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Abstract

Anticipation is crucial for fluent human-robot interaction, which allows a robot to independently
coordinate its actions with human beings in joint activities. An anticipatory robot relies on a
predictive model of its human partners, and selects its own action according to the model’s
predictions. Intention inference and decision making are key elements towards such anticipa-
tory robots. In this thesis, we present a machine-learning approach to intention inference and
decision making, based on Hierarchical Gaussian Process Dynamics Models (H-GPDMs).

We first introduce the H-GPDM, a class of generic latent-variable dynamics models. The H-
GPDM represents the generative process of complex human movements that are directed by
exogenous driving factors. Incorporating the exogenous variables in the dynamics model, the H-
GPDM achieves improved interpretation, analysis, and prediction of human movements. While
exact inference of the exogenous variables and the latent states is intractable, we introduce
an approximate method using variational Bayesian inference, and demonstrate the merits of
the H-GPDM in three different applications of human movement analysis. The H-GPDM lays a
foundation for the following studies on intention inference and decision making.

Intention inference is an essential step towards anticipatory robots. For this purpose, we
consider a special case of the H-GPDM, the Intention-Driven Dynamics Model (IDDM), which
considers the human partners’ intention as exogenous driving factors. The IDDM is applicable
to intention inference from observed movements using Bayes’ theorem, where the latent state
variables are marginalized out. As most robotics applications are subject to real-time constraints,
we introduce an efficient online algorithm that allows for real-time intention inference. We show
that the IDDM achieved state-of-the-art performance in intention inference using two human-
robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition
for interactive robots.

Decision making based on a time series of predictions allows a robot to be proactive in its
action selection, which involves a trade-off between the accuracy and confidence of the predic-
tion and the time for executing a selected action. To address the problem of action selection
and optimal timing for initiating the movement, we formulate the anticipatory action selection
using Partially Observable Markov Decision Process, where the H-GPDM is adopted to update
belief state and to estimate transition model. We present two approaches to policy learning and
decision making, and show their effectiveness using human-robot table tennis.

In addition, we consider decision making solely based on the preference of the human part-
ners, where observations are not sufficient for reliable intention inference. We formulate it as a
repeated game and present a learning approach to safe strategies that exploit the humans’ pref-
erences. The learned strategy enables action selection when reliable intention inference is not
available due to insufficient observation, e.g., for a robot to return served balls from a human
table tennis player.

In this thesis, we use human-robot table tennis as a running example, where a key bottleneck
is the limited amount of time for executing a hitting movement. Movement initiation usually re-
quires an early decision on the type of action, such as a forehand or backhand hitting movement,
at least 80 ms before the opponent has hit the ball. The robot, therefore, needs to be anticipa-
tory and proactive of the opponent’s intended target. Using the proposed methods, the robot
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can predict the intended target of the opponent and initiate an appropriate hitting movement
according to the prediction. Experimental results show that the proposed intention inference
and decision making methods can substantially enhance the capability of the robot table tennis
player, using both a physically realistic simulation and a real Barrett WAM robot arm with seven
degrees of freedom.

IV



Zusammenfassung

Antizipation ist wichtig für eine flüssige Mensch-Roboter Interaktion, da sie es dem Roboter
ermöglicht, seine Aktionen mit dem menschlichen Partner zu koordinieren. Dazu wird ein Mod-
ell benötigt, welches das Verhalten des Menschen vorhersagt. Entsprechend dieser Vorhersagen
kann der Roboter Aktionen auswählen und durchführen. Intentionsinferenz und Entscheidungs-
findung sind Schlüsselelemente solcher antizipierender Roboter. In dieser Dissertation stellen
wir einen Ansatz aus der Theorie des maschinellen Lernens zur Intentionsinferenz und Entschei-
dungsfindung vor, der auf Hierarchischen Gaußprocess Dynamik-Modellen (H-GPDMs) basiert.

Dafür stellen wir zuerst H-GPDMs, eine Klasse von latent-variable dynamics models, vor. Ein
H-GPDM ist ein generativer Prozess, welcher zur Modellierung komplexer menschlicher Be-
wegungen verwendet wird, die von exogenen Faktoren beeinflusst werden. Durch die direkte
Einbeziehung der exogenen Variablen in die Modellierung, liefert das H-GPDM eine verbesserte
Interpretation, Analyse und Prädiktion menschlicher Bewegungen. Da eine exakte Inferenz der
exogenen Variablen und unbekannten Zustände (latent states) nicht möglich ist, stellen wir
eine Approximationsmethode vor, die auf variational Bayesian inference basiert. Wir stellen die
Vorzüge des H-GPDMs in drei unterschiedlichen Anwendungen heraus. Das H-GPDM legt den
Grundstein für die Studien über Intentionsinferenz und Entscheidungsfindung in dieser Arbeit.

Intentionsinferenz ist ein wichtiger Schritt für antizipatorische Roboter. Aus diesem Grund
betrachten wir einen Sonderfall des H-GPDMs, nämlich Intention-Driven Dynamics Models (ID-
DMs), welche die Intention des menschlichen Partners als exogene Variable betrachten. Das
IDDM erschließt die unbekannte Intention aus Beobachtungen unter Verwendung der Bayess-
chen Regel, wobei die unbekannten Größen ausintegriert werden. Da viele Roboteranwendun-
gen Echtzeitanforderungen unterliegen, stellen wir einen effizienten Online-Algorithmus vor,
der Intentionsinferenz in Echtzeit ermöglicht. Wir zeigen, dass die Leistungsfähigkeit des IDDM
auf dem neuesten Stand der Technik in Intentionsinferenz ist. Um dies zu verifizieren betrachten
wir zwei Szenarien der Mensch-Roboter Interaktion: Zielprädiktion für Robotertischtennis und
Verhaltenserkennung für interaktive Roboter.

Entscheidungsprozesse basierend auf Prädiktionszeitreihe ermöglichen dem Roboter seine Ak-
tionen proaktiv auswählen. In diesem Fall muss er zwischen Genauigkeit, Prädiktionssicherheit
und Dauer der auszuführenden Aktion abwägen. Wir behandeln dieses Problem im Rahmen von
Partially Observable Markov Decision Processes, wobei wir das H-GPDM anpassen, um die Belief
States zu schätzen und die Transitionsfunktion zu lernen. Wir präsentieren Ansätze zum Lernen
einer Policy und für die Entscheidungsfindung. Die Effektivität dieser Ansätze verifizieren wir
im Kontext von Mensch-Roboter Tischtennis.

Desweiteren betrachten wir Entscheidungsfindungen, die ausschließlich auf der Präferenz des
menschlichen Partners basieren, da die Beobachtungen nicht für eine zuverlässige Intentionsin-
ferenz ausreichen. Wir formulieren dieses Problem als Spiel und stellen einen Lernalgorithmus
vor, der sichere Strategien unter Ausnutzung der menschlichen Präferenz lernt. Die gelernte
Strategie kann zur Auswahl von geeigneten Aktionen verwendet werden, wenn keine zuverläs-
sige Intentionsinferenz möglich ist. Dies kann zum Beispiel im Tischtennis der Fall sein, wenn
ein Roboter Bälle zu einem Menschen zurückspielen soll.



In dieser Dissertation verwenden wir das Szenario des Mensch-Roboter Tischtennisspiels als
durchgehendes Beispiel. Mensch-Roboter Tischtennis is ein sehr anspruchsvolles Beispiel, da
die für die Schlagbewegung erforderliche Zeit begrenzt ist. Der Roboter muss teilweise die
Schlagbewegung initiieren, bevor der Gegner den Ball überhaupt gespielt hat. Aus diesem
Grund muss der Roboter antizipatorisch und proaktiv die Intention des Gegners erkennen.
Mit visuellem Feedback von der Bewegung des Gegners kann der Roboter den Aufprallpunkt
des Balles vorhersagen und dementsprechend eine Schlagbewegung auswählen, z.B. einen Vor-
oder Rückhandschlag. Unsere Experimente belegen, dass unser Ansatz zur Intentionsinferenz
und Entscheidungsfindung die Leistung des Roboters signifikant verbessert, wobei wir sowohl
physikalisch realistische Simulationen als auch einen realen Barrett WAM Roboterarm mit sieben
Freiheitsgraden verwenden.
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Abbreviations

In this thesis, we use the following mathematical notation.

Notation Description
a, A a scalar or discrete variable
a= [a1, . . . , an] a vector
aT the transpose of a vector
A= [a1, . . . ,am] a matrix
AT the transpose of a matrix
a−1 the inverse of a matrix
p(x) probability density
E[x] expectation of x

Throughout this thesis, we use the following abbreviations.

Abbreviation Description
EM Expectation Maximization
GP Gaussian Process
GPDM Gaussian Process Dynamics Model
GPLVM Gaussian Process Latent Variable Model
H-GPDM Hierarchical GPDM
HMM Hidden Markov Model
HRI Human-Robot Interaction
IDDM Intention-Driven Dynamics Model
KL Kullback-Leibler divergence
MAE Mean Absolute Error
MDP Markov Decision Process
RBF Radial Basis Function
POMDP Partially Observable Markov Decision Process
RMSE Root-Mean-Square Error
VB Variational Bayesian inference

The following mathematical symbols are used in many chapters.

Symbol Description
zt observation in H-GPDMs or POMDPs at time t
xt state in H-GPDMs at time t
g intention, exogenous variables in H-GPDMs
st state in MDPs or POMDPs at time t
at action in MDPs or POMDPs at time t
rt reward in MDPs or POMDPs at time t
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1 Introduction

Human beings possess the ability to independently coordinate their actions with others in joint
actions. Anticipation plays an important role in such emergent coordination, by integrating the
prediction of the others’ actions in one’s own action planning (Sebanz et al., 2006). Similarly, an-
ticipation is also a crucial component in competitive interaction between human beings (Parker
et al., 2010). For example in competitive sports (Aglioti et al., 2008), “elite sports performance
not only involves the ability to execute complex actions . . . , but also the ability to predict and
anticipate the behavior of other players”.

In artificial intelligence, anticipation has been introduced as a concept of an agent making
decisions based on predictions, expectations, or beliefs about the future (Pezzulo et al., 2008).
Based on these findings, it is reasonable to believe that such ability of anticipation can be equally
important for human-robot interaction, in both competitive and cooperative contexts, where an
intelligent robot would coordinate its actions in anticipation of the human beings’ potential ac-
tions (Hoffman and Breazeal, 2007). For a hypothetical example, imagine that an autonomous
vehicle needs to avoid an obstacle when planning its optimal moving path. The vehicle could
simply find the shortest path such that no obstacle is on this path. Now imagine that the au-
tonomous vehicle needs to avoid an pedestrian in motion, which is crucial for driving safely
in an urban environment. The path planning not only needs to detect the current location
of the pedestrian and moving direction but also her potential intention underlying her move-
ment (Bandyopadhyay et al., 2013). Here, two problems arise, which are (1) the robot has to
identify the intention and behavior of the pedestrian (Ziebart et al., 2009), and (2) the path
planning needs to take into account the uncertainty in the predicted intention and future loca-
tion (Bandyopadhyay et al., 2013). Therefore, building an autonomous vehicle that avoids an
pedestrian in motion requires two key components, namely, prediction and proactive planning
based on uncertain predictions.

In general, Rosen et al. (2012) considered an anticipatory system to be

a system containing a predictive model of itself and/or its environment, which allows it
to change state at an instant in accord with the model’s predictions pertaining to a later
instant,

which relies on two key components, namely, prediction of the environment (especially human
partners) and planning according to the predictions. Inspired by the fact that “anticipation is
a phenomenon which is learned” for human beings (Davies and Armstrong, 1989), we focus
on developing machine learning approaches for anticipatory robots, specifically for intention
inference and decision making. We first propose machine learning methods for inferring the
human partners’ intention and predicting their behavior. Subsequently, we introduce approaches
to proactive action selection based on the uncertain predictions.

To motivate and evaluate the proposed ideas for anticipatory systems, we use human-robot
table tennis as a running example. Playing table tennis against human beings is a challeng-
ing task for robots, and, hence, has been used by many researchers as a benchmark task in
robotics (Anderson, 1988; Billingsley, 1984; Fässler et al., 1990; Matsushima et al., 2005;
Mülling et al., 2011). Up to now, none of the groups that have been working on robot ta-
ble tennis ever reached levels of a young child, despite having robots with better perception,
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processing power, and accuracy than humans (Mülling et al., 2011). The human’s ability to
predict hitting points from opponent movements is among the reasons for this performance
gap (Mülling et al., 2011). In this thesis, we illustrate the effectiveness of intention inference
and decision making to enhance the capability of a robot when playing against human players.

1.1 Intention Inference

Recent advances in sensors and algorithms allow for robots with improved perception abilities.
For example, robots can now recognize human poses in real time using depth cameras (Shotton
et al., 2013), which can potentially enhance their ability to interact with humans. However,
effective perception alone is not sufficient for Human-Robot Interaction (HRI), since the robot’s
reactions should depend on comprehension of the human’s action. An important comprehension
problem is inferring the others’ intention (also referred to as goal, target, desire, plan) (Simon,
1982), which humans heavily rely on, for example, in sports, games and social activities. Human
can learn and improve the ability of prediction by training. For example, skilled tennis players
are usually trained to possess better anticipation than amateurs (Williams et al., 2002). This
observation raises the question of whether/how a robot can also learn to infer the underlying
intention from a perceived ongoing human action.

We focus on intention inference from observed human movements, based on modeling how
the dynamics of a movement are governed by the intention. This idea was inspired by the
hypothesis that a human movement usually follows a goal-directed policy (Baker et al., 2006;
Rao et al., 2004). To this end, we study a generic machine-learning approach to inferring the
exogenous driving factors, e.g., the intention, from observed human movements. The resulting
intention-driven dynamics model allows to estimate the probability distribution over intentions
from observations using Bayes’ theorem, and to update the belief as additional observations are
obtained.

1.2 Decision Making

An anticipatory robot takes into account the prediction of the humans’ intention for selecting
its own action. One important problem for the anticipatory action selection is to deal with the
uncertainty that naturally arose in prediction. As the input, such as observed human movement,
is processed in a serial manner, the prediction usually becomes more accurate and less uncertain
while more input is obtained. However, waiting for a confident prediction causes delay in action
selection and results in reduced time for the robot to execute its action (Wang et al., 2013). The
anticipatory robot is, thus, forced to make decisions given a sequence of uncertain predictions,
where a trade-off between prediction accuracy and reaction delay needs to be addressed. We
formulate the decision making process using a Partially Observable Markov Decision Process
(POMDP), and propose approaches to choosing the robot’s optimal action and deciding the
timing to initiate the action.

In addition, we consider decision making solely based on the preference of the human part-
ners, where observations are not sufficient for reliable intention inference. Opponent modeling
is a critical mechanism in the repeated interaction with human. It allows the robot to adapt its
strategy in order to better respond to the presumed preferences of its opponents. Similarly, the
decision making based on opponent modeling needs to take into account the uncertainty in the
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estimated predictive model while exploiting the opponent’s weakness. To this end, we propose
methods for learning strategies that balance the safety and exploitability.

1.3 Main Contributions

This thesis contributes to the development of intention inference and decision making towards
anticipatory robots, by proposing both novel models and practical methods. Specifically, main
contributions include (1) proposing Hierarchical Gaussian Process Dynamics Model (H-GPDM),
a generic model that lays the foundation for intention inference and decision making, (2) devel-
oping a spectrum of approximate intention inference methods based on the H-GPDM, ranging
from a variational Bayesian inference method to a real-time online inference method based on
moment matching, (3) introducing approaches to anticipatory action selections, including pol-
icy learning and Monte-Carlo planning for decision making, and strategy learning to exploit the
opponent’s preference, and (4) presenting a prototype anticipatory robot table tennis player.

1.3.1 Hierarchical Gaussian Process Dynamics Model

Gaussian Process Dynamics Models (GPDM) are a flexible class of latent-variable models, play-
ing an increasingly important role in computer vision, robotics, and signal processing. GPDMs
can represent complex nonlinear human movements where the dynamics in the state space fol-
low a Markov chain. In practice, the dynamics are often driven by other higher level exogenous
factors, which, however, are not modeled by the GPDMs. For example, the dynamics of human
poses are driven by exogenous factors, such as gaits, goals, or styles of the movements. Infer-
ring these exogenous variables is beneficial in many scenarios; for instance, recognition of gait
styles facilitates the prediction accuracy of subsequent poses and, hence, enhances the tracking
of human movements. In addition, inferring the goal behind observed actions can potentially
enhance the fluent interaction between a human and an intelligent system, e.g., in the context
of cooperative and interactive game-playing or human-robot interaction.

We incorporate the exogenous variables in the dynamics model to improve the interpretation,
analysis, and prediction of human movements. The resulting Hierarchical GPDMs (H-GPDM)
represent the generative process of human movements that are driven by exogenous variables,
which can be learned from data in both supervised and unsupervised settings. The H-GPDM lays
the foundation for the following intention inference. Since exact inference is intractable in this
model, we introduce a variational Bayesian approach to jointly inferring the latent states and the
unknown exogenous variables. We demonstrate the merits of this model in three scenarios: (a)
action recognition and pose prediction using motion capture data, (b) character recognition and
recovery from handwriting trajectories, and (c) target prediction in human-robot table tennis.

1.3.2 Online Intention Inference

Intention inference is an essential step toward efficient human-robot interaction. For this pur-
pose, we consider a special case of the H-GPDM, where the exogenous driving factor is the
human partner’s intention. The resulting Intention-Driven Dynamics Model (IDDM) probabilis-
tically models the generative process of movements that are directed by the intention. The
IDDM allows to infer the intention from observed movements using Bayes’ theorem. The IDDM
simultaneously finds a latent state representation of noisy and high-dimensional observations,
and models the intention-driven dynamics in the latent states.
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As most robotics applications are subject to real-time constraints, we develop an efficient
online algorithm that allows for real-time intention inference. Two human-robot interaction
scenarios, i.e., target prediction for robot table tennis and action recognition for interactive hu-
manoid robots, are show that the proposed algorithms achieve the state-of-the-art performance
in intention inference.

1.3.3 Anticipatory Action Selection

The anticipatory robot can predict the intention of its human partners and select its own actions
according to the prediction. To address the problem of action selection and optimal timing, we
formulate the anticipatory action selection as a Partially Observable Markov Decision Process,
and present two approaches to policy learning and online planning. Experimental results using
a simulated environment show that the proposed algorithms could substantially enhance the
capability of the robot table tennis player.

Furthermore, we consider decision making according to the preference of the human partners.
We formulate it as a repeated game and present a learning approach to safe strategies that
exploit the humans’ preferences. The learned strategy enables action selection when reliable
intention inference is not available due to insufficient observation, e.g., for a robot to return
served balls from a human table tennis player.

1.3.4 Anticipatory Robot Table Tennis Player

In this thesis, we use human-robot table tennis as a running example. We develop a proof-of-
concept prototype system to illustrate the presented methods for anticipatory robots. Anticipa-
tion is necessary for the robot to have sufficient time to execute the hitting movement when
playing against a human player. The anticipatory robot player, equipped with three pre-trained
actions, i.e., default, forehand, and backhand hitting movements, can initiate the responding
hitting movement before the opponent has hit the ball himself. The robot player, hence, benefits
from the anticipation system with a substantially expanded hitting region that covers almost its
entire accessible workspace. For a demonstration see

http://robot-learning.de/Research/ProbabilisticMovementModeling

1.4 Outline

The chapters in this thesis can largely be read independently but partially build upon results
of the preceding chapters. Figure 1.1 illustrates the outline of this thesis and the dependencies
between chapters.

Chapter 2 introduces the Hierarchical Gaussian Process Dynamics Model (H-GPDM), which
is the foundation for the following intention inference and decision making methods. The H-
GPDM is a generic model for exogenous driving factors in the dynamics. Particularly, we show
the merit of the H-GPDM in the context of human movement analysis and prediction, for exam-
ple, for pose prediction, handwriting character recognition, and goal prediction. This chapter is
based on (Wang et al., submittedb).

Chapter 3 extends the results of the previous chapter and proposes real-time intention infer-
ence algorithms for human-robot interaction, based on the Intention-Driven Dynamics Model

4
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Chapter 1
Introduction

Chapter 2
Hierarchical Gaussian Process Dynamics Model

Chapter 3
Online Intention Inference for Human-Robot Interaction

Chapter 4
Anticipatory Action Selection

Chapter 5
Opponent Modeling and Strategy Learning

Chapter 6
Conclusions and Future Directions

Figure 1.1: Structure of this thesis and dependencies between chapters. Chapter 2 introduces
the Hierarchical Gaussian Process Dynamics Model (H-GPDM), which is the founda-
tion for the following intention inference methods. Chapter 3 proposes real-time
intention inference algorithms for human-robot interaction. Chapter 4 discusses
proactive action selection based on the uncertain predictions of the human’s in-
tention. Chapter 5 presents a strategy learning approach to exploiting the human
opponent’s preferences. Chapter 6 summarizes the content of this thesis and pro-
vides an outlook on future directions.

(IDDM), which is a special case of the H-GPDM. We evaluate the online inference algorithm
in two scenarios, i.e., target prediction in human-robot table tennis and action recognition for
building an anticipatory humanoid robot. This chapter is based on (Wang et al., 2012b, 2013).

Chapter 4 discusses the proactive action selection based on the uncertain predictions of the
human partner. We formulate the proactive action selection as an optimal stopping problem
using a Partially Observable Markov Decision Process (POMDP). We present two approaches to
decision making, i.e., policy learning using model-free reinforcement learning, and Monte-Carlo
planning based on the IDDM. This chapter is based on (Wang et al., 2011b) and (Wang et al.,
submitteda).

Chapter 5 presents strategy learning approach to exploiting the human opponent’s prefer-
ences, which takes into account the trade-off between exploitability and uncertainty in the op-
ponent model. This strategy is a complement to the intention inference and decision making,
providing a solution when only the prior information of the human partner’s preference is avail-
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able, for example, for a robot to return served balls from a human table tennis player. This
chapter is based on Wang et al. (2011a).

Chapter 6 summarizes the content of this thesis and provides an outlook on future directions.
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2 Hierarchical Gaussian Process Dynamics Model

In this chapter, we introduce the Hierarchical Gaussian Process Dynamics Model (H-GPDM),
which is the foundation for the following intention inference methods. The H-GPDM is a
generic model for exogenous driving factors in the dynamics. Particularly, we show the merit
of the H-GPDM in the context of human movement analysis and prediction, for example, for
pose prediction, handwriting character recognition, and goal prediction. This chapter is based
on (Wang et al., submittedb).

2.1 Prologue

Human movements are usually driven by factors such as goals, gait or motion styles, which
we refer to as exogenous variables. These exogenous variables are not explicitly measurable
but have considerable impact on the dynamics. Inferring such exogenous variables is highly
beneficial in many scenarios. For example, recognition of action styles improves the predic-
tion accuracy of subsequent poses (Fleet, 2011), which enhances the tracking of human move-
ments (Urtasun et al., 2006). In human-robot interaction, anticipation of the human’s goal, such
as a target to reach or an object to hit, may allow the robot to act in a proactive manner (Wang
et al., 2012b). Distinguishing different types of activities can also enhance the performance of
multi-view tracking (Yao et al., 2011).

Inference of exogenous variables can be achieved by learning a dynamics model that captures
how the exogenous variables affect the dynamics of human poses. While current technology
allows for real-time tracking of human poses (Shotton et al., 2013), the obtained observations,
e.g., a stream of skeleton joints, usually remain rather noisy or high-dimensional. State-space
dynamics models, as shown in Figure 2.1a, provide a sensible approximation to the generative
process of observed human movements zt by modeling a measurement function h that generates
observations from states and a transition function f that governs the dynamics in the state space.
However, the corresponding latent state xt of a human movement is not directly observed and
even lacks a clear interpretation. Lawrence (2005) proposed to learn the latent state variables
that are most likely to generate the observations with Gaussian Process Latent Variable Model
(GPLVM).

Designing a generic parametric model for dynamics, such as autoregressive and moving aver-
age models (Veeraraghavan et al., 2005), is difficult due to the complexity of human movements,
e.g., its nonlinear and stochastic nature. To address this issue, Bayesian nonparametric models,
in particular Gaussian processes (GP), see (Rasmussen and Williams, 2006), have been suc-
cessfully applied to modeling human movements. For example, Wang et al. (2008) proposed
Gaussian Process Dynamics Models (GPDM) that use GPs for modeling the transition in the la-
tent state space, which serves as a temporal prior leading to a hierarchical GPLVM (Lawrence
and Moore, 2007). Note that the GPDM can also be seen as a nonparametric state-space model
shown in Figure 2.1a, where the transition function f and measurement function h are given GP
priors and marginalized out.

However, GPDMs do not incorporate exogenous driving factors that are not measurable. Such
exogenous variables violate the Markov assumption in GPDMs, as the dynamics of latent states
depend not only on the latent state variables but also on the exogenous variables. In this thesis,
we generalize the GPDM with a new layer of exogenous variables as additional inputs to the
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Figure 2.1: Graphical models of (a) the Gaussian process dynamics model (GPDM) and (b) the
considered Hierarchical GPDM (H-GPDM). The considered model explicitly incorpo-
rates the exogenous variables as an input to the transition function. Here, we use
gray nodes to represent the observed variables.

transition model, and introduce the Hierarchical GPDM (H-GPDM). The H-GPDM is shown in
Figure 2.1b, in which the the transition in the latent states is driven by the exogenous factor g.
Such an exogenous factor can, for example, represent the gait dynamics during walking or goal
tha directs a hitting movement. The H-GPDM simultaneously finds latent states that represent
the poses and describes the gait-specific or goal-directed transition in the latent state space.

Hierarchical dynamics models allow inferring the unobserved exogenous variable g from a
time series of observations z1:T by computing the posterior distribution p(g|z1:T ), where the
latent state variables x1:T are marginalized out. Nevertheless, we are also interested in the
inference of latent state variables, since they allow predicting future or missing observations.
The use of a GP transition model renders exact inference intractable. Therefore, we consider the
Variational Bayesian (VB) inference framework (Wainwright and Jordan, 2008) and propose an
approximate inference method. We adopt the mean-field approximation, i.e., we approximate
the posterior of latent states x1:T by a factorized distribution. The resulting approximation yields
an estimate of the marginal likelihood for the exogenous variable g for a segmented movement.

This chapter is organized as follows. We first discuss the inference of exogenous variables
for human movement analysis scenarios and corresponding related work in the remainder of
this section. We present the dynamics model with exogenous variables and show how the
model can be learned from data in both supervised and unsupervised settings in Section 2.2.
We propose a variational Bayesian method for inference in H-GPDM with exogenous variables
in Section 2.3. We verify the feasibility of the proposed methods in multiple scenarios, and
compare the experimental results to GPDM in Section 2.4. Finally, we conclude and discuss
future directions in Section 2.5.

