneous clusters have been merged to the new cluster. 
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tion. In our case a break point clearly occurs when three groups are merged into two, indicating the fusion of 

relatively dissimilar clusters after this point. If component scores of the two principle components from PCA 

for every city are projected in Euclidean space (see Fig.6-3), all the cities are also intuitionally divided into 

three groups. Other criteria, such as identifiability, accessibility and stablility440 should also be considered for 

CA.  

 

Figure 6-2: Process of cluster analysis 

 

Figure 6-3: Component scores in Euclidean space 

 Results  

Every city in the database of Company A is regarded as a demand node. The methods and steps described 

above are adopted to divide all the more than 2000 cities into several groups. Analysis of variance (ANOVA) 

and hypothesis testing are executed on the result from CA. Finally, the first three groups that have the highest 

Component Scores are identified as target market (see Tab.6-2). Managers from Company A were quite satis-

fied with the results. All the crucial cites listed by experts from the headquarter of Company A are included in 

the target market. Moreover, the size of the target market (281 cities) is quite ideal for a market development 

strategy. Therefore, the 281 cities in the first three groups are defined as demand nodes set N. Descriptive 

Statistics for Different Customer Groups, please refer to App.4.      

 

                                                      

440 Different criteria are mentioned by former studies. See e.g. Wedel/ Kamakura (1999), p4; Dibb (1999), p108; Tonks (2009), p343; Kotler/ Keller 

(2009), p 64. We explain some in the following.  

Substantial: The segments are large and profitable enough to serve. 

Accessible: The segments can be effectively reached and served. That is, they can be characterized by observably different means. 

Differentiable: The segments can be distinguished conceptually and respond differently to different marketing-mix elements. 

Stable: Only segments that are stable over time can provide the necessary grounds for a successful marketing strategy. 

Familiar: To ensure management acceptance, the segments composition should be comprehensible. 

Relevant: Segments should be relevant in respect of the company’s competencies and objectives. 

Compactness: Segments exhibit a high degree of within-segment homogeneity and between-segment heterogeneity. 

Compatible: Segmentation results meet other managerial functions’ requirements. 
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  Group No. Number of cities in group Representative  cities 

1  10 Beijing, Chengdu, Guangzhou, Shanghai, etc. 

2  82 Anshan, Baise, Baotou, etc. 

3  189 Bengbu, Shaoxing, etc. 

Table 6-2: Target market defined with statistical analysis  

6.1.2. Potential hub set  

In order to minimize the total cost of the network, we should include as many demand nodes as possible in the 

potential hub set H. Moreover, studies on EDS networks in the USA show that it is common for EDS provid-

ers to locate their hubs in relatively small cities, where there are few other airlines competing for nighttime 

runway access441. For these reasons, what we did beforehand was to delete the cities without qualified airports 

from the demand node set N and include the rest cities in the potential hub set H. By this way, there are 187 

nodes in the potential hub set H, including 5 nodes that are predetermined as hubs in the new network by 

managers, since Company A has already made intensive investment on these 5 hubs and has no intention to 

close them. In this respect, there are 182 nodes to be considered during the solution. 

However, managers from Company A, who were in charge of the business, were reluctant to accept our meth-

od. They brought forward two reasons for their rejection. First and foremost, the location of hubs is not only a 

matter of total cost but also a matter of the market share of next-morning EDS, which is the premium service 

the to-be-planned network supports. As only hub cities can be offered with this premium service, locating hubs 

in small and less developed cities will result in losing the corresponding market share tremendously. By con-

straining hubs in relatively large and more developed cities, the total cost of network may be a little bit higher, 

but the revenue can be much higher with higher price for the premium service. As a matter of fact, this is one 

of the deficiencies in our models. We only concern the cost of the network, while neglecting the corresponding 

service revenue and other marketing considerations. The second reason is the trouble and difficulty to collect 

so much information about hub fixed cost for different cities. Meanwhile, the managers believed the result 

from CA provided information for the choice of candidate hubs, i.e. potential hub set H can be created on the 

basis of cities in Group1 and Group 2 in target market, which have larger index values than cities in Group 3 

(see Tab.6-2). 

Under the consideration of their persuasive concerns, we build another potential hub set H. We name it Hs 

and the potential hub set with our method Hl. For Hs, potential hubs are firstly confined to the 92 cities in 

Group1 and Group 2. 17 cities are then eliminated due to the deficiency of qualified airports. 75 cities in Group 

1 and Group 2 are included in potential hub set Hs.   

However, the small size of the data set Hs leads to a new problem that not all the demand nodes in N can be 

covered by potential hubs in Hs. We would like to introduce how we treat this problem. First, for every de-

mand node in N that itself is not a potential hub, we scan if there are potential hubs within its coverage. If 

there is more than one, we do nothing. If there is only one, we designate it as hub during the solution process. 

If there is no potential hub within its coverage, we take 5 top demand nodes in CA output (if exist) to the man-

                                                      

441 See Kuby/ Gray (1993), p.10. 
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agers and keep at most 3 of them in the potential hub set Hs. If there is neither potential hub nor other de-

mand node within its coverage, we designate it as hub. After this modification, Hs contains 125 nodes.   

Finally, we present the managers both solutions with potential hub sets Hs and Hl . The difference between 

the counterparts explains how the managerial constraint impacts on the solutions of the problems. The corre-

sponding cost discrepancy can be used to evaluate the cost of the market strategy and the price of the premium 

service.  

We use Hl with 187 potential hub nodes in the following for test purpose as we believe large size of potential 

hub set can help us to reveal the relationship between different influence factors and solutions more thorough-

ly.   

6.1.3. Demand volume forecast 

Another essential input of the models is demand volume between every O-D pair in target market. Demand 

forecast itself is an important research topic in this project. We briefly introduce the methods we use. 

Since the key service defined in Tab.1-2 is quite new for Company A, there is no historical business data for 

reference to forecast the demand volume for the network planning. Even historical business data of similar 

service for each O-D pair is not available. In this respect, demand forecast of this brand new service system has 

to be based on aggregate demand forecast for EDS from individual city. Specifically, factors that can have im-

pact on EDS demand are identified. Time series analysis is applied to derive aggregate demand for EDS. The 

percentage of high-end demand and also the market share by Company A on this high-end market are also 

estimated to derive the demand forecast for particular service (see Fig.6-4).  

 

Figure 6-4: Methods and steps for demand forecast 

6.1.4. Daily time schedule 

According to Fig.3-3 and Fig.3-4 in Section 3.1.2, there are 9 or 7 activities along the parcel route from origin 

to destination. We list a typical time schedule for path “normal demand node to normal demand node” and a 

Demand influence factor 

 

Time series analysis 

Aggregate demand  

Demand distribute estimation 

High-end  demand  

Market share estimation 

Demand forecast for models  



 

Chapter 6: Empirical study on real-life problem   143 

corresponding one for path “in-hub demand node to in-hub demand node” in Tab.6-3. It is used in tests in 

Sec6.2 as basic instance and also serves as the benchmark for the scenario planning in Sec.6.3. 

 

No. Activity Normal to normal In-hub to in-hub 

Time period Time duration Time period Time duration 

1 Pickup from shipper Until 18:30 Whole business 

day 

Until 21:30 Whole business 

day 

2 Twilight local sortation 18:30-19:30 1h 21:30-22:30 1h 

3 Feeder transportation 19:30-22:30 3h - - 

4 Twilight regional sortation 22:30-24:00 1.5h 22:30-24:00 1.5h 

5 Air transportation to desti-

nation hub 

0:00-5:00 5h 0:00-5:00 5h 

6 Sunrise regional sortation 5:00-6:30 1.5h 5:00-6:30 1.5h 

7 Feeder transportation to 

destination city 

6:30-9:30 3h - - 

8 Sunrise local sortation 9:30-10:30 1h 6:30-7:30 1h 

9 Distribution to consignee From 10:30  7:30-10:30 3h 

Table 6-3: Time window of path from “normal demand node” to “normal demand node” and from “in-hub demand node” to “in-hub 

demand node” 

Highway system is unevenly developed in different areas in China. We can define different coverage radii for 

potential hubs. An alternative way is to define different cut-off time and arrival time, i.e. different service poli-

cies in different regions. For example, the local cut-off time in less developed regions with unsatisfactory road 

condition is earlier than that in developed regions with advanced highway system. In our test instances, we 

simply assume that all hubs have the same coverage radius in terms of distance. We also assume that the aver-

age speed for feeder trucks on highway is the same in all hub regions- 90km/hour. Consequently, the time 

window for feeder transportation in all hub regions and the local cut-off time for all normal demand nodes are 

the same.  

6.1.5. Air cost by self-owned aircraft  

Company A has its own air cargo daughter company that owns and financing leases several different types of 

aircraft. Air cost by self-owned aircraft is estimated with sum of fixed cost and variable cost.  

Fixed cost is attributed to the ownership and maintenance of the aircraft. It includes all costs that are inde-

pendent of traffic volume, such as the purchase cost, crew cost, taking-off and landing fees, parking cost and 

repair cost. Fixed cost would differ from aircraft to aircraft and depend on factors such as the age of the air-

craft, kilometers flown, etc. The fixed cost in our models is estimated in cost/kilometer (see sk in Tab.3-5). 

First, the daily fixed cost of an aircraft is calculated with the purchasing cost for the brand new aircraft with a 

20-year span depreciation and the other costs mentioned above. Then the average flown distance per day of 

that aircraft is estimated based on historical data. Finally, the fixed cost per kilometer sk  is calculated by di-
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viding daily fixed cost with daily average flown distance. In this way, the fixed cost attributed to each inter-

hub link is proportional to the length of the link.  

Variable cost s  is attributed to the operational cost of aircraft that depends on the traffic volume, take fuel as 

an example. It is estimated in cost/ (kilo* kilometer). We approximate the average variable cost of an aircraft 

of type s  with company’s one-year historical data by Eq.6-1. The numerator summates the variable cost of an 

aircraft of type s in one year. Parameter sv
 
represents the traffic volume that aircraft actually carries and sd

the distance it flies. The numerator and denominator are calculated for the same time period. For the sake of 

simplicity, in the following computational tests we assume that both the fixed cost and the variable cost for 

one type of aircraft are the same. 

vars

s

s sv d
 


 

(6-1) 

6.1.6. Capacity constraint on self-owned aircraft 

Every type of aircraft has a technical maximum capacity. We modify the capacity constraints in the models 

with an average payload rather than use the technical maximum capacity directly in order to consider demand 

randomness and seasonal fluctuation.  

