On the Design and Improvement of
Lattice-based Cryptosystems

Vom Fachbereich Informatik der
Technischen Universitat Darmstadt genehmigte

Dissertation

zur Erlangung des Grades
Doktor rerum naturalium (Dr. rer. nat.)

von
Dipl.-Wi. Inform. Rachid El Bansarkhani

geboren in Riisselsheim.

Referenten: Prof. Dr. Johannes Buchmann
Prof. Dr. Ing. Tim Gilineysu

Tag der Einreichung: 29.04.2015

Tag der miindlichen Priifung: 10.06.2015

Hochschulkennziffer: D 17

Darmstadt 2015

Wissenschaftlicher Werdegang

Oktober 2011 - heute

Wissenschaftlicher Mitarbeiter und Promotionsstudent am Lehrstuhl von Professor
Johannes Buchmann, Fachbereich Informatik, Fachgebiet Theoretische Informatik -
Kryptographie und Computeralgebra, Technische Universitidt Darmstadt

Mitarbeit an wissenschaftlichen Projekten (geférdert durch das BMBF)

e Sinnodium (Februar 2013 - Mai 2015)
Absicherung der Interaktion zwischen emergenten Diensten und mobilen End-
geraten

e Software Campus (Januar 2013 - Dezember 2014)
Gitterbasierte Kryptografie fiir die Zukunft

e Emergent (Oktober 2011 - Juni 2013)
Technologien fiir die Umsetzung von Policies fiir emergente Software

Oktober 2005 - Dezember 2010

Studium der Wirtschaftsinformatik an der Technischen Universitat Darmstadt

April 2008 - Juni 2011

Studium der Mathematik mit Nebenfach Informatik an der Technischen Universitat
Darmstadt

ii

Publikationsliste

[P1]

[P2]

[P3]

[P4]

[P5]

[P6]

[P7]

Rachid El Bansarkhani, Ozgiir Dagdelen, and Johannes Buchmann. Aug-
mented learning with errors: The untapped potential of the error term. In
Financial Crypto 2015, LNCS. Springer, 2015.

Rachid El Bansarkhani and Johannes Buchmann. High performance lattice-
based CCA-secure encryption, Submitted, Cryptology ePrint Archive, Re-
port 2015/042, 2015. http://eprint.iacr.org/.

Ozgiir Dagdelen, Rachid El Bansarkhani, Florian Goépfert, Tim Giineysu,
Tobias Oder, Thomas Péppelmann, Ana Helena Snchez, and Peter Schwabe.
High-speed signatures from standard lattices. In Diego F. Aranha and Alfred
Menezes, editors, LATINCRYPT 201/, volume 8895 of LNCS, pages 84-103.
Springer, 2015.

Michael Riecker, Sebastian Biedermann, Rachid El Bansarkhani, and
Matthias Hollick. Lightweight energy consumption-based intrusion detection
system for wireless sensor networks, International Journal of Information
Security 2014, volume 14, pages 155-167. Springer, 2014.

Rachid El Bansarkhani and Johannes Buchmann. LCPR: High performance
compression algorithm for lattice-based signatures, Submitted, Cryptology
ePrint Archive, Report 2014/334, 2014. http://eprint.iacr.org/.

Rachid El Bansarkhani and Johannes Buchmann. Towards lattice-based se-
quential aggregate signatures. In David Pointcheval and Damien Vergnaud,
editors, AFRICACRYPT 201/, volume 8469 of LNCS, pages 336-355.
Springer, 2014.

Michael Riecker, Dingwen Yuan, Rachid El Bansarkhani, and Matthias Hol-
lick. Patrolling wireless sensor networks: Randomized intrusion detection.
In 10th ACM Symposium on QoS and Security for Wireless and Mobile Net-
works, Q2SWinet 14, pages 61-69. ACM, 2014

Rachid El Bansarkhani, Sascha Hauke, and Johannes Buchmann. Towards
security solutions for emergent business software. In Gino Brunetti, Thomas
Feld, Lutz Heuser, Joachim Schnitter, and Christian Webel, editors, Future
Business Software, Progress in IS, pages 67-80. Springer, 2014.

iii

[P9]

[P10]

P11]

[P12]

[P13]

[P14]

Publikationsliste

Rachid El Bansarkhani and Johannes Buchmann. Improvement and efficient
implementation of a lattice-based signature scheme. In Lange Tanja, Kristin
Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography, volume
8282 of LNCS, pages 48-67. Springer, 2013.

Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, Rachid El Bansarkhani,
and Gerhard Hoffmann. Code-based identification and signature schemes in
software. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar
Weippl, and Lida Xu, editors, Security Engineering and Intelligence Infor-
matics, volume 8128 of LNCS, pages 122-136. Springer, 2013.

Mohammed Meziani and Rachid El Bansarkhani. An efficient and secure
coding-based authenticated encryption scheme. In Roberto Di Pietro, Javier
Herranz, Ernesto Damiani, and Radu State, editors, Data Privacy Manage-
ment and Autonomous Spontaneous Security, volume 7731 of LNCS, pages
43-60. Springer, 2013.

Rachid El Bansarkhani and Mohammed Meziani. An efficient lattice-based
secret sharing construction. In Ioannis Askoxylakis, Henrich C. Pohls, and
Joachim Posegga, editors, Information Security Theory and Practice. Se-

curity, Privacy and Trust in Computing Systems and Ambient Intelligent
Ecosystems, volume 7322 of LNCS. Springer, 2012.

Rachid El Bansarkhani and Johannes Buchmann. Efficient lattice-based en-
cryption via A-LWE in the standard model, Submitted, 2015

Rachid El Bansarkhani and Johannes Buchmann. Representation formulas
for lattice problems via Cauchy integrals, Submitted, 2015

v

Acknowlegdement

I would like to thank god, my family and all people I met and worked with in the
past years. Especially, I wish to express my deep gratitude to my supervisor Jo-
hannes Buchmann for all aspects throughout the past three years of my graduation.
His great lectures and presentations inspired me and arouse my interest for cryp-
tography in the first place. I am very grateful for his great support, experience,
interesting discussions, and helpful advices in scientific and strategic matters that
encouraged me to pursue my scientific goals and moreover to be involved in various
challenging projects. Furthermore, I am very grateful for having my co-referee Tim
Guneysu as well as Matthias Hollick, Max Miihlhaduser, and Melanie Vollkamer on
my PhD committee.

At this point, I also wish to express my deep gratitude particularly to my beloved
parents for everything throughout my life, which cannot be captured in words. In
this regard, I also thank my whole family for encouraging and supporting me in any
aspect.

Finally, I wish to express my sincere thanks to all my friends and colleagues from
CDC and CASED. Special thanks to Mohammed Saied, Johannes Braun, Ozgiir
Dagdelen, Juliane Kréamer, Florian Gopfert, Mohamed El Yousfi, Sedat Akleylek,
Michael Schneider, Nina Bindel, Mohammed Meziani, Sascha Hauke, Patrick Wei-
den, Michael Riecker, Stephan Neumann, Jurlind Budurushi and many more. I had
the opportunity to work with many different and interesting people with different
backgrounds on very intriguing topics in lattice-based cryptography. It was a very
fascinating and motivating atmosphere at CDC with kind and humorous people.
It was also a great pleasure to have many long-term guests from England, China,
Taiwan and Turkey.

”Quer every possessor ”And of knowledge,
of knowledge is one you have been given
more knowing.” only a little.”
Darmstadst, Rachid El Bansarkhani

June 2015

Zusammenfassung

Digitale Signatur- und Verschliisselungsalgorithmen bilden einen wesentlichen Be-
standteil von kryptografischen Verfahren mit dem Ziel, die Sicherheitsbediirfnisse
von gegenwirtigen und zukiinftigen Privat- und Geschéftsanwendungen zu erfiillen.
Jedoch sind alle in der Praxis eingesetzten asymmetrischen Verfahren aufgrund
der Anfilligkeit fiir Quantencomputer-Angriffe infolge Shors Quantenalgorithmus
gefdhrdet. Das Ausmafl der wirtschaftlichen und gesellschaftlichen Auswirkungen
sind gewaltig, wodurch unmittelbar die Forderung nach Alternativen besteht, die
klassische Systeme ersetzen, sobald Quantencomputer im groflen Maflstab herge-
stellt werden kénnen. Gitterbasierte Kryptografie ist als leistungsstarke Alternative
hervorgetreten, die die Aufmerksamkeit der Forscher nicht nur wegen der vermu-
teten Resistenz gegen Quantencomputer-Angriffe auf sich zieht, sondern auch we-
gen ihrer einzigartigen Sicherheitsgarantie der Worst-Case-Hérte von Average-Case-
Instanzen. Auf diese Weise entfillt die Notwendigkeit, gesonderte Annahmen iiber
die Average-Case Hérte zu formulieren, sodass praktische Instanziierungen in der
Tat Sicherheitsgarantien von Worst-Case-Instanzen genieflen. Die bekanntesten Git-
terangriffsalgorithmen laufen mit exponentieller Zeitkomplexitét.

In dieser Arbeit tragen wir zu einem reibungslosen Ubergang in eine Welt mit prak-
tikablen gitterbasierten Verfahren bei. Dies wird durch die Entwicklung von neuen
Algorithmen und kryptographischen Verfahren sowie die Verbesserung bestehender
erreicht. Unsere Beitréige sind dreigeteilt.

Erstens, wir stellen neue Verschliisselungsverfahren vor, die den Fehlerterm bei
LWE-Instanzen vollstindig ausschopfen, um den Nachrichtendurchsatz signifikant
zu erhdhen. Zu diesem Zweck fithren wir ein neues Berechnungsproblem ein, das wir
als Augmented LWE (A-LWE) bezeichnen und das sich vom urspriinglichen LWE-
Problem nur in der Weise unterscheidet, wie der Fehlerterm erzeugt wird. In der Tat
konnen beliebige Daten in den Fehlerterm eingebettet werden, ohne die Zielvertei-
lungen zu veréindern. Im Anschluss daran erfolgt ein Beweis, dass A-LWE-Instanzen
ununterscheidbar von LWE-Instanzen sind und demnach auf der Schwierigkeit des
LWE-Problems beruhen. Dies erlaubt es, leistungsstarke Verschliisselungsverfahren
auf Grundlage des A-LWE-Problems zu konstruieren, die einfach in der Darstel-
lung und effizient in der Praxis sind, wiahrend gleichzeitig grofle Datenmengen ver-
schliisselt werden koénnen, sodass Nachrichten-Expansionsfaktoren nahe 1 praktisch
erreicht werden. Dies verbessert unseres Wissens nach alle bestehenden Ver-
schliisselungsverfahren. Aufgrund der Vielseitigkeit des Fehlerterms kénnen weite-
re Zusatzeigenschaften hinzugefiigt werden wie etwa CCA- bzw. RCCA-Sicherheit.
Aber auch gitterbasierte Signaturen konnen als Teil des Fehlerterms fungieren und
erweitern somit das Verschliisselungsverfahren um einen weiteren Mechanismus, der

vi

Zusammenfassung

die Authentifikation von verschliisselten Daten auf einfache Weise realisiert. Die
Methodik zur Erzeugung des Fehlerterms bei A-LWE-Instanzen hat ebenfalls einen
konzeptuell neuen und effizienten Diskret-Gauf3-Sampler hervorgebracht, der die be-
kanntesten Verfahren, wie z.B. Knuth-Yao oder den CDT-Sampler auf Basis der
Inversionsmethode, in Bezug auf die Leistungsfahigkeit {ibertrifft. Zur Laufzeit wird
ein Wert von einer Tabelle der konstanten Gréfle von maximal 44 Elementen fiir be-
liebige GauB-Parameter gesampelt. Der Gesamtspeicherbedarf belauft sich auf die
Grofle der Tabelle beim bekannten CDT-Sampler. Weitere Ergebnisse beinhalten
einen sehr effizienten Inversionsalgorithmus fiir Ringelemente in speziellen Klassen
von Kreisteilungsringen. Durch die Verwendung der NTT ist es moglich, die Exis-
tenz von Inversen zu gegebenen Ringelementen effizient zu iiberpriifen und zu be-
stimmen. Eine Darstellung der entsprechenden Einheitengruppe liasst sich auf diese
Weise unkompliziert und anschaulich ermitteln. Auflerdem verallgemeinern wir den
LWE-Inversionsalgorithmus fiir die Falltiirkonstruktion von Micciancio und Peikert
von Zweierpotenz-Moduli auf beliebig zusammengesetzte Zahlen.

Im zweiten Teil dieser Arbeit prisentieren wir eine effiziente Falltiirkonstruktion fiir
Ideal-Gitter und eine zugehorige Beschreibung des GPV-Signaturverfahrens. Durch
eine verbesserte Darstellung der assoziierten Fehlermatrix kann der Signiervorgang
im Vergleich zur urspriinglichen Arbeit erheblich vereinfacht werden. Dies wirkt sich
unmittelbar durch eine stark optimierte Speichernutzung und Laufzeit aus. Anschlie-
Bend schlagen wir einen neuartigen Kompressionsalgorithmus fiir GPV-Signaturen
vor, die bisher als Ergebnis der Falltiirkonstruktion bzw. der Anforderungen des Si-
cherheitsbeweises einen zu hohen Speicherverbrauch aufwiesen. Wir umgehen dieses
Problem mit der Einfithrung des Begriffs der 6ffentlichen und geheimen Zufalligkeit
fiir Signaturen. Der oOffentliche Teil einer Signatur kann demmnach von einer kur-
zen und gleichverteilten Bitfolge erzeugt werden, ohne die vorherigen Bedingun-
gen zu verletzen. Dieses Konzept wird anschlieBend auf die Situation mit mehre-
ren Teilnehmern erweitert, wodurch sich die Effizienz und der Wirkungsgrad des
Kompressionsverfahrens erhoht. Schliefilich schlagen wir das erste gitterbasierte und
sequenzielle Aggregationsverfahren fiir Signaturen vor, das einer Gruppe von Teil-
nehmern ermoglicht, sequenziell eine aggregierte Signatur zu erzeugen, dessen Grofie
sich im Vergleich zur urspriinglichen Gesamtgrofie aller Signaturen sehr stark redu-
ziert hat. Der Priifer ist jederzeit in der Lage zu verifizieren, dass jeder Teilnehmer
eine Nachricht tatséchlich signiert hat. Dieser Ansatz wird mittels gitterbasierter
Falltiirkonstruktionen realisiert und hat viele Anwendungsbereiche.

Im letzten Teil dieser Arbeit werden theoretische Aspekte von gitterbasierten Proble-
men behandelt. Es werden neue Représentationen bzw. Relationen von interessanten
Gitterproblemen vorgestellt, die auf Basis von Cauchy-Integralen hergeleitet wer-
den. Betrachtet man Gitterpunkte als einfache Pole von komplexen Funktionen, so
ist es prinzipiell moglich iiber Cauchy Integrale und ihren Verallgemeinerungen auf
Gitterpunkte zu operieren. Beispielsweise lassen sich fiir den ein- und zweidimensio-
nalen Fall, ebenfalls relevante Szenarien in kryptografischen Anwendungen, einfache
Ausdriicke bzw. Formeln fiir die Anzahl von Gitterpunkten in einem Gebiet via
trigonometrischen und elliptischen Funktionen ableiten.

vil

Abstract

Digital signatures and encryption schemes constitute arguably an integral part of
cryptographic schemes with the goal to meet the security needs of present and future
private and business applications. However, almost all public key cryptosystems ap-
plied in practice are put at risk due to its vulnerability to quantum attacks as a
result of Shor’s quantum algorithm. The magnitude of economic and social impact
is tremendous inherently asking for alternatives replacing classical schemes in case
large-scale quantum computers are built. Lattice-based cryptography emerged as a
powerful candidate attracting lots of attention not only due to its conjectured re-
sistance against quantum attacks, but also because of its unique security guarantee
to provide worst-case hardness of average-case instances. Hence, the requirement
of imposing further assumptions on the hardness of randomly chosen instances dis-
appears, resulting in more efficient instantiations of cryptographic schemes. The
best known lattice attack algorithms run in exponential time. In this thesis we con-
tribute to a smooth transition into a world with practically efficient lattice-based
cryptographic schemes. This is indeed accomplished by designing new algorithms
and cryptographic schemes as well as improving existing ones. Our contributions
are threefold.

First, we construct new encryption schemes that fully exploit the error term in LWE
instances. To this end, we introduce a novel computational problem that we call
Augmented LWE (A-LWE), differing from the original LWE problem only in the way
the error term is produced. In fact, we embed arbitrary data into the error term
without changing the target distributions. Following this, we prove that A-LWE
instances are indistinguishable from LWE samples. This allows to build powerful
encryption schemes on top of the A-LWE problem that are simple in its represen-
tations and efficient in practice while encrypting huge amounts of data realizing
message expansion factors close to 1. This improves, to our knowledge, upon all
existing encryption schemes. Due to the versatility of the error term, we further add
various security features such as CCA and RCCA security or even plug lattice-based
signatures into parts of the error term, thus providing an additional mechanism to
authenticate encrypted data. Based on the methodology to embed arbitrary data
into the error term while keeping the target distributions, we realize a novel CDT-like
discrete Gaussian sampler that beats the best known samplers such as Knuth-Yao
or the standard CDT sampler in terms of running time. At run time the table size
amounting to 44 elements is constant for every discrete Gaussian parameter and the
total space requirements are exactly as large as for the standard CDT sampler. Fur-
ther results include a very efficient inversion algorithm for ring elements in special
classes of cyclotomic rings. In fact, by use of the NTT it is possible to efficiently

viii

Abstract

check for invertibility and deduce a representation of the corresponding unit group.
Moreover, we generalize the LWE inversion algorithm for the trapdoor candidate of
Micciancio and Peikert from power of two moduli to arbitrary composed integers
using a different approach.

In the second part of this thesis, we present an efficient trapdoor construction for
ideal lattices and an associated description of the GPV signature scheme. Further-
more, we improve the signing step using a different representation of the involved
perturbation matrix leading to enhanced memory usage and running times. Sub-
sequently, we introduce an advanced compression algorithm for GPV signatures,
which previously suffered from huge signature sizes as a result of the construction
or due to the requirement of the security proof. We circumvent this problem by
introducing the notion of public and secret randomness for signatures. In particu-
lar, we generate the public portion of a signature from a short uniform random seed
without violating the previous conditions. This concept is subsequently transferred
to the multi-signer setting which increases the efficiency of the compression scheme
in presence of multiple signers. Finally in this part, we propose the first lattice-based
sequential aggregate signature scheme that enables a group of signers to sequentially
generate an aggregate signature of reduced storage size such that the verifier is still
able to check that each signer indeed signed a message. This approach is realized
based on lattice-based trapdoor functions and has many application areas such as
wireless sensor networks.

In the final part of this thesis, we extend the theoretical foundations of lattices and
propose new representations of lattice problems by use of Cauchy integrals. Con-
sidering lattice points as simple poles of some complex functions allows to operate
on lattice points via Cauchy integrals and its generalizations. For instance, we can
deduce for the one-dimensional and two-dimensional case simple expressions for the
number of lattice points inside a domain using trigonometric or elliptic functions.

X

Contents

. Introduction

1.1. Summary of Results o .

. Preliminaries

2.1. Notation e
2.2. Lattices
2.3. Discrete Gaussian Distribution L.
2.4. Computational Problems
2.5. Cryptographic Primitives

2.5.1. Encryption Schemes

2.5.2. Digital Signature Schemes

Lattice-based Encryption

. Augmented LWE and its Hardness

3.1. Main Obstacles e

3.2. Our Contribution

3.3. Learning with Errors Augmented with Auxiliary Data
3.3.1. Message Embedding
3.3.2. Augmented LWE - A Generic Approach

3.4. Our Construction in the Random Oracle Model
3.4.1. A-LWE Distribution
3.4.2. A-LWE Hardness

3.5. Our Construction in the Standard Model
3.5.1. Tools
3.5.2. A-LWE Distribution
3.5.3. A-LWE Hardness

. Building Lattice-based Encryption Schemes from A-LWE

4.1. Maximum Data Size,
4.1.1. Intersection Method
4.1.2. Lattices of the Formp-Z™
4.1.3. Uniform Error,

4.2. Our Generic Construction L.
4.2.1. High Data Load Encryption (HDL Mode)
4.2.2. Improved Message Throughput

QO -t

© 0o Co Co

10
12
12
14

16

19
19
20
22
22
25
27
27
28
30
31
33
34

Contents

4.2.3. Optimized Generic Encryption Scheme from A-LWE
4.3. CCA-secure Encryption Scheme
4.3.1. CCA1 secure Encryption
4.4. pd-RCCA-secure Encryption Scheme
4.5. CCA2-secure Encryption Scheme
4.6. Asymmetric Authenticated Encryption Scheme
4.7. Improvement of Existing Schemes
4.7.1. Enhancing Existing Symmetric-Key Encryption Scheme . . .
4.7.2. FEnhancing an Existing CCAl-secure Encryption Scheme . . .

CCA-secure Encryption Scheme from A-LWE in Practice

5.1. A Fast Discrete Gaussian Sampler - FastCDT

5.2. Techniques e
5.2.1. Setting
5.2.2. Instantiation from Trapdoors for Ideal-Lattices
5.2.3. CCA-secure Encryption Scheme — Ring Variant
5.2.4. LWE Inversion for Arbitrary Modulus
5.2.5. Fast Tag Generation and Inversion

5.3. Security Analysis
5.3.1. Embedding Approach,
5.3.2. Analysis of Key Recovery Attacks

5.4. Software Implementation and Performance Analysis
5.4.1. Software Implementation and Optimization

5.5. Implementation L L
5.5.1. Implementation Analysis

Lattice-based Signatures

Improvement of GPV Signatures

6.1. GPV Signature Scheme
6.1.1. Trapdoor Functions
6.1.2. Full-Domain Hash Scheme
6.1.3. Probabilistic Full-Domain Hash Scheme

6.2. Instantiation of the GPV Signature Scheme
6.2.1. Trapdoors for the Matrix Setting
6.2.2. Trapdoors for Ideal-Lattices

6.3. Improvements and Optimizations
6.3.1. Computation of the Covariance Matrix.
6.3.2. Estimating relevant Parameters
6.3.3. Generation of Perturbation Vectors
6.3.4. Square Root Computation
6.3.5. Optimized Signature Scheme

6.4. Security and Parameters

X1

Contents

6.5. Implementation 108
6.5.1. Implementation using Standard Libraries 109
6.5.2. Optimized Implementation 110
6.6. Experimental Results L oo 112
7. Compression Scheme for Signatures 116
7.1. Methodology of Compressing Schnorr-like Signatures 116
7.2. Generic Lossless Compression of Schnorr-like Signatures 122
7.2.1. Lossless Compression Algorithm 123
7.2.2. Analysis e 125
7.2.3. Security 127
7.2.4. Compression Rate of Individual Signatures 129
7.3. Compression Scheme for GPV Signatures 130
7.3.1. Tools e 130
7.3.2. Conditional Rejection Sampling 134
7.3.3. Single-Signer Compression Scheme in the GPV Setting . . . 134
7.3.4. Analysis of Compressed Signatures 135
7.3.5. Entropy of Public and Secret Randomness 138
7.4. Implementation and Experimental Results 139
7.5. Generic Multi-Signer Compression Strategy 141
7.5.1. Multi-Signer Compression Scheme 142
7.5.2. Multi-Signer Compression Scheme in the GPV Setting 145

7.6. Application Scenario - Cluster-based Aggregation in Wireless Sensor
Networks e 147
8. Sequential Aggregate Signatures 148
8.1. Our Construction 150
8.1.1. Our Basic Signature Scheme 150
8.1.2. Informal Description 152
8.2. Security Model 153
8.2.1. Security of our Construction 155
8.3. Imstantiation L 158
8.3.1. Comparison with RSA-based SAS 160
8.3.2. Analysis 160
8.3.3. Proxy Signatures 0oL 161
l1l. Lattice Representations 162
9. Representation Formula for Lattice Problems 163
9.1. Cauchy Integrals 164
9.1.1. Complex Space 164
9.1.2. Imtegral Formulas. 165

xil

Contents

9.2. Representation Formulas for Lattice Problems 167
9.2.1. Number of lattice points inside a domain 168

9.2.2. One-dimensional Lattices 170

9.2.3. Two-dimensional Lattices 174

9.2.4. CVP Representation Formula for Arbitrary Lattices 176
References 180

xiii

List of Algorithms

ot

= S

= e

13.

Building CDT Arrays 68
FastCDT e 68
CDT Sampling 69
Sampling from AZ(G) 98
Cholesky Decomposition 0oL, 103
Compression by Signature. L Lo 123
Compression by Seed 123
AS Scheme: AggSign 144
Verification: AggVerify Lo 144
MS Compression: MCSign. 146
Verification: MCVerify oo 146
Signing Algorithm: AggSign(Ti, mi, Xi—1) « « « v v v v v v v oo 151
Verification Algorithm: AggVerify(Xg) 151

Xiv

List of Figures

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

5.1
5.2.

6.1.
6.2.
6.3.
6.4.

7.1.
7.2.
7.3.
7.4.
7.5.

9.1.
9.2.
9.3.
9.4.

Basic Encryption Scheme oo oL 46
Optimized Generic Encryption Scheme 50
CCAl-secure Encryption Scheme 52
pd-RCCA-secure Encryption Scheme 55
Asymmetric Authenticated Encryption Scheme 59
Improved Symmetric Key Encryption Scheme 61
Trapdoor Generation Algorithm 73
CCA1l-secure Encryption Scheme - Ring Variant 74
Basic GPV Signature Scheme 97
GPV Signature Scheme - Matrix Variant 106
GPV Signature Scheme - Ring Variant 107
Breakdown of Signing Lo oL 115
Centroids Surrounded by Signatures 118
Compressed and Uncompressed Signatures 119
Lossless Compression Algorithms 123
Aggregate Signature Scheme L. 144
Multi-Signer Compression Scheme in the GPV Setting 146
Point ina Region oL 165
Number of Lattice Points in a Region 169
Number of Lattice Points in a Circle 169
Voronoi Cell of a Lattice 176

XV

List of Tables

4.1.

5.1.
5.2.
5.3.
5.4.
5.5.
9.6.

6.1.
6.2.
6.3.
6.4.

7.1.
7.2.

Parameters

Comparison of Discrete Gaussian Samplers
Parameters o
Discrete Gaussian Error in the HDL mode with A ~. U(RLT™)

Discrete Gaussian Error in the HDL mode with A ~, U(RLF™) . . .
Uniform Error in the HDL mode with A ~. U (Rffm)
Uniform Error in the HDL mode with A ~; U (Rffm)

Parameter Sets and Security Levels
Generic Expressions for Storage Sizes
Timings for GPV
Storage Sizes for GPV oo

Compression Rate Highlights
Compression Rates,

xXvi

1. Introduction

The existence of computationally hard problems represents a necessary requirement
for the possibility to build cryptography on top of it. The ultimate goal is to base
the security of cryptographic applications on the intractability of hard computa-
tional problems. Nowadays, cryptography emerged as an important tool in order to
protect all areas of life from unauthorized access and manipulations. The economic
and social importance of cryptography drastically increased as it is applied to meet
the future security needs of private and business applications. In particular, as a
reaction to information superiority ambitions of various entities in the world, the
role of cryptography has intensified over the past few years extending its applica-
tion area to virtually unknown territory which can be attributed amongst others
to the effects of globalization and the associated interconnections. Digital signa-
ture schemes and encryption schemes belong to the most common cryptographic
primitives used in practice with a wide range of applications such as home banking,
e-government, financial services, software updates, internet, and software security
solutions, just to name a few examples. To exemplify this issue more intelligibly, the
number of exchanged signatures per day via the TLS/SSL internet protocol amounts
to more than billions of signatures. Hence, the impact of a sudden threat to public
key cryptosystems applied today is disastrous particularly for economy and thus
for the stability of our highly interwoven structures. Such a threat can be induced
by novel outstanding algorithms or new technologies such as quantum computers.
From a strategical point of view, a preference for risk aversion inherently asks to
hedge against unpredictable threats using different technologies preferably based on
unrelated computational problems. This diversification strategy reduces the unsys-
tematic risk. The seminal work of Shor in 1994 [Sho97] shows that such a threat
already became reality since it is theoretically possible to break all applied pub-
lic key cryptosystems using Shor’s factoring algorithm. In particular, he proposed
quantum algorithms that can find the order of a group in probabilistic polynomial
time by means of powerful quantum computers. Consequently, all factoring and
discrete log based systems are vulnerable to this type of attacks. Shor’s factoring
algorithm belongs to the complexity class BQP containing all problems that can be
solved in quantum polynomial time with an error probability bounded by 1/3.
Quantum computers operate on so-called qubits which differ from the traditional
bit representations in such a way that a function can be evaluated at the super-
position of all possible values in the range. However, building large scale quantum
computers with a sufficiently large number of qubits in order to fully exploit already
existing algorithms is a difficult task and hence remains an ongoing research objec-
tive. This is due to the sensibility of quantum states to extraneous influence and

1. Introduction

interaction with the environment. It is still a technical hard problem to preserve
quantum states for a long time period. Despite that, for different reasons much
efforts and ressources are spent in order to realize a practical quantum computer.
It is believed to have in approximately two decades a first prototype. This obser-
vation induced the search for alternatives replacing classical schemes in the near
future. The most popular candidates found in the literature are hash-based, mul-
tivariate, code-based and lattice-based schemes, each relying on different hardness
assumptions. The latter approach has a long history and is unique in its security
properties, thus, traded as a promising alternative.
Lattices are well studied mathematical objects hiding a rich combinatorial struc-
ture. Formally speaking, an n-dimenional lattice is an additive subgroup of a Eu-
clidean vector space R™ that geometrically corresponds to the intersection points
of an n-dimensional grid. Due to its simplicity and geometrical representation, the
application areas of lattices are steadily increasing, ranging from cryptography to
communication theory and combinatorial optimization. Much research has been
spent on investigating the problems arising from lattices such as CVP, SVP and
SIVP, just to name a few examples. Briefly speaking, the closest vector problem
(CVP) asks to find a lattice point x € A of a lattice A with minimum distance
min |[|x — t|| to a target point t € R", whereas for the shortest vector problem
(SVP) it is required to find a non-zero lattice point x € A\{0} of minimum length
A1 = min [|x||. The shortest independent vector problem (SIVP), on the other hand,
asks to find a basis that is as short as possible. But also from a practical point of
view, these problems are of great interest since they are extensively exploited for
applications such as factoring polynomials over the rationals [LLL82], integer pro-
gramming [Kan87, Len83|, vector quantization [CS98], construction (e.g. [AD97])
and attacking [Od190] of cryptographic schemes and many other application areas
related to computer science, communication theory and mathematics.
Interestingly, there exists an inherent relationship between these problems and
they are hence subject to intense research. Many works have a focus on speci-
fying the complexity class of lattice problems. In fact, it has been shown that the
computational problems SVP, CVP and SIVP are NP-hard for exact
solutions [Ajt98, BS99, vEB81] and even for approximated solutions with subpoly-
nomial approximation factors [BS99, CN99, DKRS03, Kho04, Mic98]. This implies,
however, that the time complexity for algorithms developed to find a solution to these
problems is expected to be non-polynomial in the lattice dimension n. Nevertheless,
many algorithms have been proposed in order to solve and analyse the corresponding
lattice problems [AKSO01, AKS02, Hel85, Kan87, MV10, LLL82, SE94, BI0, Sch86,
Sch87]. This led to major algorithmic improvements and novel tools used, for in-
stance, to estimate the security of cryptographic schemes and to improve existing
algorithms.
Lattice-based cryptography attracted a lot of attention in recent years as a result
of a sequence of breakthrough works [Ajt96, LLL82, Reg05] yielding new crypto-
graphic constructions. This observation is supported by various arguments such as
the conjectured resistance against quantum attacks. As opposed to classical schemes

1. Introduction

like RSA, ECDSA and DSA, lattice-based cryptography is acclaimed by its unique
security guarantee to provide worst-case hardness of average-case instances. In par-
ticular, Ajtai [Ajt96] gave the first such kind of reduction from worst-case lattice
problems to the average-case problem SIS. It was shown that solving SIS for certain
parameters is as hard as approximating SIVP to within polynomial factors. Such a
relationship between average-case and worst-case problems represents a major cor-
nerstone in cryptography in general as it relieves cryptographers from imposing new
assumptions on the hardness of average-case instances used to instantiate practical
schemes. By this means, lattice-based constructions are built on top of average-case
problems while enjoying worst-case hardness, hence, taking the best of both worlds.
Later, Regev [Reg04] introduced a second average-case problem, called the learn-
ing with errors problem (LWE), which admits a similar worst-case to average-case
relationship and is applied predominantly in lattice-based encryption schemes.

1.1. Summary of Results

The relevant background of this thesis is given in Chapter 2. In particular, it serves
to introduce the theoretical foundations of lattices as well as basic notations, def-
initions and major concepts applied in the remainder of this thesis. The results
of our research are presented in Chapter 3 - 9. Basically, it can be divided into
three parts with two equally-sized blocks, where the first block consisting of Chap-
ters 3 - 5 is focused on lattice-based encryption and the second block composed of
Chapters 6 - 8 encompasses our contributions to lattice-based signatures. The last
chapter is devoted to our contributions on lattice theory in general. A brief summary
of each chapter is given below.

Chapter 3 - Augmented LWE and Its Hardness

The majority of lattice-based primitives from Cryptomania require the intractability
of the Learning with Errors problem as a basic underlying assumption. Many new
LWE variants have been proposed with a reduction from the basic LWE problem.
As an advantage, this allows to instantiate new cryptographic schemes with certain
properties more efficiently while enjoying hardness of the LWE problem.
Interestingly, cryptographic primitives based on LWE often do not exploit the full
potential of the error term beside of its importance for security. To this end, we in-
troduce a novel LWE-close assumption [P1, P2, P13], namely Augmented Learning
with Errors (A-LWE), which allows to hide auxiliary data injected into the error
term by a technique that we call message embedding. Any party knowing the se-
cret, is subsequently able to extract the embedded data. We prove in the random
oracle model that the A-LWE problem is hard to solve assuming the hardness of
LWE. Furthermore and more importantly, we give a standard model variant that is
essentially as efficient as the previous construction.

1. Introduction

Chapter 4 - Building Lattice-based Encryption Schemes from A-LWE

Typically, lattice-based encryption schemes follow the one-time pad approach, where
the message, most often an encoded bit vector, is added to an LWE instance. As
a result, a random looking ciphertext vector is obtained. However, lattice-based
encryption schemes still suffer from a low message throughput per ciphertext. This
is mainly due to the fact that the underlying schemes do not tap the full potentials
of LWE such as the error term that remains unused except for security.

We present a mnovel approach towards building lattice-based encryption
schemes [P1, P2, P13], which outperform existing current state-of-the-art lattice-
based encryption schemes by exploiting almost the full bandwidth of the error term
and the secret as further containers carrying messages. In terms of ciphertext ex-
pansion, we can embed about log(ag/4.7) bits of data per coefficient of size log g bits
as compared to 0.5 bits for the best known encryption schemes with n = 512, where
n represents the main security parameter and aq denotes the discrete Gaussian pa-
rameter of the error term. Our constructions are essentially built upon the A-LWE
assumption introduced in Chapter 3, which enables existing encryption schemes
to strongly decrease the message expansion factor by means of additional message
containers supplied by A-LWE. This inherently leads to new cryptographic appli-
cations allowing for high data load encryption and customized security properties
as required, for instance, in economic environments such as stock markets and for
financial transactions. To this end, we give the first lattice-based RCCA-secure
encryption scheme together with constructions ensuring CCA1 and CCA2 security,
respectively. Additionally, we provide these constructions also with an optional mode
for high data load encryption, which allows to efficiently encrypt huge amounts of
data at the expense of a minimal increase of the running time. We also show that ex-
isting encryption schemes can be improved by use of our newly developed tools such
that the resulting constructions still follow the one-time pad approach while at the
same time entailing further messages in the error-term at essentially no costs. Our
work also comprises a novel asymmetric authenticated encryption scheme, which
opens up the possibility to employ lattice-based signatures following the discrete
Gaussian distribution as error vectors, hence realizing an authentication mechanism
for encrypted data. The security of those constructions basically stems from the
hardness to solve the A-LWE problem.

Chapter 5 - CCA-Secure Encryption Scheme from A-LWE in Practice

From A-LWE it is possible to build powerful encryption schemes that theoretically
outperform existing lattice-based encryption schemes due to the possibility of hid-
ing data in the error term. This argument is mainly supported by two observations:
(1) the simplicity of encrypting data, where ciphertexts resemble basic LWE in-
stances, and (2) a low ciphertext expansion factor as compared to the most efficient
encryption scheme due to Lindner and Peikert presented at CT-RSA 2011. However,
the efficiency also depends on the quality of the trapdoor, which is crucial particu-

1. Introduction

larly for the performance in the decryption step.

We present an instantiation of the A-LWE based CCA-secure encryption
scheme [P1, P2, P13] using the currently most efficient trapdoor construction for
ideal lattices [P9]. To this end, we consider both the standard model and ran-
dom oracle variants of A-LWE. In particular, we restrict to the ring setting R, =
Z41X]/ (X™+ 1) with prime modulus ¢ satisfying ¢ = 1 mod 2n for n = 2*, and
introduce different tools that allow for efficient operations in this setting. Beside
of various inversion algorithms, we introduce a new CDT-like discrete Gaussian
sampler outperforming current state-of-the-art samplers such as the standard CDT
sampler or Knuth-Yao. Furthermore, we give a thorough security analysis as well
as an efficient implementation of the scheme both in the random oracle model and
the standard model. Finally, we compare the implementations of our constructions
with the CPA-secure encryption scheme due to Lindner and Peikert attesting the
presumed efficiency of our scheme.

Chapter 6 - Improvement of the GPV Signature Scheme

The GPV signature scheme represents a cornerstone for building provably secure
lattice-based signature schemes. It is based on preimage sampleable trapdoor func-
tions, a main building block of many lattice-based cryptosystems, allowing to solve
SIS instances with the knowledge of a suitable trapdoor serving as secret key. Re-
cently, Micciancio and Peikert proposed efficient constructions of preimage sam-
pleable trapdoor functions. However, the practical impact of the GPV signature
scheme involving any of the existing trapdoor constructions has never been investi-
gated. This is mainly due to complex procedures making the resulting scheme less
efficient.

In our work [P9] we address this research problem and provide an efficient imple-
mentation of the GPV signature scheme instantiated with the trapdoor candidate
due to Micciancio and Peikert. To this end, we introduce a trapdoor variant for
ideal lattices that allows to perform ring operations more efficiently as compared to
a straightforward approach or the corresponding matrix variant. Furthermore, we
propose several theoretical improvements enhancing the efficiency of the scheme by
simplifying the key and signature generation algorithms leading to improved running
times and space requirements.

1. Introduction

Chapter 7 - Compression Scheme for Signatures

Quite recently, a sequence of new lattice-based signature schemes have been pro-
posed. However, despite of increasing efficiency lattice-based signatures still suffer
from huge signature sizes as compared to their classical counterparts. This mainly
follows from the underlying constructions or implicitly from the requirements of the
security proof.

This chapter is devoted to a novel and generic construction of a lossless compression
algorithm for Schnorr-like signatures utilizing publicly accessible randomness [P5].
Conceptually, exploiting public randomness in order to reduce the signature size has
never been considered in cryptographic applications. We illustrate the applicabil-
ity of our compression algorithm using the example of the signature scheme due to
Gentry et al. (GPV scheme) instantiated with the efficient trapdoor construction
from Micciancio and Peikert. This compression scheme benefits from increasing the
main security parameter n, which is positively correlated with the compression rate
measuring the amount of storage savings. For instance, GPV signatures admit im-
provement factors of approximately lgn implying compression rates of about 65%
at a security level of about 100 bits without suffering loss of information or decrease
in security, meaning that the original signature can always be recovered from its
compressed state. In the second part of this chapter, we present a multi-signer
compression scheme in case more than one signer agree to share the same source
of public randomness. Such a strategy of bundling compressed signatures together
to an aggregate has many advantages over the single-signer approach and is even
applicable in combination with lattice-based aggregate signature schemes such as
the SAS scheme being introduced in Chapter 5.

Chapter 8 - Sequential Aggregate Signature Scheme

Sequential aggregate signature schemes (SAS) constitute important primitives, when
it comes to save memory or the amount of traffic in the presence of multiple signers.
Generally speaking, SAS schemes enable any group of signers ordered in a chain to
sequentially combine their signatures such that the size of the aggregate signature
is much smaller than the total size of all individual signatures.

We propose the first lattice-based sequential aggregate signature (SAS) scheme [P6]
that is provably secure in the random oracle model (RO). Moreover, we instanti-
ate our construction with trapdoor function families and describe how to generate
aggregate signatures resulting in one single signature. In particular, we instantiate
our construction with the provably secure NTRUSign signature scheme presented by
Stehlé and Steinfeld at Eurocrypt 2011. This setting allows to generate aggregate
signatures being asymptotically as large as individual ones and thus provide optimal
compression rates as known from RSA-based SAS schemes.

1. Introduction

Chapter 9 - Representation Formula for Lattices

In previous works many algorithms have been proposed in order to solve the under-
lying lattice problems practically. As a consequence of such a methodical approach,
the exact solutions to these problems are described algorithmically with respect to
the considered algorithms.

We propose representation formulas for several lattice problems [P14] such as the
number of lattice points inside a domain or the solution of LWE using tools from
complex analysis. By use of generalized Cauchy integrals from complex analysis,
however, we can express the solution of the respective problems as a finite sum of
integrals leading to a general representation formula. Generally speaking, the num-
ber of lattice-points inside a domain such as an n-dimensional ball is an important
quantity required in many lattice attack algorithms in order to estimate the attack
complexity. Usually, this is done via the Gauss heuristic which does not provide
exact solutions. To this end, we particularly focus on the one- and two-dimensional
case, where the former is indeed applied in cryptographic applications such as the
hidden number problem (HNP) and the one-dimensional LWE problem. The lat-
ter is related to elliptic functions with the Weierstrass zeta function representing
one of the main building blocks. This sheds a different light on the considered
lattice problems and thus extends the existing theoretical framework. In the one-
dimensional case, for instance, we are able to reflect the periodicity of lattices by
means of trigonometric functions resulting in a closed and easy to understand expres-
sion. Subsequently, it is possible to deduce relations such as conditions for selecting
parameters of interesting lattice problems.

2. Preliminaries

2.1. Notation

We denote vectors by boldface lower-case letters, e.g., p, whereas we use for matrices
boldface upper case letters A. We will use the polynomial rings R = Z[X]/ (f(X))
and R, = R/¢R for a monic and irreducible polynomial f(X) over Z and modulus
q. Throughout this thesis we will mainly consider ¢ = 2" for £ > N or prime moduli.
By R* we denote the ring of units in R. For the ring-LWE problem, we consider
cyclotomic polynomials, such as f(X) = X" 4 1 for n being a power of 2. The
m-~th cyclotomic polynomial with integer coefficients is the polynomial of degree
n = ¢(m), whose roots are the primitive m-th roots of unity. We also indicate ring
elements by lower-case bold letters, e.g., p, and denote vectors of ring elements by
p- The topological closure of a domain D in a Euclidean vector space is specified by
D. By @ we define the XOR operator. We let [¢] denote the set {1,...,¢} for any
¢ € N>1. By V =wy,...,v, we indicate a sequence of elements. If X is a set, we
write z <—r X to denote that z is sampled uniformly from X'. If X is a distribution,
x <pr X means that x was sampled according to X. The statistical distance of two
distributions X; and X3 denoted by A(X}, X3) over a countable set S is defined by

A(X, Xp) = 5 3 e 1X1(s) — Xa(s)]-

2.2. Lattices

We start by defining Euclidean vector spaces F, which represent finite-dimensional
vector spaces over the field R of dimension dimg(E) = [E : R]. A Euclidean vector
space E is equipped with the so-called inner product map (-,-) : Ex E — R
satisfying

¢ (Linearity) (x+y,z)=(x,2)+ (y,2), rx,y) =7(X,y)
e (Symmetry) {y,x) = (x,y)
e (Positive Definite) (x,x) > 0.

The topology of a Euclidean vector space is defined by its distance function
d(x,y) = ||x —y||, which exists since F is also a metric space. For E = R", for
instance, we define d(x,y) = /(X,y). A subset A of a Euclidean vector space is
said to be discrete, if there exists an € > 0 for each x € A such that the only element
y satisfying d(x,y) < € is y = x, meaning that the discrete topology of A is defined

2. Preliminaries

by the distance function d(-, -).

A discrete subset A of a Euclidean vector space E forms a lattice, if it is an additive
subgroup of F and there exist n linearly independent vectors bq,...,b, € E such
that the integer linear combinations of these vectors generate A. More specifically,
we have

A(B) = {Zn: .CCibi | x; € Z} = iZbi,
=1 i=1

where B = [by, ..., b,] is called basis of A(B). Moreover, the set A(B) is isomorphic
to Z"™ as an abelian group. Throughout this thesis, we mainly consider integral
lattices as they are typically used in cryptographic applications. In particular, we
are mostly concerned with g-ary lattices Aj(A) and Ay(A), where ¢ = poly(n)
denotes a polynomially bounded modulus and A € Zj*™ is an arbitrary matrix
such as a uniform random matrix. Aql (A) and A4(A) are defined by

€L m _
Ay(A) = {x€Z™ | Ax=0 mod g}
AJA) = {x€Z™|TscZ"st.x=A"s modq}.

with gZ™ C AL (A), A, (A) C Z™.

Definition 2.1 (Dual Lattice). Let A be a lattice in R™. Its dual lattice A* is
defined by
N ={xeZ"| (x,2) e ZVz € A}.

Specifically, if B represents a full-rank basis of A, then a basis of its dual lattice is
given by (BT)™1L.

Definition 2.2 (Determinant). The determinante of an integral lattice A with
basis B € Z"*"™ is defined by the map

det A = y/det(BBT).

The determinant of A;-(A) for a uniformly sampled matrix A € Z2*™ and suffi-
ciently large m > n is with very high probability ¢".

2.3. Discrete Gaussian Distribution

The discrete Gaussian distribution constitutes one of the main building blocks of
lattice-based cryptographic schemes. It is often applied as a requirement of the se-
curity proof or due to its properties to sample small vectors with high probability,
a desired feature in lattice-based cryptography.

Therefore, let ¢ € R™ be a vector, s a positive real and A C R™ a lattice. Denote
by Dp.c,s the n-dimensional discrete Gaussian distribution over A, centered at c,

2. Preliminaries

with parameter s. For x € A, the distribution Dy s assigns the probability

Dpe,s(x) == Z?C;c(j()z) with pe s(x) = exp (—71' IIx — c||2 /s2> .

zEA

We recall the smoothing parameter introduced by Micciancio and Regev in [MR04],
which will be required in several parts throughout this thesis.

Definition 2.3. For any n-dimensional lattice A and positive real € > 0, the smooth-
ing parameter 1.(A) is the smallest real s > 0 such that py;,(A*\{0}) < €.

2.4. Computational Problems

In the following section, we introduce some computational problems arising in lattice
theory, which also build the foundations for many of the lattice-based cryptographic
schemes. We start with the definition of successive minima required to describe the
related lattice problems.

Definition 2.4 (Successive Minima). Let B,.(0) = {x € R" | ||x||, <7} be the n-
dimensional open ball with radius r € Rsq centered at 0. The k-th minimum A (A)
of a lattice A is the radius of the smallest ball centered at O such that it contains k
linearly independent lattice vectors or formally

Ae(A) = inf{r | dim(span(A N B-(0))) > k}.

The closest vector problem (CVP) and its approximated version CVP,, are recalled
in the following definition.

Definition 2.5 (y-Closest Vector Problem CVP,). Let A be an integral lattice
with basis B € Z™*™ and t € R™ be a target vector. The approximate closest vector
problem CVP, asks to find a lattice point x € A satisfying

I = tlly <5 minfly —tll,, x € A
y#x

for a real number v € R>1.

For v = 1, the challenger is required to solve exact CVP and find a closest vector
lattice vector to the target, whereas for v > 1, a relaxed version of the former,
allows the challenger to find any lattice vector close to the target but bounded to
the distance of at most = - I)ll’lele\l ly — tlf5.

y#x
Accordingly, we define the shortest vector problem as follows.

Definition 2.6 (7-Shortest Vector Problem SVP.). Let A be an integral lattice
with basis B € Z™*™. The approzimate shortest vector problem SVP. asks to find a

10

2. Preliminaries

non-zero lattice vector x € A with distance of at most

Ixlly < - min lyfl,, x €A

y#x,0
to the origin for a real number v € R>p.

The approximate version SVP, is a relaxed version of SVP in case v > 1 analogous
to the CVP case. However, for v = 1 we have the exact version of SVP requiring to
find a shortest non-zero lattice vector.

Definition 2.7 (y-Shortest Independent Vector Problem SIVPs). Let A be an
integral lattice with basis B € Z™"*™. The approximate shortest independent vector
problem SIVPﬁ asks to find k linearly independent basis vectors vi,..., Vg such that

[villy <7 - A(A)

for1 <4<k and a real number v € R>1.

The decision version of the problems CVP, and SVP,, are in the literature referred
to as GapCVP, and GapSVP.,. We omit a description for these problems as they are
of minor interest in this thesis.

For cryptography, we consider average-case problems that are used to instantiate
lattice-based schemes more efficiently than basing the security on worst-case in-
stances. In particular, the SIS and LWE problems represent important average-case
problems boosting the construction of new lattice-based cryptographic primitives in
recent years. The SIS problem is defined with respect to g-ary lattices introduced
earlier in Section 2.2 and serves as an underlying computational problem for many
signature schemes.

Definition 2.8 (SIS-Problem). Given a uniform random matriz A € Zy*™, the
SIS(n, m, q, B) problem asks to find a short vector x € Z\0 such that Ax = 0 mod ¢
and [|x[|, < B.

Put it another way, in Definition 2.8 an instance of the shortest vector problem
in the g-ary lattice Aj (A) is required to be solved. In [GPV08] a tight proof for the
worst-case to average-case hardness of the SIS problem has been proposed, where
the first such connection was established by Ajtai in [Ajt96] and later on improved
[MRO4].

Theorem 2.9 ([GPVO08]). For poly-bounded m, 5 = poly(n) and for any prime q >
B-w(y/nlogn) the average-case problem SIS(n,m, q, 8) is as hard as approzimating
SIVP, in the worst-case to within factors v = - O(y/n).

The second average-case problem, called the Learning with Errors problem or
LWE, is applied in many lattice-based encryption schemes due to its features co-
inciding with the ones desired for encryption. Below we define the LWE distribu-
tion [Reg05]. For our purposes, we only focus on discrete Gaussian distributed error
vectors. One can easily define LWE with respect to any error distribution.

11

2. Preliminaries

Definition 2.10 (LWE Distribution). Let n,m,q be integers and x. be a distri-
bution over Z. Fors € Zy, define the LWE distribution L,';l%aq to be the distribution
over Zy™™ x Zy" obtained by first drawing A < g Zy*™ uniformly at random, sam-

pling € < Dzm oq and finally returning (A, b1) € L™ X L with bl =sTA+e’.

An overview of the computational problems arising from LWE are specified as
follows.

Definition 2.11 (Learning with Error (LWE)). Let (A,b) be a sample from

L';XXEQQ and c be uniformly sampled from Zg'.

The Decision Learning with Error (decision LWE,, 1, oq) problem asks to distinguish
between (A,b") and (A,c") for a uniformly sampled secret s <g Ly -

The Search Learning with Error (search LWE,, 1, oq) problem asks to output the vector
s € Zy gwen LWE samples (A, b) for a uniformly sampled secret s < g Ly .

We say decision LWE,, 1,4 (resp. search LWE,, ;, o4) is hard if all polynomial time
algorithms solve decision LWE,, ;, og (resp. search LWE,, ;,, oq) only with negligible
probability.

2.5. Cryptographic Primitives

In the following section we introduce the abstract representation of certain crypto-
graphic primitives that are of prime interest in this thesis. We restrict our consid-
erations mainly to encryption schemes and digital signature schemes. We defer a
description of trapdoor functions and its properties to the second part of this thesis
concerning signature schemes.

2.5.1. Encryption Schemes

Let M denote the plaintext space and C the associated ciphertext space. The general
description of a probabilistic public key encryption scheme involves three algorithms
given by the triple £ = (KGen, Enc, Dec).

KGen(1™) On input 1" the algorithm KGen(1™) outputs a key pair (pk, sk), where
sk is the secret key and pk is the public key.

Enc(pk, 1) The encryption algorithm is a function Encpi : M — C indexed by the
public key, that maps a message . € M to a ciphertext ¢ € C under the public
key pk.

Dec(sk, c) The decryption algorithm is the inverse function Decg : C — M in-
dexed by the secret key, that on input a valid ciphertext ¢ computes the
corresponding plaintext p € M under secret key sk, otherwise it outputs L.

12

2. Preliminaries

A probabilistic public key encryption scheme is said to be indistinguishable under
chosen plaintext attack (IND-CPA), if an adversary with black box access to the en-
cryption oracle (OEncpk(+)) is not able to make a correct guess within a polynomial
number of time steps in the following experiment.

Experiment Expign‘i(CPA(n)

(pk, sk) < KeyGen(1%)

(1o, 1) = ACE () (cHOOSE, pk)

cp < Encp () for b < {0,1}

v« ACEnek() (GuEss, cp)
Output 1 iff

1.V =0b

2. |po| = |p1]

In particular, the scheme is IND-CPA secure if the adversary A has negligible
advantage over random guessing, that is he wins the game above with probability

P Exp?‘il_CPA

(m) =1]= 5 +eln)

for a negligible function €(n) in the security parameter n. In the following section
we recall the definitions of (replayable) chosen ciphertext security of encryption

schemes.

(Replayable) Chosen Ciphertext Security

Let & = (KeyGen, Enc,Dec) be a public key encryption scheme and consider the
following experiments for atk € {ccal, cca2, rcca}:

Experiment Expgl(i‘—atk(n)

(pk, sk) < KeyGen(1F)
(1o, 1) = AP=() (CHOOSE, pk)
Cp < Encpk(/,tb) for b <R {0, 1}
v +— A%20)(GuEss, ;)
Output 1 iff

1.V =0

2. pol = |p]
3. ¢, was not queried to Os

13

If A queries Oz(c), and
- if atk = ccal, then return L.
- if atk = cca2, then return Dec(sk, c).
- if atk = rcca and Dec(sk, ¢) & {10, t1},
then return Dec(sk, c).
- Otherwise, return L.

2. Preliminaries

Definition 2.12 (Chosen-ciphertext secure encryption). Let £ = (KeyGen, Enc, Dec)
be a public-key encryption scheme.

CCA1 security. We say & is secure against non-adaptive chosen-ciphertext attacks
(CCA1) if we have

Pr[Exp?t‘;ccal(n) = 1] < negl(n)
for all polynomial-time algorithms A.

CCA2 security. We say &£ is secure against adaptively chosen-ciphertext attacks
(CCA2) if we have

Pr[Exp2, “2(n) = 1] < negl(n)
for all polynomial-time algorithms A.

RCCA security. We say £ is secure against replayable chosen-ciphertext attacks
(RCCA) if we have

Pr[Expgt,'fL(rcca (n) = 1] < negl(n)
for all polynomial-time algorithms A.

There exists a strict hierarchy in the security notions. That is, CCA2 security
implies RCCA security which in turn implies CCA1 security. All the above security
notions are formulated following the indistinguishability approach. We note that
alternatively one could define the security in a non-malleability approach yielding
NM-CCA1, NM-CCA2, and NM-RCCA. Here, an adversary given an encryption of
up is essentially not able to output an encryption of w;_p. The non-malleability
notions imply the indistinguishability counterparts. However, the other direction
does not hold in general, for instance for CCA1l security. Moreover, the notion
of non-malleable replayable CCA is strictly stronger than the indistinguishability
notion of replayable CCA for polynomial message spaces [CKN03].

2.5.2. Digital Signature Schemes

Denote by M the message space. A digital signature scheme is composed by three
algorithms S = (KGen, Sign, Verify), which are defined as follows.

KGen(1™) On input 1" the algorithm KGen(1™) outputs a key pair (pk,sk), where
sk is the secret key and pk is the public key.

Sign(sk, 1) The signing algorithm Signg (1) is a probabilistic function indexed by
the secret key, that outputs a signature o for a message u € M under the
public key sk.

14

2. Preliminaries

Verify(sk, o, 1) The verification algorithm Verify, (o) is a deterministic algorithm
indexed by the public key, that outputs 1 in case o is a valid signature of the
message 4 under public key pk, otherwise it outputs 0.

A probabilistic public key encryption scheme is said to be existentially unforgeable
under chosen message attacks (EU-CMA), if an adversary with black box access to
the signing oracle (OSigng(+)) is not able to produce within a polynomial number of
time steps a valid signature on message of choice, for which OSigng, (-) has not been
queried before.