2.1.1 Considered Scenarios

In this chapter, we focus on developing methods for modeling and inferring of exogenous vari-
ables that are applicable to human movements. As a generic model, the H-GPDM can model the
exogenous variables such as the intention, goal, or gait style of human movements, which are
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important for interpretation, analysis, and prediction of human movements. In this chapter, we
focus on two main types of applications:

Pose Prediction. Unobserved exogenous variables increase the uncertainty on the human
movements. For example, there may exist a range of underlying movement templates corre-
sponding to different styles in a single trajectory, e.g., during walking. For improved interpre-
tation and prediction of the human movements, it is beneficial to model the unobserved style
variable as exogenous driving factors of the dynamics. Therefore, we advocate explicit mod-
eling and inference of the exogenous variables for improved interpretation of modeled human
movements. For example, it is natural to simultaneously recognize the type of gait and forecast
subsequent poses when tracking a walking subject.

Goal inference. Efficient Human-Robot Interaction (HRI) and Human-Computer Interaction
(HCI) depend on a comprehension of the human’s action. Inferring the goal (also referred to
as intention, target, desire, or plan) of the human (Simon, 1982), which can not be directly
measured, can be crucial in HRI or HCI. Such goals can be seen as exogenous variables that
governs the dynamics of the human movements. For example, a human movement usually
follows a goal-directed policy (Baker et al., 2009; Friesen and Rao, 2011). The H-GPDM, shown
in Figure 2.1b, models how the movements of the human partner is driven by the goal, and
can hence infer the goal from an incomplete movement. This goal inference allows intelligent
systems to interact with humans in a proactive manner.

2.1.2 Related Work

Our work relies on modeling human movements with nonlinear dynamics models, especially the
Gaussian Process Dynamics Models (Wang et al., 2008). Inference in such models is a difficult
problem due to the nonparametric transition and measurement model.

Nonlinear Dynamics Models

Observations of human actions frequently consist of continuous and high-dimensional
features. Determining a low-dimensional latent state space is important for understand-
ing, interpreting, and visualizing observed actions. The Gaussian process latent variable
model (Lawrence, 2005) finds maximum likelihood latent variables by marginalizing the func-
tion that maps from latent to observed space. Its extension, the GPDM (Wang et al., 2008) can
be used to model the dynamics of human motion while simultaneously finding low-dimensional
latent states. A GPDM can model and extrapolate the appearance of a human or an object in
motion, and, hence, is also helpful in tracking, for example, a small robotic blimp using two
cameras (Ko and Fox, 2009). In follow-up work, the model was learned using the GPDM (Ko
and Fox, 2011), such that the latent states did not need to be provided for learning.

Approximate Inference in GPDMs

Inference in GPDMs aims to update the belief about latent variables given evidence from a
set of observations. In many applications, the inference method finds a Maximum a Posterior
(MAP) estimate of the latent state variables x1:T from observations (Wang et al., 2008; Urtasun
et al., 2006) using gradient descent (Wang et al., 2008; Urtasun et al., 2006). The MAP estimate
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of latent state worked well for tracking in the absence of exogenous variables (Urtasun et al.,
2006; Yao et al., 2011). However, inference of exogenous variables often requires to marginalize
out the uncertainty in the latent states (Wang et al., 2012b), given by

p(g|z1:T ) =

∫

p(g|x1:T )p(x1:T |z1:T )dx1:T .

Unfortunately, the posterior distributions on latent state variables p(x1:T |z1:T , g) are non-
Gaussian for the general nonlinear GP transition model (Girard et al., 2002). As a result, exact
inference is not tractable as the state variables x1:T cannot be marginalized analytically. Be-
sides methods based on sampling, e.g., particle filters (Ko and Fox, 2009), a straightforward
approach to tackling this problem is approximating the posterior distribution by a Gaussian dis-
tribution p(x1:T |z1:T , g) ≈ q(x1:T ). Such approximations have been proposed in previous work
with extended Kalman filters (Ko and Fox, 2009), unscented Kalman filters (Ko and Fox, 2009),
assumed density filters (Deisenroth et al., 2009), and general forward-backward smoothers in
the context of GP dynamics models (Deisenroth et al., 2012).

An alternative approach is to introduce a set of inducing variables (Quiñonero-Candela
and Rasmussen, 2005), and adopt Fully Independent Training Conditional (FITC) approxima-
tion (Snelson and Ghahramani, 2006) to achieve Bayesian inference for the latent states (Dami-
anou et al., 2011). Damianou et al. (2011) used an additional simplification that the dynamics
only depend on time, resulting in a tree-structured graphical model. Such simplifications are
not applicable in the considered scenarios, as the dynamics of human movements are often not
deterministic in time.

Goal Inference in Temporally Evolving Models

Goal inference has been investigated in different settings. Most of previous work relies on
probabilistic reasoning (e.g., Pentland and Liu, 1999; Liao et al., 2007; Rao et al., 2004; Baker
et al., 2006; Friesen and Rao, 2011).

Goal inference with finite sets of states and actions has been studied in many settings. For
example, an early approach (Pentland and Liu, 1999) used Hidden Markov Models (HMMs) to
model and predict human behavior where different dynamics models were adopted to the corre-
sponding behaviors. Probabilistic approaches to plan recognition in artificial intelligence (Liao
et al., 2007) typically represent plans as policies in terms of state-action pairs. When the goal
is to maximize an unknown utility function, inverse reinforcement learning (Abbeel and Ng,
2004) can be used to infer the underlying utility function from an agent’s behavior, assuming
that rational agents always maximize their expected utility. All these methods rely on defining
a parametric model, which is often hard for human movement.

In cognitive science, Bayesian models are used for inferring goals from behavior (Rao et al.,
2004), where a policy conditional on the agent’s goal is learned to represent the behavior.
Bayesian models can also interpret the agent’s behavior and predict its behavior in a similar
environment with the learned model (Baker et al., 2006). Recently, a computational framework
was proposed to model gaze following (Friesen and Rao, 2011), where GPs are used to model
the dynamics with actions driven by a goal. These methods assume that the states can be
observed. However, the states are not observable for human movement.
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Figure 2.2: Graphical models of (a) the complete H-GPDM for inference, and (b) the approxima-
tion using the fully independent (test) conditional (FIC).

Human Motion Models

Recent techniques for monocular pose tracking often use activity-specific motion models from
human motion capture data. In the past, most successful models have adopted probabilistic
frameworks.

The GPDM (Wang et al., 2008) and its extensions are among the most widely used nonpara-
metric dynamics models. One interesting extension is to impose additional structure constraints
on the latent state space. For example, back-constraints ensure that similar poses are generated
from close latent states (Urtasun et al., 2008).

The Switching Linear Dynamical System (Li et al., 2012) is a collection of linear dynamics
models along with a discrete switching variable, so that it has the potential to model diverse
styles and actions. Multi-factor GPLVMs and GPDMs (Wang et al., 2007) model individual
styles factor on the measurement mapping, using side information such as gait type and subject
identity. However, they do not take into account the effects of styles on the transition function.

We refer to Fleet (2011) for a comprehensive review on probabilistic motion models for track-
ing.

2.2 Hierarchical Gaussian Process Dynamics Model

We describe the Hierarchical Gaussian Process Dynamics Model (H-GPDM) in this section. This
model is an extension of the GPDM (Wang et al., 2008), as shown in Figure 2.1a, in which
the dynamics are fully determined by the latent states. In this thesis, we consider a layer of
exogenous variables that drive the dynamics, as shown in Figure 2.1b. For example, the gait
dynamics of walking can have substantial variations for different people or for different walking
styles. These variations are associated to the exogenous variables. To model and infer these
variables, we explicitly incorporate them in the H-GPDM, as shown in Figure 2.2a.

This chapter extensively uses known properties of Gaussian processes, e.g., predictive distri-
bution and marginal likelihood. For readers who are not familiar with these properties, we refer
to Rasmussen and Williams (2006) for a comprehensive introduction to GPs.
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2.2.1 Model Description

The H-GPDM describes the generative process of an observed movement as follows (see Fig-
ure 2.1b for the graphical model of a single episode).

1. Sample the exogenous variable g ∼ p(g).

2. Start from an initial state x1 ∼N (mg ,Sg) according to the exogenous variable g.

3. For each time index t ∈ {1, . . . , T}:
a) Sample an observation zt ∼ p(zt |xt) according to a measurement model.

b) Transition to a new state xt+1 ∼ p(xt+1|xt , g) following the transition model.

For notation simplicity and without loss of generality, we assume that all observed movements
have the same duration T . and that the exogenous variable g is either discrete or univariate.

Measurement model. The observations of a movement are a time series z1:T ¬ [z1, . . . ,zT],
where zt ∈ RDz . In the H-GPDM, an observation zt is generated from the latent state xt ∈ RDx ,
given by

zt =W−1(h(xt) + nz,t) , nz,t ∼N (0, s2
z I) ,

where W = diag(w1, . . . , wDz
) scales the obtained measurements zt . The scaling parameters W

allow for dealing with raw features that are measured in different units, such as positions and
velocities. We place a GP prior distribution on the unknown function h for every dimension
of the measurement zt , which is marginalized out during learning and inference. The GP prior
GP (mz(·), kz(·, ·)) is fully specified by a mean function mz(·) and a covariance (kernel) function
kz(·, ·). For simplicity, we use GP prior mean functions that are zero everywhere, i.e., mz(·)≡ 0.
Hence, the model is fully determined by the covariance function kz(·, ·). Without additional
specific prior knowledge on the latent state space, we can only use the same covariance function
for the GP prior on every dimension of the unknown measurement function h, and use a scalar
matrix s2

z I for the noise covariance.

The covariance function kz for the measurement mapping from the state space to observed
space is chosen depending on the task. In this thesis, we consider two types of covariance
functions. One considered covariance function is an isotropic Gaussian function

kz(x,x′;β) = exp
�

−β1
2
‖x− x′‖2

�

+ β2δx,x′, (1)

parameterized by the hyperparameters β = (β1,β2). Here δ is the Kronecker delta function.
Intuitively, the latent states that generate human poses lie on a nonlinear manifold, requiring
nonlinear covariance functions to model this relationship appropriately (Lawrence, 2005). Here,
we do not parameterize the signal variance in the covariance function, due to the presence of
the scaling parameters W, but only parameterize the noise-signal ratio as β2.

We also consider the linear covariance function

kz(x,x′;β) = xT x′+ β1δx,x′, (2)
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when the measurements are already informative and low-dimensional, but subject to substan-
tial noise. Some empirical comparisons of different covariance functions for the measurement
mapping, e.g., the isotropic Gaussian in Eq. (1) and the linear covariance function in Eq. (2)
can be found in the literature (Wang et al., 2012b).

Transition model. We consider a first-order Markov transition model (see Figure 2.2a) with
a latent transition function f, such that

xt+1 = f(xt , g) + nx ,t , nx ,t ∼N (0, s2
x I) .

The state x at time t + 1 depends on the latent state at time t as well as on the exogenous
variable g, for example the gait style. We place a GP prior GP (0, kx(·, ·)) on f for every dimen-
sion of the state zt+1, which has a zero mean function and a shared covariance function. The
transition function f may also depend on external inputs, e.g., motor commands or controls. We
assume that the external inputs are always observed and omit them for notational simplicity.
The described methods can be straightforwardly adapted to situations with external inputs.

The underlying dynamics of human motion are usually nonlinear. For example, motions such
as jumping or walking cannot be modeled well with a linear dynamic function. To account for
nonlinearities, we add a Gaussian covariance function with Automatic Relevance Determination
(ARD) to the linear covariance function for the dynamics, i.e.,

kx([x, g], [x′, g ′];α) = α1 exp
�

−
αx

2
2
‖x− x′‖2−

α
g
2

2
‖g − g ′‖2�+αx

3xT x′+αg
3 g g ′+α4δxx′δg g′ ,

for continuous g and

kx([x, g], [x′, g ′];α) = δg g′
�

α1 exp
�

− α2
2
‖x− x′‖2�+α3xT x′+α4δxx′

�

,

for discrete g, where α is the set of all hyperparameters. For discrete g, we consider no co-
variance among different values of g. We assume that the gait dynamics are unrelated be-
tween distinct walking styles, as mixing different styles lead to gaits with “insufficient” ener-
getic cost (Farley and McMahon, 1992). Nonetheless, the proposed methods can be extended
straightforwardly to the cases where various gait dynamics are dependent.

2.2.2 Supervised Learning of the H-GPDM

We first consider learning the H-GPDM when the exogenous variables are provided in the
training data. The training data set D = {Z,g} consists of J movements and correspond-
ing labeled exogenous variables. Each movement’s observations Z j consist of a time series
Z j = [z j

1, . . . ,z j
T]

T . We construct the overall observation matrix Z by vertically concatenat-
ing observation matrices Z1, . . . ,ZJ , and the overall exogenous variables as a vector g from
g1, . . . , gJ . The exogenous variables g can often be provided in the training data, e.g., by post-
processing the data. The exogenous variables can also include side information (Wang et al.,
2007), such as the type of gait (e.g., run, walk, jog) and the subject’s identity, both of which are
driving factors that contribute to the movement style. This side information is often available
for motion capture data.

As shown in Figure 2.2a, we can infer the exogenous variable g given a new time series of
measurements z1:t , as well as the subsequent measurement zt+1. Here, we use the superscript to
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index a segmented movement in the training data. Fully Bayesian inference is intractable, due
to the nonlinear measurement functions h and transition function f. As shown in Figure 2.2a, in-
ference of the states on the test data x1:t is difficult due to the marginalization of both the states
on the training data X j and the latent functions h and f. One solution is to resort to a maximum
a posterior (MAP) estimate of latent states, known as poor man’s Bayesian inference (Tzikas
et al., 2008). Wang et al. (2008) find the latent variables x j for the training data and also the
latent variables x1:t for the test data. This method was later improved in (Ko and Fox, 2011;
Deisenroth and Ohlsson, 2011; Deisenroth and Mohamed, 2012; Wang et al., 2012b, 2013),
where the MAP estimation of states X j was only used for the training data and the posterior
distribution of states x1:t was estimated on the test data. In this thesis, we follow this idea and
find a MAP estimate of latent variables X j only for the training data, as used by Wang et al.
(2008).

The measurement and transition models are nonparametric and determined by the data. We
find a MAP estimate of the latent states XMAP and model parameters βMAP and WMAP in the training
data, while the parameters α are manually chosen to be ᾱ as suggested by (Wang et al., 2008).
We maximize the joint posterior probability over latent states X and model parameters β , and
W, given by

�

XMAP,βMAP,WMAP
�

= argmax
X,β ,W

p(X,β ,W,Z|g). (3)

This joint probability can be decomposed

p(X,β ,W,Z|g) = p(β ,W)p(Z|X,β ,W)p(X|g),

which is obtained by GP marginal likelihoods, i.e., marginalizing out the latent functions f and
h. We place a log-normal distribution prior on the parameters β , and W.

The GP marginal probability of the observations Z given the latent states X is given by a
Gaussian distribution

p(Z|X,β ,W) = |W|Mp
(2π)M Dz |Kz |Dz

exp
�

−1
2
tr
�

K−1
z ZW2ZT

��

, (4)

where M is the total number of observations Z and Kz the covariance matrix of Z computed by
the covariance function kz(·, ·).

Given the exogenous variables g, the sequence of latent states X has a Gaussian distribution

p(X|g) = p(X1)p(X2:T |X1:T−1,g) = p(X1)p
(2π)mDx |Kx |Dx

exp
�

−1
2
tr
�

K−1
x X2:T XT

2:T

��

, (5)

where Xindices is constructed by vertically concatenating state variables x1
indices, . . . ,xJ

indices, m
is the length of X2:T , and Kx is the covariance matrix of X1:T−1 computed by the covariance
function kx(·, ·). We use a Gaussian prior distribution on the initial states X1.

Based on Eq. (4) and (5), the MAP estimate of the states and parameters is obtained by
maximizing the posterior in Eq. (3), which is equivalent to minimizing the negative log-posterior

L (X,β ,W,g) = Dz
2

log |Kz|+
1
2
tr
�

K−1
z ZW2ZT�−M log |W|+ Dx

2
log |Kx | (6)

+ 1
2
tr
�

K−1
x X2:T XT

2:T

�

+ 1
2
tr
�

X1XT
1

�

+
1

2
‖logβ‖2+ 1

2
‖logdiag(W)‖2+ const
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Algorithm 2.1: The unsupervised algorithm that discovers the latent driving factors g and
learns the model parameters XMAP,βMAP, and WMAP. Step 1 is skipped when the exogenous
variables g are provided. In the considered experiments in this chapter, we chose the number
of iterations I = 100.
Input : Data: D = {Z}
Input : Number of iterations: I
Output: Model parameters: Θ = {g,X,β ,W}
for i← 1 to I do1

for j← 1 to J do2

For the j-th episode of movement, g j ← argmaxg j∈{1,...,K}L (X,β ,W,g) ;3

Minimize L (X,β ,W,g) by optimizing X, β , and W ;4

with respect to the states X and model parameters β and W, using the Scaled Conjugate Gradi-
ent (SCG) method, for instance (Møller, 1993). Here, logβ denotes the componentwise log of
the vector β , and diag(W) denotes the vector that consists of the diagonal elements of W.

The model also depends on the hyperparameter Dx , which is the dimension of the latent state
space. The Bayesian GPLVM (Titsias and Lawrence, 2010) can compute an estimate of marginal
likelihood of a specific dimensionality Dx , which could help select the proper dimensionality of
latent states. One can also use model selection, for example based on cross-validation (Wang
et al., 2012b).

2.2.3 Unsupervised Discovery of Latent Exogenous Variables

In practice, the exogenous variables may not be provided as side information in the training
data. For example, defining styles and annotating them manually in human movements are
often difficult due to the complexity and large variance of human motion. Distinguishing these
styles can improve the interpretation of the observed movements and prediction subsequent
poses for tracking. Therefore, we consider unsupervised learning of the H-GPDM by discovering
latent exogenous factors to improve the interpretation of the observed movements D = {Z}.
Here, we assume that the exogenous variable is discrete and time-invariant for each episode of
movement. For example, the gait dynamics can be assumed static during a segmented walking
movement for a specific person.

Based on the H-GPDM, we can discover the exogenous variables from episodic movements.
We expect that the discovered driving factors g can best describe the generative process of the
observed movements and, hence, maximize the marginal likelihood p(Z|g). As the computa-
tion of the marginal likelihood p(Z|g) is intractable, we instead maximize the joint probability
p(X,β ,W,Z|g) with respect to the exogenous variables g, which is also the objective for learn-
ing the latent states and model parameters. To this end, we alternate between (1) optimizing
the exogenous variables g j for one movement at a time and (2) optimizing the states X and
model parameters β and W, by minimizing the negative log-posterior L (X,β ,W,g) in Eq. (6).
This learning approach, summarized in Algorithm 2.1, monotonically increases the posterior
p(X,β ,W,Z|g), and will converge to a local optimum.
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To summarize, the model M = {g,XMAP,βMAP,WMAP, ᾱ} can be learned from the data set D
even when the exogenous variables are not provided.

2.3 Approximate Inference for H-GPDM

We introduce the Variational Bayesian (VB) inference method for the H-GPDM in this section.
The model M = {g,XMAP,βMAP,WMAP, ᾱ} learned from the data set D, is omitted hereafter for
notational simplicity.

As discussed in Section 2.2.2, we first compute the MAP estimate of latent states for the
training data. The corresponding posterior of the measurement function h is subsequently
determined by the obtained MAP estimate XMAP, and the predictive probability of the obser-
vations zt is given by a Gaussian distribution zt ∼ N (mz(xt),σ2

z (xt)I) . The predictive mean
and variance are given by

mz(xt) = ZK−1
z kz(xt) ,

and

σ2
z (xt) = kz(xt ,xt)− kz(xt)

T K−1
z kz(xt) , (7)

where Kz ¬ kz(XMAP,XMAP) is the covariance matrix for the MAP estimate of training states. Here,
we use the shorthand notation kz(xt) to represent the cross-covariance vector between h(XMAP)
and h(xt).

Similarly, the predictive distribution of the latent state xt+1 conditioned on xt and the exoge-
nous variable g is a Gaussian distribution given by xt+1 ∼N (mx(xt , g),σ2

x(xt , g)I) with

mx(xt , g) =XMAP
2:T K−1

x kx(xt , g)

and

σ2
x(xt , g) =kx([xt , g], [xt , g])− kx(xt , g)T K−1

x kx(xt , g) ,

where Kx ¬ kx(XMAP
1:T−1,XMAP

1:T−1).

The inference of exogenous variables is difficult as the joint probability p(x1:t ,z1:t |g) cannot
be factorized in the H-GPDM (or the GPDM), as shown in Figure 2.2a. Most previous infer-
ence methods on GPDMs (Ko and Fox, 2011; Deisenroth and Ohlsson, 2011; Deisenroth and
Mohamed, 2012; Wang et al., 2012b, 2013) adopt the Fully Independent Conditional (FIC) ap-
proximation (Quiñonero-Candela and Rasmussen, 2005; Snelson, 2007). Our VB method also
uses the FIC approximation to factorize the joint distribution p(x1:t ,z1:t |g) in the H-GPDM. As
shown in Figure 2.2b, the FIC approximation decomposes the test conditional given by

p(x1:t |g,M )≈ p(x1|g,M )
t
∏

τ=2

p(xτ|xτ−1, g,M ), (8)

and

p(z1:t |x1:t ,M )≈
t
∏

τ=1

p(zτ|xτ,M ), (9)
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where the latent functions f and h are integrated out, i.e.,

p(xτ|xτ−1, g,M ) =
∫

p(xτ|xτ−1, g, f)p(f|M )df,

and

p(zτ|xτ,M ) =
∫

p(zτ|xτ,h)p(h|M )df,

which cannot be factorized otherwise. We omit the modelM hereafter.

In the remainder of this subsection, we first discuss VB inference algorithm for discrete exoge-
nous variables in Section 2.3.1 and for predicting subsequent poses in Section 2.3.2. We later
generalize the algorithm for continuous exogenous variables in Section 2.3.3.

2.3.1 Inference of Discrete Exogenous Variables

We first detail the VB inference method for discrete exogenous variables g that are time-
invariant. For example, the exogenous variables of episodic movements can often be assumed
time invariant, or they can be considered time invariant during a short period of time. The
corresponding graphical model is shown in Figure 2.2b. Given a new series of observations
z1:t , inferring the exogenous variables p(g|z1:t) ∝ p(g)p(z1:t |g) involves finding the marginal
likelihood

p(z1:t |g) =
∫

p(x1:t ,z1:t |g)dx1:t ,

where the latent state x1:t are integrated out. According to the Jensen’s inequality, the log
marginal likelihood log p(z1:t |g) is lower-bounded by the negative free energy

F(q, g)¬ Eq
�

log p(x1:t ,z1:t |g)
�

+H (q(x1:t))

where q(x1:t) is a probability distribution on the latent states andH (q) is the entropy of q(x1:t).
Since log p(z1:t |g) = F(q, g)−DKL

�

q||p(x1:t |z1:t , g)
�

holds for arbitrary probability distributions
q (Bishop, 2006), the nonnegative KL divergence DKL

�

q||p(x1:t |z1:t , g)
�

determines the tight-
ness of the bound. Therefore, we can approximate the log marginal likelihood by a maximized
negative free energy with respect to the variational distribution q given by

log p(z1:t |g)≈max
q

F(q, g). (10)

This optimization is equivalent to minimizing the KL divergence between the variational distri-
bution q(x1:t) and the posterior distribution of latent states p(x1:t |z1:t , g), i.e., we approximate
the posterior distribution p(x1:t |z1:t , g) by q(x1:t).

To obtain a tractable solution, we use the mean-field approximation (Wainwright and Jordan,
2008) and consider the factorized variational distribution

q(x1:t ;Φ) =
t
∏

τ=1

q(xτ;Φ), q(xτ;Φ)∼N (µτ,Στ), (11)
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for τ= 1, . . . , t, where the distribution q is determined by the parameters Φ = {µ1:t ,Σ1:t}. With
the constraint that the variational distribution q can be factorized into independent Gaussian
distributions, we obtain an approximate marginal likelihood based on Eq. (10), given by

log p(z1:t |g)≈max
Φ

F(q, g;Φ) =max
Φ
Eq[log p(x1:t ,z1:t |g)] +H (q), (12)

where the entropy H (q) and its gradients with respect to the parameters Φ have closed-form
expressions. We can decompose the negative free energy F(q, g;Φ) according to the FIC approx-
imation in Eq. (8) and (9), given by

F(q, g;Φ)=
t
∑

τ=1

Eq[log p(zτ|xτ)]+
t−1
∑

τ=1

Eq[log p(xτ+1|xτ, g)]−H (q(x1), p(x1))+H (q) . (13)

We use H (q, p) to denote the cross-entropy of q and p. For Gaussian distributions q(x1) =
N (µ1,Σ1) and p(x1) =N (m1,S1), the cross entropy and its gradients with respect to the varia-
tional parameters have closed-form expressions. We focus on the expected log likelihoods for the
transition Eq[log p(xτ+1|xτ, g)] and measurement mapping Eq[log p(zτ|xτ)] in the following.

Expected log likelihood for measurement mapping. Consider the expected log likelihood
Eq[log p(zτ|xτ)] at time index τ in Eq. (13). The probability distribution p(zτ|xτ) is the GP
prediction given by a Gaussian distribution with mean mz(xτ) and covariance Σz(xτ) = σ2

z (xτ)I.
The expected log likelihood is thus given by

Eq
�

log p(zτ|xτ)
�

=− 1
2
Eq[log |Σz(xτ)|]−

Dz
2

log(2π)

− 1
2
Eq

�

(zτ−mz(xτ))
TΣ−1

z (xτ)(zτ−mz(xt))
�

, (14)

which does not have a closed-form expression. This intractability is due to the GP predictive
covariance Σz(xτ), given by Eq. (7), which is a function of the unknown state as it encodes the
model uncertainty.

Note that in Eq. (14), the expected log likelihood is averaged over a Gaussian distribution q,
which reflects the log likelihood at a local region. In this chapter, we propose to approximate
the model uncertainty xτ locally (xτ ∼ N (µτ,Στ)) by the model uncertainty at the mean µτ,
leading to the predictive variance

σ2
z (xτ)≈ σ

2
z (µτ) = kz(µτ,µτ)− kz(µτ)

T K−1kz(µτ), (15)

which is independent of xτ but still takes into account the local model uncertainty of the mea-
surement GP, evaluated at the mean µτ of the variational distribution given in Eq. (11). This
approximation assumes a constant value of model uncertainty around µτ. To obtain tractable
solutions, local approximations of the model uncertainty are frequently used. For example, the
approximation we propose is also used for approximate inference in GPs based on linearization
of the posterior GP mean function (Ko and Fox, 2009).

With the approximation in Eq. (15), we obtain an expected log likelihood for the measurement
mapping, given by

Eq
�

log p(zτ|xτ)
�

≈−Dz
2

logσ2
z (µτ)−

Dz
2

log(2π)− 1
2σ2

z (µτ)
Eq

�

‖zτ−mz(xτ)‖2
�

. (16)
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Algorithm 2.2: The VB inference algorithm that finds the most likely exogenous variables
g according to estimated marginal likelihoods. The algorithm also provides an approxi-
mate posterior distribution of the latent states xt ∼ N (µt ,Σt), which can be used for pose
prediction.
Input : Observations: z1:t .
Output: Most likely exogenous variable gML.
Output: Variational parameters Φ.
Initialize the variational parameters Φ0 = {µ1:t ,Σ1:t} ;1

for each k ∈ {1, . . . , K} do2

Φk← Φ0 ;3

Maximize F(q, g = k;Φk) in Eq. (12) w.r.t. Φk ;4

Log (unnormalized) marginal likelihood L (k)← F(q, g = k;Φk) ;5

gML← argmaxk∈{1,...,K}L (k) ;6

Φ← ΦgML ;7

The expected log likelihood and its gradient have closed-form expressions for the considered
linear and Gaussian covariance functions, and, thus, can be computed efficiently. We provide
the expressions in Appendix 2.A. One can also obtain an approximation to Eq

�

log p(zτ|xτ)
�

using Taylor expansion. However, computing the second order derivatives term is too expensive
in practice.