We enforce a payload reserve margin for accommodating above average daily demand (see Eq.6-2). More ac-

curate method is to derive a deterministic volume by taking, e.g., 90th percentile as the volume that must be 

planned for. However, there are no historical data to simulate a convincing demand distribution. We just esti-

mate the over-demand risk roughly with a fixed probability, i.e. payload. A higher payload means lower cost 

but higher risk. 

u

s su technique capacity average payload   (6-2) 

For company A, the value of this payload is not a critical concern in the network planning. There are other 

ways and mechanisms Company A can use to evade the over-demand risk and save cost simultaneously. On 

the one hand, these self-owned aircraft are in practice shared by other services by Company A, such as eco-

nomical express and logistic service. So the overall transportation cost at corporate level is not so sensitive to 

the payload. On the other hand, during the busy season, such as Chinese Rural New Year, it is also practicable 

to lease shipping space from air freight market. For these reasons, both the risk and cost is not so sensitive to 

the payload in our case.  

The average payload is set here as 80% for test purpose442. Since our special case is not applicable to normal 

situation, we will also test how the average payload can impact on the network structure and corresponding 

total cost.  

                                                      

442 In passenger airline, this parameter is set to be lower than that in air freight application. For example, Akyin set it as 60% for his computational test. 

See Aykin (1994), p. 516.   
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6.1.7. Illustration of other input data  

 Flight time mkT  and feeder transportation time ikT  

The flight time between any potential hubs ( , )kmT k m H
 
is provided by the Civil Aviation Administration of 

China. One can also roughly estimate it by dividing the flight distance with an average speed of the aircraft443. 

With the help of an intelligent navigation system in vehicles, we easily get the latest data for the highway 

distance between any two demand nodes ( , )ikd i N k H  . Feeder transportation time ikT is then calculated 

based on an average speed of trucks on highway according to experts’ experience. We set it as 90km/h here 

for the test purpose.   

 Cost rate on air freight market 

Air cost from the freight market is estimated in cost/ (kilo* kilometer). It is subject to many factors, e.g. com-

petition on regional markets, fuel price, seasonal demand, etc. It suffers a high fluctuation especially in devel-

oping countries like China. We estimate the air cost from the freight market based on the average cost rate by 

self-owned aircraft in Company A and an average profit margin in air freight industry. 
 

 Feeder transportation cost rate  

Feeder transportation cost rate is also estimated in cost/ (kilo* kilometer). In China a substantial part of the 

overland freight service is offered by third-party truck fleets. Market rate of overland transportation suffers a 

high fluctuation due to the fast variation of demand and supply. However, Company A has long-term agree-

ments with some regional truck companies, who charge a stable contract rate all year round.     

 Hub fixed cost
kfh   

Hub fixed cost is incurred, when a new hub is to be established or an existing consolidation center is to be 

expanded. We disregard the residual value of all the existing consolidation centers with Sunk Cost Theory. 

When an existing consolidation center is selected as hub in the new network, only the corresponding expand-

ing cost is calculated in the model. In this respect, the new network gives some preference to the existing facil-

ities. 

The fixed cost for establishing or expanding a current hub at a given city includes the cost for labor, equip-

ment, maintenance, and, most importantly, the cost of land, which largely depends on the policy of the local 

government. Daily hub fixed cost is estimated accordingly based on some assumptions on amortization pa-

rameters, such as discount rate and lifetime of the network.  

Nevertheless, in the models we neglect the hub variable cost, i.e. the parcel handling cost. The total parcel 

handling cost is not so sensitive to the decisions on network structure (hub location and demand allocation 

                                                      

443 It is an approximation for reality, since cruising speeds for different aircraft are not the same. Mahapatra S. described in detail how to estimate flight 

time by using a regression model. See Mahapatra, (2005),  pp. 34-36. 
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decisions) according to our understanding of the problem. It is not worth the computational effort to consider 

the tiny cost discrepancy in the models.  

6.2. Computational tests under basic instance and results analysis 

In this section, we carry out computational tests on Ext.1 and Ext.2, provide the corresponding results and 

make some analysis and comparisons.  

6.2.1. Result of Ext.1  

 Specifications of algorithm parameters and input data  

The solution of extension models follows the process illustrated in Fig.4-3 in Sec. 4.1.3. Air service selection 

decisions in Ext.2  are derived with the Integer Programming Toolbox embedded in Matlab.  

We make similar computational tests as those in Sec.5.2.2 to set the algorithm parameters for the project data 

set. We also selectively apply the improvement techniques in Sec.4.2 based on the test results. The algorithm 

for the project data set in this chapter is run with CGAs (50%), Population size popN 50, Maximum genera-

tion 
max_ genN  200, Minimum generation min_ genN 50, Injection rate

newP  (8%), Maximum number of iteration 

without 0.001% improvement
impN  5, Crossover probability croP 60%, and Mutation probability mutP 20%.The 

starting point of PLS on allocation decision embedded in CGAs is determined by “minimum cost” allocation 

pattern” and the hybrid CGAs is followed by a FLS on allocation decision. 

We make computational tests on extension models in this chapter with modified demand and cost data based 

on the project data set out of the confidential reason, while keeping reasonable interrelationship among the 

input data. In Tab.6-4 and Tab.6-5 we list input data for the basic instance, which also serves as benchmark for 

scenario planning in Sec.6.3.  

 

Input data  Value  

Demand nodes in N 281 

Potential hub nodes in H  187 

Hub fixed cost 
kfh  (daily) 500000 

Cost rate for feeder transportation by truck  0.005/(kilo*km) 

Hub coverage radius D  270km 

Table 6-4: Input data of the basic instance for extension models  

We consider five types of air service in Ext.1 (see Tab.6-5). Service Type 1 denotes service from air freight 

market, while Service Type 2, 3, 4 and 5 denote service by self-owned aircraft. Since Service Type 2 is not 

included in current aircraft fleet of the company, only Service Type 1, 3, 4, and 5 are considered in Ext.2.   
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Nr.  Fixed cost pk  

(/km) 

Variable cost p

(/kilo*km) 

Lower bound
l

pu  (ki-

lo)  

Upper bound 
u

pu  (ki-

lo)  

1 0 0.0070  0   

2 0.3 0.0068 0 2700 

3 1.5 0.0065 0 5000 

4 3.5 0.0060 0 8000 

5 14 0.0055 0 15000 

Table 6-5: Cost functions for different air services 

 Stability of the results  

We still apply the index of CV (see Eq.5-1) to indicate the stability of the results under with the project data 

set. We list the best solutions of 10 runs with Ext.1 under the basic instance in Tab.6-6 and provide the corre-

sponding CV value at the bottom. The deviations from the best-known solution are calculated with Eq.5-4. 

 

Test number 
Best solution 

Running time (s) 
Value B. dev. (%) 

1 56699837.84  0.543% 1727.81  

2 56515604.09  0.216% 1689.54  

3 56393762.12  0.000% 1758.65  

4 56393762.12  0.000% 1711.98  

5 56699837.84  0.543% 1738.42  

6 56515604.09  0.216% 1750.21  

7 56393762.12  0.000% 1758.94  

8 56393762.12  0.000% 1699.45  

9 56515604.09  0.216% 1702.26  

10 56393762.12  0.000% 1786.38  

Average 56491529.86  0.17% 1732.36  

Standard deviation 123069.89      

CV 0.0022      

Table 6-6: Summary of the solutions from 10 runs with Ext.1 under the basic instance 

 Best-known solution with Ext.1 under the basic instance   

Result  Value  

Total cost 56393762 

Air cost  19409702 

Feeder transportation cost 2484060 

Hub number 69 

Volume by self-owned aircraft (kilo*kilometer) 1146411475 

Volume by air freight market (kilo*kilometer) 1657526136  
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Volume by truck (kilo*kilometer)  496812000 

Hub links by service type 1 4455 

Hub links by service type 2 193 

Hub links by service type 3 0 

Hub links by service type 4 44 

Hub links by service type 5 0 

Table 6-7: Best-known solution with Ext.1 under the basic instance  

6.2.2. Computational tests on Improvement technique 5 and result of Ext.2  

 Specifications of the numerical constraints on air service  

We take up the same solution process, algorithm parameters and input data as those for Ext.1 to solve Ext.2 

but with additional numerical constraints on each service type according to the company’s current aircraft 

fleet (see the last column in Tab.6-8).   

   

Nr.  Fixed cost 

pk  （/km） 

Variable cost p

(/kilo*km) 

Lower bound
l

pu  

(kilo)  

Upper bound 
u

pu  

(kilo)  

Numerical 

constraints 

1 0 0.0070  0     

2 0.3 0.0068 0 2700 0 

3 1.5 0.0065 0 5000 2 

4 3.5 0.0060 0 8000 10 

5 14 0.0055 0 15000 15 

Table 6-8: Numerical constraints on air services with Ext.2 

 Computational tests on Improvement technique 5 for Ext.2 

To test if Improvement technique 5 proposed in Sec.4.2.5 can work positively under our real-life instance and 

if it is as efficient as we expect, we modify the program to get the information we need. That is, after the re-

production procedure, i.e. crossover and mutation operation, in each generation, we also calculate the average 

solution of the solution pool with an estimated average air cost rate - 0.0069/ (kilo*km). The effect of the pro-

posed technique is analyzed based on the average solution of the solution pool, since we pay more attention to 

the convergence of the solution pool that determines the termination of the algorithm, while the best solution 

may already be generated in earlier generation.   

We make one probe test with the integer programming for the air service selection decision invoked for every 

individual in each generation from the beginning of the hybrid GAs, i.e. initial solution generation procedure. 