Experiment ExpEUA_CNIA (n)

(pk, sk) « KeyGen(1*%)
(1%, 0*) + AO5E() (CHOOSE, pk)
Output 1 iff
1. Verify(sk,o*, p*) =1
2. p* has not been queried before.
The adversary wins the game if he succeeds in the experiment EXpEE{;CMA(n)
with non-negligible advantage. Conversely, the scheme is EU-CMA secure if the
adversary wins the game with probability

Pl Exp5; ™M (n) =1] < e(n)

for a negligible function €(n) in the security parameter n. An even stronger secu-
rity notion in this context is to provide strong unforgeability under chosen message
attacks (SU-CMA), which will be considered in Chapter 8 in more detail when intro-
ducing sequential aggregate signatures based on lattices. In the corresponding game
the adversary is additionally allowed to produce a valid signature on already queried
messages. In this case the signature is only valid, if it has never been returned to
the adversary before.

15

Part |I.

Lattice-based Encryption

16

Overview

The design of provably secure encryption schemes relying on worst-case lattice prob-
lems was initiated by the seminal work of Ajtai and Dwork [AD97]. The security
of this scheme is based on the worst-case hardness of approximating SVP within
polynomial factors. Several other works followed with focus on improving the ef-
ficiency [GGH97a, Reg04]. Ever since the breakthrough work of Regev [Reg05],
the learning with errors assumption and its ring variant [LPR10] are widely used
in lattice-based cryptography to base the security of cryptographic schemes upon
LWE. Indeed, since then lattice-based cryptography emerged and novel encryp-
tion schemes have been built upon this assumption, such as fully homomorphic
encryption [Gen09, BV1la, GH11, Bral2, BGV12| and identity-based encryption
schemes [GPV08, CHKP10, ABBI10a, ABBI10b] besides of CPA-secure
[Reg05, PVWO08, LPR10, LP11, LPR13]| and CCA-secure encryption schemes [PWO08,
Pei09, MP12, Peil4]. Many of those encryption schemes utilize LWE in order to blind
certain sensitive data following the one-time-pad approach. The LWE problem is
qualified for building lattice-based encryption schemes due to two nice properties
LWE instances embody. First, LWE instances are indistinguishable from uniform
random samples, hence hiding its character from public viewers. This follows from
the decision problem of LWE. Second, once knowing that a given sample represents
indeed an LWE instance (e.g., in encryption schemes), searching for the secret vector
or the error term used to build LWE samples is as hard as quantumly approximating
SIVP resp. GapSVP in n-dimensional worst-case lattices for error vectors following
the discrete Gaussian distribution. These properties intuitively coincide with the
desirable features of encryption schemes.

More specifically, the LWE problem exists essentially in two variants, the decision
and search version. Following this, the challenger is given a poly(n) number of in-
dependent samples (A;,b,) € Zy™™ x ZLy', where A; <—g Zy*™, €; <R X, and
bZT =slA; + e;r mod ¢ for s € Zy and some arbitrary distribution x over Z™,
typically discrete Gaussian. He is then asked to distinguish those samples from uni-
formly random samples from ngm X Zg". In search-LWE, however, the challenger is
required to find the secret s. Besides its presumably quantum hardness, one of the
most noteworthy properties lattice-based assumptions offer is worst-case hardness
of average-case instances. Starting with the works of Ajtai [Ajt96] and Micciancio
and Regev [MRO04], the hardness of some average-case instances of the SIS problem
was shown to be hard as long as worst-case instances of the (decision version of
the) shortest vector problem, known as GapSVP, are hard. The worst-case hard-
ness of LWE was first stated by Regev [Reg05]. Regev showed that if the error
vector follows the discrete Gaussian distribution Dzm o, with parameter ag > 2y/n,

17

2. Preliminaries

solving search-LWE is at least as hard as quantumly solving O(n/a)-SIVP and
GapSVP in n-dimensional worst-case lattices. Later, Peikert [Pei09] and Braker-
ski et al. [BLPT13] gave a classical reduction from GapSVP to LWE. In [DMQ13]
Dottling and Miller-Quade proved the hardness of LWE for uniformly distributed
errors. Subsequently, Micciancio and Peikert [MP13] showed that LWE remains
hard even for binary errors.

This part consisting of Chapters 3-5 represents a reprint of the essential parts
of [EDB15, EB15a, EB15b]|, where the author of this thesis was also the primary
investigator and author of the publications.

18

3. Augmented LWE and its Hardness

The Learning with Errors (LWE) problem has gained a lot of attention in recent years
leading to a series of new cryptographic applications. Specifically, it states that it is
hard to distinguish random linear equations disguised by some small error from truly
random ones. Interestingly, cryptographic primitives based on LWE often do not
exploit the full potential of the error term beside of its importance for security. To
this end, we introduce a novel LWE-close assumption, namely Augmented Learning
with Errors (A-LWE), which allows to hide auxiliary data injected into the error
term by a technique that we call message embedding. In particular, it enables
existing cryptosystems to strongly increase the message throughput per ciphertext.
We show that A-LWE is for certain instantiations at least as hard as the LWE
problem. This inherently leads to new cryptographic constructions providing high
data load encryption and customized security properties as required, for instance,
in economic environments characterized by a large number of transactions. The
security of those constructions basically stems from the hardness to solve the A-
LWE problem.

3.1. Main Obstacles

Cryptographic constructions which rely on the LWE assumption usually sample an
error term according to some distribution, most often Gaussian. Such a choice has
many advantages over other distributions. However, many of the existing LWE-
based schemes do not exploit the full potential of the error term. This observation
is mainly due to three reasons, which can be summarized using the example of
encryption schemes.

e First, previous LWE-based encryption schemes produce ciphertexts mainly
following the idea of one-time pad encryption, where LWE samples play the
role of random vectors. As a consequence, the underlying constructions heavily
rely on the error term to be short in order to correctly recover the message.
A major drawback of such schemes is the waste of bandwidth, i.e., all bits
created for the error term are sacrificed for a few message bits.

e Second, there exist no proposals using the error term or other involved ran-
dom variables as additional containers carrying auxiliary data, besides of its
task to provide the required distributions. Once recognizing its feasibility, it
fundamentally changes the way of building cryptosystems. For instance, in
encryption schemes one may inject the message into the error term without
necessarily changing the target distributions.

19

3. Augmented LWE and its Hardness

e Third, there is a lack of efficient trapdoor functions that recover the secret and
the error term from an LWE instance, which is obviously a necessary condition
for exploiting the error term. Only a few works such as [SSTX09, MP12]
provide mechanisms to recover the error term. The most promising trapdoor
candidate is proposed by Micciancio and Peikert [MP12].

We make the following conclusions. The above limitations of LWE intuitively ask
for an alternative LWE definition that accounts for the modifications made to the
error term, while ensuring essentially the same hardness results as the traditional
LWE problem. Since such an assumption already encompasses message data within
the error term, one obtains, as a consequence, a generic and practically new en-
cryption scheme secure under the new variant of the LWE assumption, where the
trapdoor function is viewed as a black box recovering the secret and the error vector
from a modified LWE instance. The message is subsequently extracted from the
error vector. This allows one to exploit the full bandwidth of the error vector with
full access to all its entries and not just its length. Remarkably, one could even com-
bine this approach with existing methods for encryption in order to further increase
the message throughput per ciphertext. In the following sections we address this
challenge and give a detailed description of how to exploit the error vector. This
chapter is refers to the publications [EDB15, EB15a, EB15b|, where the author of
this thesis was also the primary investigator and author of the publications.

3.2. Our Contribution

Based on these observations and subsequently made conclusions, we start by giving
an alternative LWE definition, called Augmented LWE (A-LWE), that extends the
existing one by modifying the error term in such a way that it encapsulates ad-
ditional information. We further show which instantiations yield A-LWE samples
that are indistinguishable from traditional LWE samples, thereby enjoying the hard-
ness of traditional LWE. In conjunction with the high quality trapdoor candidate
from [MP12], we have full access to the error term. This result inherently yields
new cryptographic applications, which ensure security in various models while si-
multaneously allowing for high data load encryption that is applicable, for instance,
in financial environments such as stock markets operating with huge amounts of
stock information. It is even possible to encrypt lattice-based signatures much more
efficiently than ordinary messages, which is an interesting technique for internet
protocols, where the acknowledgement of ip-packets represents an important mea-
sure for reliability. In this case, the whole entropy of the error term is supplied by
lattice-based signatures.

Methodology of Message Embedding. In many lattice-based cryptographic
schemes, one has to sample error terms following the discrete Gaussian distribution
as a requirement for the scheme to be secure. This is often due to an LWE-based

20

3. Augmented LWE and its Hardness

security reduction. The key concept underlying our proposal is to embed further
information in the error term e € Z™, but in such a way that the distribution of the
augmented error term is computationally close to the discrete Gaussian distribution
over Z'™™. We also show that one can embed messages in uniformly distributed er-
ror vectors more efficiently, hence avoiding complex operations applied for discrete
Gaussians.

The idea of our technique is the following. We employ a simple preimage sam-
pleable full-rank matrix B € Zglxm for integers p,m,n’ € N such as B = I with
n’ = m in order to sample vectors following the discrete Gaussian distribution
DpiBy, with 7 > n.(B) and a negligible parameter . Samples e € Z™ dis-
tributed according to Dpg), for instance, satisfy the equation I-e = v mod p

for an arbitrary selected syndrome v € Z;*. Let F : {0,1}* — {0,1}"" o8P pe
some random function and (encode, decode) a pair of algorithms which allows one
to switch between the representations Zﬁl and {0, l}l for I = n'logp. We com-
pute a random coset v = encode(F'(seed) @ m) € Zgl, where m € {0,1}' denotes
an arbitrary message of length [bits. We first show that the distribution Dy 1y,
is statistically/computationally indistinguishable from D, in case the coset v
is selected statistically/computationally close to uniform. In fact, we prove that
if F' is instantiated by a cryptographic hash function modeled as a random ora-
cle, v is indeed indistinguishable from uniform. We only have to take care that
the input to the function F', namely the seed, has sufficient (computational) min-
entropy. Whoever has access to this seed can deterministically recover the message
by m = decode(B-e mod p)@® F'(seed). This result immediately impacts all schemes
that allow for error term recovery, as it enhances the compactness of the scheme. In
the standard model variant, the function F' is instantiated by a pseudo random gen-
erator (PRNG) resulting in distributions being computationally indistinguishable
from discrete Gaussians over Z™.

Augmented Learning with Errors in the Random Oracle Model. The goal is to
present an encryption scheme that does not suffer from high message expansion
factors and simultaneously allows to fully take advantage of the aforementioned
properties of LWE instances, where the representation of ciphertexts is very close
to that of ordinary LWE samples. Embedding auxiliary private information into
the error term raises certain new computational problems. In addition to the secret
and error vector of an LWE instance, also the new embedded message is concealed.
In fact, we claim that LWE samples modified as above are indistinguishable from
uniform even for adversarially chosen messages. To this end, we introduce a novel
problem, namely the Augmented LWE (A-LWE) problem, which differs from the
traditional LWE problem only in the way the error term is produced. More specifi-
cally, we split the error term e € Zg* of LWE into e = (ej, ez), where e; € Z™! and
e € Z™2. An A-LWE sample is then distributed as follows. For a given s € Zg,
first choose A < g ngm uniformly at random. Then, sample e; <—r Dzmi o4 and
€2 <R DpL(B),ag» Where v = encode(F (s, e1) @ m) for some function F'. The tuple

21

3. Augmented LWE and its Hardness

(A, bt = sTA + eT) represents an A-LWE sample. We show that distinguishing
A-LWE samples from traditional LWE samples is hard for properly chosen random
function F'. More formally, if F' = H is a cryptographic hash function modeled
as a random oracle, the tuple (s, e;) has sufficient entropy in each sample and the
LWE problem for parameters m, n, «, g is hard to solve, then we obtain a negligible
computational distance between the LWE and A-LWE distributions. Thus, we im-
mediately deduce the hardness of A-LWE from LWE. As an immediate consequence,
the confidentiality of the message is protected as long as decision A-LWE and hence
decision LWE is hard.

Augmented Learning with Errors in the Standard Model. The final step is to
convert the A-LWE problem into an alternative that is hard under standard as-
sumptions. This is indeed attained via some small modifications involving a compu-
tational extractor resp. PRNG. Due to this simple modification, we can translate all
encryption schemes based on the random oracle variant of A-LWE into the standard
model setting. In fact, we can show that samples (A, b') € Zy™™ x Ly constructed
as above with an error term (e1,e2) <—p Dzmi aq X DpL(B)aq € Z™MTM2 are in-
distinguishable from uniform random samples for v = encode(F'(seed) © m) € Z;"
and seed = Ce; mod q. Here F' = PRNG(:) denotes a PRNG that is fed with
an input seed statistically close to uniform as per the Leftover Hash Lemma for
a uniform random matrix C € Z*™ with t < (d — 2))/logq and d = Hu(e1).
Following this approach, we proof that decision A-LWE,, ;,; m..aq is hard to solve as-
suming the hardness of decision LWE,,_¢ ;,.oq (The RO case is based on the hardness
of decision LWE,, ;, oq). In principal, ¢ is chosen to be very small such as 12 — 15
in order to produce a seed with sufficient random bits. The resulting encryption
schemes are almost as efficient as in the RO model. However, we lose a small mes-
sage portion of size my - log(aq/4.7) bits due to e, which is sampled according to
,DZ""l,qu-

3.3. Learning with Errors Augmented with Auxiliary Data

In this section, we show how to inject further useful information in the error vectors of
LWE instances without necessarily changing its distribution. We call this technique
"message embedding” and formulate a modified LWE problem definition, namely
the Augmented LWE (A-LWE) problem, which involves an error term produced
by use of this new approach. We show that certain instantiations of the A-LWE
problem are as hard as the original LWE problem.

3.3.1. Message Embedding

We start explaining the core functionality of our work leading to conceptually new
cryptographic applications such as encryption schemes. In particular, we show how
to generate vectors that encapsulate an arbitrary message while simultaneously fol-
lowing the discrete Gaussian distribution Dzm ,.. More specifically, Lemma 3.2 and

22

3. Augmented LWE and its Hardness

Lemma 3.4 are used, which essentially state that a discrete Gaussian over the in-
tegers can be simulated by sampling a coset b € Zg’ uniformly at random for any
preimage sampleable full-rank matrix B € Zg’xm and then invoking a discrete Gaus-
sian sampler outputting a vector from Aﬁ (B) =c+ A;(B) for B¢ = b mod gq.
However, this requires the knowledge of a suitable basis for Aj(B). In fact, the
random selection of the coset b can be made deterministical by means of a random
oracle H or PRNG taking a random seed with enough entropy as input. The fact
that xoring a message m to the output of a random function F' does not change the
distribution, allows to hide the message within the error vector without changing its
distribution. As a result, we obtain e < D AL(B)m which is indistinguishable from
Dym , for b = F(seed) @ m using a random seed and properly chosen parameters.

More formally, let the very simple operations encode : {0, 1}”/ logp ZZ/ and
decode : ZZ/ — {0,1}"1°87 allow to bijectively switch between the bit and vec-
tor representations. The embedding approach is realized by use of any preimage
sampleable full-rank matrix B € Z%*™. A first idea of doing this is to sample
a preimage x <—r Dj1(g), With v = encode(m) for r > 7.(B) and an arbitrary
message m € {0,1}"'1°8P such that B - x mod ¢ = encode(m) holds. Sampling
from Dy i), for B =1 is performed very efficiently and can be reduced to samples
from Dyz44,,. However, since the target Gaussian distribution of many crypto-
graphic schemes, such as the LWE encryption schemes, requires to have support
7™, we have to modify the coset selection to m @ r for a randomly chosen vector
r «r {0, 1}”/ logP prior to invoking the preimage sampler. Below in Lemma 3.2 we
show that given this setup we indeed obtain a sample x that is distributed just as
Dym , with overwhelming probability. To illustrate this approach exemplarily, let
e € Z™ denote the error term. We then split the error term e = (e, ey) € Z™11™M2
into two subvectors, each serving for a different purpose. The second part e is used
for message embedding, whereas e; provides enough entropy in order to sample a
random vector r. To this end, one has to find a proper trade-off for the choice of
my and mso, since a too large value for my implies low entropy of e;. A reasonable
small lower bound is given by my > n, since the discrete Gaussian vector e; has
min-entropy of at least n — 1 bits as per [GPV08, Lemma 2.10].

The message embedding functionality comes at almost no cost, since it does not
involve any complex procedures. One proceeds as follows. First, it is required to
sample e < Dzm, , using an ordinary discrete Gaussian sampler such as the novel
one that we introduce in Chapter 5, then one computes u = encode(F(ey)) for
some random function F : {0,1}* — {0,1}™21°8” and finally samples a preimage
ey <—r Dpy (), for the syndrome v = encode(m & u) € Zg/ using a preimage
sampleable matrix B € ZZ/X’”?. Following this approach, the message is recovered by
computing m = F(e1) @ decode(B-es mod ¢). In many cryptographic applications
there are different random sources available, which can replace the role of e; such
that the complete bandwidth of e is exploited for data injection. In the following
theorems we prove that it is possible to simulate the discrete Gaussian distribution

23

3. Augmented LWE and its Hardness

Dzm - (statistically or computationally) by use of a preimage sampler for any full-
rank matrix B. For uniformly distributed error vectors, for which there exist also
worst-case reductions [DMQ13, MP13], the discrete Gaussian step is omitted and
the error vector is simply obtained via e = encode(m @ u) € Zy'?, where p denotes
the interval width of its components.

Lemma 3.1. ([MRO04, Lemma 4.4]). Let A be any n-dimensional lattice. Then
for any e € (0,1), s > n(A), and c € R", we have

1—¢
1+¢€’

psc(A) € 1] - ps(A).

Lemma 3.2 (Statistical). Let B € Z;*™ be an arbitrary full-rank matriz and
¢ = negl(n). The statistical distance A(Dzm ., D1 (m),) for uniform v «—pg Zy and
r > n.(A(B)) is negligible.

Proof. Consider the statistical distance between Dzm , and Dy 1 (g, where v € Zy

is chosen at random. Since B is a full-tank matrix, we have Z™ = J A{(B)
beZp
and p.(Z™) = Y pe(Ag(B)) € [175,1] - p™ - pr(Ay(B)). In the latter distribution
beZz

Dpy(), the process of sampling z € Z™ can be reduced to the tasks of selecting

the correct partition AL (B) with probability p% and subsequently sampling z from
AL (B) with probability #()(B)) Following this, Dy (g

with probability P[X = z] = pin) p(/fii(Z)(B))'
T\"'B.z

» outputs a sample z

,OT(Z) 1 pT(Z) ‘
ADznr Daymyy) = "o (AL(B))
B zezzjm pr(Z™) P pr(Ag,(B))

Lemnéa 3.1 Z Or (an _ PT(Z) |

zZeEZ™

Lemma 3.1 Pr (Z) Pr (Z)
T L@ R L)

beZp
1—e 1+4e€
= 2{: pr(2) __[1+E’1—e] pr(2)
reZm pr(Z™) pr(Z™)
2¢ pr(2) ‘
€ [’] Z m
1-e¢ zEL™ pT(Z)
2€
<
- 1—c¢

24

3. Augmented LWE and its Hardness

Lemma 3.3. Let X} be a distribution that is indistinguishable from X5 and M is
an efficient non-uniform PPT operation. Then, M(X}) is indistinguishable from
M(Xs).

Lemma 3.4 (Computational). Let B € Z;*™ be an arbitrary full-rank matriz.
If the distribution of v € Z; is computationally indistinguishable from the uniform
distribution over Zy, then DA‘%(B)W is computationally indistinguishable from Dgm ,

for r > n(A+(B)).

Proof. Let v' ~ U(Zy) be a vector chosen at random. By contradiction, we as-

. c . . Lemma 3.2 .
sume that e ~ D1 (p), is distinguishable from e ~ Dy1(B)r R Dym , in
v)

polynomial time for the given parameters and v chosen as above. Then, v is com-
putationally distinguishable from v/ by Lemma 3.3 with M (v;) = Dyy (B),r- Hence,
we have a contradiction. Therefore, the distribution Dyy(g), is corhputationally
indistinguishable from Dzm ,. .]

3.3.2. Augmented LWE - A Generic Approach

Based on the message embedding approach as described above, we introduce an al-
ternative LWE definition that extends the previous one in such a way that the error
term is augmented with additional information. We show how the modified error
distribution still coincides with Dzm ;. in order to allow for a reduction from LWE to
our new assumption. We start with a generalized description of the A-LWE distri-
bution, where F' stands for a random function. Below, in Section 3.4 and Section 3.5
we give a description of how to instantiate F' in order to obtain a random oracle
or standard model representation of the A-LWE problem and the related hardness
statements.

In the following, we introduce the A-LWE distribution and the computational
problems arising from this construction similar to LWE.

Definition 3.5 (Augmented LWE Distribution). Let n,n’,m,my, ma, k, q,p be inte-
gers with m = my+ma, where aq > ne(A+(B)). Let F : Z' x Z™ — {0, 1} 10e®) pe
a function. Let B € Z7*™* be a preimage sampleable full-rank matriz
(such as B = I). Fors € Zy, define the A-LWE distribution LQ"T';ZVY’E@,aq(m) with
m € {0,1}" '8 {0 be the distribution over Zy*™ x Ly obtained as follows:

Sample A <R Z;*™ and €1 <—g Dzmi a4 -

Set v =encode(F(s,e;) ®m) € Zg' .

Sample €2 <—r D1 () aq -

Return (A,b") where bT =s" A +e' with e = (e}, e3) .

Accordingly, we define the augmented LWE problem(s) as follows. As opposed to
traditional LWE, augmented LWE blinds, in addition to the secret vector s € Zj,

25

3. Augmented LWE and its Hardness

also some (auxiliary) data m € {0,1}""2. Thus, we have an additional assump-
tion that the message m is hard to find given A-LWE samples. Note that the
decision version requires that any polynomial bounded number of samples (A, bT)
from the A-LWE distribution is indistinguishable from uniform random samples in
Zy*™ x Zg'. Tts hardness implies that no information about s and m is leaked
through A-LWE samples. In some scenarios, e.g., in security notions of an encryp-
tion scheme, the adversary may even choose the message m. Hence, we require in
the corresponding problems that their hardness holds with respect to A-LWE dis-
tributions with adversarially chosen message(s) m except for the search problem of
m.

Definition 3.6 (Augmented Learning with Errors (A-LWE)).

Let n,n’,my, ma, p, q be integers and B € Zg/”’” be a preimage sampleable full-rank
matriz. Let P (placeholder) stand for the model underlying the respective setting,
where P is replaced either by RO for a random oracle model instantiation or S in
case of the standard model variant.

P
n,mi,mz,oq

The Decision Augmented Learning with Errors (decision A-LWE) problem

asks upon input m € {0,1}”/ 08P 40 distinguish in polynomial time (in n)
between samples (A;,b]) g Lﬁ;,';lvlv";n%aq(m) and uniform random samples
from Zy>™ x Zy for a secret s <R Zy .

The Search-Secret Augmented Learning with Errors (search-s A—LWEim17m27aq) prob-

lem asks upon input m € {0, 1}"/ 1087 4 output in polynomial time (in n) the
vector s € Zy! given polynomially many samples (Ai, b;) <—r LA AVE | (m)
for secret s <—p Zy.

The Search-Message Augmented Learning with Errors (search-m A-LWEf; —.

problem asks to output in polynomial time (in n) the vector m given polynomi-

ally many A-LWE samples (A;,b;) for a secret s <—g Z7 and m € {0,1}" logp,
We say that decision/search-s/search-m A LWE] . . . is hard if all polynomial
time algorithms solve the decision/search-s/search-m A LWE,, 1, ms,aq Problem only
with negligible probability.

We note that B can be specified to be the identity matrix I € Z;"2*™2 for n' = mo,
which has some very nice properties as we will point out in the next chapter. In
the following sections, we show that if the function F' is instantiated by a random
oracle or a PRNG in combination with a deterministic function, the hardness of
LWE is reducible to the hardness of A-LWE. To this end, we show that the LWE
and A-LWE distributions are computationally indistinguishable if we assume that
the former search problem is hard and the inputs to the function F' have sufficient
entropy in each sample given previous samples.

26

3. Augmented LWE and its Hardness

3.4. Our Construction in the Random Oracle Model

In this section F' is specified by a cryptographic hash function modeled as random
oracle H. Such a choice has three major advantages. First, the output distribu-
tion of the random oracle is the uniform distribution, hence a desirable feature
with regard to Lemma 3.4 and Lemma 3.2. More specifically, the syndrome in the
A-LWE distribution has to be selected uniformly at random. In fact, this require-
ment is ensured by use of H. One has only to take care that the input to H has
sufficient entropy. Second, the random oracle behaves deterministic on the same in-
put queries. Third, correlations among the involved random variables are destroyed
such that the aimed independence of the random variables can be guaranteed. This,
however, occurs with overwhelming probability for random inputs with enough en-
tropy. In this section F' is specified by a cryptographic hash function modeled as
random oracle H. Such a choice has three major advantages. First, the output dis-
tribution of the random oracle is the uniform distribution, hence a desirable feature
with regard to Lemma 3.4 and Lemma 3.2. More specifically, the syndrome in the
A-LWE distribution has to be selected uniformly at random. In fact, this require-
ment is ensured by use of H. One has only to take care that the input to H has
sufficient entropy. Second, the random oracle behaves deterministic on the same in-
put queries. Third, correlations among the involved random variables are destroyed
such that the aimed independence of the random variables can be guaranteed. This,
however, occurs with overwhelming probability for random inputs with enough en-

tropy.

3.4.1. A-LWE Distribution

When instantiating the A-LWE distribution from Section 3.3.2 with a cryptographic
hash function H modeled as random oracle, only step 2 has to be modified replacing
F by H.

Definition 3.7 (Augmented LWE Distribution). Let n,n’,m,mi,ma,q,p be in-
tegers with m = my + ma, where aqg > N(A+(B)) and € = negl(\) > 0. Let
H : Zy x 7™ — {0, l}n/'logp be a cryptographic hash function modeled as random
oracle and B € Zglme a preimage sampleable full-rank matriz. For s € Zy, define

the A-LWE distribution LAWE (m) with m € {0,1}" 87 to be the distribution

n,mi,ma,oq
over Zy™™ x Zg* obtained as follows:

Sample A < Z;*™ and €1 <—g Dzmi a4 -

Set v = encode(H(s,e1) ®m) € Zg' .

Sample €2 <—r Dr1(B)aq -

Return (A,b") where b =s" A +e' with e = (e}, e3) .

27

3. Augmented LWE and its Hardness

3.4.2. A-LWE Hardness

In the following section we present the hardness statements of the different A-LWE
problems. In particular, we differentiate between the decision problem and the
various search problems introduced in Definition 3.6.

Theorem 3.8. Let n,n',m,mi,mo,p,q be integers with m = mq + mo. Let H :
Zyx 7™ — {0,1}" 08P be o cryptographic hash function modeled as random oracle.

Let B € Z;}IX”” be a preimage sampleable full-rank matriz and agq > ng(Aql(B))
for a real € = negl(A\) > 0, where \ denotes the security parameter. Furthermore,
denote by xs and xe, the distributions of the random vectors s and ey involved in
each A-LWE sample. If Huo(s,e1) > A, then LATWE ~ (m) is computationally

n7m1 ’m2 7aq
LLWE

indistinguishable from Lp5%" . for arbitrary message m € {0, 1} logp,

LWE
n7m7a7q

Proof. We need to show that samples from L
Lﬁy‘;vy"fn%a’q(m) if we assume that the search LWE,, ;, o problem is hard to solve
in polynomial time and tuples (s, (e1);) for each sample i have sufficient entropy .
That is, LIVE , ~c LWE | (m) for arbitrary m € {0, 1} loep,

We consider a series of intermediate hybrid experiments. In the first hybrid, we
modify the A-LWE samples in such a way that we replace H (s, e;) with a uniformly
sampled value u. Here, we use the fact, that Hy(s,e;) > A and the same input
will be queried with negligible probability. Consequently, v = encode(H (s, e;) ® m)
becomes uniformly distributed. The next hybrid replaces e; by value €5 which is
sampled according to Dzm; ,. The resulting A-LWE distribution coincides with the

original LWE distribution. In the following we describe the hybrids more formally.

are indistinguishable from

Hybrid;. In the first hybrid, in each A-LWE sample we replace the value H(s,e;)
by a uniformly sampled value u € {0,1}""*. We argue that a (polynomial-
time) distinguisher notices the difference only if it queries the random oracle
on input (s,ep). Otherwise, if (s, e;) has not been queried before, the distribu-
tion of H(s,e) is statistically close to the uniform distribution in {0, 1}",'1°gp

due to the property of a random oracle drawing elements from the output
range uniformly at random. Moreover, we have Hy(s,e1) > A such that the
same input element (s,e;) will not be sampled again except with negligible
probability. This holds, in particular, if many samples are given to the distin-
guisher and all H (s, (e1);) have been replaced because by assumption we have
sufficient entropy such that all pairs (s, (e1);) are distinct with overwhelming
probability.

We comment on a distinguisher which queries the random oracle at a cer-
tain point on (s,e;) below in the proof, and assume for now, that no such
distinguisher exists.

Hybrid,. In the next hybrid, we replace the error term e by value e5 which is
sampled according to Dzm, ,. Note that A-LWE samples from Hybrid, satisfy
that v = encode(u @ m) is uniformly distributed since u is uniformly picked

28

3. Augmented LWE and its Hardness

(even if m is chosen by the distinguisher). Now, Lemma 3.2 implies that
Dpi(a),r is statistically indistinguishable from Dzms ;, for r > ne(A+(A)), if
H has not been queried on input (s, e;) before. For this reason, replacing es,
which is distributed according to Dyi(a),, by vector €5 is unnoticeable to a
distinguisher.

We argue that A-LWE samples from Hybrid, are indistinguishable from LWE sam-
ples. This follows from the fact that the error term in A-LWE is now identically
distributed as LWE which is the only difference between A-LWE and LWE samples.
We still need to argue that it is very unlikely that a distinguisher queries the random
oracle H on input (s, e;) for some e; used in an A-LWE sample.

Suppose that there exists an algorithm A which distinguishes in polynomial time
original A-LWE samples from A-LWE samples from Hybrid; with non-negligible
probability. We then construct an adversary Arw g with black-box access to al-
gorithm A that solves the search LWE,, ;;, o, problem in polynomial time with non-
negligible probability. This contradicts the theorem assumption that
search LWE,;, 1, «,q is hard.

Adversary Apw g is given samples from Lm/rﬁmq and is asked to find the secret
vector s. Let us denote by ¢* the query (s,e;) on H made by A, where ¢* is
polynomially bounded by the security parameter. Whenever algorithm A asks for
new samples, Arwg asks for samples in her challenge and forwards them to A.
That is, A obtains samples from L'WE = “instead of either version of LA--WE

n,m,o,q n,ml,mg,a,q(m)‘

Ly e a.q(m) is indistinguishable from

We have already shown via hybrids that
LTLL\,NmE’a’q, if (s, e1) was not sent to oracle H. This means that before A makes query
q* to H, those samples are indistinguishable. As a result, A must query H on input
(s,e1) even if given LWE samples. We stress that after returning the hash value of
(s,e1) to A it may be noticed that Arw g has tricked her. However, eavesdropping
the input to oracle H suffices for Arw g to break her search LWE,, ;4 problem
independently whether A aborts at this time. Hence, if A queries H on input (s, e;)
with non-negligible probability, so does Arw g solve the search LWE,, ;, o 4 Problem
with the very same probability. By assumption there does not exist such a successful
algorithm.

We conclude that the step from the original A-LWE samples to Hybrid; will be
unnoticeable to a distinguisher if search LWE,, ;;, o4 is hard, and both distributions

LTLL\,NmE,a’q and Lﬁ:,bvy";nz’mq(m) are computationally indistinguishable. O

Note that if the first error part e; has entropy exceeding the security parameter
A, the (computational) entropy induced by s is not required. This is important,
since a distinguisher could ask for many A-LWE samples using the same secret s
as input to the hash function. However, as typical in encryption schemes (e.g.,
in [Pei09, LPR10, LP11, MP12] and in ours), if we fix a random matrix A and
sample fresh secret vectors s «— Zj uniformly at random for each A-LWE sample,
we can indeed choose m1 to be zero. This corresponds to the case, where an A-LWE
sample is drawn once for every fresh secret s resulting in essentially unrelated A-

29

3. Augmented LWE and its Hardness

LWE instances. Hence, the secret s provides the sufficient randomness required as
input to H. Theorem 3.8 immediately entails the following statement.

Theorem 3.9. Let n,n',m, mi,mo,p,q be integers with m = my + mso. Let H be
a cryptographic hash function modeled as random oracle as defined in Theorem 3.8.
Let B € Zglx"m be a preimage sampleable full-rank matriz and og > T]E(A(IL(B)) for
a real € = negl(\) > 0. Furthermore, denote by xs and x., the distributions of the
random vectors s and ey involved in each A-LWE sample. If Hyo(s,e1) > A, then
the following statements hold.

1. If search LWE,, 1,,,aq s hard, then search-s A-LWERO s hard.

n,mi,ma,oq

2. If decision LWE,, .04 is hard, then decision A-LWER® is hard.

n7m1 7m2 7aq

3. If decision LWE,, 1, oq s hard, then search-m A-LWERO is hard.

n7m1 ’m2 7aq

Proof. As per Theorem 3.8, Lﬁ:}n\/y’%%aq(m) is computationally indistinguishable

from L';X‘,’,an. This proves the hardness of decision A—LWEnR,?nhm%aq and
search-m A—LWEﬁgth,aq. And by essentially the same arguments we also deduce
the hardness of search-s A- LWEQ(,%th’aq, because solving the search problem implies
distinguishability of A-LWE instances from uniform due to the knowledge of (s, e)
and by Theorem 3.8 we obtain distinguishability of LWE instances from uniform,

hence a contradiction. O

We note, that these hardness results can directly be translated to the correspond-
ing ring variants.

3.5. Our Construction in the Standard Model

In this section, we introduce an A-LWE variant that is hard under standard as-
sumptions. Previously, the A-LWE problem was defined by use of a random oracle,
that helped to destroy correlations between the secret and the output of H(-) and
thus ensured the required distributions. Therefore, a straightforward approach to
instantiate H(-) by a PRNG or a pseudo random function (PRF) is not obvious.
In particular, by means of a random oracle the secret s and the output of H(-) are
both uniformly random and hence allow the distributions of the error term and the
secret behave following the basic LWE distributions such that it is not possible to
distinguish between A-LWE and original LWE samples. In this section we show
how to get rid of the random oracle leading to a standard model instantiation of the
A-LWE problem. We formulate the A-LWE problem, where F(-,-) is instantiated
by means of a PRNG, hence, avoiding the need for a cryptographic hash function
modeled as random oracle. Following this, we can prove security in the standard
model for many of the A-LWE based encryption schemes which are shown to be
secure in the random oracle model (see Chapter 4).

30

3. Augmented LWE and its Hardness

3.5.1. Tools

Prior to defining the A-LWE distribution and proving the related hardness state-
ments, an efficient mechanism is needed that allows to replace the random oracle
by tools based on standard assumptions but in such a way that the message can
efficiently be recovered from the error term. Our approach is based on the idea
of computational extractors following the extract-then-expand design [DSGKM12],
where a statistical extractor is used to produce a seed as input to a PRNG expanding
the seed to the desired output length. We will prove that we can deterministically
produce a seed using the ingredients of LWE samples. In fact, we use a small part
of the error term in order to derive a seed statistically close to uniform given LWE
samples. That is, we sample a random matrix C € Zf]x” for t < n and prove that
C-e; = b mod q is indistinguishable from a random vector in Zf] given A Ts4e mod ¢
for e = (e, €)' ngwq and random matrix A € Zg*™.

Lemma 3.10. ([AGV09, Theorem 3]) For any integer n > 0, integer ¢ > 2, an
error-distribution X" = Dygn oq and any subset S C {0,...,n}, the two distributions

(A, ATs+e, (si)ics) and (A, ATs—i—e,Z/{(Z‘qSl)) are computationally indistinguishable
assuming the hardness of decision LWE,, _|g| ;1.0 -

As a result, it follows

(A,ATs+e,(si)ies) ~c (A, ATs+ e,L{(ZLSU)
~e (AUZT)UEZ),

which proves the independence of (s;)ics from the remaining parts of s = (si)ic[y
for S C [n]. As an immediate consequence, we obtain similar results, if s is sampled
from the error distribution x".

Corollary 3.11. For any integer n > 0, integer ¢ > 2, an error-distribution X" =

Dy aq and any subset S C {0,...,n}, the two distributions (A, ATs+e, (s;)ics) and

(A,ATs + e, D,si aq)
q

of decision LWE,,_ || m,aq -

are computationally indistinguishable assuming the hardness

This is proven in a straightforward manner following the same proof steps as in
Lemma 3.10. However, in this case we have

(A7 ATS +e, (Si)iES) e (A7 ATS + e, D
e (A,Z/[(ZZ”),D

Z‘qs‘,aq)
ZLS|7aq)7

which is based on the hardness of decision LWE,,_|g| ;s,aq - In order to account for
leakage of coefficients we give an alternative definition of the LWE distribution
allowing for leakage of ¢ coefficients either of the error term or secret vector. Such
a notation is indeed required to sample n-dimensional LWE instances based on the

31

3. Augmented LWE and its Hardness

hardness of decision LWE,,_ s.aq- In particular, when proving the hardness of the
A-LWE problem it simplifies the representation of such instances.

Definition 3.12 (LWE Distribution with Leakage). Let n,m,q be integers and x.
be the error distribution over Z.. By Lt\,NmE,gg) we denote the LWE' distribution over
Zy™™ x Ly', which draws A g Zy*™ uniformly at random, samples e <—g Dzm oq
and returns (A, b") € Ly™™ x Lg', where b =sTA+e' andt >0 coefficients of

q)
s € ZZL are leaked.

We use the convention that the first ¢ coefficients are leaked if it is not explicitly

specified. From Lemma 3.10 (or Corollary 3.11) it follows that it is hard to dis-

. . . . LWE .. .
tinguish uniform random vectors from samples following the Ln,mfo(j} distribution

assuming the hardness of decision LWE,,_; ;, og- The next theorem provides a de-
scription of how to deterministically deduce a vector statistically close to uniform
from LWE samples. This vector will serve as a seed in order to instantiate the
A-LWE distribution below.

Theorem 3.13. Let m,n be integers and s <—pr Dgmoq. Furthermore, let
Ay g Zg", Ay g Zf]x" and A} <p Zéxm be uniform random matrices
with t < (d — 2X\)/logq, where d = Hy(s) (resp. d = Hx(e)). Suppose that
the decision LWE,,_¢ 1, aq assumption holds, then

1 (Aus, Ass +)~ (U(Z).UZ))
2. (Ale,Azs+e) =, (U(ZZ),U(Z?))
for e <= Dzm oq. Moreover, Ale mod ¢ (resp. Ais mod q) is a statistical extractor.

Proof. We prove the statement (A;s, Ags +e) ~. (U(Z!),U(Z]")) by contradic-
tion. Suppose there exists a PPT distinguisher D that distinguishes between the
aforementioned distributions, then we construct a PPT algorithm A that breaks
decision LWE;,_; 11,04 -

We note here that it suffices to prove the statements for any m as long as it is poly-
nomially bounded. In fact, if the underlying problem is hard for m = n samples,
the same hardness statement must also hold for less samples. And for m > n, one
can easily reduce the problem to m = n.

The input to A is an instance (A, A - [g] +s) of Ll{,,\%?ég) due to leakage of the first

¢ zero entries, where A = [2;} € Zy*" composed by the matrices A € Z*™ and

A, € Zg_txn is a uniform random matrix that is invertible over Zj*" with non-
negligible probability. For instance, the probability to sample a full rank matrix

=1 ; -1yl —l1+1
q"—q" ("—=q¢'"1)" _ g" -1y : .
i 7" = (POy)" for prime modulus and
i=0

[< n. If | =n, the matrix is invertible with probability at least (%)” > 1/e for
q = O(n). Now, A computes

from fo” is equal to

e

AT (A4 =ats [

32

3. Augmented LWE and its Hardness

which can be represented as (Bs, Cs+e) for A~! = [2} . Subsequently, D is invoked

which distinguishes the input (Bs, Cs + e) and hence A - [2] + s from uniform, thus
solving decision LWE;,_¢ 1, oq as per Lemma 3.10 and Corollary 3.11. For the second

statement, one observes that

(Alev AZS + e) e (U(Zz)vu(ng))

(Are, A e +s) ~c (U(ZL),UZT)
for m = n and invertible matrix Ao, which exists with non-negligible probability as
shown before. This particularly also proves the statement for m < n.
As for m > n, suppose the upper n rows of Ay are linearly independent, otherwise
we can find n out of m > n rows with high probability and bundle them together
in the upper part. The matrix As can subsequently be extended to an invertible

matrix A, = [B Ap] € ZJ™ with B = [0

I] € Zg**™" by appending ones on the

diagonal such that A, [2] +e = Ass+emodgq.

(Ave. Axs + o) = (Are. A, |2 +)~ (). u(Z})

(Are. Ao+ |0 = @z)

Hence, our claim follows from the first case. We note that Aje mod ¢ is a statistical
extractor by the Leftover Hash Lemma, if ¢ < (d — 2))/logq for d = Ho(e). O

Remark. The theorem above mainly states, that it is even possible to reveal the
first ¢ entries of the error-term from LWE samples. This is equivalent to sampling a
random matrix A € ZZX” and outputting the vector Aj;s mod ¢, which is statisti-
cally close to the uniform distribution for ¢t < (d—2\)/ log ¢ according to the Leftover
. A 0f .
Hash Lemma. Applying the same argument, the complete vector [Al] s + [e} is
2
statistically close to uniform if m +t < n.

3.5.2. A-LWE Distribution

The tools introduced in the previous section will allow us to deterministically derive
a uniform random seed by means of the error term from LWE samples. Using this
framework we start defining the A-LWE distribution Lﬁ:,';lvl/"fn%aq(m) in the standard
model. It looks very similar to the random oracle variant introduced in the previous

33

3. Augmented LWE and its Hardness

section.

Definition 3.14 (Augmented LWE Distribution). Let n,n’,t,m, my, ma,q,p be in-
tegers with m = my+ma, where aq > n.(A+(B)) for a preimage sampleable full-rank
matriz B € Z;lme and a real € = negl(\) > 0. Let C € ZX™ be a random matriz

and PRNG : Zg — {0, l}nl'logp be a secure pseudo random generator. Fors € Zy,
define the A-LWE distribution LAWE ~ (m) with m € {0,1}" 187 to be the dis-

n,mi,ma,aq
tribution over ngm X ZLq' obtained as follows:

e Sample A <pg Z;‘X"‘ and €1 <—g Dzmi o4 -

Set seed = C - e; mod q.

Set v = encode(PRNG(seed) & m) € Zg, .

Sample €2 <—r Dy1(B),aq -

Return (A,b") where b =sT A +e' with e = (e1,e2) .

We note that we introduced many parameters in order to keep the problem as
general as possible. But for applications considered in Chapter 4 and Chapter 5,
it suffices to set n’ = mo, p = |ag/\/In(2(1 + 1/¢))/m] and A+(B) = pZ™ for
B =1 € Z;'* as we will show in the following chapter. For our constructions to work,
it is possible to select small values for ¢ such as ¢ = 15 in order to ensure a seed of size
15 -log g bits. In fact, the seed is statistically close to uniform for ¢ < (d —2)\)/logq
and d = Hy(e1). In this case PRNG(seed) represents a computational extractor
providing enough pseudo random bits in order to conceal the message.

3.5.3. A-LWE Hardness

The following theorem shows that LWE samples are computationally indistinguish-
able from A-LWE samples, when instantiated with a PRNG. Consequently, this
construction inherently depends on the underlying computational problem of the
PRNG.

Theorem 3.15. Denote by \ the security parameter and let n,n’,t,m, m1, ma,q,p
be integers with m = my + ma, where aq > n(A+(B)) for a preimage sampleable
full-rank matrix B € Z;}/X’m and a real € = negl(A) > 0. Let C € ZX™ be a

random matriz and PRNG : ZL — {0, 1}V198P be o secure pseudo random generator
with t < (d —2X)/logq for d = Hx(e1) and ey <—g Dgmi og. Then, assuming the
hardness of decision LWE,,_ n.aq the distribution Lﬁﬁ/y’%m’aq(m) s computationally
indistinguishable from uniform for arbitrary m € {0, 1}"/'1°gp.

Proof. Via a series of hybrids we will prove that samples from Lﬁﬁ’:”%zyaq(m)
are indistinguishable from the uniform distribution over Zj*™ assuming that the
decision LWE,,_ ;,,a,¢ Problem is hard to solve in polynomial time and the output
distribution of the PRNG is indistinguishable from uniform for PPT adversaries,
where t < (d — 2\)/log q with d = H(e1). This leads to

LWE;(;)

A-LWE ~
Ln1m1 ,mM2,Q,q (m) ~c Ln,m,aq

34

3. Augmented LWE and its Hardness

for arbitrary m € {0, 1}",'10gp . In the first hybrid, we modify the A-LWE samples in
such a way that we replace seed = Ce; mod ¢ with a uniformly sampled value u;.
This follows from the fact that (Ce;, A]s + e;) is indistinguishable from uniform
according to Theorem 3.13 and Ce; is statistically close to uniform following the
Leftover Hash Lemma for ¢ chosen as above. In the next hybrid we replace the
output of the PRNG with a uniform random value us as a result of the uniform
random input u; to the PRNG. Following this, the vector v = encode(uz & m)
becomes uniformly distributed. The final hybrid replaces ep by a vector e}, which
is sampled according to Dzm, , as per Lemma 3.4. As a result, we obtain instances
being identically distributed as the original LWE distribution.

Hybrid,;. In the first hybrid, in each A-LWE sample we replace the value seed =
Ce; mod ¢ by a uniformly sampled value u; € ZZ. This mainly follows from
the Leftover Hash Lemma for ¢ < (d—2\)/log g with d = Hu(e1) and the fact
that (Cey, A{ s+ e;) is indistinguishable from uniform assuming the hardness
of decision LWE;,_¢ 1, oq as per Theorem 3.13. We note here, that the adversary
never gets to see seed. Due to the high entropy of the seed a distinguisher will
guess the correct seed only with negligible probability or at most 27*. Also by
the same argument, the same seed will not be sampled except with negligible
probability due to the high min-entropy of e;.

Hybrid,. In the second hybrid, we replace the output PRNG(uy) of the PRNG by
a uniform random string uy € {0,1}" 18?7, As a result, v = encode(uy @ m)
becomes uniformly distributed as well. A potential (polynomial-time) adver-
sary notices the difference between the uniform distribution and the output
of the PRNG only if he queries the PRNG with the correct seed u; or breaks
the underlying hard computational problem. But in both cases, the distin-
guisher succeeds only with negligible probability. Hence, this also holds, if
many samples are given to the distinguisher.

We comment on a distinguisher which queries the PRNG at a certain point
on (s,e;) below in the proof, and assume for now, that no such distinguisher
exists.

Hybrid;. In the last hybrid, the error term ey is replaced by e which is sampled ac-
cording to Dzms . This follows from Lemma 3.4 stating that Dy 1 () o Is com-
putationally close to Dzm. , for a random vector v = encode(uy & m), where
up is computationally indistinguishable from uniform and ag > 7.(A+(B)).
Again, a PPT distinguisher notices a difference between both distributions
only if he can distinguish ug from the uniform distribution, hence solving a

hard computational problem.

We stress that A-LWE samples from Hybrid; are indistinguishable from LWE sam-
ples. The only difference between A-LWE and LWE samples is the way the error
term was constructed, which we proved via the hybrids to be identically distributed.
Hence, a distinguisher can only invoke the PRNG with the correct seed either by

35

3. Augmented LWE and its Hardness

guessing Ce; mod ¢, which is 2 *-hard by the Leftover Hash Lemma, or breaking
LWE
A-LWE samples which is via the relation LA-WE (m) ~, mef)ﬁfl) equivalent

n’m17m27a7q
to breaking LWE samples or solving search LWE,,_; ,, 4 and decision LWE,,_¢ 15, o,
respectively. By assumption such a distinguisher does not exist.
We conclude that the step from the original A-LWE samples to Hybrid; will
be unnoticeable to a distinguisher if search LWE,,_¢ ;.04 and decision LWE,,_; 1, og
is hard, and both distributions Ll;vllgmﬂ,q and Lﬁ:,,';LVYEnQ’mq(m) are computationally

indistinguishable. O

This proves the decision version of the A-LWE problem. We immediately obtain
the following hardness statements, which follow from the decision and search version
of LWE.

Theorem 3.16. Let n,n',m,mi,mo,q,p be integers with m = mi + mo. Let
PRNG : Z — {0,1}",'10” be a PRNG taking seed = Ce; mod ¢ as input for
a random matric C € Z{¥™ with t < (d — 2\)/logq and d = Hu(e1). Let
B € Zglx"m be a preimage sampleable full-rank matriz and agq > ne(Aé(B)) for
a real € = negl(n) > 0. Furthermore, denote by X, the distribution of the error
vectors (e1); involved in each A-LWE sample i. If H(e1) > A, then the following
statements hold.

1. If search LWE,,_¢ 1 aq s hard, then search-s A-LWES 1s hard.

n,mi,ma,oq

2. If decision LWE,,_t yn.aq %5 hard, then decision A-LWES is hard.

n,mi,mz,aq

3. If decision LWE,,_¢ 1,.aq 15 hard, then search-m A-LWES s hard.

n,mi,ma,oq

The proof for the second statement follows from 3.15. As for the remaining state-
ments we refer to the proof of Theorem 3.9, which proves the validity of the first and
last statements using the same argumentation line. We note here, that the seed is
always kept hidden and hence believe that the hardness of A-LWE is even stronger
based on search LWE,, ;, o4 and decision LWE,, 1, og-

36

4. Building Lattice-based Encryption
Schemes from A-LWE

In this chapter, we propose an alternative way of encrypting data, which is even
perfectly combinable with the traditional one-time pad approach. In particular, we
show how to build lattice-based encryption schemes on top of the A-LWE assumption
introduced in Chapter 3 by giving direct constructions that are equipped with vari-
ous security properties and functionalities. In fact, based on the A-LWE assumption
we can immediately derive a generic encryption scheme, where ciphertexts are repre-
sented by plain A-LWE samples. Besides of its evident security properties, that can
directly be deduced from A-LWE, our construction benefits from encrypting more
message bits per ciphertext and a faster encryption engine through a conceptually
easier instantiation as compared to previous proposals. Furthermore, we give a de-
tailed description of how to achieve CCA-security and publicly-detectable replayable
CCA (pd-RCCA) security [CKNO3], a slightly relaxed version of CCA2, but strictly
stronger than CCA1. In fact, we propose the first lattice-based RCCA-secure en-
cryption scheme. Due to the versatility of the error term, this functionality does not
involve ciphertext expansion. As a third application, it is possible to replace parts
of the error term by signatures that are generated according to the best known and
widely used lattice-based signature schemes. Specifically, we focus on the GPV sig-
nature scheme [GPVO08] in combination with the trapdoor construction [MP12] and
the practical signature schemes presented in [DDLL13, Lyul2], and thus realize an
asymmetric authenticated encryption scheme. As a nice byproduct, one can immedi-
ately apply the proposed concepts to the CCA-secure construction given in [MP12].
This allows us to increase the message throughput per ciphertext, while enjoying
RCCA-security at almost no cost. Noteworthy, all the proposed concepts are also
applicable to specific constructions such as the somewhat homomorphic symmetric
key encryption scheme due to [BV11b], which does not rely on the trapdoor con-
struction from [MP12]. This chapter to the publications [EDB15, EB15a, EB15b],
where the author of this thesis was the primary investigator and author of the pub-
lications.

Overview of Contributions

Maximum Data Size. We introduce several techniques to maximize the data
throughput per error vector. In particular, we show that for the choice of
ag = p-+/In(2(1+1/e))/m the maximum data size, that can be embedded in
an error term e € Z™2 by use of a preimage sampleable full-rank matrix with

37

4. Building Lattice-based Encryption Schemes from A-LWE

e < Dyi(B)ag = Dzmag is bounded to mologp bits for a random syndrome
v = encode(r ©® m) € Z;" and message m € {0,1}" 18P That is, we can pack
the data of logp bits into an entry of the error term. It turns out that specifying
B =1 € Z;"»*™ allows for fast and efficient operations such as preimage sampling
and message recovery beside of realizing the maximum possible bit size for full-rank
matrices. In fact, preimage sampling is performed by selecting a random vector r
and sampling € <= Dy 1 (1),ag = Dv4pzm2,0q- The message is subsequently retrieved
back via decode(e mod p) @ r.

Generic Encryption Scheme. Based on the A-LWE hardness, we present a novel
and generic encryption scheme, where ciphertexts are embodied by plain A-LWE
samples. One merely employs an arbitrary suitable trapdoor construction for the
function ga(s,e) = s' A + e that allows for error term recovery. Hence, the
efficiency of encryption and decryption greatly depends on the quality of the trap-
door and the inversion algorithm. The currently most efficient candidate function
is known from Micciancio and Peikert [MP12]. Note that while some encryption
schemes like [MP12, SSTX09] utilize such a trapdoor function, the potential of the
error term is left unrecognized. To the best of our knowledge, we provide the first
lattice-based encryption scheme exploiting the error term as an (additional) data
container in addition to its necessity for security.

In fact, the bit size of the message is equal to ma-logp (in the RO model my = m)
resulting in a small message expansion factor, which is lower than in all of the
existing schemes. Due to this relationship there is an incentive to increase the
parameter m by appending [additional uniform random columns to the public key
in order to efficiently encrypt large amounts of data involving less computations per
ciphertext as compared to lower dimensions. We considered this case and can even
show that decryption is essentially as fast as in lower dimensions. In particular, we
provide an enhanced encryption scheme for high data load HDL mode, where parts
of the ciphertext and thus the error term are ignored when inverting the underlying
A-LWE instance. That is, one extends any initial public key A” € Zp*™ with

trapdoor T to A = [A’ | A”] € z*(+™) with trapdoor ['(1)“

matrix A’ € Z™*!. When inverting a ciphertext ¢ = (c1,c2) € Z!™™ — that is, an A-
LWE instance — only the lower part of the ciphertext cs is required to recover s and
e. This idea does not seem to carry over to the construction of [MP12]. In fact, their
message size is fixed to nk bits for k = [log ¢] and extending the public key as above
cannot be applied to their scheme. Based on the HDL mode we give some further
significant optimizations that allow for an even larger message throughput realizing
message expansion factors close to 1. This can be attributed to the fact that the
error term related to A’ can be as large as possible because it plays no role when
inverting A-LWE instances. In particular, we select a second parameter $¢q that can
be as large as B¢ = d - /In(2(1 + 1/€))/m with d = | 35| such that the error term
does not wrap around. This allows for further [logd message bits to be encrypted
in the error vector related to c¢;. Going further, we omit the discrete Gaussian step

} and a uniform random

38

4. Building Lattice-based Encryption Schemes from A-LWE

and select the error term uniformly at random from Zé such that we can exploit the
full bandwidth encrypting [- log ¢ message bits in ¢;. The HDL mode is a generic
approach that is applicable to all schemes being introduced in this chapter.

CCA-Secure Encryption. Based on the A-LWE hardness, we build a conceptually
new and very simple CCA1-secure encryption scheme. In previous lattice-based en-
cryption schemes such as [ABB10a, LP11, MP12, PW08], ciphertexts are computed
in an one-time pad manner by adding the message to a random vector coming from
the LWE distribution. Thus, an adversary succeeds in the respective security game,
if he is able to distinguish LWE samples from random ones with non-negligible ad-
vantage. Our scheme, however, moves apart from this approach and focuses on the
error term recovery of A-LWE samples and subsequently decoding the error term.
By this means, the ciphertext represents an A-LWE instance in its purest form. This
implies a direct security reduction of the scheme to A-LWE. Employing the frame-
work proposed in [MP12], we construct a random public key A that is endowed with
a trapdoor. In conjunction with the corresponding inversion algorithm, which is only
applicable for moduli of the form ¢ = 2 (for arbitrary moduli see construction in
Chapter 5), we can efficiently recover the secret and the error term from the cipher-
text ¢! =sTA+e' withe<+p DAL (1),aq for v = encode(F(s,e1) ® m) € Z;? and
a random function F instantiated either in the random oracle or standard model.!
Due to ag = p-/In(2(1 + 1/e)) /7 > nE(AqL(I)), we even do not impose any fur-
ther restrictions to the parameters. Such a construction is almost optimal, since we
do not initiate any further transformations. As already pointed out earlier in this
section the HDL mode is directly applicable to the CCAl-secure scheme and thus
allows for the same benefits and properties as for the generic encryption scheme.
That is, we can exploit the full bandwidth of the corresponding part of the error
term, when extending the public with a uniform random matrix A’.