Expected log likelihood for transition. The same approximation is applied to determine the
expected log likelihood term in Eq. (13), given by

σ2
x(xτ, g)≈ σ2

x(µτ, g) = kx([µτ, g], [µτ, g])− kx(µτ, g)T K−1
1:T−1kx(µτ, g).

This approximation results in the expected log likelihood for the transition

Eq
�

log p(xτ+1|xτ, g)
�

≈− Dx
2

logσ2
x(µt , g)− 1

2σ2
x (µτ,g)
Eq

�

‖xτ+1−mx(xτ, g)‖2
�

− Dx
2

log(2π),

(17)

which also has a closed-form solution for the adopted covariance function.

Based on the expected log likelihood terms in Eq. (16) and (17), we can compute the value of
the negative free energy F(q, g;Φ) in Eq. (13) and its gradients with respect to the parameters
Φ. Therefore, we obtain an approximate marginal likelihood in Eq. (12) using gradient-based
optimization, such as the scaled conjugate gradient method (Møller, 1993). This marginal
likelihood allows recognizing the exogenous variable g, such as the corresponding action or
style or an observed movement, as described in Algorithm 2.2.

2.3.2 Pose Prediction

Tracking of human poses often relies on a prior model that predicts a subsequent pose zt given a
sequence of prior observations z1:t−1. With a minor modification to Eq. (13), i.e., removing the
expected log likelihood Eq[log p(zt |xt)] for missing measurements zt , the proposed inference
method can recognize the exogenous variable g, which could be the gait styles, and also obtain
the posterior distribution of state τ ∈ {1, . . . , t},xτ ∼N (µτ,Στ).
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As shown in Figure 2.2b, the approximate posterior distribution q(zt) ≈ p(zt |z1:t−1) can be
estimated given the obtained belief on the corresponding state xt ∼N (µt ,Σt), given by

q(zt) =

∫

p(zt |xt)N (xt |µt ,Σt)dxt .

While this integral is intractable as p(zt |xt) is determined by the nonlinear GP measurement
function h, it can still be approximated well by a Gaussian distribution (Girard et al., 2002),
where the mean and covariance of zt can be computed analytically. As a result, the poste-
rior distribution p(zt |z1:t−1) ≈ q(zt) is approximated by a Gaussian distribution using moment
matching.

However, according to the FIC approximation, as shown in Figure 2.2b, we estimate the pos-
terior distribution q(zt) assuming that the corresponding state xt ∼ N (µt ,Σt) contains all the
information to recover the pose zt . This way, the correlation between the subsequent pose zt
and the observed poses z1:t−1 in the test data is not accounted for. To address this issue, we
estimate the joint posterior distribution of all poses z1:t based on the obtained belief on states
x1:t , given by

q(z1:t) =

∫

p(z1:t |x1:t)
t
∏

τ=1

N (xτ|µτ,Στ)dxτ,

where we compute the predictive cross-covariance between zτ1
and zτ2

for τ1,τ2 ∈ {1, . . . , t},
based on the results in Appendix 2.B. The resulting joint distribution of the measurements q(z1:t)
is a Gaussian distribution with a full covariance matrix that captures the correlation among the
poses z1:t in the test data. Hence, the posterior distribution of the subsequent measurement
p(zt |z1:t−1) ≈ q(zt |z1:t−1) can be obtained by Gaussian conditional distribution given the mea-
surements z1:t−1. The same method also applies to the recovery of missing measurements zτ
given z1:τ−1 and zτ+1:t , i.e., p(zτ|z1:τ−1,zτ+1:t)≈ q(zτ|z1:τ−1,zτ+1:t).

2.3.3 Inference of Continuous Exogenous Variables

We generalize the VB method for continuous exogenous variables g, such as the coordinate of
a target to hit. Instead of finding a MAP estimate, we seek for the posterior distribution q(g) ≈
p(g|z1:t) approximated by a Gaussian distribution. We consider the variational distribution

q(g,x1:t) = q(g)
t
∏

τ=1

q(xτ), q(g) =N (µg ,σ2
g), q(xτ) =N (µτ,Στ),

which consists of a factorized distribution q(x1:t) on states and q(g) for the exogenous vari-
able g, with the parameters Φ = {µ1:t ,Σ1:t ,µg ,σ2

g}. We approximate the posterior distribution
q(g,x1:t) ≈ p(g,x1:t |z1:t) by minimizing the KL divergence between them. This step is equiva-
lent to finding parameters Φ that maximizes the negative free energy

F(q;Φ) = Eq[log p(x1:t ,z1:t , g)] +H (q).

The obtained q(g) = N (µg ,σ2
g) allows predicting the time-invariant exogenous variable g,

which could be the coordinate of a target that directs the observed movement.
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2.3.4 Summary of the Inference Methods

Algorithm 2.2 describes the proposed VB inference algorithm for discrete exogenous variables
g. The variational distribution q(x1:t) provides a solution to forecasting subsequent poses or
recovering missing measurements. In addition, the VB method approximates the posterior
distribution of the latent state variables and can, therefore, also be used for inference in the
GPDM.

The proposed VB inference algorithm is generalized for continuous exogenous variables.
The variational distribution q provides an approximation to the joint posterior distribution
p(x1:t , g|z1:t) of latent state and exogenous variables, including the mean µg and variance σ2

g
of the exogenous variables g.

To summarize, we make use of the mean-field approximation to obtain a tractable variational
free energy for the marginal likelihood of exogenous variables, which gives rise to the posterior
distribution of both exogenous variables and latent states. The posterior of latent states allows
for the prediction of subsequent poses and the recovery of missing observations.

2.4 Experiments

We evaluate the proposed inference method in three applications:

(1) Gait recognition and pose prediction using Motion Capture (MOCAP) data. We
showed that H-GPDM can better interpret the observed movements that consist of multiple
gait styles, which were considered as discrete exogenous variables. We first showed in the
supervised setting that the H-GPDM led to improved prediction accuracy of the subsequent
poses and, hence, can potentially enhance a pose tracking system (Urtasun et al., 2006). Then,
we showed that the unsupervised algorithm can discover latent gait styles from the observed
movements.

(2) Character recognition from handwriting trajectories and recovery of missing obser-
vations. In this proof-of-concept experiment, we demonstrated that H-GPDM can recognize
characters from the dynamics of handwriting trajectories and, therefore, better complete the
missing trajectories in comparison to GPDM.

(3) Target prediction from table tennis hitting movements. In this experiment, we con-
sidered the “target” (where a table tennis player intends to shoot the ball) as a continuous
exogenous variable that drives the hitting movement. H-GPDM allowed to predict the target
from the hitting movement, which is crucial for building an anticipatory robot table tennis
player (Wang et al., 2013).

2.4.1 Motion Capture Data

We show that our proposed inference method can recognize the gait style in human movements
and concurrently predict subsequent poses. This capability of gait recognition provides an im-
proved prior model for pose prediction, which is important in tracking human poses (Urtasun
et al., 2006) for instance. We use the CMU MOCAP database1 and follow the preprocessing

1 http://mocap.cs.cmu.edu/
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routine used by Taylor et al. (2011). Following the signal-noise ratio suggested by Wang et al.
(2008), we chose the transition model parameters ᾱ = [0.9, 0.001,0.1, 10−4]. We considered a
three-dimensional latent state space in the following experiments.

Pose Prediction and Gait Recognition

As discussed previously, pose prediction and gait recognition are fully dependent, as the gait
is an exogenous driving factor of the dynamics. Given a new movement z1:t , the VB method
finds the approximate posterior distribution of the latent states q(x1:t), as well as an estimate
of the marginal likelihood of such the exogenous driving factor p(z1:t |g), specifically by solving
the optimization problem in Eq. (12).

We first consider the Walkers data set that consists of walking MOCAP data from four subjects.
These subjects would have different poses and walking gait dynamics. We collected MOCAP
trials from several subjects and split the trials from each subjects into training data and test
data. Specifically, we used Trials 1–3 from Subject 7, Trials 1–3 from Subject 8, Trials 15-16
from Subject 16, and Trials 1–3 from Subject 35 for training. The test data comprised Trials
6–10 from Subject 7, Trials 8–9 from Subject 8, Trial 22 from Subject 16, and Trials 4–10 from
Subject 35. All trials were down-sampled by a factor of ten.

In the experiments, we progressively predicted the subsequent pose zt based on the recent ν
measurements zt−ν:t−1 for every time index t. The corresponding gait g is assumed static in
this sliding window of measurements. At each time index t, we first computed the marginal
likelihood for every gait p(zt−ν:t−1|g), and chose the maximum-likelihood gait g. Subsequently,
we used the approximate posterior distribution xt ∼ N (µt ,Σt) of the corresponding gait to
predict the pose zt . We compared the VB inference method to the MAP estimation method
described as conditional GPDM by Wang et al. (2008). As the MAP estimation method cannot
straightforwardly recognize the gait variable g, we considered the oracle H-GPDM model, where
the ground-truth value of g is provided. We also compared to both VB and MAP inference
methods in the GPDM model using the same sliding windows, where different gait dynamics
are not distinguished.

In Table 2.4.1, we report the results of the VB and MAP methods in H-GPDM and GPDM,
using sliding windows of size ν = 5. Based on the estimated marginal likelihoods, the VB
method correctly recognized the walker in 90% cases. Its capability of gait recognition allowed
for choosing the appropriate dynamics model. As a result, pose prediction using H-GPDM per-
formed better than the inference methods using GPDM, as the H-GPDM better describes the gait
dynamics of every individual subject. In both the oracle H-GPDM and the GPDM, the VB infer-
ence method substantially outperformed the MAP method. The combination the VB inference
and the H-GPDM model has a comparative advantage at modeling walking motion and predict-
ing subsequent poses, leading to an improved prior model for tracking. Note that the inference
with VB and H-GPDM is advantageous regardless of the size of sliding windows ν . By changing
the window size to ν = 10, we obtained similar results, as shown in Table 2.4.1.

We also consider the Weird Walking data set that consists of MOCAP data from a single subject
walking in four weird styles, including (1) walking with arms out, (2) fast walking, (3) hopping
on the left foot, and (4) slow walking. These walking styles led to different gait dynamics
although they may have similar poses. The models were trained on Trials 1–5, 17–19, 23–25,
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and 45–47 from Subject 132. For testing, we used Trials 6–12, 20–22, 26–28, and 48–50 from
the same subject. All the trials were down-sampled by a factor of ten.

In Table 2.4.1, we report the results of the VB and MAP methods in the H-GPDM and the
GPDM. Based on the estimated marginal likelihoods, the VB method could correctly recognize
the walker in 61% cases. Note that for the style hopping on the left foot, the training data
was not sufficient for learning the complex dynamics of this walking style. In addition, the
movements of these four walking styles contain similar poses. Hence, in the test Trials 132-
26, 132-27, and 132-28, the gait was not correctly recognized. Nevertheless, incorrect gait
recognition did not necessarily result in a lower performance in the pose prediction, as the VB
algorithm chose the gait dynamics model that best fit the recent measurements. As a result, pose

H-GPDM oracle H-GPDM GPDM
test trials VB accuracy VB MAP VB MAP

07-06 0.069 100% 0.069 0.082 0.095 0.111
07-07 0.137 52% 0.096 0.097 0.111 0.113
07-08 0.142 65% 0.098 0.133 0.158 0.140
07-09 0.076 100% 0.076 0.094 0.124 0.136
07-10 0.157 55% 0.108 0.114 0.136 0.148
08-08 0.108 83% 0.103 0.105 0.116 0.169
08-09 0.114 63% 0.113 0.117 0.122 0.175
16-22 0.047 100% 0.047 0.140 0.073 0.093
35-04 0.044 100% 0.044 0.064 0.070 0.087
35-05 0.044 100% 0.044 0.062 0.068 0.139
35-06 0.042 100% 0.042 0.075 0.066 0.083
35-07 0.039 100% 0.039 0.060 0.067 0.090
35-08 0.044 100% 0.044 0.081 0.066 0.109
35-09 0.046 100% 0.046 0.071 0.067 0.123
35-10 0.039 100% 0.039 0.069 0.064 0.079

average 0.077 90% 0.067 0.091 0.093 0.120

Table 2.1: Root-mean-square (RMS) error of the subsequent pose prediction on the Walkers data
set using sliding windows of size 5. The test trials show the subject ID and trail number
in the CMU MOCAP database. In the second and third columns, we show the RMS
error of pose prediction and accuracy of gait recognition using the VB inference in
H-GPDM model. In the fourth and fifth columns, we show the results of the oracle
H-GPDM, provided with the ground-truth values of the exogenous variables (walkers’
identities). In the last two columns, we also report the results using the GPDM model.
The VB inference based on H-GPDM is advantageous in most of the test trials.

H-GPDM oracle H-GPDM GPDM
test trials VB accuracy VB MAP VB MAP
average 0.080 91% 0.072 0.089 0.089 0.117

Table 2.2: RMS error of the subsequent pose prediction on the Walkers data set using sliding
windows of size 10. We only show the averaged performance.
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prediction using the H-GPDM could still achieve better performance compared to the inference
methods using the GPDM, for example in the test Trial 132-11. In both the oracle H-GPDM
and the GPDM, the VB inference method also substantially outperformed the MAP method. By
changing the window size to ν = 10, we obtained similar results, as shown in Table 2.4.1.

Recovery of Missing Data

The H-GPDM can recover missing measurements using the proposed VB method. Following
the evaluation by Wang et al. (2008), we considered the Four Walkers data set. The models
were trained on Trial 2 from Subject 35, Trial 4 from Subject 10, Trial 1 from Subject 12,
and trial 5 from Subject 16. For testing, we used Trial 3 from Subject 35, Trials 2–3 from
Subject 12, and Trial 21 from Subject 16. All trials were down-sampled by a factor of four in
consistent with Wang et al. (2008). We took 50 frames from each test trial, removed 31 frames
in the middle, and recovered the missing measurements using the proposed VB method. We
conducted 12 experiments for each test trial with missing frames 5–35, 6–36, ..., and 16–46.

H-GPDM oracle H-GPDM GPDM
test trials VB accuracy VB MAP VB MAP
132-06 0.062 58% 0.120 0.083 0.103 0.125
132-07 0.080 89% 0.097 0.121 0.201 0.146
132-08 0.056 58% 0.060 0.070 0.086 0.106
132-09 0.046 51% 0.056 0.081 0.204 0.124
132-10 0.049 76% 0.048 0.070 0.094 0.097
132-11 0.049 0% 0.040 0.057 0.209 0.102
132-12 0.041 98% 0.039 0.062 0.129 0.088
132-20 0.106 100% 0.106 0.171 0.134 0.183
132-21 0.090 91% 0.094 0.182 0.115 0.181
132-22 0.123 85% 0.109 0.180 0.170 0.160
132-26 0.240 5% 0.252 0.303 0.190 0.238
132-27 0.326 4% 0.198 0.223 0.178 0.202
132-28 0.244 24% 0.223 0.238 0.188 0.264
132-48 0.043 100% 0.043 0.089 0.049 0.075
132-49 0.040 100% 0.040 0.121 0.053 0.106
132-50 0.048 100% 0.048 0.111 0.056 0.098
average 0.103 61% 0.098 0.135 0.135 0.143

Table 2.3: RMS error of the subsequent pose prediction on the Weird Walking data set using
sliding windows of size 5.

H-GPDM oracle H-GPDM GPDM
test trials VB accuracy VB MAP VB MAP
average 0.093 63% 0.099 0.132 0.123 0.148

Table 2.4: RMS error of the subsequent pose prediction on the Weird Walking data set using
sliding windows of size 10. We only show the averaged performance.
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For all test trials, the walker was correctly recognized. As shown in Table 2.4.1, the VB inference
using H-GPDM achieved the best accuracy of the recovered measurements.

Discovery of Latent Gaits

The proposed Algorithm 2.1 can discover the latent driving factors when the side information
is absent. In the Weird Walking data set, four different types of gait dynamics were discovered,
which exactly coincide with the four weird styles in the training data. In the Walkers data set,
the Subjects 16 and 35 were assigned the same gait style according to the discovered exogenous
variables, as they have similar gait dynamics. Hence, they share the same transition model in
the learned H-GPDM, despite their different poses.

2.4.2 Handwriting Character Recognition

In the following experiment, we consider the character handwriting trajectories data set2 used
by Williams et al. (2006, 2008). The entire data set contains 2858 trajectories of 20 char-
acters, which were originally collected for identifying motor primitives in biological move-
ments (Williams et al., 2008).

In the following, we treat the character as an exogenous variable when learning generative
models of the observed trajectories. We first show that such a model enables character recogni-
tion with high precision. Moreover, we demonstrate that the H-GPDM (Figure 2.1b) facilitates
the recovery of missing observations, unlike the GPDM (Figure 2.1a) that does not distinguish
the character in the transition model.

We used the following subsets of characters:

• PQ: We collect the character trajectories of characters ‘p’ and ‘q’. Although they have
similar shapes as shown in Figure 2.3a and 2.3b, they have very different handwriting
trajectories. The training data set contained 140 trajectories and the test data set contained
115 trajectories.

• ABC: We collect the character trajectories of characters ‘a’, ‘b’, and ‘c’. The training and
test data sets contained 225 and 229 trajectories, respectively.

2 http://archive.ics.uci.edu/ml/datasets/Character+Trajectories

H-GPDM GPDM
test trials VB oracle MAP VB MAP

35-03 0.012 0.025 0.015 0.025
12-02 0.015 0.031 0.019 0.039
12-03 0.016 0.020 0.017 0.014
16-21 0.028 0.031 0.029 0.020

average 0.018 0.027 0.020 0.024

Table 2.5: RMS error of the missing poses recovery on the Four Walkers data set. The VB method
based on H-GPDM achieved 100% accuracy in the recognition of walker.
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(a) Recovered ‘p’ using H-GPDM
 

 

ground truth

observed trajectory
recovered trajectory
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(d) Recovered ‘q’ using GPDM

Figure 2.3: Recovery of missing observations using the proposed VB method and using GPDM.
We show ten trajectories sampled from the posterior distribution of latent states
p(x1:t), where the red segments correspond to missing observations. The proposed
VB inference in the H-GPDM simultaneously recognized the character and recovered
the trajectories. The GPDM, which does not distinguish these two characters when
learning the transition model, failed to recover the missing trajectories.

Each observation z had three features, the x and y-coordinates and the force of the pen tip.
Since the observations are low-dimensional and informative for character recognition, we chose
a three-dimensional latent state space and a linear covariance for the measurement model. The
data was down-sampled by a factor of five.

Our proposed VB inference method had a precision of 100% on the PQ data. For comparison,
the method based on motor primitives achieved a precision of 99% on the PQ data reported
by Williams et al. (2008). On the ABC data, our VB inference method achieved a precision
of 99.1%: The character ‘c’ was incorrectly recognized as ‘a’ twice, as to their share similar
trajectories.

Our inference method can also recover missing observations. In our experiment, we used
one trajectory of the character ‘p’ and one of ‘q’, and removed a substantial proportion of the
handwriting trajectories. In particular, we extracted the observations with time indices 10–15
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Figure 2.4: The target, represented by the exogenous variable g, is the intersection xhp of the
coming ball’s trajectory and the virtual hitting plane 80 cm behind the table. Figure
adapted from Mülling et al. (2011).

in the trajectories. The ‘p’ trajectory has an overall length of 22, and the ‘q’ trajectory has a
length of 21. To achieve a good initialization of the variational parameters, we first conducted
a forward sweep (filtering) on the belief of states q(xτ) for τ = 1, . . . , t, at each time step only
optimizing µτ, Στ, and λ using the available observations in z1:τ according to Eq. (12), and
keeping µ1:τ−1 and Σ1:τ−1 fixed. When the observation zτ is missing, such an initialization
exploits the learned transition model. We use the same initialization procedure for both our
method and the inference with GPDM. The results are shown in Figure 2.3.

Our proposed H-GPDM inference method correctly recognized the characters from the incom-
plete trajectories and successfully recovered the missing parts, as shown in Figure 2.3a and 2.3b.
However, GPDM, in which the transition model does not distinguish between the two characters
as it does not model exogenous variables, failed to recover the missing trajectories, as shown in
Figure 2.3c and 2.3d. An explanation is that the GPDM does not distinguish between the char-
acters when learning the transition model. Hence, training data could have originated from any
character, and the transition model can have multiple modes for the trajectories of ‘p’ and ‘q’.
The H-GPDM model with exogenous variables is more expressive than the GPDM, as it models
the transition of each individual character. This additional flexibility is crucial for recovering
trajectories from missing data.

2.4.3 Target Prediction for Table Tennis

We show that the H-GPDM can model goal-directed human movements and that the proposed
VB method is applicable to goal inference. In this experiment, we consider human-robot table
tennis and predict the intended target of the human player, i.e., where the player intends to
shoot the ball, as shown in Figure 2.4, based on the observed racket’s movement of the player.
This prediction is important for the robot, which is mounted on the ceiling, to anticipate the
human opponent’s target and to prepare for hitting (Wang et al., 2013). We assume that the
target is an important driving factor of the human player’s racket movement (Wang et al., 2013)
and, hence, treat the target as the exogenous variable in the H-GPDM of the player’s racket. We
also show that the unsupervised learning algorithm can discover latent styles in the hitting
movements without side information, i.e., the target.
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Figure 2.5: Mean absolute error of the ball’s target with standard error of the mean. These
errors are before the opponent hit the ball and only based on his movements. Tar-
get predictions are more accurate toward the end of the striking movements (from
240 ms to 80 ms before the opponent returns).

Target Prediction

The exogenous variable g considered here is the X-coordinate of the intended target, as shown
in Figure 2.4, which we assume is a driving factor of the observed racket’s movement z1:t . We
consider the target g is time-invariant for each hitting movement. To evaluate the performance
of target prediction, we use the data set with recorded striking movements from two human
players (Wang et al., 2013). The true targets were obtained from a ball tracking system. The
data set was divided into a training set with 100 hitting movements and a test set with 126 hit-
ting movements, and the corresponding targets. We chose a four-dimensional latent state space,
which achieved the maximum marginal likelihood estimated using the Bayesian GPLVM (Titsias
and Lawrence, 2010). We compare our VB inference method to three other models: (1) GPR :
Gaussian process regression for direct mapping from zt−1:t to g using a sliding window of size
2, which was shown to be the optimal window size (Wang et al., 2013), (2) GP-ADS : goal infer-
ence based on GP Assumed Density Smoothing (Wang et al., 2012b), and (3) MAP : inference
based on the MAP estimate of latent states, as used by Wang et al. (2008) for the inference for
GPDM.

For every recorded hitting movement, we compared the proposed VB inference method with
the GP-ADS method used by Wang et al. (2012b) and the GPR prediction (from zt−1:t to g)
based on the observations up to 80 ms, 160 ms, and 240 ms before the human hit the ball.
As demonstrated in Figure 2.5, the VB method outperformed the other methods. At 80 ms
before the opponent hit the ball, the VB model resulted in a mean absolute error of 31.2 cm,
which is a 12.3% improvement over the GPR with an average error 35.6 cm. The accuracy of
GPR does not improve as more observations are obtained, as it learns a direct mapping from
observations to the goal. In contrast, inference based on the H-GPDM becomes more reliable
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Figure 2.6: Discovered latent styles in the table tennis striking movements. Figure (a) shows the
striking movements in the training data. The trajectories shows the racket movement
on the XY plane, starting from the position marked by a dot, moving towards the
table/robot, which is above this figure. The color of each movement corresponds
to its estimated style. We can observe that interpretable latent styles are obtained
without annotation. For example, styles 1 and 5 correspond to backhand movements
towards the left and right side, respectively; styles 3 and 4 correspond to forehand
movements towards the left and right side, and movements in style 2 try to reach the
ball faraway to the left. Figure (b) shows the movements from a new opponent. The
color represents the most likely style obtained by the inference algorithm.

as more observations are obtained. The VB inference method also outperformed the other
inference methods based on the H-GPDM: The inference based on GP-ADS (Wang et al., 2012b)
achieved an average error of 31.5 cm. The inference based on the MAP estimate of latent states
achieved an average error of 33.8 cm. We conclude that the inference based on H-GPDM should
take into account the uncertainty in the latent state variables.
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Discovery of Latent Styles

We also apply the unsupervised learning algorithm on the table tennis striking movements.
Five different styles were discovered from the recorded racket trajectories of one particular
opponent, as shown in Figure 2.6(a). The starting point of each trajectory indicates the location
of the racket 400-ms before hitting the ball and the length of each trajectory is six (observations
are sampled at 12.5Hz). One can see that these styles divide the trajectories into five groups
reasonably; for interpretations, see the caption of Figure 2.6. Note that H-GPDM is not sensitive
to the pre-defined number of styles, which is eight in this experiment. The learned styles are
usually sparse when the pre-defined number of styles is sufficiently large.

The proposed inference algorithm successfully identified the styles in the test data of the
strokes from a new opponent, as shown in Figure 2.6(b). We can observe that the new oppo-
nent has different preferences on the styles. These results showed that the H-GPDM has the
potentially to adapt to new human subjects with difference preferences p(g) over the latent
styles while the dynamics remains unchanged.

2.5 Conclusions of Chapter 2

Gaussian Process Dynamics Models (GPDM) are a flexible class of latent-variable models that
can represent complex nonlinear human movements, playing an increasingly important role in
computer vision, robotics, and signal processing. However, GPDMs do not take into account the
exogenous driving factors when the dynamics in the state space do not follow a simple Markov
chain. In this chapter, we focus on the situation where the dynamics are driven by the exoge-
nous variables, such as gait, goal, or movement styles. We incorporated the exogenous variables
in the dynamics model to improve the interpretation, analysis, and prediction of human move-
ments. The resulting Hierarchical GPDMs (H-GPDM) represent the generative process of human
movements that are driven by exogenous variables.

The H-GPDM can be learned from observed movements in both supervised and unsupervised
settings. We applied H-GPDM to jointly infer the exogenous variables and the missing observa-
tions. However, exact inference is analytically intractable. In this chapter, we have introduced
a variational inference method for the H-GPDM, which is also applicable to the inference in
GPDMs.

We have analyzed the performance of our proposed VB inference in three applications, i.e.,
target prediction from human-robot table tennis, character recognition and recovery from hand-
writing trajectories, and action recognition using motion capture data. The experimental results
demonstrated the merit of both the H-GPDM and the inference algorithm.