With the modified program we get two data sets, one for average solutions with exact air cost and the other 

for average solutions with approximated air cost. We denote .EfAvg  the average solution with exact air cost in 

the former generation, .EcAvg  that in current generation and .A

cAvg the average solution with approximated 

air cost in current generation. The improvement on the average solution by the overall algorithm and that by 
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the integer programming of each generation is calculated with Eq.6-3 and Eq.6-4 and spotted in Fig.6-5. Note 

that the latter one is actually the rectification by the integer programming to the approximation.  
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Figure 6-5：Improvement on the average objective value of the solution pool by the overall algorithm and that by the integer program-

ming  

When we compare the improvement on average solution by the overall algorithm and that by the integer pro-

gramming, we find that the former one is much larger than the latter one in early stage and comes closer to 

the latter one gradually, while the latter is quite stable through the whole process. As we have mentioned be-

fore, the optimal air service selection decisions largely depend on hub location and demand allocation decisions. 

According to our understanding of the problem, it makes no sense to find the optimal solutions of air service 

selection problem on the basis of bad location and allocation decisions. In our case, the location and allocation 

decisions play a decisive role on the solution quality.         

With regards to this, we can insert the integer programming for air service selection decisions after the solu-

tion pool of the hybrid GAs is relatively stable, e.g. after the 10th generation in our case. Before that, the air 

cost can be estimated with an approximated average cost rate, e.g. a cost rate that is a little bit lower than the 

market cost rate. In other words, the algorithm before certain generation runs with the basic model and it 

changes to Ext.2 after that.     

In order to test the performance of the proposed technique, we run the algorithm with the improvement tech-

nique (called improved algorithm or IAlg. for short) and without (called normal algorithm or NAlg. for short) 
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10 times for each. In IAlg. the air cost is approximated with an average rate as 0.0069/ (kilo*km) and the inte-

ger programming is invoked by GAs after the 10th generation. The best-known solution among these 20 runs 

is 56540386. The running time, the deviation of the best solution from the best-known solution (denoted as B. 

dev. and calculated with Eq.5-4) and the deviation of the average solution from the best-known solution (de-

noted as A. dev. and calculated with Eq.5-4) are recorded in Tab.6-9. The CV values at the bottom are based 

on original solutions and expressed not in terms of percentage.  

 

Generation 

No. 

Running time(s) B. dev. (%)  A. dev. (%) 

IAlg. NAlg. IAlg. NAlg. IAlg. NAlg. 

1 1703.457 1705.864 0.0000 0.7480 0.8527 1.5924 

2 1758.984 1723.119 0.7480 0.0019 1.5939 0.8518 

3 1678.574 1727.809 0.0000 0.0019 0.8528 0.8530 

4 1723.098 1793.847 0.0019 0.0000 0.8529 0.8537 

5 1755.483 1744.563 0.7480 0.0024 1.5932 0.8521 

6 1728.465 1699.485 0.0000 0.0024 0.8533 0.8534 

7 1764.768 1739.089 0.0019 0.0000 0.8529 0.8551 

8 1695.365 1782.967 0.7480 0.0000 1.5928 0.8565 

9 1691.376 1809.023 0.0000 0.0024 0.8531 0.8531 

10 1745.987 1768.675 0.0000 0.0000 0.8533 0.8527 

Average  1724.5557 1749.444 0.2248 0.0759 1.0751 0.9274 

CV (not in %) 0.0181 0.0215 0.0036 0.0024 0.0035 0.0023 

Table 6-9: Performance comparison between IAlg.and NAlg.     

IAlg. finds the best-known solution 5 times in 10 runs, while NAlg. finds 4 in 10 runs. Both the best solution 

and the average solution in the final solution pool of NAlg. are better than those of IAlg. on average (see the 

average values in last row of Tab.6-9). However, the results of the T-tests on both best solutions and average 

solutions of the two algorithms are not significant, which means the solution quality of IAlg. is basically the 

same as that of NAlg. Moreover, the solution stability of the two algorithms is similar in terms of the CV val-

ues for both best solutions and average solutions. In other words, the negative impact on the solution quality 

by the approximation technique is not significant.  

However, the result of the T-test on running time also shows that there is no significant difference between 

the two algorithms, although the average running time of IAlg. is about 25s shorter than that of NAlg. In this 

case, we cannot provide convincing evidence to prove that the proposed technique can save solution time, alt-

hough it also has no evident negative impact on the solution quality. It may result from two reasons, neither of 

which we can provide evidence to prove. One reason may be that our approximation is not so good that the 

GAs have to run more generations to adjust this bias after we insert integer programming. The other more 

convincing reason is that the randomness of the running time from the hybrid GAs covers up the time-saving 

effect of the proposed technique. The problem scale of the integer programming in our case is relatively small 

and its running time by the Integer Programming Toolbox embedded in Matlab is relatively short. Mean-

while, the average running time per generation of the hybrid GAs is relatively long, i.e. about 30s. Even small 

randomness of the generation number can balance out the time-saving effect of the proposed technique.    
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Nevertheless, theoretically the proposed technique can achieve its deserved effect, but when (1) a good approx-

imation can be made and (2) the embedded exact algorithm is time costly compared to the master heuristics.  

Compared with NAlg, IAlg. has not obvious advantage in our case. So we continue to use NAlg. in the follow-

ing computational tests.   

 Result of Ext.2 

The CV value for the 10 runs with Ext.2 is 0.0024 (see the last line of Tab.6-9). As we can anticipate, the sta-

bility of the algorithms for Ext.1 and Ext.2 should be essentially the same, since the embedded integer pro-

gramming is solved optimally when invoked. In Tab.6-10 we present the best-known solution with Ext.2 un-

der the basic instance. 

 

Result  Value  

Total cost 56540386 

Air cost  19555555 

Feeder transportation cost 2484831 

Hub number 69 

Volume by self-owned aircraft (kilo*kilometer) 236898338 

Volume by air freight market (kilo*kilometer) 2567039273 

Volume by truck (kilo*kilometer)  496966110 

Table 6-10: Best-known solution with Ext.2 under the basic instance  

6.2.3. Comparison of results of Ext.1 and Ext.2 

In this section we compare the results of Ext.1 and Ext.2 to reveal some features of the planned network. Also 

we check whether and how the numerical constraints on self-owned aircraft can impact on the network struc-

ture, total cost, inter-hub flow, etc.    

 Hub location 

The best-known solutions of both extension models choose the same 69 nodes as hubs, indicating that the hub 

location decision is not sensitive to the imposed numerical constraints on self-owned aircraft.  

Moreover, they are also the solutions with the least hub number in the final solution pool. This may indicate 

that the high hub fixed cost drives the model to choose as few hubs as possible to balance the high fixed cost 

with the transportation cost (see Fig.6-6). It is supported by the overall cost distribution illustrated in Fig.6-7 

and Fig.6-8, in which the hub fixed cost is much higher than the transportation cost. 'p  in Fig.6-6 represents 

the optimal hub number in our models, while *p represents the optimal hub number in the corresponding hub 

location problem with fixed cost444. Subject to the hub coverage radius constraints, our models have to locate 

more hubs than the corresponding model that has no coverage constraints.      

                                                      

444 It has no constraints on hub coverage radius. For details, please refer to Sec.2.2.4.    
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Figure 6-6: Optimal hub number       

 Cost distribution  

 

Figure 6-7: Cost distribution over the network under the 

basic instance (Ext.1) 

 

Figure 6-8: Cost distribution over the net-

work under the basic instance (Ext.2) 

From Tab.6-7 and 6-10 we can easily calculate the cost distribution over the network in Ext.1 and Ext.2 (see 

Fig.6-7 and Fig.6-8). In both models the hub fixed cost takes up more than 60% of the total cost. Contrarily to 

pure ground H/S networks, the air-ground H/S network here has much higher transportation cost for the 

backbone network than that for the tributary networks. The high air cost results from the high cost rate of air 

service and long flight distance compared to the small hub coverage radius. These are the reasons why we pay 

more attention to the air network, while simply assuming star-shaped tributary networks with an average cost 

rate.  
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Without numerical constraints on self-owned aircraft, Ext.1 certainly incurs lower air cost than Ext.2 by op-

timally selecting air service on each hub link. Moreover, the feeder transportation cost in Ext.1 is also lower 

than that in Ext.2. Maybe some demand nodes in Ext.2 turn to hubs that are connected with more self-owned 

aircraft to reduce air cost.     

 Traffic volume  

 

Figure 6-9: Traffic volume under the basic instance (Ext.1) 

 

Figure 6-10: Traffic volume under the basic 

instance (Ext.2) 

We go over the traffic volume by different transportation modes and air service in both Ext.1 and Ext.2 (see 

Fig.6-9 and 6-10). Although the majority of the demand must be fulfilled with road transportation (except the 

demand from in-hub node to in-hub node), traffic volume by truck (in kilo*kilometer) takes up only 15% of the 

total volume in both models. It is believed that the small hub coverage radius due to the tight time constraints 

shifts the cost focus of the network from tributary networks in pure ground H/S networks to the backbone air 

network in air-ground H/S networks. It is an inevitable trend of the network for EDS, also indicating that the 

planning focus of multimodal EDS networks should also lie in the air network.     

The result of Ext.1 (see Fig.6-7) shows that 41.18% (35%/85%) of the total air freight is fulfilled by 5.05% 

[44+193/4692] of the flights operated by self-owned aircraft. Similar phenomenon can also be distinguished 

in result of Ext.2 (see Fig.6-10) with 8.24% (7%/85%) of the total air freight by 0.575% [(2+10+15)/4692)] of 

the flights. In this respect, it can be inferred that the distribution of the inter-hub flow is strongly uneven.      

 Inter-hub flow  

Uneven distribution of the inter-hub flow occurred frequently in previous studies on HLPs445, especially in 

networks with concave cost functions446. That is, relatively large traffic goes through few highly discounted 

inter-hub links, while other normal inter-hub links have low traffic volume.  