We further show that message embedding can enhance the CCA-secure scheme
proposed in [MP12] yielding a decrease of the message expansion factor. Put it
differently, with message embedding one could choose smaller parameters for the
scheme in [MP12] when encrypting the same message size. In terms of security the
original proof in [MP12] gets through without any major modifications. Table 4.1
gives an overview of parameters and the corresponding sizes for various lattice-
based encryption schemes where we, for simplicity, fix the ciphertext size. Fixing
n, however, leads to different values and complicates a fair comparison. Note here
that ¢ € Q>2, and consequently the message throughput in our scheme is by a factor
of clog(aq/4.7) larger than the one from [MP12]. Here aig denotes the parameter
of the discrete Gaussian distribution used to sample the error vector. This even
allows to embed clog(aqg)nk bits of a signature into the error term, which is due to
identical distributions of signatures and error vectors. Table 4.1 does not include
sizes for our scheme operating in the HDL mode. In this case, the message size

We show in the RO model that if matrix A is fixed and each ciphertext involves a fresh secret
vector s, the entropy of s is sufficient in order to sample the entire error term from Dy 1 (1) aq-

39

4. Building Lattice-based Encryption Schemes from A-LWE

m=c-nk CCAl CCAl CCAl CPA
k=logq [MP12] This work This work + [MP12] [LP11]
Ciphertext size m-k m-k m-k m-k
Signature size nk clog(aq)nk (clog(aq) + 1)nk enk —n
Message size nk ¢ - nklog(agq/4.7) (clog(ag/4.7) + 1)nk cenk —n

k k k
Message Exp. c k Tog(aq/a7) Toga/ A1/ k~+ =
Error rate o O(1/n) O(1/n) O(1/n) O(1/n)
public key size n-m n-m n-m n-(m-—mn)

Table 4.1.: Parameters

raises, for instance, to cinklog g+ canklog(aq/4.7), where ¢ + co = ¢ and the error
term part related to A’ is sampled uniformly at random containing c¢inklog g data
bits. We mainly focus on the most efficient encryption schemes including the CPA-
secure encryption scheme from [LP11]. Table 4.1 does not include the less efficient
schemes from [PWO08, Pei09, ABB10a], which are characterized by large public keys
or small LWE error-rates beside of high message expansion factors. For instance,
in [PWO08] the LWE error rate a = O(1/n*) is quite small (yielding to an easier
LWE instance) with public keys of size O(n?) bits. In [Pei09], Peikert improved the
LWE error rate to a = O(1/n) but with the cost of an increased public key of size
O(n?). The CCA-secure encryption scheme [ABB10a] provides a trade-off of the
previous proposals with an LWE error rate of O(1/n?) and public key size of O(n?)
bits. When comparing our approach with the CPA-secure encryption scheme from
Lindner and Peikert [LP11], we attest an improvement factor of O(log(aq)).

Replayable Chosen-Ciphertext Secure Encryption. The notion of replayable CCA-
security, which constitutes a relaxed version of CCA2-security, was introduced by
Canetti et al. [CKNO03] and addresses the ability of an adversary to replay cipher-
texts that decrypt to the same message. An RCCA-secure encryption scheme detects
modifications carried out on the ciphertext that alter the message. Valid encryp-
tions of the same ciphertexts, however, are allowed. Canetti et al. have shown
that RCCA is sufficient for most practical applications. There exists a series of
RCCA-secure encryption schemes [Gro04, LV08, PR0O7, PSNT06, XF07]. However,
to our knowledge, we are the first realizing a lattice-based RCCA-secure encryption
scheme, and hence relying on the worst-case hardness of lattice problems. We show
that RCCA security comes essentially through our message embedding technique
with only minor modifications. Our construction resembles GPV signatures gener-
ated for the public matrix I € Z;?*™2. Just as for standard GPV signatures, it
is required to hash all sensible (random) variables such as the tag u, the secret s
and the lower part of the error term ey involving the message to v = H(u,s,e2)
using a random oracle H. Subsequently, we sample a preimage e; < Dy (D) that
serves as the upper-part of the error term. Due to the injectivity of the trapdoor
function, altering the ciphertext leads to different values for the error term or the
secret such that the decryption routine outputs a failure. But modifications caused

40

4. Building Lattice-based Encryption Schemes from A-LWE

to the upper part of the error term do not result in a failure as long as short vectors
from A]f (I) = pZ™ are added.

This obviously implies a publicly-detectable RCCA-secure encryption scheme (pd-
RCCA), an even stronger security guarantee than plain RCCA. In fact, we have
the relation CCA2 = pd-RCCA = secretly-detectable RCCA = RCCA [CKNO3].
Security in the pd-RCCA model implies that a public party can check whether a
modified ciphertext decrypts to the same message.

When it comes to CCA2 security, there exist many works on generic
constructions [DDN00, CHJ"02, HLM03, BCHKO07] that ensure CCA2-security. For
instance, one can use strongly unforgeable one-time signature schemes [DDNOO],
commitment schemes or message authentication codes (MAC) in order to transform
a CPA-secure scheme into a CCA2-secure one. However, these generic constructions
typically involve high complexity and overhead resulting in a less efficient encryption
scheme. Our approach works differently as it uses the error term in order to provide
this feature. Once having RCCA-security one can efficiently convert the scheme into
a CCA2-secure encryption scheme using generic solutions as provided in [CKNO3]
or our individual approach at the expense of some small overhead.

Signature Embedding. There exist various approaches to provide message authen-
tication of encrypted data. Many of them are generic and thus coupled to overhead
and loss of efficiency. For instance, one can use message authentication codes (MAC)
or digital signatures that are appended to the ciphertext. In our work we aim at pro-
viding this feature without suffering from the drawbacks of generic solutions through
a thorough analysis of our encryption scheme.

Our goal is to replace parts of the error vector such as e; completely by a lattice-
based signature rather than appending it to the ciphertext or including it as a part
of the message. This allows us to optimally exploit the full bandwidth of e; due
to some nice properties lattice-based signature schemes offer. One of the features
is to let signatures be distributed following the discrete Gaussian distribution. For
the underlying signature scheme itself, such a strategy has many advantages over
other choices as it allows to decouple the distribution of the signature from the
secret key, while sampling short signatures with higher probability. There exist
many lattice-based proposals that have similar properties and perform very well in
practice [DDLL13, Lyul2, MP12].

Our construction inherently relies on the capability to recover the error term
from an A-LWE instance. As a result, we provide an authentication mechanism
for encrypted data, since it is by construction possible to retrieve back an arbitrary
discrete Gaussian vector with support Z"", hence also a signature, that was plugged
into the error term. Therefore, we can embed signatures of size m - log(«agq) bits into
the error vector, which is far more than with the standard encryption schemes that
are restricted to the message size (see Table 4.1). By aqg we denote the parameter
of the discrete Gaussian vector used to sample the error term. In fact, our proposal
allows for a flexible selection of parameters, because we do not impose any new

41

4. Building Lattice-based Encryption Schemes from A-LWE

constraints. However, the parameters of the signature scheme should not be too
large in order to correctly invert the underlying A-LWE instances.

Remarkably, when using the encryption scheme for high data load with an ex-
tended public key A = [A’ | A” | € Zz"(+™) the upper part of the error term
is ignored when decrypting the ciphertext. This allows us to select the parameters
in such a way that A-LWE (and LWE) is hard for arbitrarily chosen parameters
of the signature scheme. Therefore, one can employ the upper part of the error
term for signatures. The resulting scheme has a CCA2-like behavior, where changes
induced to the ciphertext are detected by the receiver. These ideas immediately
help to improve the construction provided in [MP12]. In particular, we can apply
the proposed techniques to the error term without changing the other ingredients.
More specifically, we still build the ciphertext in an one-time pad manner, while
simultaneously endowing the error vector with additional messages. The proof of
security will subsequently be based on A-LWE rather than plain LWE.

Embedding Auxiliary Data in Homomorphic Encryption. As already noticed,
we improve the CCAl-secure encryption scheme from [MP12], if we apply the
proposed concepts from above to the error term. As a result, we have the first
message being encrypted following the one-time pad approach and a second mes-
sage injected into the error term. However, this encryption scheme heavily relies
on a trapdoor construction. But we stress that it is also possible to improve
other more specific constructions that do not require trapdoors as such. For in-
stance, if we consider the somewhat homomorphic encryption scheme due to Brak-
erski and Vaikuntanathan [BV11b], we can apply essentially the same ideas with-
out any major modifications. Indeed, it is a symmetric key encryption scheme,
where a ciphertext (c; = a,co = b 4+ m) is derived by adding a ring-LWE sample
b =as+te € Ry = Zy[X]/ (f(X)) to an arbitrary message m € R; for ¢ coprime to
g and freshly sampled ¢; = a € R, with an error vector e € R sampled according
to the discrete Gaussian distribution. The secret key is given by the secret ring
element s € R,. After decrypting the ciphertext, we get full access to the error term
via e = t"!(cg — c;s — m). A quick view to this construction reveals, that the error
term can be recovered very efficiently. Clearly, this has a positive impact on the
performance of the different concepts, when applied to the error term.

4.1. Maximum Data Size

For the sake of generality, we used in all our statements in Chapter 3 an abstract
matrix B € Zglxm for integers p, n’, and m. This is used to embed a message into the
error term via ez <—r DpL(B),aq> Where v = encode(F(seed) & m) € Zg/ is uniform
random. However, we can specify concrete matrices that maximize the amount of
information per entry with respect to the bound given in Lemma 4.1.

In the following section we propose several techniques in order to enhance the
message throughput per discrete Gaussian vector. These techniques could also be

42

4. Building Lattice-based Encryption Schemes from A-LWE

applied to the error vector involved in the A-LWE distribution. In other words, we
aim at choosing an appropriate preimage sampleable full-rank matrix B € Zglxm
such that n/-log p is maximized. For now, we will focus on how to apply this technique
to the different encryption schemes and omit the e; term when invoking the random
oracle, since the secret s € Zy is always resampled in encryption schemes and hence
provides enough entropy for each fresh encryption query. Our first approach is based
on a method used to construct homomorphic signatures in [BF11]. The second
approach is very simple avoiding such complex procedures in order to allow for the
same message throughput.

4.1.1. Intersection Method

The intersection method as proposed in [BF11] considers two m-dimensional integer
lattices A1 and Ao such that A; + Ay = Z™, where addition is defined to be element
wise. Therefore, let m; and ms be two messages, where m; and mo define a coset
of A; and Asg, respectively in Z™. As a result, the vector (mjp, my) defines a unique
coset of the intersection set A1 N As in Z™. By the Chinese Remainder theorem one
can compute a short vector t such that t = m; mod A; and t = my mod Ay using
a short basis for A; N As. In fact, it is easy to compute any vector t that satisfies
the congruence relations. Subsequently, by invoking a preimage sampler one obtains
a short vector from A; N As + t. For instance, one can efficiently instantiate the
scheme when choosing A; = pZ™ and Ay = Aé(A) for a matrix A € Zflxm with
a short basis T and p coprime to ¢q. Doing this, the message spaces are given by
m; € Z™/Ay = Z; and my € Z™ /Ay = Zfl, where the isomorphisms are given by
x — (x mod p) and x — (A - x mod p). Due to the simple choice of Aj, we obtain
a short basis S = p- T for Ay N Az = p- Ay, where (A1 NA2) < p-ne(Az). So, if A
corresponds to G € qun/ka for k = log q, we have n.(A1NA2) < p-2-w(y/logn). In
our schemes, however, we have to sample a short vector e from (F(r)®t)+ A NAs
with parameter ag > ne(A; N As2), where t is computed as above and the (simplified)
description F' : {0,1}* — Z" defines a random function taking a random string
r € {0,1}" with sufficient entropy as input. The error vector is then given by
€ < Dpia,nAyaq With b = F(r) @ t. Due to n:(A1 N Ag) < p-2-w(ylogn) (e.g.,
aq = p-2-w(y/logn)), the error vector is indistinguishable from Dzm ,, following
Lemma 3.2 and Lemma 3.4. This technique allows to embed mlogp + m bits of
messages into the error term.

4.1.2. Lattices of the Form p - Z™

One realizes that for a given parameter ag for the distribution of the error vector
one can be much more efficient, if one considers only the lattice A;-(I) = pZ™.
In this case, the message space is simply defined by the set M = Zm/AZJ;(I) =
Zy'. When comparing with the previous approach, for instance, it is only required
to increase p by a factor of 2 in order to obtain the same message throughput

mlog2p = m - (logp + 1). Furthermore the decoding and encoding phase is much

43

4. Building Lattice-based Encryption Schemes from A-LWE

faster, since encoding requires only to sample € < Dy ypzm oq for b = F(r) @ m
using fast discrete Gaussian samplers such as the Knuth-Yao algorithm or the more
efficient FastCDT sampler that we present in Chapter 5. Decoding is performed via
F(r) ® (e mod p). Optimizing the message throughput requires to increase p such
that n.(A) < p - const < ag still holds for const = /In(2(1 + 1/¢))/m. Doing this,
one can embed approximately m - const bits of data, which almost coincides with the
min-entropy of a discrete Gaussian with parameter aq, since const ~ 4.7. Therefore,
it is most effective to choose a parameter such that ag = p - const with p = 2¢ for
some ¢ > 0 in order to embed ¢ bits of data into the error term.

Lemma 4.1 ([GPVO08], Theorem 3.1). Let A C R" be a lattice with basis S,
and let € > 0.We have n(A) <|| S || -\/ln (2n (1+ 1)) /7. In particular, for any

function w(y/Togn), there is a negligible e(n) for which ne(A) <|| S || -w(v/Iogn).

In fact, based on the bound given in Lemma 4.1, for any ag > 0 and ey <—g Dzm o4
the maximum number of bits that can be embedded into a component of the error
term is bounded by log(ag/w(y/logn)). This means that p’ = |aq/w(v/logn)]| is the
largest integer such that e; mod p’ is guaranteed with overwhelming probability to
be uniform random (see Lemma 4.2). Hence, we can choose B = I € Z™*™ with
ag = p - const for p = 2F allowing for k-bits of information. The data is recovered
via the efficient operation v = e2 mod ¢. For the sake of these arguments, we will
use B = I throughout this thesis.

Lemma 4.2 (Optimal Message Bound). Let r = p - w(y/logm) for integers
p,m > 0. Furthermore, let a discrete Gaussian over Z™ be sampled by selecting v €

Z, uniformly at random and then sampling D VAL (B).r for a preimage sampleable

matriz B € ZZ,Xm with p',n’ > 0. An optimal bound for the maximum number of
bits, that can be injected into a discrete Gaussian (or equivalently the size of v), is
given by m - logp bits.

Proof. The proof is essentially based on the bound given by Lemma 4.1. First, in
order to sample a discrete Gaussian vector over Z™, the condition r > nE(A; (B))
has to be satisfied for a negligible ¢ following Lemma 3.2 and Lemma 3.4. Based on
Lemma 4.1 we have p > || S ||, where S denotes a basis of B with B -S = 0 mod ¢
and S its orthogonolization. We note, that it suffices to consider m = 1, since
each component of a discrete Gaussian vector over Z™ is sampled independently
containing the same amount of information and randomness. Following this, n’ =1
and subsequently S=8< p. Hence, for S = p = p/ we obtain the maximum
bit size amounting to log p bits for v such that D, , ALB)r = Dyt pz,r is identically

distributed to Dz,. For m > 1 one takes, for instance, S =S =p-1,, resulting in
m - log p bits for v € Z;". O

44

4. Building Lattice-based Encryption Schemes from A-LWE

4.1.3. Uniform Error

For uniformly distributed errors one can directly employ the output of the random
function F(-) as the error term. More specifically, suppose e € ([—p, p]NZ)™, then let
F(-):{0,1}* — ([-p,p]NZ)™ be a random function such that e < encode(F'(r)®m)
for m € {0,1}1°82(2P) " As a result, one can use the full bandwidth of the error term
and inject m log,(2p) message bits.

4.2. Our Generic Construction

Originally, in almost all previous encryption schemes ciphertexts are built in a one-
time pad manner by adding the message to a random-looking vector coming from
an LWE instance. By our modifications, we omit the way of encoding messages
and the restrictions made to the parameters. Our aim is to let the ciphertexts re-
semble an ordinary A-LWE instance such that the hardness of the scheme can be
directly reduced to the plain A-LWE problem. Indeed, the error term hides the
message while following the required distribution. This allows for more flexibility,
efficiency and larger messages per ciphertext at no cost. Even more, this greatly
simplifies the security proof. As we show later, we can even lift up the security to
publicly-detectable RCCA (pd-RCCA) with a simple trick ensuring non-malleability
of ciphertexts. When applying these functionalities to the error term in the CCA1l-
secure scheme due to [MP12], the message throughput is about O(m - log aq) while
simultaneously providing pd-RCCA security instead of CCAlas before. In addi-
tion to that, we give an intuition of how to get a CCA2-secure encryption scheme
involving only minor modifications.

In what follows we provide a very basic and simple construction of an A-LWE-
based encryption scheme, which will later on be the target of several optimizations.
In particular, we present simple and efficient strategies to enhance the message
throughput. Due to our new feature of embedding messages in the error term, we
can employ any trapdoor function that allows for error term recovery.

Therefore, let TDF = (KeyGen, g,g~!) be a trapdoor function with ga (x,y) :=
x'A+y' €Z™. The algorithm KeyGen outputs a matrix A € Zy*™, that is close
to uniform, with an associated trapdoor T used to invert ga. The trapdoor func-
tion satisfies ggl (T, c) = (x,y) with ¢ = ga(x,y) for arbitrary x € Z; and properly
chosen y € Z™. We note that the random function F' is instantiated either by a
cryptographic hash function modeled as random oracle or a PRNG in combination
with a deterministic function following the standard model variant (see Chapter 3).
The construction of the scheme is depicted below, where ag = p-/In(2(1 + 1/¢))/m
is chosen to allow for data of size logp bits per entry (see Section 4.1.2).

The generic construction is mainly based on the capability of the scheme to recover
the error vector. Thus, the underlying trapdoor construction acts as a black box
granting full access to the secret s and the error term e, when applying the secret

45

4. Building Lattice-based Encryption Schemes from A-LWE

Basic Encryption Scheme

KeyGen(1™): Generate a public matrix C € Zf]xml, public key pk := A € Zg*™
with trapdoor sk := T where (A, T) «- TDF.KeyGen(1™).

Enc(pk,m € {0,1}™21°8P): Sample s «p Zy and subsequently compute
v = encode(F'(s,e1) ® m) € Z;', where €1 < Dzm1 aq-
e Random oracle model: F(s,e;) := H(s) with m; =0 and ma =m
e Standard model: F(s,e;) := PRNG(Ce; mod q)
Then, sample ey <—g Dyypzma aq- The ciphertext is given by cl =

ga(s,e) for e = (e1,e2).

Dec(sk, c) : Compute g, (T,c) = (s, e).
Return m = decode(ez mod p) & F(s, eq).

Figure 4.1.: Basic encryption scheme from A-LWE.

trapdoor to a related A-LWE instance. Once having revealed the error term, the
message is recovered via the last step of the scheme involving the random function
F(-). Improving the quality of the trapdoor and its inversion algorithm directly
impacts the efficiency of the encryption scheme, since decoding of the message from
e is performed very efficiently. We note that in case of a random oracle instantiation
of F(-), it is sufficient to invoke H using only the secret vector s (m; = 0), which
is always resampled for every encryption query. As a result, the whole bandwidth
of the error vector e € Z™ can be exploited for data transmission. The security
statement below will, therefore, be based on this particular setting.

Theorem 4.3. Let F' be instantiated in the random oracle model. Then, the generic
encryption scheme above is CPA-secure assuming the hardness of
decision A-LWER® for ag>p-/In(2(1 + 1/€)) /7 > 2\/n.

n707m7aq

Proof. Ciphertexts generated according to the generic encryption scheme from above
correspond to plain A-LWE samples with m; = 0, where H is invoked once on the
fresh input s. By assumption decision A‘LWEZS,(()Q,m,aq is hard, and consequently, an
adversary is not able to distinguish a challenge ciphertext from uniformly chosen

samples. n

In the standard model variant, ciphertexts exactly correspond to plain A-LWE
samples as proposed in Chapter 3. Hence, the decision version of A-LWE applies.

Theorem 4.4. Let F' be instantiated in the standard model. The generic encryption
scheme above is CPA-secure assuming the hardness of decision A-LWES

ag>p-+/In2(1+1/e)) /7 > 2y/n.

,M1,m2,0q fOT

46

4. Building Lattice-based Encryption Schemes from A-LWE

4.2.1. High Data Load Encryption (HDL Mode)

In certain application scenarios one wishes to encrypt huge amounts of data. This
is interesting within the context of financial transactions, secure backups, and high
media traffic via the internet. In this case, a fast encryption and decryption engine is
desired. The key idea underlying this goal is to extend the public key by an arbitrary
number of random columns in order to ensure a more efficient encryption scheme at
essentially the same security level. That is, in the key generation step KeyGen(1") a
public key A” is output with a corresponding trapdoor T. By extending the public
key to A = [A’ | A”] with a uniform random matrix A’ € Z?*!, the message size
increases due to additional samples related to A’. In fact, ciphertexts are generated
following the basic encryption scheme

/ /
[s,,] =A's+ [e] mod gq.

e//

However, ¢” is the only ciphertext part that is by construction required to recover
s and, hence, (€,€") since

e c
[e"] = [c”] —A'smodgq.

As a result, one observes a performance boost as well as an increased message
throughput per ciphertext. This can be attributed to the following facts. First,
the additional samples ¢’ are obtained using the same secret vector. Furthermore,
the performance of the decryption engine benefits from the already recovered secret.
That is, the error term €’ is retrieved using the same secret as opposed to invoke
the complete decryption engine in case one encrypts ¢’ and ¢” separately. Finally,
the error size employed to embed the data into €’ is not restricted to any condition
and can thus be chosen as large as possible. This opportunity will be discussed in
the following sections.

4.2.2. Improved Message Throughput

In this section we highlight three further strategies to enhance the data throughput
per ciphertext. The first and second variant require to operate the encryption scheme
in the mode for high data load encryption (HDL mode). The last approach, however,
aims at exploiting the secret s as another message carrier. All approaches can easily
be combined and remain secure in the standard model. The resulting schemes taking
these improvements into account are presented in Section 4.2.3 and Section 4.3. The
first two approaches are only applicable in the HDL mode, since modifications are
restricted solely to the error term related to A’.

Maximum Discrete Gaussians. The first approach is applicable, whenever
A € ZZLXZ contains at least one column [> 0. In this case the scheme is oper-

47

4. Building Lattice-based Encryption Schemes from A-LWE

ating in the HDL mode, which stands out due to its performance and high message
throughput at essentially some small overhead. Previously, a single parameter agq
was used in order to inject data into the error vector. This, however, is not opti-
mal, since the error term associated to A’ is not touched in order to recover s and
hence does not represent a bottleneck. In fact, this part is ignored when decrypt-
ing ciphertexts. Once having recovered the secret s and e;, we can very efficiently
recover the data injected into the error term. Hence, we can use the full band-
width of the error term. That is, we can introduce a second parameter 5q, which
is used for the error vector corresponding to A’. This parameter can be as large
as |¢/(2-4.7)] such that the error term does not wrap around and thus allows
for errorless message recovery. Indeed, using 8q = p - w(y/logn) for p = 2¥ and
k= Llog(2‘4'7\/11(1(2(1(1“/5))/%)J ~ |log(55z)] seems to be the best choice with re-

gard to data load. Sampling such large discrete Gaussian vectors remains almost as
efficient as with small parameters, as we will point out in Section 5.1. The parameter
aq associated to A” is, however, chosen to allow for an optimal trade-off between
performance and data throughput. In this setting, the A-LWE instances produced
by means of A’ contain also statistical min-entropy beside of computational en-
tropy when ignoring the A-LWE instances corresponding to A”, which maintain
only computational entropy. Due to this, the additional samples do not make the
underlying problem easier. In fact, it is even worthwhile to ignore the respective
samples when estimating the hardness of the corresponding A-LWE problem using
current state-of-the-art lattice attack algorithms.

Maximum Uniform Error. Instead of letting the error vectors corresponding to
A’ e ZZXI be distributed following the discrete Gaussian distribution, an improved
message throughput is obtained in case the error term is selected uniformly at ran-
dom from Zé via a random function such as a PRNG. At the same time the en-
cryption engine speeds up since the discrete Gaussian step is omitted and the space
complexity also improves. Formally, ciphertexts are of the following shape

AT s+ [u} € Zqurm,
e

where A = [A’ | A”], u is uniform random over Z., and e is sampled from the
discrete Gaussian distribution such that the secret s can efficiently be recovered
with the aid of our generalized LWE inversion algorithm described in Chapter 5
(original LWE inversion algorithm [MP12] works only for ¢ = 2¥). Due to the
fact that the error term is uniform in Zé any vector could have been the secret
(information-theoretically), if samples related to A” are not revealed. Hence, these
samples do ideally not provide more information.

Message Injection into the Secret. The last approach to increase the data load
involves the secret vector s and is applicable whenever it is sampled uniformly at

48

4. Building Lattice-based Encryption Schemes from A-LWE

random over Zg. It is exploited as a further container carrying messages. There
exist two ways of doing this. First, in the random oracle model we can sample the
secret vector via s = (r, H(r) @ my) such that a part of the message is embedded
into the secret vector using a second cryptographic hash function, where r € Zfl for
[< n denotes a uniform random seed . The second approach is more general and
utilizes parts of the ciphertext as the secret vector. For instance, let the vector c
be a standard ciphertext generated according to the CCAl-secure scheme that we
present in Section 4.3. Splitting c into equally-sized chunks c; of n elements opens up
the opportunity to employ every chunk as a secret for a fresh ciphertext. Since each
block c¢; in ¢ is computationally indistinguishable from uniform even given the other
elements, we can generate a new ciphertext for each block c; by setting s; = ¢; and
leaving this block out of ¢. The remaining steps for encryption remain unchanged.
Following this, we can additionally pack the data of size at most |nlog¢| bits into a
single ciphertext. In the extreme case, we can pack all chunks ¢ = (cy, ... s C(14m) /n)
into (I +m)/n newly generated ciphertext vectors. We decrypt via the LWE inver-
sion algorithm invoked on all ciphertext vectors in order to recover s; = ¢; prior to
the last ciphertext part c.

Applying the first two concepts results in an optimized and generic encryption
scheme, which is detailed in the following section.

4.2.3. Optimized Generic Encryption Scheme from A-LWE

Let [, m = mj+ma, q be integers and TDF = (KeyGen, g, g~ !) be a trapdoor function
with ga(x,y) := x'A +y modq € Zé"'m. Via g;l(T,c) = (x,y) involving the
trapdoor T, we retrieve the input vectors x and y back for properly chosen y € Z*™,
Define by

e ag=2"M.,/In(2(1 + 1/¢))/m and p; = 2" k; € N
o g =2k \/ln(2(1 +1/€))/m with py = 2F2 ko = Uog(m%”

the different Gaussian parameters following Section 4.2.2. If the scheme is operated
in the high data load encryption mode with I > 0, a large error parameter Sq is
used to sample the discrete Gaussian vector es, thus, allowing for a huge message
throughput. In fact, we encrypt ko = logpo bits per entry.

In order to realize the second approach with an error term distributed uniformly at
random over Zé, we omit the step to sample e3 and directly apply e = (vg,e2,€1)
as the error, where vy € Zé with po = ¢. In this case, the full bandwidth is ex-
ploited such that the complete error term encompasses data of size [-log g+ ms - ky
bits. Moreover, denote by F' : Zy x Z™ — {0,1}¢ a random function with ¢ =
(mg - k1 + 1 - ko). The scheme is applicable in the random oracle model with
F(s,e1) := H(s) and mo = m (avoiding to sample C) or in the standard model
with F'(s,e1) := PRNG(Ce; mod q).

49

4. Building Lattice-based Encryption Schemes from A-LWE

Generic Encryption Scheme

KeyGen(1™): Generate a public matrix C € Zf]xml, public key pk :=

A = [A | A e ZPMH™ with trapdoor sk := T where
(A")T) < TDF.KeyGen(1") and a matrix A’ sampled uniformly at ran-
dom.

e Without high data load encryption [= 0.
e With high data load encryption [> 0.
Enc(pk, m € {0,1}¢):

1. Sample s «—g Zy, €1 g Dzmi aq

2. Compute (vi,va) = encode(F(s,e1) & m) € Z"> x ZL .
e Random oracle model: F(s,e;) := H(s)
e Standard model: F(s,e;) := PRNG(Ce; mod q)

3. Sample €2 <~ Dy, 4p,7m2 oq and €3 <R Dy,ytpy7t g -

4. Output ciphertext ¢’ = ga(s,e) with e = (e3, ez, e1) .

Dec(sk, c) : Compute g,*(T,c) = (s, e).
Return m = decode(ez mod py,e3 mod po) & H(Ce; mod q).

Figure 4.2.: Generic encryption scheme from A-LWE involving several optimizations.

The statements below represent adapted variants of Theorem 4.3 and Theorem 4.4
restricted to the case 8¢ = aq for the sake of simplicity. The HDL mode with a larger
parameter Sq does not change the security proof, since ciphertexts still remain plain
A-LWE samples.

Theorem 4.5. Letn,m,p, q be integers. Then, the generic encryption scheme above
is CPA-secure assuming the hardness of decision A-LWERS for

n,0,m-+l,aq
ag=p-+/In(2(1 +1/e))/m > 2\/n and € = negl(n).
A-LWE (m)

Proof. A quick view to the scheme reveals that ciphertexts ¢ < g L omttong

are built following the A-LWE distribution, where A is either statistically or com-
putationally close to uniform. Hence, Theorem 3.9 holds, where the ciphertext is
still uniform random even given the message by an adversary.]

The corresponding security statement for a standard model instantiation of the
scheme is given in Theorem 4.6.

50

4. Building Lattice-based Encryption Schemes from A-LWE

Theorem 4.6. Let n,m = my + ma,p,q be integers. Then, the generic encryp-
tion scheme is CPA-secure assuming the hardness of decision A-LWES for

n,m1,ma+l,aq
ag=p-+/In(2(1 +1/e))/m > 2\/n and € = negl(n).

4.3. CCA-secure Encryption Scheme

Due to the new functionality of embedding messages in error vectors, we are able
to propose a novel encryption scheme providing full CCA security when adopting
the tagging approach presented in [Kil06, CHKO04]. In fact, we get this feature for
free, if we instantiate our generic construction from Section 4.2.3 with the trapdoor
construction provided in [MP12]. More specifically, the authors add a tag u to the
matrix A such that the modified matrix A, keeps changing for every encryption

query.

4.3.1. CCA1 secure Encryption

We start with a detailed description of the CCA1 secure encryption scheme and the
involved algorithms applying the idea of tagged public keys following the approach
given in [MP12]. We first consider the matrix variant and defer a description of
the ring variant, which represents the basis of our implementations, to Chapter 5.
Analogous to the generic encryption scheme, we let the scheme operate with two
different parameters ag and SBq for an improved message expansion factor, where

e ag=2"M.,/In(2(1 + 1/¢))/m and p; = 2" k; € N
o B =2 (1§ 1))/ with ps = 22 ks = [log(;2)]

Define by F : Zg x Z™ — {0,1}¢ a random function with ¢ = kj - mg + ko - [
and m = mq + my outputting ¢ random bits in order to generate the error vectors
related to A’ and A” respectively. Furthermore, let R = Z4[z]/(f(z)) be a ring as
constructed in [MP12], where f(x) denotes a monic irreducible polynomial of degree
n. Furthermore, let h : R — Z;*" be an injective ring homomorphism mapping
elements a € R to the matrix h(a). By T = {u1,...,us} we denote a large set with
“unit differences” property. That is, for any two ring elements a; and a; € R* with
i # j we have a; — aj € R* and h(a; — a;) = h(a;) — h(a;) is invertible.

o1

4. Building Lattice-based Encryption Schemes from A-LWE

CCA1l-secure Encryption Scheme - Matrix Variant

KeyGen(1™): Let t < (d — 2X)/logq with d = Hu(e1) for e < Dyzn oq.
Generate a uniform random public matrix C € ZZX”, public key pk :=
A =[A’| A"] € Z2*"™ for a statistically or computationally instantiated
matrix A" € ZI*™ following [MP12] with trapdoor sk := R € Z™*"*.

e Without high data load encryption [= 0.
e With high data load encryption [> 0.

Enc(pk,m € {0,1}°):
1. Sample a tag v € T such that h(u) = H € Z3*" is invertible and gen-
erate A,. For instance, if A” is instantiated computationally, then
Al = [A | HG — (AR, + Ry)] € Z*™ "% with k = [logq],m =n
and gadget matrix G =I,®g'. For a statistically instantiatied key
we have m >n and A” = [A | HG — AR] € ZZX(mJF"k) :
2. Sample s «pg Zy (or s <pg Dzn g for A" ==, U(Zy™™)) and
e] <« IDthaq .
3. Compute (v1,va) = encode(F(s,e1) & m) € Z"> x ZL .
e Random oracle model: F(s,e;) := H(s) with m; =0, ma =m.
e Standard model: F(s,e;) := PRNG(Ce; mod q).
4. The ciphertext is then given by ¢ = ga(s,e) for e = (e3,es,e;) "
with
® € <R Dy, 1p.2m2 0q for p1 = 2k1
® e3< R Dy, iy 7 g fOr p2 = k2
Dec(sk, ¢) : Compute g, (R,c) = (s,e) for A, = [A' | Al] € ZLrm as follows.
Let A" =, U(Zy*™) or A" =, U(Zy*™) (with R = Ry).

cs ,
1. Compute & =c] —cj -Rfor c = [w] € ZLrmink,
c1

2. Invoke the LWE inversion algorithm (see Chapter 5) on ¢; in order
to recover s =H -s

3. Compute e’ =c’ —s' - A, fors=H"15.
4. If || (e1,e2) |> agq - /m or || es |> Bq- VI, output L.

Return m = decode(ez mod py,e3 mod p2) @ F(s,eq).

Figure 4.3.: CCAl-secure encryption scheme from A-LWE.

92

4. Building Lattice-based Encryption Schemes from A-LWE

According to [MP12] we denote by G = I, ® g' the gadget matrix with
gl = (1,2,...,2"1). In case of uniformly distributed error vectors following the
second approach from Section 4.2.2, one omits to sample e3 <—r Dpzn v, g, and
instead employs vo just as for the generic encryption scheme with uniform random
vector vy € Zf] and ps = q. In Theorem 4.7 we prove the security of the CCA1-secure
encryption scheme in the random oracle model setting. For the sake of simplicity,
we restrict the proof to [= 0 and a statistically instantiated public key. Essentially
the same proof steps are needed for a computationally instantiated public key.

Theorem 4.7. Let ag =p-+/In(2(1 + 1/€))/7 for an integer p > 0. Then, the en-
cryption scheme above is CCAl-secure assuming the hardness of
decision A-LWEPXS

n707m7aq :

Proof. The proof is greatly simplified as compared to [MP12], since we are not re-
quired to perform any transformations to the initial A-LWE samples. In fact, we
draw samples (A, b") - LASWE = (m) from the A-LWE distribution, where b =

n707m7a7q
sTA+el, s«pRZ! A<+pZ>™ and e < Dyypzm oq With v = encode(H(s) ©m)
and ag = p-/In(2(1+1/e))/m > ne(Aj(I)). Distinguishing these samples from

RO
n707m7aq

random ones is as hard as solving decision A-LWE
(see Theorem 4.5).

Encryption queries in our scheme are represented by ordinary A-LWE queries, thus
we can give a direct reduction. Indeed, we have b; = sT A + e; mod ¢ and
by = s (h(u)G — AR) + e2 mod ¢, where (A, h(u)G — AR) is statistically close
to uniform by the leftover hash lemma and h(u)G — AR is negl(n)-uniform for any
choice of u € T following essentially the same argumentation line as in [MP12].
Hence, the advantage of the adversary in the CCA1 security game with our scheme
from above is negligible. O

for the given parameters

Theorem 4.8 contains the corresponding security statement for the standard model
variant of the scheme.

Theorem 4.8. Let aq =p-/In(2(1+ 1/e))/m > 2y/n for an integer p > 0. Then,
the encryption scheme above is CCAI-secure assuming the hardness of
decision A-LWES

n,mi,m2,&q"

Due to the simplicity of the scheme above, one can directly translate it into the
ring variant based on the hardness of the corresponding ring version of A-LWE,
which is based on the hardness of the related ring LWE problem.

Remark to the HDL mode. Assume, the initial public key is given by
A" = [A |AR - HG] € Z™. Extending the public key to A with
A=[A"|A|h(u)G-AR] € ZZX(Hm) allows one to encrypt ¢ = ki -ma+ ko -1 bits
of data simultaneously by means of the message embedding approach. This is obvi-
ously not possible with the CCAl-secure encryption scheme as proposed in [MP12],

93

4. Building Lattice-based Encryption Schemes from A-LWE

since the maximum message size is solely determined by n and k = [log ¢| amount-

ing to nk bits. The input to the inversion algorithm described in Chapter 5 is the
0

modified trapdoor [R} and a ciphertext ¢, which then recovers s and e = (€/,€”).
I

Interestingly, we observe that the norm bound on the error term is only related
0
to the part €’ due to He [lﬂ H = [l [}]]| < ¢/(4-+/51(R)? + 1) in our scheme.

Thus, extending the public key has no impact on how to choose €’ in the decryption
routine, except for ensuring a reasonable level of security of the underlying A-LWE
instance. We now briefly explain the benefits of such a construction for a predefined
amount of data.

As an advantage for encryption, we do not need to initiate so many generations
of s, u and computations of h(u) as compared to the original public key, because we
use the same s and u for a larger message size. For decryption, one notices that the
inversion algorithm works almost as fast as with the original public key, since

0 0 0
(c,d)T |R| =s"A, |[R| +e" |R| =s"G + e’ [R] .
1 I I I

This strategy is not directly applicable to the CCAl-secure encryption scheme pre-
sented in [MP12]. However, in combination with our technique to embed auxiliary
data in the error term it is possible to further take advantage of this feature.

4.4. pd-RCCA-secure Encryption Scheme

The notion of CCA2 security is a desirable feature in most encryption schemes.
Many of the current solutions are generic and thus coupled to overhead and loss
of efficiency. Generic solutions to CCA2-secure LWE-based encryption schemes in-
clude the usage of strongly unforgeable one-time signatures [DDNOO] or message
authentication codes with a weak form of bit commitments [BCHKO07]. Regarding
the first approach the user is required to encrypt the verification key vk together
with the message yielding the ciphertext c. Next, the signature is computed over
the ciphertext and is subsequently transmitted together with c and vk to the receiver.

In many encryption schemes we require only RCCA security, which is strictly
stronger than CCA1, but slightly weaker than CCA2 security. It has been shown
in [CKNO3] that RCCA security is sufficient for many of the major applications of
CCA-secure encryption such as authentication and key exchange etc. In particular,
it ensures non-malleability in any ways that alter the message. We introduce here
an elegant way to easily modify the scheme from Section 4.3.1 in order to achieve
publicly detectable RCCA security (pd-RCCA) without suffering from the disad-
vantages of generic solutions. In fact, this is the first lattice-based construction that
allows for this feature.

o4

4. Building Lattice-based Encryption Schemes from A-LWE

RCCA-secure Encryption Scheme

KeyGen(1™): Generate public key pk := A = [A’ | A”] € Z*™ for a sta-
tistically or computationally instantiated matrix A” € Zp*™ following
[MP12] with trapdoor sk := R € Z™*"F,

e Without high data load encryption [= 0.
e With high data load encryption, then [> 0.

Enc(pk, m € {0,1}¢):

1. Select a nonzero u € T and determine A, = [A |h(u)G — AR |,
with G =1, ® g". Then,

2. Select s <—g Zy (or 8 =g Dzn o4 for A =, U(Zy™™))
3. Compute (vg,v3) = encode(Hxz(s) ® m) € Z;? x Zgw .

4. The ciphertext is given by ¢ = (u,b) with b = ga(s,e) for
e = (e3,ez,e1), where

® €3 <R Dy 7 g fOr p2 = k2

® € <R 'DV2+p1.Zm27aq for p1 = le

® €] Dv1+p1-Z7”l7aq with Vi, = H1 (S, €9, e3, u) .
Dec(sk, c) : Determine A, = [A |AR — h(u)G].

1. If parsing c causes an error or u = 0, output L. Otherwise invoke the
LWE inversion algorithm from Section 5.2.4 with input parameters
(R, A,,b), which outputs the values s’ and € or a failure L.

2. (Non-malleability) Check €] mod p; 2 (s,€h, eh,u) and
ler]l < agy/ma.

3. (Message Recovery) If it is satisfied, compute r = H(s') and

m = r @ decode(e), mod p1, e} mod ps) .

4. Output m as the message.

Figure 4.4.: pd-RCCA-secure encryption scheme from A-LWE.

In our scheme, ciphertexts that decrypt to the same plaintext as the challenge
ciphertext (u*,c*) can publicly be detected by any party. As an advantage of our
construction, the transmitted data is solely restricted to the ciphertext ¢ and we
omit to send additional verification keys and signatures as compared to the generic

95

4. Building Lattice-based Encryption Schemes from A-LWE

approach. We proceed by presenting the scheme with F'(-) being instantiated in the
random oracle model. This choice is based on the fact that the RCCA property
involves a cryptographic hash function modeled as random oracle. However, it is
also possible to apply the standard model instantiation of F(-) analogous to the
constructions presented before in this chapter.

Accordingly, we denote by aq and [q the different parameters used to sample the
error vectors with

e ag=2"M.,/In(2(1 +1/e))/m and p; = 2% k; € N
o Bg=2"./In(2(1+1/¢))/m with py = 2% ky = |log(55=)] -

Furthermore, let Hy : {0,1}* — Z" and Hy : Zy — {0,1} be cryptographic hash
functions modeled as random oracle for ¢ = mgy - k1 + [- ko. The key concept of
the RCCA-secure encryption scheme consists in replacing the lower part of the error
term by e <+ DA% (D),aq With vi = Hi(s, ez, e3,u). It allows the receiver to check

oq
for modifications made to the ciphertext or its ingredients (s, e, e3,u) and is to be
thought of a GPV signature for the public matrix I,,,. Here, m; can be chosen
to be very small. The upper-part of the error vector, however, remains essentially
unchanged. We then change the encryption and decryption routine of the CCA1l-
secure scheme from Section 4.3.1 as follows

For simplicity, we restrict to the case where [= 0 with ag = p-/In(2(1 + 1/e))/7 >
ne(Azf(Imz)) and integer p > 0.

Theorem 4.9. The scheme in Figure 4.4 is pd-RCCA secure assuming the hardness
of decision A-LWERS forag=p-/In(2(1 + 1/e))/7 > 2/n.

n,0,m,aq

Proof. First, we have to show that the error term e = (e, e2) has the proper dis-
tribution. Since the coset selection for ey is based on the entropy of s and hence
the randomness of Ha(s), the distribution of ey is negligibly close to Dzms o ac-
cording to Lemma 3.2. The same argument also holds for e;, which uses es as the
source for entropy, when computing the random coset Hj (s, ez, u). Thus, it follows
that the distribution of the vector b is indistinguishable from the A-LWE distri-
bution Lﬁ:(')-}/,\,{b'?avq(m). Hence, the scheme above satisfies CCA1 security following
Section 4.3.1. Suppose (u*,b*) is the challenge ciphertext. We will show that any
decryption oracle query cannot further help the attacker in guessing the correct mes-
sage in the security game Expigrt‘i(rcca (n) (see Section 2.5.1).

If the attacker queries (u, b*) to the decryption oracle for u other than u*, the oracle
will respond with L, since (ef mod p) = H;(s*, e}, u*) does not hold anymore. In
case b # b* for arbitrary selected u, we differentiate 3 cases:

1. by = b} and ba # b3, then Dec(-) outputs L since (e} mod p) = Hi(s*, e}, u),
but either s # s* or ey # e3.

2. by # b] and by # b3, then s, e or both must have been changed. In case s
changed and e = e*, Dec(-) outputs L. If e altered while s = s* is still the

o6

4. Building Lattice-based Encryption Schemes from A-LWE

same, the adversary must have known s* in order to obtain H;(s*, ez, u) —and
hence a preimage for an output value of the random oracle which we can use
to solve the underlying A-LWE problem. Finally, if both values s # s* and
e # e* and Dec(-) outputs a message other than 1, the attacker must have
selected s and e or the message such that (e; mod p) = Hi(s, ez, u) is satisfied.

3. by # b] and by = bj, then the decryption oracle outputs replay in case
ey —e; € pZ™ with u = u* and short e; — €3 indicating that b and b*
decrypt to the same plaintext. Otherwise Dec(:) outputs L.

In all cases, the attacker learns nothing about the message concealed in b*. Thus
we have an IND-RCCA secure encryption scheme, which is equivalent to NM-RCCA
due to the large message space. The last case implies a publicly detectable RCCA
(pd-RCCA) scheme, where an arbitrary party is able to detect modified ciphertexts
that decrypt to the same plaintext. Based on the relation CCA2 = pd-RCCA =
sd-RCCA = RCCA [CKNO03], we even have a stronger security guarantee than plain
RCCA. O

4.5. CCA2-secure Encryption Scheme

There exist different approaches to turn any RCCA-secure encryption scheme into
a CCA2-secure scheme. A generic way of doing this, is presented in [CKNO03], which
does not involve any further computational assumptions. Specifically, it aims at
combining a RCCA-secure public key encryption scheme with a CCA-secure sym-
metric key encryption scheme in order to obtain CCA2-security. It is well-known
that an CCA-secure symmetric encryption scheme can be build from any secure
encryption scheme. Hence, the resulting CCA2-secure scheme is said to be efficient
if the underlying encryption schemes are efficient.

The second approach, that we suggest, requires to append the hash value Hs(e)
to the ciphertext output by the RCCA-secure scheme presented in the previous
section. We note here that Hs is another cryptographic hash function modeled as
random oracle. Following this, the new challenge ciphertext consists of the tuple
(u*,b*, Hz(e})). We now analyze the behavior of the decryption oracle, in case
the ciphertext has been modified. Assuming RCCA-security we only focus on the
last case in the security game Exp?%ccaz(n) (see Section 2.5.1). Thus, we need
only to prove that the adversary cannot modify the error vector e, since all other
cases are covered due to RCCA-security. Suppose for simplicity that [= 0 and
A =[Ay Aq] € Zg*™ with Ay € Zy*™! and my > n

1. If by # bj,ba = b}, and Hz(e1) = Hs(e]), then the attacker must have found
a collision.

2. If by # b}, be = b3, and Hs(e1) # Hs(e]), then Dec(:) outputs L, because
otherwise the attacker must have known e; = b; —s*T A; and hence s*, which
is equivalent to solving A-LWE.

o7

4. Building Lattice-based Encryption Schemes from A-LWE

This proves that the attacker is not able to derive new information about the en-
crypted message, even when he is given access to the decryption oracle after issuance
of the challenge ciphertext.

4.6. Asymmetric Authenticated Encryption Scheme

Theoretically, it is possible to employ a digital signature as a part of the error
term authenticating the encrypted message. In general, one could use any signature
scheme outputting signatures satisfying the length requirements in order to be em-
bedded into the error term. If this is not the case, one operates in the HDL mode
expanding the public key to the desired length. However, many of the well-known
lattice-based signature schemes produce signatures that are already distributed just
like discrete Gaussians. Such a choice causes short signatures to be selected with
higher probability and more importantly it allows to decouple the distribution of the
signatures from the secret keys. Considering the fact that the error term is sampled
from a discrete Gaussian distribution as well, we can build an authenticated encryp-
tion scheme, where parts of the error term are directly replaced by signatures. Doing
this, we achieve security guarantees similar to CCA2 and moreover the receiver is
able to identify the originator of the message through his embedded signature.

Lattice-based signatures due to [DDLL13, Lyul2, GPV08, MP12] are qualified
for this task. It has recently been shown that these schemes are very efficient and
perform very well in practice. Thus, the efficiency directly impacts our schemes al-
lowing for fast encryption in conjunction with an authentication subroutine. Hence,
there is no need for the usage of strongly unforgeable one-time signatures as before,
where the verification keys have to be encrypted before transmitting the ciphertext
together with the signature and the verification keys to the receiver. As an advan-
tage, the embedded signatures optimally exploit the respective parts of the error
term and further allow to identify the originator of the message. Indeed, the func-
tionality of one-time signatures is also achieved by the more efficient non-malleability
mechanisms presented in the previous sections. Notably, all of our proposals can be
applied essentially without increasing the ciphertext size.

Let ¢ = 2F and m = my + mg + m3 with & = logq. As in previous sections
denote by F : Zi x Z™2 — {0, 1} a random function with ¢ = mg - k1 + [- ko that
is instantiated either in the random oracle or standard model. Furthermore, denote
by ag and q the respective parameters of the discrete Gaussian distribution:

e ag=2"./In(2(1 +1/¢))/m and p; = 2% k; € N
o Bg=2"./In(2(1+1/¢))/m with py = 2" ky = |log(51=)] -

By the triple (KeyGen, Sign, Verify) we specify a signature scheme, where a part of the
resulting signature is distributed following the discrete Gaussian distribution such
as the practical ones [DDLL13, Lyul2, GPV08, MP12]. For instance, in [DDLL13]
signatures are represented by the tuple (c,z).

o8

4. Building Lattice-based Encryption Schemes from A-LWE

Asymmetric Authenticated Encryption Scheme

KeyGen(1™): Generate public key pk := A = [A’ | A”] € Z*™ for a sta-
tistically or computationally instantiated matrix A” € Zy*™ following
[MP12] with trapdoor sk := R € Z™*"F,

e Select [> 0 for the HDL mode and otherwise { = 0.

Enc(pk, m € {0,1}°):
1. Select a nonzero u € T and determine A, = [A |h
2. Select s <—r Zy . (or s <—g Dzn oq for A" ~. U(Zy™ m))
3. Sample ey <—g Dzma g
4. Compute (vi,va) = encode(F(s,ez) ®m) € Z7'* x ZL,, .
e Random oracle model: F(s,ez) := H(s).

e Standard model: F(s,ez) := PRNG(Cez mod ¢) with a uniform
random matrix C € Z{*™ according to Section 4.3.1.

5. The ciphertext is given by ¢ = (u,b) with b" = ga(s,e) for
e = (e4,e3,e2,e;), where

® 1< R Dy, iy iz pg for p2 = okz

® €3 <np 'Dvl+p1.zm37aq for p1 = 2k

e e; = Sign(s, ez, e3,e3,u).
Dec(sk, c) : Determine A, = [A |[AR — h(u)G].

1. If parsing c causes an error or . = 0, output L. Otherwise invoke the
LWE inversion algorithm from Section 5.2.4 with input parameters
(R, Ay, b), which outputs the values s’ and €’ or a failure L.

2. (Signature Verification) Check signature,

[~

VerifY(e/1> (Saeévegvegau)) L.

3. (Message Recovery) Compute r = F(s, €)) and

m = r ¢ decode(e} mod p1, e} mod ps) .

4. Output m as the message.

Figure 4.5.: Using lattice-based signatures as a part of the error term.

99

4. Building Lattice-based Encryption Schemes from A-LWE

Essentially, the same approach is taken for the GPV signature scheme. We note
that this setting also allows for a uniformly distributed error vector
vy € Zé in the HDL mode without invoking the discrete Gaussian sampler as ex-
plained in Section 4.2.2. We shortly discuss how to instantiate the scheme. If the
signature scheme in [MP12] is employed, one implicitly applies the probabilistic GPV
signature scheme, which outputs signatures z for the public key B being distributed
just as DA#)(B)’S ~ Dzm; 4 for the hash on all malleable inputs b = H{(s, e2, e3, €4, u)
according to Lemma 3.2. For the same message, the error term part (e, e, e4) keeps
always changing due to its high entropy. Embedding signatures in the error vector
has a flavor of CCA2 security, when considering the last case in the proof of Theo-
rem 4.9. In this particular case, building a replay is equivalent to e; — e} € Aj(B)
and the length of e; — e] is short, which is obviously a difficult task assuming the
hardness of SIS. Note, that the Gaussian parameter s = O(n) is also used for sam-
pling (e2,e3) <= Dzma s X Dy, 4p,.zms . Notably, the error term ey related to A’
generated in the HDL mode perfectly suits to the properties of signatures, because
on this part of the error term no size restrictions are imposed with respect to the
LWE inversion algorithm. One proceeds similarly in case e; or e4 is replaced by a
signature in accordance to [DDLL13, Lyul2].

4.7. Improvement of Existing Schemes

The new embedding technique offers the opportunity to improve all schemes that
allow for error term recovery. In particular, if the error is sampled following the uni-
form or the discrete Gaussian distribution, we can apply the techniques introduced
earlier in this chapter. We exemplify the applicability of our constructions at the
examples of the symmetric key encryption scheme [BV11b] and the CCAl-secure
encryption scheme [MP12].

4.7.1. Enhancing Existing Symmetric-Key Encryption Scheme

In this section, we show that the message embedding technique can be applied to
the symmetric key encryption scheme as provided in [BV11b]. The authors pro-
pose a symmetric key encryption scheme that entails the properties of a somewhat
homomorphic encryption scheme. Based on this construction they build a fully ho-
momorphic public key encryption scheme that is KDM-secure, meaning that the
scheme remains secure even when encrypting polynomial functions of the secret
key. In fact, the symmetric key encryption scheme is a very efficient construc-
tion that is directly based on ring-LWE (or PLWE [BV11b]). Ciphertexts are
built in a one-time pad manner. The secret key shared among the participants
is the secret s € Ry = Z4[X]/ (f(X)) coming from ring-LWE. One typically chooses
f(X)=X"+1for n =2" and I € N. We now present the encryption scheme that
is enriched with our message embedding technique required to increase the message
throughput. But for the sake of simplicity, we ignore the homomorphic properties

60

4. Building Lattice-based Encryption Schemes from A-LWE

of the scheme with regard to the message m;. Interested readers are referred to the
respective descriptions in [BV11b].

Improved Symmetric Key Encryption Scheme

KeyGen(1™): Let ag = p-/In(2(1 + 1/¢))/m and n1,ny > 0 such that ny +ny =
n. Furthermore, let ¢ be coprime to ¢q. Sample the coefficients of s <—r R,
and set the secret key sk :=s.

Enc(sk,m; € Ry = ZX]/ (f(X)),mg € {0,1}¢, with ¢ = ng -logp):

1. The first message block is encoded to be a polynomial in m; € R;.

2. e DZ"I,aq .

3. Compute v = encode(F(e1) ® my) € Zy? for a second message my
e Random oracle model: F(e;) := H(ey).

e Standard model: F'(e;) := PRNG(Ce; mod ¢g) with a uniform
random matrix C € Z;*" according to Section 4.3.1.

4. €y Dv+pZ"2,aq .
5. Sample (a,as + te), where a <—g R, and e = (e, e2).

Output the ciphertext

c = (cy,c2) with ¢ =a,co =as+te+m;.

Dec(sk,c) : Compute the first message m; = co — c;s mod t. We then have
te = ¢ — ¢1s — my. If we divide ¢ out, we obtain e = (e1,e2) and finally
recover the second message mg = decode ((e2 mod p) & F(eq)).

Figure 4.6.: Improved symmetric key encryption scheme using A-LWE based ap-
proach

A quick view to this construction shows that the error vector is efficiently obtained,
because c¢;s has already been computed during decryption. And multiplication by
a constant ¢! is performed very fast. We omit a formal proof here. Essentially, the
same arguments of the proof from the original construction [BV11b] work here as
well with the difference that we reduce the security of the scheme to the ring variant
of the A-LWE problem. After this modification, we can additionally embed messages
of size nologp bits into the error term. However, we stress that the homomorphic
property does not carry over to this additional slot of message. We basically obtain
an encryption scheme working on message pairs (mj, mg) which is homomorphic

61

4. Building Lattice-based Encryption Schemes from A-LWE

only with respect to my. This scheme may be of independent interest for novel
applications, since it can also be invoked in the HDL mode.

4.7.2. Enhancing an Existing CCA1l-secure Encryption Scheme

All the features provided in the previous sections can be utilized in order to optimize
the encryption scheme [MP12]. We particularly focus on the error term (e, e;) that
is recovered by the LWE inversion algorithm. The other scheme ingredients remain
unchanged. One observes that the error term is unused and offers additional space
for messages of size approximately m - log p bits as compared to nk bits ensured in
the original scheme. Hence, the total message size sums up to m-log p1 +1-log po+nk
bits, where [> 0 only in case the scheme is operated in the HDL mode described in
Section 4.2.1. The scheme in [MP12] requires two parameters agq, a’q for the error
term, which have to satisfy ag,a’q > p1 - /In(2(1 +1/€))/m in order to apply the
message embedding approach. In order to ensure the different security notions one
has to apply the approaches introduced in the sections before. All these properties
can be included at essentially the same efficiency. But one has to take care about
the parameters in case the error term is augmented with authentication data as
described in Section 4.6.