The H-GPDM is applicable to intention inference when the human movements are driven by
the underlying intention. In the next chapter, we consider a spacial case of the H-GPDM, namely
Intention-Driven Dynamics Model (IDDM). As the VB inference method is time-demanding and
cannot fulfill the real-time requirements in many robotic applications, we propose an online
inference algorithm in the following chapter and apply it to two human-robot interaction sce-
narios.
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2.A Expected Log Predictive Probability for GP

We consider the Gaussian process (GP) prior with the covariance function

k(x,x′) = kl(x,x′) + kg(x,x′) + β4δx,x′

which has a Gaussian function term kg(x,x′) = β1 exp{−β2
2
‖x−x′‖2} and a linear term kl(x,x′) =

β3xT x′. The GP predictive probability of a test output z given a test input x and training inputs
X and outputs Z is

p(z|x) =N
�

mz(x),σ
2
z (x)I

�

,

with

mz(x) = ZT K−1
z k(x),

σz(x) = k(x,x)− kT (x)K−1
z k(x),

where Kz ¬ k(X,X) is the covariance matrix for the training data. We use the short-hand nota-
tion k(x)¬ k(X,x).

We compute the expected log predictive probability Eq
�

log p(z|x)
�

with respect to q(x) =
N (µ,Σ), which is essential for computing the expected log likelihoods for the transition and
measurement function in Eq. (14) and (16), given by

Eq
�

log p(z|x)
�

≈−D
2

logσ2
z (µ)−

D
2

log(2π)− 1
2σ2

z (µ)
Eq

�

‖z−mz(x)‖2
�

,

where D is the dimension of the output z. Here, we assume a constant value of model uncer-
tainty around µ.

To compute Eq
�

log p(z|x)
�

, one needs to compute

Eq

�

‖z−mz(x)‖2
�

= zT z− 2zT VzEq [k(x)] + tr
�

VT
z VzEq

�

k(x)k(x)T
��

= zT z− 2zT Vz Eq [k(x)]
︸ ︷︷ ︸

Term (a)

+ tr
�

VT
z Vz Eq

�

kg(x)kg(x)
T
�

︸ ︷︷ ︸

Term (b)

�

+Eq

�

kl(x)
T VT

z Vzkl(x)
�

︸ ︷︷ ︸

Term (c)

+ 2 tr
�

VT
z VzEq

�

kl(x)kg(x)
T
��

︸ ︷︷ ︸

Term (d)

, (18)

where we use Vz ¬ ZT K−1
z , kl(x)¬ kl(X,x), and kg(x)¬ kg(X,x) for notational simplicity.

For Term (a) in Eq. (18), we compute the vector l¬ Eq [k(x)]. Its i-th element li is given by

li =

∫

q(x)k(x,xi)dx=

∫

q(x)kl(x,xi)dx+

∫

q(x)kg(x,xi)dx

= β3µ
T xi + β1|Σβ2+ I|−

1
2 exp

�

−
1

2
(xi −µ)T (Σ+ β−1

2 I)−1(xi −µ)
�

,
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where xi is the i-th training input.

For Term (b) in Eq. (18), we compute the matrix Q ¬ Eq

�

kg(x)kg(x)T
�

, where its elements
are given by

Q i j =
kg(xi,µ)

|2β2Σ+ I|
1
2

exp
�

β2(x̃ij−µ)T (Σ+
1

2
β−1

2 I)−1Σ(x̃ij−µ)
�

with the short-hand notation x̃ij ¬ 1
2
(xi + x j).

Term (c) in Eq. (18) is given by

Eq

�

kl(x)
T VT

z Vzkl(x)
�

= β2
3Eq

�

xT XT VT
z VzXx

�

= β2
3µ

T Sµ+ β2
3 tr(SΣ),

with the short-hand notation S¬ XT VT
z VzX.

Term (d) in Eq. (18) is given by

tr
�

VT
z VzEq

�

kl(x)kg(x)
T
��

= β3tr
�

VT
z VzXR

�

,

where we define the matrix R¬ Eq

�

xkg(x)T
�

. Its i-th column is given by

Ri = β1Eq

�

xexp(−
β2

2
‖x− xi‖2)

�

= β1c1c−1
2 ψi,

with

c1 ¬ β1(2π)
D
2 β
− D

2
2 ,

c−1
2 ¬ (2π)

− D
2 |β−1

2 I+Σ|−
1
2 exp

�

−
1

2
(xi −µ)T (β−1

2 I+Σ)−1(xi −µ)
�

,

ψi ¬ (β2I+Σ−1)−1(β2xi +Σ
−1µ).

For more details of the derivation, we refer the readers to Deisenroth (2010, Section 2.3).
Combining Terms (a)–(d), we obtain the closed-form expression for the expected log predictive
probability Eq[log p(z|x)]. Therefore, we can analytically compute the expected log likelihoods
for the measurement mapping Eq[log p(zτ|xτ)] and for the transition Eq[log p(xτ+1|xτ, g)] in
the negative free energy F(q, g;Φ) in Eq. (13).

2.B GP Predictive Cross-covariance with Uncertain Inputs

Given two input variables x1 and x2,

x1 ∼N (µx1
,Σx1
),x2 ∼N (µx2

,Σx2
),

each of which follows a Gaussian distribution.
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For a GP with a zero mean function and covariance function k(·, ·), the predictive distribution
is given by

p(y1|x1)∼N (m(x1),σ
2(x1)),

where the predictive mean and variance are

m(x1) = kT (X,x1)β ,

and

σ2(x1) = k(x1,x1)− kT (X,x1)Σ
i
zk(X,x1).

Similarly, we can also obtain the cross-covariance,

σ(x1,x2) = k(x1,x2)− kT (X,x1)Σ
i
zk(X,x2).

The cross-covariance of y1 and y2 is given by

covx1,x2
(y1, y2) = Ex1,x2

�
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�
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�

m(x1), m(x2)
�

,
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∫
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.

For more details of the derivation, we refer the reader to Girard (2004, Appendix C)
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3 Online Intention Inference for Human-Robot Interaction

In this chapter, we apply the H-GPDM models for human-robot interaction. As the VB inference
method introduced in the previous chapter is rather time-consuming, we propose an online
intention inference algorithm that can fulfill the real-time requirements. We evaluate the online
inference algorithm in two scenarios, i.e., target prediction in human-robot table tennis and
action recognition for building an anticipatory humanoid robot. This chapter is based on the
results presented by Wang et al. (2012b, 2013).

3.1 Prologue

Recent advances in sensors and algorithms allow for robots with improved perception abilities.
For example, robots can now recognize human poses in real time using depth cameras (Shot-
ton et al., 2013), which can potentially enhance the robot’s ability to interact with humans.
However, effective perception alone may not be sufficient for Human-Robot Interaction (HRI),
since the robot’s reactions ideally depend on the underlying intention of the human’s action,
including the others’ goal, target, desire, and plan (Simon, 1982). Human beings rely heavily
on the skill of intention inference (for example, in sports, games, and social interaction) and can
improve the ability of intent prediction by training. For example, skilled tennis players are usu-
ally trained to possess substantially better anticipation than amateurs (Williams et al., 2002).
This observation raises the question of how robots can learn to infer the human’s underlying
intention from movements.

In this chapter, we focus on intention inference from a movement based on modeling how the
dynamics of a movement are governed by the intention. This idea is inspired by the hypothe-
sis that a human movement usually follows a goal-directed policy (Baker et al., 2009; Friesen
and Rao, 2011). The resulting dynamics model allows to estimate the probability distribution
over intentions from observations using Bayes’ theorem and to update the belief as additional
observation is obtained. The human movement considered here is represented by a time se-
ries of observations, which makes discrete-time dynamics models a straightforward choice for
movement modeling and intention inference. In a robotics scenario, we often rely on noisy and
high-dimensional sensor data. However, the intrinsic states are typically not observable, and
may have lower dimensions. Therefore, we seek a latent state representation of the relevant
information in the data, and then model how the intention governs the dynamics in this latent
state space, as shown in Figure 3.1b. The resulting model jointly learns both the latent state
representation and the dynamics in the state space.

Designing a parametric dynamics model is difficult due to the complexity of human move-
ment, e.g., its unknown nonlinear and stochastic nature. To address this issue, Gaussian
processes (GPs), see (Rasmussen and Williams, 2006), have been successfully applied to mod-
eling human dynamics. For example, the Gaussian Process Dynamics Model (GPDM) proposed
by Wang et al. (2008) uses GPs for modeling the generative process of human motion with a
nonlinear dynamical system, as shown in Figure 3.1a. Since the GP is a probabilistic nonpara-
metric model, the unknown structure of the human moment can be inferred from data, while
maintaining posterior uncertainty about the learned model itself.

As an extension to the GPDM, we propose the Intention-Driven Dynamics Model (IDDM),
which models the generative process of intention-driven movements. The dynamics in the latent
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Figure 3.1: Graphical models of the Gaussian process dynamics model (GPDM) and the proposed
intention-driven dynamics model (IDDM), where we denote the intention by g, state
by xt , and observation by zt . The proposed model explicitly incorporates the inten-
tion as an input to the transition function. Note that we omit the latent functions f
and h in the graph for simplicity, as we adopt the Fully Independent Conditional (FIC)
approximation, see Section 2.3. The full graphical model was shown in Figure 2.1b.

states are driven by the intention of the human action/behavior, as shown in Figure 3.1b. The
IDDM can simultaneously find a good latent state representation of noisy and high-dimensional
observations and describe the dynamics in the latent state space. The dynamics in latent state
and the mapping from latent state to observations are described by GP models. Using the
learned generative model, the human intention can be inferred from an ongoing movement
using Bayesian inference. However, exact intention inference is not tractable due to the non-
linear and nonparametric GP transition model. Therefore, we propose an efficient approximate
inference algorithm to infer the intention of a human partner.

The remainder of the chapter is organized as follows. First, in the remainder of this section, we
illustrate the considered scenarios (Section 3.1.1) and discuss the related work (Section 3.1.2).
Subsequently, we present the Intention- Driven Dynamics Model (IDDM) in Section 3.2. In Sec-
tion 3.3, we study approximate algorithms for intention inference and extend them to online
inference in Section 3.4. We evaluate the performance of the proposed methods in the two sce-
narios, i.e., target prediction in robot table tennis and action recognition, in Section 3.5 and 3.6.
Finally, we summarize our contributions and discuss properties of the IDDM in Section 3.7.

3.1.1 Considered Scenarios

To verify the feasibility of the proposed methods, we discuss two representative scenarios where
intention inference plays an important role in human-robot interactions:

(1) Target inference in robot table tennis. We consider human-robot table tennis
games (Mülling et al., 2011), where the robot plays against a human opponent as shown in
Figure 3.2. The robot’s hardware constraints often impose strong limitations on its flexibility
in such a high-speed scenario; for example, the Barrett WAM robot arm often cannot reach in-
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Figure 3.2: Target prediction in robot table tennis games: one example of HRI scenarios where
intention inference plays an important role.

coming balls due to a lack of time caused by acceleration and torque limits for the biomimetic
robot table tennis player presented by Mülling et al. (2011). The robot is kinematically capable
of reaching a large hitting plane with pre-defined hitting movements such as forehand, middle,
and backhand stroke movements that are capable in returning the ball shot into their corre-
sponding hitting regions. However, movement initiation requires an early decision on the type
of movement. In practice, it appears that to achieve the required velocity for returning the ball,
this decision needs to be taken at least 80 ms before the opponent returns the ball (Wang et al.,
2011b). Hence, it is necessary to choose the hitting movement before the opponent’s racket
has even touched the ball. This choice can be made based on inference of the target location
where the opponent intends to return the ball from his incomplete stroke movement. We show
that the IDDM can improve the prediction of the human player’s intended target over a baseline
method based on Gaussian process regression, and can thus expand the robot’s hitting region
substantially by using multiple hitting movements.

(2) Action recognition for interactive humanoid robots. In this setting, we use our IDDM to
recognize the actions of the human, as shown in Figure 3.3, which can improve the interaction
capabilities of a robot (Jenkins et al., 2007). In order to realize natural and compelling inter-
actions, the robot needs to correctly recognize the actions of its human partner. In turn, this
ability allows the robot to react in a proactive manner. We show that the IDDM has the potential
to identify the action from movements in a simplified scenario.

In most robotics applications, including the scenarios discussed above, the decision making
systems are subject to real-time constraints and need to deal with a stream of data. Moreover,
the human’s intention may vary over time. To address these issues, we propose an algorithm
for online intention inference. The online algorithm can process the stream data and fulfill the
real-time requirements. In the experiments, the proposed online intention inference algorithm
achieved over four times acceleration over the previous method (Wang et al., 2012b).
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Figure 3.3: Target prediction in robot table tennis games: a second example of HRI scenarios
where intention inference is crucial.

3.1.2 Related Work

We review methods for intention inference and for modeling human movements that are related
to the proposed IDDM and inference methods.

Intention Inference

Inference of intentions has been investigated in different settings. Most of previous work relies
on probabilistic reasoning.

Intention inference with discrete states and actions has been extensively studied, using Hid-
den Markov Models (HMMs) to model and predict human behavior where different dynamics
models were adopted to the corresponding behaviors (Pentland and Liu, 1999). Online learn-
ing of intentional motion patterns and prediction of intentions based on HMMs was proposed
in (Vasquez et al., 2008), which allows efficient inference in real time. The HMM can be learned
incrementally to cope with new motion patterns in parallel with prediction (Vasquez et al.,
2009).

Probabilistic approaches to plan recognition in artificial intelligence (Liao et al., 2007) typi-
cally represent plans as policies in terms of state-action pairs. When the intention is to maximize
an unknown utility function, inverse reinforcement learning (IRL) infers the underlying utility
function from an agent’s behavior (Abbeel and Ng, 2004). IRL has also been applied to model
intention-driven behavior. For instance, maximum entropy IRL (Ziebart et al., 2008) has been
used to model goal-directed trajectories of pedestrians (Ziebart et al., 2009) and target-driven
pointing trajectories (Ziebart et al., 2012).

In cognitive science, Bayesian models were used for inferring goals from behavior in (Rao
et al., 2004), where a policy conditional on the agent’s goal is learned to represent the behavior.
Bayesian models can be used to interpret the agent’s behavior and predict its behavior in a
similar environment with the learned model (Baker et al., 2006). In a recent work (Friesen and
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Rao, 2011), a computational framework was proposed to model gaze following, where GPs are
used to model the dynamics with actions driven by a goal. These methods assume that the states
can be observed. However, in practice the states are often not well-defined or not observable
for complex human movement.

One can also consider the intention inference jointly with decision making, such as au-
tonomous driving (Bandyopadhyay et al., 2013), control (Hauser, 2012), or navigation in
human crowds (Kuderer et al., 2012). For example, when the state space is finite, the prob-
lem can be formulated as a Partially Observable Markov Decision Process (Kurniawati et al.,
2011) and solved efficiently (Wang et al., 2012a). In contrast, our method assumes that the
robot’s decision does not influence the intention of the human and considers intention inference
and decision making separately, which allows us to efficiently deal with high-dimensional data
stream and fulfill the real-time constraints.

Gaussian Process Dynamics Model and Extensions

Observations of human movements often consist of high-dimensional features. Determining
a low-dimensional latent state space is an important issue for understanding observed actions.
The Gaussian Process Latent Variable Model (GPLVM) (Lawrence, 2004) finds the most likely
latent variables while marginalizing out the function mapping from latent to observed space.
The resulting latent variable representation allows to model the dynamics in a low-dimensional
space. For example, the Gaussian Process Dynamics Model (Wang et al., 2008) uses an addi-
tional GP transition model for the dynamics of human motion on the latent state space.

In robotics applications, the GPLVM can also be used for learning dynamical system motor
primitives (Ijspeert et al., 2002) in a low-dimensional latent space, to achieve robust dynamics
and fast learning (Bitzer and Vijayakumar, 2009). Nonparametric dynamics models are also
applied for tracking a small robotic blimp with two cameras (Ko and Fox, 2009), where GP-
Bayes filters were proposed for efficient filtering. In a follow-up work (Ko and Fox, 2011), the
model is learned based on the GPLVM, so that the latent states need not be provided for learning.

The use of a GP transition model renders exact inference in the GPDM and, hence, in the
IDDM, analytically intractable. Nevertheless, approximate inference methods have been suc-
cessfully applied based on filtering and smoothing in nonlinear dynamical systems. For the
GPDM and its extensions, approximate inference can be achieved using Particle Filters (GP-
PF), Extended Kalman Filters (GP-EKF), and Unscented Kalman Filters (GP-UKF) as proposed
by (Ko and Fox, 2009). GP Assumed Density Filters (GP-ADF) for efficient GP filtering, and
general smoothing in GPDMs were proposed in (Deisenroth et al., 2009) and (Deisenroth et al.,
2012), respectively. These filtering and smoothing techniques allow the use of Expectation-
Maximization (EM) framework for approximate inference (Ghahramani and Roweis, 1999;
Turner et al., 2010; Wang et al., 2012b). Int the previous chapter, we presented a Varia-
tional Bayes (VB) inference method. However, this VB method is rather time-consuming. To
fulfill the real-time requirements in human-robot interaction, we present an online inference
method in this chapter.
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3.2 Intention-Driven Dynamics Model

We present the Intention-Driven Dynamics Model (IDDM), which is a special case of the pro-
posed H-GPDM, and an extension to the GPDM (Wang et al., 2008). We briefly review the
model description here for the self-containment of this chapter. We refer to Section 2.2.2 for the
learning of the model.

3.2.1 Measurement and Transition Models

In the proposed IDDM, one set of GPs models the transition function in the latent space condi-
tioned on the intention g. A second set of GPs models the measurement mapping from the latent
states x and the observations z. For notational simplicity, we assume the intention variable g
is discrete or a scalar. The model and method can easily generalize to multi-variate intention
variables. We detail both the measurement and transition models in the following.

Measurement model

The observations of a movement are a time series z1:T ¬ [z1, . . . ,zT], where zt ∈ RDz . In the
proposed generative model, we assume that an observation zt ∈ RDz is generated by a latent
state variable xt ∈ RDx according to

zt =W−1h(xt) +W−1nz,t , nz,t ∼N (0,Sz) ,

where the diagonal matrix W = diag(w1, . . . , wDz
) scales the outputs of h(xt). The scaling

parameters W allow for dealing with raw features that are measured in different units, such
as positions and velocities. We place a GP prior distribution on each dimension of the un-
known function h, which is marginalized out during learning and inference. The GP prior
GP (mz(·), kz(·, ·)) is fully specified by a mean function mz(·) and a positive semidefinite covari-
ance (kernel) function kz(·, ·). Without specific prior knowledge on the latent state space, we
use the same mean and covariance function for the GP prior on every dimension of the unknown
measurement function h, and use the noise (co)variance Sz = s2

z I. The predictive probability
of the observations zt is given by a Gaussian distribution zt ∼ N (mz(xt),Σz(xt)) , where the
predictive mean and covariance are computed based on training inputs Xz and outputs Yz, given
by

mz(xt) = YzK
−1
z kz(xt),

Σz(xt) = σ
2
z (xt)I,

σ2
z (xt) = kz(xt ,xt)− kz(xt)

T K−1
z kz(xt) ,

where, we use the shorthand notation kz(xt) to represent the cross-covariance vector between
h(Xz) and h(xt), and use Kz to represent the kernel matrix of Xz.

Transition model

We consider first-order Markov transition model, see Figure 3.1b, with a latent transition
function f, such that

xt+1 = f(xt , g) + nx ,t , nx ,t ∼N (0,Sx) .
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The state xt+1 at time t + 1 depends on the latent state xt at time t as well as on the in-
tention g. We place a GP prior GP (mx(·), kx(·, ·)) on every dimension of f with shared
mean and covariance functions. Subsequently, the predictive distribution of the latent state
xt+1 conditioned on the current state xt and intention g is a Gaussian distribution given by
xt+1 ∼N (mx([xt , g]),Σx([xt , g])) based on training inputs Xx and outputs Yx , with

mx([xt , g]) =YxK−1
x kx([xt , g]),

Σx([xt , g]) =σ2
x([xt , g])I,

σ2
x([xt , g]) =kx([xt , g], [xt , g])− kx([xt , g])T K−1

x kx([xt , g]) ,

where Kx is the kernel matrix of training data Xx =
�

[x1, g1], . . . , [xn, gn]
�

. The transition
function f may also depend on environment inputs u, e.g., controls or motor commands. We
assume that environment inputs are observable and omit them in the description of model for
notational simplicity.

3.2.2 Covariance Functions

By convention, we use GP prior mean functions that are zero everywhere for notational simplic-
ity, i.e., mz(·) ≡ 0 and mx(·) ≡ 0. Hence, the model is determined by the covariance functions
kz(·, ·) and kx(·, ·), which will be motivated in the following.

The underlying dynamics of human motion are usually nonlinear. To account for nonlineari-
ties, we use a flexible Gaussian tensor-product covariance function for the dynamics, i.e.,

kx([xi, gi], [x j, g j];α) = kx(xi,x j;α)kx(gi, g j;α) + knoise

= α1 exp
�

−α2
2
‖xi − x j‖2− α3

2
(gi − g j)

2
�

+α4δi j ,

where α = [α1,α2,α3,α4] is the set of all hyperparameters, and δ is the Kronecker delta func-
tion. When the intention g is a discrete variable, we set the hyperparameter α3 =∞ such that
kx(gi, g j;α)≡ δi j.

The covariance function for the measurement mapping from the state space to observation
space is chosen depending on the task. For example, the GPDM in (Wang et al., 2008) uses an
isotropic Gaussian covariance function

kz(x,x′;β) = exp
�

−β1
2
‖x− x′‖2

�

+ β2δx,x′, (19)

parameterized by the hyperparameters β , as, intuitively, the latent states that generate human
poses lie on a nonlinear manifold. Note that the hyperparameters β do not contain the signal
variance, which is parameterized by the scaling factors W in Eq. (3.2.1). In the context of target
prediction in table tennis games, we use the linear kernel

kz(x,x′;β) = xT x′+ β1δx,x′, (20)

as the observations are already low-dimensional, but subject to substantial noise.
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3.3 Approximate Intention Inference

After learning the modelM from the training data set D, the intention g can be inferred from
a sequence of new observations z1:T . For notational simplicity, we do not explicitly condition
on the model M and the data set D. The measurement model defined in Eq. (3.2.1) scales
the observations by a diagonal matrix W. Therefore, we pre-process every received observation
with the scaling matrix W and omit W hereafter as well.

The IDDM models the generative process of movements, represented by observations z1:T ,
given an intention g. Using Bayes’ rule, we estimate the posterior probability (belief) on an
intention g from observations z1:T . The posterior is given by

p(g|z1:T ) =
p(z1:T |g)p(g)

p(z1:T )
∝ p(g)

∫

p(z1:T ,x1:T |g)dx1:T , (21)

where computing the marginal likelihood p(z1:T |g) requires to integrate out the latent states
x1:T . Exactly computing the posterior in Eq. (21) is not tractable due to the use of nonlinear GP
transition model. Hence, we resort to approximate inference. In previous work (Wang et al.,
2012b), we introduced an EM algorithm for finding the maximum likelihood estimate of the
intention. However, this point estimate may not suffice for the reactive policies of the robot
that also take into account the uncertainty in the intention inference (Wang et al., 2011a,b;
Bandyopadhyay et al., 2013). For example, in the table tennis task, the robot may need to
choose the optimal time to initiate its hitting movement, and such a choice is ideally made
based on how certain the prediction of target is (Wang et al., 2011b). In this chapter, we
extend our previous inference method (Wang et al., 2012b), such that the uncertainty about the
intention is explicitly modeled and taken into account when making decisions.

The key challenge in estimating the belief in Eq. (21) is integrating out the latent states
x1:T . A common approximation to the log marginal posterior is to compute a lower bound
B(g)≤ log p(g|z1:T ). The bound is given by

B(g)¬ Eq
�

log p(z1:T ,x1:T , g)
�

+H (q) (22)

= log p(g|z1:T )− KL
�

q||p(x1:T |z1:T , g)
�

≤ log p(g|z1:T ) ,

which holds for any distribution q(x1:T ) on the latent states. Here, the Kullback-Leibler (KL)
divergence KL

�

q||p(x1:T |z1:T , g)
�

determines how wellB(g) can approximate the belief. Based
on this approximation, the inference problem consists of two steps, namely, (a) finding an ap-
proximation q(x1:T ) ≈ p(x1:T |z1:T , g), and (b) computing the approximate belief B(g). When
using the EM algorithm for the maximum likelihood estimate of the intention g (Wang et al.,
2012b), the E-step and M-step correspond to these two steps, respectively.

For step (a), we approximate the posterior of latent states p(x1:T |z1:T , g) by a Gaussian dis-
tribution q(x1:T ). For this purpose, we use the forward-backward smoothing method proposed
in (Deisenroth et al., 2009, 2012), which is based on moment matching. Typically, Gaussian
moment matching provides credible error bars, i.e., it is robust to incoherent estimates. The
resulting approximate distribution q that we use in the lower boundB in Eq. (22) is given by

q(x1:T ) =N (µq,Σq)≈ p(x1:T |z1:T , g), (23)
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with the mean and block-tri-diagonal covariance matrix

µq =









µx
1|T
...
µx

T |T









, Σq =















Σx
1|T Σx

1,2|T

Σx
2,1|T

. . . . . .

. . . . . . Σx
T−1,T |T

Σx
T,T−1|T Σx

T |T















, (24)

where we only need to consider the cross-covariance between consecutive states3.

For step (b), based on the approximation q(x1:T ), the posterior belief p(g|z1:T ) can then be
approximated by the lower boundB(g) in Eq. (22).

In the following, we first detail step (a), i.e., the computation of q for our IDDM, in Sec-
tion 3.3.1. Subsequently, we discuss step (b), i.e., efficient belief estimation, in Section 3.3.2.

3.3.1 Filtering and Smoothing in the IDDM

To obtain the posterior distribution p(x1:T |z1:T , g), approximate filtering and smoothing with
GPs are crucial in our proposed IDDM. We place a Gaussian prior on the initial state x1. Subse-
quently, Gaussian approximations q(xt−1,xt) of p(xt−1,xt |z1:T , g) for t = 2, . . . , T are computed.
We explicitly determine the marginals p(xt |z1:T , g) for t = 1, . . . , T , and the cross-covariance
terms cov[xt−1,xt |z1:T , g], t = 2, . . . , T . These steps yield a Gaussian approximation with a
block-tri-diagonal covariance matrix, see Eq. (24). These computations are based on forward-
backward smoothing (GP-RTSS) as proposed by Deisenroth et al. (2012).