                                                      

445 See e.g. O’Kelly (1987), pp.393-404; Campbell (1994a), pp.387-405; Skorin-Kapov et al (1996), pp.582-593. 

446 See e.g. O’Kelly/Bryan (1998), pp.605-616; Klincewicz (2002), pp.107-122.  
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In order to investigate the incentive of flow bundling by the cost selection function, we compare the inter-hub 

flows in Ext.1, Ext.2 and the basic model. The average air cost rate in the basic model is set to be 0.00692/ 

(kilo*kilometer), which is the average air cost rate with Ext.1 by dividing the total air cost with the total air 

traffic volume. Since the hub location decision is the same in these three models, the flow bundling effect by 

the cost selection function can be investigated by comparing inter-hub flows in these three models.  

We go over the matrices of inter-hub flow with the three models and present the frequency lying within dif-

ferent intervals in Fig.6-11. It demonstrates that the inter-hub flows with the three models are all unevenly 

distributed with a unilateral long tail. In particular, more than 90% of the inter-hub links have less than 1000 

kilos traffic volume, while the largest traffic volume reaches 12722 kilos. 

 

 Figure 6-11: Frequency statistics of inter-hub flows with Ext.1, Ext.2 and the basic model 

The nature of the project data set is one of the reasons for the flow bundling, since the result of the basic mod-

el also shows the flow bundling. In the following we will also show that the distribution of the demand nodes 

in the network is also uneven. 

Meanwhile, the cost selection function also has flow bundling effect. As we can see in Fig.6-11, there are a few 

discrepancies between the basic model and extension models within the interval of [1000-5000]. Since the hub 

location decision is the same, the differences on inter-hub flow between the three models totally result from 

the cost selection function and the numerical constraints on air service.  

In extension models there are some opportunities to pass through the critical point to the next piece of cost 

function with lower rate by amassing flow on a single inter-hub link. For example, because of the Service Type 

2 Ext.1 has 89 inter-hub links with traffic volume between [2000, 3000], 3 more than the basic model and 

Ext.2. We can anticipate that the extension models, which are embedded with a cost select function, force 

some interacting pairs to utilize inter-hub links with lower cost rate to minimize the total transportation cost  

even though those are not the least-cost paths for these interacting pairs.  
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However, the bundling effect in our extension models is not so strong as that in former studies with concave 

cost function, such as FLOWLOC447. It may come from three reasons. 

(1) The granularity of frequency in Fig.6-11 is not small enough to present all detailed differences between 

the three models. Indeed, the traffic volume on some inter-hub links in extension models is larger than the 

volume on the corresponding links in the basic model, but not large enough to go across the breaking 

points in Fig.6-11.  

(2) Constraints on hub coverage radius decrease the opportunity to reallocate demand nodes for agglomerat-

ing the flow. As a matter of fact, 137 out of the 281 demand nodes are covered by only one hub under the 

basic instance with hub coverage radius 270 km. In other words, there are only 144 demand nodes can be 

reallocated.      

(3) Single allocation policy weakens the flow bundling effect. It is found that under the multiple allocation 

policy an increase in the number of single allocation occurs as the inter-hub discount increases448. So the 

bundling effect in single allocation network is not as evident as that in multi-allocation network with the 

same cost incentive.     

 Hubs and subordinate demand nodes  

It is demonstrated by the demand allocation decisions with the two extension models that demand nodes are 

agglomerated in few hub regions rather than evenly allocated to all hub regions. Fig.6-12 displays how the 

281 demand nodes are allocated to the 69 hub regions. The X-coordinate denotes the number of demand nodes 

in a hub region, while the Y-coordinate denotes the frequency.  

                                                      

447 See O’Kelly/Bryan (1998), pp.605-616. 

448 See O’Kelly (1998), pp.171-186. 
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Figure 6-12: Demand nodes distribution among hub regions  
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Note that demand nodes are unevenly allocated in all the three models, i.e. 39 of the 69 hubs have no subordi-

nate normal demand node but only one in-hub demand node, while the largest hub region has 28 subordinate 

demand nodes.  

The agglomeration of demand nodes results from two reasons, i.e. the cost select function and the regional 

economics in China. We also believe that the latter one plays a decisive role, since the demand nodes in the 

basic model are also seriously unevenly distributed. Promoted by national policies, strong economic relation-

ship has been developed in some regions, i.e. economic circles. The results of all the three models obviously 

confirm and verify the phenomenon of regional economics in China. The five largest hub regions in all the 

three models (see Fig.6-12) correspond exactly to the five most economically developed regions in China449.  

 

Hub region  Total demand nodes  Covered demand volume (%) 
Involved self-owned 

aircraft 

9 18 11.07% 2 

23 28 12.59% 15 

41 27 7.84% 10 

49 19 6.68% 7 

169 12 5.37% 2 

Sum  104 43.55% 36 

Table 6-11: Brief summary of the five major hub regions (based on Ext.1)     

We make a brief summary of the 5 major hub regions based on the solution with Ext.1 (see Fig.6-11). The 

index “Total demand nodes” denotes the number of demand nodes in the corresponding hub region. The 5 

major hub regions cover 37.37% of the total 281 demand nodes. “Covered demand volume (%)” is calculated by 

summing up all the demand volume originating from and destining to that hub region and dividing by dou-

bled total demand volume (see Eq.6-7). The five major hub regions cover 43.55% of the total demand volume, 

which means the other 64 hub regions cover only 56.45% of the total demand volume. The index “Involved 

self-owned aircraft” counts the number of self-owned aircraft originating from and destining to the hub. With 

27 self-owned aircraft, 2/3 [36/ (27*2)] of the self-operated flights either originates from or destines to the 

five hubs. Moreover, it seems that Hub 23 serves as a major air hub in the air network, while Hub 41 serves as 

a regional air hub. Just as the conclusion of Hub Arc Problem by Campbell et al450, the model presents auto-

matically a quasi H/S air network although we do not designate the structure of the air network. 

Demand volume covered by hub k (%) =  

( )

100%
( )

ij ji ik

i N j N

ij ji

i N j N

w w x

w w

 

 








      
9,23,41,49,169k   

(6-7) 

                                                      

449 That is the Economic Circle over the Yangtze River Delta (hub region #23), the Economic Circle over the Pearl River Delta (#41), the Economic 

Circle over Bohai Bay (#9), the Economic Circle of Chenyu (#49) and the Economic Circle over Yellow River Delta (#169). 

450 See Campbell et al (2003), pp.555-574; Campbell et al (2005a), pp.1540-1555; Campbell et al (2005b), pp.1556-1571. 
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 Aircraft fleet update strategy 

 

Nr.  Fixed cost 

pk  （/km） 

Variable cost p

(/kilo*km) 

Lower bound
l

pu  (kilo)  

Upper bound 
u

pu  (kilo)  

Current  Optimal  

1 0 0.007  0   4665 4455 

2 0.3 0.0068 0 2700 0 193 

3 1.5 0.0065 0 5000 2 0 

4 3.5 0.006 0 8000 10 44 

5 14 0.0055 0 15000 15 0 

Table 6-12: Comparison between current aircraft fleet and the optimal fleet composition with Ext.1 

When we compare the current aircraft fleet composition with the optimal fleet composition resulting from 

Ext.1 (see the last columns in Tab.6-12), we discover that the current fleet is quite unreasonable to the newly-

planned network. 

In our case Service type 2 represents a kind of light cargo plane in the fleet with relatively small fixed cost and 

capacity but high variable cost, while Service type 5 represents a kind of large cargo plane in the fleet with 

relatively low variable cost but large fixed cost and capacity. Although large aircraft are economical to the 

current business pattern and network structure, i.e. large demand volume among few hubs, they are not suita-

ble to the new network, in which small inter-hub flows occur among much more hubs. For this reason, large 

aircraft are not adopted by the new network, while small aircraft that are not included in the current fleet are 

in demand. Meanwhile, we can also observe that although Service type 3 is smaller than Service type 4 with 

smaller capacity, higher variable cost and lower fixed cost, Service type 3 is not included in the optimal fleet. A 

second check of the air cost functions reveals that Service type 2 is always more economical than Service type 

3.  

Company A also needs an aircraft fleet update strategy to guide the implementation of the project. Subject to 

the budget and other management constraints, the company could only update the aircraft fleet composition 

step by step, suppose by each budget period. The dynamic fleet update decision is made based on the latest 

information about demand and cost. Although the total cost of the network during the updating period will be 

higher if the aircraft fleet is updated to optimization step by step rather than all at once, the advantage of the 

former is also attractive. The decision risk is much lower with less uncertainty about demand and cost. It is 

therefore an effective measure to evade decision risks from new services in emerging markets.  

Since the hub location decision is not sensitive to air service constraints, at the end of each budget cycle the 

H/S system can be updated to the optimum with the best choice among the available aircraft fleet composi-

tions at that time by changing air service selection decisions and demand allocation decisions. We illustrate 

this decision process with an example, which is based on the following three assumptions. 
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(1) Demand node can be changed from one “home” hub to another without cost451.   

(2) The budget for each period can afford, for example, two aircraft of Service type 4 or three aircraft of Ser-

vice type 2. 

(3) Only one unreasonable aircraft in the current fleet can be disposed during each decision period if necessary, 

subject to some management constraints. The disposal cost is ignored.    

We take the current state as “Phase 0” and make the update decision for “Phase 1” with the help of the decision 

tree in Fig.6-13 (“S” denotes service and “C” denotes constraint). In Phase 0, the total cost is 56540386 under 

the constraints of current available aircraft. Then we calculate the total cost with fleet composition of 2 addi-

tional Service type 4 or 3 additional Service type2 in combination of 1 less Service type 5 or 1 less Service 

type3, respectively. The aircraft fleet is updated with the fleet compositions with the least total cost (mark 

with shadow in Fig.6-13). This process can be repeated at each budget period even when the aircraft fleet 

composition conforms to the optimal composition with Ext.1, since the demand and cost are always changing. 

 

Figure 6-13: Decision tree for aircraft fleet updating  

                                                      

451 But in our case it is not true. Company A regards the decisions concerning the network structure, i.e. hub location and demand allocation as long-

term decisions, while air service selection and feeder routing are medium-term decisions. Because regional daughter companies are established on 

the basis of the network structure, changes of demand allocation mean changes of customer resource, assets and also share-holding between 

daughter companies. On the contrary, air service selection is only internal decision of airline subsidiary company.    
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6.3. Empirical scenario planning based on Ext.2 

A well designed network means it does not only perform well under current system state but also continue to 

be profitable for the system’s lifetime and stand up when environmental factors change or market trends 

evolve.  Robust network planning is thus a difficult task, demanding that decision makers account for uncer-

tain future events. In this section, we make scenario planning to help decision-makers capture uncertainty and 

the corresponding decision risk by specifying a number of possible future scenarios452. Planners consider some 

strategic “what-if” assumptions quantitatively and see how the model will react if the values of input data de-

rive from the present state453.  