62

5. CCA-secure Encryption Scheme from
A-LWE in Practice

This chapter is devoted to scrutinize the practical impact of the CCA-secure en-
cryption scheme introduced in Chapter 4. Basically, it is instantiated by means of a
suitable trapdoor function viewed as a black box such as the candidate specified in
[MP12, P9]. As a consequence, the owner of the trapdoor is empowered to recover
the secret and error term from an A-LWE instance and hence reveal the injected
data. Following this approach, one can realize RCCA-secure and CCA2-secure en-
cryption algorithms that are not build upon the classical one-time pad approach as
before. Beside of its presumed efficiency due to the resemblance of ciphertexts to
ordinary LWE samples, the scheme further allows to be combined with the one-time
pad concept, hence, taking the best of both worlds. From a theoretical point of view
our CCAl-secure scheme by construction admits to draw conclusions about its en-
cryption performance and message throughput per ciphertext. In fact, its simplicity
and resemblance to ordinary LWE samples suggests an efficient encryption routine.
However, the decryption engine greatly depends on the quality of the trapdoor. This
chapter refers to the publications [EDB15, EB15a, EB15b]. The author of this thesis
was the primary investigator and author of these publications.

Our Contribution

We adopt the trapdoor candidate from Micciancio and Peikert in the considered
setting allowing for simplified instantiations and practically efficient algorithms. In
particular, we apply an efficient ring variant of the trapdoor construction that we
introduce in Chapter 6 in order to allow for fast computations and low storage
consumption for secret and public keys.

LWE Inversion for Arbitrary Moduli. We introduce a new LWE inversion algorithm
for arbitrary moduli and hence generalize the algorithm from Micciancio and Peikert
[MP12] using a different approach. There exist many application scenarios, where it
is preferred to have a modulus of a specific shape such as a prime modulus satisfying
q = 1 mod 2n in the ring setting offering the possibility to apply the fast NTT
transformation. The inversion algorithm given in [MP12] is only suitable for moduli
of the form g = 2. For moduli different to this shape, the inversion algorithm fails
to recover the secret in LWE instances. Our algorithm, however, can efficiently be
applied to LWE instances employing arbitrary moduli.

63

5. CCA-secure Encryption Scheme from A-LWE in Practice

Inversion of Ring Elements. We propose, to our knowledge, the fastest inversion
algorithm for ring elements in special classes of rings R, = Z4[X]/ (X" + 1), where
ring elements correspond to polynomials with n = 2! coefficients and ¢ = 1 mod 2n.
This theoretical result has many other application areas in algebraic number theory.
The inversion algorithm can check arbitrary ring elements with regard to invertibility
by one NTT transformation. In fact, we can directly describe the structure of the
unit group. Inverting elements in R is reduced to inversion in Z;, which is cyclic
due to prime modulus. When working in the NTT representation, we are even not
required to apply the NTT forward and backward transformations. This will be
particularly important for the tagging approach, where a tag is chosen uniformly at
random from the ring of units and is subsequently applied to the public key when
encrypting messages.

Scheme Instantiation and Security. We instantiated the CCAl-secure encryption
scheme in the ring setting for public keys being both statistically and computation-
ally indistinguishable from uniform. This is obtained by use of the ring variant of
the most recent trapdoor candidate [P9, MP12] ensuring CCAl-security almost for
free. Moreover, we considered different parameter sets (e.g., error and secret key
parameter) for n = 512 varying the message throughput per ciphertext. The pro-
posed high data load encryption mode additionally allows to encrypt large blocks
of data using the same secret and at a minimal increase of the running time. The
system under scrutiny will, moreover, be analyzed in terms of security using state-
of-the-art tools from cryptanalysis such as the embedding approach from [AFG13]
and [BG14] suitable for a bounded number of LWE samples. We differentiate key
recovery attacks from attacks against the ciphertext.

Novel and Efficient Discrete Gaussian Sampler (FastCDT). Current state-of-
the-art discrete Gaussian samplers get less efficient once the error size is increased.
This is very crucial since all of the proposed encryption schemes from Chapter 3
by construction rely on a large error size in order to allow for an optimal message
throughput. In fact, a new approach towards building discrete Gaussian samplers is
desired such that sampling of discrete Gaussians with large parameters is essentially
as efficient as with small ones. We therefore designed a new and powerful discrete
Gaussian sampler, called FastCDT, that is more efficient than all previous samplers.
The sampling procedure is almost independent from the parameter and uses at run-
time a CDT table of constant size containing at most 44 entries with overwhelming
probability for all 8q = p - w(y/logn) and integers p > 0. We will show that almost
the whole probability mass is concentrated on the 10 to 11 mid elements of the table
such that we need to consider only 5 to 6 entries most of the time. At the same time
FastCDT is capable of sampling from any desired partition AZ-L = i+ pZ without any
modifications and even faster than from Z.

64

5. CCA-secure Encryption Scheme from A-LWE in Practice

Implementation and Analysis. In order to attest the conjectured efficiency of the
scheme, we implemented the scheme in software for n = 512. This implementation
is optimized with respect to the underlying architecture using the AVX and AVX2
instruction set. To this end, we applied adapted variants of the techniques intro-
duced in [GOPS13] to our setting. In particular, we adopted several optimizations
for the polynomial representation and polynomial multiplication by use of efficient
NTT operations. Using the same platform and optimizations, we implemented the
scheme in the standard and random oracle model comparing it with the efficient en-
cryption scheme due to Lindner and Peikert [LP11]. First, we notice that applying
the FastCDT sampler to all considered schemes leads to a significant performance
boost. For the random oracle variant, for instance, we observe improvement factors
ranging between 1.3 and 2.2 as compared to the usage of current state-of-the-art
samplers such as the standard CDT sampler for the same set of parameters. Our
implementation results further show that the standard model variant performs, as
expected, almost as efficient as its counterpart that is secure in the random oracle
model. Depending on how the distribution of the error polynomials related to A’
(in the HDL mode) is selected, we attest running times of 10 cycles per message
bit for encryption and about 6 — 8 cycles per bit for decryption in case the error
is distributed according to the discrete Gaussian distribution. This represents an
improvement factor of about 10 — 24 for encryption and 3 — 4 for decryption, when
comparing with [LP11] and even faster in comparison to the Open-SSL implementa-
tion of RSA. For uniformly distributed error polynomials in the HDL mode, we tes-
tify improvement factors up to 92 and 7 for encryption and decryption,respectively,
which opens up the possibility, also due to the low message expansion factors close
to 1, to be applied in high data load scenarios.

Therefore, we start by introducing several tools that serve to instantiate the
scheme appropriately and may be of independent interest for other applications.
Subsequently, we present a software implementation of the scheme testifying its
presumed efficiency.

5.1. A Fast Discrete Gaussian Sampler - FastCDT

In this section we present a new discrete Gaussian sampler that improves upon the
existing discrete Gaussian samplers. It is highly efficient and outperforms even the
currently most efficient standard inversion CDT based discrete Gaussian samplers
with respect to running time and working memory. The respective tables of our new
sampler can also be generated on the fly at the cost of being slightly slower due to
the generation of at most 44 elements (or 10 elements in most cases). It is therefore
efficiently applicable in constrained devices characterized by limited resources.

In fact, the basic tool required to realize such a sampler is given by Lemma 3.4 in
Chapter 3 instantiated with a lattice of the form A = p-Z™, for an integer p > 0.
In order to sample a vector e € Z™ statistically close to Dzm 4 for ag = p-4.7 with
ne(A) < p- /(21 +1/e))/m ~ 4.7-p = aq, one samples a vector b g Z7

65

5. CCA-secure Encryption Scheme from A-LWE in Practice

uniformly at random and subsequently a discrete Gaussian from Dy, ,7m o4 following
Lemma 3.4. This seems to be more expensive due to two sampling steps, but a
closer look reveals that almost the whole entropy of e is coming from a uniform
random source, which is far more efficient than sampling discrete Gaussians. This is
particularly interesting for constrained devices preferring uniformly sampled vectors
over other distributions. The remaining entropy is obtained via the sampling step
Do pzm aq- The support supp = {b + pZ™} of this distribution consists of at most
44 elements supp N [—4.7%p,4.7%p] with overwhelming probability, which allows to
be generated dynamically rather than in the key generation step since the number
of required CDT table entries amounts to 44 elements at most. But almost the
whole probability mass is concentrated on the 10 mid elements (one case with 11
elements) following Lemma 5.1, since two neighboring elements of b + pZ™ have a
large relative distance of p decreasing the corresponding probabilities rapidly. This
makes the sampler very flexible allowing to be instantiated following one of the three
approaches presented below providing different trade-offs between flexibility, storage
requirements and running time. This is not possible when using Knuth-Yao or the
standard CDT technique, which depends on p with table size of 4.7 - aq ~ [4.7% - p]
entries. Our algorithm requires a constant table size of 44 elements for arbitrary
p. As another performance advantage, one observes based on the shape of the
support that almost the whole probability mass is concentrated on the set S; =
[—5p, 5p]N{bi+pZ} (see Lemma 5.1), making binary search less efficient than testing
the CDT table entries of S; via linear search starting with b; or p — b;. Only with
small probability, one looks into the remaining table entries. In the following, we
highlight the various trade-offs between flexibility, storage requirements and running
time.

1. Generate the whole table at the beginning. This will occupy as much mem-
ory as the standard CDT approach. The algorithm will start to operate on
the dedicated 10 — 11 elements, out of which only 5 (either left or right) are
considered via linear search once having sampled the partition b € Z;*. This
set of elements encompasses almost the whole probability mass. In case CDT
does not find the correct value within this range, the standard binary search
algorithm is invoked on the remaining elements out of 22. The expected value
for the number of table lookups is approximately 2.

2. Generate everything on the fly. Whenever a partition has been sampled, the
algorithm starts generating 44 elements, from which one samples an element
while focusing on the 10—11 mid elements via linear search first. This approach
is interesting for high performance processors maintaining a low working mem-
ory. But also for constrained devices with low memory capacities it can be
useful if the parameter is huge.

3. Generate only the 10 — 11 elements per partition b € Z;'. This is done at the
start of the algorithm (or on the fly). The remaining ones out of 22 (only half
of the elements are needed) are generated in case the algorithm gets out of the

66

5. CCA-secure Encryption Scheme from A-LWE in Practice

range (see Lemma 5.1).

In summary, our approach looks equivalent to the standard CDT approach in case
p = 1 or equivalently ag = w(y/logn) ~ 4.7. However, if p > 0 our approach requires
only to sample an additional uniform vector b € Z" , whereas the other steps remain
exactly as efficient as for p = 1. In case of the standard CDT sampler the table size
increases and hence the number of table lookups. For instance, FastCDT requires
in average to sample two uniformly random elements and about two table lookups
(at most log(22) lookups) as compared to the standard CDT sampler with one uni-
formly random element and about log(4.7p) ~ 2+log(p) table look ups in the worst-
case. Furthermore, our approach can generate the table elements (only 44 elements)
dynamically, if required, as opposed to generating the complete table containing
4.7 - aq elements in the key generation phase. The most flexible approach is partic-
ularly favorable if aq is large. It is also noteworthy to mention that the FastCDT
sampler combines many samplers, because it can also be used to sample a discrete
Gaussian vector from any given partition modulo p. It is noteworthy that both
the standard CDT and FastCDT samplers claim the same total storage size for the
respective tables.

Lemma 5.1. Let p € Z and s = p - n@+1/e) o p-4.7. Then, |S;| < 11 and

™

p(Si)/p(Aﬁ) ~ 0.99 for A =i+ pZ and S; = {i + pZ} N [-5p, 5p) .

Proof. First, we obtain p(A}) = p(A}f) + negl(n) as per Lemma 3.1, since
ps7,i(AZf) = pS(AquLi) = ps(Af) and Ue(Aé) < p-/In(2(1 + 1/€)) /7 for a negligible
parameter € < 2719 according to Lemma 4.1. Furthermore, it suffices to consider
the restricted set A]f N [—4.7s,4.7s] with at most 45 elements, which are assigned
the overwhelming portion of the probability mass. One easily obtains the following
interesting result

o (i-p)? > (-p)?
p(Aj) — Z e T = _142 Z e " @1p)?
=0

j=—o0

= 142 (AT
1=0
— 47

with high probability for all p. This series represents a theta function independent
from p and can hence be computed using only a small number of representatives.
Furthermore, one easily verifies the inequality |S;| < 11 such that we have only to
show that ,O(SZ‘)/p(A;‘) ~ 0.99. There are only two cases to be considered, i = 0 and
i > 0. As for i = 0, we obtain a finite series independent from p:

5 . G-p)? 5 42

1 - 1
1y T - _ -l
p(Si)/p(Ap) = (AL Z e (“7p)? — p(Aé) Z e 1272 ~ (0.997.

j=—5

67

5. CCA-secure Encryption Scheme from A-LWE in Practice

For ¢ > 0, we have |S;| = 10 and

o Upti)? p+i)? 4 i/
Si)/p(Ay) = T arn? = —m(HE)?
]—75 3—75
1 22
> 1-2 e 72~ 0.985
p(Ay) ;

O]

We now illustrate the three algorithms of FastCDT. Algorithm 1 initializes the
respective tables, Algorithm 2 samples a coset b € Z;" uniformly at random and
Algorithm 3 selects an element from the induced table via linear search starting with
the mid element.

Algorithm 1: Building CDT Arrays
Data: Integer p, ag = p- w(y/logn) = p-4.7

1 supp; = {i +pZ} N (—4.7aq,4.70q)

= | <4
c= mmax |supp;| < 45

N

fori=0—p—1do
for j = —22 — 22 do

W

j

5 CDTy, (5) = > pli+1-p)/p(supp;)
=—22

6 end

7 end

Algorithm 2: FastCDT

Data: Integer p, ag = p- w(y/logn) =~ p-4.7
1 Sampling from Dyn o4 :

2 b <R ZZ
3 z <R Do1pzn aq via Algorithm 3 for b, p,n
a4 Output z

68

5. CCA-secure Encryption Scheme from A-LWE in Practice

Algorithm 3: CDT Sampling
Data: p € Z,n € N,b € Z;

1 Given CDTy, : [-22,22]NZ — [0,1] for 1 <i<n
2 fori=1—ndo

3 T <R [0, 1]

4 for j=0— £5do

5 z; < linSearch(r, CDTy, (4))

7 for j = +6 — +22 do

8 z; < binSearch(r, CD Ty, (j))
9 end

10 end

11 end

Previous work relied on the entropy of normally distributed variables. In
Lemma 5.2 we deduce a closed expression for the entropy of discrete Gaussian dis-
tributed vectors.

Lemma 5.2. Letp € Z and s = p - In@2(+1/e) p-4.7. Then, the entropy of

s
a discrete Gaussian v < g Dyz.q is given by Huo(r) = log(e'/2s) (with overwhelming
probability).

Proof. We can restrict the support of the sampler to [—4.7s,4.7s] from which a dis-
crete Gaussian is sampled with overwhelming probability following
[Ban95, Lemma 2.4]. From Lemma 3.2 and the algorithms for FastCDT, we have
to sample an integer b uniformly at random from the range [0,p — 1]. Subse-
quently, we sample a discrete Gaussian via the distribution Dy1,7 . We note that
p(AF) = p(AIJ;) + negl(n) as per Lemma 3.1 and Lemma 5.1. The entropy is then
given by

Hy(r) = — Z) - log P(7) Z Z pl-i-j p log<m)

i=—00 i= 03_700
p—1
_ MZ > pli+j-p)-log(pli+j - p)) +log(p- p(Ay)).
P/ =0 j=—o0

For the left term of the last equation, we can deduce a simple series with parameter
4.7 for all p. In fact, we have

69

5. CCA-secure Encryption Scheme from A-LWE in Practice

%) 9 . 2
) _pletip) (.1‘ +7- p)
- E plx+j-p)-loglplx+j-p) = Y e 2 - 2 loge
j=—o00 Jj=—00
(/o)
= E P TF(x/Z;;]) loge
j=—o00

An easy computation shows that the maximum of p(z) - log(p(x)) is at x = —=

o/
with p(z)-log(p(z)) = 1/e. Furthermore, we see from the last equation that we need
only to consider x € [0,p] NZ or equivalently y = z/p € [0,1] N Q for arbitrary p.

Thus, we have to compute

> ()
E T (yﬂ) loge = 2.35 - loge,

. AT
j=—o0
T L.
which is derived from the expectation value via %E [2?], since
00 2? 2
21 21 e_ﬂ'm 2 47
El(z +¢)°] = E[z7] = Z Wﬂv =3
j=—00 P

where the ﬁrst equation follows from [MRO4] for ¢ € R. In fact, it has been shown

that E[z?] = 47 and E[(x — ¢)?] < 4.7%- (% n 15’6/) for 4.7 > 2.(Z). Following

In(2(1+1/€))

this, we need to solve the equation 4.7 = 2 - with respect to €. Since

¢ is negligible, we still obtain an expression very close to E[z2].
Using this, we deduce the following expression

p-2.35-loge

=0.5loge
p-p(Ay)

Z Z (i+7j-p)-logp(i+j-p)) =

=0 j=—00

Hence, we have Hoo(r) = log(p - p(Ay)) + 0.5loge = log(e!/?s) where p(Ay) = 4.7
with high probability following Lemma 5.1. O

Table 5.1 compares different state-of-the-art discrete Gaussian samplers such as
the standard CDT sampler and Knuth-Yao with FastCDT. In fact, by use of FastCDT
we realize improvement factors of about 1.7 — 2.0 with respect to Knuth-Yao and
even 1.5 — 2.6 as compared to the standard CDT sampler. Theoretically, one would
expect the FastCDT sampler to be for a large p essentially as fast as with small
parameters for a given efficient uniform random source. This observation is due to
the constant table size at runtime. However, the small cache memory of today’s
architectures causes delays in case a requested table is moved into the cache. This
occurs when p becomes large and hence the number of tables increases.

70

5. CCA-secure Encryption Scheme from A-LWE in Practice

Parameter Knuth-Yao CDT FastCDT
P Timings in sec. Timings in sec. Timings in sec.
16 5.6 5.1 3.3
128 6.6 7.3 34
1024 7.7 9.6 3.7
4096 8.4 11.3 4.3
Improvement Factor ‘ x1.7— x2.0 x1.5 — x2.6 -

Table 5.1.: Comparison of different samplers for 10® samples.

Using FastCDT, the timings for the encryption engine in [P2] considerably im-
proved. In average, we achieve an improvement factor of about 1.5 for the proposed
parameters.

5.2. Techniques

Prior to starting with a description of our implementation in Section 5.4, we define
the setting and introduce several tools required to operate the scheme efficiently. In
particular, we propose algorithms that make use of the features accompanying the
scheme in consideration.

5.2.1. Setting

We operate in the ring setting, where lattices correspond to ideals in the associ-
ated rings. This allows for more efficient algorithms as compared to the unstruc-
tured counterparts in Zy. More specifically, we will focus on cyclotomic rings of
the form R, = Z4[X]/ (X" + 1) for integers ¢ > 0 and n being a power of two,
where ®5,(X) = X" + 1 is a cyclotomic polynomial that is irreducible over Z[X].
Cyclotomic rings have very nice structures that allow for efficient and specialized
algorithms [Pol71] and furthermore provide similar worst-case to average-case hard-
ness results [LPR10]. Though it seems to be preferable to operate with a modulus of
the form ¢ = 2!, when considering the trapdoor construction and the corresponding
LWE inversion algorithm from [MP12], it might be more advantageous to select a
prime ¢ such that ¢ = 1 mod 2n. In this case ®9,(X) = X™ + 1 splits into n linear
factors over Z,[X] such that Ry = Z4[X]/ (91(X)) X ... x Zg[X]/ (gn(X)), where
9i(X) denotes a linear polynomial. Due to this fact, there exists an element w € Z,
of order 2n that satisfies ®g,(w) = 0 mod ¢ since 2n|g—1 and Z; = Z,\{0} is a cyclic
group. Therefore, we can write g;(X) = X —§; for some element ; € Z, and use the
NTT [Win96] in order to efficiently perform polynomial multiplication as already
observed in [GOPS13]. Let & be an element of order n and ¢? = ¢ mod ¢. Then two
polynomials r,u € R, are multiplied by first transforming r = (rog,...,r,—1) and
u to T'(r) = (ro,¢r1,..., " 1r,_1) and T'(u) via the bijective map T : R, — Ry
and subsequently computing 7'(c) = NTTgl[NTTg(T(r)) oNTT¢(T'(u))]. Following
this approach, it is not required to double the input length to the NTT [Win96] and

71

5. CCA-secure Encryption Scheme from A-LWE in Practice

there is no need to use the less efficient FFT on the complex numbers. Moreover,
one deduces from the representation of R, that the number of invertible elements
in R, is given by (¢ —1)" = ¢"(1 —1/¢)" or simply by the ratio (1 —1/¢)", which is
non-negligible for large enough values of ¢. In fact, when choosing g = 8383489 and
n = 512 this ratio is approximately 1. This fact helps us to choose better parame-
ters in the trapdoor generation algorithm. Beyond that, we propose a fast technique
to generate ring elements and the corresponding inverses required for tagging the
public key in order to ensure CCA security. This method is mainly possible due to
the existence of the NTT. Following this, we are able to deduce a representation of
the structure of the group of units qu. In addition, we present in Section 5.2.4 an
efficient LWE inversion algorithm for arbitrarily composed moduli ¢ including prime
numbers, since the algorithm given in [MP12] is only successfully applicable if ¢ is
a power of two. Generic approaches such as Babai’s algorithm are less efficient and
hence not appropriate for practical applications.

5.2.2. Instantiation from Trapdoors for Ideal-Lattices

In this paragraph we shortly recap the trapdoor generation algorithm [P9, MP12],
which is used in order to construct a public key that is indistinguishable from uniform
and allows to invert LWE instances. We will restrict to the ring variant following
the construction from Chapter 6 with polynomials in R,. Thus, let £ = [log¢| and
m > 0 be an integer. The trapdoor generation algorithm gets as input an additional
flag that is set either to t := statistical or t := computational invoking the respective
trapdoor generation algorithms for public keys being either statistically or compu-
tationally close to uniform.

Trapdoor Generation

e TrapGen(1",t := computational) Sample a single polynomial a; € R, uni-
formly at random (m = 1). Let fa, (x,y) = a1 -x+y € Ry be a function.
Sample 2k random polynomials r;; according to Dzn o, viewing poly-
nomials as coefficient vectors with parameter aq (e.g., ag > 24/n) for
1 <i<kandje {1,2}. The secret key is given by sk = [r11,...,ry1]
with the corresponding public key pk := A

A= [alagl - fal(rl,larl,Q)a e 58k — fa1(rk,17rk’,2)] .

Analogously, if a tag t,, is used, we obtain A, by multiplication of t,, with
gifor1 <i<k.

72

5. CCA-secure Encryption Scheme from A-LWE in Practice

e TrapGen(1™,t := statistical) Sample m polynomials a = [ay,...,as] €
B m

Ry uniformly at random. By hs(X) = }_ a;x; we define a generalized
i=1

compact knapsack parametrized by the elements in a. Sample k vectors

of polynomials ¥; = [r;1,...,rim] € R™ according to some distribution

D and define a4 = ha(t;) for 1 < i < k. The public key is then given

by pk := A with

A:[alv - ,am, 81 — Am4l, - 7gk_aﬁ’b+k]7

where g; denotes the constant polynomial consisting only of zero coeffi-
cients except for the constant term 2'~1. The trapdoor polynomials define
the secret key sk = [f1,..., T3] If a tag t, is taken into account, we have

A,=[ai, ... ,am,ty 81 —amt1, -+ s bu 8k — Amtk) -

Figure 5.1.: Trapdoor generation for CCAl-secure encryption schemes

There exist many choices of how to select the parameter m and the distribution
D such that the polynomials a;4; are statistically close to uniform over R,. In
general, there exists an inherent relationship, where a large number m of random
polynomials allows to select the entries of the trapdoor polynomials r; ; to be of small
size. Conversely, a small number of random polynomials leads to larger values. In
fact, one can apply the regularity bound from [SSTX09, Lemma 6], which essentially
states that the statistical distance of a;4; = ha(f;) from the uniform distribution
over R, is upper bounded by

1 q \"
<7 1 7,) _17
6—2\/(e

where D corresponds to the uniform distribution over a set [—b,b]" N Z™ with
B = 2b+ 1. For instance, if one reconsiders the parameters ¢ = 8383489
and n = 512 from above, it is possible to set m = 46 and b = 2% in order
to ensure a statistical distance of about 27109 This bound is impractical for a
low value for m. A better regularity bound is given by [SS11, Lemma 3.1] and
[LPR13, Corollary 7.5] for this case. For inverting LWE instances it is also impor-
tant that the parameters are chosen to be small enough in order to efficiently recover
the secret. The computational instantiation requires only one single polynomial a;
sampled uniformly at random. The other polynomials are sampled from the LWE
distribution using a;. Applying this approach requires to sample the secret following
the discrete Gaussian distribution in order to correctly recover the error.

73

5. CCA-secure Encryption Scheme from A-LWE in Practice

CCA1l-secure Encryption Scheme - Ring Variant

KeyGen(1™): Let t < (d — 2\(n))/logq with d = H(e1) for e; < Dzn oq.
Generate a uniform random public matrix C € ZZX”, public key
pk:=A=[A"| A"] e Rf;“m for a statistically or computationally instan-
tiated vector of polynomials A” € R}* with trapdoor sk := t.

e Select [> 0 for the HDL mode and otherwise [= 0.

Enc(pk, m € {0,1}¢):
1. Sample a tag t, from a large tag space (R,) and generate A, with
Al =lay,...,an,tyg —ay,...,t,8 — ax], where k = [logq] and
m = 1 for a computational instantiated public key and m > 1 in
case of a statistical instantiation.
2. Sample s <—g Ry (or s < Droq for A ~c U(RL™)). If my = 1,
sample e,,1; <R DR aq-

3. V= (V1. Vingi—m,) = encode(F (s, ey 1) & m) € RL, x R
e Random oracle model: F(s, e, +;) := H(s) with m; =0.
e Standard model: F(s,e;+;) := PRNG(C - e,,4; mod ¢) with
m;=1.
4. Sample e; <r DpRryv,3q for 1 < ¢ < | and

€ <R DpRiviaq for I +1 < i < m+ 10— mq, where v; + pR is
viewed as the set of vectors v; + pZ™ .

The ciphertext is then given by ¢ = ga (s, €) for € = [e1,...,en4].

Dec(sk, ¢, u) : Compute gxi (£, ¢) = (s,e) for A, =[A' | AJ] € RLT™:

1. Statistical instantiation Let ¢/ = (¢i41,...,¢14m). Then com-
pute € ymii = Clamti — he'(t;) for 1 < i < k and m = m + k.
Now, invoke the LWE inversion algorithm from Section 5.2.4 on
Cl+m—+1, - - - Cl+m—+k i order to recover S = t, - s. Subsequently, com-
pute & = & — Ays for s =t 's.

2. Computational instantiation Determine the polynomials
Cl4it1 = Clyit1 — Ci41 - i1 for 1 < 7 < k. The remaining steps
are equal to the statistical instantiation.

If | e |> Bg-vnforl<i<lor|el|>ag-ynforl+1<i<m+l,
output L. Else return m = decode(éz mod p2, €1 mod p1) & F(s, €41)
for ég = [el, e ,el] and él = [el+1, Ce ,el+m_m1] .

Figure 5.2.: Ring variant of the CCAl-secure encryption scheme.

74

5. CCA-secure Encryption Scheme from A-LWE in Practice

5.2.3. CCA-secure Encryption Scheme — Ring Variant

In Figure 5.2 we present the ring variant of the CCA1-secure scheme from Section 4.3.
To this end, the scheme is operated with two different parameters aq and Bq for
an improved message expansion factor as described in Section 4.2.2. Furthermore,
define Ry = Z4[X]/ (X™ + 1) for n a power of two and

o ag=2"-\/ln(2(1+1/¢))/m with p; = 2%

o Bg=2"./In(2(1+1/¢))/7 with ky = |log(575)] and py = 27>

Abusing notation, we denote by m; and meo the number of polynomials rather than
the number coefficients as before. Moreover, denote by F' : R, X ZZ — {0,1}¢ a
random function for ¢ = n-ky(m — 1) +n- ke -1 with m; = 1 and mg = m — 1
outputting ¢ random bits in order to generate the error polynomials with respect to
A’ and A", respectively.

For uniformly distributed error polynomials in the HDL mode, one omits to sample
€; <R Dpzniv, g for 1 < i <l and takes v; instead similar to the generic encryption
scheme in Section 4.2.3, where v; is uniform random over R, with ps = q.

We note that sampling polynomials according to the distribution DR v, aq is
efficiently performed by sampling vectors according to Dpznyv, oq and identifying
the obtained vectors as polynomials via the coefficient embedding. Furthermore,
we point out that R is suitable to be considered as a large tag space for certain
parameters. Especially, in view of our implementation we present theoretical and
practical arguments in Section 5.2.5 supporting this choice.

5.2.4. LWE Inversion for Arbitrary Modulus

In [MP12] an efficient LWE inversion algorithm has been proposed that works only
for moduli ¢ being a power of two. The second part of the LWE inversion algorithm
fails whenever the modulus is of different type. Roughly speaking, the algorithm
recovers the components of the secret s bitwise starting from the last polynomial.
Shifting s to the left, i.e. multiplication by powers of two, deletes the most significant
bits mod ¢. However, if the modulus is not of this form, the scaled secret is wrapped
around and this approach does not work anymore. In the following we give a descrip-
tion of our approach. The first step remains essentially the same. For the sake of
simplicity, let I = 0 such that A = A” and ¢ = [c1,...,Chnik] = As+er, ..., emn1k]
be a ciphertext.

75

5. CCA-secure Encryption Scheme from A-LWE in Practice

LWE Inversion Algorithm For Arbitrary Modulus

m m
e Step 1: Set Chti = Cipti — Z C;r;; = 8iS+ (ei + Z ejrm) = g;S + Pi-
= =]

e Step 2: Let ||p]|,, < b with overwhelming probability. When implement-
ing the scheme, one can decrease the bound b, since the length of r; ;
needs not to be upper bounded due to direct access to the secret key.
The algorithm is independently applied on each entry of s = (s1, ..., 8,).

k=1

Therefore, we start by recovering the bits of s1 = Y a;2". One proceeds

=0

successively and recovers the most significant bits at the beginning as
opposed to the least significant bits following [MP12].

1.

Fori =0, i < k: Lett = gis+p; and ¢ = t; — 2(ap_128" 1 +
...+ a2") mod ¢, where aj_1,...,a; € {0,1} represent all bits of s;
recovered up to the i-th iteration.

Check the first bits of ¢ — b and ¢ + b in terms of equality, since
2%sy € [t1 — b, t1 + b]. For instance, if the bit representation of ¢ — b
and ¢+ b is 10100... and 10110..., then s; (for i = 0) must have
most significant bits 101 with ap_1ar_sar_3 = 101.

Case a: If the number of recovered bits in 2. is non-zero, then jump
to 1. with ¢ = ¢+ 1 and proceed with ¢ = ¢t — 21'(ak_12k71 +
...+ a;2") mod ¢, where ag_1,...,a; € {0,1} represent all bits
recovered up to the i-th iteration.

Case b: If in Step 2 no bits could be recovered due to differing
bit representations, then ¢ £ b has bit representations 10000 . ..
and 01111. Theoretically, both representations are possible due
to the perturbation vector, which is upper bounded by b (e.g.
logq — logh > 6). Therefore, one creates two instances each
for a different representation and continues the algorithm with
A1+1014+2014+301+401+5 = 10000 and a;11a;426;+30; 440745 = 01111,

If the second case occurs at least once, the correct secret s is at-
tained by checking whether the polynomials €, = ¢; —g;s mod ¢ lie in
[—4.7-aq,4.7-aq|" for all 1 < i < k after normalization of the entries
of €} to the range [—¢/2,q/2]", because otherwise there exists an i

/

such that the mnormalized e; are mnot all contained in

[—4.7 - aq,4.7 - ag|™ due to injectivity of ga(:,-) for the chosen pa-
rameters.

76

5. CCA-secure Encryption Scheme from A-LWE in Practice

The choice of a parameter for the error term can be derived with the help of the
following lemma.

Lemma 5.3. Let the secret key be sampled according to the discrete Gaussian dis-
tribution or uniformly at random with parameter rse.. In order to correctly invert
the LWE instance €, parameters for the error term are given by

q 1

aq < —.
1= 4(1 + Tsec mn) \/ﬁ

m
Proof. Since p; = (e; + Y. ejr;;), we have ||pi|| < |lei]l + v lej| [Iris]| < q/4.
j=1
For instance, if r;; is chosen from a discrete Gaussian distribution with parameter

Tsec (Or alternatively components uniformly at random from [—7gsec, rsec] NZ). It

follows ||r;;|| < 7secy/n and subsequently |le;|| < m by rearrangement of
the terms. This, however, implies that the parameter aq of the error term is bounded

by m%, since [e;| < agy/n. 0

In order to estimate the bound b which affects the running time, we can compute
||lri;|| practically, since we have direct access to the key material. In any case, b is
upper bounded by b < ||p;||,, = 4.7 aq||til|, < 4.7 aq - 75ecv/mn + 1. This mainly
follows from [Ban95, Lemma 2.4] with £; = (r;1,...,r;5) viewed as a vector of Z’q"ﬁ
rather than an element of Ry".

5.2.5. Fast Tag Generation and Inversion

Ensuring CCA and RCCA security requires to apply the tagging approach as real-
ized in [MP12]. It is needed to generate a tag from a large set «. We propose a
technique which allows to generate tags and its corresponding inverses much faster
than other proposals such as polynomial division in combination with the extended
Euclidean algorithm. Furthermore, it allows to efficiently check whether an element
belongs to the ring of invertible elements R . Conceptually, it is based on the NTT

transform that acts as an isomorphism mapping polynomials f from R, to f from
- . n—1)
Lol X/ (91(X)) x ... X Zg[X]/ {gn(X)) via f = A-T(f) mod g, i.e., fi = kZ frpre®,
=0

for A = (£¥)1<i j<n and an element & € Z, of order n [Win96]. Multiplication of
two polynomials is performed componentwise after applying the NTT transform on
each polynomial.

77

5. CCA-secure Encryption Scheme from A-LWE in Practice

Theorem 5.4. Let q be a prime and n be a power of 2 s.t. g = 1 mod 2n.
Moreover, let Ry = Z4[X]/ (X" +1) and f = A - T(f) mod ¢ for f € Ry and
T(£) = (fo,¥f1,- -, " L fro1) with NTT transformation matriz A = (€9)1<; j<n,
where fo, ..., fn_1 denote the coefficients of the polynomial £ (coefficient embedding).
The inverse of f is then given by £~ = g, where

T(g)=n"'A"'g

and g; - fi~: 1 mod q with 1 < i < n. Moreover, an element f possesses an inverse
if only if f; # 0 mod q Vi.

Proof. One can easily check that the polynomial ¢ with constant 1 and zero coef-
ficients elsewhere has NTT transform ¢ = (1,...,1). Hence, two elements f and
g are inverses of each other in case g; - f; = 1mod ¢ for 1 < ¢ < n due to com-
ponentwise multiplication T'(c) = NTT,;'(NTT¢(T(f)) o NTT¢(T(g))) = NTT,'(E).
This can be attributed to the fact that the NTT maps polynomials to the ring
Zg[X/ (1(X)) % ... X Zg[X]/ (gn(X)), where inversion is performed componentwise
over Zq. As a result, one can easily check that an element is invertible whenever all
fi # 0 mod ¢ Vi. O

From Theorem 5.4 it follows that the unit group R; = NTTgl((Zq\{O})”) con-
tains (¢—1)" elements such that for two random polynomials g, f € qu the difference
g—f lies in R with probability (1— qfll)”, since both g and f are units and further
have distinct components. More precisely, the difference g — f is invertible, if all
components of A - T(f — g) mod ¢ are non-zero. For large enough ¢ the unit differ-
ence property, used only in the security proof, holds with overwhelming property.
For practice, however, it suffices to set ¢ = 8383489. Since multiplication always
involves the NTT transform and tagging requires to multiply the tag or its inverse,
we generate from a seed the components of f rather than the coefficients of f. This
approach has two major advantages over the standard way, since one NTT trans-
formation is saved and it is, furthermore, very easy to generate invertible elements
as it is only required to generate n random elements from Z,\{0}. This does ap-
parently not hold in case one desires to generate an invertible element directly from
Rq. Following this, inversion of f is also performed in the NTT state by generating
the corresponding g according to Theorem 5.4. Such a strategy allows to compute
inverses over Z, rather than qu, which is much more efficient.

5.3. Security Analysis

In order to estimate the security of the scheme, we mainly adopt the embedding
approach, which is more appropriate for a bounded number of samples as observed
in [BG14]. The distinguishing attack, however, provides better results if the number
of available LWE samples is large. In principal, the embedding approach proceeds
by reducing the LWE problem to the unique shortest vector problem (u-SVP). One

78

5. CCA-secure Encryption Scheme from A-LWE in Practice

mainly differentiates the standard embedding approach [AFG13] with the variant
that has recently been shown to be more efficient especially for a small number of
samples [BG14]. In the following, we give a description of the main ingredients of
the embedding approach for the matrix variant.

5.3.1. Embedding Approach

Let (AT, b) be an LWE sample with b = ATs + e mod ¢, where e Dyzm s follows
the discrete Gaussian distribution. The idea of this attack is to turn the problem of
finding a closest lattice point (CVP) to the target vector b into a unique-SVP prob-
AT b]

lem. Therefore, the authours start with a carefully crafted matrix A, = [0 1

and the corresponding g-ary embedding lattice
Ay(A) = {ueZ™ | Ix € 2" s.th. Acx = umod ¢} .

—s
1
by sy/m. In [GNO8] it was conjectured that a lattice basis reduction algorithm will

find a shortest vector with high probability if

A short lattice point is given by u = (T) =A. <) Its length is upper bounded

A2(A) /AL (A) > g4 L7 (5.1)

is satisfied for an algorithm-characteristical Hermite-factor § and a lattice- resp.
algorithm-specific constant 7 =~ 0.4. One observes by this relationship that the
gap between the first and second successive minimum of the lattice A plays an
important role for the success probability of the underlying algorithm. In order
to estimate the successive minima we need the determinant of the lattice, which is
given by det(A4(A¢)) = ¢ " with overwhelming probability for a random lattice.
Subsequently, by use of the Gaussian heuristic one can deduce estimations for the
lengths of the successive minima

I'(1 + dim(A)/2)1/4m®)
J

Substitution of A\; and A2 in Equation (5.1) by Equation (5.2) and rearrangement
of the terms provides

5 F(l‘FmT—H)l/(m—H) m+En Y/(mt+D)
S\ vrmeor-s ¢

for the required Hermite factor in order to break LWE samples by means of the
embedding approach, where dim(A4(A.)) = m + 1. Now, it is possible to estimate
the time required to successfully mount an attack on LWE and subsequently derive
the bit security of the underlying LWE instances. In particular, it is needed to

Ai(A) ~ det(A)L/dmA), (5.2)

79

5. CCA-secure Encryption Scheme from A-LWE in Practice

preprocess the lattice basis by a strong basis reduction algorithm such as BKZ or
the more advanced BKZ 2.0 in order to achieve the required Hermite factor. For
instance, the authours of [LP11] proposed a model that is deduced by a limited set
of experiments and subsequent extrapolations

logy(T(5)) = 1.8/ log,(5) — 110. (5.3)

These experiments were performed on a computer allowing for 2.3 - 10° operations
per second.

The standard embedding approach from above is not so efficient in case one is
given only a few LWE samples. As a result, the optimal attack dimension is never
reached. To circumvent this situation, one changes the embedding lattice as follows

AqL(Ao) ={veZ™™ A, -v=0 mod ¢}

and hence allowing for a finer analysis, where A, = [A—r | T | b]. Following
this approach, one increases the dimension from m + 1 to m + n + 1. By a trivial
computation one verifies that u = (s, e, —1)T € Aj(AO). The length of this vector is
bounded by sv/m + n + 1. Using the framework from above with det(AfI-(Ao)) =q"
one obtains the estimated security level. The ring variant requires to multiply the
number of polynomials by n, i.e., m =t¢-n for A € RZ.

5.3.2. Analysis of Key Recovery Attacks

Above we analyzed how to solve A-LWE instances in order to find the message or
secret, but it is also possible to recover the key and decrypt the ciphertext. Therefore,
we have to differentiate between the statistical and computational instantiation of
the public key. We, therefore, restrict to the ring variant.

e Statistical Instantiation: In order to recover the key, we have to solve
the ring-ISIS problem for k instances agy; = ha(f;) with 1 < i < k and
uniform random vector of polynomials & = [aj,...,a;] € R;ﬂ. In this case,
we have to find preimages X; such that azi; = ha(X;) and the inequality

m
Ipall =l e+ 3 @iy 1< lleall + el i) V77 < q/4 s satisfied for 1 < i < &
j=1
(see Section 5.2.4). Lemma 5.3 gives a reasonable upper bound on the length
of ||%;||, for 1 < ¢ < k. Then, we have to find a short vector in the lattice
) m+1
At () = {x e R™ | Y ¢ix; = 0 mod ¢}, where ¢; = [4, —ha(%;)]. In fact,
i=1
the vector [F;, 1] is contained in the lattice, which is by construction a solution
to the ring-SIS problem. By means of the embedding approach explained in
the previous section one derives the bit security.

80

5. CCA-secure Encryption Scheme from A-LWE in Practice

e Computational Instantiation: Here, the public key is composed by k LWE
instances and a uniform random polynomial a; used to generate the LWE sam-
ples. For each LWE sample in the public key a new secret and error has been
generated. Therefore, we are required to consider each sample independently
within the security analysis. To this end, we can use the embedding approach
from above or alternatively the approach from [MR09] in order to estimate its
security.

5.4. Software Implementation and Performance Analysis

At the inplementation front we considered several optimizations. As for the poly-
nomial representation and optimizations with respect to the NTT we refer to the
work [GOPS13], which provides a description of an optimized implementation ex-
ploiting the single-instruction multiple-data (SIMD) instructions of the AVX
instruction set extension in modern chipsets. We present a description of the main
ingredients of our optimizations in Section 5.4.1 and continue in the subsequent
section with our performance analysis and implementation results.

5.4.1. Software Implementation and Optimization

AVX and AVX2 Intel equipped the Sandy Bridge microarchitecture with the AVX
instruction set that extends the previously 16 128-bit xmm vector registers of the
Streaming SIMD Extensions (SSE) to 256-bit ymm registers. This offers the possi-
bility to operate within these registers with either vectors of 4 double-precision or
8 single-precision floating-point numbers in arithmetic computations. As a result,
implementations are enabled to perform one addition instruction and one multipli-
cation instruction on those vectors within each cycle. This powerful tool has been
utilized in the implementations [GLP12, GOPS13] leading to remarkable speedups.
Beside of the floating-point multiply-accumulate instructions, the AVX2 extension
set further allows to exploit the registers for integer operations. In our implementa-
tions, we are using AVX and AVX2 whenever possible.

Polynomial Representation

The polynomial representation mainly follows the work [GOPS13], which is opti-
mized for n = 512. In particular, polynomials are stored in an array of 512 double-
precision floating point values. Using the single instruction multiple-data (SIMD)
instructions of AVX allows to operate on vectors of 4 double-precision floating points
in the 256-bit ymm registers such that 4 double-precision multiplications and 4 ad-
ditions of polynomial coefficients are performed in each cycle via the instructions
vmultpd and vaddpd, respectively. In fact, only 64 polynomial coefficients fit into
the available 16 ymm registers.

81

5. CCA-secure Encryption Scheme from A-LWE in Practice

Polynomial Multiplication and NTT

For polynomial multiplication, we use the NTT transformation, which exists due to
the choice of ¢ = 1 mod 2n for n = 512 as already discussed in Section 5.2.1. The
NTT benefits from the fact, that the root of unity is an element of Z, and hence
avoids to operate with complex roots needed for the standard FFT. We also adopt
the optimizations from [GOPS13] made to the NTT.

Tag Generation

As for generating the tag, we use a seed in order to generate the coefficients of
the NTT transformation of the tag NTT¢(7'(u)) as described in Section 5.2.5. As
a consequence, the corresponding polynomial will never be transformed back to u,
hence, saving one transformation. Inversion of NTT¢(7'(u)) in the decryption step
is performed component-wise over Z,, allowing to be much faster than over R,.
Furthermore, the polynomials g; have a constant coefficient 2 and zero coefficients
elsewhere. Hence, multiplication of u with g; requires only to multiply the compo-
nents of NTT¢(7'(u)) with 2’ rather than transforming g; to its NTT representation.

Storing in the NTT Representation

Due to the existence of the NTT with £ € Z;, we can store the whole public key A
in its NTT representation without increasing the storage requirements. This even
leads to a faster encryption and decryption engine, since the step of applying the
NTT on the public key prior to polynomial multiplication is not required anymore.
This saves one transformation in each step. The way of generating tags as shown
above is perfectly adapted to this case.

Sampling Discrete Gaussians

The error term and potentially also the secret of A-LWE and LWE instances are
sampled according to the discrete Gaussian distribution. In our implementation
we use our FastCDT discrete Gaussian sampler introduced in Section 5.1, since
it outperforms the traditional and currently most efficient counterparts CDT and
Knuth-Yao even for small parameters. However, we are required to initialize the
tables of our FastCDT sampler in order to sample according to Dy 7 for all b € Zj,.
That is, we have to construct p tables, where each of them is filled with at most 44
elements (see Section 5.1).

High Data Load Encryption

In order to allow for high data load encryption, the number of polynomials > 0 in
Al e qu must be non-zero. These polynomials are completely random and can hence
be generated from a random seed. Therefore, it suffices to only store A” € Ry and
a seed for A’ in its NTT representation allowing for faster operations while saving

82

5. CCA-secure Encryption Scheme from A-LWE in Practice

storage by use of a seed. Also with respect to security, one observes that increasing
[does not decrease the bit security, since the optimal dimension has already been
exceeded by A”.

Generation of Random Polynomials

Seeds are produced by means of the Linux kernel random-generator /dev/urandom.
We instantiate the random oracle H(-) or the PRNG, when encrypting messages, by
a pseudo-random generator using Salsa20 stream cipher in order to stretch the input
seed to the desired number of uniform random bits. This allows to produce as many
random bits as required.

5.5. Implementation

This section is devoted to an overview of our software implementation and analysis.
The implementation is realized based on the ring variant of the CCAl-secure scheme
presented in Section 5.2.3. To this end, we considered both a standard and random
oracle instantiation of the scheme. And for the sake of comparison, we also included
the current state-of-the-art CPA-secure scheme due to Lindner and Peikert [LP11].
The optimizations introduced in the previous sections such as the new sampler
FastCDT are applied whenever it is possible. For instance, the timings for the
setting considered in [P2] improve by factors ranging between 1.3 and 2.2 in case
the FastCDT sampler is used in place of the Knuth-Yao sampler. We also applied the
new sampler FastCDT to each scheme that consumes discrete Gaussian distributed
vectors. The different schemes are implemented on an

e Intel Core i7-4500U processor operating at 1.8GHz and 4GB of RAM. We
used a gce-4.8.2 compiler with compilation flags Ofast, mavx2, msse2avx,
march=corei7-avx and march=core-avx-2.

5.5.1. Implementation Analysis

We implemented the scheme in two different ways by use of the different message
embedding techniques from Section 4.2.2 in the HDL mode. The following two sub-
sections consider these two strategies in more detail.

1. The error term associated to A’ € Rﬁl in the HDL mode is distributed following
the discrete Gaussian distribution with a parameter 8¢ much larger than the
parameter aq used for the remaining polynomials. In principal, one could
choose the largest possible parameter Sq = ps - \/ln(2(1 +1/€))/m for py = 22

_ q ~ q :
and kg = Uog(2.4'7\/1n(2(1+1/6))/ﬂj ~ |log(54==)] such that the coefficients of

the error polynomials do not wrap around. Theoretically, the performance of
FastCDT does almost not depend on the choice of k as already pointed out in
Section 5.1. However, when it comes to implementing the scheme, the sampler

83

5. CCA-secure Encryption Scheme from A-LWE in Practice

Parameter Description Used for
n Dimension n =512
q Modulus q¢=1mod 2n
Rq Cyclotomic ring Ry =Zg[X])/ (X" +1)
1, P2 Message range p; = 2%, x; bits/coeff.
aq Error distribution Dzn o4 associated to A” aq =4.7-p
Bq Error distribution Dyzn g, associated to A’ Bq=4.7-ps
m Number of polynomials in A” A" e RY
l High data load encryption mode: [> 0 Ale Rfl
I Seed to generate A’ € Rfl
Tsec Parameter of the secret key distribution D7z rgee OF U([—Tsecs Tsec)™)
m Number of random polynomials generating A" € Ry m=m+k
Message size m - nlogy p1 + - nlogy po
Ciphertext size (m+1)nlogy(q)
Public key size -+ mnlogy(q)
Secret key size mnklogs (Tsec)

Table 5.2.: Parameters

must load different tables depending on the random vector b into the cache
and hence causes delays for a large number of tables. Therefore, to account for
these hardware-based effects the parameter B¢ is chosen such that the cycles
per message size ratio is minimized. Furthermore, it is possible to partially
resolve this problem by sampling more than one coefficient from a certain
table, whenever the number of coefficients [- n related to A’ is larger than
the possible range [0,22] of the random entries b;. If I is large enough, one
requires in average [- n/2? samples per partition i 4+ 2¥27 for 0 < i < 2F2.

2. The error polynomials are sampled uniformly at random from the largest pos-
sible range Z,. One avoids to sample discrete Gaussians and the related prob-
lems arising from cache delays. Furthermore, one can exploit the full possible
range for the message. A larger value for the number of polynomials [in A’
leads to message expansion factors converging towards 1 for the overall scheme.

The most time-critical operations are polynomial multiplications, which take about
14922 cycles including three NTT transformations, which require the major block
of the running time. However, by means of the optimizations above, we can store
the public key in the NTT representation and hence save one NTT transformation.
Our performance results for a discrete Gaussian distributed error term in the
HDL mode are given in Table 5.3 and Table 5.4, each for a different instantiation
of the public key A according to Section 5.2.2. In particular, Table 5.3 contains
the implementation results for a computationally instantiated public key, whereas
Table 5.4 depicts the relevant data for a statistically instantiated public key. On the
other hand Table 5.5 and Table 5.6 contain the corresponding implementation results
for a uniformly distributed error term for samples related to A’ in the HDL mode.

We provide timings (cycles per message bit), bit security, message sizes, and mes-
sage expansion factors (ciphertext size/message size ratio) depending on different

84

5. CCA-secure Encryption Scheme from A-LWE in Practice

parameters defined in Table 5.2. At the first glance, one observes in all tables for
the standard and random oracle variant with [= 0 that the ciphertext size of [LP11]
is larger than in our setting by a factor of 2 - logp for the same message size. More
specifically, [LP11] generates ciphertexts of size 2nloggq bits for n message bits,
meaning that in average half a bit is encrypted per entry, whereas in our case we
can encrypt logp = log(aq/4.7) bits per entry. This leads to message expansion
factors between 5.8 and 3 in case we encrypt 4 and 8 bits per entry (of size 23
bits) as compared to a factor of 46 for [LP11]. As an immediate consequence, our
encryption engine must be much faster than [LP11], since encryptions represent A-
LWE instances resembling ordinary LWE samples in its purest form. In fact, when
comparing the timings of both schemes, we observe that our scheme (for [= 0) out-
performs [LP11] by factors between 10 and approximately 20 for the same message
size and conservatively chosen parameters in our setting. That is, the timings of
[LP11] would be even worse in case we choose the same discrete Gaussian parame-
ter. Huge improvement factors are achieved in the high data load encryption mode
for [> 0, because we can extend the public key by random polynomials and encrypt
messages using the same secret. The overhead is solely restricted to generating new
error polynomials and multiplying the secret with the random polynomials from A’,
which can in turn be generated (specifically the NTT representation) from a random
seed.

In fact, we get much better improvement factors if [is increased and the error
polynomials corresponding to A’ are sampled from a wider discrete Gaussian distri-
bution, hence encrypt more bits per entry while being still secure due to large 8q. For
decryption no length conditions are imposed on the error polynomials related to A’.
From a security point of view, our scheme has a bounded number of samples exceed-
ing the optimal dimension with respect to the embedding approaches from [AFG13]
and [BG14]. As a result, the bit security of the scheme lies independently from
the number of samples | + m between 279 and 395 for a computationally instanti-
ated public key and about 202 for a statistical instantiation, in case the ciphertext
is attacked. The higher security level for computationally instantiated public keys
stems from the possibility to select larger parameters for the error size and hence a
smaller message expansion factor. Due to the bound from Lemma 5.3, there exists
a relationship among the lengths resp. parameters of the error polynomials asso-
ciated to A” and the secret keys, which should not exceed a certain threshold in
order to correctly recover the secret. Therefore, one is recommended to select a
proper tradeoff between these parameters. A lower parameter rg.. of the secret key
allows to select a higher parameter aq. Furthermore, the tables indicate that the
decryption routine of [LP11] is faster (factors between 1.6 and 4.2) than ours for
[= 0. This is mainly due to the trapdoor and the corresponding LWE inversion
algorithm from Section 5.2.4, whose efficiency depends on the number of polynomial
multiplications and the bound b, where a high bound allows only to recover a few
bits per step. But for increasing [, the decryption engine of our scheme gets much
faster. Once having recovered s the ciphertext part ¢’ related to A’ is decrypted by

85

5. CCA-secure Encryption Scheme from A-LWE in Practice

& =

¢ — A’ - s mod ¢, which is similar to ¢ - ry + ¢2 from [LP11] in terms of oper-
ations, except that we can decrypt more bits per entry in our scheme as compared
to [LP11]. As a consequence, for large enough [decryption is performed faster than
[LP11] as depicted in the tables below. In the following two sections we elaborate
the impact of different distributions applied to the error polynomials related to A’.
In fact, we differentiate between the discrete Gaussian distribution and the uniform

distribution in the HDL mode.

Discrete Gaussian Error in the HDL Mode

For discrete Gaussian distributed error polynomials, the cycles per message bit ratio
is minimized for Bq = 2'2 - 4.7. That is, we can embed 12 bits of message per entry.
Hence, ps = 2'2. As a result, we obtain the following table which compares the
standard model variant with the random oracle variant and the CPA-secure scheme
from Lindner and Peikert [LP11].