As a first step, we compute the posterior distributions p(xt |z1:T , g) with t = 1, . . . , T . To com-
pute these posteriors using Bayesian forward-backward smoothing in the IDDM, it suffices to
compute both joint distributions p(xt−1,xt |z1:t−1, g) and p(xt ,zt |z1:t−1, g). The Gaussian filter-
ing and smoothing updates can be expressed solely in terms of means and (cross-)covariances
of these joint distributions, see (Deisenroth and Ohlsson, 2011; Deisenroth et al., 2012). Hence,
we have

µx
t|t = µ

x
t|t−1+Σ

xz
t|t−1(Σ

z
t|t−1)

−1(zt −µz
t|t−1) , (25)

Σx
t|t = Σ

x
t|t−1−Σ

xz
t|t−1(Σ

z
t|t−1)

−1Σzx
t|t−1 ,

µx
t−1|T = µ

x
t−1|t−1+ Jt−1(µ

x
t|T −µ

x
t|t−1) ,

Σx
t|T = Σ

x
t−1|t−1+ Jt−1(Σ

x
t|T −Σ

x
t|t−1)J

T
t−1 , (26)

where we define

Jt−1 = Σ
x
t−1,t|t−1(Σ

x
t|t−1)

−1 . (27)

In the following, we first detail the computations required for a Gaussian approximation of the
joint distribution p(xt−1,xt |z1:t−1, g) using moment matching. Here, we approximate the joint
distribution p(xt−1,xt |z1:t−1, g) by the Gaussian

N
��

µx
t−1|t−1
µx

t|t−1

�

,

�

Σx
t−1|t−1 Σx

t−1,t|t−1
Σx

t,t−1|t−1 Σx
t|t−1

��

. (28)

3 We use the short-hand notation ad
b|c where a = µ denotes the mean µ and a = Σ denotes the covariance, b

denotes the time step of interest, c denotes the time step up to which we consider measurements, and d ∈ {x , z}
denotes either the latent space (x) or the observed space (z).
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Without loss of generality, the marginal distribution N
�

xt−1 |µx
t−1|t−1,Σx

t−1|t−1

�

, which corre-
sponds to the filter distribution at time step t − 1, is assumed known. We compute the re-
maining elements of the mean and covariance in Eq. (28) in the following paragraphs. We
will derive our results for the more general case where we have a joint Gaussian distribution
p(xt−1,xt , g|z1:t−1). The known mean and covariance of distribution p(xt−1, g|z1:t−1) are given
by µ̃t−1|t−1 = [(µ

x
t−1|t−1)

T ,µT
g ]

T and Σ̃t−1|t−1, respectively, where the covariance matrix Σ̃t−1|t−1
is block-diagonal with blocks Σx

t−1|t−1 and Σg . By setting the mean µg = g and Σg = 0, we ob-
tain the results from (Wang et al., 2012b). For convenience, we define x̃= [xT , g]T .

Using the law of iterated expectations, the a-th dimension of the predictive mean of the
marginal p(xt |z1:t−1) is given as

(µx
t|t−1)a = Ext−1

�

E fa[ fa(x̃t−1)|x̃t−1]|z1:t−1
�

=

∫

ma
x(x̃t−1)p(x̃t−1|z1:t−1)dx̃t−1 ,

where we substituted the posterior GP mean function for the inner expectation. Note that if g
is given then Σg = 0. Writing out the posterior mean function and defining γa := K−1

x ya, with
yai

, i = 1, . . . , M , being the training targets of the GP with target dimension a, we obtain

(µx
t|t−1)a = q>γa ,

where we define

qT =

∫

kx([xt−1, g],Xx)p(x̃t−1|z1:t−1)dx̃t−1 . (29)

Here, Xx denotes the set of the M GP training inputs x̃i = [xT
i , gi]T of the transition GP. Since

kx is a Gaussian kernel, we can solve the integral in Eq. (29) analytically and obtain the vector
q with entries qi with i = 1, . . . , M as

qi = α1|Ω|
−1

2 exp
�

− 1
2
ζT

i (ΛΩ)
−1ζi

�

, (30)

ζi = x̃i − µ̃t−1|t−1 , Ω= Σt−1|t−1Λ
−1+ I , (31)

where Λ is a diagonal matrix of concatenated length-scales α2I and α3I. By applying the law of
total variances, the entries σx

ab of the marginal predictive covariance matrix Σx
t|t−1 in Eq. (28)

are given by

σx
ab =

(

γT
a (Q

x − qqT )γb if a 6= b ,

γT
a (Q

x − qqT )γb +α1− tr
�

(Kx +α4I)−1Qx�+α4 if a = b .

We define the entries of Qx ∈RM×M as

Qx
i j =

ka
x([xi, gi], [µ̃t−1|t−1])k

b
x([x j, g j], [µ̃t−1|t−1])

p

|R|
exp
�1

2
zT

i jT
−1zi j

�
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with

R := Σ̃t−1|t−1(Λ
−1
a +Λ

−1
b ) + I , T=

�

Λ−1
a +Λ

−1
b + Σ̃

−1
t−1|t−1

�

,

zi j := Λ−1
a (x̃i − µ̃t−1|t−1) +Λ

−1
b (x̃ j − µ̃t−1|t−1) .

For a detailed derivation, we refer to (Deisenroth, 2010; Deisenroth et al., 2012).

To fully determine the joint Gaussian distribution in Eq. (28), the cross-covariance Σx
t−1,t|t−1 =

cov[xt−1,xt |z1:t−1, g] is given as the upper part of the cross-covariance

cov[xt−1,xt , g|z1:t−1] =
M
∑

i=1

γai
qai
Σ̃t−1|t−1Ω

−1(x̃i − µ̃t−1|t−1) ,

when we set µg = g and Σg = 0. Note that q and Ω are defined in Eq. (30) and (31), respec-
tively.

Up to now, we have computed a Gaussian approximation to the joint probability distri-
bution p(xt−1,xt |z1:t−1, g). Let us now have closer look at the second joint distribution
p(xt ,zt |z1:t−1, g), which is the missing contribution for Gaussian smoothing (Deisenroth and
Ohlsson, 2011), see Eq. (25)–(26). To determine a Gaussian approximation

N
��

µx
t|t−1
µz

t|t−1

�

,

�

Σx
t|t−1 Σ

xz
t|t−1

Σzx
t|t−1 Σ

z
t|t−1

��

(32)

to p(xt ,zt |z1:t−1, g) it remains to compute the mean and the covariance of the marginal dis-
tribution p(zt |z1:t−1, g) and the cross-covariance terms cov[xt ,zt |z1:t−1, g]. We omit these
computations for the nonlinear Gaussian kernel as they are very similar to the computations
to determine the joint distribution p(xt−1,xt |z1:t−1, g).

For the linear measurement kernel in Eq. (20), we compute the marginal mean µz
t|t−1 in

Eq. (32) for observation dimension a = 1, . . . , Dz according to

Eh,xt−1
[ha(xt)|z1:t−1, g] =

∫

m(xt)p(xt |z1:t−1, g)dxt

=

∫

xT
t XT

z p(xt |z1:t−1, g)dxtξa = qTξa , (33)

q= Xzµ
x
t|t−1 .

Here, Xz comprises the training inputs for the measurement model and ξa = K−1
z Yza

, where Yza
are the training targets of the ath dimension, a = 1, . . . , Dz. The elements σz

ab of the marginal
covariance matrix Σz

t|t−1 in Eq. (32) are given as

σz
ab =

(

ξT
a (Q

z− qqT )ξa if a 6= b ,

Σx
t|t−1+µ

x
t|t−1(µ

x
t|t−1)

T−tr
�

K−1
z Qz�+ξT

a (Q
z−qqT )ξa if a = b ,

(34)
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a, b = 1, . . . , Dz, where we define

Qz =

∫

Xzxtx
T
t Xz

T p(xt |z1:t−1, g)dxt = Xz(Σ
x
t|t−1+µ

x
t|t−1(µ

x
t|t−1)

T )Xz
T .

The cross-covariance Σxz
t|t−1 = cov[xt ,zt |z1:t−1, g] in Eq. (32) is given as

Σxz
t|t−1 = Σ

x
t|t−1XT

z ξa (35)

for all observed dimensions a = 1, . . . , Dz. The mean µz
t|t−1 in Eq. (33), the covariance matrix

Σz
t|t−1 in Eq. (34), and the cross-covariance in Eq. (35) fully determine the Gaussian distribution

in Eq. (32). Hence, following (Deisenroth and Ohlsson, 2011), we can now compute the latent
state posteriors (filter and smoothing distributions) according to Eq. (25)–(26).

These smoothing updates in Eq. (25)–(26) yield the marginals of our Gaussian approximation
to p(x1:T |z1:T , g), see Eq. (24). The missing cross-covariances Σx

t−1,t|T of p(x1:T |z1:T , g) that
finally fully determine the block-tri-diagonal covariance matrix in Eq. (24) are given by

Σx
t−1,t|T = Jt−1Σ

x
t|T ,

where Jt−1 is given in Eq. (27). For detailed derivations, we refer to (Deisenroth, 2010).

These computations conclude step (1) on lower-bounding the posterior distribution on the
intention, see Eq. (22), i.e., the computation of the approximate distribution q in Eq. (23). It
remains to compute the boundB itself, which is described in the following.

3.3.2 Estimating the Belief on Intention

For a given intention g, we compute a Gaussian approximation q(x1:T ) to the posterior
p(x1:T |z1:T , g), given by

q(xt ,xt+1) =N
��

µx
t|T

µx
t+1|T

�

,

�

Σx
t|T Σx

t,t+1|T
Σx

t+1,t|T Σx
t+1|T

��

for t = 1, . . . , T − 1. The belief p(g|z1:T ) ≈ exp(B(g)) is estimated using Eq. (22), where the
computation can be decomposed according to

B(g) =
T−1
∑

t=1

Eq
�

log p(xt+1|xt , g)
�

︸ ︷︷ ︸

Qt (g)

+p(g) +H (q) + const.

Here the smoothing distribution q(x1:T |g) ≈ p(x1:T |z1:T , g) is computed given the intention
g. As we only need to estimate the unnormalized belief, the constant term needs not to be
computed. The entropy H (q) of the Gaussian distribution q can be computed analytically, and
is given by

H (q) =
1

2

�

T Dx + T Dx log(2π) + log |Σq|
�

.
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We define

Qt(g)¬ Eq
�

log p(xt+1|xt , g)
�

=

∫∫

q(xt ,xt+1) log p(xt+1|xt , g)dxt+1dxt

=

∫∫

q(xt ,xt+1) log
�

p(xt+1|xt , g)q(xt)
�

︸ ︷︷ ︸

≈q̃(xt ,xt+1)

dxt+1dxt−
∫

q(xt) log q(xt)dxt ,

where p(xt+1|xt , g)q(xt) can be approximated by a Gaussian distribution q̃(xt ,xt+1) =
N (µq̃,Σq̃) based on moment matching (Quiñonero-Candela et al., 2003). Here, we only
compute the diagonal elements in the covariance matrix of Σq̃. As a result, Eq. (3.3.2) is
approximated as

Qt(g)≈ KL
�

q(xt ,xt+1)||q̃(xt ,xt+1)
�

+H
�

q(xt ,xt+1)
�

+H
�

q(xt)
�

,

whereH (q) is the entropy of the distribution q and KL(q||q̃) is the Kullback-Leibler (KL) diver-
gence between q and q̃, both of which are Gaussians. The KL divergence also has a closed-form
expression, given by

KL(q||q̃) =
1

2

�

tr(Σ−1
q̃ Σq) + (µq −µq̃)

TΣ−1
q̃ (µq −µq̃)− log

|Σq|
|Σq̃|

�

+ const.

As a result, we can compute the unnormalized beliefB(g) for a given intention g approximately
according to Eq. (3.3.2).

We aim to determine the posterior distribution p(g|z1:T ) of the intention g. Using the poste-
rior distribution instead of point estimates allows us to express uncertainty about the inferred
intention g. Computing Gaussian approximations of the posterior distributions can be done
using the unscented transformation (Deisenroth et al., 2012), for instance. However, when the
posterior is not unimodal, a Gaussian approximation may lose important information. Particle
filtering can preserve all the modes (Ko and Fox, 2009), but will not be sufficiently efficient
due to the real-time constraints. As we focus on one-dimensional intentions in this chapter, we
advocate the discretization of intention. For example, in the table tennis task, the intention
(opponent’s target position) is a bounded scalar variable g ∈ [gmin, gmax], where the bounds are
given by physical constraints such as the table width and the length of robot arm. We uniformly
choose {v1, . . . , vK} from [gmin, gmax] and represent intention by the index, i.e., g ∈ {1, . . . , K}.

3.3.3 Discussion of the Approximate Inference Method

To summarize, the algorithm for computing the posterior distribution over discrete or discretized
intentions g is given in Algorithm 3.1. The smoothing distribution q defined in Eq. (3.3.2)
depends on the current estimate of intention g.

However, it is often time-demanding to enumerate the intention g and compute the smoothing
distribution q for each g individually. The computational complexity of the smoothing step in
Algorithm 3.1 is O (T K(D3

z +Dx D2
z +N2D3

x)) when using the linear kernel function for the mea-
surement mapping, and O (T K(D3

z +N2Dx(D2
x+D2

z ))) when using the Gaussian kernel function,
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Algorithm 3.1: Inference of the discretized intentions by computing the posterior probabili-
ties for every value of the intention.
Input : Observations x1:T
Output: Posterior probabilities for every intention value g ∈ {1, . . . , K}
foreach g ∈ {1, . . . , K} do1

Compute smoothing distribution q(x1:T )≈ p(x1:T |z1:T , g) ;2

Compute the value ofB(g) = Eq
�

log p(x1:T |g)
�

+ log p(g) using the approximation in3

Eq. (3.3.2) ;

Estimate the posterior p(g|x1:T )≈ expB(g)/(
∑K

g′=1 expB(g ′)).4

where T is the number of observations obtained, K the number of (discretized) intentions, N the
number of training data, and Dx and Dz the dimensionality of state and observation. The com-
plexity of computing the belief is O (T KN2D2

x). The computational efficiency can be improved
to meet the tight time constraints in robotic applications by introducing further approxima-
tions, such as adopting GP pseudo inputs to reduce the size of training data N (Snelson and
Ghahramani, 2006; Quiñonero-Candela and Rasmussen, 2005), using dimensionality reduction
or feature selection techniques to obtain a small number of features Dz (van der Maaten et al.,
2009; Ding and Peng, 2005), and reducing the sample size K of intention g. However, the
dependence of complexity on the number of observations T still prevents the algorithm from
being applied to online scenarios. For these, T keeps growing as new observations are obtained,
whereas observations obtained a long time ago do not provide as much information as recent
ones. To address this issue, we will introduce an approximation in the online inference method
in Section 3.4.

3.4 Online Intention Inference

The introduced inference algorithm can be seen as a batch algorithm that relies on the seg-
mentation of human movements. However, in online human-robot interaction, the intention
inference algorithm faces new challenges to deal with the stream of observations. The complex-
ity of Algorithm 3.1 grows with the number of existing observations, which does not fulfill the
real-time requirements of an online method. In addition, the intention can vary over time in an
online inference scenario. For example, the intended targets in table tennis games vary between
strokes. Hence, the online method should model and track the change of intention.

To address these issues, we generalize the inference method to an online scenario. That
is, the observations are obtained constantly, and the belief on the intention is re-estimated
after receiving a new observation. A computational bottleneck in the batch method is that the
smoothing distribution q is computed for every value of intention. For efficient inference, we
compute a marginal smoothing distribution q according to current belief on intention p(g), i.e.,
we integrate out the intention,

q(x1:t)¬
∑

g

p(g)qg(x1:t).

The online inference algorithm then estimates the belief B t(g) on the intention based on the
marginal smoothing distribution q after receiving an observation, which can be sufficiently effi-
cient for real-time intention inference with a small sacrifice in accuracy.
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Figure 3.4: The graphical model of the IDDM in an online manner, which can handle a stream of
observations.

Based on the marginal smoothing distribution, we update the belief on intention using dy-
namic programming. which will be discussed as follows.

3.4.1 Online Inference using Dynamic Programming

Assuming the marginal smoothing distribution q is given, we develop an online inference
method using dynamic programming (see Figure 3.4). The method maintains the belief (i.e.,
log of the unnormalized posterior) of the intention g based on the obtained observations z1:t−1
according to Eq. (3.3.2), given by

B t−1(g)≈ Eq
�

log p(g,x1:t−1)
�

+ const.

Here, we consider discretized intentions g ∈ {1, . . . , K}, and write the beliefB t−1 as a vector of
length K . For a new observation zt , we decompose p(g,x1:t) according to

p(g,x1:t) = p(xt |xt−1, g)p(g,x1:t−1).

As a result, the beliefB t becomes

B t(g) = Eq
�

log p(g,x1:t)
�

+ const

= Eq
�

log p(xt |xt−1, g)
�

+Eq
�

log p(g,x1:t−1)
�

+ const

= Eq
�

log p(xt |xt−1, g)
�

+B t−1(g) + const,

which is in a recursive form and can be computed efficiently using dynamic programming. Given
a new observation zt , the belief is updated based on Eq

�

log p(xt |xt−1, g)
�

, which is computed
according to Eqs. (3.3.2)-(3.3.2). The beliefB t is then normalized, i.e.,

∑

g exp(B t(g)) = 1.

In addition, the intention can vary over time in an online inference scenario. As the new
observation zt can be more informative than the previous observations z1:t−1, we introduce a
forgetting factor ε to shrink the beliefB t−1. The recursive formula of the belief is subsequently
given by

B t(g) = Eq
�

log p(xt |xt−1, g)
�

+ (1− ε)B t−1(g),

where the shrinking factor ε determines how fast the algorithm forgets the previous observa-
tions.
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Algorithm 3.2: The online algorithm for the inference of discrete intention g ∈ {1, . . . , K}.
Obtain the initial observation z1 ;1

Initialize the approximate distribution q(x1) ;2

InitializeB1(g) = log p(g) according to the prior ;3

for t = 2, 3, . . . do4

Obtain the observation zt ;5

Compute marginal filtering distribution q(xt) according to current beliefB t−1 ;6

Update marginal smoothing distribution q(xt−1) according to current beliefB t−1 ;7

foreach gt = {1, . . . , K} do8

ComputeB0(g) =Qt−1(g) using the approximation in Eq. (3.3.2) ;9

Update the beliefB t =B0+ (1− ε)B t−1 ;10

Normalize the beliefB t ←B t − log
�

∑

g exp(B t(g))
�

;11

3.4.2 Marginal Smoothing Distribution

The inference method relies on the smoothing distribution q at time t, which in turn depends on
the intention belief B t−1. In analogy to the EM algorithm, we iteratively update the belief on
intention B and the smoothing distribution q. However, full forward-backward smoothing on
x1:t is impractical as the computational complexity grows when we obtain more observations.
Full smoothing is also unnecessary since we do not update the previous belief B1:t−1 on the
intention. Hence, given a new observation zt , we only need to compute q(xt−1:t), which requires
a single-step forward filtering and a single-step backward smoothing, based on the current belief
B t−1.

The filtering and smoothing need to integrate out the uncertainty in the intention. For discrete
intentions, we can simply compute the smoothing distributions qg for every value of intention
gt−1, and average over them

q(xt−1:t)∝
∑

g

qg(xt−1:t)pt−1(g),

where the belief pt−1(g) ∝ exp(B t−1(g)). The resulting distribution q will still be a Gaussian
distribution.

For continuous intentions, enumerating the discretized intention may be inefficient. To ad-
dress this problem, we use the moment matching to approximate the distribution on intention
by a Gaussian distribution, which is also adopted in the filtering and smoothing method. Specif-
ically, we compute the mean µg and variance σ2

g according to the belief B t−1. As a result, the
marginal smoothing distribution is given by

q(xt−1:t)≈
∫

qg(xt−1:t)N (g|µg ,σ2
g)d g,

which is computed using moment matching.

50



3.4.3 Discussion of the Online Inference Method

The online inference algorithm described in Algorithm 3.2 iteratively updates the belief of in-
tention and latent states.

The computational complexity of the smoothing step in Algorithm 3.2 is O (D3
z+Dx D2

z+N2D3
x)

when using the linear kernel function for the measurement mapping, and O (D3
z + N2(Dx D2

x +
D3

x)) when using the Gaussian kernel function, which no longer depends on the number of
observations T and the number of intentions K . The complexity of computing the belief is
O (KN2D2

x). Compared to the batch algorithm, the efficiency is improved by a factor of T .

To summarize, we proposed an efficient online method for intention inference from a new
movement. The online method updates the belief of the intention by taking into account both
the current belief and the new evidence (i.e., new observation). We list the employed approxi-
mations in both the batch and online inference methods in Table 3.1.

3.5 Target Prediction for Robot Table Tennis

Playing table tennis is a challenging task for robots, and, hence, has been used by many re-
searchers as a benchmark task in robotics (Anderson, 1988; Billingsley, 1984; Fässler et al.,
1990; Matsushima et al., 2005; Mülling et al., 2011). Up to now, none of the groups that have
been working on robot table tennis ever reached the level of a young child, despite having
robots with better perception, processing power, and accuracy than humans (Mülling et al.,
2011). Likely explanations for this performance gap are (i) the human ability to predict hitting
points from opponent movements and (ii) the robustness of human hitting movements (Mülling
et al., 2011). Here, we focus on the first issue: anticipation of the hitting region from opponent
movements.

Using the proposed method, we can predict the where the ball is likely to be shot before the
opponent hits the ball, which gives the robot a head start of more than 200 ms additional time to
initiate its movement4. This additional time can be crucial due to robot’s hardware constraints,
for example, acceleration and torque limits in the considered setting (Mülling et al., 2011).

Note that the predicted intention is only used to choose a hitting type, e.g., forehand, middle,
or backhand. Fine-tuning of the robot’s movement can be done when the robot is adjusted
to the forehand/middle/backhand preparation pose and once the returned ball can be reliably
predicted from the ball’s trajectory alone. Hence, a certain amount of intention prediction error
4 Our methods allows the robot to initiate its movement at least 80 ms before the opponent hits the ball. As the

ball can usually be reliably predicted more than 120 ms after the opponent returns, the robot could gain more
than 200 ms additional execution time by using our prediction method.

Table 3.1: Important approximations employed in the batch and online inference.
batch online

belief p(g|z1:T ) Jensen’s lower boundB(g); cf. Eq. (22)
approx. beliefB(g) moment matching; cf. Eq. (3.3.2)
distr. p(x1:T |z1:T , g) q(x1:T |g) for each g q(x1:T ) for all g; cf. Eq. (3.4.2)
stream of observations sliding window recursive update; cf. Eq. (3.4.1)
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is tolerable since the robot can apply small changes to its basic hitting plan based on the ball’s
trajectory. However, the robot cannot return the ball outside the corresponding hitting region
once it is adjusted to a preparation pose, see the video5. Therefore, prediction accuracy directly
influences the performance of the robot player (Wang et al., 2011b).

3.5.1 Experimental Setting

Our anticipation system has been evaluated in conjunction with the biomimetic robot table
tennis player (Mülling et al., 2011), as this setup allowed exhibiting how much of an advantage
such a system may offer. We expect that the system will help similarly or more when deployed
within our skill learning framework (Mülling et al., 2013) as well as many of the recent table
tennis learning systems (Huang et al., 2013; Yang et al., 2010; Matsushima et al., 2005).

We used a Barrett WAM robot arm to play table tennis against human players. The robot’s
hardware constraints impose strong limitations on its acceleration, which severely restricts its
movement abilities. This limitation can best be illustrated using typical table tennis stroke
movements as shown in Figure 3.5, see (Ramanantsoa and Durey, 1994; Mülling et al., 2011),
which consist of four stages, namely awaiting stage, preparation stage, hitting stage, and fin-
ishing stage. In the awaiting stage, the ball moves toward the opponent and is returned by
the opponent. The robot player moves to the awaiting pose and stays there during this stage.
The preparation stage starts when the hitting movement is chosen according to the predicted
opponent’s target. The arm swings backward to a preparation pose. The robot requires suffi-
cient time to execute a ball-hitting plan in the hitting stage. To achieve the required velocity
for returning the ball in the hitting stage, movement initiation to an appropriate preparation
pose in the preparation stage is needed, which is often before the opponent hits the ball. The
robot player uses different preparation poses for different hitting plans. Hence, it is necessary
to choose among them based on modeling the opponent’s preference (Wang et al., 2011a) and
inference of the opponent’s target location for the ball (Wang et al., 2011b).

The robot perceives the ball and the opponent’s racket in real-time, using seven Prosilica
GE640C cameras. These cameras were synchronized and calibrated to the coordinate system of
the robot. The ball tracking system uses four cameras to capture the ball on both courts of the
table (Lampert and Peters, 2012). The racket tracking system provides the information of the
opponent’s racket, i.e., the position and orientation (Wang et al., 2011b). See Appendix 3.A for
more details of the vision system. As a result, the observation zt includes the ball’s position and
velocity as well as the opponent’s racket position, velocity, and orientation before the human
plays the ball. For the anticipation system described here, we process the observations every
80 ms. Here, the position and velocity of the ball were processed online with an extended
Kalman filter, based on a known physical model (Mülling et al., 2011). However, the same
smoothing method cannot be applied to the racket’s trajectory, as its dynamics are directed
by the unknown intended target. Therefore, the obtained states of the racket were subject to
substantial noise and the model has to be robust to this noise. The proposed inference method
can jointly smooth on the racket’s trajectory, given by the smoothing distribution q, and infer
the intended target, given by the beliefB .

5 http://robot-learning.de/Research/ProbabilisticMovementModeling
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(a) Awaiting Stage (b) Preparation Stage

(c) Hitting Stage (d) Finishing Stage

Figure 3.5: The four stages of a typical table tennis ball rally are shown with the red curve repre-
senting the ball trajectories. Blue trajectories depict the typical racket movements of
players. The racket of human player is to the left of the table in the pictures. Figures
are adapted from Mülling et al. (2011).

Figure 3.6: The robot’s hitting point is the intersection of the coming ball’s trajectory and the
virtual hitting plane 80 cm behind the table. Figure is adapted from Mülling et al.
(2011).

In our setting, the robot always chooses its hitting point on a virtual hitting plane, which is
80 cm behind the table, as shown in Figure 3.6. We define the human’s intended target g as
the intersection of the returned ball’s trajectory with the robot’s virtual hitting plane. As the x-
coordinate (see Figure 3.6) is most important for choosing among forehand/middle/backhand
hitting plans (Wang et al., 2011b), the intention g considered here is the x-coordinate of the
hitting point. Physical limitations of the robot restrict the x-coordinate to the range of ±1.2 m
from the robot’s base (table is 1.52 m wide).

To evaluate the performance of the target prediction, we collected a data set with recorded
stroke movements from different human players. The true targets were obtained from the
ball tracking system. The data set was divided into a training set of 100 plays and a test set
of 126 plays. The standard deviation of the target coordinate in the test set is 102.2 cm. A
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Figure 3.7: Mean absolute error of the ball’s target with standard error of the mean. The algo-
rithms use the observations obtained before the opponent has hit the ball.

straightforward approach to prediction is to learn a mapping from the features zt (including the
position, orientation, and velocity of the racket and the position and velocity of the ball) to the
target g. We compared our method to this baseline Gaussian Process Regression (GPR) using
a Gaussian kernel with automatic relevance determination (Rasmussen and Williams, 2006).
We considered using a sliding window on the sequence of observations, and conducted model
selection to choose the optimal window size. The best accuracy of GPR was achieved when using
a sliding window of size two, i.e., the input features consist of zt−1 and zt . The hyperparameters
were learned by maximizing the marginal likelihood of training data, following the standard
routine (Rasmussen and Williams, 2006).

For every recorded play, we compared the performance of the proposed IDDM intention in-
ference and the GPR prediction at 80 ms, 160 ms, 240 ms, and 320 ms before the opponent hits
the ball. Note that this time step was only used such that the algorithms could be compared,
and that the algorithms were not aware of the hitting time of the opponent in advance. We
evaluated both the batch algorithm and online algorithm.