Specifically speaking, scenario planning is carried out here with two purposes. One purpose is to find those 

factors that are critical to the final decision by checking the discrepancies of the solutions under different sce-

narios. These factors are divided into two types, i.e. controllable and uncontrollable (see Fig.6-14). Uncontrol-

lable factors, such as hub fixed cost and demand volume, are actually risk that Company A must be faced up 

with. Those critical factors must be estimated as carefully as possible. Controllable factors, such as loading 

factor and hub coverage radius, are actually network policy set by network planners. These policies must be 

seriously considered if the network decisions, especially those long-term decisions, are sensitive to them. An-

other purpose of the scenario planning is to provide us several different backup solutions with near minimum 

cost. For one thing, decision-makers sometimes refuse to adopt solution with the minimum cost due to some 

managerial factors or other considerations. For another, the solution with minimum cost is not guaranteed to 

be optimal.    

 

Figure 6-14: Purposes and elements of scenario planning 

                                                      

452 See Mobasheri et al. (1989), pp. 31-44. 

453 See Mulvey (1996), pp. 1-15. 
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All the computational tests for scenario planning in this section are based on current situation (i.e. Ext.2) and 

run with the same algorithm parameters as those in Sec.6.2. Running time of the hybrid GAs is less than 1900 

seconds under all instances. We continue to base our analysis on the best-known solution after 10 runs for 

each instance. The CV values under all instances are less than 0.0025. Moreover, we also make T-tests be-

tween every two instances with the 10 best solutions for each instance to make sure that the differences be-

tween the analyzed solutions are significant, i.e. those differences between solutions result from the variations 

of the control parameters rather than from the randomness or instability of the algorithm, indicating our anal-

ysis is reliable and creditable. When the result of T-test shows that the difference between the two groups is 

not significant, we increase the variation of the control parameter. The insignificance results from the instabil-

ity of the hybrid GAs itself.  

6.3.1. Variation of hub fixed cost kfh  

The hub fixed cost is one of the factors with large uncertainty in the model due to the high fluctuation of the 

real estate price in China. The real estate price not only depends on national economic situation but also is 

largely controlled by the central government. Meanwhile, local government may have some special policies in 

some regions. Under these considerations, we not only neutrally estimate the hub fixed cost node by node but 

also create several scenarios that vary from neutrality. Tab.6-13 presents these scenarios and the correspond-

ing solutions with Ext.2. The variations of the hub fixed cost are estimated both negatively and positively with 

a step length of 10% from the neutral scenario. Since the expectation on price increase is much higher than 

that on price decrease, we also include the scenario a positive increase of 30%.   

 

Variation level Hub fixed cost Hub Nr. Air cost Feeder cost Total cost 

-20.00% 27600000 69 19555555.15 2484830.55 49640385.7 

-10.00% 31050000 69 19555555.15 2484830.55 53090385.7 

0.00% 34500000 69 19555555.15 2484830.55 56540385.7 

10.00% 37950000 69 19555555.15 2484830.55 59990385.7 

20.00% 41400000 69 19555555.15 2484830.55 63440385.7 

30.00% 44850000 69 19555555.15 2484830.55 66890385.7 

Table 6-13: Scenario planning for variation of hub fixed cost 

The best-known solutions under each instance in Tab.6-13 indicate that the hub number, hub location and 

even the demand allocation decisions remain the same with the variations of the hub fixed cost between (-20%, 

30%). The network configuration appears to be not sensitive to the hub fixed cost. The variation of the total 

cost comes totally from the variation of the hub fixed cost. As we have mentioned in Sec.6.2.3, the hub fixed 

cost is probably still so large even with a -30% variation that the model always choose as few hubs as possible 

to minimize the total cost. 

However, the result of the tests can only be applied to the case, in which the hub fixed cost is the same. In real 

life instance, the hub fixed cost is estimated one by one based on “sunk cost theory”. For this reason, the situa-

tion in real-world must be much more complicated than the test instances here.  
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6.3.2. Variation of demand volume ijw  

Geographically-uneven economic development in China results in uneven distribution of EDS demand. After 

the first round development of large cities along the east coast, the second round development is approaching 

to large cities in west of China and second tier cities in east of China. For this reason, we believe the fluctua-

tion degree of the demand varies in different types of cities.      

We divide all the 281 cities in the demand nodes set N into two groups based on the result of “market seg-

ment” in Sec.6.1.1 (See Tab.6-2). We regard the 92 cities in Group 1 and 2 as key cities and the 189 cities in 

Group 3 as normal cities. It is believed that key cities are economically developed ones with more stable de-

mand volume than normal cities. Thereby, the demand volume between normal city and normal city may 

comparatively have the largest fluctuation, followed by that between normal city and key city, and by that 

between key cities. Three scenarios, namely negative, positive and explosive to the neutral one, are developed 

(see Tab.6-14). The corresponding solutions, together with that of the neutral scenario, are illustrated in 

Tab.6-15. The values in the parenthesis represent the corresponding percentages based on the neutral scenar-

io.                                                                                                                  

Scenarios Negative Neutral  Positive  Explosive 

key/key city -10% 0 10% 20% 

key/normal city -15% 0 15% 25% 

normal/normal city -20% 0 20% 30% 

Table 6-14: Demand volume deviation under different scenarios 

Scenarios Negative  Neutral Positive Explosive 

Hub Nr. 69 69 69 69 

Total cost 
53236867  

(94.16%) 
56540386  

59789303 

(105.75%) 

60878999 

(107.67%) 

Total air cost  
16591242  

(84.84%) 
19555555 

22386404  

(114.48%) 

23349887 

(119.40%) 

Cost by self-owned air-

craft 

1075051  

(67.77%) 
1586280 

2007222  

(126.54%) 

2122665  

(133.81%) 

Cost from air freight 

market 

15516194  

(86.35%) 
17969275 

20379182  

(113.41%) 

21227221 

(118.13%) 

Hub fixed cost 
34500000  

(100%) 
34500000 

34500000  

(100%) 

34500000  

(100%) 

Feeder transportation 

cost 

2145621  

(86.35%) 
2484830.55 

2902899 

(116.82%) 

3029112 

(121.90%) 

Volume by self-owned 

aircraft (kilo*kilometer) 

158938703  

(67.09%) 
236898338 

302651297 

(127.76%) 

321240312 

(135.60%) 

Volume by air freight 

market (kilo*kilometer) 

2216599150 

(86.35%) 
2567039273 

2911311679 

(113.41%) 

3032460186 

(118.13%) 

Volume by truck (ki-

lo*kilometer)  

429124200 

(86.35%) 
496966110 

580579800  

(116.82%) 

605822400 

(121.90%) 
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Table 6-15: Scenario planning for variation of demand volume  

The results under the four scenarios show that the variation of the demand volume has no impact on the hub 

number within the fluctuation range under consideration. But actually it has impact on the hub locations, 

which cannot be reflected in this table. 3 hubs in the explosive scenario have changed the location compared to 

the other three scenarios. It can be inferred that although the uneven variations of the demand volume may 

result in the change of the hub locations, the model still tries to choose as few hubs as possible to minimize the 

total cost. 

EOS is clearly reflected with the values of “total cost” under the four scenarios. The deviations of the “total 

cost” from the neutral scenario are -5.84%, 5.75% and 7.67% for the negative, positive and explosive scenarios 

respectively, while the demand volume deviations of these three scenarios are at least -10%, 10% and 20%. The 

EOS comes primarily from the hub fixed cost, since the hub number in these three scenarios keeps the same. It 

also comes from the self-owned aircraft. Observe that the deviations from the neutral scenario of “volume by 

self-owned aircraft” and “cost by self-owned aircraft” are larger than the deviations of “total air volume” and 

“total air cost” (see Tab.6-16).  

  Negative Neutral Positive Explosive 

Cost by self-owned aircraft -32.23% 0.00% 26.54% 33.81% 

Total air cost -15.16% 0.00% 14.48% 19.40% 

Volume by self-owned aircraft  -32.91% 0.00% 27.76% 35.60% 

Total air traffic volume  -15.28% 0.00% 14.62% 19.61% 

Table 6-16: Deviation of the air cost and air traffic volume from demand variations 

6.3.3. Variation of loading factor  

The loading factor is a controllable factor for decision-makers to balance between cost and risk. A high load-

ing factor means high risk that demand volume in peak season is beyond the capacity of self-owned aircraft so 

that the rest demand must be fulfilled by commercial air service separately. However, self-owned aircraft are 

better loaded in normal season with a high loading factor. The loading factor under the basic instance is set to 

be 80%. In this section, we increase the loading factor from 60% to 90% with a step length of 10% and test 

how it can affect decisions and corresponding costs. The capacity upper bounds of each type of self-owned 

aircraft with different loading factors are listed in Tab.6-17.  

 

Upper bound 
u

pu  (kilo) 60% 70% 80% 90% 

Service type 1         

Service type 3  3750 4375 5000 5625 

Service type 4 6000 7000 8000 9000 

Service type 5 11250 13125 15000 16875 

Table 6-17: Capacity upper bound of self-owned aircraft with different loading factors   

 



 

Chapter 6: Empirical study on real-life problem                                                                                                                  164 

Loading factor 60% 70% 80% 90% 

Hub Nr. 69 69 69 69 

Total cost 56541046  56540897  565403865  56538018  

Total air cost  19556216  19556067 19555555  19553184  

Cost by self-owned aircraft 1173847  1364201  1586280  1729045  

Cost from air freight market 18392139  18193144  17969275  17816713  

Hub fixed cost 34500000  34500000  34500000  34500000  

Feeder transportation cost 2484829  2484830  2484831  2484834  

Volume by self-owned air-

craft (kilo*kilometer) 
176489262  204917063  236898338  258692985  

Volume by air freight market 

(kilo*kilometer) 
2627448362  2599020583  2567039273  2545244725  

Volume by truck (ki-

lo*kilometer)  
496965881  496965997  496966110  496966834  

Table 6-18: Scenario planning for variation of loading factor    

The best-known solutions under each scenario are displayed in Tab.6-18. However, the results of T-tests indi-

cate that the differences between the scenario 60% and 70%, 70% and 80%, and 80% and 90% are not signifi-

cant. For this reason, any analysis based on the neighboring scenarios is not reliable. However, the overall 

trend of the solutions is reliable, since the differences between the scenario 60% and 80%, 70% and 90%, and 

60% and 90% are significant.  