Parameters Sizes Timings Security
(in bits) (in cycles/bit) (in bits)
Tsec P1 P2 Msg Msg Exp. Enc Dec [AFG13] [BG14] KeyRec.
S—Model
1=0
46 20 70656 4 15.7 90.2 279 355 272
20 2T - 82432 3.4 14.2 79.9 331 436 207
8 28 - 94208 3 12.5 43.5 395 554 213
1=2-m
46 20 912 365568 2.3 10.4 19.5 279 355 272
20 27T 212 377344 2.2 10.3 19.4 331 436 207
8 28 212 389120 2.2 9.9 12.5 395 554 213
1=10-m
46 20 912 1545216 2 9.8 7.1 279 355 272
20 27 212 1556992 2 9.8 7.7 331 436 207
8 28 212 1568768 2 9.9 6.2 395 554 213
RO—-Model
1=0
46 PR 73728 3.8 14.9 88.6 279 355 272
20 2T - 86016 3.3 13.5 76.1 331 436 207
8 PAN 98304 2.9 11.8 42.1 395 554 213
1=2-m
46 26 212 614400 1.3 10.7 19.6 279 355 272
20 27T 212 626688 1.3 10.2 19.1 331 436 207
8 28 912 638976 1.3 9.9 12.6 395 554 213
1=10-m
46 20 212 2777088 1.1 9.4 7.1 279 355 272
20 27 212 2789376 1.1 9.7 7.8 331 436 207
8 28 212 2801664 1.1 10.5 6.3 395 554 213
LP11 [LP11]
- ag=T75 - 512 46 230.4 26.8 - 250 250
RSA 1024
(Open-SSL, 80 bit)
- - 1024 1 2137 3330 - - -

Table 5.3.: Comparison of CPA-secure scheme [LP11] with the CCA-secure scheme
from Section 5.2.3 for A &~ U(RLT™)

86

5. CCA-secure Encryption Scheme from A-LWE in Practice

Parameters Sizes Timings Security
(in bits) (in cycles/bit) (in bits)
Tsec m P1 P2 Msg Msg Exp. Enc. Dec. [AFG13] [BG14] KeyRec.
S—Model
1=0
16 46 2t . 139264 5.8 22.7 1275 202 250 >>250
16 23 2t . 92160 5.9 234 117.6 202 250 >> 250
8 46 2t . 139264 5.8 22.7 119.7 202 250 >> 250
8 23 2t - 92160 5.9 23.6 110.3 202 250 >> 250
1=2-m
16 46 21 912 087136 2.5 11.8 21.3 202 250 >> 250
16 23 21 912 657408 2.5 12.1 20.2 202 250 >> 250
8 46 21 212 987136 2.5 12.1 20.3 202 250 >> 250
8 23 21 212 657408 2.5 12.1 18.8 202 250 >> 250
1=10-m
16 46 2t 212 4378624 2 9.8 7.6 202 250 >> 250
16 23 21 212 2918400 2 9.7 7.5 202 250 >> 250
8 46 21 212 4378624 2 9.6 7.5 202 250 >> 250
8 23 21 912 2918400 2 9.9 7.2 202 250 >> 250
RO—-Model
1=0
16 46 2t . 141312 5.8 22 125 202 250 >> 250
16 23 2t . 94208 5.8 224 118.6 202 250 >> 250
8 46 2t . 141312 5.8 22.1 1185 202 250 >> 250
8 23 2t . 94208 5.8 221 108.2 202 250 >> 250
1=2-m
16 46 21 212 989184 2.5 11.7 21.3 202 250 >> 250
16 23 21 212 659456 2.5 11.9 20.1 202 250 >> 250
8 46 21 212 989184 2.5 11.6 20.3 202 250 >> 250
8 23 21 912 659456 2.5 12.5 18.7 202 250 >>250
=10-m
16 46 21 212 4380672 2 9.8 7.6 202 250 >> 250
16 23 21 912 2020448 2 10 7.4 202 250 >> 250
8 46 21 912 4380672 2 9.8 7.3 202 250 >> 250
8 23 21 212 2920448 2 10 7.2 202 250 >> 250
LP11 [LP11]
- - aq=T5 - 512 46 230 26.8 - 250 250
RSA 1024
(Opens-SSL, 80 bit)
- - - 1024 1 2137 3330 - - -

Table 5.4.: Comparison of CPA-secure scheme [LP11] with the CCA-secure scheme
from Section 5.2.3 for A ~, U(RL™)

Table 5.3 and Table 5.4 contain different sizes such as the message size denot-
ing the number of bits encrypted per ciphertext. One obtains the approximate
ciphertext size by multiplication of the message size with the message expansion
factor. The timings for encryption and decryption are given by the average num-
ber of cycles required to encrypt/decrypt one message bit. Table 5.3 contains the
implementation results for a computationally instantiated public key, which allows
for a more efficient scheme in terms of performance due to the choice of better pa-
rameters with a higher message size per coefficient. This can particularly be seen
for | = 0 leading to message expansion factors of approx. 3 as compared to 6 for
a statistically instantiated public key. Moreover, the performance of decryption
is faster for a computationally instantiated public key. This follows from the low
number of polynomial multiplications required to invert the corresponding A-LWE
instances. However, we see that the message expansion factor decreases as soon as
[raises in the HDL mode. For [= 10 - m, for instance, we have a factor of 2 and

87

5. CCA-secure Encryption Scheme from A-LWE in Practice

it is principally possible to achieve even factors approximating 1 for large enough .
We note that the security of the schemes using either of the embedding approaches
from [AFG13, BG14] do not exploit the ingredients of the standard model variant
and hence lead to the same security level as in the random oracle model. This is
due to the fact, that the random seed Ce; mod ¢ has never been published and can
thus not be exploited for an attack. As a result, we do not loose security when
switching to the standard model using current state-of-the-art attack algorithms. If
one compares the CCAl-secure scheme presented in this thesis with the CPA-secure
scheme due to Lindner and Peikert in both tables, one observes improvement factors
for encryption ranging between 10 and 25 for the considered parameters. However,
when it comes to decryption, the CCAl-secure scheme outperforms LP11 only in
the HDL mode for [> 2.

Uniform Error in the HDL Mode

In the second run of experiments we changed the error distribution of error polyno-
mials related to A’. We used the uniform distribution over the full range R,.

Parameters Sizes Timings Security
(in bits) (in cycles) (in bits)
Isec P1 Msg Msg Exp. Enc. Dec. [AFG13] [BG14] Key Recov.
S—Model
=0
46 20 70656 4 15.7 90.2 279 355 272
20 27 82432 3.4 14.2 79.9 331 436 207
8 28 94208 3 12.5 43.5 395 554 213
1=2-m
46 20 611328 14 3.5 12 279 355 272
20 27 623104 14 3.2 11.9 331 436 207
8 28 634880 1.3 3.7 9 395 554 213
1=10-m
46 20 2774016 1.1 2.3 4.1 279 355 272
20 27 2785792 1.1 2.5 4.3 331 436 207
8 28 2797568 1.1 2.5 3.6 395 554 213
RO—Model
1=0
46 20 73728 3.8 14.9 88.6 279 355 272
20 27 86016 3.3 13.5 76.1 331 436 207
8 28 98304 2.9 11.8 42.1 395 554 213
1=2-m
46 20 368640 14 3.3 12.3 279 355 272
20 27 380928 14 34 12.1 331 436 207
8 28 393216 1.3 3.7 9.1 395 554 213
1=10-m
46 20 1548288 1.1 2.3 4.1 279 355 272
20 27 1560576 1.1 2.5 4.4 331 436 207
8 28 1572864 1.1 3 4.1 395 554 213
LP11 [LP11]
- ag=T75 512 46 2304 26.8 - 250 250
RSA 1024
(Opens-SSL, 80 bit)
- - 1024 1 2137 3330 - - -

Table 5.5.: Comparison of CPA-secure scheme [LP11] with the CCA-secure scheme
from Section 5.2.3 for A ~, U(RLT™)

88

5. CCA-secure Encryption Scheme from A-LWE in Practice

Parameters Sizes Timings Security
(in bits) (in cycles/bit) (in bits)
Tsec 1M P1 Msg Msg Exp. Enc. Dec. [AFG13] [BG14] KeyRec.
S—Model
1=0
16 46 21 139264 5.8 22.7 127.5 202 250 >> 250
16 23 21 92160 5.9 234 117.6 202 250 >> 250
8 46 21 139264 5.8 22.7 119.7 202 250 >> 250
8 23 21 92160 5.9 23.6 110.3 202 250 >> 250
1=2-m
16 46 21 1693696 1.4 4 12.4 202 250 >> 250
16 23 21 1128448 1.4 4 11.6 202 250 >> 250
8 46 21 1693696 1.4 3.9 11.9 202 250 >> 250
8 23 21 1128448 1.4 3.9 11 202 250 >> 250
1=10-m
16 46 21 7911424 1.1 2.6 4.3 202 250 >> 250
16 23 21 5273600 1.1 2.6 4.2 202 250 >> 250
8 46 21 7911424 1.1 2.6 4.2 202 250 >> 250
8 23 21 5273600 1.1 2.6 4 202 250 >> 250
RO—-Model
I1=0
16 46 24 141312 5.8 22 125 202 250 >> 250
16 23 24 94208 5.8 22.4 118.6 202 250 >> 250
8 46 24 141312 5.8 22.1 118.5 202 250 >> 250
8 23 24 94208 5.8 22.1 108.2 202 250 >> 250
1=2-m
16 46 24 1695744 1.4 4 12.3 202 250 >> 250
16 23 24 1130496 1.4 3.8 11.5 202 250 >> 250
8 46 24 1695744 1.4 3.9 11.9 202 250 >> 250
8 23 24 1130496 1.4 3.8 10.9 202 250 >> 250
1=10-m
16 46 24 7913472 1.1 2.5 4.2 202 250 >> 250
16 23 21 5275648 1.1 2.4 4.2 202 250 >> 250
8 46 21 7913472 1.1 2.6 4.1 202 250 >> 250
8 23 21 5275648 1.1 2.4 4.1 202 250 >> 250
LP11 [LP11]
- - ag="T5 512 46 230 26.8 - 250 250
RSA 1024
(Opens-SSL, 80 bit)
- - - 1024 1 2137 3330 - - -

Table 5.6.: Comparison of CPA-secure scheme [LP11] with the CCA-secure scheme
from Section 5.2.3 for A ~, U(RL™™)

Such a strategy of using the uniform distribution following Section 4.2.2 has two
desirable impacts. First, we can encode messages of size log ¢ bits per entry, hence
allowing for the largest possible bit size. Second, the last discrete Gaussian step
is omitted such that the resulting scheme is even more efficient in terms of perfor-
mance. As for estimating the security level of the scheme the samples corresponding
to A’ are ignored due to the huge error size. These samples do not provide addi-
tional information and are, thus, not useful for current attack algorithms.

The implementation results are given in Table 5.5 and Table 5.6. One observes, that
for [= 0 the figures must coincide with the ones given in Table 5.3 and Table 5.4,
since the scheme is not operated in the HDL mode for this parameter setting. But
for [= 10 - m, the encryption and decryption engine is approximately 100 times
faster than LP11. This can be attributed to the fact that we can pack much more
data into the same ciphertext size leading to message expansion factors of about

89

5. CCA-secure Encryption Scheme from A-LWE in Practice

1.1 as compared to 46 in the CPA-secure setting LP11. Avoiding to sample dis-
crete Gaussians for error polynomials related to A’ makes the scheme very efficient.
Also the bit security of our scheme is very high, thus being applicable in environ-
ments characterized by high security standards. From Table 5.5, we observe that for
[= 10-m encryption and decryption take only 2.4 resp. 4.1 cycles per bit resulting in
an improvement factor of approximately 92 resp. 6.5 as compared to LP11 for a sim-
ilar level of security. For the computational variant in Table 5.5, the improvement
factor is with 100 and 6.5 even higher.

90

Part Il.

Lattice-based Signatures

91

Overview

Digital signature schemes belong arguably to the most commonly used cryptographic
primitives in practice with a wide range of applications. Hence, digital signatures
are subject to intense research. The construction of lattice based signature schemes
appeared to be a big challenge up to the last couples of years. This is due to
the absence of practical constructions enjoying provable security. First attempts
to build lattice-based signature schemes such as GGH [GGH97b] and NTRU Sign
[HHGP 03] failed due to the vulnerability to statistical attacks as shown, for in-
stance, in [DN12, GJSS01, NR06]. This fundamentally changed in 2008 with the
GPV signature scheme introduced by Gentry et al. [GPV08] and the one-time sig-
nature scheme (LM-OTS) due to Lyubashevsky and Micciancio[LMO08]. The latter
one operates in ideal lattices which allows for faster computations and smaller key
sizes while providing provable security. When using Merkle Trees one can transform
LM-OTS into a full signature scheme. Subsequent works [Lyu08, Lyu09] build upon
the one time signature scheme using the Fiat-Shamir transform [FS87]. It mainly
takes its inspiration from Schnorr’s signature scheme, since it essentially follows the
same methodology of constructing signatures except for the final rejection sampling
step. Recently, Lyubashevsky proposed an efficient construction [Lyu09, Lyul2] that
performs very well on hardware [GLP12] and software [GOPS13]. The most recent
construction [DDLL13] presented at Crypto 2013 has been proven to be practically
efficient taking advantage of an improved discrete Gaussian sampler and an NTRU-
like key generation procedure.

The hash-and-sign approach in turn was reconsidered in [GPVO08] leading to con-
structions that admit security based on the hardness to solve the SIS Problem.
The GPV signature scheme is a representative of this approach, which initiated
the design of improving preimage sampleable trapdoor functions (PSTF)
[AP09, GPV08, MP12, Peil0], the main building block of the GPV signature scheme,
which has recently become practical [MP12]. In [BZ13] it has been shown that
the scheme is secure even in the quantum random oracle model (EUF-qCMA se-
cure). The ultimate goal is to construct a uniform random matrix A € Z*™
endowed with a trapdoor S € Z™*™ but in such a way that S has small entries
and A -S = 0 mod ¢ is satisfied. By means of the secret matrix S a signer can
produce short preimages x for the hash value H(u) of a message p to be signed
such that Ax = H(u) mod gq. The quality of the secret matrix immediately trans-
fers to the quality of the signatures and hence plays a major role for assessing the
security. Therefore, improving the algorithms for key generation is an ongoing re-
search objective. Such constructions were considered for the first time in [Ajt99]
and later on improved by [AP09, Peil0], but unfortunately they are inefficient and

92

5. CCA-secure Encryption Scheme from A-LWE in Practice

thus not suitable for practice. This is because the involved algorithms are complex
and expensive in terms of space and running time. However, Micciancio and Peikert
recently proposed in [MP12] an elegant trapdoor construction which allows for fast
signature generation while providing an improved output quality. The second part
of this thesis, consisting of Chapters 6 to 8, represents a reprint of the essential
parts of [EB13, EB14a, EB14b], where the author of this thesis was the primary
investigator and author of the publications.

93

6. Improvement of GPV Signatures

In this chapter we present the first software implementation of the GPV signature
[GPV08] scheme combined with the trapdoor construction from Micciancio and Peik-
ert [MP12] as it admits strong security proofs and is believed to be very efficient
in practice. Moreover, we introduce an efficient trapdoor variant for ideal lattices,
that is based on the ring-LWE problem, and propose optimizations that improve the
scheme in terms of space and running time. For instance, the memory size of the
perturbation matrix is lowered by a factor of about 240 as compared to the original
representation from [MP12]. The perturbation matrix is a key determinant of the
running time in the signing step and is particularly required in order to sample in-
teger vectors with a given covariance. In both variants, the matrix and ring variant,
we considerably improved the running times of key and signature generation due to
a simplified representation of the perturbation matrix. For the considered parame-
ters, for example, the running times of key and signature generation are lowered by
a factor of 30-190 and 2-6 in the ring variant. The scheme under scrutiny will be
analyzed with respect to storage sizes, running times, and security levels for differ-
ent parameter sets. Furthermore, we will show that the ring variant has a 5-8 times
faster signature generation engine with a verification procedure that is faster by a
factor of approximately 20-40 as compared to the matrix variant.

6.1. GPV Signature Scheme

This section is devoted to a description of the GPV signature scheme relying on
preimage sampleable trapdoor functions. In fact, the GPV signature scheme has
been introduced in [GPVO08] inspired by a classical counterpart due to [BR93, BR96,
Cor00]. It is often also referred to as (probabilistic) full domain hash schemes.
We therefore start by a brief overview of trapdoor functions and the main building
blocks prior to presenting a description of the GPV signature scheme and the related
algorithms.

6.1.1. Trapdoor Functions

In the following, we recall some basic definitions and properties of trapdoor functions
[GPVO08], that are required in several parts of this work. Later, we will particularly
focus on collision-resistant preimage sampleable trapdoor functions that allow any
signer knowing the trapdoor to create signatures in full domain hash schemes such
as the GPV signature scheme. According to [AP09, GPV08, MP12, Peil0] there
exists a polynomial-time algorithm TrapGen that on input the security parameter

94

6. Improvement of GPV Signatures

1™ outputs public key A and the corresponding trapdoor T such that the trapdoor
function fa : B, — R, can efficiently be evaluated and satisfies the following
properties:

1. The output distribution of fa(z) is uniform at random over R, given z is
sampled from the domain B,, according to SampleDom(1"), e.g., Dzn s with
s = w(y/logn) following [GPV08, Lemma 5.2].

2. Anyone knowing the trapdoor can efficiently sample preimages
x <— SamplePre(T,y) for a given syndrome y € R, such that fa(z) = y,
where z is distributed as SampleDom(1™). By the one-way property the prob-
ability to find a preimage = € f;l(y) C B,, of a uniform syndrome y € R,
without the knowledge of the trapdoor is negligible.

3. The conditional min-entropy property of SampleDom(1™) for a given syndrome
y € R, implies that two preimages z’,z distributed as SampleDom(1") dif-
fer with overwhelming probability. This is due to the large conditional min-
entropy of at least w(logn).

4. The preimage sampleable trapdoor functions are collision resistant, meaning
that it is infeasible to find z1, 2o € B, such that fa(z1) = fa(z2) and z1 # z2.

Due to the results of [Ajt99, GPVO08] a lot of research has been made on the
construction of preimage sampleable trapdoor functions in recent years resulting in
a sequence of improving works [AP09, GPV08, MP12, Peil0]. These constructions
often satisfy these properties only statistically, meaning that the statistical distance
between the claimed distributions and the provided ones are negligible. As a result
the security proofs of cryptographic schemes involving concrete constructions hold
only statistically, which is sufficient for practice.

6.1.2. Full-Domain Hash Scheme

The GPYV signature scheme is a representative of the full domain hash scheme, which
is secure in the random oracle model and exploits the properties of collision-resistant
trapdoor functions. Furthermore, it is stateful, meaning that it does not generate
new signatures for messages already signed. This can be attributed to the fact that
a potential attacker could otherwise use two signatures of the same message in order
to construct an element of the kernel, which solves SIS, , g and hence allows the
attacker to provide a second preimage of any message. One can remove the need for
storing message signature pairs by employing the probabilistic approach [GPV08],
where the signer samples an extra random seed, which is appended to the message
when calling H ().

The GPYV signature scheme consists mainly of sampling a preimage from a hash
function endowed with a trapdoor. It is composed by 3 algorithms
S = (KeyGenGPV, SignGPV, VerifyGPV) described as follows:

95

6. Improvement of GPV Signatures

KeyGenGPV(1™) On input 1™ the algorithm TrapGen(1™) outputs a key pair (A, T),
where sk := T denotes the secret key (or trapdoor) and pk := A represents
the public key describing the preimage sampleable trapdoor function fa.

SignGPV(T, msg) The signing algorithm computes the hash value H(msg) of the
message msg and looks up H(msg) in its table, where H(-) is modeled as a
random oracle. If it finds an entry, it outputs o,,. Otherwise, it samples a
preimage z < SamplePre(T, H(msg)) of H(msg) and outputs z as the signa-
ture.

VerifyGPV(z, msg) The verification algorithm checks the satisfaction of H(msg) =
fa(z) and z € By,. If both conditions are valid, it outputs 1, otherwise 0.

6.1.3. Probabilistic Full-Domain Hash Scheme

The probabilistic approach additionally requires the signer to generate a random
seed r (e.g., 7 € {0,1}") which is appended to the message msg. Doing this, we can
sign the same message msg several times, since the r-part always differs except with
negligible probability. Thus, we can consider msg||r as the extended message to be
signed.

6.2. Instantiation of the GPV Signature Scheme

In the following section we give a description of the GPV signature scheme instanti-
ated with a new trapdoor notion due to Micciancio and Peikert [MP12], which has
been shown to improve all relevant bounds of the previous proposals [Ajt99, AP09].
We, therefore, start with the matrix variant following [MP12, GPV08]. The security
of this construction is based on the hardness of ¢5-SIS.

6.2.1. Trapdoors for the Matrix Setting

Similar to the constructions of [Ajt99, AP09], the authors of [MP12] start with a uni-
form random matrix A € Z™™ and extend it to a matrix A = [A|G — AR] € Z™™
via deterministic transformations. The main idea behind this proposal is to use a
primitive matrix G € Zy*“ for w = n -k and k = [logq|, which has the property
of generating Z; and for which one can easily sample preimages. Due to the nice
structure of this matrix one can find a basis S € Z“*“ satisfying the congruence
relation G- S =0 mod gq.

Below we provide the main algorithms of the GPV signature scheme in conjunc-
tion with the trapdoor construction from [MP12].

96

6. Improvement of GPV Signatures

Basic GPV Signature Scheme

KeyGenGPV(1™") — (A, R):
Sample A +p ngm and R +p D such that R e zmx[log:(@)]n
and D is a distribution which depends on the instantiation (typically
DZanogmﬂAn?aq) [MP12]. Output the signing key R and the verification

key A = [A|G — AR] € Zy*™ where G is a primitive matrix.
SignGPV(msg,R) — z € Z™:
Compute the syndrome u = H(msg), sample p g D,,, N> and deter-
) P
mine the perturbed syndrome v = u—A-p. Then sample X <—g Dp1 (g,

with r > 2 - \/ln(Qn(l +1))/m. Compute z = p + ﬁ] x and output the

signature z.

VerifyGPV(msg, z, (H, A)) — {0,1}:
Check whether A -z = H(msg) and ||z||, < sy/m. If so, output 1 (accept),
otherwise 0 (reject).

Figure 6.1.: Basic GPV signature scheme

Throughout this chapter fix the modulus ¢ to be 2* for some k& € N and use the
primitive matrix G as defined in [MP12]. To this end, we start defining the primitive
vector g’ := (1,2,4,...,2¥ 1) ¢ Z’; since G =1, ® gT. Due to its simple structure
one can find an associated basis Sy for the lattice AqL(gT) which has the following
shape

Sk = . . S Z];Xk.

By means of the vector g7 and the associated basis Sk one can easily create
S e ZZJ’“X”’“ and the primitive matrix G € ZQX”’“, respectively:

g” 0 Sk 0
G= , S =)
0 g” 0 Sk
An optimal bound for the smoothing parameter of the lattice AqL(gT) is easily
obtained using the orthogonalized basis Sy = 2 - I). Since ||S|| = ||Sk|| = 2, we
have ne(A(JJ-(G)) <r=2-. \/ln (2n (1+ 1)) /7 according to [GPV08, Theorem 3.1].

97

6. Improvement of GPV Signatures

Using this parameter we can bound the preimage length. Due to the
bound [Ban93, Lemma 1.5] the probability of the preimage to be greater or equal
to r-v/n -k is bounded by 27k . 1€,

Sampling Algorithms for Preimages and Perturbations

In what follows we describe the preimage sampling algorithm for a syndrome t € Z,
from the coset Af(g') = {x | g’ - x =t mod ¢} using the randomized nearest
plane algorithm [MP12]. Due to the nice properties of the orthogonalized basis, the
algorithm reduces to a few steps with ag =t.

Algorithm 4: Sampling from AqL(G)
Data: ag € Zq,k > 0,q,7

1 fori=0—k—1do
2 (% %DQZ—&-ai,r

3 ai+1 = (ai — ’UZ)/2
4 end

5

Output: v = (vg,...,v5-1)7

The resulting vector v € Aj(g') is distributed as Dyt(gry, - Similarly one can

sample preimages from A} (G) for a syndrome vector u € Zgq by independently run-
ning n instances of the algorithm on each component of u.

The authors provide two different types of instantiations for the trapdoor genera-
tion algorithm, namely the statistical and computational instantiation. We prefer
to focus on the latter one since it allows for a public key with a smaller number of
columns, hence, leading to a more efficient implementation as compared to a statisti-
cal instantiation. Therefore, we will always refer to the computational instantiation
in the rest of this chapter. Such a representation can easily be achieved by gener-

ating a uniform random matrix A € Z"*" and sampling a trapdoor R = [gj from

the discrete Gaussian distribution Dyznxnk o, Where o € Ry satisfies ag > y/n. The
resulting matrix A = [I,, | A | G — (ARz2+Ryq)] is an instance of decision LWE,, 1 aq
and hence pseudorandom when ignoring the identity submatrix.

Applying the framework of [GPVO08] requires to sample a spherically distributed
preimage for a given syndrome u € Z; using Gaussian sampling algorithms and
the trapdoor R. In fact, the spherical distribution is a common tool to make
the distribution of the signature independent from the secret key. The Gaus-
sian sampling algorithm mainly consists of two parts. The first part involves the
trapdoor R which is used to transform a sample x from the set A}(G) with pa-

rameter r > ||S]| - \/ln(2n(1 +1))/m to a sample y = {lﬂ -x of the set AL(A).

Due to the fact that [lﬂ is not a square matrix and the non-spherical covariance

98

6. Improvement of GPV Signatures

COV =2 [EI{] [RT 1] is not of full-rank, the distribution of y is skewed and hence

leaks information about the trapdoor. An attacker could collect samples and re-
construct the covariance matrix. Therefore, we need the second part to correct this
flaw. This can be done by adding perturbations from a properly chosen distribu-
tion. Using the convolution technique from [Peil0], we can choose a parameter s
in such a way that s? is slightly larger than the largest absolute eigenvalue of the
covariance COV and generate Gaussian pertubations p € Z" having covariance
¥p = 5T — COV. In order to obtain a vector z that is from a spherical Gaussian
distribution with parameter s, one samples a preimage y for an adjusted syndrome
v = u—Ap from AL (A). The vector z = p+y provides then a spherical distributed
sample satisfying Az =u mod gq.

6.2.2. Trapdoors for Ideal-Lattices

Based on [MP12] we present a new trapdoor construction for ideal lattices [P9]
such that the elements of the primitive vector g' are considered ring elements of
Ry =TR/qR for R = Z[X]/$m(X) (rather than vectors of Z’;), where ¢,,, (X) denotes
the m-th cyclotomic polynomial. Our construction exploits different properties of
the underlying ring such as avoiding the need for a polynomial matrix G as required
in the matrix setting. This results in a more efficient instantiation.

Trapdoors for Computationally Instantiated Public Key

The public key is generated by drawing k samples (a;, a;r; + ;) from the ring-LWE
distribution. By this, we obtain a public key that is pseudorandom and enjoys the
hardness of ring-LWE. Following [ACPS09] one can use the error distribution in
order to sample the trapdoor polynomials & € R¥ and é € R*. This does not incur
any security flaws. Indeed, this property is essential for the signature scheme to
work due to the need for smaller secret keys. As in the matrix variant one can use
only one uniformly distributed sample a; rather than a set in A. By a standard
hybrid argument the hardness of distinguishing a;r; + e; from uniformly distributed
samples can be reduced to decision ring-LWE [BPR12]. Thus, we obtain a public
key of the following shape:

A=, a, g1 —(air1 +e1), ..., g — (airy +ey)]

Similar to the matrix version g' = [1,-- -, 2¥7!] defines the primitive vector of poly-
nomials where each component is considered as a constant polynomial. Sampling
from A (g") = {%x € R} | g1x1+- -+ gx; = u } is performed as in the matrix case
withy " = [xgo), . ,x,go), e ,Xgn), e ,x,(:)] satisfying Gy = u mod ¢, where xg-i)
is the i-th coefficient of the j-th polynomial. The resulting vector y is from a spherical
Gaussian distribution having covariance matrix r2I. Sampling a preimage for a syn-

drome u € R, requires to sample polynomials X = (x,...,xx) from AL (g"). These

99

6. Improvement of GPV Signatures

k k

are then used to construct the preimage z = [e;x;, > riX;, X1, ... , Xi| € R’;H.
It can easily be verified, that Az = u holdsz. 1VVith tzhé same arguments as in the
matrix case we need to add some perturbation to transform the skewed distribution
into a spherical one. Since we mainly operate on rings modulo X™ 4+ 1 with n a
power of two, multiplication of polynomials r;x; corresponds to matrix multiplica-
tion Rot(r;)x;. The matrix Rot(r;) consists of n columns [r;, rot(r;), - -, rot™ 1 (r;)]
with rot(y) = [~Yn—1, Y0, --- ,Yn—2] defining the rotation in anti-cyclic integer lat-
tices. Formally, the ring specific rotations are obtained via rot/(y) = y - X7. The
usage of other irreducible polynomials is also possible, but have the drawback of
larger expansion factors which imply increased preimage lengths. The covariance
matrix of the preimage has the following shape:

R
COV =2 [R;} R R} 1
I

with Ry = [Rot(e;) | ... | Rot(ex)] and Ra = [Rot(r;) | ... | Rot(r)], respec-
tively. One observes, that the computation of this matrix is very simple since matrix
multiplication corresponds to polynomial multiplication with
B(x) = [x1, —Zn, —Tn—_1,...,—2x2] which is the first row of Rot(x):

Rot(}- eif(er)) Rot(3 eis(ri)) Ra

=1
COV =2

1=

ROt(‘Zf:l rzﬁ(ez)) ROt(zk:I I',L,B(I'Z)) R2
"R} R] I

Now one can use the techniques from the previous section in order to generate
perturbations that are viewed as vectors in Z"*+2)_ A perturbation vector p €
ZMk+2) is then split into k + 2 parts of length n. Each part corresponds to a
perturbation polynomial p; € R. In order to provide a preimage for a syndrome
polynomial u one samples perturbations pi,...,pirr2 € R as shown before. Then
we create sample polynomials X from Aﬁ_ Ap(gT). The resulting preimage z is then
spherically distributed:

z=[p1+€& X, p2+If-X, pP3+X1, ..., DPrt2+Xi| -

Now, we give a short description of how to instantiate the ring-LWE problem and
how to sample the secret keys r; and e; for 1 < i < k according to [DD12]. The
authors provide different from the work [LPR10] a relatively simple ring-LWE setting
avoiding the work in the dual ring Rg or the H-Space [LPR10] which turns out to
be more convenient in certain applications. Following the paper of [BLP*13] we can
take g to be a power of two as in the matrix variant. Such choices are more suitable
for practice since the nice sampling algorithms introduced in the previous section are
applicable. A prime number would involve costly sampling procedures which lead to
a slower signature generation engine. As stated in [ACPS09] it is possible to generate

100

6. Improvement of GPV Signatures

both the secret key r; and e; from the same error distribution without affecting
the security. Indeed, this property is important in order to make the trapdoor
construction work based on the ring-LWE assumption. Specifically, we need small
keys to provide short preimages. If one operates in the ring Z,[X]/ (X" 4 1) with
n a power of two, the coefficients of both r; and e; are chosen from the Gaussian
distribution on the rationals and then rounded to the nearest integers. In particular,

the polynomials r; and e; are distributed as [Dgn .| for ¢ = \/ﬁaq(ﬁélﬂ))l/ 4

where [is the number of samples and ag > w(y/log2n). In practical applications,
however, we sample the polynomials from the discrete Gaussian distribution and
omit the last term [DD12] or set [= 1 due to the fact that the polynomials in the
public key are computed from different secrets r;. For other choice of cyclotomic
polynomials ®,, it is possible to sample the trapdoor polynomials in extension rings
according to [DD12, Theorem 2|. But a better approach is to use the framework
presented in [LPR13]| since it allows to work in arbitrary cyclotomic rings without
incurring any ring-dependent expansion factor.

Trapdoors for Statistically Instantiated Public Key

We briefly explain another ring construction that is derived from [Mic07] and leads
to a statistical instantiation of the public key. Take k = [log, ¢] and m = O(logn).
Then select m uniformly random polynomials & = [ay,...,ay5] € Rg‘. Define by

m
ha(X) = > a;x; a generalized compact knapsack. Furthermore choose k vectors r;

for 1 < ZZ % k, each consisting of m random polynomials r;;, ... , r;; of degree
n — 1 with small coefficients. By [SSTX09, Lemma 6], which is an adapted variant
of the regularity lemma of [Mic07], the function values az,+; = hq(#;) with 1 <7 <k
are essentially uniformly distributed. For instance, if ®,, splits into n linear factors
over some finite field, then the statistical distance from uniformity is bounded by

<1\/(1+ q)n 1
e< = =) -
_2 Bm)

where r;; are uniformly distributed over a set [—b,b]" N Z" with B = 2b+ 1. Thus,
we can create uniform random vector of polynomials A endowed with the trapdoor
r,eR™forl<i<ek:

Az[al, cee sy A, 81— Amtl, - gk—am+k]-

To generate a preimage of a given syndrome polynomial u € R, one has to sample
a vector x € AL(g") using the methods from above. As one can easily verify, the
vector y = [f1x1, ... , FxXk , X1, ... ,Xk| i a preimage of the syndrome u for
A. Using the techniques from the descriptions before, one can produce spherically
distributed samples.

101

6. Improvement of GPV Signatures

6.3. Improvements and Optimizations

In our implementation we have to face several challenges that affect the performance
of the signature scheme both in the matrix and ring variant. In the following sections
address this research question and provide different improvement opportunities.

6.3.1. Computation of the Covariance Matrix

First, we observed that the computation of the covariance matrix COV is too ex-
pensive in terms of running time. Since the basis matrix COV is sparse, we were
able to significantly reduce the computational efforts. It can be split into four parts
as below. The only block to be computed is the symmetric matrix RR”.

9 RR”T R

COV =r []
RT I

In the ring variant the computation of the covariance matrix is much faster be-

cause multiplication is performed in polynomial rings as explained in Section 6.2.2.
Running these parts in parallel offers another source of optimization.

6.3.2. Estimating relevant Parameters

Following [MP12], it is required to set the parameter s large enough such that
it is independent from a specific trapdoor. In particular, s is chosen to be not
smaller than the term /s;(R)%2+1-+/6 - a, where s;(R) denotes the largest sin-

gular value of the secret key R and a = \/ln(Zn(l +1))/m. The perturbation

covariance matrix ¥, = s?I,,, — COV is well-defined, if one selects s such that

s > sq(FI{]) -1 is satisfied. Since R is a subgaussian random variable, the matrix

R satisfies s1(R) < C - (vV2n + Vn -k + 4.7) - aq except with probability ~ 27100
according to [MP12, Lemma 2.9]. The universal constant C' is very close to 1/+/27.

6.3.3. Generation of Perturbation Vectors

One of the main ingredients of the signature scheme is the idea of creating perturba-
tions [MP12] in order to get spherically distributed preimages that do not carry any
information about the secret key. A perturbation vector is generated by means of
the distribution D,,,, Noon which outputs random vectors from Z™ with covariance
) P

matrix Xp,. By [Peil0] this can be achieved by sampling a vector p according to
[\/Xp — a’L- D" |,, where DJ" denotes the m-dimensional Gaussian distribution.
Each vector sampled from D7" has entries coming from the standard continuous

Gaussian distribution with parameter 1. [-|, denotes the randomized rounding op-

eration from [Peil(] with parameter a = r/2 > \/ In(2n(1 + 1))/, which rounds
each coordinate of the vector independently to a nearby integer using the discrete

102

6. Improvement of GPV Signatures

Gaussian distribution. The generation of perturbation vectors requires the square
root computation \/Xp — a?I. Below we discuss one method of doing this and pro-
vide an improved algorithm through a better analysis.

6.3.4. Square Root Computation

The Cholesky decomposition splits any positive definite matrix M into the product
of a lower triangular matrix and its conjugate transpose, i.e., M = L -L” and runs
in time O(m3) = O((k+2)3n?). If one selects k = 19, then the constant factor grows
to 9261, which is very high compared to n = 256. The Cholesky decomposition is
needed to generate perturbations that have covariance matrix X, where \/Eip is
the Cholesky matrix. An algorithm for the Cholesky decomposition is given in Al-
gorithm 5.

Algorithm 5: Cholesky Decomposition Algorithm
Data: Matrix L € Z™m*™
Result: Lower triangular part of L
for k=1—mdo
ke = Vikks
fori=k+4+1—mdo
| e = lin/ Uik
end
forj=k+1—mdo
for i =j — m do
| Lij = Lij — lielje;
end
10 end
11 end

© W N O kW N

When decomposing the matrix Ep—aQI into its roots, one can improve the running
time by our modified Cholesky decomposition taking into account the n?k? —n - k
zero entries, meaning that one can skip line 8 in Algorithm 5 whenever I;; or [y is
known to be zero. Due to the sparsity of X, — a’I this occurs very often. We call
this optimized algorithm variant 1.

Although this optimization in variant 1 noticeably improves the timings of key gen-
eration, the algorithm is still inefficient and is the main source of slow key generation.
Moreover, the resulting perturbation matrix is dense and has no structure, which
leads to high memory claims in order to store the matrix of floating point entries
and to worse running times for signature generation. This is due to the fact that
each generation of a perturbation vector requires to multiply a huge triangular ma-
trix consisting of multi-precision floating point entries with a floating point vector.
To circumvent this problem we applied a pivoting strategy followed by the Block

103

6. Improvement of GPV Signatures

Cholesky decomposition, meaning that we permute the covariance matrix such that
P, P’ =3,

This corresponds to left multiplication of the permutation matrix P = [I% o

to the public key A. It is obvious that this transformation does not cause any
security flaws because it is a simple reordering. The advantage of using P is a
perturbation covariance matrix E{D with a nice structure which enables us to work
with Schur complements [Zhal0] in a very efficient way:

-
2 2 | Ink RT _ 0 Lok 0 Lok
Yp=5In—v L{ RRT| = [Ln 0] 2P |L, 0

0 Ink]

Therefore we get an algorithm which outperforms the optimized Cholesky decom-
position applied on the non-permuted matrix by a factor of 30-190. Furthermore,
we obtain a signature generation engine which yields a factor improvement of 2-6 in
the ring variant. This is due to the sparse matrix and its nice structure. In both
the key and signature generation steps the factor grows as n increases. In general,
the Schur complement is defined as follows.
bi h!
h; C;
definite with b; > 0. Then, the Schur complement given by

Lemma 6.1. Let the matriz S; = € RM=Xm=i pe symmetric positive

1

Siy1:=8; — bi

hzh: c]Rm—i—l xm—i—1

is well-defined and also symmetric positive definite.

This decomposition is successively applied on the submatrices S; € R™ M=,
Doing this, one obtains an efficient method to construct the columns of the matrix

\/Zh — a?LL The first nk colums L+ [L] € R™ for b= 52— 12 — a2 = 2 — a2

involve only a simple scaling operation. Therefore, we need no additional memory
in order to store these columns. Due to the sparse columns multiplication involves

only the non-zero columns (R); of the matrix R = [g;] . Thus, transformations are

focused only on the (2n x 2n) matrix:

4 nk
S = (52— a)I—RR’ — S (R);,(R)] 6.1
K (s —a)I—r b;()i(R); (6.1)
744
= (82—a2)I—(r2+€)RRTGRQ"X%. (6.2)

The last sum of vector products reduces to the simple scaling operation %RRT.
Thus, one can save the costly vector product computations. When continuing the
decomposition on the remaining matrix S,; one obtains the decomposition matrix.

104

6. Improvement of GPV Signatures

One can easily verify that

Volae O
XX =% -a’I, X= [2R L]
Vb

holds. Consequently one needs only to store n(2n + 1) floating point entries of the
last part L = decomp(Syk) instead of m(m + 1)/2 in the case without any modi-
fications. This induces an improvement factor that is m(m + 1)/2n(2n + 1) ~ 240
for n = 512 and k = 29. A nice side effect of this transformation is a much faster
algorithm for generating perturbations since the number of operations drastically
decreases as the factor grows. In the matrix version, one makes use of the sparse
decomposition matrix. In particular /2, — a?I- D" is reduced to the simple scal-

ing operation of v/b - d; and the matrix vector multiplication [%R ‘ L] -d for

d = (dj,d2) € R™" and d < D}*. Especially, in the ring version we preserve
the nice properties of polynomial multiplication and therefore use only the scaled

L
set of trapdoor polynomials %ei, %ri, and the lower triangular matrix L = [Lj

in order to generate perturbations. Specifically, one obtains the perturbation vector
D =[P1,...,Prio] € TF2 for T = R[X]/ (X" + 1), where

P = fzez d; + Ly - [d’;)“] (6.3)

~ r? diy1
— E .d; + Lo - 6.4
p2 \/B — r”L 3 2 |:dk+2:| ()

pi = Vb-djofor3<i<k+2. (6.5)

The polynomials in p are ordered in such a way that we do not need to change the
order of the polynomials in the public key. In fact, the matrix X is only permuted
back after decomposition by changing the rows. The elements d; <— D} are sampled
from the continuous Gaussian distribution with parameter 1 or equivalently normally
distributed with standard deviation 1/v/27. Thus, we get a fast signature generation
algorithm which is about five times faster than its matrix analogue. It is also worth
to mention that these operations can also be executed in parallel.

6.3.5. Optimized Signature Scheme

In this section we give a description of the optimized signature scheme when instanti-
ated computationally, meaning that the matrix A is an instance of the LWE distribu-
tion and therefore pseudorandom when ignoring the identity submatrix. Considering
the GPV-signature scheme it is eminently suitable to instantiate the trapdoor con-
struction computationally such that the public key A is educible by fewer columns
as compared to a statistically instantiated public key. We first start with the matrix
variant and subsequently present the corresponding ring variant.

105

6. Improvement of GPV Signatures

Matrix Variant

The following figure contains a description of the GPV signature scheme in case
we consider unstructured matrices. In fact, it represents an adapted variant of the
basic signature scheme from Section 6.2.1, where the signing step is modified for the
optimizations described in Section 6.3.

GPYV Signature Scheme - Matrix Variant

KeyGenGPV(1"): Sample A «+ Zy™", and each entry of the secret key R €
72k from Dy, oq, Where g = 2% and aq > 24/n. Output the signing key
R, the verification key A = [I, | A | G — AR] and parameter s such
that A € Z™ with m =2n+n-kand G =L, ® g' € Z"™"F is the
primitive matrix consisting of n copies of the vector gT =[1,2,... ,Qk_l].

SignGPV(msg,R) — z € Z™:

1. Syndrome. Compute the syndrome u = H(msg), sample
: —57_ | R L :
P <R DZm,\/zTP with /25 —a [\/Bblnk 0} (see Section 6.3.3).

2. Perturbation. Sample d; <pr D/ and dy g D?, where
Dy is the continuous Gaussian distribution with parameter 1.

Compute p = (P1,D2), where p; = 7"TQdel + Ldy and

P2 = Vb - dy. Sample perturbation p = (p1,p2) =P + Dyn-2+k)_p 4
with p1 = P1 + Dzzn_p, 4, P2 = P2 + Dynk_p, o for ne(Z) < a and

a= \/ln (2n (1+2)) /7.
3. Signing. Determine adjusted syndrome v =u — Ap € Z;. Sample
vector X <= Dp1 gy, with 7 = 2a. Output signature z < p + [ﬂ X.

VerifyGPV(msg, z, (H,A)) — {0, 1}:
Check whether A -z = H(msg) and |z|, < s\/m is satisfied. If so,
output 1 (accept), otherwise 0 (reject).

Figure 6.2.: Matrix variant of the GPV signature scheme.

106

6. Improvement of GPV Signatures

Ring Variant

As for the ring variant, we let, for instance, Ry = Z4[X]/ (X" + 1) be a cyclotomic
ring with ¢ = 2¥ and n a power of 2. The values for 7, k and a are exactly as in
the matrix case. Here, the public key is built following the trapdoor construction
presented in Section 6.2.2. Similar to the matrix variant, the signing step is subject
to the optimizatios given in Section 6.3.

GPYV Signature Scheme - Ring Variant

KeyGenGPV(1"): Sample a <pr R,, and each entry of the secret key
ri,e; € R = Z[X]/ (X" +1) from Dz 4, viewing ring elements as vec-
tors in Z" for ag > 2y/n. Output the signing key ¢ = [ry...,rg], the
verification key A = [1, a1, g1 — (air1 +e1), ... , g — (airy + ex)],
and parameter s such that A € R’;“ with g; = 2~! being primitive
polynomials consisting of the constant coefficient 2~1 and zeros else.

SignGPV(msg,R) — 2z € R™:
1. Syndrome. Compute the syndrome u = H(msg) € R,, sample
p< Dy, NN following Section 6.3.3.
’ P

2. Perturbation. Sample continuous Gaussians di,...,dg12 <r DT

o _ - 2 & d
Compute p = [P1, ..., Prt2], where p1 = 7= >~ eid; + Ly - [ko“}?
=1

2

k

B2 =1: 3 ridi + Ly [SZE] and P; = Vb - d;_o for 3<i < k+2.
i=1

Sample perturbation p = [p1, ..., Pr+2] With p; = Pi + Dzr_p, q-

3. Signing. Determine adjusted syndrome v = u— Ap € R,. Sample
vector of polynomials X < Dy gy, following Section 6.2.2 with
r = 2a. Output signature

z=[pi+é-X p2+i-X, p3+x1, ..., Prs2+Xx.

VerifyGPV(msg, z, (H,A)) — {0,1}:
Check whether A -z = H(msg) and ||z||, < s\/n(k + 2) is satisfied. If so,
output 1 (accept), otherwise 0 (reject).

Figure 6.3.: Ring variant of the GPV signature scheme.

107

6. Improvement of GPV Signatures

6.4. Security and Parameters

We considered two models in order to estimate the security level of the scheme.
First, we estimate § by means of the framework provided in [RS10]. This approach
is considered to result in conservative estimations for the security level of the scheme.
For this reason, we also chose to include the more common approach by Micciancio
and Regev [MRO08], which is often used and offers a more appropriate basis for com-
parison. Such a strategy of using two different models simultaneously also induces
a security range of the scheme following different attack scenarios.

When applying the framework of [RS10] we get Table 6.1 which contains different
parameter sets with their corresponding estimated sub-lattice attack dimension d
and the more relevant estimated Hermite factor §. The SIS norm bound is denoted by
v. Columns marked with x provide according to [GPV08, Proposition 5.7] additional
worst-case to average-case hardness such that ¢ > v - w(y/nlogn) is satisfied. The
parameters of the scheme should be set in such a way that § ~ 1.0064 in order to
ensure about 100 bits of security [RS10].

n 128* 128* 256 256" 284 284* 384 384* 484 484" 512 512* 1024 1024
k 24 27 24 27 24 28 24 29 24 29 24 30 27 30
m 3328 3712 6656 7424 7384 8520 9984 | 11136 | 12584 | 15004 | 13312 | 16384 | 29696 | 32768
q 024 927 924 927 924 929 924 229 924 929 924 930 227 230
d 327 365 606 677 665 768 871 1041 1073 1282 1128 1393 2362 2610
v 4.6e5 | 5.2eb | 1.3e6 | 1.4e6 | 1.5e6 | 1.7e6 | 2.4e6 | 2.8¢6 | 3.3e6 | 3.9e6 | 3.6e6 | 4.4e6 | 1.1e7 | 1.2e7
é 1.0201 | 1.0181 | 1.0117 | 1.0105 | 1.0107 | 1.0094 | 1.0085 | 1.0071 | 1.0070 | 1.0059 | 1.0067 | 1.0055 | 1.0034 | 1.0031
A bits | < 75 <75 75 78 78 82 86 94 95 103 97 108 148 158

Table 6.1.: Parameter sets with the corresponding estimated sub-

lattice attack dimensions d and Hermite factors ¢ according
to [RS10].

Different to [MROS8] the approach taken in [RS10] requires to determine the op-
timal sub-dimension d = {z € Z | ¢**/® < v} of the matrix A consisting of m
columns and n rows. The lattice Aql (A’) generated by A’ when leaving out m — d
columns from A has still determinant ¢™ with very high probability. This means
that a solution v € Aj(A’) with ||v]| < v can easily be tranformed to the vector
(v,0) such that A - (v,0) =0 mod ¢ holds. For a given d we obtain the Hermite
factor § = 27108a(a)/d” implying that a sufficiently good HSVP solver can find vectors
v E Aé‘(A/) bounded by ¢**/%. From the Hermite factor one can compute the effort
T(9) required to solve 6 — HSVP according to [RS10, Conjecture 3]. Subsequently,
one maps the result to the corresponding security levels (e.g. see [RS10, Table 2]).

6.5. Implementation
We implemented the scheme following two approaches. The first approach uses

only standard libraries without optimizing the implementation with respect to the
underlying architecture. The second approach, however, does not rely on stan-

108

6. Improvement of GPV Signatures

dard libraries. In particular, it employs (amongst others) new implementations
for polynomial representation and multiplication using enhanced algorithms such
as self-made FF'T subroutines involving the AVX and AVX2 instruction sets. Our
optimizations also capture sampling algorithms such as an improved perturbation
generation algorithm and the usage of the FastCDT sampler. We considered both
the matrix and ring variant of the scheme presented in Section 6.3.5.

6.5.1. Implementation using Standard Libraries

We implemented the GPV signature scheme, the trapdoor generation, and sampling
algorithms in C using the Fast Library for Number Theory (FLINT 2.3) and the
GNU Scientific Library (GSL 1.15). FLINT comprises different data types for ma-
trices and vectors operating in rings such as Z, and Z,[X]| whereas the GSL library
provides a huge variety of mathematical tools from linear algebra, that can be ap-
plied on different primitive data types. We also included the Automatically Tuned
Linear Algebra Software Library (ATLAS) which is an empirical tuning system that
creates an individual BLAS (Basic Linear Algebra Subprograms) library on the tar-
get platform on which the library is installed on. Specifically, this library provides
optimized BLAS routines which have a significant impact on the running times of
the used mathematical operations in the key and signature generation steps. Hence,
it is always recommended to include this library whenever one has to work with
GSL. For the representation of matrices in Z;*™ FLINT provides the data struc-
ture nmod_mat_t which comes into use in our implementation of the matrix version.
Regarding the ring version, working with polynomials is performed by using the
data structure nmod _poly_t. FLINT makes use of a highly optimised Fast Fourier
Transform routine for polynomial multiplication and some integer multiplication
operations.

The experiments were performed on a Sun XFire 4400 server with 16 Quad-
Core AMD Opteron(tm) Processor 8356 CPUs running at 2.3GHz, having 64GB of
memory and running 64bit Debian 6.0.6. We used only one core in our experiments.
The experimental results for this implementation are given in [P9].

Sampling

For sampling discrete Gaussian distributed integers in the key generation step we
used the inversion transform method rather than rejection sampling because the
number of stored entries is small and can be deleted afterwards. This improves the
running times of the sampling step significantly. In particular, suppose the under-
lying parameter is denoted by s. We precompute a table of cumulative probabilties p;
from the discrete Gaussian distribution with ¢ € Z in the range
[—w(v/Togn) - s,w(y/logn) - s]. We then choose a uniformly random z € [0,1) and
find t such that « € [p;—1,ps]. This can be done using binary search. The same
method is applied when sampling preimages from the set Af;(G) with parameter r.
This parameter is always fixed and relatively small. Storing this table takes about

109

6. Improvement of GPV Signatures

150 bytes of memory. In this case signature generation is much faster than with
simple rejection sampling. But, unfortunately, this does not apply in the random-
ized rounding step because the center always changes and thus involves a costly
recomputation of tables after each sample. Therefore we used rejection sampling
from [GPVO08] instead. As for sampling continuous Gaussians with parameter t = 1,
we used the Ziggurat algorithm [MT84] which is one of the fastest algorithms to pro-
duce continuous Gaussians. It belongs to the class of rejection sampling algorithms
and uses precomputed tables. When operating with multiprecision vectors such as
sampling continuous random vectors, one should use at least A bits of precision for
a cryptographic scheme ensuring a security level of A\ (e.g., 16 bytes floating points
for A = 100).

Random Oracle Instantiation

For the GPV signature scheme a random oracle H(-) is required which on an input
message msg outputs a uniform random response H(msg) from its image space. In
most practical applications this is achieved by a cryptographic hash function together
with a pseudorandom generator which provides additional random strings in order
to extend the output length. In our implementation we used SHA256 together with
the GMSS-PRNG [BDK"07] because strings of arbitrary size are mapped to vectors
from Zj. Each component of the vector has at most [logq| bits.

Rand <+ H(Seed;,)
Seedoyr (14 Seed;, + Rand) mod 2".

The first Seed;, is the input message, and the function is repeated until enough
random output Rand is generated.

6.5.2. Optimized Implementation

In the following section we present an implementation that is based on self-made
subroutines such as polynomial and matrix multiplication optimized for different
parameter sets. Furthermore, we applied enhanced sampling algorithms that come
into use in the signing step and represent a key determinant for the running time.
The respective algorithms make also use of the AVX instruction sets utilized to run
similar operations in parallel realizing remarkable speed-ups. These properties were
also observed in several works [GOPS13]. We therefore adopt this approach in order
to enhance the performance of the scheme from Section 6.3.5.

110

6. Improvement of GPV Signatures

Due to lack of the AVX resp. AVX2 instruction sets on the platform used to run
experiments based on the implementation from Section 6.5, the following implemen-
tation and the corresponding experiments were run on a Notebook that is specified
by an

e Intel Core i7-4500U processor operating at 1.8GHz and 4GB of RAM. We used
a gce-4.8.2 compiler with compilation flags Ofast, mavx2, msse2avx,
march=corei7-avx, and march=core-avx-2.

Discrete Gaussian Sampling

In order to sample discrete Gaussian distributed vectors x <= Dy 1 (q),» which can
be reduced to have entries sampled from Dyz, , or Diy97,, we apply the improved
discrete Gaussian sampler FastCDT introduced in Section 5.1, that perfectly matches
to this kind of distributions. Furthermore, we sampled the entries of the private key
both in the matrix and ring variant using FastCDT with parameter ag = p - 4.7 for
p = [v/n/4.7] such that ag > \/n. However, for the randomized rounding operation,
which follows the discrete Gaussian distribution, we apply the rejection sampling
algorithm. In particular, we need to sample [c|,, which is equivalent to c¢+Dzm_g 4.
Due to the real vector ¢ € R™ the support always changes such that generating the
corresponding tables is quite inefficient. Since pqc,(Z) = pa(Z —¢;) € pa(Z) - [%—;E, 1]
for a > ne(Z) as per Lemma 3.1, we need to compute p,(Z) only once for all ¢ € R™,
hence saving unnecessary computations. Furthermore, it is useful to sample [¢], for
¢ = [c] —c € (0,1), since [c|], = [¢] — [¢]q and the center of the distribution is
always within the range ¢ € (0,1).

AVX and AVX2

We already explained the significance of the AVX and AVX2 instruction sets in
Section 5.4, when implementing our A-LWE based encryption scheme. In our im-
plementations, we are using AVX and AVX2 whenever possible. For instance, the
FFT for polynomial multiplication is optimized by use of AVX due to computations
with double precision complex numbers. Furthermore, it is exploited for scaling
operations such as pz = Vb-ds and the multiplication of the decomposition matrix
L with continuous Gaussians in the signature generation step (see Figure 6.3 and
Figure 6.2). In fact, one observes remarkable speed ups.

Polynomial Representation and Multiplication

Following the efficient implementation [GOPS13] of the NTT [Win96], we imple-
mented the FFT for polynomial multiplication by use of AVX and AVX2. Due to
non-prime modulus ¢ = 2¥, it is not possible to apply the NTT. We are consider-
ing cyclotomic rings of the special form R, = Z,[X]/ (X" 4+ 1) for n a power of 2.
Therefore, the FFT is instantiated with the (complex) n-th root of unity. Similar
to [GOPS13], we precomputed tables of the relevant constants prior to invoking

111

6. Improvement of GPV Signatures

the signing and verification algorithm. As a result, we achieve fast signing and
verification engines.

Matrix-Vector Multiplication

Matrix-vector operations accomplished via additions and multiplications over the
integers were performed by use of the AVX2 instruction set. In fact, our imple-
mentation of the matrix variant is built upon the implementation specified in [P3],
which has been optimized with respect to matrix-vector operations.

Random Oracle Instantiation

For the random oracle instantiation, we applied the Salsa20 stream cipher as in
Section 5.4. It stretches a uniform random input seed to a uniform random output
of arbitrary length. Its evident performance has been observed in several works such
as [GOPS13, P3]. We refer to Section 5.4 specifying how to generate uniform random
elements such as polynomials or vectors.

6.6. Experimental Results

In this section we present our experimental results with respect to the optimized
implementation from Section 6.5.2 and compare the matrix version with the ring
variant as described in Section 6.3.5. In most works private keys and signature
sizes are estimated based on the underlying distributions ignoring the norm bound
of the sampled vectors and thus lead to overestimations of signature sizes. By
Lemma 6.2 we show that we can ignore the underlying distributions and focus solely
on the norm bound. This allows us to give tighter bounds as compared to previous
proposals. For instance, in [Lyul2] signatures y € Z™ are distributed as discrete
Gaussians with standard deviation o. The estimated signature size is m-[logy(12-0)]
bits (ignoring the norm bound). In our case signatures are distributed as discrete
Gaussians with parameter s such that |y|, < s-+/m. Using Lemma 6.2 the bit
size needed to represent y is bounded by m - (1 + [logy(s)]) bits. The private key
R € Z*>»™F from Section 6.2.1 can be viewed as a vector r with 2n2k entries such
that ||r|l, < ag - v2n2k by [Ban93, Lemma 1.5].

Lemma 6.2. Let v € Z" be a vector with ||v||, < b-+\/n. Then, the mazimum
number of bits required to store this vector is bounded by n - (1 + [logy(b)]).

Proof. We determine the maximum number of bits needed to store a vector v
bounded by [|v]], < b-+/n by means of Lagrange multipliers [Lar12]. The gen-
eral form of Lagrange multipliers is defined by L(vi,...,v,) = f(vi,...,0n) + A+
g(v1,...,v,), where g(-) takes into account the constraints and f(-) is the func-
tion to be maximized. Obviously, the maximum number of bits grows with in-
creasing norm bound. Therefore, let v € N" (ignoring the signs) be a vector

112

6. Improvement of GPV Signatures

such that ||v|3 = Z v? = nb?. Now, consider the log entries of the vector v,

which are needed to determlne the bit Slze of any vector. Applying simple log-
arithm rules we have Z logy(vi) = logQ(H v;). Since log is monotone increas-
ing, maximizing log iszeéluivalent to maxizrflilzing the product. The function giv-
ing the constraint is g(vy,...,v,) = nb? — f: v?. We then maximize the function

n

L(vi,...,op,A) = f(vr,...,0n) +A-g(v1,...,vy), where f(v1,...,v,) = [] v;. Tak-

ing the partial derivatives we get n + 1 equations:

AL Af .
A, Avi H v; — 2 v; =0, Vi<i<n
J=1j#i

AL 2 N~ 2
—)\:nb —;vi =0.