3.5.2 Results

As demonstrated in Figure 3.7, the proposed IDDM model outperformed the GPR baseline. At
80 ms before the opponent hit the ball, the batch algorithm resulted in a mean absolute error of
31.5 cm, which achieved a 11.3% improvement over the GPR, whose average error was 35.6 cm.
The online algorithm had a mean absolute error of 32.5 cm, which also outperformed GPR by
an 8.5% improvement in the accuracy. One model-free naive intention prediction is to always
predict the median of the intentions in the training set. This naive prediction model caused
an error of 78.8 cm. Hence, both the GPR and IDDM substantially outperformed naive goal
prediction.
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(a) Forehand pose. (b) Middle pose. (c) Backhand pose.

Figure 3.8: Preparation poses of the three pre-defined hitting movements in the prototype sys-
tem, i.e., (a) forehand, (b) middle, and (c) backhand. The shadowed areas represent
the corresponding hitting regions.

The online algorithm, with a shrinking factor ε = 0.2 given in Eq. (3.4.1), took on average
70 ms to process every observation, which can potentially fulfill the real-time requirements of
80 ms. The batch algorithm used a sliding window of size 4, and took on average 300 ms to
process every observation. The online algorithm was greatly faster than the batch algorithm,
with a small loss in accuracy6. Nevertheless, a certain amount of error is tolerable since the
robot can apply small changes to its basic hitting plan based on the ball’s trajectory. Therefore,
we advocate the use of the online algorithm for applications with tight real-time constraints.

We performed model selection to determine the covariance function kz, which can be either
an isotropic Gaussian kernel, see Eq. (19), or a linear kernel, see Eq. (20). Furthermore, we
performed model selection to find the dimension Dx of the latent states. In the experiments, the
model was selected by cross-validation on the training set. The best model under consideration
was with a linear kernel and a four dimensional latent state space. Experiments on the test set
verified the model selection result, as shown in Table 3.2.

Our results demonstrated that the IDDM can improve the target prediction in robot table
tennis and choose the correct hitting plan. We have developed a proof-of-concept prototype
system in which the robot is equipped with three pre-defined hitting movements, i.e., forehand,
middle, and backhand movements, with their hitting regions shown in Figure 3.8. As exhibited
in Figure 3.9, our method allows the robot to choose the responding hitting movement before

6 The reason is that the online algorithm only updates the smoothing distribution q(xt−1:t) instead of the entire
smoothing distribution q(x1:T ), and, hence, reduces the time complexity by a factor of T , see Section 3.3.3
and 3.4.3

Table 3.2: The mean absolute errors (in cm) with standard error of the mean of the goal infer-
ence made 80 ms before the opponent hits the ball, where Dx denotes the dimen-
sionality of the state space.

kernel Dx = 3 Dx = 4 Dx = 5 Dx = 6
linear 41.5± 3.0 31.5± 2.2 35.4± 2.4 37.0± 2.6
Gaussian 38.5± 2.7 34.2± 2.5 34.4± 2.7 37.3± 2.7
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Figure 3.9: Bar plots show the distribution of the target (X coordinate) at approximately 320ms,
160ms, and 80ms before the player hits the ball. The prediction became increasingly
confident as the player finishes the hitting movement, and the robot later chose the
middle hitting movement accordingly.

the opponent has hit the ball himself, which is often necessary for the robot to have sufficient
time to execute the hitting movement, and substantially expands the robot’s overall hitting
region to cover almost the entire accessible workspace, see the video. Furthermore, we expect
that the method can further enhance the robot’s capability when equipped with more and self-
improving hitting primitives (Mülling et al., 2013).

3.6 Action Recognition in Human-Robot Interaction

To realize safe and meaningful human-robot interaction, it is important that robots can recog-
nize the human’s action. The advent of robust, marker-less motion capture techniques (Shotton
et al., 2013) has provided us with the technology to record the full skeletal configuration of the
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Figure 3.10: The trajectories of the 2D latent states for two consecutive Jumping actions ob-
tained by the inference algorithm. The error bars represent the corresponding stan-
dard deviations. The bar charts correspond to the likelihood of Crouching, Jumping,
Kick-High and Turn-Kick at different stages of an action.

human during HRI. Nevertheless, recognition of the human’s action from this high-dimensional
data set poses serious challenges.

In this section, we show that the IDDM has the potential to infer the intention of actions from
movements in a simplified scenario. Using a Kinect camera, we recorded the 32-dimensional
skeletal configuration of a human during the execution of a set of actions namely: crouching (C),
jumping (J), kick-high (KH), kick-low (KL), defense (D), punch-high (PH), punch-low (PL), and
turn-kick (TK). For each type of action we collected a training set consisting of ten repetitions
and a test set of three repetitions. The system down-sampled the output of Kinect and processed
three skeletal configurations per second.

In this task, the intention g is a discrete variable and corresponds to the type of action. Action
recognition can be regarded as a classification problem. We compared our proposed algorithms
to Support Vector Machines (SVMs), see (Schölkopf and Smola, 2001), and multi-class Gaus-
sian Process Classification (GPC), see (Khan et al., 2012). We used off-the-shelf toolboxes,
i.e., LIBSVM (Chang and Lin, 2011) and catLGM7, and followed their standard routines for
prediction.

The algorithms made a prediction after observing a new skeletal configuration. The batch
algorithm used a sliding window of length n = 5, i.e., it recognized actions based on the recent
n observations. We chose the IDDM with a linear covariance function for the covariance func-
tion kz of the measurement GP and a two-dimensional latent state space. The batch algorithm
achieved the precision of 83.8%, which outperformed SVM (77.5%) and GPC (79.4%) using
the same sliding windows. The online algorithm achieved a precision of 83.0% with signifi-
cantly reduced computation time. We observed that both the SVM and GPC confused crouching
with jumping, as they were similar in the early and late stages. In contrast, the IDDM could
distinguish between crouching (C) and jumping (J) from their different dynamics, as shown in
Figure 3.10. which became clearly separable while the human performed the actions.

7 http://www.cs.ubc.ca/~emtiyaz/software/catLGM.html
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The batch algorithm needs to choose the size of sliding windows, which influences both the
accuracy and efficiency. As shown in Table 3.3, the batch algorithm could yield real-time action
recognition at a rate of 3 Hz with a sliding window of size 5. The online algorithm, as shown in
Table 3.3, achieved a speedup of over four times compared to the batch algorithm with a sliding
window. The online algorithm relies on the shrinking factor ε in Eq. (3.4.1), which describes
how likely the type of actions is expected to change. We also found that the performance of the
online algorithm is not sensitive to this parameter.

3.7 Conclusions of Chapter 3

In this chapter, we have discussed the intention-driven dynamics model (IDDM), a latent-
variable model for inferring intentions from observed human movements. We have introduced
efficient approximate inference algorithms that allow for real-time inference. We verified the
proposed model in two human-robot interaction scenarios, namely, target inference in robot ta-
ble tennis and action recognition for interactive robots. In these two scenarios, we showed that
modeling the intention-driven dynamics can achieve better predictions than algorithms without
modeling the dynamics.

The proposed method outperformed the GPR in the robot table tennis scenario and SVM and
GPC in the action recognition scenario. Nevertheless, we would not draw the overstated con-
clusion that IDDM is a better model than SVM or GP based on these empirical results, as this
discussion would be a comparison of generative and discriminative models. The performance
of IDDM and SVM/GP should be studied on a case-by-case basis. However, two important prop-
erties of these approaches should be noticed: (1) computational efficiency and (2) robustness
to measurement noise. and (3) curse of dimensionality. Firstly, the IDDM is often more compu-
tationally demanding than GP and SVM. Nevertheless, the proposed online inference method,
and described possible approximations, make the IDDM applicable to real-time scenarios. As
demonstrated in the prototype robot table tennis system, the IDDM was successfully used in
a real system with tight time constraints. Secondly, the IDDM is generally less prone to mea-
surement noise than SVM/GP, as it models the noise in the generative process of observations.
Finally, the IDDM suffers less from the curse of dimensionality, and can thus better capture the
model using a relatively small sample: The IDDM learns a measurement model (RDx → RDz )

Table 3.3: Comparison of the accuracy and efficiency using different algorithms for the action
recognition task. Here, n denotes the size of sliding windows and ε is the shrinking
factor of the online method.

algorithm accuracy time(s)
SVM(n=5) 77.5% <0.01
GPC(n=5) 79.4% >1
batch(n=4) 79.0% 0.27
batch(n=5) 83.8% 0.32
batch(n=6) 83.0% 0.39

online(ε=0.3) 83.0% 0.07
online(ε=0.2) 83.0% 0.07
online(ε=0.1) 82.6% 0.07
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and a transition model (RDx → RDx ). In comparison, the SVM/GP learns a mapping with a
sliding window of size M to the intention (RT Dz → R), where the input space has a considerably
higher dimensionality.

In conclusion, the IDDM takes into account the generative process of movements in which the
intention is the driving factor. Hence, we advocate the use of IDDM when the movement is in-
deed driven by the intention (or target to predict), as the IDDM captures the causal relationship
of the intention and the observed movements.

The IDDM offers the promise of anticipatory robots that incorporate anticipatory action selec-
tion in their action planning. In the next chapter, we focus on the decision making of anticipatory
action selection, based on the outputs of the IDDM (the belief distribution of the intention).

3.A Vision System for the Robot Table Tennis

To track the opponent’s racket, the vision system employs three Prosilica GE640C cameras
mounted above the robot. Their position and direction are chosen so that the opponent can
always be seen from every camera and the racket surface is fully visible from at least two cam-
eras. These cameras are synchronized and calibrated to the coordinate system of the robot.
Each camera outputs a stream of frames with frequency of 60Hz, ensuring the possibility of
real-time racket tracking. We divide the tracking problem into localizing the racket in each cam-
era and reconstructing its 3D configuration from camera pairs. These problems are both solved
in parallel on a multi-core computer.

For each camera, we use linear-chain Condition Random Fields (CRF) presented by Sutton
and McCallum (2007) for localizing the racket in each frame. For a frame It indexed by time
step t, we compute the most likely racket configuration θ t represented by a 2D sliding window.
We also include the shift of configurations in consecutive frames in the model as the speed of the
racket is constrained by the physical motor limits of a human. The joint conditional probability
of configurations given N frames is given by

P(θ 1...N |I1...N ) =
1

Z(I1...N )
exp

(

N
∑

t=1

αT f(θ t , It) +
N
∑

t=2

β T g(θ t−1,θ t)

)

,

where Z(I1...N ) is the partition function, vector g(θ t−1,θ t)measures the differences of the image
coordinates between two consecutive configurations, vector f(θ t , It) represents the features ex-
tracted from the sliding window, and α and β are corresponding parameters in the CRF model.
The projection of the racket surface on a 2D image roughly resembles a solid ellipse without any
texture inside. Many popular features for tracking, for example HOG (Dalal and Triggs, 2005)
and SIFT (Lowe, 1999), cannot be employed in this case due to the lack of texture. By contrast,
color-based features are strong indicators of the presence of the racket, and are additionally
very efficient to compute. Hence, we use the local color histogram in the sliding window as the
features f, with the HSV space quantized into one hundred bins8.

The parameters α and β were learned by maximizing the likelihood of the labeled configura-
tions, from the training data that consists of manually labeled sliding windows in one hundred
8 We group all pixels in 1000 captured images into 100 clusters by k-means, and quantize the HSV space by

nearest neighbor mapping.
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(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 3.11: The reconstruction of racket surface. Pixels with a score higher than the threshold
are highlighted by red color. Green dots are matched points from a pair of cameras.

frames. Subsequently, the tracking at time t is to find the configuration with the maximal
marginal probability P(θ t |I1...t), which can be decomposed as

P(θ t |I1...t)∝ exp
�

αT f(θ t , It)
�

¨

∑

θ t−1

P(θ t−1|I1...t−1)exp
�

β T g(θ t−1,θ t)
�

«

.

As the features are a histogram, we can obtain αT f(θ t , It) efficiently for all θ t using 2D con-
volution. The second factor can be approximately estimated by only considering θ t−1 whose
distance from θ t is bounded by a constant, where 2D convolution is also applicable. As a result,
we can efficiently compute the marginal probability P(θ t |I1...t).

We can assign a score to every color according to the parameters α. We highlight the shape
of the racket as shown in Figure 3.11. The racket may not always be detected correctly, es-
pecially when its surface’s normal vector is perpendicular to the camera direction as shown in
Figure 3.11b. Nonetheless, the racket is still correctly localized in the other two cameras, and,
hence, can be recovered in the 3D reconstruction stage, as shown in Figure 3.12.

We reconstruct the racket’s 3D configuration from matched points for every camera pair where
the racket is visible. The racket surface has no texture, rendering the matching of the key-points
difficult. As the projection of the racket on an epipolar line (Hartley and Zisserman, 2003) forms
a line segment, we match the left most points with a score higher than the threshold for pair of
epipolar lines„ and the right most points as well. Those pairs of matched points are converted
into a set of 3D points.

Although noise is inevitable, we expect that the majority of the matched points are on the
surface plane of the racket. We apply RANSAC (Fischler and Bolles, 1981) to robustly estimate
the normal vector of the racket surface, and concurrently eliminate outliers. The procedure
can be performed in parallel. The green dots in Figure 3.12 correspond to all matched points,
from which we can recover the surface of the racket. The surface is subsequently projected back
into the 2D images. As shown in Figure 3.12b, we can detect and recover the incorrect racket
configuration.

In summary, we developed a robust racket tracking system that detects the racket’s position
and orientation in real time. Together with a real-time ball tracking system (Lampert and Peters,
2012), the robot can perceive the state of the ball and the opponent’s racket, the information
needed for prediction and decision making. Note that the filtering method, such as Kalman
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(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 3.12: Images from the cameras together with the reconstructed racket surface. We high-
light the pixels on the racket surface whose scores are higher than the threshold by
the red color. Green dots are matched points from a pair of cameras. Although the
racket is not detected in the image of Camera 2 due to the perpendicular viewing
angle, it can be recovered from the other cameras.

filtering, cannot be applied to the racket’s trajectory, as its dynamics are directed by the unknown
intended target. Therefore, the obtained states of the racket are still subject to substantial noise.
The proposed inference method in this chapter can jointly smooth on the racket’s trajectory and
infer the target where the player intends to shoot.
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4 Anticipatory Action Selection

In this chapter, we address the problem of action selection and optimal timing for initiating
the movement, provided a time series of predictions. We formulate the anticipatory action
selection as a Partially Observable Markov Decision Process, where both transition model and
observation model are modeled by the IDDM. We present two approaches to policy learning
and decision making. Experimental results using a simulated environment showed that the
proposed algorithms could substantially enhance the capability of the robot table tennis player.
This chapter is based on (Wang et al., 2011b) and (Wang et al., submitteda).

4.1 Introduction

Humans possess the ability to coordinate their actions with others in joint activities, where an-
ticipation plays an important role to integrate the prediction of the others’ actions in one’s own
action planning (Sebanz et al., 2006). Such ability of anticipation is also crucial in Human-
Robot Interaction (HRI), where an anticipatory robot needs to coordinate for its actions while
interacting with humans (Hoffman and Breazeal, 2007), in both competitive and cooperative
contexts. An anticipatory robot usually relies on a predictive model of the environment, es-
pecially its human partners, which “allows it to change state at an instant in accord with the
model’s predictions pertaining to a later instant” according to Rosen et al. (2012). Predicting the
underlying intention and the future actions of the human partners has been extensively studied
in robotics (e.g. Kurniawati et al., 2011; Hauser, 2012; Kuderer et al., 2012; Wang et al., 2013;
Bandyopadhyay et al., 2013). This prediction capability offers the promise of anticipatory robots
that incorporate anticipatory action selection in their planning.

In this chapter, we focus on the anticipatory action selection. Specifically, the robot chooses
an action from a repertoire of motor skills based on the prediction of the human partner’s inten-
tion. One important problem for the anticipatory action selection is prediction uncertainties that
naturally arose due to the complexity and stochasticity of human behavior. The prediction usu-
ally becomes more accurate and less uncertain as more input, e.g., observed human movement,
is obtained. However, waiting for a confident prediction causes delayed action selection and
reduces the available time for the robot to execute its action (Wang et al., 2013). The anticipa-
tory robot is, thus, forced to make decisions given a sequence of uncertain predictions, where a
trade-off between prediction accuracy and reaction delay needs to be addressed. To address this
issue, we formulate the decision making process as a Partially Observable Markov Decision Pro-
cess (POMDP), and propose two different approaches to efficiently choose the robot’s optimal
action and decide the timing to initiate action.

The remainder of this chapter is organized as follows. We first illustrate the necessity of
anticipation in robot table tennis in Section 4.1.1, and discuss the related work in Section 4.1.2.
We formulate the anticipatory action selection using POMDPs, and present approaches to policy
learning and decision making in Section 4.2. In Section 4.3, we first introduce the setup of
the considered robot table tennis player. Subsequently, we evaluate the effectiveness of the
proposed approaches, and show that they substantially enhance the capability of the considered
robot player. Finally, we conclude and summarize the contribution in Section 4.4.
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(a) awaiting stage (b) preparation stage (c) hitting stage (d) finishing stage

Figure 4.1: The four stages of a typical table tennis ball rally, where the trajectories in red rep-
resent the ball trajectories and the trajectories in blue represent the racket’s move-
ments of the robot player. Figure adapted from Mülling et al. (2011).

4.1.1 Anticipation in Human-Robot Table Tennis

We conduct a case study on human-robot table tennis, where anticipation is crucial for giving
the robot sufficient time to execute its hitting movements (Wang et al., 2011b).

Playing table tennis is a challenging task for robots due to reasons ranging from the robot’s
deficiencies in perceiving the environment to the hardware limitations that restrict the actions.
Hence, robot table tennis has been used as a benchmark task for high-speed vision (Acosta
et al., 2003; Fässler et al., 1990), fast movement generation (Ángel et al., 2005; Mülling et al.,
2011), learning (Matsushima et al., 2005; Miyazaki et al., 2005; Mülling et al., 2013), and many
other research problems in robotics. Mülling et al. (2013) showed that a single type of hitting
movement (action), e.g., forehand hitting movement, can be learned and constantly improved
while interacting with human players. In practice, the robot needs a repertoire of actions, such
as forehand and backhand hitting movements, to cover the potential hitting points in its entire
accessible workspace. Despite that the robot is faster and more precise than a human being,
the robot player still suffers from certain hardware limitations, such as torque and acceleration
limits, which severely restrict its movement abilities in this high-speed scenario. Even a beginner
human player would have the upper hand simply by choosing regions that the robot cannot
reach in time if the robot’s action is only based on the extrapolated trajectory of the incoming
ball.

The robot’s hitting movement imitates typical human table tennis strokes, as shown in Fig-
ure 4.1, which consist of four stages (Ramanantsoa and Durey, 1994). In the awaiting stage,
the ball moves towards the human opponent and is returned back. The robot stays at the await-
ing pose during this stage. The preparation stage starts when the coming ball passes over the
net, and the robot moves to a preparation pose. The hitting stage begins once a hitting state is
decided. The racket moves towards this hitting state and hits the ball at the end of the hitting
stage. It follows through in the finishing stage and recovers to the awaiting pose. The duration
of the hitting stage is constant for expert players and lasts approximately 80ms. Even against
a slower opponent, which allows less than 300ms for the robot’s hitting movement, this short
time often does not suffice for the racket to reach the hitting state from the preparation position.
Therefore, many desired hitting movements are not feasible due to time limits; the robot needs
to initiates its hitting movement during the awaiting stage, that is, before the human opponent
returns the ball.

To gain sufficient time for executing a hitting movement, the robot needs to be anticipatory
about its human opponent’s intention, which human players rely heavily on (Alexander and
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Figure 4.2: Demonstration of the robot’s hitting plane and the human opponent’s target. The
hitting point is the intersubsection xhp of the coming ball’s trajectory and the virtual
hitting plane 80 cm behind the table, which is considered the target where the human
opponent intents to shoot the ball. Our goal is to select an action according to the
prediction of the target xhp. Figure adapted from Mülling et al. (2011).

Honish, 2009). The prediction of the human partner’s intention can be realized by modeling
how the intention directs the dynamics of hitting movement (Wang et al., 2013). In the table
tennis scenario, this Intention-Driven Dynamics Model (IDDM) leads to an online algorithm that,
given a time series of observations, continually predicts the human player’s intended target, i.e.,
where the human intents to shoot the ball (Wang et al., 2013), as shown in Figure 4.2.

Anticipatory action selection needs to take into account the prediction uncertainty. The robot
is likely to fail to return the ball if it has initiated a forehand (“right” in Figure 4.2) hitting
movement and the ball is shot to its backhand (“left”) region, or vice versa. The prediction of
the intended target tends to become increasingly accurate and confident as the human opponent
finishes his movement (Wang et al., 2013). On the other hand, the robot requires a certain
minimum time to execute its hitting movement. Therefore, the essence of the anticipatory action
selection is deciding when and how to initiate the hitting movement based on the increasingly
confident predictions.

4.1.2 Related Work

Intention inference has been investigated in different settings, for example, using Hidden
Markov Models (HMMs) to model and predict human behavior where different dynamics models
were adopted to the corresponding behaviors (Pentland and Liu, 1999). Online learning of in-
tentional motion patterns and prediction of intentions based on HMMs was proposed by Vasquez
et al. (2008), which allows efficient inference in real time. The HMM can be learned incremen-
tally to cope with new motion patterns in parallel with prediction (Vasquez et al., 2009).

Anticipation is important in many human-robot interaction scenarios (e.g., Ziebart et al.,
2009; Dragan and Srinivasa, 2012; Wang et al., 2012b). Decision making can also be achieved
jointly with intention inference, in scenarios such as autonomous driving (Bandyopadhyay et al.,
2013), control (Hauser, 2012), or navigation in human crowds (Kuderer et al., 2012). For ex-
ample, when the state space is finite, the problem can be formulated as a partially observable
Markov decision process (Kurniawati et al., 2011) and solved efficiently (Wang et al., 2012a).
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The anticipatory action selection decides when it is time to initiate the hitting movement.
This decision is based on a trade-off between prediction accuracy and reaction delay, which
is a generalization of optimal stopping problems. The optimal stopping problems have been
extensively investigated in sequential analysis using Markov decision process (MDP), where the
focus is usually the existence of optimal stopping rules given the transition model or obtaining
closed-form solutions in specific problems (e.g., Shiryaev, 2007). We do not have closed-form
solutions for the decision making problem in our application due to the complexity of the human
dynamics. The optimal stopping problem can be applied in the context of classification and
feature selection (Póczos et al., 2009; Gaudel and Sebag, 2010; Dulac-Arnold et al., 2012), using
reinforcement learning to obtain an optimal stopping policy. The optimal stopping problem has
also been studied under partial observation (Zhou, 2013), and in many applications, such as
quality control (Jensen and Hsu, 1993) and finance (Décamps et al., 2005; Rishel and Helmes,
2006).

4.2 Anticipatory Action Selection

The essence of the anticipatory action selection is decision making given a time series of pre-
dictions, where two fundamental issues have to be addressed. First, the uncertainties in the
prediction and the outcome need to be considered. For example in the robot table tennis setup,
the uncertainty in the prediction is mainly due to the fact that the opponent may still change the
target before the racket hits the ball. The prediction of the opponent’s intended target, based
on the observed partial movement of his stroke movement, tends to become increasingly accu-
rate as the opponent finishes the hitting movement. Furthermore, the outcome of executing a
selected action, e.g., the robot’s success of returning the ball to the opponent’s court with the
chosen hitting movement, is not deterministic as the underlying dynamics of the robot arm are
often too complicated to be modeled precisely at high speed. The decision making algorithm
should be able to deal with the associated uncertainties.

The second fundamental issue is the timing for the robot to initiate the selected action, as the
robot often requires sufficient time to execute an action. In the table tennis setup, while the
predictions tend to become increasingly accurate, the robot needs sufficient time to move the
arm from the awaiting pose to the desired preparation pose. The anticipatory action selection
needs to trade off between prediction accuracy and delay in action selection, as both influence
the success probability of the selected action. Hence, it is essential to choose the optimal action
at the right time.

Modeling the problem of anticipatory action selection as a Partially Observable Markov De-
cision Process (POMDP), we present two different approaches to decision making. In the first
approach, we transform the POMDP into an equivalent fully observable Markov Decision Pro-
cess (MDP). The states in the equivalent MDP are the belief states of the POMDP, which are
the posterior distribution of the unobserved state given the observation history. We adopt the
Intention-Driven Dynamics Model (IDDM) for belief updates and the Least-Square Policy Iter-
ation (LSPI) for policy learning. Howver, the model-free LSPI algorithm does not make use
of the estimated transition model in the IDDM framework, and can be sample-insufficient in
the considered application. Consequently, we present a more sample-efficient approach using
the Monte-Carlo Planning (MCP), where actions are chosen according to the value function
estimated using the Monte-Carlo method (Thrun, 2000).
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4.2.1 Optimal Stopping under Partial Observability

The anticipatory action selection is a generalizaion of optimal stopping under partial observa-
tion (Mazziotto, 1986), and, similarly, can be formulated as a POMDP. A discrete-time POMDP
is defined as a tuple (S ,A ,Z ,P ,Ω,R), where S is a state space, A = {0, . . . , n} is a set of
actions, and Z is a observation space. The states evolve following a Markov transition model,
governed by P , where P (s′|s, a) represents the probability of going to state s′ from state s
when taking action a. The observations are generated from the states following the observation
model Ω, where Ω(z|s) is the probability of observing z in state s. The reward function R(s, a)
represents the expected immediate reward obtained for taking action a in state s.

The set of actions A consists of a waiting action a = 0 and a set of stopping actions a ∈
A \ {0}. In the table tennis scenario, taking the waiting action a = 0 means to postpone the
selection of a hitting action and to wait for the subsequent observation to be available; and each
stopping action a 6= 0 leads to selecting and initiating a particular type of hitting movement, and,
hence, to the termination of an episode. The immediate reward is only nonzero when a stopping
action is taken, and corresponds to the outcome of the selected type of hitting movement.
We consider a continuous state representation s = [x, g] that consists of the state x of the
environment and the intention g of the human. Here, the intention g is assumed to be invariant
during an episode; for example, the intended target does not change during the human player’s
hitting movement. An observation z ∈ Z includes perceived features of the environment, such
as the position and velocity of the ball and the configuration of the opponent’s racket.

Finding the optimal timing to initiate the appropriate action is a POMDP problem. The deci-
sion at every time step is made by maximizing the expected future reward that it leads to, e.g.,
the chance of successfully returning the ball in the table tennis setup. Specifically, we want to
maximize the aggregated expected reward during an episode, given by

J = E
�

r(sT , aT )
�

,

where the variable T denotes the stopping time, and a reward is obtained only by taking a
stopping action aT .

4.2.2 Belief Update with Intention-Driven Dynamics Model

A key step towards solving the optimal stopping problem is updating the belief on state st =
[xt , g] according to the history z1:t , given by p(xt , g|z1:t).