The solutions indicate that the hub location decision is not sensitive to the loading factor with the variations 

between (60%, 90%). Discrepancies of total cost result from small changes on allocation decision and air ser-

vice selection decisions on some links. With the increase of the loading factor, the volume by self-owned air-

craft increases so that the air cost, as well as the total cost, decreases. However, the variations between the 

solutions are very little due to the limited number of self-owned aircraft.  

However, this analysis only involves key EDS of the company (see Tab.1-2). As we have mentioned above, the 

spare loading space on board of self-own aircraft is in practice filled with other economical express demand. 

The cost discrepancies between these scenarios are, therefore, not as large as those shown in Tab.6-18 at the 

company level.   

6.3.4. Variation of hub coverage radius D   

In this section, we examine how the variation of the hub coverage radius impacts on the solution of the model. 

Three hub radii listed in Tab.6-19 are under consideration. The corresponding time windows for tributary 

network and backbone network are also listed below based on an average highway speed of 90km/h and the 

time schedule in Tab. 6-3. We also assume direct flight between any potential hubs is less than 5 hours.  

 

Hub coverage radius (km) 225 270 315 

Time window for tributary network (hour) 2.5  3  3.5  

Time window for air network (hour) 7 6 5 
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Table 6-19: Hub coverage radius and corresponding time window for tributary and backbone networks   

 

Hub coverage radius  225 270 315 

Hub Nr. 94 69 55 

Total cost 68713053 (121.53%) 56540386  49539818 (87.62%) 

Total air cost  19639177 (100.43%) 19555555  19303250 (98.71%) 

Cost by self-owned aircraft 919735 (57.98%) 1586280  2280160 (143.74%) 

Cost from air freight market 18719442 (104.17%) 17969275  17023090 (94.73%) 

Hub fixed cost 47000000 (136.23%) 34500000  27500000 (79.71%) 

Feeder transportation cost 2073876 (83.46%) 2484831  2736568 (110.13%) 

Volume by self-owned air-

craft (kilo*kilometer) 
136427553 (57.59%) 236898338  345386351 (145.80%) 

Volume by air freight market 

(kilo*kilometer) 
2674205929 (104.17%) 2567039273  2431870050 (94.73%) 

Volume by truck (ki-

lo*kilometer)  
414775200 (83.46%) 496966110  547313600 (110.13%) 

Table 6-20: Scenario planning for variation of hub coverage radius 

The solutions under the three scenarios are tabulated in Tab.6-20. Note that the hub location decision is quite 

sensitive to the controllable factor hub coverage radius. When the hub coverage radius decreases, the number 

of hubs in the network, the total cost and the transportation cost increase. Although the feeder transportation 

cost decreases, it cannot compensate the increase of the air cost.     

When we go through the traffic volume, we find that the reduction of the hub coverage radius leads to the 

decrease of volume by truck but the increase of volume by air. However, the average traffic volume on inter-

hub links and thus the traffic volume by self-owned aircraft decrease.  

A small hub coverage radius means short delivery time if the time window for the air backbone network is 

fixed. But it also means high total cost that results from the increase of the hub number and air traffic volume. 

In fact, these two measures of network performance, i.e. delivery time and cost, are conflictive and any gain in 

one is expected to be accompanied by a loss in the other. For example, with the assumption of a 5-hour time 

window for the air network the delivery time decreases from 12 hours to 10 hours by 16.67%, when the hub 

coverage radius decreases from 315km to 225km. However, the reduction of the delivery time leads to a 

somewhat steady increase of the total cost by 38.7%. If we interpret the delivery time as an indicator of the 

service quality, we may suggest that a smart company may only allow moderate deterioration of the service 

quality which leads to steady cost reduction. Otherwise, the mild cost saving cannot compensate the sharp 

reduction of the revenue. 

When we go through all the hub location decisions under the four scenarios, we find that some hubs always 

stand in optimal solutions. The first kind of these hubs, taking Urumqi as an example, is geographically dis-

persed from other potential hubs. Actually, they may be designated as hubs in preprocess procedure. The sec-

ond kind is hubs with large origin or destination flow themselves, such as Peking and Shanghai. The third 
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kind is hubs with location advantage. Although their in-and-out demand volumes are not so large, they locate 

at the center of node clusters. These hub locations are not sensitive to the other factors so that they can be 

built with priority if the budget is limited.  

However, three concerns must be further considered in real life. First, the model is based on the assumption 

that hubs are fully inter-connected. Once stopover is allowed, a loose time window for the air network means 

large transfer opportunities and thus air cost saving. Second, the model assumes that demand nodes are direct-

ly connected to “home” hubs. However, pure star-shaped feeder networks seldom appear in reality. When de-

mand nodes in the hub regions are connected by several routes rather than by direct service, small hub cover-

age radius also means less feeder trucks and thus cost saving of feeder transportation. Third, the service quali-

ty of the same day EDS within the hub region is not considered here. Although these three concerns are not 

included in this dissertation, they must be considered in reality.  
 

6.4. Summary  

This chapter is devoted to empirical study on real-life problem. In Sec.6.1 we illustrate how we collect and 

modify input data of the models. We illustrate the problems we are faced up with and introduce the methods 

and mathematical instruments we have used. The purpose of this section is to provide our readers an overview 

of the project and some guidance to the application of the proposed models and algorithms.  

In Sec.6.2 we display the solutions of Ext.1 and Ext.2 by the proposed hybrid GAs under the basic instance. 

The comparison between them not only suggests some important features of our specific network but also 

indicates some general conclusions: (1)the cost focus shifts from the tributary networks in pure ground H/S 

networks to the backbone air network in air-ground H/S networks, which indicates that the planning focus of 

multimodal EDS networks should also lie in the air network; (2) the concave piecewise linear cost function 

(that can be easily transformed from the cost selection function in this dissertation) has flow bundling  effect; 

(3) models with concave piecewise linear cost function may automatically present a quasi H/S network alt-

hough no such structure is imposed. In this section we also provide a dynamic update strategy of aircraft fleet 

to guide the implementation of the project. We test the performance of the Improvement technique 5 in 

Sec.4.2.5 with the project data set. However, its time-saving advantage is not significant in our case probabil-

ity due to the short calculation time of the embedded integer programming and the fluctuation of the GAs’ 

running time. 

Sec.6.3 is devoted to scenario planning based on Ext.2. Most of the results in scenario planning suggest that 

the hub fixed cost in neutral scenario is relatively high so that the model always chooses as few hubs as possi-

ble to minimize the total cost. For this reason, the hub location decision is not sensitive under most scenarios, 

except the hub coverage radius. The hub coverage radius seems to be decisive to the network configuration in 

our case and must be set with great care. Some general conclusions are obtained or verified: (1) EOS can be 

obtained in H/S network, which primarily comes from the hub fixed cost and may also from self-owned air-

craft; (2) loading factor is a controllable factor for decision-maker to balance costs and the corresponding over-

demand risk;(3) the hub coverage radius is a controllable factor to determine the service quality in terms of 

delivery time according to the cost. However, scenario planning in this section is under some simplifications of 

the reality which must be considered in real-life cases. 
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7. Conclusion and perspective 

7.1. Summary of research and contributions  

This dissertation focuses on strategic planning of large-scale, multi-modal and time-definite EDS networks, 

while trying to provide readers with an overview of the project. 

In order to provide trans-city overnight EDS among relatively developed cities in China, we resort to an air-

ground H/S network with fully interconnected/star shaped structure. The corresponding models are a com-

bination of Hub Location Problem with Fixed Cost454 and Hub Set Covering Problem455. Because neither of 

the two problems simultaneously addresses both of the two issues (1) the time constraints and (2) the total 

cost, especially transportation cost. We combine these two problems together to complement each other. We 

minimize the total cost (both hub fixed cost and transportation cost) under the constraints that all demand 

nodes are within the coverage of their “home” hub. We first propose the basic model, which conforms to the 

three conventional assumptions, i.e. fully interconnected hubs, fixed discount rate on hub arcs and no direct 

link between non-hub nodes. Then we extend the basic model by eliminating the assumption of fixed discount 

rate on hub arcs. Air service selection problem is embedded for the backbone air network based on a cost select 

function that can be easily transformed into piecewise linear function. We consider two different situations- 

whether the air service selection is subject to the current fleet composition (Ext.2) or not (Ext.1). 

Due to the large scale of our real-life instance, we resort to hybrid GAs to get good solutions in bearable time 

but without the guarantee of finding optimal solutions. In particular, the overall problem has three kinds of 

decisions, i.e. hub location decisions, demand allocation decisions and air service selection decisions. We pro-

pose for each kind of decisions one specific algorithm, namely, GAs, local search heuristics and integer pro-

gramming, respectively. These three algorithms run successively in a hierarchical framework to solve the 

original problem. In order to improve the performance of the algorithm, we propose 5 improvement tech-

niques, which are applied to different procedures of the original algorithm.  

Computational tests based on public data set and project data set are conducted to evaluate the performance of 

the proposed algorithm in terms of computational time and solution quality. Tests under small-scale instances 

with CAB data set are to evaluate the overall performance of the proposed algorithm by comparing the solu-

tions with the optimal solutions generated by CPLEX. The results indicate that CPLEX (exact method) gen-

erally outperforms the hybrid GAs both in terms of running time and solution quality under instances with no 

more than 25 nodes. Tests under large-scale instances with AP data set and project data set are to evaluate the 

performance of the 5 proposed improvement techniques. Since neither the optimal solutions nor solutions gen-

erated by other algorithms under large-scale instances are available to serve as benchmarks, we provide in-

formation about the stability of the solutions with CV values and the reliability of the results with T-tests. 