By reordering the first n equations, we get A = =Yz ;:’“ U for 1 <4 < n.
It is easy to see that the only solution is v; = b, that satisfies all equations for
V1 <4 < n, because from any two out of the first n equations it follows v; = v;, 7 # j.
By the last equation we then obtain v; = b. The only extremum we obtain is
v = (v1,...,0,) = (b,...,b) with f(v) = b". Since we have 0 = f(v') < b" for the
boundary points v; = b+ \/n with v; = 0 and j # 4, the extremum v is a maximum.
Therefore the maximum possible bit size required to store such a vector is bounded
by n- [logs(b)]. We need an additional bit for the sign of each entry. This concludes
the proof. The proof can be extended to any p-norm 1 < p < oc. O

Based on Lemma 6.2 we deduce the following table containing expressions for
various sizes such as the private key and public key size.

Public Key (bits) Private Key (bits) Signature (bits)

Trapdoor

2 .
[GPV0S, MP12] nmk 2n2k(1 + [logs aq]) m - (14 [logy s])

Table 6.2.: GPV-Trapdoor storage requirements

Below we provide two tables comparing the ring variant with the matrix variant.
They contain the filesizes of the private key, public key, perturbation matrix, and the
signature (see Table 6.4) as well as the running times for signature generation and
verification (see Table 6.3). For the sake of comparison, we restrict the parameter
set to n = 512 and q = 224,227, 2% (see Section 7.4 for n = 1024). The experimental
results for our implementation from Section 6.5.1 using standard libraries are given
in [P9]. For this setting, we realized improvement factors of 30 — 90 for key gener-
ation and approximately 2 — 6 for signing, where the security parameter n ranges

113

6. Improvement of GPV Signatures

between 128 and 1024. This is due to an improved perturbation matrix involving less
complex operations as compared to the original work [MP12] not scrutinizing this
time consuming issues (see Section 6.3.4). However, by the subsequent optimizations
from Section 6.5.2, we achieve even better results as depicted in Table 6.3. In the last
column, we indicate the improvement factors of signing and verification due to our
optimized implementation in comparison to the implementation from Section 6.5.1
using standard libraries. For n = 512 and ¢ = 227, for instance, we improved the
signing and verification engine by a factor of 5 and 21, respectively.

GPYV Signature Parameters Timings (cycles) Security (bits) Improvement
Scheme q Sign Verify [MRO9] [RS10] Factor

Ring Variant

n =512 224 13395600 464400 > 300 97 46149
227 14810400 514800 > 300 103 4.8 |17.3
229 15796800 558000 > 300 107 5.1 20.6

Matrix Variant

n=>512 224 59862600 9558000 > 300 97 4143
227 67384800 10733400 > 300 103 43145
229 73746000 11930400 > 300 107 42]4.2

Table 6.3.: Timings for the GPV Signature Scheme

GPV Signature Parameters Sizes (in kB) Improvement
Scheme q PubKey SecKey Signature Perturb. Mat. Factor

Ring Variant
n =512 224 37.5 21.3 24.5 4100 169

227 47.3 23.9 27.4 4100 211

229 54.4 25.7 29.4 4100 241
Matrix Variant
n=>512 224 19, 200 9984 24.5 4100 169

227 24,192 11232 27.4 4100 211

229 27,840 12064 29.4 4100 241

Table 6.4.: Sizes of the GPV Signature Scheme

In Table 6.4, we see that the relevant sizes in the ring variant are significantly
smaller than in the matrix variant of the scheme. The last column reflects the
improvement caused by the optimized decomposition matrix exploiting the sparsity
and structure of 3. The improvement factor is related to the space requirements of
the perturbation matrix in the original work [MP12]. In fact, the space requirement
of our scheme is smaller by a factor of (k + 2)?/4, which mainly stems from the

decomposition matrix L € R2*2n,

114

6. Improvement of GPV Signatures

It is also worth mentioning that the authors of [MP12] explain the possibility of
splitting the signing algorithm into an offline and online phase. The task of generat-
ing perturbations is independent from the message to be signed, hence it is possible
to generate them in advance or create many samples and store them. This obviously
requires to periodically create the perturbation matrix or storing it. From a practi-
cal point of view we do not consider such a breakdown in our implementations. But
indeed, generating perturbations amounts after the optimizations from Section 6.5.2
to more than 80 percent (see Figure 6.4) of the running time in the ring variant.
In Figure 6.4 we present a breakdown of the running time for signing into four ma-
jor parts which are the most time consuming. In particular, we differentiate the
generation of perturbations p, sampling of X, computation of the syndrome poly-
nomial v = Ap, polynomial multiplications € - X and t - X. By our experiments we
obtain Figure 6.4 illustrating the average measurements for different parameter sets .

Sampling
Perturbations p

0,8

0,6

0.4

Computing Computing
u:u.Ap exX,rx

0,2
Sampling of x

Figure 6.4.: Breakdown of signing running time into the major parts

115

7. Compression Scheme for Signatures

In this chapter, we introduce a generic and novel high performance compression al-
gorithm for Schnorr-like signature schemes moving current state-of-the-art signature
schemes towards practicality. This concept is realized based on the existence of pub-
licly accessible randomness. The notion of public randomness was firstly introduced
in [HL93]. We revisit this feature in the context of lattice-based cryptography and
show how it can be extended to other distributions such as the discrete Gaussian
distribution. In particular, we provide mechanisms that make use of public random-
ness in order to decrease the signature size. More specifically, we differentiate the
randomness used to generate signatures into its public and secret portion. Random-
ness that is publicly accessible [HL93| can be read by all parties. Consequently, it
is not required to hide this portion of randomness and hence can be generated pub-
licly, for instance, by means of a random seed. The key idea underlying our lossless
compression algorithm is to reduce the public share of a signature to a short uni-
form random seed. We exemplify the applicability of our new compression algorithm
using the example of the GPV signature scheme employing the most recent PSTF
construction [MP12]. Furthermore, it can be applied to the sequential aggregate
signature scheme that we present in Chapter 8. To the best of our knowledge, such
a compression strategy has never been used for cryptographic applications. This
chapter refers to the publication [EB14a], where the author of this thesis was the
primary investigator and author of the paper.

7.1. Methodology of Compressing Schnorr-like Signatures

Conceptually, Schnorr signatures z = fs(c) +y are constitued of two main building
blocks, namely fs(c) = s - ¢, which involves the secret key s, and y sampled from a
proper distribution)(x) acting as masking term in order to conceal the secret. In
many lattice-based signature schemes the magnitude of the entries in y, when con-
sidering y as a vector with n independent entries, are very huge as compared with
the entries in fs(c) and thus leak information about y. More specifically speaking, if
the maximum bound h on the entries of fs(c) is relatively small as compared to the
entries of y, it is possible to specify a narrow range C' = z+ [—h, h]", from which the
masking term y € C' was sampled. Here, h = max | fs(c)|l denotes the maximum

bound on the entries for any choice of s and c. This range is publicly accessible and
can be revealed by any party viewing the signature. This shows that one part of y
can be learned publicly and the other part remains secret. Our goal is to exploit the
public part (or public randomness) supplied by y and hence the set C. To illustrate

116

7. Compression Scheme for Signatures

the way our compression algorithm works more precisely, suppose we have a fresh
vector z (e.g. signature) distributed as above. We will show that arbitrary many
other signers can exploit public randomness by secretly sampling their masking term
y’ from C' (more precisely from any set B O (') according to the conditional proba-
bility distribution Y(x)/Py~y[y € C] for x € C. Since y is independently sampled,
we have y € C with probability Py.y[y € C | (or shortly P[C']) for arbitrary fixed
z. Hence, exploiting public and secret randomness leads to a vector y’ that is dis-
tributed as Py € C|-Ply'=x|y €C|=P[C]-Y(x)/P] C] = Y(x), which
exactly coincides with the required distribution using conditional probability rules.
We note that this is, however, only possible, if the true probability distribution of y
is publicly known. Some signature schemes with a rejection sampling step at the end
do not meet these conditions and are thus not covered by our framework. Following
this approach, we derive an upper bound for the maximum distance of two signa-
tures ||z —2'||, = |z —s"- ¢ —y||., < 2h. A necessary condition for compression
is given by 2h < ||z||,,, which is typically satisfied for current state-of-the-art sig-
nature schemes. A compressed signature is identified by the tupel (z,z — z’), where
z is called the centroid and serves to recover z’. To prove security, we simulate our
compression algorithm using an oracle for uncompressed signatures from the under-
lying signature schemes. Subsequently, we show that uncompressed signatures can
publicly be transformed into compressed ones. An immediate consequence from this
implies that the same centroid can be utilized by different other signers with different
keys such that only one single centroid is required to uncompress the signatures of
the respective signers. This obviously induces a conceptually new multi-signer com-
pression scheme, where a set of users participate in producing a bundle of compressed
signatures using the same source of public randomness. Such a strategy constitutes
a simple way of aggregating signatures. Going further, since the distribution Z of
signatures z can always be simulated by a cryptographic hash function modeled as
random oracle in combination with a rejection sampling algorithm, we forbear to
store the centroid z € Z" and store a short seed r € {0, 1}* instead that serves as
input to a sampler for Z (typically discrete Gaussian or uniform distribution). This
strongly reduces the signature size, since the share of the signature associated to
public randomness can deterministically be recovered by use of r. Doing this, it is
even possible to compress individual signatures to (r,z—z’) of size u+mlog 2h bits
involving a fresh seed for every newly generated signature. A bundle of compressed
signatures in the multi-signer compression scheme is subsequently represented by
the tupel (r,z — z1,2 — z2,...,z — 2;), where z; denotes the signature of the i-th
signer.

Geometrically speaking, the proposed compression algorithm is akin to vector
quantization techniques [GG91, Gra84] applied for lossy video and audio compres-
sion (e.g. MPEG-4). But from an algorithmic point of view our scheme works
differently as it requires the signers to sample signatures z’ within short distance
to a vector called centroid z (see Figure 7.1), which could be a signature or a vec-
tor sampled from the discrete Gaussian distribution using a short random seed as

117

7. Compression Scheme for Signatures

Figure 7.1.: Centroids (red circles) are surrounded by signatures
from different signers (blue circles). Each signature be-
longs to one cluster defined by its centroid.

input. This allows for high compression rates without loss of quality because it is
always possible to recover the signatures after compression. As a result, it suffices
to store only the seed and the difference z — z’ of the signature to the centroid. This
apparently avoids the need to store complete signatures (see Figure 7.2 left and
right). When employing GPV signatures, for instance, the implied storage savings
amount to approximately 65 % for practical parameters (see Table 7.1) yielding a
factor improvement of approximately lgn with n being the main security parame-
ter. Based on this compression strategy we derive a multi-signer compression scheme
(see Figure 7.1) that allows an arbitrary number of signers sharing the same source
of public randomness to combine their signatures to an aggregate resp. bundle of
reduced storage size.

Signature size in [kB] Factor improvement

before/after comp.

Compression rate [%]

n k Ring Mat Ring Mat Ring Mat
384 | 24 22 /8 20/ 8 65 61 2.8 2.6
512 | 29 | 37 /13 33 /12 66 62 2.9 2.7
1024 | 30 | 81 /26 72/ 26 68 64 3.1 2.8

Table 7.1.: Compression rates in the ring and matrix variant for different parameter
sets.

Compression of GPV Signatures.

Ever since the seminal work [GPV08] the hash-and-sign approach for building sig-
natures becomes more and more attractive for use in cryptographic applications.
However, the construction of new and more efficient preimage sampleable trap-

118

7. Compression Scheme for Signatures

z
21 3

<2
24

Figure 7.2.: Complete signatures of different signers are stored
(left). Compressed signatures from different signers are
stored in relation to the centroid (right).

door functions entailing tighter bounds and simpler instantiations appears to be
a challenging task in lattice-based cryptography. One of the main goals of those
constructions is to reduce the signature size while preserving security. Decreasing
the parameter s governing the signature size is often not readily possible without
affecting the security, since the security proof [GPV08] requires s > ng(AqL(A)) to
be satisfied for a random matrix A. Usually, the quality s is almost tight due to
the construction of the public key A. Thus, enhancing the quality always involves
the construction of new trapdoor families. In our work, we provide a very different
approach to reduce the signature size by exploiting large amounts of public random-
ness accessible to any party viewing the signature.

To get an impression of how our compression algorithm works, we believe it is rea-
sonable to first sketch the GPV signature scheme instantiated with the efficient trap-
door construction from [MP12]. The GPV signature scheme was a big move towards
provably secure lattice-based signatures. Similar to the full-domain hash schemes
and its variants in [BR93, BR96, Cor00], it is based on collision-resistant preimage
sampleable (trapdoor) functions (PSTF) fa : B,, — R,, which enable a dedicated
signer to sample preimages z € B, for arbitrary given target vectors y € R, such
that fa (z) = y holds, but other than that signer none is capable of producing preim-
ages. The security of this scheme consists in reducing the problem of finding colli-
sions for fa(+) to the hardness of forging signatures (see Chapter 6). In the course
of years, several constructions of PSTF families appeared [GPV08, AP09, Peil0],
where the collision-resistance stems from the hardness of SIS, which is in turn be-
lieved to withstand quantum attacks for properly chosen parameters. The main
drawback of all those schemes is the lack of efficiency due to complex procedures.
Recently, Micciancio and Peikert [MP12] proposed an elegant trapdoor construction,
that is characterized by efficient operations providing tighter bounds for all relevant
quantities and thus improving upon previous constructions. But also in practice
they appear to be efficient, which can also be attributed to the corresponding ring
variant introduced in Section 6.2.2 and Section 6.3.5. We now describe one instan-
tiation of the digital signature scheme that is most suitable for GPV: The signer

119

7. Compression Scheme for Signatures

generates a random matrix A € Z"*" and a secret matrix R € Z?"*"* with entries
sampled from the discrete Gaussian distribution Dy, 4, where ag > /n and ¢ = 2k,
The public key is given by A = [I, | A | G — AR], where G € Z"*" is called
the gadget, a matrix of special structure I, ® g with g’ = (1,2,...,2*"1), which
allows to sample preimages more efficiently. In the signing step the signer computes
u = H(msg) for a message msg of choice, samples a perturbation vector p and a
preimage X <—g Dy1(g), for v=u—A-pmod gandr > (A7 (G)). The resulting
signature z = (z(1), 2()) = [Iﬂ -X+p = (Rx+p1,x+p2) € Z>" x Z"* is spherically
distributed. Similar to the signature schemes [Lyu08, Lyu09, GLP12], the pertur-
bation vector is used in order to keep the distribution of the signature independent
from the secret key and thus not leaking information about its structure. Hence, it
is no longer feasible to successfully mount an attack similar to [NR09, DN12]. Veri-
fication of signatures is performed by checking the validity of Az = H(msg) mod ¢
and ||z]| < sv2n + nk.

We now turn our focus on the way p = (p1, p2) is generated, since it plays an im-
portant role for our compression algorithm. Specifically, we sample perturbations
p=[y/X, —a’I-d],, where [-], denotes the randomized rounding operation from
[Peil0] and d is sampled from the continuous Gaussian distribution D%”Jr"k with
parameter 1. Following Section 6.3.3, the perturbation matrix can be represented

B L]
by /Xp — a’I = [\/E\/Ignk 0] with b = s%2 —5a?, a =71/2 = \/ln (2n (1+1)) /7 and
L denoting the decomposition matrix. This immediately leads to the simplified rep-
resentation of the perturbation vector p with ps = Vbds +DZ”'k—ﬁd2 , and d2 <p

D’fk. Following the abstract form of a Schnorr-like signature as above, the lower part
of the signature is represented by z(2) = fi(x, y(Q)) +y®@ =1.x —i—DZn.k_y(Q)’T +y®@
with y® = v/bdy and h = max HfI(x, y(2))HOo < 4.7-+/5a. By scaling the lower part
of any signature to z(?) / Vb we extract large amounts of information about the con-
tinuous Gaussian dg used for sampling the perturbation vector. This randomness is
publicly accessible [HL93] and can be read by all parties. Indeed, the security level
of cryptographic schemes should not be based on public random inputs according to
[HL93], because any adversary can analyze public random strings and exploit them
z(?) h h

7t [_ﬁ’ %]”k except with

negligible probability. Due to the huge value of Vb as compared to h the set C is
of small width containing little entropy. By use of rejection sampling, it is possible
to sample a random variable d, € C' according to the probability density function

for potential attacks. In particular, we have dy € C' =

f(x|xeC)= e*”Hng/P[C'] in order to get a full realization of a continuous Gaus-
sian. More specifically, the first signer samples a continuous Gaussian ds, which lies
in any set C' with probability P[C'] following the basic signature scheme and out-
puts the signature subvector z(). The second signer extracts the public randomness,
namely the target range C of dg, and samples secretly d}, according to f(x |x € C").
Employing public and secret randomness results in a random vector d, following the
probability density function f(x |x € C)-P[C] = f(x) = e—”Hng’ which is

120

7. Compression Scheme for Signatures

distributed just as DJ¥ applying conditional probability rules. As a consequence,

by one of our main statements (Theorem 7.7) the difference || z(?) — zg2) loo< 2R
requires at most 7 bits per entry with z; = (zgl),z?)) being the signature of the
second signer. Any number of parties with different secret keys can utilize the
same source of public randomness analogously. Hence, an abitrary signature z; can
be represented by the centroid z(?) in combination with the compressed signature
(zgl),z(z) — Zgz)) (see Figure 7.2). This, however, requires z(?) always to be fresh
such that the stream of signatures z; generated by a certain signer are uncorrelated.
We highlight that even higher compression rates can be realized if the centroid z(?
is generated differently. Due to the dual role of z(2) to serve as centroid for com-
pression and source of public randomness, any signer can instead sample a fresh and
short random seed r € {0,1}* as input to a discrete Gaussian sampler producing
vectors being distributed just like signatures. By doing this, our construction even
allows to compress individual signatures because the large centroid is now replaced
by a short seed. Furthermore, the dependency to a signature from a signer with dif-
ferent public key is removed. From r one can deterministically recover the centroid
and uncompress signatures. As a consequence, the verification costs increase due
to an additional call to the discrete Gaussian sampler before checking the validity.
Employing this strategy leads to storage improvement factors of lgn.

Multi-Signer Compression Scheme (MCS).

The above-described compression algorithm represents the heart of a conceptually
new multi-signer compression scheme, where a set of signers participate to construct
an aggregate signature (bundle of compressed signatures including the seed) on mes-
sages of choice such that its size is much smaller than the total size of all individual
signatures. An intuitive way of aggregating signatures is to let the signers indepen-
dently compress their signatures before forwarding them to the verifier. As a disad-
vantage, such a strategy places a burden on the verifier as it is required to invoke the
Gaussian sampler for each transmitted seed, which leads to unsatisfactory running
times due to costly computations. To overcome this obstacle, the signers agree on
a random seed prior to the actual scheme execution. As a result, the verifier calls
the Gaussian sampler once, whose output is used as centroid for each compressed
signature (see Figure 7.2 left and right). This drastically reduces the verification
costs as well as the number of seeds to be transmitted. The security of this scheme
trivially stems from the unforgeability of each individual (un)compressed signature
since each of them is verified independently from the remaining ones. Note that as
with individual signatures, random seeds have to be fresh for any newly computed
aggregate signature.

Furthermore, one notices as an additional benefit of the multi-signer compression
scheme that the aggregate signature is not completely rejected, if a compressed sig-
nature out of the bundle fails to verify, which is apparently different from classical
aggregate signature schemes. In fact, only the signature, that failed the checks, is
considered not valid. A potentially interesting modification requires the seed to be

121

7. Compression Scheme for Signatures

made a shared secret among the participants, which are subsequently the only ones
being capable of uncompressing and verifying signatures. We exemplify the applica-
bility of our construction within wireless sensor networks. We particularly show that
it is conceivable to use a predistributed seed together with a counter maintained by
each senor node. For any compression request, the actual counter is incremented and
subsequently appended to the seed, which in turn serve as input to a cryptographic
hash function modeled as random oracle outputting random strings to launch the
discrete Gaussian sampler.

7.2. Generic Lossless Compression of Schnorr-like
Signatures

In this section we introduce a novel compression algorithm for signatures following
a Schnorr-like construction z = fs(c) +y. Conceptually, such signature schemes are
characterized by simple representations and efficient operations. After establishing a
framework for lossless compression, we show how to derive a customized compression
algorithm for the optimized GPV signature scheme from Section 6.3.5. In fact, the
algorithm exploits the representation of perturbations according to Section 6.3.3.

In general, lossless compression of data aims at reducing the bits needed to iden-
tify a data unit by removing statistical redundancy without loss of quality. Vector
quantization [GG91, Gra84| is a technique from signal processing that belongs to
the class of lossy data compression algorithms. It divides a large set of data viewed
as vectors into clusters. For each cluster, the algorithms heuristically determine a
centroid such that the distance between any vector in the cluster and its centroid is
minimized. The whole set of data points is then represented by the centroids. Such
algorithms are employed, for instance, for audio and video compressions like the
Twin vector quantization (VQF) for MPEG-4. In order to achieve lossless compres-
sion, it is essentially required to store the direction vectors, which preferably should
have small entries. But in practice, lossless compression strategies based on vector
quantization techniques are rather rare due to low compression rates as compared
to other alternatives. However, the approach we propose makes use of the fact that
the centroids are known just before sampling the signatures, which is different to
current vector quantization techniques. In particular, we exploit the structure and
properties of signature constituents in order to reduce the amount of information
needed to recover signatures. Conceptually, one defines the centroids in advance
and each signer samples its signature around the centroids (see Figure 7.1). Doing
this, one has only to store the direction vectors rather than all individual signatures
as depicted in Figure 7.2. Notably, we can even show that the large centroid needs
not to be stored due to the existence of simulators for signatures such as random
vectors or discrete Gaussians providing the required public randomness. By means
of a short random seed, which serves as input a discrete Gaussian sampler (or al-
ternatively RO) acting as simulator for signatures, one can deterministically recover
the centroid. Following this strategy, we achieve storage improvement factors of

122

7. Compression Scheme for Signatures

about 2.5 — 3.8 for the GPV signature scheme applying practical parameters and
approximately lgn for the general case. The compression factor is asymptotically
optimal in the main security parameter.

7.2.1. Lossless Compression Algorithm

In the following, we introduce our generic compression algorithm. We call it the
LCPR algorithm (Lattice-based Compression from Public Randomness). We con-
sider two approaches. The first approach compresses signatures with respect to a
given signature serving as a centroid. Therefore, we shortly write v is compressed
w.r.t. w, when w is used as the source of public randomness and acts as the cen-
troid for compression. The second approach requires to generate the centroid, that
acts as a supplier of public randomness, from a short random seed. Specifically, the
seed serves as input to a sampler that produces vectors being distributed just like
signatures.

Algorithm 6: Compression by Signature

Data: Fresh signature z; = fs,(c1) + y1 € Z™ of Signer
1 withy; ~Yandz; ~ Z
1 Set h :=max || fs(c) o,
s,c

2 Set C :=z; + [—h,h]™, P[C | := Pyyly € C]
3 Sample y3 « Y(x)/P[C], x€ C
4 22 = fs,(c2) +y2

5 Output z = (21, 21 — 22)

Algorithm 7: Compression by Seed

Data: Distribution of signatures Z

1 Sample r « U({0,1}})

2 Sample z; < Z using input seed r

» Seth = max 5 (0)].

a Set C =2y +[~h,h]™, P[C]:= Py yly € C]
5 Sample ys + V(x)/P[C], xe C

6 22 = fs,(c2) +y2

7 Output z = (r, 21 — 22)

Figure 7.3.: Lossless Compression Algorithms

Informal Description

The main idea of our compression algorithm is the fact, that one portion of random-
ness used to generate a signature can publicly be read out. Thus, it is possible to
either exploit public randomness (having the same distribution) from other signers

123

7. Compression Scheme for Signatures

or to generate public randomness from a short seed with enough entropy such that
a verifier can reconstruct the public portion of randomness with the aid of this seed.
This concept, however, requires to preserve the distribution of public randomness,
meaning that public randomness should always follow the correct distribution. As a
result, if one applies for every newly generated signature fresh public randomness, it
directly follows that the sequence of produced signatures via the compression scheme
are independent and identically distributed according to the required distribution
Z. This means in particular that there exist no correlations among the signatures.

In Figure 7.3 we present two generic compression algorithms. We briefly describe
the main steps required to compress a signature with respect to a given fresh sig-
nature (Algorithm 1) or using a simulator for signatures (Algorithm 2) with a short
input seed. First, we note that the (conditional) probability distribution of y; must
publicly be known, otherwise it is not possible to apply the compression scheme.
Signature schemes applying rejection sampling on the signature are not covered.
This issue will be explained below in this section. Each time the signer wants to
compress its signature he asks for fresh public randomness (fresh seed or z;). There-
fore, we consider signatures following a Schnorr-like construction in a more abstract
representation form z = fs(c) +y, where fs(c) describes a function of the secret key
and is, hence, kept secret within the process of signature generation. However, y is
called the masking term required to conceal the secret key and to obtain the desired
target distribution of the signature. In many schemes the magnitude of the entries
in y are huge as compared to fs(c). This offers the opportunity to read and exploit
public randomness. Let C' = z; + [—h, h]™. In Algorithm 1 a fresh signature z; of
an arbitrary signer is given. By using only public parameters a second signer, that
is different from the first signer, extracts public randomness identified by a (narrow)
set C from which y; € C was sampled with overwhelming probability. Subsequently,
he samples its own masking term ys secretly from the set C', particularly also from
any set B D C such as zj +[—cy - h, c2 - h| for randomly chosen vectors ¢; € RZ, and
i = 1,2, using the conditional probability distribution Y(x)/P[C], where P[C']
denotes the probability of the event y € C' under the distribution Y.

Finally, the signer outputs a compressed signature (z1,2z1 —2z2) with zo = fg,(c2)+
y2. Algorithm 2 allows to compress individual signatures without involving any other
party providing a fresh signature. In fact, the distribution Z of a signature can be
simulated by use of a random oracle H : {0, 1}* — {0, 1} with 4 < ¢ in combination
with a rejection sampling algorithm. Therefore, we replace a real signature by a
sample z; < Z generated by means of a random seed r < {0, 1}#. The remaining
steps are identical to those in Algorithm 1. In the last step, however, the signer
outputs the compression (r,z; — z2) which includes a short seed rather than a huge
signature z;. We note, that arbitrary many other signers can exploit the same public
randomness using either of the algorithms. But the same signer is not allowed to
reuse the same randomness twice in order to keep the distribution of own signatures
independent from previous samples. Consequently, each newly generated signature
involves a fresh seed such that the chain of signatures z} are independent and iden-

124

7. Compression Scheme for Signatures

tically distributed according to Z. The procedure of uncompressing signatures is
very efficient, since it mainly requires to recover z; using the seed r (Algorithm 2).

7.2.2. Analysis

The authors of [HL93] were the first classifying the notion of randomness into its
public and secret portion. Publicly accessible randomness is the part that can be
read by all parties and particularly also by an adversary. The secret portion of ran-
domness, on the other hand, is only known to the party enacting the cryptographic
primitive. This distinction is essential because a potential attacker can exploit public
randomness in order to mount an attack on the respective cryptographic primitive.
As a consequence, the security of any scheme should mainly depend on the secret
portion of randomness. However, the authors made such a distinction only for uni-
form random strings. In our work, we extend this notion also to other distributions
such as Gaussians-like distributions and show how this allows to build a strong com-
pression algorithm. The key idea underlying this construction is to reuse public
randomness in order to sample signatures within short distance to the centroids.

We begin with a formal definition of public randomness and some technical results
explaining how to exploit public randomness.

Theorem 7.1 (Public Randomness). Let Y be a distribution and y < Y with y €
C = z+[—h,h] for h > 0 and z € R. Then, there exists a bijective transformation ¢ :
{0,1}* x [b1, ba) = R for by, by € R with by —by = 1 such that ¢~ (& +[—0.5,0.5]) =
(@, ..., am) X [b1,b2) for (ag,...,am) € {0,1}™ and m € N. Moreover, we have
¢~ Hgr) € (ao,...,am) x [b1,bg), where (ag,...,am) is called public randomness,
and the probability of a = (ao, ..., am) to occur is Pyl y € C'].

Proof. 1t is always possible to write a real number r as r = x + t with € Z and
t € [b1,ba) such that by —b; = 1 and r can bijectively be mapped back to z and ¢. In-
tuitively, we fill the gap between two consecutive integers with reals modulo 1. Any

integer x can now be transformed into its binary representation a = (ag, . .., am,). Let
b1 = —0.5+cand by = 0.5+ ¢, where ¢ = 5> — [57| € (—0.5,0.5), then any element

r € & +[—0.5,0.5] satisfies ¢~ (r) € {a} x [b1, bp) with a being the binary represen-
m .

tation of [57], since 7 € Y a;2"4[b1,b2) = [57 | +[c—0.5,¢+0.5) = 55 +[-0.5,0.5].
=1

i=
But indeed, we have also ¢ '(g;) € {a} x [b1,by). As a result, a is the same for
all elements in that range. Therefore, the bit string a = (ag, ..., an) is called the
public randomness induced by C and can be extracted by any party viewing C. Let
X denote the distribution ¢~*()/2h), where a vector ¢~ () sampled according to
this distribution involves y <). We know that the probability is invariant with

125

7. Compression Scheme for Signatures

respect to bijective transformations and hence obtain a with probability

V4
Pxp~x [(x,1) €{a} X [b1,02) | = Pyx~yson | ¢(x,1) € ot [—0.5,0.5] }
= P,ylyeC] withy = ¢(x,t)-2h.

Note, that the support of J can differ from R. In fact, the proof works for any
distribution over a subset of R and by association Z. O

As already indicated above the m-bit string (ao,...,an) is called public ran-
domness, that can be accessed by any party viewing the signature. Basically, the
knowledge of h and the signature z suffice to determine C. As an immediate con-
sequence of Theorem 7.1, we obtain less number of public random bits, in case the
range of C' gets wider due to increasing values for h. The following result states that
it is possible to exploit (ag, . .., an) or less bits of it in order to get a full realization
from the target distribution.

Theorem 7.2 (Exploiting Public Randomness). Let y; < Y with y; € C =
z+ [=h,h] for h >0 and z € R. And let ¢ : {0,1}* x [b1,b2) — R be a bijective
transformation as defined in Theorem 7.1. Then, we obtain a full realization y from
Y by sampling y € C according to the probability distribution Pyy [y =1y2 | y € C |.

Proof. From Lemma 7.1, we deduce that ¢~*(Z + [—0.5,0.5]) = {a} x [b1,b2)
for a = (ag,...,an). Hence, the event x = (ag,...,a,) occurs with probability
Py ~y[y1 € C]. Suppose first, that Y is a discrete distribution and X" denotes the
distribution ¢~()/2h) , where (x,t) < X is equivalent to sampling y <) and out-
putting ¢ 1(Z). Then, the term t € [by, by) is sampled according to the probability

2h
distribution

Pxp~x[t=t|x=a] = Pypx|[(xt)=(xt)|x=a]
= Pyyly=y2|yeC] with yo = ¢(x,t)-2h

Once having sampled ¢ according to this probability distribution, we obtain a full
realization (x,t) that is distributed as

Pyp~x[x=a] - Pypx[t=ti|x=a] = Pyy.xl(x1t)=(at1)]
= way[y:yQ].

O]

Analogously, one obtains similar results for the continuous case. The main dif-
ference here is to consider the probability density function instead. Concerning the
algorithms in Figure 7.3 the following theorem mainly states that exploiting pub-
lic randomness indeed does not change the distribution of signatures. Moreover, it
indicates a necessary condition for compression.

126

7. Compression Scheme for Signatures

Theorem 7.3. The compression algorithm provided in Figure 7.3 outputs signatures

zp € Z™ distributed according to Z with max |z — 2z, < 2h, for

h = max || f(s)||,- Hence, the size of a compressed signature (r,z; — z2) is bounded
S

by
[m -log 2h] + p bits,

where r occupies p bits of memory.

Proof. For simplicity, assume m = 1 and we are given a signature z; = fs,(c1) +y1
as in Figure 7.3, where y; is independently sampled according to the distribution
Y. Then, we have y1 € C = z1 + [—c; - hyca - h] for all ¢;,c2 > 1 (see The-
orem 7.1). Thus, let ¢1,co = 1. The probability of y; € C = z + [—h,h] for
any fixed choice of z is P[C | under the distribution Y, since y; is independently
sampled. Subsequently, the term yo is secretly sampled from C' according to the
distribution Y/P[C'] by reusing the publicly accessible randomness C' induced
by y1. We now analyze the distribution of ys, when exploiting public and secret
randomness. Indeed, the probability of the event yo = x for x € C is given by
Ply; € CAya =x|y2€ C] = P[C]-Y(x)/P[C] = Y(x) according to Theorem 7.2,
which exactly coincides with the required distribution. The continuous case works
similar and requires to consider the probability density function. Thus, we obtain
max ||z1 — 22|, = max||z1 — fs,(c2) +¥2|l < (c2 + c1)h. We observe that z; is
identified to be the source for public randomness and is subsequently required as a
centroid for compression. With focus on compressing individual signatures, we can
provide both features by a simulator for the distribution of signatures Z using a
short random seed r € {0,1}* as input to a cryptographic hash function modeled
as random oracle in combination with a rejection sampler. Following this approach,
z1 is replaced by r and can deterministically be recovered at any time by use of the
simulator. Thus, the signature size is bounded by [m - log2h] + p bits, (in general
[m -log(ca + c1)h| + 1), where p denotes the bit size of r. Remarkably, it is even
possible that arbitrary many other signers can exploit the same source of public
randomness in exactly the same way. O

7.2.3. Security

The following theorem essentially states that compressed signatures are as secure as
uncompressed ones.

Theorem 7.4. If there exists a (polynomial-time) adversary A that can break com-
pressed signatures, there exists a (polynomial-time) algorithm BA that uses A in
order to break the original signature scheme with uncompressed signatures.

Proof. In order to prove that compressed signatures are as secure as standard uncom-
pressed ones (e.g. standard GPV signatures), we proceed via a sequence of games.
In fact, we use Algorithm 1 as an oracle whose output vectors are distributed like
signatures and finally serve as a centroid. The challenge compressed signature is
given by (z},z] — z3), where z] denotes the centroid for compression.

127

7. Compression Scheme for Signatures

Game 0

The game Gg represents the interaction of the challenger with the original com-
pression scheme. The challenger is allowed to make polynomially many queries to a
signing oracle producing compressed signatures (z1,z; — z2) in combination with the
corresponding centroids z; for compression. The centroids follow the same distribu-
tion Z as signatures. In addition, the challenger is given access to a random oracle
H and an oracle OComp, where H is queried on messages of choice producing uni-
form random vectors. For a vector ¢ distributed as Z as input, OComp produces in
accordance to the generic construction in Figure 7.3 a compressed vector (c,c — x),
where x is distributed as Z and the centroid is given by c.

Game 1

In game G1, we change the way the signing oracle responds to signature requests
and the challenge compressed signature (z}, z7 —z3) is produced, but in a way that it
introduces only a negl(n) statistical distance to Gg. The signing oracle now outputs
only uncompressed signatures (standard signatures). The signing oracle from Gy,
which generates compressed signatures together with the corresponding centroids,
is now simulated as follows. The signing oracle is queried in order to obtain an
uncompressed signature zs. Subsequently, OComp is called on input z2, which then
returns a compressed vector (zg,ze — z1) with z9 being its centroid. Finally, the
compressed signature (z1,z; — z2) is output, where z; acts as centroid. Since z;
and zo are distributed according to Z, the attacker cannot distinguish between the
games Gg and Gj.

The security proof shows that an attacker cannot distinguish between the games
Go and G1. In fact, we showed that an attacker, that can break signatures in Gy,
can also be used to attack uncompressed signatures in Gi. And this concludes the
proof. O

The theorem above mainly states that it is hard to break compressed signatures
provided the hardness of the original signature scheme.

Note to the Compression Algorithm

We note that signature schemes due to [Lyu09, Lyul2, GOPS13, DDLL13] are not
covered by our framework presented in Section 7.2.1. This is mainly due to the final
rejection sampling step hiding the true (conditional) probability distribution of y. In
fact, rejection sampling is one of the Monte Carlo methods that allows to sample from
arbitrary target distributions using an initial proposal distribution, which is used
to envelop the target distribution and to generate samples efficiently. Hence, if the
target distribution for signatures z = fs(c)+y is the uniform distribution ¢ (B) over
some range B, any distribution can be selected for y as long as the distribution of the
sum z lies above the target distribution such that rejection sampling is applicable.
The target distributions are always chosen to be independent from the secret key,

128

7. Compression Scheme for Signatures

meaning that despite of different secret keys the signatures of different signers are
identically distributed within a certain setting (identical parameters etc.). However,
the real distribution of y is not the uniform distribution ¢ (B), if one considers only
samples that resulted in valid signatures z, since some of them have been rejected.
This can be attributed to the role of fs(c) whose distribution adds together with
the true distribution of y to the uniform distribution. As a result, we never get to
see the (conditional) probability distribution of y that resulted in valid signatures,
since this would leak information about the secret key. As a result, the algorithm
from Section 7.2.1 is not applicable. If signatures would be generated in one run by
use of uniformly sampled y, we could collect many signature samples and apply the
law of large numbers in order to gather further useful information about the secret
key. Therefore, signature schemes with a rejection sampling step at the end are
excluded from the presented compression scheme. Prior to applying the framework
in Section 7.2.1, it has to be ensured that the signature scheme follows the abstract
construction z = fs(c) +y, where the scheme is secure even with public knowledge
of the (conditional) probability distribution of y.

In general, it is possible under some conditions to apply the convolution technique
in order to sample sums of random variables in one run. Therefore, it is required
to know the covariance matrix of at least one random variable in the sum. And
the covariance matrix of the other random variable is determined based on the
known covariance matrix and the target distribution. The framework above aims at
signature schemes that generate signatures in one run. That is, we sample exactly
one y for every signature z. Then, we are guaranteed to have the correct conditional
probability distribution, if it is publicly available. Exactly this case happens to occur
for the lower part of a GPV signature. This part does not involve the secret key
and the respective distributions are also known to a certain extent in advance. The
lower part of a signature can be simplified to z = Ix + ¢ + v/bd, where I is the
identity matrix, v/bd is a scaled continuous Gaussian with known parameter and
center, x and c are discrete Gaussians with small parameters and unknown centers.
Setting y = v/bd allows to apply the compression scheme developed in the previous
sections. The GPV signature scheme constructs signatures in one run by use of the
convolution technique. The perturbation vector is independently sampled from the
remaining part.

7.2.4. Compression Rate of Individual Signatures

Let h = max || fs(c)||, and z be the centroid generated by use of the seed r of size
s,C

1 bits serving as input to a simulator for signatures. The compression rate of an

individual signature zy:

0(1) = 1— size(zcs)) [m-log2h] + u

size(z1) ~ [m-logmax|zi|]’

129

7. Compression Scheme for Signatures

where the denominator indicates the maximum bit size of an uncompressed signa-
ture. In many state-of-the-art signature schemes, we have max||z| = O(n) or
O(n'/?) dependend on the scheme and its instantiation with max ||z — 21|, = o(n),
when applying the compression algorithm from Section 7.2.1. Following this, we
achieve compression rates of roughly

o(logn)

T =1- O(logn)

implying asymptotically an improvement factor of O(logn).

7.3. Compression Scheme for GPV Signatures

In the following section, we provide a detailed description of how to apply the frame-
work from Section 7.2 on GPV signatures that are produced by means of the trap-
door construction [MP12]. We refer to Section 6.3.5 for a description of the optimized
signature scheme.

7.3.1. Tools

Signatures generated within this framework essentially resemble Schnorr signatures
(zM),2(?)) = [ﬂ -x +p with z() € Z** and z(® € Z"*. Hence, a signature is of the
form z = fs(c)+y in accordance to the abstract representation from Section 7.2 with
s = FI{] . It is even possible to split the signature into z = (fr(c)+y™W, fi(c)+y®).
The exact specifications of f(-), y and ¢ will be given below. However, we are pri-

marily concerned with the lower part of the signature z(2) = fy (c) +y® =1.x+p®?
due to the large difference of magnitudes of x and p®).

Suppose we have [parties Sp,...,S5; that want to sign individual messages
msgy, ..., msg;. For the sake of simplicity, we restrict to the case, where [= 2 and
both parties use in accordance to the optimized signature scheme in Section 6.3.5
the same signing parameter s, security parameter n and modulus ¢ = 2, mean-
ing that the trapdoor functions fa, and fa, of the signers have the same domain
B ={2z¢eZ"*h | |z|| < sy/n(2+k) } and range R = Zy. Our compression
strategy focuses on the signature subvector z(?) = x +p® e Z"*_ where p? is dis-
tributed as p® +Dyn-k_p(2) , With p@ \@D{lk and x is sampled from DA%_(G)’T
with v; = H(msg;) — A;p; for i = 1,2 and p = (p!),p®). This leads to the
following representation of z(?) = fy(c) + y®, where

e vy « p@ =/b.d with d « D}*

° fI(X,y) =1 .x+ DZ"‘kfy@),r with ¢ = (X7y) .

130

7. Compression Scheme for Signatures

Based on this representation we can apply the tools developed in Section 7.2. In
fact, we have

2)
v® ez® f [—h ™ e—=deC =" [hoh

NN

Prior to stating the main theorem of this section, which indicates an upper-bound
for the size of a compressed signature, we prove some useful statements. For
instance, in Lemma 7.5 we essentially show that we can sample any continuous
Gaussian d <+ D; by first sampling a set B; with probability P[B;] and then
selecting a continuous Gaussian from B; according to the probability densitity
function f(x | « € B;). In Lemma 7.6 we provide a more general result than
[Ban95, Lemma 2.4]. It is a very helpful instrument in order to bound sums of
discrete Gaussians having different supports A;, parameters s; and centers c;. It
trivially subsumes Lemma [Ban95, Lemma 2.4]. By use of this result we give an
upper-bound for kA and hence for the compressed signature. In Theorem 7.7 we
prove that an arbitrary signer, that is different from the first one, can reuse public
randomness following essentially the same arguments as in Theorem 7.2 by sampling
its own continuous Gaussian from C' such that the difference of the lower part of its
signature to the centroid z® is sufficiently small.

nk
} b= max | (0]

Lemma 7.5. Let X be distributed according to the countinous Gaussian distribution
Dy with parameter s = 1 and center u = 0. Directly sampling d < D1 is equiva-
lent to first sampling a set B; with probability P[B;] = fBi e ™ dx and then sam-
pling a continuous Gaussian from B; according to the probability density function
flzx |z € By) = ﬁe‘”g for x € B;, where B; depicts a partition of R for
1<i<n.

Proof. The probability densitity function of a sample distributed according to D; is
f(z) = e~ Using conditional probability rules we have

PBj|-f(z |2 € B;) = P[Bi- 1 a2

= e ™ for z € B, P[B;] —/ e ™ da,
B;

which exactly coincides with the probability density function of a continuous Gaus-
sian with parameter 1.]

Lemma 7.6. Let (A;)1<i<n € R™ be a sequence of ni-dimensionial lattices. Then
for any reals s; # s; > 0 such that 1 <4,5 <n and T > 0, and z; € R™, we have

k
_ 2
Pro) (xidi —)| =T || (s1x1, ... spxi) | < 2¢777

diNDAi,ci,si i=1

131

7. Compression Scheme for Signatures

Proof. One can easily verify that Dy, ¢,,s; and s;-Dys o ; define the same distribution,
where A} and ¢} denote the scaled lattice A;/s; and center c;/s; respectively. In the
rest of the proof, we will use this equivalence when considering the distribution on
the lattice A;. The cartesian product £ = Ay/sy X -+ x Ag/si of lattices is again a
(>_ nji)-dimensional lattice since we can always construct basis vectors for £ using

(2
the basis vectors of A;. For any countable set A = A; x - -- X A C L the probability
measure on it is defined by pe;, 1)(A) = [[pe(Ai). Let x = (x1,..., %K) define
Z. k2

the vector composed by k subvectors x; € R™ and ¢’ = (cf,...,c}) respectively.
Then we obtain the following equalities:

(X,(DAycis1 — €15+ -+ Dagocposi — Ck)) (7.1)
= (x1,Daye1,s —€1) + -+ (X, Dagepps, — Ck) (7.2)
= (x1,81 (Dpgep1 —€1)) + -+ (X, 8 (Dagef 1 — k) (7.3)
= (s1-%1,Dapep1 — 1)+ Sk X, Dag e 1 —) (7.4)
= ((s1-%X1,--+, 85 Xk), (Day 1 = €15 Doy e 1 — 1)) (7.5)
= ((s1-%1,...,8 xx), D1 —C). (7.6)

The claim now follows from equation 7.6 and [Pei07, Lemma 5.1] with unit vector
(81°X1,yeee,Sk XK)]
(s1-%1, 8% |
If we set T ~ 4.69 the probability of that inequality to hold is less than 27190, In
the following, we state our main theorem of this section, which enables an arbitrary
group of signers to compress signatures.

Theorem 7.7. Assume a signer is given access to an oracle (e.g. a signing or
discrete Gaussian oracle) providing spherically distributed signatures z = (z(l),z(z))
with z1) e Zg”, z?) ¢ ng and parameter s according to the signing algorithm
from Section 6.53.5. He is then able to produce spherically distributed signatures
7] = (zgl), zgz)) such that the following bound on z(2) — Zgz) holds with overwhelming
probability

log || z?) — z1 Hoo< 7.

Proof. Consider the subvector z(2) = filx,y) + y?) e 7™k consisting of the last
n - k entries of z € Z"*+2) that is generated according to the optimized signature
scheme from Section 6.3.5. As stated in [Peil0] the subvector z(?) can be written as
2z =x+[c|, =x+ C+Dynk_c 4, Where [-|, denotes the randomized rounding op-
eration and ¢ = v/s2 — 5a2-d, d < D}'* with a as above. By [MP12] the parameter
s can be as small as y/s1(R)2 + 1-v6-a > s1(R)-v6-a (see Section 6.3.2) and when
applying [MP12, Lemma 2.9], one sets s1(R) to at least 1/v/27 - (v2n 4+ vV/nk) - aq

Using b = s> — 5a?, one can deduce a range C for the continuous Gaussian vector
used to generate z(?) . Thereto, we have to compute h = max | fi(c)|,, providing

132

7. Compression Scheme for Signatures

a bound to the sum x; + Dz_., .. One notices that Dz_., , and —c¢; + Dz, o are
identically distributed. As per Lemma 7.6 the sum is within the range [—4.7 -
V12 +a2,4.7-v/r2 + a2], except with negligible probability. As a result, it is possible
to determine a concrete range for the continuous Gaussian vector d by employing
only public data following Section 7.2.1. In fact, we have

_ z® T _
dec_ﬁ—i_[_%’%} with h = 4.7 -v/5a.

The set C' is publicly accessible and can, thus, be read by all parties. A complete
secretly sampled continuous Gaussian d implies C' = R, whereas C' = d in case d
is completely accessible to the public (see Theorem 7.1).

On the one hand, one observes that public randomness induced by the set C
can be viewed and exploited by a potential adversary (and anyone else) in order
to launch an attack against the underlying cryptographic primitive. Consequently,
the security of any cryptosystem should only be based on secretly sampled random
strings that can not be extracted publicly. In fact, we prove in Theorem 7.4 that
compressed signatures, that employ public randomness, are secure assuming the
hardness to break standard signatures. On the other hand, arbitrary many other
signers can take advantage of the available public randomness utilizing it for building
own signatures. In Section 7.5.2, we give a description of our multi-signer compres-
sion scheme that makes use of this feature. Since each signer operates with its own
secret key, that is independently generated, exploiting public randomness has no
impact on security. On the contrary, the generation of public random strings can
be delegated to other institutions providing the desired distributions on demand.
Specifically, in Section 7.3.3 we highlight the usage of a short random seed r serving
as input to a discrete Gaussian sampler acting as a simulator for signatures. The
output vector is used in order to extract the required public randomness and more
importantly to replace the large centroid z(?). As a result, it suffices to store the
seed instead of the large centroid.

The continuous Gaussian d was independently sampled and lies in C' with proba-
bility P[C' | (see Theorem 7.2). We say C occured, if d € C. Any other signer
can now secretly sample a continuous Gaussian d; < pg D{Lk conditioned on d; € C
according to the probability density function f(x | x € C'). Reusing public ran-
domness causes the random vectors d; to be distributed following the probability
density function f(x |xe€ C)-P[C] = e‘””ng, which perfectly coincides with
the required distribution d; g D (see Section 7.2.2). Following this approach,
the signer needs only to secretly generate its own continuous Gaussian vector dy
by sampling from the provided range C', for example with rejection sampling, such
that d; ~ D?k is satisfied. In fact, a larger range C’ O C can be selected if desired

(see Theorem 7.3). Intuitively, this strategy causes the vectors z§2) to be distributed

around the centroid z(? (see Figure 7.1). As per construction we have d; € C. By

2) (2)

means of Lemma 7.6 it is possible to derive an upper-bound on the norm z(? — z,’,

133

7. Compression Scheme for Signatures

where X <—r Dp1 (q),» and vi behave as described in the signing algorithm
V1)

2) (2)
12 =2 o = VB 22 =Dy () = VB di = Dyi_ a0 lloo
()
< | Vb (%7 —d1) Hoo+||DAL @)~ Dgni_pdya loo
< 2~4.7-fa<128.

(2)

Each entry of z? — z;’ occupies for n < 270 at most 7 bits of memory, except
with negligible probability. This value is almost independent of n, which increases
the incentive to use higher security parameters and thus causing larger compression
factors. On the other hand, a signature is distributed according to a discrete Gaus-
sian with parameter s. Each entry has magnitude of at most 4.7 - s except with
probability of at most 27190 O

The following result shows that it is even possible to leave out the first n entries
from z, which can always be recovered due to the existence of the identity submatrix
in A.

Lemma 7.8. Suppose z = (z(l),z(Q),z(?’)) is a signature for a message msg with
hash value H(msg) under public key A = [1, | A | G — AR], where z1), z(2) ¢ 7"
Then, the signer requires only to output (z(?),2®)) € Z"* 1) in order to ensure
correct verification.

Proof. The verifier computes t = H(msg) and defines
zD:=t—[A |G- AR] (z?,28)ez".

Then, the verifier needs only to check the validity of ||z| < sy/n(k+2), since
A -z = H(msg) holds per definition of z(1). O

7.3.2. Conditional Rejection Sampling

In this section we briefly discuss how to perform the rejection sampling step based
on conditional probabilities. The principal is identical to the conventional rejection

sampling algorithm from previous works. Specifically, we want to sample a vector

d from C = % + [_L\/\?a’%]nk

fx|xeC)=eTE/p[C] = H e~ /P[C;] with C; = 2

N
P[Ci] —/ e ™ dy |
Ci

By means of a simple rejection sampling algorithm, we can sample each entry of

according to probability density function

4.7-v/5a 4.7-\/5a
[4T5 4T5a)

and

d independently from C; = % + [—%, %]. For example, one samples a

uniform random element d; from C; and a second random element wu; from the

134

7. Compression Scheme for Signatures

interval [0,1]. We accept d;, if u; < e*“dz?, otherwise we reject and resample. Due to

the compact intervals of small width, the rejection sampling algorithm performs very
efficient. This conditional rejection sampler can be adapted to other distributions
as well.

7.3.3. Single-Signer Compression Scheme in the GPV Setting

Applying the framework introduced in Section 7.2.1 in conjunction with the tools
described in Section 7.3.1 (particularly Theorem 7.7 required) empowers an indi-
vidual signer to compress its own signatures. We, therefore, present the required
steps of our single signer compression scheme below. Thus, let GPV signatures be
represented by the tuple z = (z(1), 22 z(3)) ¢ Zntntnk,

In fact, our main goal is to give a description of how to replace the large centroid
by a short uniform random string that is used to produce vectors being distributed
just like GPV signatures. As a result, we have a mechanism to simulate signatures
such that the output vectors take over the role of the centroid. In fact, lattice-based
GPYV signatures are distributed just like discrete Gaussian vectors. Therefore, a
discrete Gaussian sampler can be used as a simulator for signatures providing the
required public randomness. It is a well-known fact that a discrete Gaussian can
be generated by use of rejection sampling or other sampling algorithms such as
FastCDT introduced in Section 5.1 that are parametrized by sequences of uniformly
distributed numbers [GPV08, Lyul2] supplied, for example, by a cryptographic hash
function modeled as random oracle. But it is also possible to produce discrete Gaus-
sians by means of a continuous Gaussian sampler in combination with the technique
from [Peil0].

Therefore, suppose we want to sample a vector being distributed negligibly close to
a discrete Gaussian with parameter s representing the centroid as assumed by Theo-
rem 7.7. According to the proof, we output a vector z? distributed as
X+C+Dgnk_ 4, where ¢ = V52 —5a2-d, d < DI'¥ and x <~ Dynr . holds. Fol-
lowing [Peil0] this is equivalent to first generating a continuous Gaussian vector d
with parameter 1, multiplying it with v/b for b = s? —5a? and rounding each compo-
nent of the vector to a nearby integer using the randomized rounding operation with
parameter a. This produces a vector distributed as (\/5 dl, = Vb- d+Dyur_ paa
Note that the randomized rounding operation behaves in fact like a discrete Gaus-
sian. Thus, for the scheme to work, a potential signer samples a fresh random seed
r of size u bits as input to a cryptographic hash function modeled as random or-
acle outputting a sequenence of random numbers that in turn serve as input to a
discrete Gaussian sampler. Applying the compression algorithm (Algorithm 2) and
using Theorem 7.7, the signer outputs the public seed r, which generates the cen-
troid z®), and a compressed signature (zgz),z(?’) — zgg)), where zgz) contains only
n entries of the signature z; as per Lemma 7.8. The size of the compressed sig-
nature amounts to approximately n(log(4.7 - s) + k- 7) + p bits as compared to
n(k +2)-log(4.7 - s) bits without compression. The verifier receives the compressed

135

7. Compression Scheme for Signatures

signature and computes the discrete Gaussian z(?) using r. He then uncompresses the
signature to (zgl),z?),zg‘g)) and verifies the GPV signature by invoking VerifyGPV

(see Section 6.3.5).

7.3.4. Analysis of Compressed Signatures

In this section we analyze the compression rate of the signature scheme. A simple
and practical way of comparing compressed signatures is to use the size ratio of
signatures before size(z;) and after compression size(zcg). By

Size(ch)

0(l)=1- l
> size(z;)

i

we define the compression rate, which represents the amount of storage that has
been saved due to compression, where [denotes the number of signers (resp. signa-
tures). For [= 1, we obtain the compression rate for a single signer.

Asymptotical View

For analyzing the compression rate and its asymptotics, we first consider a lower
bound on the compression rate starting with the single signer case. Let z <= Dynk
be the centroid sampled by a simulator for signatures such as a discrete Gaussian

(2) (3))

sampler using a seed r € {0,1}* as input. A compressed signature (r,z;",z — z;
consists of z§2) of size n - [log(4.7 - s)] bits, z — ng) of size n - k - [log(2 - 4.7 - v/5a)]
bits and a short seed r of size pu bits. Without compression, however, the size of an
individual standard GPV signature amounts to n - (k + 2) - [log(4.7 - s)| bits

n-[log(4.7-s)] +n- k- [log(v/448.8a)| + p

61) = 1- - (k+2) - [log(4.7-)] (77
1 [log(v/448.8a)] + 1
= 1_<k+2+' Mog(4.7 - 5)]) (7:8)

B 1 o(log(Inn))
- 1_<k+2+ Owgm)>‘ (7.9)

The compression factor converges for increasing n towards 1 —1/k+ 2, if k is chosen
to be constant. But in fact, since the parameter s grows with increasing n, it is
required to increase k as a function of n for the scheme to be secure. Typically,
one requires ¢ = 2¢ = poly(n), which is equivalent to k¥ = O(logn), implying an
improvement factor of approximately lgn. In this case, the compression factor con-
verges towards 1, which is asymptotically unbounded.