We apply the online target prediction algorithm using the Intention-Driven Dynamics Model
(IDDM) (Wang et al., 2012b, 2013). The IDDM is a discrete-time dynamics model for move-
ment modeling and intention inference. In robotics scenarios, we often rely on noisy and high-
dimensional sensor data. However, the intrinsic states are typically not observable, and may
have lower dimensions. Therefore, we seek a latent state representation of the relevant infor-
mation in the data, and then model how the intention governs the dynamics in the latent states
xt , as shown in Figure 4.3. The resulting model jointly learns both the latent state representation
and the dynamics in the state space.

Designing a parametric dynamics model is difficult due to the complexity of nonlinear and
stochastic human movements. Hence, the IDDM uses Gaussian processes to handle both the
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· · · xt−1 xt xt+1 · · ·

zt−1 zt zt+1

Figure 4.3: The graphical model of the IDDM in an online manner, where we denote the in-
tended target by g, state by xt , and observation by zt . The proposed model explicitly
incorporates the intention as an input to the transition function (Wang et al., 2013).
Here, we use gray nodes for the observed variables and white nodes for the latent
variables.

transition model p(xt+1|xt , g) in the latent state space and the observation model p(zt |xt) from
the latent states to the observations. The IDDM considers the dynamics of latent states x to
follow an unknown function f, given by

xt+1 = f(xt , g) + nx ,t , nx ,t ∼N (0,Sx) .

The latent state xt+1 at time t + 1 depends on the latent state xt at time t as well as
on the intention g, as demonstrated in the graphical model shown in Figure 4.3. A GP
prior GP (mx(·), kx(·, ·)) is placed on every dimension of f with shared mean and covari-
ance functions. Subsequently, the predictive distribution of the latent state xt+1 condi-
tioned on the current state xt and intention g is a Gaussian distribution given by xt+1 ∼
N (mx([xt , g]),Σx([xt , g])) based on training inputs Xx and outputs Yx . Similarly, the mea-
surement mapping function h from latent state x to observations z, given by

zt = h(xt) + nz,t , nz,t ∼N (0,Sz) ,

is modeled by another set of GPs. The predictive probability of the observations zt is given by
a Gaussian distribution zt ∼N (mz(xt),Σz(xt)) , where the predictive mean and covariance are
computed based on training inputs Xz and outputs Yz. For more details of the IDDM, we refer
the reader to Wang et al. (2013).

Assuming that the dynamics of the human player’s racket is driven by the intended target
g, we can apply the IDDM to predict the target g given a time series of observations z1:t that
are generated from corresponding latent states x1:t . While exact inference of the intention
g and states xt is not tractable, Wang et al. (2013) presented an efficient online inference
algorithm to update the belief p(g,xt |z1:t), i.e., the posterior probability of the intention g and
the latent states xt once a new observation zt is obtained. Figure 3.9 showed that the predictive
uncertainties decrease as the human player finishes the hitting movement. To summarize, the
IDDM provides an estimate of the transition model T and of the measurement model Ω in the
considered POMDP with Gaussian processes, which are used for updating the belief.
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4.2.3 Policy Learning with Belief MDP

A POMDP can be transformed to an equivalent fully observable MDP by using the belief state
θ t ∈ Θ as the observable state, which is the belief of the unobserved state st = [xt , g] given
the observation history z1:t . Subsequently, we can apply reinforcement learning algorithms
to learn and improve a policy π, mapping a belief state θ t to the action that maximizes the
expected reward. Estimating the transition model P (θ ′|θ , a) is difficult mainly due to the
complicated behavior of the nonparametric dynamics model employed. Hence, we need model-
free reinforcement learning algorithms that do not rely on an estimate of the transition model
for belief states. Specifically, we consider the Q-learning algorithm (Sutton and Barto, 1998),
and learn a state-action value function Qπ(θ , a) of a policy π. The value function Qπ(θ , a)
measures the expected future reward when taking action a according to the current belief θ
and following the policy π thereafter. We can write the value function according to the Bellman
equation, given by

Qπ(θ , a = 0) =

∫

P (θ ′|θ , a = 0)

∫

π(a′|θ ′)Qπ(θ ′, a′)da′dθ ′, (36)

for the waiting action a = 0, and

∀a 6= 0, Qπ(θ , a) =R(θ , a),

for any stopping action.

Since the belief states are continuous, the value function Qπ cannot be written in a tabular
form. A common way to deal with large or infinite state space is value function approximation
by a linear combination of basis functions φ(θ , a), given by

Qπ(θ , a)≈ Q̂π(θ , a;w) = φ(θ , a)T w,

with parameters w. Taking into account these factors, we choose the Least-Square Policy It-
eration (LSPI) algorithm (Lagoudakis and Parr, 2003), a model-free reinforcement learning
algorithm with the function approximation. The LSPI has been used successfully to solve sev-
eral large scale problems.

The LSPI algorithm consists of a policy evaluation step, which estimates the value function Q̂π

for the current policy π, and a policy improvement step, which improves the policy π by fixing
the obtained value function Q̂π. Using the linear function approximation, the policy evaluation
step boils down to estimating the parameters w. The integration in Eq. (36) is intractable due
to the unknown transition model P , and is replaced by sampling in the Q-learning framework.
Derived from MDP with finite state space, the update rule of the approximation parameters w
can be straightforwardly applied for the considered continuous state space. The approximation
parameters w can be obtained from a finite set of samples D = {(θ i, ai, ri,θ

′
i)|i = 1, . . . , L},

where θ i is the output of the online inference algorithm (Wang et al., 2013). Given a policy π,
the estimates

Â=
1

L

L
∑

l=1

φ(θ i, ai)(φ(θ i, ai)−φ(θ ′i,π(θ
′
i)))

T ,

b̂=
1

L

L
∑

l=1

φ(θ i, ai)ri,
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Algorithm 4.1: The LSPI algorithm, which iteratively updates the approximated value func-
tion and the optimal policy.
Input : Obtained samples D
Output: Approximation parameters w
w′← 0;1

repeat2

w←w′;3

foreach (θ i, ai, ri,θ
′
i) ∈ D do4

a′← π(θ ′i) = arg maxaφ(θ
′
i, a)T w;5

Â← Â+ 1
L
φ(θ i, ai)(φ(θ i, ai)−φ(θ ′i, a′))T ;6

b̂← b̂+ 1
L
φ(θ i, ai)r;7

w′← (Â+δI)−1b̂;8

until convergence ;9

are used to update the approximation parameters

w= (Â+δ2I)−1b̂,

where the sufficient small δ2 is used to avoid numerical error in the inversion of Â (Lagoudakis
and Parr, 2003).

In the policy improvement step, we improve the policyπ by a new policyπ′ that maximizes the
expected reward according to the estimated value function Q̂π. The optimal policy π′ greedily
chooses the action that maximizes the corresponding value function Q̂π. Therefore, we obtain
an improved policy

π′(θ ) = arg max
a

Q̂π(θ , a).

We can obtain the optimal policy by iteratively executing the policy evaluation and improvement
steps, as summarized in Algorithm 4.1.

4.2.4 Monte-Carlo Planning with POMDP

The LSPI algorithm as described above employs a model-free approach to policy learning, using
the Intention-Driven Dynamics Model as a black box for updating the belief θ t given a history
of observations z1:t . Besides the capability of the belief update, the IDDM in fact provides
a transition model in the state space, estimated from its training data, which has not been
exploited by the LSPI algorithm. Here, we present Monte-Carlo Planning (MCP), a model-based
approach to action selection as an alternative to the LSPI algorithm.

Rather than estimating the value function Qπ given a policy π, we directly consider the value
function Q for the optimal policy. As the stopping actions terminate the decision process imme-
diately, the value function for the stopping actions ∀a ∈ A \ {0} : Qπ(θ , a) = Q(θ , a) holds for
any belief state θ . We can reuse the same value function for those stopping actions estimated
by LSPI. The key difference is in the value function for the waiting action Q(θ t , at = 0), given
by the expected future reward

Q(θ t , at = 0) = E
�

max
at+1

Q(θ t+1, at+1)
�
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Algorithm 4.2: The particle projection algorithm that estimates the value function of post-
poning the decision for one time step.
Input : Current belief θ t
Input : Number of samples I
Output: Estimate of value function Q(θ t , at = 0)
Collection of sampled rewards Φ = ; ;1

for i← 1, . . . , I do2

Sample current state and intention st = [xt , g] according to belief θ t ;3

Sample subsequent state xt+1 ∼ P(xt+1|xt , g) using transition model of IDDM ;4

Sample subsequent observation zt+1 ∼ P(zt+1|xt+1) using measurement model of IDDM5

;
Update belief θ t+1 provided observation zt+1 using IDDM ;6

Compute maximal expected reward for stopping r i =maxa 6=0 Q̂(θ t+1, a;w) ;7

Update collection of sampled rewards Φ = Φ∪ {r i} ;8

Return Q(θ t , at = 0)≈ 1
I

∑

r i∈Φ r i ;9

with respect to the subsequent belief state θ t+1.

The value function Q(θ t , at = 0) measures the expected reward of waiting for more observa-
tion. While computing the exact expectation is intractable, the value function can be estimated
using Monte-Carlo approximation (Thrun, 2000), where we replace the expectation operator
by an empirical average over sampled belief states. To estimate the value function, each time
we draw a sample of the current state st , the subsequent state st+1, and the subsequent ob-
servation zt+1, compute the subsequent belief state θ t+1 based on the IDDM, and estimate
maxat+1

Q(θ t+1, at+1) recursively. One can see that estimating the value function for waiting at
the next time step Q(θ t+1, at+1 = 0) again relies on the Monte-Carlo approximation, and, hence,
that the number of sampled decision trees grows exponentially with the horizon. Although the
horizon is often finite for the anticipatory action selection, e.g., the optimal hitting action can
be chosen straightforwardly once the human player has hit the ball, we need to limit the depth
of sampled decision trees in consideration of restrictive time constraints in robotics. Here, we
only plan for one step ahead; namely, we estimate the value function of postponing the decision
for one time step, given by

Q(θ t , at = 0) = E
�

max
at+1 6=0

Q̂(θ t+1, at+1;w)
�

.

This estimation can be achieved by using particle projection routine (Thrun, 2000), as described
in Algorithm 4.2.

The particle projection may still be too time-consuming to be applicable to online planning,
as the Monte-Carlo approximation requires a certain amount of samples to achieve a reliable
estimate. Nevertheless, consider the online planning that finds the optimal action

at = argmax
a∈A

Q(θ t , a),

where one only needs to know if the waiting action a = 0 leads to higher expected reward than
all the stopping actions, rather than the actual expected reward of waiting. We can terminate the
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Algorithm 4.3: The MCP algorithm with early termination according to the estimate of
confidence interval.
Input : Current belief θ t
Input : Number of samples I
Input : Function approximation parameters w
Input : Confidence level α
Output: Action at
Collection of sampled rewards Φ = ; ;1

for i← 1, . . . , I do2

Sample current state and intention st = [xt , g] ;3

Sample subsequent state xt+1 ∼ P(xt+1|xt , g) ;4

Sample subsequent observation zt+1 ∼ P(zt+1|xt+1) ;5

Update belief θ t+1 provided observation zt+1 ;6

Compute expected reward r i =maxa 6=0 Q̂(θ t+1, a;w) ;7

Update collection of sampled rewards Φ = Φ∪ {r i} ;8

if Number of samples |Φ| sufficiently large then9

Compute upper confidence bound U given sample Φ;10

if U <maxa 6=0 Q(θ t , a) then11

Return the optimal stopping action at = argmaxa 6=0 Q(θ t , a) ;12

Compute lower confidence bound L given sample Φ ;13

if L >maxa 6=0 Q(θ t , a) then14

Return the waiting action at = 0 ;15

Expected reward for waiting Q(θ t , at = 0) is the mean of sampled rewards in Φ ;16

Return the optimal action at = argmaxa Q(θ t , a) ;17

particle projection routine if the expected reward of waiting is very likely to be higher or lower
than that of the optimal stopping action maxa 6=0 Q(θ t , a). Inspired by the upper confidence bound
algorithms (Auer, 2003), we use the confidence interval estimate of the expected reward for
waiting to terminate the particle projection routine before the Monte-Carlo sampling completes.
To obtain a confidence interval estimator, we assume that the future reward for waiting at time
step t is Gaussian distributed. Given a set of sampled rewards Φ = {r1, . . . , rn}, the confidence
interval given a confidence level α is

h

r̄ −
cs
p

n
, r̄ +

cs
p

n

i

,

where n = |Φ| is the number of samples, r̄ the sample mean, s the sample standard devi-
ation, and c is the α percentile of a Student’s t-distribution with n − 1 degrees of freedom.
Algorithm 4.3 describes the resulting Monte-Carlo planning algorithm.

In comparison to the model-free LSPI method, the MCP algorithm exploits the estimated
transition model in the IDDM, and is expected to be more sample-efficient.
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4.2.5 Basis Functions

The presented LSPI and MCP methods both employ function approximation, replying on a set
of basis functions of the belief state θ . The belief state obtained by the IDDM is represented
by a vector that consists of the mean and covariance of the belief on the latent state x and a
discretized histogram over the intended target g. The discretized histogram is illustrated in
Figure 3.9.

We consider a set of radial basis functions for approximating the value function. We collected
all the encountered belief states on the training data, and chose K centers θ̄ 1, . . . , θ̄ K using
K-means clustering. The basis functions are given by

φ(θ , a) = [δa,0φ
′(θ )T ,δa,1φ

′(θ )T , . . . ,δa,|A |φ
′(θ )T]T ,

where δ is the Kronecker delta and we consider the radial basis functions

φ′(θ ) = [exp{−η‖θ − θ̄ 1‖2}, . . . , exp{−η‖θ − θ̄ K‖2}]T (37)

for the belief states.

4.3 Application in Human-Robot Table Tennis

We evaluated the LSPI and the MCP algorithms for anticipatory action selection in human-robot
table tennis setup. The presented action selection methods were evaluated on the biomimetic
robot table tennis player (Mülling et al., 2011), as this setup allowed exhibiting how much of an
advantage such an anticipation system may offer. We expect that the system will help similarly
when deployed within the skill learning framework (Mülling et al., 2013) as well as many of the
recent table tennis learning systems (Huang et al., 2013; Yang et al., 2010; Matsushima et al.,
2005).

4.3.1 Robot Player

To quantitatively evaluate the performance of the proposed methods in terms of success rates,
we used the SL framework (Schaal, 2009), which consisted of a real-world setup and a suffi-
ciently realistic simulation. The setup included a Barrett WAMTM arm with seven degrees of
freedom, which is capable of high speed motion. A racket was attached to the end-effector.
Table, racket and ball were compliant with the international rules of table tennis. We used a
vision system of seven cameras to collect real data during a table tennis game between two
human players (Wang et al., 2011b), recording the players’ movement and ball’s trajectory. The
collected data was used by the SL simulation for the following experiments, as demonstrated in
Figure 4.4. Previous work showed that the SL framework is sufficiently realistic to simulate the
robot table tennis setting9, and that similar performance can be expected when the real robot is
used (Mülling et al., 2011; Mülling et al., 2013; Wang et al., 2013).

In the considered setting, the robot always hits the ball on a virtual hitting plane 80 cm behind
the table, as shown in Figure 4.2. We defined the human’s intended target as the intersubsection

9 See http://robot-learning.de/Research/ProbabilisticMovementModeling for a demonstration of the
real-robot setup.
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Figure 4.4: The SL simulated environment with the state of the robot arm and the information
obtained from the vision system, including states of the opponent’s racket the ball.

(a) forehand (b) backhand (c) default

Figure 4.5: Three types of hitting movement (actions) of the robot table tennis player. Each
action was optimized for hitting points in a specific region as shown by the shaded
rectangle.

of the returned ball’s trajectory with the robot’s virtual hitting plane. As the x-coordinate (see
Figure 4.2) was most important for choosing the type of hitting movements (Wang et al., 2013),
the intention g considered here was the x-coordinate of the hitting point. Physical limitations
of the robot restricted the x-coordinate to the range of ±1.2 m from the robot’s base (the table
is 1.52 m wide).

The robot player can execute three types of hitting movement (actions) that were refined and
optimized for hitting points in a specific region, as shown in Figure 4.5. Hence, the action setA
consisted of one waiting action and three stopping actions, each stopping action corresponding
to a type hitting movement. Note that the action selection was only used to a hitting type, e.g.,
default, forehand, or backhand. Fine-tuning of the robot’s movement can be done when the
robot has initiated an action and once the returned ball can be reliably predicted from the ball’s
trajectory alone. However, returning the ball outside the corresponding hitting region is difficult
once the robot has initiated the chosen action (Wang et al., 2013).

We used a data set with recorded 270 trials. Each trial started when the ball passed over the
net while flying towards the human player, and ended when the ball returned by the human

74



default forehand backhand −240ms −160ms −80ms NAC LSPI MCP
100

110

120

130

140

150

160

170

133.4 ± 0.6

110.0 ± 0.7

122.4 ± 0.6

143.4 ± 1.0

141.0 ± 1.1

123.4 ± 1.6

146.1 ± 0.3

153.1 ± 0.8 153.3 ± 0.5

n
u
m

b
e
r 

o
f 
s
u
c
c
e
s
s
fu

l 
re

tu
rn

s

 

 

single action oracle timing NAC LSPI MCP

baseline: single action baseline: oracle timing

Figure 4.6: Performance of different methods evaluated in ten repetitions on the test data with
207 valid trials, based on enumerated training episodes. For each method, we evalu-
ated the performance in terms of averaged number of successful returns, using cross-
validation in each repetition. The first group of bars showed the baseline perfor-
mance using only a single action (default, forehand, or backhand hitting movement)
for all the test trials. The second group of bars showed the performance with oracle
timing, where the action was always selected at a specific time (240ms, 160ms, and
80ms) before the opponent hit the ball. The last three bars showed the performance
of the NAC algorithm, the LSPI algorithm, and the MCP algorithm. The error bars
correspond to standard error of the mean estimated from ten repetitions.

player reached the robot’s hitting plane (see Figure 4.2), including the trajectories of the ball
and the player’s racket. We excluded the trials where the ball was shot outside the overall hitting
region of the robot, as shown in Figure 4.5, and evaluated the performance of the policy learning
algorithm on the remaining 207 trials. For the basis functions used for function approximation
in Equation (37), we chose 100 centers in the experiments.

4.3.2 Experimental Results

We evaluated the algorithms using ten-fold cross-validation. We repeated each round of
the cross-validation for ten times to reduce the randomness in the robot player. In the
first experiment, for each round of the cross-validation, we obtained sampled episodes D =
{(θ i, ai, ri,θ

′
i)|i = 1, . . . , L} on the nine subsamples for training, where all valid combinations
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of action and time to initiate were enumerated on each trial. For each episode, the reward,
i.e., success of the robot’s return, was obtained from the SL simulation, where a reward of 1
was given for successful return of the ball and −1 for failing to return. For the LSPI algorithm,
the policy was learned from the sample D using Algorithm 4.1, and evaluated on the one sub-
sample for test. The anticipatory action selection following the learned policy by LSPI led to
successful returns for the robots in 153.1± 0.8 times, with an average success rate of 74%. We
subsequently evaluated the MCP algorithm in the same manner. The action selection following
Algorithm 4.3 led to successful returns for the robots in 153.3± 0.6 times, an average success
rate of 74%.

For comparison, we evaluated a baseline that exclusively used a single type of hitting move-
ment. Every type of hitting movement yielded a relatively high success rate in its designated
regions. However, the overall rate on the entire data set was considerably reduced due to its
poor performance in the other regions. Figure 4.6 showed the number of successful returns for
using each action initiated at 240ms before the opponent hits the ball, such that the robot had
sufficient time to complete the movement. The robot player without anticipation would achieve
an average success rate of 64% for using only the default hitting movement, and 53% and 59%
for using only the forehand and backhand movements, respectively. Therefore, both the LSPI
algorithm and the MCP algorithm substantially improved the performance of the robot player
by learning which action should be executed.

In addition, we considered another baseline with oracle timing, i.e., the action was always
chosen at a specific time before the opponent has hit the ball. Without the waiting action, the
LSPI algorithm and the MCP algorithm were equivalent, and both achieved the success return
143.4± 1.0 times at 240ms before the opponent has hit the ball, 141.0± 1.1 times at 160ms,
and 123.4± 1.6 times at 80ms, where the performance tended to decline as the reaction delay
was increased. One can see that the waiting action played an important role in trading off the
prediction accuracy and the reaction delay. Note that these time steps were only used for this
baseline method with oracle timing, and that the other evaluated algorithms were not aware
of the hitting time of the opponent in advance. Nevertheless, both the LSPI algorithm and the
MCP algorithm substantially outperformed this baseline performance by learning when a chosen
action should be initiated.

Furthermore, we also compared to policy gradient methods (Sutton et al., 1999). Specifically,
we adopted episodic Natural Actor-Critic (NAC) algorithm (Peters and Schaal, 2008), and a
policy based on softmax action selection (Sutton and Barto, 1998). The NAC is a policy search
method that directly estimates the gradient of the value function, which can be easier to do
than estimating the value function itself. Moreover, one can use available domain knowledge to
choose the type of policies that are searched. However, as an on-policy approach, the NAC is not
very efficient in the use of sampled data. In addition, as in all gradient methods, the NAC can
suffer from a premature convergence to a local optimum depending on the chosen step-size. In
this application, the LSPI and MCP algorithms both outperformed the NAC algorithm, as shown
in Figure 4.6.

In the second experiment, we compared the LSPI and the MCP in terms of sample efficiency.
We obtained samples D from the training data by following a uniform policy, which chose the
waiting action with a probability of 1

2
and each of the three stopping actions with a probability

of 1
6
. The first group of bars in Figure 4.7 was obtained by sampling one episode for each trial in
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Figure 4.7: Performance of the LSPI and MCP methods evaluated in ten repetitions on the test
data with 207 valid trials, based on sampled episodes on the training data. The
numbers on the X-axis showed the number of sampled episodes on the training data.

the training data. This amount of data was insufficient for the LSPI to acquire a reliable estimate
of the value function, especially for the waiting action. While the LSPI method performed even
worse than the baseline that only chose the default hitting movement, the MCP method already
achieved a substantial improvement by taking advantage of the estimated transition model in
the IDDM. As we increased the number of sampled episode for each trial, the performance was
improved for both methods. The MCP method always outperformed the LSPI method, although
the advantages became smaller as more samples were available. The experimental results shown
in Figure 4.7 verified that the MCP can be more sample-efficient than the LSPI. Due to the fact
that sampling is expensive in many real-robot applications, we advocate the use of the MCP
method for anticipatory action selection.

4.4 Conclusions of Chapter 4

In this chapter, we introduced new approaches to anticipatory action selection. We formulated
the anticipatory action selection as optimal stopping in a partially observable Markov decision
processes. We first presented a policy learning approach using the Lease-Square Policy Iteration
algorithm. However, the LSPI can be sample-inefficient, as it does not exploit the transition
model in the Intention-Driven Dynamics Models. Consequently, we presented the Monte-Carlo
Planning approach, which benefits from the transition model estimated by the IDDM framework.
Experimental results using real data and a simulated environment show that the anticipatory
action selection can be used for a robot table tennis player to enhance its performance against
human players, where the robot decided the timing to initiate a selected hitting movement
according to the prediction of the human opponent. We also showed that both the LSPI and
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MCP algorithms substantially improved the performance over the baselines, and that the MCP
algorithm is more sample-efficient than the LSPI and, hence, more applicable to robot table
tennis scenarios.
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5 Opponent Modeling and Strategy Learning

In this chapter, we consider decision making solely based on the preference of the human part-
ners, where observations are not sufficient for reliable intention inference. We formulate it as
a repeated game and present a learning approach to safe strategies that exploit the humans’
preferences. This chapter is based on Wang et al. (2011a).

5.1 Prologue

Opponent modeling allows a player to exploit the opponents’ preferences and weaknesses in
repeated games. Approaches that discard opponent modeling usually need to make worst-case
assumptions, e.g. following a minimax strategy. Such approaches are considered safe as their
expected payoff is lower-bounded by the minimax payoff. However, they lack the ability to
exploit non-competitive or imperfect opponents in general-sum games. In contrast, the idea of
fictitious play (Brown, 1951) has been extensively used for sixty years. Assuming the opponents
are playing stationary strategies, fictitious play consists of modeling them by the empirical prob-
abilities of the observed actions and then optimally responding according to the model. Using
a sufficiently accurate model of a stationary opponent, fictitious play yields a higher expected
payoff than any approach without modeling. However, even when the stationarity assumption
holds, inaccurate models are inevitable for a limited number of observations, which exposes the
player to adopting overly risky strategies.

Online learning algorithms (e.g., Zinkevich, 2003; Bowling, 2005) were developed to guaran-
tee bounded regret in the worst case. However, the opponents are usually suboptimal (Simon,
1991) or not completely competitive (e.g. in general-sum games) in many real-world situations.
A practical criterion (Powers et al., 2007) is concerned with learning to play optimally against
stationary opponents or opponents whose strategies converge to a stationary one. For example,
WoLF-IGA (Bowling and Veloso, 2002) and AWESOME (Conitzer and Sandholm, 2007) learn
the best-response against stationary opponents, and converge in self-plays. However, these al-
gorithms may adapt to unsafe counter-strategies due to inaccurate estimates of the opponents’
strategies. To address the safety issue in opponent modeling, Markovitch and Reger (2005)
proposed to infer a weakness model instead of estimating the precise model. McCracken and
Bowling (2004) proposed an ε-safe learning algorithm that chooses the best counter-strategy
from a safe set of strategies. Strategies in the corresponding set do not lose more than ε in
the worst case. In more recent work, Johanson and Bowling (2009) proposed robust learners
by considering restricted Nash responses and data-biased responses for imperfect information
games.

In this chapter, we propose a different approach to modeling an opponent’s strategy with a
set of possible strategies that contains the actual strategy with a high probability. For simplicity,
we limit the discussion in this chapter to the two-player games. Nevertheless, the modeling
technique can be extended to multi-player games. Given a parameter δ that controls the
safety-exploitability trade-off, a stationary opponent’s strategy is modeled with a set of possi-
ble strategies that contains the actual one with probability no less than 1− δ. These possible
strategies are chosen according to their consistency with the observations. We propose an al-
gorithm that provides a counter-strategy with a lower-bound above the minimax payoff with
probability no less than 1−δ. Such a strategy is said to be δ-safe, where δ is a parameter indi-



cating the trade-off between the safety and the exploitability. The model of possible strategies
shrinks along with the increased number of observations, and converges to the actual oppo-
nent’s strategy. Therefore, the algorithm ensures the convergence of the counter-strategy to the
actual best-response.

Unfortunately, the stationarity assumption is often unrealistic. A more reasonable assumption
is local stationarity, i.e., the opponent’s strategy is assumed to be stationary within a number
of consecutive repetitions. A statistical hypothesis tests is used to detect significant changes in
the opponent’s strategy, so that the algorithm can efficiently adapt to them. Given a sequence
of consecutive observations that are likely to be drawn from a locally stationary strategy, the
proposed algorithm computes a locally δ-safe counter-strategy.