The 5 improvement techniques and their performance with test data are briefly summarized as follows.    

                                                      

454 See e.g. Cunha/Silva (2007), p.750; Chen (2007), p.213.In some literature, the union of uncapacitated hub location problem (UHLP) and capacitated 

hub location problem (CHLP) is actually hub location problem with fixed cost in this dissertation. See e.g. Hekmatfar/ Pishvaee (2009), pp. 243-

270. 

455 See e.g. Alumur/Kara (2008), pp.9-11 and p.14. 
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Improvement 1 refers to the constructive procedure for the initial solution generation procedure of GAs. We 

incorporate the constructive procedure borrowed from GRASP to generate initial solutions for GAs. This 

method can not only yield feasible solutions but also balance the diversity and intensity of the initial solution 

pool. Test results prove that high quality solutions and large diversity are desirable characteristics of initial 

solution pool for GAs. However, a good parameter and a large solution space are prerequisites for the positive 

effect of constructive procedure on GAs.  

Improvement 2 refers to the injection mechanism for the update of solution pools after each generation of 

GAs. The test results indicate that the injection mechanism can improve the solution quality of GAs by in-

creasing the diversity of the solution pool during the process of GAs with a moderate injection rate. High in-

jection rates may break up the balance between diversity and intensity, and lead GAs to randomness. Moreo-

ver, the impact on the GAs performance from the injection mechanism and constructive procedure in Im-

provement 1 is relatively independent and can hardly compensate to each other. 

Improvement 3 refers to LS after GAs on both hub location decisions and demand allocation decisions. The 

test results indicate that the time-consuming full LS on hub location decisions does not work so efficiently 

after GAs with regard to the computational time and potential improvement. Meanwhile, full LS on allocation 

decisions can time-efficiently improve the best solution by the hybrid GAs. The test results also consolidates 

the idea to apply partial LS on allocation decisions during the GAs, since hub location decisions play a decisive 

role in determining the solution quality of GAs. It is not worth much effort to improve the demand allocation 

decisions until the hub location decisions are good enough.  

Improvement 4 refers to a “good” initial solution for LS on allocation decisions. The test results indicate the 

demand allocation pattern of “minimum cost” performs the best, followed by the pattern of “maximum flow”, 

and then by the patterns of “multi-criterion” and “nearest-distance”. The test results indicate that for air-

ground H/S systems, in which the backbone cost rate is higher than the feeder cost rate and demand nodes are 

unevenly distributed, the “minimum cost” allocation pattern is more suitable, although the running time is a 

little bit longer. 

Improvement 5 refers to an approximation of the sub-problem solution in the early stage of GAs to improve 

the time-efficiency of the algorithm. It is exclusive for Ext.2, in which integer programming is necessary for 

the air service selection decisions. Generally speaking, if the algorithm for the sub-problem is time costly and 

must be invoked frequently, this time-saving method can be efficient as long as the approximation is relatively 

good. However, the time-saving effect is not significant in our case may due to the short calculation time of the 

embedded integer programming and fluctuation of GAs’ running time.  

Finally, the models and the tailored hybrid GAs are applied to real-life instances of the project. We introduce 

how we collect and modify the input data and how we deal with problems we are faced up with. By analyzing 

and comparing the solutions of Ext.1 and Ext.2 under the basic instance, we not only reveal some important 

features of the network but also get some general conclusions and provide a dynamic aircraft fleet update 

strategy to guide the implementation of the project. Finally, scenario planning is executed to help decision-

makers identify critical uncontrollable and controllable factors to balance between costs and corresponding 

decision risks. 

This dissertation is supposed to make the following advances and contributions. 
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1. Compared to other works on the strategic network planning, our models are applicable to rebuilding or 

modifying the current network rather than building a brand new network.   

2. We make a relatively comprehensive review on HLPs and make innovative comparisons between HLPs 

and FLPs from various aspects. 

3. We propose a generalized cost select function for different service types and smooth the unreasonable gap 

in the formulation.  

4. We propose 5 improvement techniques for different procedures of GAs. Computational tests show that the 

performance of the tailored hybrid GAs is significantly better than the simple untailored one.   

5. Our research is application-oriented. We present our readers an overview of the project, from enterprise 

strategy interpretation, service definition, model data collection and modification to project implementa-

tion strategy.  

6. Air-ground EDS network in our dissertation differs from those pure ground H/S networks in terms of 

time constraints and cost distribution. We reveal some general features of the air-ground H/S network 

and also suggestions for the corresponding heuristics. 

7.2. Limitations and future research 

Despite the above-mentioned advances and contributions, this dissertation has several limitations remaining 

for further research.   

 Effective meta-heuristics for large-scale network planning problems.    

Although computational tests with the AP data set indicate that the proposed improvement techniques can 

improve the performance of the algorithm significantly compared with the untailored GAs, a fundamental 

problem remains in this dissertation. We have neither optimal solutions nor solutions by other algorithms 

that can serve as benchmarks to evaluate the performance of the proposed algorithm under large-scale in-

stance. Future researches may solve this problem optimally with exact algorithm or develop other heuristics 

taking ours as a benchmark. 

 
 Interdisciplinary research about network planning    

As a sub-topic of OR, network planning always considers factors only concerning the network itself, such as 

costs, transportation time, consolidation centers or hubs, vehicles and routings. However, from the point view 

of the owner or the manager of the network, service quality (such as delivery time and punctuality rate), cost 

and revenue are correlated. In other words, the result of the network planning can be better when the princi-

ples of marketing, revenue management and even financial management are also under consideration. Inter-

disciplinary research is in demand in practice. However, up till now, only few papers expand network planning 

models by considering factors, such as pricing456, demand management457 and market competition458.      

                                                      

456 See e.g. Yan et al. (1995), pp.171-180. 

457 See e.g. Dasci/ Laporte (2005), pp.397-405. 

458 See e.g. Colome. et al. (2003), pp. 121-139; Drenzner et al., (2002), pp. 138-151; Lin/ Lee (2010), pp.618-629; Gelareh/ Nichel (2010), pp.991-1004; 

Martin/ Roman (2004), pp.135-150. Sinha (2004), p. 51-61. 
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Just as overwhelming majority of researches on network planning, our model principally gives up the ultimate 

goal of enterprises, i.e. profit, by ignoring service pricing, market competition and relationship between ser-

vice quality and system cost. We take fixed demand as the model input and “cost minimization” as the objec-

tive. Future research may take “profit maximization” as the objective by simultaneously considering service 

pricing problems or competition factors. 

 HLRPs with backbone network 

Owing to the large scale of the real-life instances, the network planning problem in this project is divided into 

several sub-problems. This dissertation focuses on strategic planning. However, the dividing of the overall 

planning problem results in sub-optimization of the system. Oversimplified assumptions on feeder and back-

bone network configuration can seriously distort route length, transportation time and corresponding cost.  

Compound network planning problems (also called combinatorial problems) that simultaneously include facili-

ty location and vehicle routing problems, come into being for this reason. As we have mentioned in Sec.2.2.2, 

HLRPs have received more and more attention. Just as LRPs, HLRPs determine hub location and feeder rout-

ing simultaneously with the assumption that hubs are fully interconnected. This is reasonable in pure ground 

H/S network since there is always cost discount for backbone link due to EOS. However, such assumption is 

not suitable for EDS network planning. As we have concluded in Sec6.2.3, feeder networks in air-ground H/S 

systems are less important than those in pure ground H/S systems both in terms of delivery time and cost. 

With the requirements of shorter service time and longer delivery distance, the covered area by each ground 

hub becomes smaller, while the backbone air network plays a decisive role in determining the total delivery 

time and cost. Therefore, it is necessary to include backbone network planning in network planning problems 

for EDS.   

In this dissertation, we include a cost selection function for different service types in the hub network based on 

the assumption that all hubs are fully interconnected by direct flights. Future research may include aircraft 

routing problem with constraints of one or two stopovers. Advances in mathematical programming methodol-

ogy and improvements in computer technology are likely to enable researchers to effectively solve even more 

difficult models in the future.  

 Hierarchical HLPs 

Hierarchical HLPs consider more than one type of hubs in the models. Compared with hierarchical FLPs459, 

hierarchical HLPs are more complicated for hubs are connected. There are only few papers involve this top-

ic460.  

Results of our extension models indicate that a quasi H/S air network comes into shape although we do not 

impose the structure of the air network in the models (see Sec.6.2.3). So it is interesting to model our case as a 

hierarchical HLP and compare its result with ours.    

 Network planning for multiservice  

                                                      

459 See e.g.Costa et al (2011), pp.3-13. Review on this topic, please refer to Sahin/ Süral (2007), pp. 2310-2331. 

460 See e.g.Yanman (2009), pp. 643-658; Lin /Chen (2008), pp.986-2003; Lin (2010), pp. 20-30. 
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In practice, the network planned in this project also supports economical EDS and logistics service, although 

we do not include them in this project. Integrated network is a cost-saving strategy that is commonly adopted 

by EDS providers. Perhaps the best example is United Parcel Service (UPS), which offers both overnight 

packet service and deferred delivery service domestically with an integrated air-ground network. Priority for 

sorting and dispatching is naturally given to packet delivery service. However, as the cost of transporting 

deferred packets by air is marginal, if excess capacity exists, some deferred delivery orders are also dispatched 

by air. The advantages of such integration include increased customer density, flexible modal choice and re-

duced cost in ground transportation system.   

Network planning for multiservice is initialized by Smilowitz and Daganzo461. The corresponding location and 

routing problems must comply with various time constraints for all service types under consideration. For 

deferred packet service, time constraints are somewhat relaxed and more cost-efficient routings are possible. 

However, with the number of routing options and service types increasing, finding an optimal network con-

figuration becomes more difficult.       