136

7. Compression Scheme for Signatures

Concrete View

A more practical way of measuring the concrete compression rates is to consider
the length of a compressed signature and subsequently deduce its storage require-
ments. Thus, we recall the representation of a compressed signature according to
Theorem 7.7, where x < DA&(G),T for b= H(msg) and v <—p Dan—\/Bd@’ then it
follows

e, - e v

|V (& —a)—x||, v,

IN

n-k

We now consider the expression || v||,, which can be rewritten as vnk, |- Z:Oviz‘
=l

By the law of large numbers and due to the huge number of samples the estimator

n-k
L3~ v? essentially equals to E[v?] = a? such that ||v||, can be approximated by
i=0

Vn-k-y/E[vZ] = avn-k. The first expression, however, is a little bit tricky to
approximate, since the entries d; lie in different sets dependend on the entries of z.
Signatures produced by the GPV framework basically follow the discrete Gaussian
distribution. As a consequence, the random variables T; = (% —d;) with z; ~ Dy ¢
and d; ~ D1,d; € C; are independent and identically distributed such that the law
of large numbers applies. Moreover, the squared entries 22 of x are of finite variance

and independent from T;. For large enough samples, we obtain

nk .
1 Z_ g — g ZL_ g —)2
o 2 (VB(i) — i) = E[(\@(\/E di) — ;)]
— Bla?)+b- BT
= 7’2+b'ZP[zi:y]‘E[Ti2|Zi:y]
YyEL
< T2+b'm€aZXE[Ti2|zi:y].

In order to find the maximum conditional expectation value for each considered
parameter selection n and k, we derive an upper bound for

, 2
(Z—dz‘> | di < D1,d; € Ci|

Vb
i 4.7 -/5a
C; = —+[-h,h|forh=—"—-"".

Vb L=, h] for Vb

2 = b max E
0<i<[4.7-5]

137

7. Compression Scheme for Signatures
For ¢ > 0, the conditional expectation is given by

! / <i—x>2e_”2dm < 1 /(i—w>2 e_w(ﬁ_h)de
P[Ci] Jo, \Vb = Plai] Je, \Vi
i 3
9. (N (4.7\/&)

3P[C;] Vb
. —m(-L—h)? 2
since e Vb < e for z € (. As a result, we deduce
H\/E (% - d)H2 < cvn - k. Subsequently, we can bound the length of z — zg2)

by Hz - zgz)H < (V2 +71%2+a)-vn-k. Following this approach in combination
with Lemma 26.2, we can estimate the compression rate more precisely. The com-
pressed signature requires [n-k-(1+log(v/¢? + r2+4a))] bits and the seed r occupies
at most n bits of memory. A standard GPV signature requires [n(k+ 2)(1 + log s)]
bits. It follows

_ - tlogs)[+[n-k-(1+log(Ve? +1% +a))| +n
[n(k+2)(1+logs)] ’

6(1)

_W(L_h)Q
where ¢? is upper bounded by 2t 3P[g] <4'7\>/55“

factor is simply the inverse of the fraction, i.e. (1 —6(1))~%.

3
> . The storage improvement

Compression Rate in the Multi-Signer Setting

For [> 1 the compression factor is slightly higher, because only one seed of size u
bits is required instead of [- u bits. Furthermore, the computational costs decrease
due to a single call of the discrete Gaussian sampler as opposed to [calls in case
without aggregation.

7.3.5. Entropy of Public and Secret Randomness

Measuring the public and secret portion of randomness requires to consider the en-
tropy of the relevant quantities. The entropy h(X) represents a mass for the amount
of uncertainty stored in a random variable X. The differential entropy for continu-
ous random variables is, however, a relative measure used for comparison. We aim
at comparing the secret and public randomness of the continuous Gaussian vectors
sampled in the signing step. Therefore, we have to compute the differential entropy
for the distinct randomness portions. The differential entropy of a multivariate
continuous Gaussian vector d with f(xy,...,z,) = e~ 7II13 is determined as follows

138

7. Compression Scheme for Signatures

h(d) = /OO.../OOf(acl,...,:):m)-logf(:nl,...,xm)dxl...dxm

When outputting a signature and, hence, revealing the corresponding set C, the
entropy of the continuous Gaussian vector decreases, because information is leaked

about d. As a consequence, the entropy of d is now computed based on
C = 22 4 [_4.7~\/5a 4.7~\/5a]nk
Vb Vb Vb
ever, when sampling perturbations p; in the signing step, we require an additional
continuous Gaussian vector d; «x D?" that remains completely unexploited. We
know from information theory that the conditional entropy of d given d € C'is given

by

, which corresponds to the secret randomness. How-

hd|C) = Zhd | C)) = Z/ J(If[(gi)]dxi

_ glog(P[Ci]) - /C | 15[(933] g f(2)de

nk

2.4.7-v/5a
log2h =n-k-log(—————

2 =

%

);

since P[C; | < 2h. The first equality follows from the independence of the entries in
d;. The secret portion of randomness has entropy amounting to hAsecret = % log(eQ”)—i—

n-k- log(L\/'ll)ﬁ’a) bits, whereas the public randomness is lower bounded by hpypiic =

%log(e"(k”)) — hsecret & 0k - (3 log(e) + log(%)) bits. One notices that the
differential entropy can be negative.

7.4. Implementation and Experimental Results

To scrutinize the performance respectively efficiency of the single signer compression
scheme presented in this chapter we modified the optimized implementation for
GPYV signatures given in Section 6.5.2. In particular, we require 2 further building
blocks in order to realize an efficient software implementation of the scheme from
Section 7.3.3.

e First, we need to sample the centroids from a uniform random string. This
can indeed be realized by use of the salsa20 stream cipher, that stretches an

139

7. Compression Scheme for Signatures

initial seed to the desired output length, in combination with the discrete
Gaussian sampler FastCDT introduced in Section 5.1, which allows to sample
discrete Gaussian distributed vectors with huge parameters s very efficiently
(see Section 6.3.2).

We need to implement the conditional rejection sampler from Section 7.3.2.
The efficiency of this sampler inherently depends on the number of rejections
and hence the distribution used to generate samples. This distribution should
always be above the target distribution. If the difference is too large, the
number of rejections increase. Since we want to sample according to the prob-
ability density function f(z | z € C;) = e~ ™**/P[C;], it is required to find
a probability density function g(x) such that f(z | z € C;) < g(x) which is
used to generate samples. Surely, we have f(z | z € C;) < 1/P[C;], but
this choice is not optimal. Since e~™2° is monotone decreasing for x > 0 and
monotone increasing for x < 0, we can use the interval boundaries t1,ts < 1
of C' = [t1,t2] as a good advice. For instance, if t1,%2 > 0,then el > gmma?
for all x € C. Therefore, we choose g(x) as follows

1. If t1,15 > 0, set g(z) = e ™4 /P[C']
2. If t1,ty < 0, set g(x) = e ™% /P[C].

We ignore the case t; < 0 A t3 > 0, which does not occur very often. Indeed we
omit to compute the probability P[C' |, since it is used for both distributions
and can hence be canceled out by multiplication of P[C']. We note that
this does not change the distributions such that we have only to consider the
scaled distributions g(z) = g(x) - P[C] and f(z) = (z | 2 € C)- P[C] in
the conditional rejection sampler. As a result, we sample an element z € C
uniformly at random and an element u € [0, 1] uniformly at random and check
if u-g(x) < f(x). If this is true, we accept and else reject.

Ring Variant Parameters Timings (cycles) Security (bits) Ratio

q Sign Verify [MRO09] [RS10] t1/to

GPV without Compress.

n=>512 224 13395600 464400 > 300 97
227 14810400 514800 > 300 103
229 15796800 558000 > 300 107

n=1024 227 31935600 1117800 > 300 147
229 34137000 1186200 > 300 153

GPV with Compress.

n=>512 224 17757000 4264200 > 300 97 1.319.2
227 19630800 4789800 > 300 103 1.319.0
229 21002400 5022000 > 300 107 1.319.0

n = 1024 227 42271200 9849600 > 300 147 1.3]8.8
229 44841600 10542600 > 300 153 1.3]8.8

140

7. Compression Scheme for Signatures

Matrix variant Parameters Timings (cycles) Security (bits) Ratio

q Sign Verify [MRO09] [RS10] T1/To

GPV without Compress.

n=>512 224 59862600 9558000 > 300 97
227 67384800 10733400 > 300 103
229 73746000 11930400 > 300 107

GPV with Compress.

n=>512 224 65466000 13699800 > 300 97 1.1] 14
227 73236600 15415200 > 300 103 1.1]14
229 79216200 16644600 > 300 107 1.1] 14

The public key of the scheme is instantiated computationally just as described
in Section 6.5.2, where the entries of the private key are sample both in the ma-
trix and ring variant according to the discrete Gaussian distribution with parameter
aq = y/n. By T1/Ty we denote the ratio of the running time with compression T
and without compression 7. Applying the compression scheme in the ring variant
leads to a signature generation engine that is by a factor of 1.3 slower as compared
to the signature scheme without compression. And verification is slower by a factor
of about 9. However, in the matrix variant both signature generation and verifi-
cation are essentially as efficient as without compression. On the other hand the
signature size is improved by a factor of about 2.5 — 3.1 (see Table 7.1). However,
when comparing with the implementation from Section 6.5.1 (see [P9] for timings),
verification is still fast. This can be attributed to the process of generating n - k
discrete Gaussians with a large parameter s from a seed (see Algorithm 7.3 or Sec-
tion 7.3.3). We note, that the compression scheme is flexible, that is we can chose
to compress less number of entries leading to faster algorithms at the expense of a
smaller compression factor, since we need only to generate I < n - k discrete Gaus-
sians, where the remaining entries are built following the traditional approach.

Compression Scheme Parameters Compression Factor
q aq
n=>512

(applied) 229 vn 2.5
(LWE) 229 2y/n 2.7
(ring-LWE) 22 /nlog2n - (o) t* 2.9

n = 1024
(applied) 230 vn 2.7
(LWE) 230 2\/n 2.8
(ring-LWE) 230 /nlog2n - (gro)'* 3.1

Table 7.2.: Compression Rates for different Parameters

141

7. Compression Scheme for Signatures

7.5. Generic Multi-Signer Compression Strategy

In the following section we introduce a multi-signer compression strategy, if more
than one signer agree to share the same source of public randomness. This approach
is equivalent to an aggregate signature in its most trivial form, namely bundling
signatures together. Due to the fact that public randomness is accessible to all sign-
ers viewing signatures (resp. seeds), the same source of public randomness can be
exploited by other signers with different keys as well. This observation has already
been made in Theorem 7.3 and Theorem 7.7. Our multi-signer compression strategy
aims at decreasing the overall computational costs and total signature size if more
than one party participate to construct a signature using the same source of public
randomness such as a fresh seed r, signature or discrete Gaussian vector following
the distribution of signatures. It is well known that the most trivial form of an
aggregate signature scheme simply consists of bundling all signatures of all partic-
ipating signers together. There is no compression in this case and the security of
the aggregate signature stems from the unforgeability of each individual signature,
because each signature is verified independently from the others (see Theorem 7.10).
This approach is taken in the following sections with the difference that each signa-
ture is compressed by use of Algorithm 7.3 and a fresh seed r. Analoguous to the
uncompressed case, all compressed signatures are bundled together with the seed
and subsequently handed over to the verifier who in turn verifies each individual
signature independently.

The main advantages of such a multi-signer compression strategy can be summa-
rized as follows. The overall signature size is reduced, since all signers aggree on a
single seed r as opposed to [seeds, each for a different signer. Therefore, it suffices
to transmit only r. The reduction of the computational costs at the verifier side
are noteworthy. In particular, the verifier has only to call the simulator of signa-
tures once as opposed to [calls, because all signers use the same seed and hence the
same centroid. As a result, uncompression of a signature bundle in a multi-signer
compression scheme is essentially as fast as uncompressing a single signature. Due
to the relationship of our multi-signer compression strategy and standard aggregate
signature schemes, which mainly have the goal to reduce the total signature size and
to verify that all parties correctly signed the corresponding documents, we refer to
Chapter 8 for a related work section on aggregate signature schemes.

7.5.1. Multi-Signer Compression Scheme

Prior to the description of our novel and generic multi-signer compression scheme
from public randomness, we start by some definitions. In fact, the idea of the multi-
signer compression scheme is strongly related to aggregate signatures in its simplest
form, namely bundling [/ signatures together. We use the terms aggregate signature
and bundle of compressed signatures as synonyms throughout this thesis. Therefore,

142

7. Compression Scheme for Signatures

it is reasonable to tailor the definition of aggregate signatures to our multi-signer
compression scheme.

Definition 7.9 (Multi-Signer Compression Scheme (MSC)). In a multi-
signer compression scheme | signatures z; on l messages msg; from | distinct signers
are combined into a signature zprsc for 1 < i <1 such that the resulting aggregate
signature zpyrsc 1S significantly smaller than the total size of all individual signa-
tures (compression property). Moreover, each individual standard signature z; can
efficiently be recovered from zyrsc (uncompression property).

The generic construction of our multi-signer compression scheme (MSC) from
public randomness r involves 5 algorithms.

KeyGen(1",7 with 1 < i < [): Outputs secret key sk; and public key pk;
to signer 7.

SeedGen(1™): Outputs a centroid generating seed r € {0, 1}#

Sign(sk;, r € {0,1}* msg;): Outputs a message msg; of signer ¢ and an individual
signature z; = z — z; compressed with respect to z that is generated by means
of the random seed r.

Bundle(a{), Z,r,msg): Outputs the aggregate signature zpsc as a bundle of I
compressed signatures including the seed r.

Verify(p_>k, zZysc, T, msg): Verifies the aggregate signature z ;g0 with the aid of the
public keys a; = (pky, ..., pk;), the centroid generating seed r and messages
msg = (msgy,...msg;). For each valid signature in the bundle zy;s¢ set the
corresponding entry to 1, otherwise set 0. Output out.

As already observed, the generic compression algorithms from Section 7.2 natu-
rally induce multi-signer compression schemes, since all parties are allowed to con-
sume the same source of public randomness as per Theorem 7.3. We hereby present
a generic approach towards constructing a multi-signer compression scheme that is
more efficient than the single-signer approach. The security of the scheme inherently
stems from Theorem 7.4.

Theorem 7.10 (Security). Let r € {0,1}* be sampled uniformly at random. Then,
the bundle of compressed signatures (aggregate signature) in Algorithm 7.4 is secure
assuming the hardness to break uncompressed signatures.

Proof. As per assumption r is uniform random. Since each compressed signature is
recovered and subsequently verified independently from the remaining ones in the
bundle, we can directly apply Theorem 7.4. O

143

7. Compression Scheme for Signatures

Algorithm 8: AS Scheme: AggSign
Data: Distribution of signatures Z, seed r € {0, 1}#

1 fori=1tol do
2 \\ i-th Signer

3 Sample z < Z using input seed r
4 Set b = max || fs(c)||
s,C
5 Set C =z + [-b,b]™, P[C]:=Pyuy(y € C)
6 fori=1—ldo
7 Sample y; < Y(x)/P[C], x € C
8 z; = fs,(Ci) + ¥i
9 end
10 end
11 Output (v, z—21,..., z— 7)), Msg

Algorithm 9: Verification: AggVerify

Data: Aggregate signature (r, z},..., z;) with
z, = 7z — z;, messages msg

Sample z < Z using input seed r
fori=1+toldo

[

2

3 z, =27 — 2z \\uncompressed signatures
4 if Verify(z;, msg;) == 1 then

5 out; :=1

6 else

7 out; :=0

8 end

9 end

10 Output out

Figure 7.4.: Aggregate Signature Scheme

Indeed, the above described multi-signer compression scheme allows the verifier to
recover all individual signatures from zj;sc. The centroid associated to r connects
all the individual signatures together. Furthermore, if the seed is made a shared se-
cret, the aggregate signature can only be recovered and verified by the holders of r.
Such schemes are interesting within the context of wireless sensor networks, because
WSNs are characterized by constrained ressources such that one observes an inher-
ent need for data compression schemes reducing the amount of traffic. Therefore,
we consider cluster-based sensor networks in Section 7.6 as a potential application
scenario for our scheme.

144

7. Compression Scheme for Signatures

7.5.2. Multi-Signer Compression Scheme in the GPV Setting

A usable and practical way of instantiating the scheme requires the participating
signers to agree on a random string in advance. This is attained, for example, if each
signer samples a random salt r; and broadcasts it to the remaining parties in order
to produce the ultimate seed r = H(ry,...,r;) using a cryptographic hash function
modeled as random oracle. Each signer maintains a counter that is increased for
every compression request. This counter is appended to r and serves as input to
a second hash function, whose output sequence is used to sample the centroid in
order to compress GPV signatures. At this point we have to explain how to sample
continuous Gaussians in the case when the signers’ parameters n; and k; differ.

Our goal is to keep the scheme as efficient as with constant parameters. The compu-
tation complexity and the number of transmitted seeds should not change. There-
fore, one starts by defining the maximum Gaussian parameter s = max s;, the maxi-

mum dimension N = max n; and the maximum number of entries
K3
M = maxn;k; with s;,n;,k; and m; = n; - k; denoting the parameters of the
7

i—th signer. Accordingly, we define b; = s? — 5a? and B = s?> — 5a? > b;. Fol-
lowing Theorem 7.7 and Theorem 7.2 each signer samples a continuous Gausssan
from a set of proper width. This can be achieved by sampling d; «—r D7", d; €
C; = [z(3) _ 4.7+5a z®) + 4.7-/5a

i NOREING] 7, "™, where z'®) is a discrete Gaussian vector with

parameter s and a = \/ln (2n (1 + %)) /m. The choice of s implies C' C C; for
O - z(3 + [_4.7-\/311 4.7v/5a

~ VB VB ' VB
Due to differing parameters, the number of signature entries varies among the sign-

ers such that m; < m. For this reason, one takes as many entries as required from
z®) starting from the first component of z®). Since each signer operates with dif-
ferent parameters b; and s; when sampling signatures, we have to derive individual
centroids w; from z®) efficiently. The most reasonable way of doing this requires to

set w; = [% -v/b;], which can be computed efficiently from public parameters, for

] and thus provides the required interval width.

signer i such that its difference to the center of the scaled sets /b; - C; is smaller
than 0.5 in each entry. As a result, we still have log || w; — zgg) loo< 7 except with
negligible probability. In case we have b; = B for all 4, w; = z(® is obtained as
the centroid for all signers. In Figure 7.5 we provide the main steps. Here D%/[S(t)
denotes the discrete Gaussian sampler simulating signatures with parameter s, iﬁput
seed t.

145

7. Compression Scheme for Signatures

Algorithm 10: MS Compression: MCSign

Data: Seed r, parameters s;,n;, k;, B, M, N, s

1cr=j \\counter
2 t + H(r,ctr) \\actual seed
3 Z 4 D%S (t) \\centroid using t

4 fori=1—1do

5 \\Compression

6 Set m=mn;-ki, n=n;,b=>0; and A = A;
7 w; = (% -v/b| \\modified centroid

Define C; = [ﬁ _ 4-7\-/%5(17 % + 4.7%5a]m

8

9 \\Signing

10 dy < D?,dy < D" A de €C;

nom= (g5 ”) e f3(H(msg,)

12 Vi= (z§2),wi - ZES)), (Lemma 7.8, Theorem 7.7)
13 end

14 Output Aggregate (ctr,y1,...,¥1)

Algorithm 11: Verification: MCVerify

Data: Seed r, (ctr,y1,...,¥y1), parameters s;,n;, k;, B, M, N, S

1 t < H(r,ctr) \\actual seed
2 7 D%S(t) \\centroid
s fori=1—1do

4 \\Uncompression

5 Set m=mn;-ki, n=mn;,b=>0; and A = A,
6 w; = (ﬁ -v/b| \\modified centroids

7 Yi = (Z£2),Wi - Zz('S))v Z; = (251)7252)7253))
s end
o z2=(21,...,%) \ \uncompressed signatures

10 out = (0,...,0)
11 fori=1—1do

12 \\ Verification
13 if fa,(z;) = H(msg;) A | 2; ||< siy/m; then

14 out; =1, z; is valid
15 end
16 end

17 Output out

Figure 7.5.: Multi-Signer Compression Scheme in the GPV Setting

146

7. Compression Scheme for Signatures

7.6. Application Scenario - Cluster-based Aggregation in
Wireless Sensor Networks

An interesting application scenario for the proposed multi-signer compression scheme
are wireless sensor networks. In recent years, many research efforts have been spent
on minimizing data transmissions within WSNs due to the resource constrained
devices forming the topology. At the same time there is a claim for securing the
communication flow against adversaries that could attack the network to gather
information or to manipulate them. Therefore, a lot of theoretical research has been
made on secure data aggregation protocols, which aim at providing a certain level
of security as well as mechanisms that improve the lifetime of sensor networks by
minimizing the number of transmitted messages. It is a well-known fact [HSW00]
that the transmission of a single bit consumes as much battery power as executing
800-1000 instructions. So it is more convenient to reduce the number bits to be sent
at the cost of an increased computation complexity.

A cluster-based sensor network is an appropriate topology to support most of the
aggregation schemes. Following this approach, one splits the network into clusters,
each of similar size. Typically, one finds such topologies at Logistic Service Providers
that monitor the supplied goods on their way from the manufacturer to the client.
The products have different features (e.g. the temperature and humidity) that are of
interest and thus need to be monitored for the whole delivery period. For instance,
the temperature of perishables should remain constant on a reasonable level.
Therefore, one should always keep an eye on the temperature preventing the spoiling
of goods. A plausible way to design the topology for goods transported via trucks is
to let each truck form a cluster with a small number of sensor nodes. Each cluster is
characterized by its cluster head (CH), a dedicated node that acts as a subentity of
an aggregator node (similar to a cluster head) or the root. At the top of the topology
we have the root that sends its requests to the cluster heads, which in turn forward
the request to the cluster participants. After sensing the required values, the cluster
participants send them via the cluster heads back to the base station. There are
many different ways to implement the signature compression schemes from above.
For the sake of simplicity, we consider the generic multi-signer compression scheme
from Section 7.5. Therefore, the base station sends a fresh random salt securely to
all nodes within the WSN in the setup phase. Whenever the nodes sense the required
values they increase an internal counter which serves together with the random salt
as the input seed to a discrete Gaussian sampler. Afterwards, they transmit their
compressed signatures via the cluster heads back to the base station. The usage of a
salt in combination with a counter for creating signatures further allows to capture
replay attacks, that can be launched by any adversary eavesdropping the message
stream. Moreover, one can allow only privileged members to be the only ones being
able to verify signatures. This is attained by making the random salt a secret key
shared among the privileged members. By doing this, only those who share the secret
key can recover the centroid and subsequently verify the uncompressed signature.

147

8. Sequential Aggregate Signatures

An aggregate signature (AS) scheme enables a group of signers to combine their
signatures on messages of choice such that the combined signature is essentially as
large as an individual signature. Aggregate signatures have many application areas
such as secure routing protocols [Lyn99] providing path authentication in networks.
Moreover, ASs are important mechanisms used in constrained devices, e.g. wire-
less sensor networks, in order to decrease the amount of transmitted data, which in
turn reduces the battery power consumption. Particularly in cluster-based sensor
networks, where each cluster consists of a small number of sensor nodes, it is rea-
sonable to apply data aggregation techniques including AS.

The first aggregate signature scheme is due to [BGLS03], which is based on the
hardness of the co-Diffie-Hellman problem in the random oracle model. Following
this proposal, the aggregation mechanism can be accomplished by any third party
since it relies solely on publicly accessible data and the individual signature shares.
Conceptually, this scheme is based on bilinear maps. In [LMRS04] Lysyanskaya et
al. proposed a new variant of AS, known as sequential aggregate signatures (SAS),
which differs from the conventional AS schemes by imposing an order-specific gen-
eration of aggregate signatures. In particular, each signer is ordered in a chain and
receives the aggregate from its predecessor before the own signature share is added
to the aggregate. A characteristical feature of this scheme is to include all previ-
ously signed messages and the corresponding public keys in the computation of the
aggregate. In practice, one finds, for instance, SAS schemes applied in the S-BGP
routing protocol or in certificate chains, where higher level CAs attest the public
keys of lower level CAs. The generic SAS construction provided in [LMRS04] is
based on trapdoor permutations with proof of security in the random oracle model.
However, the SAS scheme suffers from the requirement of certified trapdoor permu-
tations [BY96] for the security proof to go through. But the authors explain how to
circumvent the need for certification in the special case of an RSA-based instantia-
tion using large exponents e as public keys. This obviously lacks efficiency due to
costly exponentiations. Subsequent works provide similar solutions or improve upon
existing ones, e.g. the work [BNNOQ7] removes restrictions on the choice of messages
imposed by [BGLS03]. In particular, prior to this improvement the messages were
forced to be distinct.

First steps towards eliminating random oracles in the security proof were taken by
Lu et al. [LOS'06], who proposed a new SAS variant that is based on bilinear pair-
ings while providing provably security in the standard model. In a following work,
the authors of [Nev08] address the requirement of certified trapdoor permutations in
[LMRSO04] and present a new SAS construction removing the need for certification.

148

8. Sequential Aggregate Signatures

As a main drawback of both schemes, a potential signer has to verify the actual ag-
gregate signature prior to any modification. This issue is investigated in the works
[EFG'10] and [BGR12]. The first proposal successfully solved this problem and
hence allows to omit verification beforehand when modifying the aggregate. But
this approach works as the BGLS-scheme [BGLS03] in a different setting. The SAS
construction with lazy verification [BGR12| has the advantage that each signer does
not care about the validity of the intermediate aggregate signatures. Therefore,
the messages and the corresponding public keys of precedent signers need not to
be requested when generating aggregate signatures. Verification of the aggregates is
delayed and can be accomplished at any time afterwards. Interestingly, Hohenberger
et al. present in [HSW13] the first unrestricted aggregate signature scheme that is
based on leveled multilinear maps. The underlying hardness assumptions are, nev-
ertheless, not directly connected to worst-case lattice problems. In this chapter we
address the question whether it is possible to build (S)AS schemes that can be based
on worst-case lattice problems. This chapter refers to the paper [EB14b]|, where the
author of this thesis was the primary investigator and author of the paper.

Our Results and Contribution
Sequential Aggregation of Signatures from PSTFs.

We present the first lattice-based sequential aggregate signature scheme that is se-
cure in the random oracle model [BR93]. It can be instantiated by any collection of
preimage sampleable trapdoor functions [AP09, GPV08, MP12, Peil0, SS11] includ-
ing identity-based variants such as in [GPVO08]. In fact, one can even use different
types of trapdoor function families simultaneously. The security model, we adopt,
is mainly influenced by [BNN07, LMRS04, Nev08] as it requires the scheme to with-
stand potential attacks even when the forger controls all but at least one secret key.
Inspired by the work [Nev08] we prove by means of a sequential forger that breaking
the scheme is as hard as solving hard instances of lattice problems. Specifically,
we show that solving the SIS problem can be reduced to the task of successfully
forging an aggregate signature. We even prove that our scheme is strongly unforge-
able under chosen message attacks [Riic10]. Interestingly, all results immediately
transfer to the ring setting, since the proof is based on a more abstract notion of
collision-resistant trapdoor functions [GPV08] subsuming both the matrix and ring
variant. In terms of performance, the signing costs of each signer are limited to one
run of the GPV signature scheme and (i — 1) function evaluations, where ¢ denotes
the index of signer S; in the chain. By applying the framework of [BPW12, SMP0§]
one can additionally turn any sequential aggregate signature scheme into a proxy
signature scheme, where the security is based on the hardness of forging signatures
in the underlying SAS scheme.

149

8. Sequential Aggregate Signatures

Instantiation of SAS.

As mentioned before, one can principally use any PSTF family that is suitable for
the GPV signature scheme in order to instantiate the SAS scheme, particularly also
the trapdoor construction presented in [MP12]. Due to the compressing property
of lattice-based PSTF's the range is in many cases much smaller than the domain
log,(By) > logy(Ry,), where log,y(C) := max [log, c| denotes the maximum bit size of

a set C'. Consequently, the size of the aggregate signature is larger than an individual
one when instantiating the chain of signers with the same security parameters n and
q. However, it is always possible to select the parameters n; and g; of the signers in
such a way that the signature of any signer completely flows in the signature compu-
tation of its successor. The resulting aggregate signature is then essentially as large
as a signature of the last signer. To achieve this, logy(R,,,) > logy(B,,;) must hold
for all 1 <4 < k. Hence, the aggregate signature of any signer completely flows in
the computation of the aggregate signature of the next signer in the chain. A way of
measuring the quality or suitability of any PSTF for use in the proposed SAS scheme
is the ratio logy(By,)/logy(Ry), where a value close to 1 indicates that the sizes of
the domains and ranges are of the same order. Based on this selection criterion, we
instantiate our construction with the provably secure NTRUSign signature scheme
[SS11]. It furtherly allows to achieve asymptotically optimal compression rates that
are known from number-theory based SAS schemes such as the schemes provided in
[LMRS04, Nev08]. Moreover, we discuss the potential advantages of our construc-
tion over RSA-based SAS schemes. In particular, we point out that our proposal
is characterized by its flexibility and simplicity of instantiation as compared to the
schemes provided in [LMRS04, Nev08]. However, the compressing property of the
PSTFs leads inherently to some small SAS overheads, if n and ¢ are chosen to be
equal for all signers. A solution to this problem consists in selecting the parameters
n; and ¢; in such a way that the signature of any signer completely flows in the
signature computation of its successor.

8.1. Our Construction

We introduce our lattice-based sequential aggregate signature scheme in Section 8.1.1.
In fact, the construction is based on the more abstract notion of preimage sampleable
trapdoor functions introduced in Chapter 6.

8.1.1. Our Basic Signature Scheme

We aim at constructing a SAS scheme from trapdoor functions instead of trapdoor
permutations. Inspired by the works of [LMRS04, Nev08] we transfer the core ideas
from trapdoor permutations to the lattice-based setting. The main obstacle that
needs to be handled is the fact that lattice-based trapdoor functions operate in dif-
fering domains and ranges. The input bit size is usually larger than the output
one. This is due to the need of collisions. Therefore, we use the encoder-technique

150

8. Sequential Aggregate Signatures

enc proposed by [Nev08] that takes these properties into account. In particular, it
breaks the signature down into two parts, where the first part is injectively mapped
to an element of the image space and subsequently processed in the computation
of the modified aggregate signature. The second part is simply handed over to the
next signer in the chain. The encoder-technique is originally designed to allow for
hiding of additional data like messages in RSA like systems in order to decrease not
only the signature sizes but also the total amount of data to be send. The following

algorithms provide the main steps of the SAS scheme.

Algorithm 12: AggSign(T;, m;, ¥;_1): Signing algorithm of the i-th signer

Data: Trapdoor T;, message m;, >;_1
1 if i =1 then
Yo + (6,€,6,0™);
end

w N

Parse ¥;_; as (ﬁ, T_ﬁi—l, 5@'—1, Oi—1, hi—l)
if AggVerify(¥;_1) == (L, L) then
return L
end
(Oéi, ﬂl) <— eanAi (0','_1)
9 5;1' — ai_l | o
10 hl < hi—l @H(K, ﬁi, a)i_l, 0’1’—1)
11 g; < GfAi (hl)
12 o0; < SamplePre(T;, g; + 5;)
13

—
14 Return ¥; « (fa,, ms, a4, 04, h;)

® N o oo

Algorithm 13: AggVerify(X): Verification algorithm

Data: Ek N
Parse Ek as (fAk, ﬁk, a)k, Ok, hk)
fori=%k —1do
if logy(R,,) <1 or o; ¢ By, then
return (L, 1)
end
gi < Gy, (hi)
7 Bi fi(os) — gi
8 0,1 < decfAi (ai, Bz)
9 hi—1="h; ® H(EZ, M, Qi—1, 0i—1)
10 end
11 if 3y = (¢,¢,¢,0™) then
12 return (Fa,,)
13 end
14 Else return (L, 1)

[I N

Due to the lack of concrete definitions for sequential aggregate signatures, we fill

this gap and present a generic description of SAS schemes.

151

8. Sequential Aggregate Signatures

Definition 8.1. In a sequential aggregate signature (SAS) scheme k distinct signers,
that are ordered in a chain, sequentially put their signature on messages of choice
my; to the aggregate signature such that the resulting aggregate signature o has the
size of an individual signature.

In Definition 8.2, we give a relaxed version that allows the SAS schemes to be
larger than an individual signature, since many proposed constructions do not really
match the definition from above in terms of optimality.

Definition 8.2. We say z-SAS, if the aggregate signature is essentially an individual
signature extended by c bits of overhead with ¢ = (1—x)->_ size(o;) bits and = € [0, 1].
i

For z = 1, we immediately obtain the aforementioned definition of the classical
SAS scheme.

8.1.2. Informal Description

We give an informal description of the sequential aggregate signature scheme. We
focus on the signing and verification steps in Algorithm 12 and Algorithm 13. Each
signer S; in the chain with 1 < ¢ < k follows the same protocol steps. Let [> 0
be a public parameter such that logy(R,,) > [for 1 < i < k, where R, denotes
the image space of the trapdoor function fa, : By, = Ry, and log,(R,,;) defines the
maximum number of bits needed to represent elements of R,,.

The input to the signing algorithm AggSign(-) of the i-th signer S; is its secret key
T;, the message to be signed and a list of data X;_; received from signer 5;_1. If S;
corresponds to the first signer, the list of data is empty. Otherwise, ¥, 1 parses as
a list consisting of a sequence of trapdoor functions fa,,..., fa, , identified by the
public keys A1,..., A;_1, a sequence of messages m1, ..., m;_1, parts of the encoded
signatures @;_1 from signers S7 to S;_o, an aggregate signature o;_1 of the prede-
cessor S;_1 and a hash value h;_; € {0, 1}1. Before adding its own signature to X,
the signer checks the validity of the received aggregate by running the verification
algorithm on ;. If the verification succeeds, S; continues by invoking the encoder
on o;_1 resulting in a breakdown («;, ;). The encoder enc : {0,1}* — {0,1}* x R,
is an injective map that splits up the signature into two parts such that 3; can com-
pletely be embedded in the computation of o; and can always be recovered. The
second part o is simply appended to the list @;_1 and plays an important role when
recovering the intermediate aggregate signatures. We give a particular instantiation
of the proposed splitting algorithm in Section 8.3. The next two steps involve two
hash functions H : {0,1}* — {0,1}! and G, :{0,1} — R,, which are modeled as
random oracles. Similar to [BR96], H(-) is considered the compressor that hashes
the message down to [bits, whereas G, (-) is called the generator and outputs ran-
dom elements from the image space of j}Ai. Regarding the proof of security, such a
construction involving H(-) and G(-) avoids the need for certified trapdoor functions
satisfying the properties specified in Appendix 6.1.1. By this means, one gets rid of
costly checks, because a potential adversary could generate keys leaving out one of

152

8. Sequential Aggregate Signatures

these properties. Finally, the algorithm outputs ¥; containing the modified aggre-
gate signature. The verification algorithm AggVerify(-) proceeds in the reverse order
and takes >, as input. In each iteration it checks the validity of o; and recovers
0;—1 with the aid of the decoder dec(-).

In the following section we present the security model of our scheme including the as-
sociated security proof. Subsequently, we show how to instantiate the scheme with
PSTFs. To this end, we focus on the provably secure NTRUSign preimage sam-
pleable trapdoor function and provide a comparison with RSA-based SAS schemes
as proposed in [LMRS04, Nev08]. Finally, we indicate how to build a proxy signature
scheme from any SAS scheme.

8.2. Security Model

We adopt the security model proposed by Neven [Nev08] for sequential aggregate
signatures. Moreover, we examine our lattice-based construction in a slightly dif-
ferent setting that is build upon a stronger security assumption Exp 949 —SU-CM A
and subsumes the former ones [Nev08, LMRS04]. Usually, a sequential aggregate
signature scheme is considered to be secure, if it is infeasible to provide existential
forgeries of a sequential aggregate signature. The core idea behind these security
models is to let the forger F control the private keys and sequential aggregate signa-
tures of all but at least one honest signer. Thus, the forger is allowed to select the
public keys of the fake signers. Neven introduces the notion of a sequential forger
S that can be built from a forger F with about the same success probability and
running time [Nev08, Lemma 5.3]. Therefore, it is more convenient to consider a se-
quential forger in our proof of security. The way the sequential forger is constructed
out of F can directly be transferred to our setting with some minor changes. The
properties of a sequential forger are as follows:

1. Any input to the random oracles H(-) and Gy () is queried once, where
f. denotes any preimage sampleable trapdoor function. The signing oracle
OAggSign is also queried once for the same input.

2. Each input Q, to H(-) parses as Q, = (m,ﬁk,a’k_l,ak_l) such that
logy(Ry,) > 1 holds for 1 <i <k and k < kpaa-

3. Before any query Qf = (E, mp, 0k_1,0,_1) to H(+) for n > 1, the sequential
forger must have made queries @Q; to H(-) for 1 < i < k < kg such that
decfAi (Oéi, fAi(O'i) - GfAi (hz)) = 0i—1 for hz = hi—l ©® H(Qz)

4. Preceding any signing query OAggSign(T*, my,¥r_1) the sequential forger
must have made the necessary H(-) and Gy (-) queries in advance with due
regard to Property 3. Furthermore, the input query >;_1 must be valid such
that verification algorithm AggVerify(X;_1) does not fail.

153

8. Sequential Aggregate Signatures

5. Forgeries output by & must be valid and include the challenge public key at
some index i such that fa, = fa~ for 1 < i < k < kpee. We explicitly
allow S to output forgeries on data ¥;_; that has been signed by the signing
oracle. The only required restriction is that the signing oracle responses and
the forgery must differ on the same input.

According to an adaptive chosen-message attack we permit S to make arbitrary
many sequential aggregate signature queries to the honest signer on messages of its
choice. The advantage AdvAggSign’ of S is the success probability in the following
experiments.

Setup

The key generation algorithm is invoked in order to produce the challenge key
pair (T*, A*). The challenge key fa- is then handed over to the sequential
aggregate forger S.

Queries

The adversary S has access to the signing oracle OAggSign(T*, x,%). S acts
adaptively and provides to the signing oracle a message m; to be signed, a
sequential aggregate signature o;_; on a sequence of messages mq,...,m;_1
and data a1,...,a;—1 under public keys fa,,...,fa, ,. The oracle returns
an aggregate signature under the challenge public key fa+. Furthermore, we
allow S to have random oracle access to some random functions as required in
the random oracle model.

Response
S eventually outputs a sequential aggregate signature o on k distinct pub-
lic keys fa,,...,fA,, where one of them corresponds to the challenge key.
Moreover, S outputs k messages myq, ..., my, each corresponding to one public
key.
The forger wins the game Expi‘?ﬁfg BU=CMA(p) | if he succeeds in outputting a
non-trivial valid sequential signature on a sequence of k messages myq, ..., my under

k distinct public keys fa,,..., fa, containing the challenge public key fa, = fa.
at some index i. A valid signature is said to be non-trivial, when S has never made
a query to the signing oracle on messages my,...,m; and public keys fa,,..., fa,
before, or he is able to output a forgery that differs from the received signing oracle
responses. In the latter case we even allow the forger to use already signed mes-
sages to output a forgery as opposed to the security models from [Nev08, LMRS04]
focusing on trapdoor permutations. This security notion reflects the strong sequen-
tial aggregate signature unforgeability (SAS-SU-CMA), which can be formalized as
follows.

154

8. Sequential Aggregate Signatures

Experiment Expisﬁfs_SU_CMA(n)

(T*, A*) +— KeyGen(1™)
S = (fa,, 5, @, 01, hy) +— ACASESEN(T x5 (£,
Let fa, = fa+ be the challenge public key in fa, = (fa,,-.-, fa,) and
Fn—;: (ml,...,mi)
Let ((fax,my, 2-1), EZ)ZQ:AlS be query-response tuples of OAggSign(T*, , *)
Return 1 if AggVerify(X) = (@, m;)

and ¥ ¢ {¥;}245

The adversary is said to be successful in this experiment if he efficiently provides
a valid sequential aggregate signature with non-negligible advantage.
8.2.1. Security of our Construction

A collision-finding algorithm A is said to (¢, €')-break a collision-resistant preimage
sampleable trapdoor function family (PSTF) if it has running time ¢’ and outputs
a collision with probability

Prifs(z1) = fe(72) | (B, T) < TrapGen(1"), (z1,72) < A(fB)]
of at least €.

Proposition 8.3. If there exists a sequential forger S that (t,qs,qmH, 9Gs kmaz, €)-
breaks SAS, then there exists a collision-finding algorithm A that (t',€')-breaks the
collision-resistant PSTF for

/ qu(qH + qc) an
€€ (1 o 9l) o w(logn)

t <t+ (QH + kmaa:) : th +qq - tSampleDom .

Proof : By contradiction, we assume that there exists a successful sequential
forger S that breaks the SAS with non-negligible probability €. Using S, we con-
struct a poly-time algorithm A that finds a collision in the collision-resistant trap-
door function fa, : B,, — R, with probability negligibly close to €. Given the
challenge public key A* of the trapdoor function fa+, A runs S on public key A* with
fax : B, — R, and simulates the environment as follows:

Setup : At the beginning of this game algorithm A sets up the empty lists HT'[*]
and GT'[x, *|.

H-Random oracle query H(Q;): After parsing the input Q; as (f::, Mi, Xi_1, 0i—1),
A checks the index i. If i = 1, A sets hg < 0™. In case ¢ > 1, following Prop-
erty 3 of a sequential forger there exists a unique sequence of random oracle
queries Q1, ..., Q;—1 with table entry H(Q;—1) = (0i—1, hi—1).

If the public key fa, does not correspond to the challenge public key fa«, then
A continues as follows:

155

8. Sequential Aggregate Signatures
I g — A . .
o h+pr{0,1}*, h; = h® h;—1 and sets HT[Q;] < (L, h;).

Otherwise, if fa, = fa+, then A performs the following tasks:
e h+p {0, 1}1, hi=h®h;_1
) (Oéi, 61) <— eanAl_ (Uz’—l)
e 0; < SampleDom(1™) and compute g <— fa-(0;) — i € Ry,, since R, is
additive.
(By Property 1 of PSTFs according to Section 6.1.1, fa«(0;) ~ U(Ry,))

If Gy,.(h;) has not been defined, he sets G[fax,h;] < g, HT[Q;] <
(04, hi) and outputs h to S, otherwise BAD; occured and A aborts.

G-Random oracle query 1 Gy, (h): On input fa, and h algorithm A checks the
entry GT[fa,,h]. If it is not defined, it selects g <—r R,,, uniformly at random,
sets GT[fa,,h] = g and returns g to S. By Property 1 of a sequential forger
it does not make the same query again.

Sequential signing query OAggSign(T*,m;,%;_1): A extracts the values f—Ai—_—;,
Mi—1, i_1, 0i—1, hi—1 from ¥;_1. As per Property 4 he finds a non-empty
entry HT'[Q;—1] = (04, hi) with Qi—1 = (fa,_, | fa=, M1 | m4, i1, 0i-1).
Then A returns El = (f::, ’I’7L2', ai, a;, hl) with (ai,ﬂi) — eanAi (0'1'71)

Finally, the forger S outputs a valid forgery) = (E, Mk, O, o) with proba-
bility € as per property 5. Since X}, is valid, we have AggVerify(X)) = (E, my) and
E includes the challenge public key fa, = fa= at index 1 < ¢ < k. During the
execution of AggVerify(X}) we get m; and X/ containing o). A proceeds as follows
in order to obtain a collision. We now have to differ two cases:

1. If S already made a signature query on (m;, ¥;_1), it received back ¥; con-

taining the signature o*. Since X} is a forgery, we have o, # ¢* such that

fax(07) = fax(o¥)

2. In the case, S did not request a signature on (m;,>;_1) from the signing
oracle, by Property 4 there exists an entry HT'[Q;—1] = (0%, h;) with o* «—
SampleDom(1™) and GT[fa=,hi] = gi such that fa«(c*) = gi + Bi = fa,(0})
and h = h; ® h;_; is returned to S. If 0* = o/, then BAD, occured and A
aborts.

In both cases A found a collision in fa+ (which is infeasible due to Property 4 of
trapdoor functions from Section 6.1.1).

156

8. Sequential Aggregate Signatures

Analysis and security:

We define by =BAD; the event that BAD,; does not occur. S’s environment is
perfectly simulated as in the real system, when the events BAD; and BAD, do not
occur. Thus, we have

PI[S ouputs forgery | ~-BAD; AN -BAD2] =e¢.

A wins the game when S succeeds in providing a valid forgery and the events
BAD;, and BAD5 do not happen. Therefore, we need to estimate an upper bound
for the probability of a successful forger:

P[A wins|] = e€-P[-BAD,]|— P[BAD].

P[A wins] = PI[S outp. forgery AN —~BAD; A =“BADs)]

P[S outp. forgery | ~-BAD1 A =BADj|- P[-BAD; N ~BAD]
[
[

P[S outp. forgery | ~BAD1 A —-BAD;y|- (1 — P[BAD; VvV BAD])

> P[S outp. forgery | ~BADy A=BAD,]- (1 - > P[BAD)])
= PI[S outp. forgery | ~BAD; A -BAD;] - (P[-BAD,] — P[BAD:])
> P[S outp. forgery | "-BADy A ~BADs] - P[WBAD;] — P[BADs)]

= ¢ P[~BAD;] — P[BAD)]

The event BAD; occurs when algorithm A chooses a fresh random value

h < g {0,1}! in the H-Random oracle query step and attempts to set a table entry
GT[*, hg] that is already defined, where hy = h@® hy_1. The probability of this event
is

GT

2! 2!
where the last term follows by summation over all H-queries to the simulation.
The event BAD; occurs when the forger S outputs a valid forgery of that is equal
to the corresponding table entry HT(Q;—1) = (c*,%). Based on the conditional

min-entropy property of o* given fa«(c*) the probability of BAD to happen is

4qH
P[BADQ] = w(logn)’

which is negligible. Therefore, we obtain

qu(qm + qc)) qH

/
€€ (1 o 9l - ow(logn)

We derive an upper bound for the running time of S taking into account only

function evaluations and invocations of SampleDom. Each verification requires at
most kg, function evaluations. Invoking H(-) implies at most one execution of

157

8. Sequential Aggregate Signatures

SampleDom and two function evaluations, thereof one evaluation to identify the
sequence Qk_1,...,Q1. Therefore, the running time is upper bounded by:

t<t+ (2QH + kmaz) “tf + qH - tsampleDom -
O

Proposition 8.4. The proposed sequential aggregate signature scheme is strongly
existentially unforgeable under chosen-message attack.

Proof. By Proposition 8.3 finding collisions for preimage sampleable trapdoor
functions can be reduced to the hardness of forging sequential aggregate signatures
in the SAS described above. The authors of [GPVO08] give the corresponding algo-
rithms of how to instantiate preimage sampleable trapdoor functions by means of
lattices satisfying the required properties and show by [GPV08, Theorem 5.9] that
the task of finding collisions is as hard as solving SIS, ,, o /m- O

The security proof of the unstateful probabilistic FDH scheme is almost identical
to the stateful one. One notices, that the extended message m/||r to be signed always
differs for repeated request queries on the same message m due to the random salt
r. As in Proposition 8.4 one reduces collision-resistance to the unforgeability of
sequential aggregate signatures.

8.3. Instantiation

In general, one can use any collision-resistant trapdoor function that is suitable
for the GPV signature scheme. In particular, one can instantiate the SAS scheme
with the trapdoor constructions from [GPV08, AP09, Peil0, MP12]. In this sec-
tion we analyze the proposed sequential aggregate signature scheme in conjunction
with NTRUSign. Therefore, let fa, : By, — Ry;,1 < i@ < k be a family of
preimage-sampleable trapdoor functions, each corresponding to the public key A;
of signer S;. B, denotes the domain of the trapdoor function fa, and can be rep-
resented by vectors of bit size logy(By,) := max[log, b]. Analogously, one defines

the maximum bit size log,(R,,) of the image space. For instance, if we choose
Bn, ={z € Z™ | |z|| < siy/mi} and Ry, = Zgi, we have logy(Ry,) = n; - [logy(q;)]
and respectively logy(Bp,) < m; - ([logy(si) + 1]) with overwhelming probability
according to Lemma 6.2. The encoding function enc(-) can, therefore, be built as
follows. The range R, is converted into a large bit string that is subsequently split
into blocks of size [logy(4.7-s;)+1] bits. Each block is then filled with an entry from
the signature o;. There are many possibilities to handle the last block as it may
contain less bits. Finally, the bit string is converted back to the vector presentation
Bi+1. The remaining signature bits are stored in the vector «;4, which is appended
to the aggregate signature.

158

8. Sequential Aggregate Signatures

Security and Performance

The bit security of this scheme mainly depends on the bit security of each signers

key and the system parameter [. Hence, the security of our construction is upper

bounded by 1r<rli£1k(ci,l), where ¢; denotes the bit security of the i-th signer. To
(2

determine the performance we ignore all operations beside function evaluations and
preimage samplings. The signing costs of the i-th signer amount to one call of
SamplePre(-) and (i — 1) function evaluations fa. Verification requires k function
evaluations.

In what follows, we will focus particularly on the trapdoor construction provided
in [SS11] since it has some nice properties which can be utilized in the proposed SAS
construction. A crucial factor for our choice is a low ratio logy(By,)/logy(Ry,) as
compared to other lattice-based PSTF's. This ratio implicitly affects the compression
rate, since a ratio equal to or smaller than 1 implies optimal compression rates for
equal parameters n;, meaning that signatures completely fit into the image space
without wrapping around.

Efficient Instantiation with provably secure NTRUSign

The provably secure NTRU-Sign signature scheme proposed by Stehlé et al. [SS11]
is a full domain hash scheme satisfying the properties of collision-resistant PSTF's
from Section 6.1.1.
KeyGen(g,n,1") Tt returns public key A = g/f € R and trapdoor T = L{ é]
for fo(cM,0®) = AcM) — @) where fp : B, — R, = R, with B,, =
{(eW,6@) e R? “(0(1)70(2))H < s5-2n}.

Sign(T, m) The signing algorithm computes the hash value H(m||r) of the extended
message m||r with a random seed r <z U({0,1}%). Then it samples o =
(¢, 0(?)) « SamplePre(T, H(m/||r)) and outputs (r,c(1)) as the signature.

Verify(o, m) The verification algorithm computes t = H(m/||r) € R, and determines
0® = Aog(M) —t. If the conditions o € B,, and r € {0,1}% are valid, it outputs
1, otherwise 0.

When instantiating the SAS scheme with this trapdoor construction, we obtain
compression factors of strictly larger than 50 %. For the sake of simplicity, assume
we have public keys A; € R, with identical parameters ¢, Ry = Z4[X]/ (X" + 1)
for n a power of two, which is obviously different from RSA where the moduli
N = p - q have to be distinct since otherwise they would share the same secret. An
NTRUSign signature is a vector (1, (1), 0(?)) such that the bit size of ¢\¥) is bounded
by n-([logy(s)]+1) < logy(R,,) with overwhelming probability and r € {0,1}". Any
vector of the image space occupies at most logy(R,) = n - [logy(q)] bits of memory.
In general, one can use Algorithm 12 and Algorithm 13 in order to instantiate the
NTRUSign SAS scheme. Since we consider the probabilistic FDH approach using a
random seed r, one simply replaces messages m; by the extended messages m||r;.

159

8. Sequential Aggregate Signatures

8.3.1. Comparison with RSA-based SAS

RSA based sequential signatures due to [LMRS04, Nev08] are less flexible compared
to the proposed construction. In particular, the public keys N; = p; - ¢; of RSA
based instances have to be distinct and satisfy more restrictive conditions in order
to make the scheme work. For example in [LMRS04], the hash space of H(-) requires
to be specified before starting aggregation. This can be attributed to the differing
domains Zy; as aresult of different moduli N;. For instance, the hash space is chosen
to be a proper subset of ZJXVI. However, this is not the case in our construction, since
we can use equal domains and ranges without any security concerns. Thus, one
allows the corresponding hash functions Gg, (-) to be equal. In order to achieve
high compression without blowing up the agzgregate signatures too much, the bit
sizes of public keys have to be identical or are ordered to be increasing in RSA
based SAS schemes. This is due to the fact that the signatures are uniform random
elements in ZX@ and can only be fully embedded in ZXGH if b; < bj1q or N; < Njiq
is satisfied for b; = [log(V;)| and 1 < ¢ < k. Indeed, this also holds for lattice-based
constructions. Specifically, one has to increase the parameters n;;1 or ¢;+1 such that
logy(Dy,;) < logy(Ry,,,). By this, we have aggregate signatures being as large as
individual ones.

8.3.2. Analysis

We want to derive a measure for the quality of the SAS scheme. Therefore, we con-
sider the compression rate measuring the storage savings due to the SAS scheme.
One simply relates the bit size of the aggregate signature to the total size of all indi-
vidual signatures, which corresponds to the case one does not employ SAS schemes.
By [SS11, Theorem 4.2] an NTRUSign signature is distributed as a discrete Gaus-
sian vector with parameter s = w(n? - /Inn - In(8nq) - ¢*/>*) and € € (0, hﬁl;). In
principal, it is possible to choose the parameters g; and n; of the signers in such a
way that the aggregate signature has the size of an individual signature. Since there
is a wide choice of selecting the chain of signers, which result in different compression
rates, we restrict to the case, where ¢; and n; are equal for all signers. The aggregate
signature is of the form (o;, @;, h;) consisting of o; of size 2n[logy (4.7 - s)] bits, @;
of size (i — 1) - n(2[logy(4.7 - s)] — [loga(q)]) bits and h; occupying [bits of mem-
ory. Each signer in the chain produces n(2[logy(4.7-s)| — [logy(q)]) bits of overhead.

Since the length of the signature strongly depends on ¢, we consider two cases
for the choice of ¢. First, we let ¢ = n“(1) to be slightly superpolynomial in n such
that logy(n) = o(logs(q)). For the compression rate we then have:

160

8. Sequential Aggregate Signatures

ooy = 1 [2110B(0T] + = 1) n(2flog(47 5)] ~ Mlogy(g)]) +
i-2nllogy(4.7 - s)]

. (; | 2n([logy(4.7 - s) — logy(¢'/2)] + 1) + l/i)

Y

2n[logy (4.7 - s)|

. <1_+ ﬂog2017-7ﬂ\/hmn)hﬁ8nq)ﬂ-+l/(2-n-i)+—1>

Y

[logy (4.7 5)]
_ (1 N o(logy(q))) .

o(logy(q)) + logy(q'/?)

Thus the compression rate converges towards 1 — 1/i which is asymptotically op-

timal, meaning that in average aggregate signatures and individual signatures are
of equal size. We note that similar to [BPR12, AKPW13] solving ~-Ideal-SVP with
slightly superpolynomial factors v appears to be exponentially hard given present
best attack-algorithms.
Secondly, we let ¢ = Poly(n). By a trivial computation using ¢ = n? we have
rate(o;) ~ 1 —1/i—1/c, meaning that each signer produces 1/c-size(o;) of overhead
per signature. As a result, we obtain an (1 — 1/¢)-SAS scheme. So, choosing ¢ large
enough returns an almost optimal SAS scheme.

8.3.3. Proxy Signatures

From the aforementioned sequential aggregate signature scheme one can immediately
build a proxy signature scheme using the generic construction from [SMPO08]. The
core idea of a proxy signature scheme is to allow a potential signer, called delegator,
to delegate its signing rights to a subentity, called proxy, which is enabled to sign
documents on behalf of the delegator. Any verifier can figure out whether a signature
is indeed produced by a proxy signer and if he received the signing rights from the
delegator. The security of the proxy signature scheme is related to the security of
the SAS scheme as stated in Theorem 8.5.

Theorem 8.5. ([SMPO08, Theorem 2]) Let AS be a (t,qs, €)-unforgeable sequen-
tial aggregate signature scheme. Then, the above construction provides a (to, qs, qy, €)-
unforgeable prozy signature scheme where € = €' /2qd, t =t' and qs = ¢, + 4.

161

Part |1l

Lattice Representations

162

9. Representation Formula for Lattice
Problems

In this chapter we provide a different view to lattice problems by use of tools from
complex analysis. We aim at formalizing the solutions of lattice problems by a
general formula. In particular, we introduce generalizations of Cauchy integrals to
higher dimensional complex spaces as a main building block that decide membership
of a mathematical object within a domain. This allows us to answer the question
whether a lattice point is lying inside a domain by evaluating generalized Cauchy
integrals. Subsequently, we can deduce a simple and easy to understand represen-
tation formula for solutions of well-known lattice problems and their approximated
versions. Such a formula has the benefit of abstracting from certain algorithmic
views and further extends the theoretical framework for analyzing lattice problems.
In fact, we show that putting lattice points into the denominator of a series allows to
derive interesting results such as a formula representing a lattice via its poles. Once
a function has its simple poles at lattice-points the residue theorem from complex
analysis is applicable offering the opportunity to deduce lattice relations. In partic-
ular, we consider the one-dimensional and two-dimensional case, which are closely
related to elliptic functions. For higher dimensional lattices, we present some ba-
sic ideas, but point out that such simple relations seem hard to obtain requiring an
introduction into the theory of abelian functions or higher dimensional complex tori.