The proposed modeling technique allows a robot to improve its response to balls served by
human opponents. The used robot setting (Mülling et al., 2011) has three possible high-level
actions, i.e. setting to either a forehand, backhand, or middle hitting movement while the
opponent serves. Each action has a relatively high success rate when the ball is served to its
corresponding region. However, the robot is limited in its acceleration, resulting in low success
rate for incoming balls far away from the preparation pose. Assuming that the opponent uses a
stationary strategy, this algorithm generates counter-strategies such that the robot is more likely
to successfully return the served ball. We use the low-level planner to evaluate the expected
success rate of the learned strategies.

5.2 Strategy Learning in Normal-Form Games

The two participants are indicated by Player i and Player j, and the algorithm plays on behalf
of Player i. A repeated game consists of several repetitions of a base game. Such a base game
can either be a normal-form game or a stochastic game. A normal-form game is represented by
reward matrices for both participants, among which the reward matrix for Player i is denoted by
R. In each game, two players choose their own actions ai, a j independently from action spaces
Ai,A j respectively. The reward for Player i is given by Rai ,a j

depending on their joint action.

For normal-form games, the strategies are probability distributions over all possible actions
ai and a j, which we denote by πi(ai) ∈ ∆|Ai | and π j(a j) ∈ ∆|A j |, where |Ai|, |A j| are the size
of Ai,A j, and ∆n is the n-simplex set {π ∈ Rn|πT 1 = 1 and π � 0}. Consider the case when
Player i has played the game N times and observed the opponent’s actions {ak

j |k = 1 . . . N}.
Assuming the actual opponent’s strategy π∗j is stationary during these N repetitions, the goal of
the player is to learn a best-response strategy πi against the opponent’s possible strategies.

Fictitious play uses the empirical distribution π̃ j(a j) = Na j
/N to model the opponent, where

Na j
is the number of times action a j was observed. Given the opponent’s model, Player i wants

to learn a best-response strategy that maximizes its expected payoff. In normal-form games,
the expected payoff for strategies πi and π j is computed as πT

i Rπ j. When the model is a
single estimate π̃ j, the best-response strategy is given by BR(π̃ j) = argmaxπi

πT
i Rπ̃ j. The best-

response strategy may tend to always take the same action, which can be unsafe when the
opponent’s model is not sufficiently precise.

To ensure the safety of the learned counter-strategy, we propose a δ-safe model of the oppo-
nent with a set of possible strategies instead of a single estimate. Furthermore, we compute the
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generalized best-response strategy against the proposed opponent’s model, resulting in a δ-safe
counter-strategy.

5.2.1 δ-Safe Opponent Modeling

Assume π∗j is the true opponent’s strategy, according to which the opponent’s actions are drawn,
and denote by π̃ j the empirical distribution. According to Cover and Thomas (12.2.1 in 1991),
the Kullback-Leibler (KL) divergence between π̃ j and π∗j is bounded by the following inequality
with probability no less than 1−δ,

KL(π̃ j||π∗j )≤ ε(δ)¬
(|A j| − 1) ln(N + 1)− ln(δ)

N
.

The opponent’s possible strategies are selected by their distance to the empirically observed
behavior, where the KL divergence serves as the natural measure of distance between probability
distributions. The model of the opponent is given by

Ω(δ)¬ {π j ∈∆|A j ||KL(π̃ j||π j)≤ ε(δ)}.

The true opponent’s strategy π∗j lies in the set Ω(δ) with probability no less than 1−δ.

In practice, the algorithms is not very sensitive to the choice of the parameter if δ ≤ 0.5. We
set δ = C/(N + 1), where C ≤ 1 is a constant, so that the algorithm has an upper-bound on its
regret.

5.2.2 δ-Safe Strategy Learning

With probability no less than 1− δ, the true opponent’s strategy is inside Ω(δ). However, the
player has no further information to choose the real opponent’s strategy among all possible
strategies in this set. To learn a safe counter-strategy, we generalize the best-response strategy
to be the counter-strategy that has the maximal expected payoff in the worst case. This problem
can be formulated as:

BR(Ω(δ))¬ arg max
πi∈∆|Ai |

min
π j∈Ω(δ)

πT
i Rπ j. (38)

Finding the best-response solution in Problem (38) is a convex optimization problem that
can be solved efficiently using sub-gradient methods. When the opponent’s model contains the
true strategy π∗j , the expected payoff of the best-response strategy has a lower-bound above the
minimax payoff. Therefore, the learned strategy is safe with probability no less than 1−δ.

The resulting counter-strategy eventually converges to BR(π∗j ) if the opponent’s strategy con-
verges to a stationary strategy π∗j . As the number of observations increases infinitely, the bound
ε on the KL divergence converges to zero. For an infinite amount of data, the set of possi-
ble opponent’s strategies shrinks to only one element which is the empirical estimate π̃ j, and
the empirical distribution π̃ j converges to π∗j . As a result, the counter-strategy will eventually
converge to the best-response against π∗j .
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The learned counter-strategy also converges sufficiently fast to the best-response against a
stationary opponent. We now assume that the opponent uses a stationary strategy π∗j and the
game has been played t times. The regret is given by the difference of expected payoffs between
the learned strategy and the best-response. As shown in the appendix, the expected regret for
the next game is upper-bounded as E[rt] ≤ 4β

p
2ε + δτ, where β and τ are constants and

ε = (|A j| ln(t + 1) − ln C)/t. Thus, the expected accumulated regret in the first T games is
upper-bounded as

RT =
T
∑

t=1

E[rt]≤
T
∑

t=1

�

c1

p

ln(t + 1)/t + c2/t
�

,

where c1 and c2 are constants. As the partial sums of harmonic series have logarithmic growth
rate and the partial sums of the series

p

ln t/t have growth rate of O (
p

T ln T ), the accumulated
regret bound has a growth rate of O (

p
T ln T ). Therefore, the algorithm has zero average regret

and converges fast.

5.2.3 Adaptive Strategy Update

Given N observed actions from consecutive games, the learned strategy is δ-safe only if these
actions are drawn according to a same strategy π∗j . However, the opponent may also update its
strategy during the games. An adaptive learning algorithm is required to deal with the changes
in the opponent’s strategy and to learn against locally stationary strategies.

We propose an algorithm that accumulates observations and updates the counter-strategy
when the opponent’s strategy is locally stationary. It detects changes in the strategy of the
opponent and recomputes the counter-strategy accordingly. The proposed algorithm, as outlined
in Algorithm 5.1, maintains two sets of observed actions: a set X that contains observed actions
for learning a counter-strategy, and a set Y for testing if the strategy has changed. The algorithm
can update the counter-strategy πi while the opponent is also adjusting its strategy against πi.

In Step 8 of the algorithm, we test the hypothesis that the probability of executing action a j
is the same in local strategies that generated the sample set X and the validation set Y. The
sampled actions are converted into binary variables indicating if they are equal to a j. Then,
the empirical mean of these binary variables is tested with the hypotheses: H0 : pX (a j) =
pY (a j), vs. H1 : pX (a j) 6= pY (a j).

Let µ = (p̃X (a j) + p̃Y (a j)/(|X|+ |Y|), and σ2 = µ(1−µ). With large sample sets X and Y, the
statistic

z0 =
p̃X (a j)− p̃Y (a j)

σ
p

1/|X|+ 1/|Y|

is approximately normally distributed, where p̃X (a j) and p̃Y (a j) are empirical probabilities of
action a j in X and Y. The test of H0 fails if |z0| > zα/2, where α is the significance level of the
test.
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Algorithm 5.1: Adaptive algorithm for learning counter-strategies in normal-form games.

X := ;.;1

Initialize πi to be the minimax strategy;2

repeat3

while |X|< Nmin do4

Draw an action ai from the current strategy πi;5

Observe a new sample a j;6

X := X∪ {a j};7

Update πi by solving Problem (38);8

repeat9

Get Nmin new samples as Y;10

Perform two-sample tests for each action a j in X and Y ;11

if all the tests were passed then12

X := X∪ Y;13

Update πi by solving Problem (38);14

until test failed or game is over ;15

X := ;;16

Reset πi to be the minimax strategy;17

until the game is over. ;18

5.3 Extension to Finite Stage Stochastic Games

For stochastic games, we only consider those with a finite number of stages, which can be
represented by a tree structure of states s ∈ S . The game starts from an initial state s0 at Stage
1. At each state s, the players choose their actions as

i and as
j from action spaces A s

i and A s
j

respectively. Let Children(s) denote the set of states that possibly follow after the state s. The
game transfers to a subsequent state sk ∈ Children(s) with probability Ps(sk|as

i , as
j) based on the

joint action, and Player i receives an immediate reward Rs
as

i ,a
s
j
. The game terminates when a leaf

state sl is reached/ The cumulative reward for Player i is the sum of all rewards that it obtained
in all stages. For stochastic games, a strategy consists of local strategies at every state.

Algorithm 5.1 can be extended to repeated stochastic games with a finite number of stages,
where the proposed opponent modeling technique is used at every state. We model the op-
ponent’s strategy at state s by the set Ωs(δ) ¬ {πs

j ∈ ∆
|A s

j ||KL(π̃s
j||π

s
j) ≤ ε(δ, Ns)}, where the

function ε(δ, Ns) = ((|A s
j | − 1) ln(Ns + 1)− ln(δ/|S |))/Ns depends on Ns, i.e. the number of

observations available at state s.

A different model of the opponent is used at every state. The counter-strategy is recursively
computed, starting with the states in the last stage. At a state in the last stage, only the immedi-
ate reward is considered. Therefore, learning the counter-strategy is the same as in normal-form
games, resulting in a δ-safe estimate of expected payoff at this state. The estimated payoff is
back propagated to the previous stage as a lower-bound of the future expected reward. The
reward at the previous stage is given by the sum of the immediate reward and the estimated
future reward. Then, the counter-strategy at the previous stage is learned with the updated
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Figure 5.1: For a stationary opponent’s strategy, the expected reward grew with the increasing
number of samples, and converged to the optimal reward. The error bars showed
the maximal and minimal reward in 20 repeated tests.

reward matrices. The counter-strategies at every state of each stage are obtained by traversing
the state tree in a bottom-up order.

5.4 Evaluation

We first evaluate our algorithms in rock-paper-scissors games. Then we apply it to a table tennis
robot to improve the performance of returning served balls.

5.4.1 Rock-Paper-Scissors

Rock-paper-scissors is a zero-sum normal-form game. The reward matrix for Player i is defined
in Table 5.1. We represent strategies πi and π j by vectors with elements corresponding to the
probabilities of taking Rock, Paper, and Scissor, respectively. The minimax strategy in the game
draws actions uniformly, i.e. πi = [1/3,1/3,1/3]. If Player i follows this uniform strategy, its
expected reward is zero regardless of what the opponent’s strategy is.

First, we evaluated the opponent modeling technique by playing against a stationary oppo-
nent’s strategy π∗j = [0.6, 0.2,0.2]. The performance of the algorithm was tested on samples
ranging exponentially from 1 to 108 observations. For each sample size, the experiment was
repeated 20 times. The plot in Figure 5.1 showed the estimated expected reward and true ex-
pected reward. The true reward was the expected reward when the learned strategy was played
against the true opponent’s strategy. It was lower-bounded by the estimated reward with prob-
ability no less than 1−δ, which was the expected reward when the learned strategy was played
against the worst-case opponent’s strategy in the model. The reward gradually converged to the
optimal reward, showing that the algorithm could exploit the opponent with sufficient observed
data.

Rock Paper Scissor
Rock 0 -1 1
Paper 1 0 -1

Scissor -1 1 0

Table 5.1: The payoff matrix in rock-paper-scissors games.
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Figure 5.2: Comparison of true reward by algorithms with or without change detection. The
algorithm with change detection could adapt to strategy switch more efficiently. The
step curve was caused by the minimal sample size Nmin = 256.

Then, we evaluated the change detection mechanism in Algorithm 5.1. The game had three
thousand repetitions, where the opponent used a stationary strategy [0.8,0.1, 0.1] for the first
thousand actions and changed to another stationary strategy [0.1, 0.1,0.8] for the remaining
two thousand actions. After the first thousand repetitions, the learned strategy πi tended to
take Paper more frequently than other actions. Therefore, the sudden switch of the opponent’s
strategy caused a considerable loss in the expected reward. As illustrated by Figure 5.2, the
algorithm showed its efficiency in adjusting to such situations.

Subsequently, considering that human players changed their strategies based on previous
games in practice, we used a two-stage form of the regular rock-paper-scissors as an exam-
ple of stochastic games with a finite number of stages. We chose the reward matrix in Stage 2
that was twice as much as it is in Stage 1. The game states could be represented by a two-level
tree of states. The root state s0 corresponded to a regular rock-paper-scissors game at Stage 1,
and the game transferred to one following states according to the executed joint action.

We designed an opponent with a stationary strategy [0.6, 0.2, 0.2] in the first stage. Its
preferences in Stage 2 were shown in Table 5.2, as well as the conditions for transferring to a
subsequent state si.

The performance of the learning algorithm was evaluated by its expected reward. As shown
in Figure 5.3, it converged to the globally optimal reward.

si as0
i as0

j π
si
j si as0

i as0
j π

si
j

s1 R R 1/3,1/3,1/3 s2 R P 1/5,3/5,1/5
s3 R S 2/5,2/5,1/5 s4 P R 1/5,2/5,2/5
s5 P P 1/3,1/3,1/3 s6 P S 1/5,1/5,3/5
s7 S R 3/5,1/5,1/5 s8 S P 2/5,1/5,2/5
s9 S S 1/3,1/3,1/3

Table 5.2: Local strategies for the designed opponent. (i) It tended to avoid taking the previous
action if it lost the first stage. (ii) It preferred to take the previous action if it won the
first stage. (iii) It drew actions uniformly if the first stage was a tie game.
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Figure 5.3: In two-stage rock-paper-scissors games, both the estimated expected reward and
true expected reward converged to the globally optimal reward.

(a) forehand pose (b) middle pose (c) backhand pose

Figure 5.4: Three hitting movements offered by the robot. Each hitting movement was opti-
mized for hitting points its specific region.

5.4.2 Returning Served Table Tennis Balls

The proposed modeling technique was used to learn strategies, which allowed the robot to im-
prove its response to table tennis balls served by human opponents. The used table tennis robot
offered three high-level actions, namely, forehand, backhand, or middle hitting movements.
Each action had a relatively high success rate when the ball was served to its corresponding
region, see Figure 5.4. However, the robot was limited by its torque and acceleration. It had
a low success rate if the served ball was far from the chosen preparation pose. The proposed
algorithm allowed generating strategies such that the robot would be more likely to successfully
return the balls. We used the low-level planner to evaluate the learned strategies (Mülling et al.,
2011).

The robot chose its preparation pose while the opponent served. We formulated the problem
using a repeated two-player game. The empirical reward matrix for the robot could be estimated
using the low-level planner with 600 recorded served ball trajectories from different human
players (Mülling et al., 2011). As shown in Table 5.3, we knew how well a robot’s action could
return balls in those three regions. According to this reward matrix, the minimax play followed
the strategy of [0.2088, 0,0.7912], whose elements corresponded to choosing the forehand,
backhand and middle hitting movements respectively. It assumed a competitive opponent and
preferred to choose the middle position. However, it was not the optimal strategy if an opponent
tended to serve the ball to the right region more frequently.

We recruited three volunteers to repeatedly serve the ball. The experiment with each volun-
teer consisted in over one hundred trials. For each trial, the low-level planer provided three

86



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Number of games

A
ve

ra
ge

 e
xp

ec
te

d 
re

w
ar

d

 

 

AER of pure strategy 1
AER of pure strategy 3
AER of learned strategy

Figure 5.5: The curves showed the average expected reward against Volunteer 1. The pure strat-
egy 1 always chose the forehand action. The pure strategy 3 always chose the middle
hitting movement, which was the optimal strategy.

binary outputs, indicating whether a high-level action was successfully return the served ball
according to its trajectory. The learned stochastic strategy at each trial was evaluated by the ex-
pected reward, i.e., the success rate. To analyze the performance of the algorithms, we showed
the curve of its Average Expected Reward (AER), which was the sum of its expected reward
divided by the number of trials.

Volunteer 1 served the balls with approximately a uniform distribution over the three regions.
Therefore, pure strategy 3, which always chose action 3, led to the maximal average expected
reward. The results were shown in Figure 5.5. The performance of the δ-safe strategies were
slightly below that of the pure strategy 3 in the beginning, as it started from playing the minimax
strategy, yet quickly converged to the optimal strategy.

Volunteer 2 had a strong preference to serve the balls to the right region. According to the
results in Figure 5.6, the learned strategies gradually shifted towards pure strategy 1, which was
the optimal counter-strategy against this opponent.

0.65 0.52 0.06

0.41 0.74 0.56

0.04 0.12 0.39

Table 5.3: The empirical reward matrix obtained from recorded robot table tennis games.
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Figure 5.6: The curves showed the average expected reward against Volunteer 1. The pure strat-
egy 1 was the optimal counter-strategy.
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Figure 5.7: The algorithm with change detection outperformed other strategies against Volun-
teer 3.

Volunteer 3 started with a strategy that preferred to serve the ball to the middle/right side, and
intentionally switched his strategy after around 85 trials to preferring the middle/left side. Pure
strategies 1 and 3 were respectively the optimal counter-strategy before and after the switch. We
compared the Algorithm 5.1 to its simplified version without change detection in this case. As
shown in Figure 5.7, both algorithms had decreased performance immediately after the switch
happens. The proposed algorithm successfully detected the strategy switch after playing one
hundred trials and adapted to it by re-initializing to the minimax strategy. It outperformed
other strategies after the switch, and resulted in the best average expected reward for all trials.

The algorithm ran efficiently in real table tennis games. We used the projected sub-gradient
method to find the optimal counter-strategy in each repetition of the game, initialized with the
counter-strategy used in the previous game. In the table tennis setup, the algorithm took less
than 50ms on average to compute a response for each serve.

5.5 Conclusions of Chapter 5

We introduced a new opponent modeling technique, which models the opponent by a set of
strategies whose KL divergence from the empirical distribution is bounded. Based on it, we
proposed δ-safe algorithms for both normal-form games and stochastic games with a finite
number of stages. The algorithms learn strategies whose expected reward has a lower-bound
of minimax payoff with probability no less than 1− δ. We showed that the learned strategies
converged to the best-response strategy and had bounded regret. We also employed two-sample
tests to deal with locally stationary opponents. We evaluated the performance of our algorithms
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in rock-paper-scissors games and the robot table tennis setting. The experimental results showed
that the proposed algorithms could balance safety and exploitability in opponent modeling, and
could adapt to changes in the opponent’s strategy.

5.A Derivation of Expected Regret Bound

The expected regret for the game t + 1 is E[rt] = π∗Ti Rπ∗j − π
tT
i Rπ∗j , where π∗i is the best-

response against π∗j . There are two situations.

(1): When π∗j ∈ Ω(δ), ‖π
∗
j−π

t
j‖ ≤ ‖π

t
j−π̃

t
j‖+‖π

∗
j−π̃

t
j‖ ≤

Æ

2KL(π̃t
j ||π j)+

Æ

2KL(π̃t
j ||π

∗
j )≤ 2

p
2ε,

where π̃t
j is the empirical distribution obtained during those t games. E[rt] = π∗Ti Rπ∗j−π

tT
i Rπ∗j .

As πt
i is a best-response strategy against πt

j , π
tT
i Rπt

j ≥ π
∗T
i Rπt

j .

E[rt] = π
∗T
i Rπ∗j −π

tT
i Rπt

j +π
tT
i Rπt

j −π
tT
i Rπ∗j

≤ (π∗Ti Rπ∗j −π
∗T
i Rπt

j)

+ (πtT
i Rπt

j −π
tT
i Rπ∗j )

= π∗Ti R(π∗j −π
t
j) +π

tT
i R(πt

j −π
∗
j )

≤
�

max{|π∗Ti R|}+max{|πtT
i R|}

�

‖πt
j −π

∗
j‖

≤ 4β
p

2ε,

where β ¬maxai ,a j
Rai ,a j

.

(2): When π∗j /∈ Ω(δ),
rt ≤ τ¬max

ai ,a j
Rai ,a j

−min
ai ,a j

Rai ,a j
.

Since the situation (1) happens with probability no less than 1−δ and it has lower expected
regret than the situation (2), the expected regret is bounded E[rt]≤ 4β

p
2ε+δτ.

89





6 Conclusions and Future Directions

This thesis presented a machine-learning approach to intention inference and decision making,
the key components towards the anticipatory robots. We proposed the Hierarchical Gaussian
Process Dynamics Model in Chapter 2 for complex human movements that are directed by ex-
ogenous driving factors, such as the goal, intention, or gait style. We introduced a variational
Bayesian method for inferring the exogenous variables and the latent states simultaneously.
When the exogenous variables are the underlying intention of human movements, the H-GPDM
leads the Intention-Driven Dynamics Model for intention inference. To fulfill the real-time re-
quirements in many human-robot interaction scenarios, we proposed an online intention infer-
ence method in Chapter 3. Based on the prediction obtained by the online inference method,
the anticipatory robot can choose its action in a proactive manner. We formulated the antici-
patory action selection with a POMDP, and addressed the trade-off between prediction accuracy
and reaction delay involved in such decision making processes using both model-free policy
learning and Monte-Carlo planning. In addition, we considered decision making solely based
on the preference of the human partners. We formulated it as a repeated game and presented
a learning approach to safe strategies that exploited the humans’ preferences. Finally, we built
a prototype robot table tennis player to demonstrate the merit of the proposed approach to
intention inference and decision making.

6.1 Summary of the Thesis

This thesis contribute to the developments of anticipatory robots by proposing novel models and
developing practical methods for the prediction and the proactive action selection.

The H-GPDMs, introduced in Chapter 2, are a flexible class of latent-variable models for rep-
resenting complex nonlinear human movements that are driven by exogenous driving factors.
We incorporated the exogenous variables in the dynamics model to improve the interpretation,
analysis, and prediction of human movements. The H-GPDM can be learned from observed
movements in both supervised and unsupervised settings. We applied the H-GPDM to jointly
infer the exogenous variables and the missing observations. While exact inference is analyti-
cally intractable, we introduced a variational inference method. We analyzed the performance
of our proposed VB inference in three applications, i.e., target prediction from human-robot
table tennis, character recognition and recovery from handwriting trajectories, and gait recog-
nition using motion capture data. The experimental results demonstrated the merit of both the
H-GPDM and the inference algorithm.

We have discussed the Intention-Driven Dynamics Model (IDDM) in Chapter 3, a special case
of the H-GPDMs, where the intention of the human is considered as the exogenous driving factor.
We introduced efficient online inference algorithms that allowed real-time inference. We verified
the proposed model in two human-robot interaction scenarios, namely, target inference in robot
table tennis and action recognition for interactive robots. In these two scenarios, we showed that
modeling the intention-driven dynamics achieved better predictions than algorithms without
modeling the dynamics. Hence, we advocate the use of IDDM when the movement is driven by
the intention (or target to predict), as the IDDM captures the causal relationship of the intention
and the observed movements.
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We introduced approaches to anticipatory action selection based on the prediction of the
opponent’s intention in Chapter 4. By formulating the anticipatory action selection as opti-
mal stopping in POMDP, we presented two methods, namely, the least-square policy iteration
algorithm for policy learning and the Monte-Carlo planning algorithm for decision making. Ex-
perimental results showed that the anticipatory action selection could be used for a robot table
tennis player to enhance its performance against human players, where the robot decided timing
for initiating a selected hitting movement according to the prediction of the human opponent.

We introduced a new strategy learning technique in Chapter 5, which modeled the opponent’s
preference by a set of strategies whose KL divergence from the empirical distribution is bounded.
We proposed δ-safe algorithms for both normal-form games and stochastic games with a finite
number of stages. The algorithms learned strategies whose expected reward has a lower-bound
of minimax payoff with probability no less than 1− δ. We showed that the learned strategies
converged to the best-response strategy and had bounded regret. We evaluated the performance
of our algorithms in rock-paper-scissors games and the robot table tennis setting. The experi-
mental results showed that the proposed algorithms could balance safety and exploitability in
opponent modeling.

6.2 Open Problems

Looking beyond the presented work, there are several potential directions that one can explore
in the future.

The presented H-GPDM has no intra-layer connection between the exogenous variables. In
practice, there may be correlation among the top-level exogenous variables. For example in the
table tennis scenario, the striking styles such as forehand or backhand and the intended target
to hit are often correlated. In addition, the exogenous variables can evolve temporally, which
could correspond to moving targets, time-varying walking styles, or transition between different
gait dynamics. Such a complex graphical model renders inference even more challenging than
that of the presented H-GPDMs. One needs to introduce novel Bayesian inference methods to
handle the correlated exogenous variables.

The presented idea and methods of intention inference are also applicable to other scenarios of
human-robot or human-computer interaction. For example, the IDDM can be applied to tracking
a subject’s intended movement from ECoG data (Pistohl et al., 2008). Here, tracking relies on
a transition model of the subject’s state, e.g., hand position and velocity. Such transition model
depends on the target that the subject’s hand intends to reach, as reaching difference targets
corresponds to difference dynamics. Intention inference and tracking are dependent tasks and
should be treated jointly. The IDDMs are applicable to simultaneously tracking the hand’s state
and inferring the intended target. Similarly, the proposed intention inference methods have
potential applications for tracking pedestrians in motion (Ziebart et al., 2009), pointing target
prediction for intelligent interface design (Ziebart et al., 2012), and activity recognition with
smart phones (Frank et al., 2011). Proactive planning is also of great interest for building
anticipatory systems. Extending the presented anticipatory action selection methods, one can
deal with more complex planning problems where continuous action space is involved (Spaan
and Vlassis, 2005; Antos et al., 2007).
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6.3 Publications

The research presented in this thesis has been partly published in or has lead to the following
publications.

Zhikun Wang, Katharina Mülling, Marc P. Deisenroth, Heni Ben Amor, David Vogt, Bernhard
Schölkopf, and Jan Peters. Probabilistic Movement Modeling for Intention Inference in Human-
Robot Interaction. International Journal of Robotics Research, 32(7):841–858, 2013.

Zhikun Wang, Marc P. Deisenroth, Kun Zhang, Abdeslam Boularias, Bernhard Schölkopf, and Jan
Peters. Hierarchical gaussian process dynamics models for human movement analysis. Journal
of Machine Learning Research, submitted .

Zhikun Wang, Abdeslam Boularias, Katharina Mülling, Bernhard Schölkopf, and Jan Peters.
Anticipatory action selection in human-robot table tennis. Artificial Intelligence, submitted .

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation
under target and conditional shift. In Proceedings of the 30th International Conference on Machine
Learning (ICML), 2013.

Zhikun Wang, Marc P. Deisenroth, Heni Ben Amor, David Vogt, Bernhard Schölkopf, and Jan
Peters. Probabilistic Modeling of Human Movements for Intention Inference. In Proceedings of
Robotics: Science and Systems (R:SS), 2012.

Zhikun Wang, Christoph H Lampert, Katharina Mulling, Bernhard Scholkopf, and Jan Peters.
Learning anticipation policies for robot table tennis. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 332–337, 2011.

Zhikun Wang, Abdeslam Boularias, Katharina Mülling, and Jan Peters. Balancing safety and
exploitability in opponent modeling. In Proceedings of AAAI Conference on Artificial Intelligence,
2011.
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