 Network planning under uncertainty  

Making robust long-term decisions for network planning is a tough task, requiring decision-makers to ac-

count for uncertain events in the future. The complexity of HLPs has limited most of the studies to static and 

deterministic models. So are our models, although we carry out scenario planning to consider uncertainty in 

the future. However, the scenario approach has two main drawbacks, although it is more tractable. One is that 

identifying scenarios is a daunting and difficult task; indeed, it is the focus of a large body of stochastic pro-

gramming literature. The second disadvantage is that only a relatively small number of scenarios are consid-

ered for computational reasons462. 

It is therefore attractive to apply stochastic optimization, robust optimization or dynamic optimization to con-

sider uncertainty in the future. Stochastic optimization attempts to capture the uncertainty in input parame-

ters by considering the probability distribution of uncertain parameters463. Robust optimization attempts to 

optimize the worst-case performance of the system, if there is no information about the probabilities of the 

parameters464.Dynamic optimization focus on the timing issues involved in network over an extension horizon. 

Some current researches on HLPs under uncertainty 465  may serve as the starting of future research.  

                                                      

461 See Smilowitz /Daganzo (2004), pp.4-6;   Smilowitz /Daganzo (2007), pp.183-196. 

462 See Snyder (2006), p.4. 

463 See e.g. Santoso et al., (2005), pp. 96-115; Sim et al. (2009), pp.3166-3177. For literature review, please refer to Snyder (2006), pp.547-564 and Owen/ 

daskin (1998), pp.423-447.    

464 See Snyder (2006), p.3.  

465 Synder listed some in a literature review. See Snyder( 2006), pp. 547-564.Recent papers on such topics include e.g. Sim et al (2009), pp.3166-3177.  
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Appendices 

Appendix 1: Potential hub set and corresponding fixed cost 

 

No. Node in AP total weight fixed cost 

1 159 58391053 20369.65 

2 151 26503445 29955.73 

3 27 11779979 22009.12 

4 160 11258636 33061.82 

5 161 10867159 30827.59 

6 42 10514268 26028.58 

7 147 9811386 31839.25 

8 157 8925085 27440.08 

9 101 7296215 21447.45 

10 129 6858623 27293.22 

11 19 4118603 25424.19 

12 156 4060176 25497.44 

13 35 4031481 27053.44 

14 66 3819714 33029.2 

15 20 3769378 25355.03 

16 59 3655650 31007.65 

17 174 3651760 21231.27 

18 165 3648752 25441.26 

19 131 3544529 25686.59 

20 150 3519698 20449.16 

21 16 3495011 20860.35 

22 170 3428563 22671.23 

23 158 3339916 31469.84 

24 127 3244088 24441.51 

25 92 3208164 28813.37 

26 163 3124065 22456.05 

27 107 3076706 20753.08 

28 67 3058345 23585.65 

29 39 3038405 30763.81 

30 33 3034958 23013.29 

31 189 3002914 23526.63 

32 187 2995127 32862.29 

33 166 2958361 33245.54 

34 137 2801588 33385.3 

35 58 2669423 34616.57 

36 142 2648898 32275.04 

37 1 2639783 30964.59 

38 139 2570943 33532.03 

39 65 2543094 28159.61 

40 70 2494373 32626.96 
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41 93 2456174 20055.49 

42 34 2421298 22194.28 

43 154 2272046 29430.92 

44 183 2121545 28914.75 

45 7 2079159 26429.1 

46 125 2056852 32875.89 

47 140 2036597 30975.55 

48 71 1987691 22064.61 

49 72 1921696 32001.95 

50 146 1911556 30807.07 

51 37 1909311 20369.65 

52 149 1901094 29955.73 

53 134 1865224 22009.12 

54 135 1852397 33061.82 

55 41 1845927 30827.59 

56 63 1773928 26028.58 

57 172 1727741 31839.25 

58 167 1727653 27440.08 

59 106 1715152 21447.45 

60 100 1671061 27293.22 

61 196 1666190 25424.19 

62 81 1661049 25497.44 

63 175 1645545 27053.44 

64 24 1642800 33029.2 

65 112 1617662 25355.03 

66 192 1605770 31007.65 

67 132 1584104 21231.27 

68 48 1578746 25441.26 

69 171 1576818 25686.59 

70 79 1535694 20449.16 

71 141 1518471 20860.35 

72 6 1471364 22671.23 

73 84 1461606 31469.84 

74 44 1449914 24441.51 

75 49 1432283 28813.37 

76 62 1386590 22456.05 

77 133 1385187 20753.08 

78 3 1354192 23585.65 

79 4 1348103 30763.81 

80 117 1301131 23013.29 

81 177 1252730 23526.63 

82 162 1252605 32862.29 

83 75 1220268 33245.54 

84 78 1169141 33385.3 

85 176 1167777 34616.57 

86 148 1159292 32275.04 

87 199 1116667 30964.59 
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88 10 1115022 33532.03 

89 185 1106757 28159.61 

90 110 1105288 32626.96 

91 152 1102605 20055.49 

92 89 1079243 22194.28 

93 80 1074254 29430.92 

94 98 1058389 28914.75 

95 43 1054869 26429.1 

96 180 1045760 32875.89 

97 111 1040118 30975.55 

98 190 1039124 22064.61 

99 102 1026202 32001.95 

100 45 997274 30807.07 

 
 

Appendix 2: Results of independent two-sample T-tests on reproduction parameter setting 

 

Test- 1: Best solutions under ( =50, =0.7, 0.2)cro mutH P P   and ( =50, =0.9, 0.2)cro mutH P P   

Group 1 Group 2 

62743272 62743272 

62743272 62743272 

62743272 62743272 

62743272 62743272 

62743272 62743272 

62743272 62743272 

62743272 62743272 

62743272 62743272 

62743272 62743272 

62743272 63346322 

 
Part of the test result: 

Method Variance df t value Pr > |t| 

Summary equal 18 -1.00 0.3306 

Satterthwaite unequal 9 -1.00 0.3434 

  

Equal vaiance         

Method df(numerator) df(denominator) F value Pr > F 

F 9 9 positive <.0001 

In the second table, the value of “Pr>F” is less than 0.05, which means the variance of the two groups is re-

garded equal. Then we turn to the first value of “Pr> |t|” in the first table, which is applicable for equal vari-

ance situation. It is larger than 0.05, which means that the difference between the two groups is not significant. 
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Test- 2: Average solutions under ( =50, =0.7, 0.2)cro mutH P P   and ( =50, =0.9, 0.2)cro mutH P P   

 

Group 1 Group 2 

69277453 69325195 

68198929 69114353 

68475077 69409038 

69346057 70273566 

69150848 70584365 

69650159 67683498 

69146095 69711526 

69512226 69250028 

69379201 67726477 

69900782 70168125 

 
Test result indicates that the difference between the two groups is not significant. 
 

Method Variance df t value Pr > |t| 

Summary equal 18 -0.35 0.7338 

Satterthwaite unequal 13.609 -0.35 0.7351 

  

Equal vaiance         

Method df(numerator) df(denominator) F value Pr > F 

F 9 9 3.63 0.0683 

 

Test- 3: Average solutions under ( =80, =0.7, 0.2)cro mutH P P   and ( =80, =0.9, 0.2)cro mutH P P   

 

Group 1 Group 2 

65815942 65668009 

66181602 66110528 

66246501 66915515 

66175099 68348954 

66031764 68037732 

66211333 66535284 

66081794 67638910 

65867766 67323103 

65969122 67288726 

65987822 66652694 

 
Test result indicates that the difference between the two groups is significant. 
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Method Variance df t value Pr > |t| 

Summary equal 18 -3.68 0.0017 

Satterthwaite unequal 9.5554 -3.68 0.0046 

  

Equal vaiance         

Method df(numerator) df(denominat
or) 

F value Pr > 
F 

F 9 9 32.38 <0.0
01 

 
 
Appendix 3: The PRINCOMP Procedure 
 
                                               Eigenvalues of the Correlation Matrix 
 
                                           Eigenvalue    Difference    Proportion    Cumulative 
 
                                      1    11.9762844    10.9073437     0.7485        0.7485 
                                      2     1.0689407     0.2246224        0.0668        0.8153 
                                      3     0.8443183     0.2309370        0.0528        0.8681 
                                      4     0.6133813     0.2591411        0.0383        0.9064 
                                      5     0.3542402     0.1583287        0.0221        0.9286 
                                      6     0.1959115     0.0548399        0.0122        0.9408 
                                      7     0.1410716     0.0077088        0.0088        0.9496 
                                      8     0.1333628     0.0134034        0.0083        0.9580 
                                      9     0.1199594     0.0196555        0.0075        0.9655 
                                     10     0.1003039     0.0030077        0.0063        0.9717 
                                     11     0.0972962     0.0093414        0.0061        0.9778 
                                     12     0.0879548     0.0060468        0.0055        0.9833 
                                     13     0.0819080     0.0122064        0.0051        0.9884 
                                     14     0.0697016     0.0051479        0.0044        0.9928 
                                     15     0.0645537     0.0137424        0.0040        0.9968 
                                     16     0.0508113                                0.0032        1.0000 
 
 
 

Appendix 4: Descriptive Statistics for Different Customer Groups 

 

Index Name  Unit Group1 Group2 Group3 

Contribution from secondary industry billion(RMB) 2240.86 2113.61 820.71 

Contribution from tertiary industry billion(RMB) 4146.41 2011.67 1385.62 

Total export and import volume  billion(USD) 62.36 36.27 11.08 

Foreign capital utilized billion(USD) 8.05 4.26 0.96 

Highway freight volume billion  ton  kilometer 13.73 9.16 4.14 

Railway freight volume billion  ton  kilometer     23.09 18.05 10.03 

Air freight volume by civil aviation thousand   ton 1730.58 328.53 83.78 

Industry output billion(RMB) 1467.94 895.62 445.69 



 

Appendices                                                                                                                                                                            177 

High-tech enterprises output billion(RMB) 1389.49 458.91 89.96 

Number of wholesalers and retailers thousand 9.846 7.825 2.467 

Sales volume of consumer goods billion(RMB) 621.98 255.68 98.74 

Disposable income of urban residents RMB 26738 16789 8764 

Urban population size  million 12.67 9.7 6.5 

Business volume of postal delivery service and 

EDS   
billion piece per year 80.56 75.95 67.86 

Highway mileage kilometer 20670 18906 10001 
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