The number of lattice-points inside a domain has many application areas such
as predicting the length of the shortest vector in a lattice. Due to the hardness to
determine the respective quantity, the Gauss heuristic is often applied instead with
the goal to estimate the attack complexity of lattice attack algorithms. This heuris-
tic is easy to compute, but has the major disadvantage to be non-precise, directly
affecting subsequent computations. The proposed approach may be considered as
an initial step towards resolving this issue. The abstraction to general formulas also
allows to analyze lattice problems from a different point of view. Once having a
simple expression in the integral, it is possible to derive interesting properties such
as conditions of how to select parameters. For instance, in the one-dimensional
case we can directly translate the lattice periodicity into trigonometric functions
resulting in a closed expression, which allows to derive additional features from the
properties of well-studied trigonometric functions. But also in combination with
quantum algorithms such as Grover’s search algorithm it might speed-up the search
for solutions particularly for approximated versions of lattice problems. Similarly,
we proceed with the two-dimensional case, where the Weierstrass zeta function rep-

163

9. Representation Formula for Lattice Problems

resents a converging function with simple poles at all lattice-points.
This chapter refers to the paper [EB15c], where the author of this thesis was the
primary investigator and author of the publication.

9.1. Cauchy Integrals

In this section we present one of the main building blocks of this chapter. More
specifically, we introduce the Cauchy integral and its generalizations to arbitrary
dimensions. In fact, we give a formula for many lattice problems that is purely
mathematical rather than algorithmical. It can be represented as a finite sum of
Cauchy integrals. The use of Cauchy integrals and its generalizations may raise
further applications. For instance, it is conceivable to integrate over seemingly
complicated surfaces, where the corresponding integrals are computed efficiently.
We start by introducing the standard Cauchy integral from complex analysis, which
has the nice property that function values of a holomorphic function can be computed
via path integration. In addition, Cauchy integrals offer much flexibility concerning
the underlying function such that different functions can still have the same integral
value.

9.1.1. Complex Space

The complex vector space C" is a Euclidean vector space with C* = R?”. The

topology in C" is given by the metric d(z,y) = |z — y|, where |z| = \/(z,Z) for the
n

inner product map (x,y) = > x;y; and zZ = (Z1,...,2,) with z; € C. For z € C",
i=1 _

we define Re(z) := (Re(z1),...,Re(z,)) € R" and Im(z) € R" accordingly. By D

we denote the topological closure of a set D C C".

In the following, we provide a definition of holomorphic functions in multidimen-
sional complex spaces, since it is an important requirement for many of the theorems
that follow.

Definition 9.1 (Holomorphic Function). Let D C C" be an open set. A complex-
valued function f defined on D is said to be holomorphic on D if f € CY(D) (differ-
entiable) and

of

“~—(z) =0 for everyz € D and j =1,...,n.
aZj

The next definition plays an important role particularly for the Bochner-Martinelli
integral formula introduced in the following section.

Definition 9.2 (Smooth Boundary). Suppose that D C C" is a domain. 0D
is said to be a class C' boundary, if there exists a real-valued class C' function
p:C" — R such that D = {x € C" | p(x) < 0} and 0D = {x € C" | p(x) = 0}
and the gradient vector Vp # 0 on 0D.

164

9. Representation Formula for Lattice Problems

9.1.2. Integral Formulas

We first state the classical Cauchy integral formula from complex analysis and sub-
sequently present a description of the multidimensional setting.

Theorem 9.3. Let f be holomorphic in a simply connected domain D. Let a € D
and B C D be a region inside D. Then

L[4, [f@), facB
271 z—adz_{ 0, ifa¢B.
0B

f(z)

zZ—a

In fact, for any path v C D the integral 5L [
gl
encircles a, and otherwise the integral equals to zero, in case a lies outside the circle.

Amazingly, one observes that integration is performed only along the contour « or
boundary of D in order to compute f(a).

dz evaluates to f(a) in case 7y

U

Figure 9.1.: A point inside a region.

Example 9.4. Let’y be a circle amund 3i with radius 1. Suppose we want to compute
the integral f dz. We let f fm f 1) g According to

z—31

2+9 2+9

ﬂ'

Cauchy’s mtegml formula we have i 22+9dz =2mif(3i) = 3.
v

Based on Cauchy’s integral formula one can define the so-called winding number
n(7, z) about z with f(z) =

Corollary 9.5 (Winding Number). Let v be a closed path of integration, and let
z be a point that does not lie on vy, the winding number n(7y, z) about z is

n(v, 2 2m f

Example 9.6. Let v : [0,27] — ¢+ re be a function that is continuously differ-

t /
entiable with v(0) = ~(2r). Let t € [0,27] and define g(t) = 2= W'(Yt)(t_)z. Then

165

9. Representation Formula for Lattice Problems

9(0) = 0 and g(2m) = n(7,2).
Closely related to the Cauchy integral we introduce the Residue Theorem.

Theorem 9.7 (Residue Theorem). Let D be a simply connected domain and Dy
a discrete subset of D. Furthermore, let f : D\Dy — C be holomorphic in D\Dj
and vy : I — D\Dy be a closed path in D\Dy, then

27rz/f dz— n(7,a) - Resy f

CLEDf

Here, the residue Res, f of a function f at a point a € Dy is the coefficient c¢_1 of
the corresponding Laurent series on a neighborhood U = U,(a)\{a} around a, on
which f is holomorphic. In this case,

Res,f = 271”,/f(z)dz
oUu

Since we are interested in higher dimensional problems, we have to consider gen-
eralizations of those theorems. The next theorem, which can also be found in the
literature, represents a straight forward generalization of Cauchy’s formula to mul-
tidimensional complex spaces. It is very simple and can be used once having under-
stood the basic formula in Theorem 9.3. This statement dates back to Hormander
in 1966, who proved Cauchy’s integral formula solely for polydiscs. This can be very
useful in order to deduce an expression for the solution of LWE instances.

Theorem 9.8. Let By, ..., B, C C ben open discs and the polydisc B = H B, cC»

its cartesian product. Furthermore, let f(z) be holomorphic in a region D S B Then
the Cauchy integral states

f(z) dzy...dz, = { f(a), ifacB

(z1—a1)...(zn —an) 0, ifa¢B
aBl 8Bn

A disc Bj; is a set parameterized by a real r; > 0, which contains all complex
numbers satisfying B; = {z € C | Re(2)? + Im(z)? = r?}. However, if one considers
more complicated domains resp. surfaces, the theorem above is insufficient and
hence not applicable in order to deduce a representation formula to the solution
of an arbitrary CVP instance. In 1938 resp. 1943 Bochner and Martinelli proved
a generalization of Cauchy’s integral formula with respect to arbitrary surfaces.
However, this requires to introduce the Martinelli kernel, which is defined as follows.

166

9. Representation Formula for Lattice Problems

Definition 9.9. The Bochner-Martinelli kernel U(z,a) in C™ is a differential form
of bidegree (n,n — 1) given by

U(z,a) = (—1)n-n/2(n =1 'Zn: %) 4315] A da,

(2mi)n a|2”

7j=1
where dz[j] = dzi N ... ANdZj—1 NdZjp1 N ... ANdZ, and dz = dz A ... N dzy, are
(0,n — 1) resp. (n,0) differential forms.

The factor (—1)""~1)/2 represents the orientation in C". Differential forms are
considered to be an important approach towards defining integrands over higher
dimensional manifolds such as curves. In fact, it gained much interest due to its
independence from concrete choices of coordinates.

Example 9.10. For n = 1, we have U(z,a) = 5
standard Cauchy kernel from Theorem 9.5.

Theorem 9.11. Let D C C" be a bounded domain with piecewise smooth boundary.
Furthermore, let f be holomorphic in D and a € C", then

[roven-{ 7 225
oD >

where U(z,a) denotes the Bochner-Martinelli kernel.

As an immediate consequence, we obtain the following corollary from Theorem 9.8
in conjunction with Theorem 9.11.

Corollary 9.12. Let B and f be defined as in Theorem 9.8, then we have

/f (2;)// (Zl_al)f(.z')(zn_an)dzl...dzn.

0B1 0Bn

9.2. Representation Formulas for Lattice Problems

In the following section we show how to represent the solution of a multidimensional
CVP or LWE problem as a finite sum of integrals using the generalizations intro-
duced in the previous section. This formalization is from a mathematical point of
view very interesting as it allows a CVP or LWE problem from discrete mathematics
to be solved via a formula from complex analysis. In fact, the Cauchy integral for-
mula makes use of various properties, if the underlying function and the domain D
are properly chosen. This opens new directions towards analyzing lattice problems
and constructing cryptographic schemes. For instance, one could keep the domain
secret, that can be represented by a low number of bits such as low degree polyno-
mials.

167

9. Representation Formula for Lattice Problems

Throughout this thesis we will use the following isomorphism in order to embed
arbitrary vectors from R™ into C* for some k& € N with & > [m/2]. This mainly
follows from the relationship C = R2.

Definition 9.13. Let m € N and k = [m/2]. Define by ¢ : R™ — C* the isomor-
phism that embeds vectors from R™ into C* such that

o P(x) = (21 +17 Tpjoq1s- - Timj2 + 1 Tm) for even m.
o d(x) = (21 +1 T(n-1)/241> - T(m=1)/2 T 1 * Tm—1,Tm) for odd m.

and inverse ¢~ (z) = [(z + Z)/2, (z — Z)/(2i)] for even m. The inverse for an odd
integer is straightforward.

9.2.1. Number of lattice points inside a domain

We start by giving a formula that returns the exact number of lattice points inside
an arbitrary bounded domain. To this end, one has only to evaluate a finite number
of Cauchy integrals.

Theorem 9.14. Let m > 0, k = [m/2] and D C CF be a domain with smooth
boundary. Moreover, let A € Z™ be a lattice with basis B € Z™*™ and ¢ : R™ — C*
be an isomorphism as defined in Definition 9.13. The number of lattice points inside
D 1is given by

> [v o)

aEAaD

Proof. The map ¢ 1is bijective as by construction with inverse map
¢~ Y(z) =[(z+2)/2,(z — Z)/(2i)]. Define f(x) = 1, then we have

Jveom={y §agD
oD ’

according to Theorem 9.11, since f is holomorphic. As a result, the sum provides
the number of lattice points inside D. Direct evaluation of the integrals rather than
checking the domains allows to compute the number of lattice points inside D. [

Example 9.15. If we consider an m-dimensional sphere as required in many cryp-
tographic applications, we get the number of lattice points inside the ball B,(0) € R™
of radius r with center 0 € R™ by

Z / U(Z, ¢(a)) heug’stic Vﬁéﬁ;\()@))’

2€h94(B,(0))

168

9. Representation Formula for Lattice Problems

Figure 9.2.: Number of lattice points inside an arbitrary region D.

where the last term stems from the Gaussian heuristic with Vol(B,(0)) = F?T;L’L’,L:Ll) In

order to show that the ball has a smooth boundary, we define p(x) = Y. x? —1. The
=1

=
open ball is then identified by the set B,(0) = {x € R™ | p(x) < 0} and its boundary
0B,(0) = {x € R™ | p(x) = 0}. A quick view to the constituents of p(x) also reveals
that the gradient vector Vp # 0 such that the boundary 0B, (0) is indeed smooth.
Note that 0¢(B,(0)) = ¢p(0By(0)), since ¢ is continuous and bijective. The number
of lattice points to be considered can be derived with the aid of the basis matriz B
using, for instance, singular value decomposition. Following this, one can even give
a range. Therefore, let C = {v € Z™ | s.t. |Bv|| <r}. Then, the number of lattice
points is given by the finite sum

> [vee@- [Y u@sw.
2€Cog(B.(0)) (5, (0)) *<¢
Clearly, the number of lattice points to be considered is finite in case one has to

compute the number of lattice points inside a domain for g-ary lattices. In this case
the amount of lattice points is bounded by q™.

Figure 9.3.: Number of lattice points inside a circle.

169

9. Representation Formula for Lattice Problems

In the following section, we give some interesting results that can help to under-
stand the significant properties of Cauchy integrals more appropriately. Once the
lattice-points are placed in the denominator, the corresponding series has its simple
poles at the corresponding lattice points such that the Cauchy integral does not
vanish if the poles are surrounded by a loop. An interesting research question is
whether the series converges towards some formula or known representation, if we
change the integral with the sum. We know that this is not true for the trivial case,
where lattice-points are placed in the numerator. We give a positive answer to this
question and explain this at the example of one-dimensional and two-dimensional
lattices, which are shown in [BLP*13] to be relevant for cryptography. The one-
dimensional case is also closely related to the hidden number problem (HNP). For
higher dimensional lattices it is required to analyze abelian functions which is beyond
the scope of this thesis.

9.2.2. One-dimensional Lattices

First, we note that one-dimensional lattices considered in [BLP*13] are generated
by an element a € Z,;, where A(a) = {2 € Z | 2 = a-x mod q,x € Z,}. Prior to
considering such lattices interesting for cryptographic applications, we start with the
basic case, namely the lattice A = Z, which provides a very interesting relationship
to trigonometric functions. In this case, we obtain the following result.

o0
1 1 1
Lemma 9.16. ([Shu15]) 1 + dzl =4+ 734 = meot(rz)
By use of this interesting relation between lattice points acting as simple poles
and trigonometric functions, we can state the following theorem for one-dimensional
lattices using the Cauchy integral formula.

Theorem 9.17. Let A = Z. The number of lattice points inside a domain D is
given by
— cot(mz)dz
omi | ™eotT)
oD
[e.e]
Proof. For A = 7Z, we construct the series % + > i + Z%FZ This series has all its
i=1
simple poles at the lattice points. But it is known from Lemma 9.16 that this series

1

o0
converges towards 1 + Y -+ = mcot(nz). The statement is now proven via
d=1

7+d
1 1 1 & 1 1 1
— | Zdz+ — dz = — t d
211 ,7:'2—'—2772'Z z—d+z+dz 211 mcot(mz)dz
oD d=lgp oD
=) (@D, a) - Res,f,
a€Z

170

9. Representation Formula for Lattice Problems

which evaluates for f(z) = 7 cot(mz) to the number of lattice points via the Cauchy
integral formula or the Residue theorem. This shows that if the series is convergent
it is in fact possible to deduce a closed expression that is independent from the
number of lattice points. O

We return to the question of how to establish a closed expression for arbitrary one-
dimensional lattices. Arbitrary lattices are of the form A(a) = {a-s| s € Z} = dZ.
Therefore, we can generalize Lemma 9.16 and Theorem 9.17 as follows.

Theorem 9.18. Let A = aZ for an arbitrary integer a. The number of lattice points
inside a domain D is given by

z
—— | mwcot <7r7> dz
211 a
oD

o0
Proof. Let h(z) = ﬁ + dzl ﬁ + Wler' Then, f(z) has its poles at a - d for
integers d € Z. The set of poles, hence, generates a - 7Z. Now, set y = z/a and
o
substitute this in the series h(z), which leads to i + dz ﬁ + ylﬁ = mcot(my) as
per Lemma 9.16. Substituting y back by z/a proves the claim. O
Example 9.19. Suppose that we have an instance b = a-s+e for a large error term
(possibly exponential) in the range [—r,r] with r > 0, where both s and e are not
known. Note, that we do not have an LWE instance, since b is not reduced modulo
some exponential integer q, otherwise we could solve LWE easily, which is known to
be hard. Assuming that there exists only one combination s, e for b within this range,

we can use Theorem 9.22 in order to obtain both s and e. That is, we compute the
Cauchy integral for f(z) = z following Theorem 9.3

1
b—e = — / 2T cot <7r3> dz
21 a

8B, (b)
1 1« 1 1
_ [d
o / z <z/a+22/a_d+z/a’+d> :
9B, (b) =1
- Z d-n(0B(b),d) - Resq g,
deaZ

where OB, (b) is the boundary of a circle of radius r around b and g(z) = 7 cot (7).
One can furtherly parametrize the circle via y = - €'®.

Example 9.20. Now, suppose we have an LWE instance b = a - s + e mod ¢ and
everything else remains as in the previous example. A straight forward approach
to solve the search version of the LWE problem is to find an integer 0 < j < d =

171

9. Representation Formula for Lattice Problems

min{a, 2M°¢¢1} such that

1 1 —(j- b
b—e = — / Zm cot <7TE) dz = - / 2T cot <7TZ(‘]H)> dz,
27 a 21 a

0B (j-q+b) 9B:(0)

is mon-zero, where T is bounded by the error size and ¢ denotes the width of s. In
case, the solution is unique or the number of non-zero elements is small (polynomial)
we can use the following expression

1
b—e = — / zm cot (WE) dz
21 a

U 90B:r(j-q+b)
=0

Jj<d
d
1
= — / Zm cot (7r3> dz
271 4 a
jZOaBr(j"I""b)
d .
1 — (3 - b
fr 277” / jz_ozﬂ' COt <7T'Z(‘7aq—|—)> dZ

8B,(0)

in order to find at least an approximate version of s and e. We observe, that the width
of s has to be exponential, since otherwise there exists a polynomial-time algorithm
that solves the problem.

In the following theorem, we show that LWE gets easy when a | ¢ even for an
exponentially large modulus q.

Theorem 9.21. Let a and q be integers such that a | q. Define by A = aZ the lattice
generated by a. Let b = a - s+ emod q be an LWE instance with unique solution
s,e. Then, the solution is given by

b—e:i, / 2T cot (7721)) dz
211 a

172

9. Representation Formula for Lattice Problems

Proof. Following Example 9.20, we have for any choice of 0 < j < g and large enough
r>0

1 1 —(5- b
: / 2 COt(ﬂ'i)dZ = — / 27 cot (ﬂ_Z(](]‘F)) dz
271 a a

OBy (j-q+b) 0B (0)
= - zmeot | 7 P T dz

a
8B,(0)

= i / ZWCOt(ﬂ'Z_b—TFk>dZ,k'€Z
27 a

8B,(0)

= — zmeot | m—— | dz.
27 a

8B,(0)

The last equation follows from the m-periodicity of the cotangens function and is
hence independent from j. O

We now analyze the case that m is polynomial in the security parameter \.

Lemma 9.22. Let a and q be integers such that m = k1 = poly(\). Fur-
thermore, let ko = m and define by A = aZ the lattice generated by a. Let
b=a-s+emod q be an LWE instance with unique solution s,e. Then, there exists

an 0 < 3 < ko such that

b—e:i / 2 cot Wz_b—ﬂ']‘kl dz
27 a ko

8B,.(0)

solves the LWE-problem.

Proof. First we note, that since m — Ky is polynomial, we also have that
W‘”qa) = ko is polynomial due to a € Z,;. Therefore, we have for large enough
r>0
1 1 —(j- b
i / Zm cot <7TE) dz = -— / 2T cot WM dz
2mi a 2mi a
9B (j-q+b) 8B,(0)
1 —b .
= 5= / zm cot <7TZ — W”) dz
211 a a
9Br(0)
1 -b -k
= 9 zwcot(wza —7r‘7k21>dz_
9B:(0)

Hence, the last equation is periodic in j with period kg, that is j € Z,. As aresult,

173

9. Representation Formula for Lattice Problems

we need to evaluate at most k2 = poly(\) integrals in order to find a solution. [

From the theorems above we deduce that prime moduli represent the preferred
choice.

9.2.3. Two-dimensional Lattices

Two dimensional lattices are more complicated than the one-dimensional case. To
this end, one considers doubly periodic functions or elliptic functions which have two
periods or f(z +w1) = f(z 4+ w2) with two linearly independent vectors wq,wy € C.
The corresponding lattice is defined as the integer linear combination of the periods
A={i-w +7j-ws| (i,7) € Z%}. Hence, the periods of f(z) are all lattice-points in
A. For the one-dimensional case, one easily verifies that mcot(7z) is periodic in Z,
that is wcot(mwz) = weot(n(z + d)) for all d € Z. Doubly periodic functions can be
represented by Weierstrass functions. There exists a general theory about elliptic
functions.

Definition 9.23 (Weierstass Elliptic Function). Let wy,ws € C be linearly in-
dependent complex numbers. Then, the Weierstass Elliptic Function is defined by

CRERP N (=)

weA,w#0
for A={i-wi +j-we | (i,5) € Z%}.

First, one easily verifies by inspection that p(z) = p(z+w) for all w € A. Further-
more, the elliptic function has poles of order 2 at all its lattice points. Weierstrass
proved that the last term —% plays an important role. In particular, it forces the
series to converge for arbitrary z, since otherwise the series diverges. We note that

;g(p(z)—;) = lm > ((z—lcu)2_°j2>

wWENwH#0

> i (atop)
= 1m —_— —— _=
_ 2 2
wEAM#OZAO (Z w) w
Furthermore, it has a limiting behaviour as z approximates the origin. That is,

elliptic functions additionally have a Laurent representation such that about the
origin, we can write

1
p(z) = ;+a222—|—a4z4+... .
However, for our purposes it is not useful to integrate over elliptic functions,
because the residue vanishes at the lattice points due to poles of order 2. Therefore,

we have to consider the antiderivative of p(z), which is by the general theorem of
complex analysis a single-valued function, hence having simple poles at the lattice

174

9. Representation Formula for Lattice Problems

points. The antiderivative of p(z) = —('(2) is defined by the Weierstrass zeta
function.

Definition 9.24 (Weierstass Zeta Function). Let wi,we € C be linearly inde-
pendent complex numbers. Then, the Weierstass Zeta Function is defined by

@-1r T (i3

weA,w#0

for A={i-wi+j-we | (i,j) € Z*}.

The zeta function ((—z) = —((z) is an odd function that converges as well due
to the convergence of p(z). Furthermore, ((z) has simple poles at all lattice points
in A. As a result, we can use the residue theorem.

Theorem 9.25. Let wi,ws € C be linearly independent complex numbers and let
((z) be defined as in Definition 9.24. The number of lattice points inside a domain

D 1is given by
1

5 / ((2)dz
oD

Proof. Since ((z) is a converging function with simple poles at all lattice points in
A, we can apply the residue theorem as per Theorem 9.7 such that the integral

evaluates to .

21
weEA

/C(z)dz = Z 1N(0D,w) - Resy,(
oD

O

Integration of p(z + 2w;) = p(z) leads to {(z + 2w;) = ((z) + 27;, from which we
deduce n; = ((w;) for z = —w; and ¢ = 1,2, since ((z) is an odd function. Whittaker
and Watson proved in 1990 that

2mwe — 2mow1 =T - 0.
It is also common to identify the zeta function by its series expansion

N Ve
z A~ 251"
Jj=2

where go = %,gg = ;—% and gr = f(te,ts,k) for k > 3. We call g2 and g3 the
fingerprint of the lattice, since the series is determined by these two elements. How-
ever, the fingerprint is computed via the Eisenstein series.

In the following sections, we only show how to apply the Cauchy integral in general

and arbitrary lattices without caring of convergence. Following this, we do not derive
formulas as in the 1-dimensional and 2-dimensional case.

175

9. Representation Formula for Lattice Problems

9.2.4. CVP Representation Formula for Arbitrary Lattices

Before starting to consider CVP representations, we recall the Voronoi cell V(A) of
a lattice according to [MV10], which contains all vectors from R that are strictly

closer to the origin than to any other lattice point. By V(A) we denote its topological
closure. More formally, the Voronoi cell is defined by the set

V(A) ={x e R™ | [x = vy > |x[ly, Vv & A\{0}}.

Any Voronoi cell of a lattice is a polytope that can be described by at most 2(2" —1)
facets [MV10]. The facets induce the same number of half-spaces whose intersections
yield the Voronoi cell. The half-spaces can be expressed in terms of lattice vectors
v, namely the so-called Voronoi relevant vectors, where v/2 represents the center of
a half-space. Let V' be the set of Voronoi relevant vectors in accordance to [MV10].
For any v € V', we define the corresponding half-space by

Hy = {x e R™ | [lx = vl > [jxl} -

The Voronoi cell is then determined via V(A) = () Hy.
veV

Figure 9.4.: Voronoi cell of a lattice.

Any polytope can be represented by finite degree polynomials (e.g.,
see [AH11, Hen06, GHO03]). In Theorem 9.26 we express the solution of a CVP
instance by use of the Bochner-Martinelli integral.

Theorem 9.26 (CVP solution). Let A € Z™ be a lattice with basis B € Z™*™
and w + V(A) its Voronoi cell shifted by w € R™. Furthermore, let ¢ be denote a
bijective map according to Definition 9.13. Then, the solution to the CVP problem
with target vector t € R™ 1is given by

Scvp = Z / z U(Z, ¢(a))

EXSHN
lalla<l[tla+r; OP(t+V(A))

176

9. Representation Formula for Lattice Problems

Proof. The map ¢ 1is bijective as by construction with inverse map
¢~ Yz) = [(z + %)/2,(z — 2)/2]. Define f(z) = z to be the identity, which is
holomorphic in C™ since each component f;(z) = z; is holomorphic according to
Definition 9.1. The shifted Voronoi cell t + V(A) contains exactly one lattice point,
because otherwise it contains no lattice point or at least two lattice points w; and
wy inside t + V(A) such that t € w; + V(A) for ¢ = 1,2, which is a contradiction to
the definition of a Voronoi cell. Conversely, t + V(A) must contain a lattice point
since otherwise t is not contained in any translation w4+ V(A) for w € A. Using the
Bochner-Martinelli integral, we obtain

a, if ¢(a) € p(t +V(A))
z U(z,¢(a)) = . Z 7
2 [evesan={ 5 Gl g i)
lallo<l[tllp+2; OP(E+V(A))
since t + V(A) is a polytope that can be described by a polynomial such that the

boundary 9¢(t + V(A)) is piecewise smooth. O

One can also solve the CVP problem differently by taking another approach.
Following this, we recall the winding number 7(+y, z) from Corollary 9.5 but extended
to higher dimensional spaces. We express by ¢ € N the number of windings ¢-n(7, z).
The following bijective encoder allows to relate a lattice point to the winding number
c. From the winding number we can retrieve the corresponding lattice point back.

Definition 9.27 (Cantor’s Pairing Function). Cantor’s pairing function is an in-
vertible map defined by

B:NxN-—=N (x1,22) = (1 +x2)(x1 + 22+ 1)/2 4+ 2.
In order to compute the inverse, one performs the following steps

1. Sett=x1+x9 and d = t(t;”

2. Then, we have B(x1,72) =d +x2 and t> +t —2d =0
3. As a result, t = 7v8d'2"1_1.
86(x1,x 1-1
4. d= L & 122)+ J
5. o = P(x1,29) —d and x1 =t — x9

Cantor’s pairing function can inductively be generalized to the Cantor tuple function

ﬂn(xla s a'rn) = B(ﬁnfl(xlw . .,$n,1),l'n), fOT’I’L > 2.

177

9. Representation Formula for Lattice Problems

Cantor’s pairing function is used in some applications as a space filling curve.
2
All points satisfying x1 + 2 = ¢ lie on the diagonal line between (%,O) and

(0, t2;3t). Moreover, small elements ¢ lead to small function values, a desirable
feature in cryptographic applications. Since we can represent elements of Z by a
tuple (z,y) € N2, where the first component resp. second component is set to zero
if the element is negative or positive, we can extend f3,, as follows in order to allow
for vectors with entries from Z as required for lattice-based applications.

Definition 9.28 (Extended Cantor’s Pairing Function). Let z € Z™ and (,(x) be
a Cantor tuple function. Define by ¢ := B (T™(z)) : Z™ — N the extended Cantor
tuple function, where T™(z) := Z™ — N?™ (T(z1),...,T(2m)) with

N — (0,]z]), ifz <0
T(ZZ) - { (Zi,O), ’Lf 2 > O R

Using the extended version of Cantor’s pairing function we can restate Theo-
rem 9.26 as follows.

Theorem 9.29 (CVP Solution). Let A € Z™ be a lattice with basis B € Z™*™ and
w + V(A) be its Voronoi cell shifted by w € R™. Let ¢ be a bijective map following
Definition 9.13 and v be defined as in Definition 9.28. Then, the solution to the
CVP problem with target vector t € R™ is given by

Scvp = Z / Uz, ¢(a))

Hauzfuetﬁzﬂl Y(a)-0¢(t+V(A))

— / S @) Uz éla).

eA
IP(E+V(A) ally<tlla+rg

Proof. We let f(z) =1 be a constant function, which is trivially holomorphic. The
number of windings v (a) depends bijectively on the entries of the respective lattice
points a. Since each shifted Voronoi cell contains at most one lattice point, this sum
of integrals evaluates to ¥ (a) the number of windings for a lattice point a € A with
¢(a) € ¢(t + V(A)). This function can be inverted using the inversion algorithm
from Definition 9.27 in combination with Definition 9.28. O

The approximate version of the CVP problem is a little bit tricky, because more
than one solution is expected. However, one desires to obtain all solutions encoded by
one number. We resolve this problem by means of the extended version of Cantor’s
pairing function in the exponent. Such a strategy further allows to have some kind
of an order among the solutions.

178

9. Representation Formula for Lattice Problems

Theorem 9.30 (Approximate-CVP solution). Let A € Z™ be a lattice with basis
B € Z"*™ and B,(w) be a ball of radius r centered at w € R™. Let ¢ be a bijective
map according to Definition 9.13 and i be defined as in Definition 9.28. Then, the
list of closest vectors with mazrimum distance to the target vector t € R™ is given by

Scvp—List = Z 2v(@) / U(z, ¢(a)).
oSty er 00(Br(®)
Proof. We let f(z) = 1 be a constant function, which is trivially holomorphic. In
Example 9.15 we already showed that the ball has a smooth boundary. The number
of windings 2¥(® depends bijectively on the entries of the respective lattice points a.
In case a lattice point lies outside the closure of B, (t), the integral is zero. Hence,
the sum of integrals evaluates to an integer, where the position of non-zero bits
are encodings 1 (a) of all closest vector points a € A within distance of at most r
to t. As a result, we obtain all lattice points using the inversion algorithm from
Definition 9.27 and Definition 9.28 applied on the positions of all non-zero bits. [

Grover’s Search Algorithm Grover’s algorithm is a quantum algorithm that takes
a function ¢ : {0,1}™ — {0,1} as input and searches for a solution x such that
g1(x) = 1 is satisfied. The algorithm requires O(1/2™) iterations to solve the search
problem in an unstructured list. This corresponds to a quadratic speed up as com-
pared to the classical case. We can build such a function as follows

1, if¢(a) € p(t +V(A))
awo= [vmew ={ g 3G v

0o(t+V(A))

where ¢; is also parametrized by the target vector t. In case one considers ap-
proximate versions of the CVP problem such as the v-CVP problem, the number of
solutions to the equation gs(x) =1 for

1, ifae ¢(Ba(t))
g2(at) = / U<Z’¢<a>>‘{ 0, ifa¢ ¢(Balt) ’
9¢(Ba(t))

increases to N > 1 for a given length such as o = - A1, where mi/I\l ly — t]|5 is upper
y€
bounded by A1 denoting the shortest vector in the lattice. In this case, Grover’s opti-

mal bound for the number of iterations in order to find a solution is given by g\/% .
By use of polar coordinates, one can parametrize the surface area of an n-dimensional
ball B,(0). Based on the solver for v-CVP, one can build a solver for y-SVP. In
fact, applying Grover’s algorithm on n different sublattices allows to find the desired
result. Following [GMSS99], one solves v-CVP for target vectors b; and sublattices
A(B®) generated by the basis matrices B(%) = [by,...,b;_1,2b;, biy1,...,by,]. Se-
lecting the shortest vector among the solutions provides a solution to y-SVP.

179

References

[ABB10a]

[ABB10b]

[ACPS09)

[ADY7]

[AFG13]

[AGV09]

[AH11]

[Ajt96]

[Ajt98)]

Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice
(H)IBE in the standard model. In Henri Gilbert, editor, Advances
in Cryptology — EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 553-572. Springer, May 2010.

Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delega-
tion in fixed dimension and shorter-ciphertext hierarchical IBE. In Tal
Rabin, editor, Advances in Cryptology — CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science, pages 98-115. Springer, August
2010.

Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
cryptographic primitives and circular-secure encryption based on hard
learning problems. In CRYPTO, volume 5677 of LNCS, pages 595—618.
Springer, 2009.

Miklés Ajtai and Cynthia Dwork. A public-key cryptosystem with
worst-case/average-case equivalence. In 29th Annual ACM Symposium
on Theory of Computing, pages 284-293. ACM Press, May 1997.

Martin R. Albrecht, Robert Fitzpatrick, and Florian Gopfert. On the
efficacy of solving lwe by reduction to unique-svp. In ICISC 20183,
2013.

Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultane-
ous hardcore bits and cryptography against memory attacks. In Omer
Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference,
volume 5444 of Lecture Notes in Computer Science, pages 474-495.
Springer, March 2009.

Gennadiy Averkov and Martin Henk. Representing simple d-
dimensional polytopes by d polynomials. Mathematical Programming,
126(2):203—-230, 2011.

Miklés Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th Annual ACM Symposium on Theory of Computing,
pages 99-108. ACM Press, May 1996.

Miklés Ajtai. The shortest vector problem in L2 is NP-hard for ran-
domized reductions (extended abstract). In 30th Annual ACM Sym-
posium on Theory of Computing, pages 10-19. ACM Press, May 1998.

180

[Ajt99]

[AKPW13]

[AKSO01]

[AKS02]

[APOY]

[Ban93]
[Ban95]

[BCHKO7]

[BDK*07]

[BF11]

[BG14]

[BGLS03]

References

Miklés Ajtai. Generating hard instances of the short basis problem. In
ICALP, LNCS, pages 1-9. Springer, 1999.

Joél Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs.
Learning with rounding, revisited. In Ran Canetti and JuanA. Garay,
editors, Advances in Cryptology CRYPTO 2018, volume 8042 of Lec-
ture Notes in Computer Science, pages 57—74. Springer, 2013.

Miklés Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for
the shortest lattice vector problem. In 33rd Annual ACM Symposium
on Theory of Computing, pages 601-610. ACM Press, July 2001.

Miklos Ajtai, Ravi Kumar, and D. Sivakumar. Sampling short lattice
vectors and the closest lattice vector problem. CCC ’02, pages 53—.
IEEE Computer Society, 2002.

Joél Alwen and Chris Peikert. Generating shorter bases for hard ran-
dom lattices. In STACS, volume 3 of LIPIcs, pages 75-86. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

W. Banaszczyk. New bounds in some transference theorems in the
geometry of numbers. Mathematische Annalen, 296(4):625-635, 1993.

W. Banaszczyk. Inequalities for convex bodies and polar reciprocal
lattices in r". Discrete Computational Geometry, 13(1):217-231, 1995.

Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
ciphertext security from identity-based encryption. SIAM Journal on
Computing, 36(5):1301-1328, 2007.

Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki
Okeya, and Camille Vuillaume. Merkle signatures with virtually unlim-
ited signature capacity. In ACNS 2007, LNCS, pages 31-45. Springer,
2007.

Dan Boneh and David Mandell Freeman. Homomorphic signatures
for polynomial functions. In Kenneth G. Paterson, editor, Advances
in Cryptology — EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 149-168. Springer, May 2011.

Shi Bai and StevenD. Galbraith. An improved compression technique
for signatures based on learning with errors. In Josh Benaloh, editor,
CT-RSA 2014, LNCS, pages 28-47. Springer, 2014.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham,
editor, Advances in Cryptology — FUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 416-432. Springer, May
2003.

181

[BGR12]

[BGV12

[BIO]

[BLP*13]

[BNNO7]

[BPR12]

[BPW12]

[BR93]

[BRY6]

[Bral2]

References

Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential ag-
gregate signatures with lazy verification from trapdoor permutations.
ASTACRYPT’12, pages 644—662. Springer-Verlag, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In ITCS, pages
309-325, 2012.

Johannes Blomer. Closest vectors, successive minima, and dual hkz-
bases of lattices. In Proceedings of the 27th International Colloquium
on Automata, Languages and Programming, ICALP ’00, pages 248—
259. Springer-Verlag, 2000.

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In STOC,
pages 575-584, 2013.

Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unre-
stricted aggregate signatures. In Lars Arge, Christian Cachin, Tomasz
Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007: 34th Interna-
tional Colloguium on Automata, Languages and Programming, volume
4596 of Lecture Notes in Computer Science, pages 411-422. Springer,
July 2007.

Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom
functions and lattices. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology — EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 719-737. Springer, April
2012.

Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure
proxy signature schemes for delegation of signing rights. Journal of
Cryptology, 25(1):57-115, 2012.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM
CCS 93: 1st Conference on Computer and Communications Security,
pages 62-73. ACM Press, November 1993.

Mihir Bellare and Phillip Rogaway. The exact security of digital sig-
natures: How to sign with RSA and Rabin. In Ueli M. Maurer, editor,
Advances in Cryptology — EUROCRYPT’96, volume 1070 of Lecture
Notes in Computer Science, pages 399-416. Springer, May 1996.

Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Reihaneh Safavi-Naini and Ran
Canetti, editors, Advances in Cryptology — CRYPTO 2012, volume

182

(BS99

[BV1la]

[BV11b]

[BY96]

[BZ13]

[CHJ*02]

[CHKO4]

[CHKP10]

[CKNO3]

References

7417 of Lecture Notes in Computer Science, pages 868-886. Springer,
August 2012.

Johannes Blomer and Jean-Pierre Seifert. On the complexity of com-
puting short linearly independent vectors and short bases in a lattice.
In 31st Annual ACM Symposium on Theory of Computing, pages 711—
720. ACM Press, May 1999.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. In Rafail Ostrovsky, editor,
52nd Annual Symposium on Foundations of Computer Science, pages
97-106. IEEE Computer Society Press, October 2011.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic en-
cryption from ring-LWE and security for key dependent messages. In
Phillip Rogaway, editor, Advances in Cryptology — CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 505-524.
Springer, August 2011.

Mihir Bellare and Moti Yung. Certifying permutations: Noninterac-
tive zero-knowledge based on any trapdoor permutation. Journal of
Cryptology, 9(3):149-166, 1996.

Dan Boneh and Mark Zhandry. Secure signatures and chosen cipher-
text security in a quantum computing world. In Ran Canetti and
JuanA. Garay, editors, Advances in Cryptology CRYPTO 2013, vol-
ume 8043 of LNCS, pages 361-379. Springer, 2013.

Jean-Sébastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier,
David Pointcheval, and Christophe Tymen. GEM: A generic chosen-
ciphertext secure encryption method. In Bart Preneel, editor, Topics in
Cryptology — CT-RSA 2002, volume 2271 of Lecture Notes in Computer
Science, pages 263-276. Springer, February 2002.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext se-
curity from identity-based encryption. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology — FUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 207-222.
Springer, May 2004.

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai
trees, or how to delegate a lattice basis. In Henri Gilbert, editor,
Advances in Cryptology — FEUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 523-552. Springer, May 2010.

Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing
chosen-ciphertext security. In Dan Boneh, editor, Advances in Cryp-

183

[CN99]

[Cor00]

[CSO8]

IDD12]

[DDLL13]

[DDNOO]

[DKRS03]

[DMQ13]

IDN12]

[DSGKM12]

References

tology — CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 565—582. Springer, August 2003.

Jin-Yi Cai and Ajay Nerurkar. Approximating the svp to within a fac-
tor (1+1/dime) is np-hard under randomized reductions. J. Comput.
Syst. Sci., 59(2):221-239, 1999.

Jean-Sébastien Coron. On the exact security of full domain hash.
In Mihir Bellare, editor, Advances in Cryptology — CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 229-235.
Springer, August 2000.

J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups,
volume 3. Springer Verlag, 1998.

Léo Ducas and Alain Durmus. Ring-Lwe in polynomial rings. PKC’12,
pages 34-51. Springer, 2012.

Lo Ducas, Alain Durmus, Tancrde Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and JuanA.
Garay, editors, CRYPTO 2013, volume 8042 of LNCS, pages 40-56.
Springer Berlin Heidelberg, 2013.

Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptog-
raphy. SIAM Journal on Computing, 30(2):391-437, 2000.

I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating cvp
to within almost-polynomial factors is np-hard. Combinatorica,
23(2):205-243, 2003.

Nico Déttling and Jorn Miiller-Quade. Lossy codes and a new variant of
the learning-with-errors problem. In Thomas Johansson and PhongQ.
Nguyen, editors, Advances in Cryptology — FUROCRYPT 2013, vol-
ume 7881 of Lecture Notes in Computer Science, pages 18-34. Springer
Berlin Heidelberg, 2013.

Léo Ducas and PhongQ. Nguyen. Learning a zonotope and more:
Cryptanalysis of ntrusign countermeasures. In Xiaoyun Wang and
Kazue Sako, editors, ASTACRYPT 2012, volume 7658 of LNCS, pages
433-450. Springer, 2012.

Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal
Malkin. Computational extractors and pseudorandomness. In Ronald
Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference,
volume 7194 of Lecture Notes in Computer Science, pages 383—403.
Springer, March 2012.

184

[EB13]

[EB14a

[EB14Db]

[EDB15]

[EB15a]

[EB15b]

[EB15c]

[EFGT10]

[FS87]

[Gen09]

[GGO1]

References

Rachid El Bansarkhani and Johannes Buchmann. Improvement and
efficient implementation of a lattice-based signature scheme. In Lange
Tanja, Kristin Lauter, and Petr Lisonek, editors, Selected Areas in
Cryptography, LNCS. Springer, 2013.

Rachid El Bansarkhani and Johannes Buchmann. LCPR: High per-
formance compression algorithm for lattice-based signatures, Sub-
mitted, Cryptology ePrint Archive, Report 2014/334, 2014.
http://eprint.iacr.org/.

Rachid El Bansarkhani and Johannes Buchmann. Towards lattice
based sequential aggregate signatures. In David Pointcheval and
Damien Vergnaud, editors, AFRICACRYPT 2014, volume 8469 of
LNCS, pages 336-355. Springer, 2014.

Rachid El Bansarkhani, Ozgiir Dagdelen, and Johannes Buchmann.
Augmented learning with errors: The untapped potential of the error
term. In Financial Crypto 2015, LNCS. Springer, 2015.

Rachid El Bansarkhani and Johannes Buchmann. High performance
lattice-based CCA-secure encryption, Submitted, Cryptology ePrint
Archive, Report 2015/042, 2015. http://eprint.iacr.org/.

Rachid El Bansarkhani and Johannes Buchmann. Efficient Lattice-
based Encryption via A-LWE in the Standard Model, Submitted, 2015

Rachid El Bansarkhani and Johannes Buchmann. Representation For-
mulas for Lattice Problems via Cauchy Integrals, Submitted, 2015

Oliver Eikemeier, Marc Fischlin, Jens-Fabian Go&tzmann, Anja
Lehmann, Dominique Schroder, Peter Schroder, and Daniel Wagner.
History-free aggregate message authentication codes. In Juan A. Garay
and Roberto De Prisco, editors, SCN 10: 7th International Conference
on Security in Communication Networks, volume 6280 of Lecture Notes
in Computer Science, pages 309-328. Springer, September 2010.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solu-
tions to identification and signature problems. In Andrew M. Odlyzko,
editor, Advances in Cryptology — CRYPT(0’86, volume 263 of Lecture
Notes in Computer Science, pages 186—-194. Springer, August 1987.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169-178. ACM, 2009.

Allen Gersho and Robert M. Gray. Vector quantization and signal
compression. Kluwer Academic Publishers, Norwell, MA, USA, 1991.

185

[GGH97a]

[GGHO7D]

[GHO3]

[GH11]

[GJSSO01]

[GLP12]

[GMSS99]

[GNOS]

[GOPS13]

[GPV08]

References

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Eliminating de-
cryption errors in the Ajtai-Dwork cryptosystem. In Burton S. Kaliski
Jr., editor, Advances in Cryptology — CRYPTQO’97, volume 1294 of

Lecture Notes in Computer Science, pages 105—111. Springer, August
1997.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryp-
tosystems from lattice reduction problems. In Burton S. Kaliski Jr.,
editor, Advances in Cryptology — CRYPTO’97, volume 1294 of Lecture
Notes in Computer Science, pages 112-131. Springer, August 1997.

Martin Grotschel and Martin Henk. The representation of polyhe-
dra by polynomial inequalities. Discrete Computational Geometry,
29(4):485-504, 2003.

Craig Gentry and Shai Halevi. Fully homomorphic encryption with-
out squashing using depth-3 arithmetic circuits. In Rafail Ostrovsky,
editor, 52nd Annual Symposium on Foundations of Computer Science,
pages 107-109. IEEE Computer Society Press, October 2011.

Craig Gentry, Jakob Jonsson, Jacques Stern, and Michael Szydlo.
Cryptanalysis of the NTRU signature scheme (NSS) from FEuro-
crypt 2001. In Colin Boyd, editor, Advances in Cryptology — ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 1-20. Springer, December 2001.

Tim Giineysu, Vadim Lyubashevsky, and Thomas P6ppelmann. Prac-
tical lattice-based cryptography: A signature scheme for embedded
systems. In CHES, volume 7428 of LNCS. Springer, 2012.

O. Goldreich, D. Micciancio, S. Safra, and J. P. Seifert. Approximating
shortest lattice vectors is not harder than approximating closet lattice
vectors. Inf. Process. Lett., 71(2):55-61, 1999.

Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In
Nigel P. Smart, editor, Advances in Cryptology — EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 31-51.
Springer, April 2008.

Tim Giineysu, Tobias Oder, Thomas Péppelmann, and Peter Schwabe.
Software speed records for lattice-based signatures. In Philippe Ga-
borit, editor, Post-Quantum Cryptography, volume 7932 of LNCS.
Springer, 2013.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on
Theory of Computing, pages 197-206. ACM Press, May 2008.

186

[Gra84]
[Gro04]

[Hel85]

[Hen06]

[HHGP 03]

[HL93]

[HLMO3]

[HSW+00]

[HSW13]

[Kan87]

[Kho04]

[Kil06]

References

R.M. Gray. Vector quantization. IEEE ASSP Mag., pages 4-29, 1984.

Jens Groth. Rerandomizable and replayable adaptive chosen ciphertext
attack secure cryptosystems. In Moni Naor, editor, TCC 2004: 1st
Theory of Cryptography Conference, volume 2951 of Lecture Notes in
Computer Science, pages 152-170. Springer, February 2004.

Bettina Helfrich. Algorithms to construct minkowski reduced and her-
mite reduced lattice bases. Theor. Comput. Sci., 41(2-3):125-139, 1985.

M. Henk. Polynomdarstellungen von Polyedern. Preprint. Univ., Fak.
fir Mathematik, 2006.

Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, JosephH. Sil-
verman, and William Whyte. Ntrusign: Digital signatures using the
ntru lattice. In Topics in Cryptology CT-RSA 2003, volume 2612 of
LNCS, pages 122-140. SPRINGER, 2003.

Amir Herzberg and Michael Luby. Pubic randomness in cryptography.
In Ernest F. Brickell, editor, Advances in Cryptology — CRYPTO’92,
volume 740 of Lecture Notes in Computer Science, pages 421-432.
Springer, August 1993.

Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness
via key registration. In Dan Boneh, editor, Advances in Cryptology —
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 548-564. Springer, August 2003.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors.
SIGPLAN Not., 35(11):93-104, 2000.

Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash
from (leveled) multilinear maps and identity-based aggregate signa-
tures. In Ran Canetti and JuanA. Garay, editors, CRYPTO 2013,
volume 8042 of LNCS, pages 494-512. Springer, 2013.

Ravi Kannan. Minkowski’s convex body theorem and integer program-
ming. Math. Oper. Res., 12(3):415-440, 1987.

Subhash Khot. Hardness of approximating the shortest vector problem
in lattices. In 45th Annual Symposium on Foundations of Computer
Science, pages 126-135. IEEE Computer Society Press, October 2004.

Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In
Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptog-
raphy Conference, volume 3876 of Lecture Notes in Computer Science,
pages 581-600. Springer, March 2006.

187

[Larl2]

[Len83]

[LLL82|

[LMOS]

[LMRS04]

[LOS*06]

[LP11]

[LPR10]

[LPR13]

[LVOS]

References

Ron Larson. Brief Calculus: An Applied Approach, volume 9. 2012.

Hendrik W. Lenstra. Integer programming with a fixed number of
variables. Math. Oper. Res., 8:538-548, 1983.

A K. Lenstra, H.W.jun. Lenstra, and Léaszlo Lovasz. Factoring poly-
nomials with rational coefficients. Math. Ann., 261:515-534, 1982.

Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient
lattice-based digital signatures. In Ran Canetti, editor, TCC 2008:
5th Theory of Cryptography Conference, volume 4948 of Lecture Notes
in Computer Science, pages 37-54. Springer, March 2008.

Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham.
Sequential aggregate signatures from trapdoor permutations. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryptology — EU-
ROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 74-90. Springer, May 2004.

Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent
Waters. Sequential aggregate signatures and multisignatures without
random oracles. In Serge Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 465-485. Springer, May / June 2006.

Richard Lindner and Chris Peikert. Better key sizes (and attacks) for
LWE-based encryption. In Aggelos Kiayias, editor, Topics in Cryp-
tology — CT-RSA 2011, volume 6558 of Lecture Notes in Computer
Science, pages 319-339. Springer, February 2011.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology — EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 1-23. Springer, May 2010.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for
ring-lwe cryptography. In Thomas Johansson and PhongQ. Nguyen,
editors, FUROCRYPT 2013, volume 7881 of LNCS, pages 35-54.
Springer, 2013.

Benoit Libert and Damien Vergnaud. Unidirectional chosen-ciphertext
secure proxy re-encryption. In Ronald Cramer, editor, PKC 2008: 11th
International Conference on Theory and Practice of Public Key Cryp-
tography, volume 4939 of Lecture Notes in Computer Science, pages
360-379. Springer, March 2008.

188

[Lyn99]

[Lyu08]

[Lyu09)

[Lyul2]

[Mic9g]

[Mic07]

IMP12]

[MP13]

[MRO4]

[MROS]

[MROY]

[MT84]

References

Charles Lynn. Secure border gateway protocol (s-bgp). In ISOC' Net-
work and Distributed System Security Symposium — NDSS’99. The In-
ternet Society, February 1999.

Vadim Lyubashevsky. Towards practical lattice-based cryptography,
2008.

Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances
in Cryptology — ASTACRYPT 2009, volume 5912 of Lecture Notes in
Computer Science, pages 598-616. Springer, December 2009.

Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 738-755. Springer, April 2012.

Daniele Micciancio. The shortest vector in a lattice is hard to approx-
imate to within some constant. pages 92-98. FOCS, 1998.

Daniele Micciancio. Generalized compact knapsacks, cyclic lattices,
and efficient one-way functions. Computational Complezity, 16(4):365—
411, 2007.

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology — EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 700-718. Springer, April
2012.

Daniele Micciancio and Chris Peikert. Hardness of sis and lwe with
small parameters. In CRYPTO (1), pages 21-39, 2013.

Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on Gaussian measures. In 45th Annual Symposium
on Foundations of Computer Science, pages 372-381. IEEE Computer
Society Press, October 2004.

Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
DanielJ. Bernstein, Johannes Buchmann, and Erik Dahmen, editors,
Post-Quantum Cryptography, pages 147-191. Springer, 2008.

Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
DanielJ. Bernstein, Johannes Buchmann, and Erik Dahmen, editors,
Post-Quantum Cryptography. Springer, 2009.

G. Marsaglia and W. Tsang. A fast, easily implemented method for
sampling from decreasing or symmetric unimodal density functions.

189

[MV10]

[Nev0g]

[NRO6]

[NROY]

[0d190]

[Pei07]

[Pei09)]

[Peil0]

[Peild]

[Pol71]

References

SIAM Journal on Scientific and Statistical Computing, 5(2):349-359,
1984.

Daniele Micciancio and Panagiotis Voulgaris. A deterministic single
exponential time algorithm for most lattice problems based on voronoi
cell computations. In Leonard J. Schulman, editor, 42nd Annual ACM
Symposium on Theory of Computing, pages 351-358. ACM Press, June
2010.

Gregory Neven. Efficient sequential aggregate signed data. In Nigel P.
Smart, editor, Advances in Cryptology — EUROCRYPT 2008, volume
4965 of Lecture Notes in Computer Science, pages 52—69. Springer,
April 2008.

Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Crypt-
analysis of GGH and NTRU signatures. In Serge Vaudenay, editor,
Advances in Cryptology — EUROCRYPT 2006, volume 4004 of Lec-
ture Notes in Computer Science, pages 271-288. Springer, May / June
2006.

Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Crypt-
analysis of GGH and NTRU signatures. Journal of Cryptology,
22(2):139-160, April 2009.

A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In In
Cryptology and Computational Number Theory, pages 75-88. A.M.S,
1990.

Chris Peikert. Limits on the hardness of lattice problems in lp norms.
In In IEEE Conference on Computational Complexity, pages 333-346,
2007.

Chris Peikert. Public-key cryptosystems from the worst-case shortest
vector problem: extended abstract. In Michael Mitzenmacher, editor,
41st Annual ACM Symposium on Theory of Computing, pages 333—
342. ACM Press, May / June 2009.

Chris Peikert. An efficient and parallel gaussian sampler for lattices. In
Tal Rabin, editor, Advances in Cryptology — CRYPTO 2010, volume
6223 of Lecture Notes in Computer Science, pages 80-97. Springer,
August 2010.

Chris Peikert. Lattice cryptography for the internet. Cryptology ePrint
Archive, Report 2014/070, 2014. http://eprint.iacr.org/.

John M. Pollard. The Fast Fourier Transform in a finite field. Mathe-
matics of Computation, 25(114):365-374, 1971.

190

[PRO7]

[PSNTO6]

[PVWO08]

[PW0S]

[Reg04]

[Reg05]

[RS10]

[Riic10]

[Sch&6]

[Sch87]

References

Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA en-
cryption. In Alfred Menezes, editor, Advances in Cryptology —
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science,
pages 517-534. Springer, August 2007.

Duong Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic
construction of hybrid public key traitor tracing with full-public-
traceability. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,
and Ingo Wegener, editors, ICALP 2006: 33rd International Collo-
quium on Automata, Languages and Programming, Part II, volume
4052 of Lecture Notes in Computer Science, pages 264—275. Springer,
July 2006.

Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, edi-
tor, Advances in Cryptology — CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 554-571. Springer, August 2008.

Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. In Richard E. Ladner and Cynthia Dwork, editors, 40th
Annual ACM Symposium on Theory of Computing, pages 187-196.
ACM Press, May 2008.

Oded Regev. New lattice-based cryptographic constructions. J. ACM,
51:899-942, 2004.

Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors,
37th Annual ACM Symposium on Theory of Computing, pages 84-93.
ACM Press, May 2005.

Markus Riickert and Michael Schneider. Estimating the security of
lattice-based cryptosystems. 2010. http://eprint.iacr.org/.

Markus Riickert. Strongly unforgeable signatures and hierarchical
identity-based signatures from lattices without random oracles. In
Nicolas Sendrier, editor, Post-Quantum Cryptography, volume 6061 of
LNCS, pages 182-200. Springer, 2010.

C.P. Schnorr. A more efficient algorithm for lattice basis reduction. In
Laurent Kott, editor, Automata, Languages and Programming, volume
226 of LNCS, pages 359-369. Springer, 1986.

C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53(2-3):201-224, 1987.

191

[SE94]

[Sho97]

[Shulb]

[SMPOS]

[SS11]

[SSTX09]

[VEB81]

[Win96]

[XFO7]

[Zhal0]

References

C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Program.,
66(2):181-199, 1994.

Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Journal on
Computing, 26(5):1484-1509, 1997.

Jerry Shurman. Lecture notes on complex analysis, 2015.
http://people.reed.edu/ jerry/311/cotan.pdf.

JacobC.N. Schuldt, Kanta Matsuura, and KennethG. Paterson. Proxy
signatures secure against proxy key exposure. In Ronald Cramer, edi-
tor, PKC, volume 4939 of LNCS, pages 141-161. Springer, 2008.

Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case
problems over ideal lattices. In Advances in Cryptology FEUROCRYPT
2011, volume 6632 of LNCS, pages 27-47. Springer, 2011.

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa.
Efficient public key encryption based on ideal lattices. In Mitsuru
Matsui, editor, Advances in Cryptology — ASIACRYPT 2009, volume
5912 of Lecture Notes in Computer Science, pages 617-635. Springer,
December 2009.

P. van Emde-Boas. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Report. Department
of Mathematics. University of Amsterdam. Department, Univ., 1981.

Franz Winkler. Polynomial Algorithms in Computer Algebra (Texts
and Monographs in Symbolic Computation). Springer, 1 edition, 1996.

Rui Xue and Dengguo Feng. Toward practical anonymous rerandomiz-
able RCCA secure encryptions. In Sihan Qing, Hideki Imai, and Guilin
Wang, editors, ICICS 07: 9th International Conference on Informa-
tion and Communication Security, volume 4861 of Lecture Notes in
Computer Science, pages 239-253. Springer, December 2007.

Fuzhen Zhang. The Schur Complement and Its Applications, volume 4.
Springer, 2010.

192

