Partitioning into Isomorphic
or Connected Subgraphs

Vom Fachbereich Mathematik
der Technischen Universitat Darmstadt
zur Erlangung des Grades
Doctor rerum naturalium
(Dr. rer. nat.)
genehmigte Dissertation

Von
Hendrik Liuthen, M. Sc.

aus Berlin
Referent: Prof. Dr. Marc E. Pfetsch
Korreferentin: Prof. Dr. Frauke Liers
Tag der Einreichung: 2. Februar 2018

Tag der miindlichen Priifung: 4. Mai 2018

Darmstadt 2018

Lithen, Hendrik: Partitioning into Isomorphic or Connected Subgraphs
Darmstadt, Technische Universitat Darmstadt

Jahr der Veroffentlichung der Dissertation auf TUprints: 2019

Tag der miindlichen Priufung: 04.05.2018

Veroffentlicht unter CC BY-SA
https://creativecommons.org/licenses/

https://creativecommons.org/licenses/

Acknowledgments

This work would not exist without the help of many people. Hereby, I want to
show my gratitude.

First of all, I want to thank my supervisor Marc Pfetsch. He gave me the
opportunity to work on this topic and guided me through my research. I am
grateful for his support and his attention to detail concerning, in particular,
mathematical accuracy, formulation details and I&TgX.

Many thanks also go to the referee of my thesis, Frauke Liers. Her, Martin
Otto and Stefan Ulbrich I want to thank for their willingness to act as members
of the thesis committee.

Moreover, I am indebted to the DFG for most of my funding within the
Collaborative Research Centre 666: “Integral Sheet Metal Design with Higher
Order Bifurcations”.

Special thanks go to the optimization group at TU Darmstadt and the col-
leagues from the CRC 666. It was always a pleasure working in both groups. In
particular, I want to thank Christopher Hojny for many fruitful discussions on
our combined and my own research. His mind was always open. For proofread-
ing I want to thank Johanna Biehl, Tristan Gally, Thea Gollner, Oliver Habeck,
Christopher Hojny, Philip Kolvenbach, Frederic Matter and Andreas Schmitt.

Furthermore, I thank Kai Habermehl and Anja Kuttich for being such great
office mates. And, of course, many thanks to my groups of card game players
enjoying a quiet little game of Skat or Doppelkopf—at least, now I do not receive
a “Strich” for forgetting you.

Finally, I want to thank my friends and family for their help and empathy.
Foremost for their encouragement and moral support I thank my fiancée Juliane
and my son Theodor.

Zusammenfassung

In dieser Arbeit geht es hauptsiachlich um Partitionierungen von Graphen und
den Zusammenhang in Graphen. Zuerst wird das Problem betrachtet, die Kno-
tenmenge eines Graphen in eine vorgegebene Anzahl an Teilmengen zu partitio-
nieren, sodass die auf diesen Knotenteilmengen induzierten Subgraphen jeweils
isomorph zueinander sind. Es wird gezeigt, dass dieses Problem NP-vollstandig
ist. AuSerdem werden verschiedene Graphenklassen betrachtet, fiir die diese
Frage in polynomieller Zeit beantwortet werden kann. Es kann dariiber hinaus
gezeigt werden, dass, wenn zusatzlich gefordert wird, dass die einzelnen Sub-
graphen zusammenhingend sind, dieses Problem immer noch NP-vollstandig
ist.

Im nachsten Abschnitt wird dieser letzte Aspekt naher betrachtet. Daftr wird
das Polytop definiert, welches von Inzidenzvektoren von Knotenmengen aufge-
spannt wird, die einen zusammenhadngenden Subgraphen induzieren. Hierfiir
werden neue facettendefinierende Ungleichungen hergeleitet und deren allge-
meine Struktur naher untersucht. Fir Kreise und vollstindig bipartite Graphen
wird eine vollstandige Beschreibung des Polytops angegeben sowie in dem Fall,
dass ein Graph um genau einen Knoten und eine zusatzliche Kante erweitert
wird.

AnschliefSend wird diese Betrachtung um eine zusatzliche Partitionierung
erganzt, das heifst, es wird der Fall betrachtet, dass ein Graph in eine vorgegebene
Anzahl an Teilmengen partitioniert wird, sodass die Teilmengen jeweils zusam-
menhangende Subgraphen induzieren. Fiir das entsprechende Polytop werden
die Dimension und facettendefinierende Ungleichungen hergeleitet. Diese theo-
retischen Betrachtungen werden erganzt durch das sog. ConNecTED Max-K-Cut
Problem, welches wie folgt definiert ist: Gegeben ein gewichteter Graph G und
eine Zahl K, partitioniere die Knoten von G so in K Teilmengen, dass die einzel-
nen Knotenmengen jeweils einen zusammenhédngenden Graphen induzieren und
der Schnitt maximal ist. Hierfiir werden verschiedene Techniken vorgestellt, um
den Losungsprozess von SCIP zu beschleunigen. Numerische Resultate zeigen
dann den Einfluss der einzelnen Techniken.

Aus den Problemformulierungen haben sich ganz allgemeine Fragestellungen
iiber gemischt-ganzzahlige Formulierungen (engl. mixed-integer program MIP)
ergeben. Die in der Literatur zu findenden Aussagen beschranken sich haufig
auf den zulédssigen Bereich und betrachten die Zielfunktion nicht. Hierfir wird
eine mogliche Definition vorgestellt, welche erlaubt, MIP-Formulierungen fiir
Probleme mit nichtlinearer Zielfunktion anzugeben. Es werden dabei Eigenschaf-
ten der Definition diskutiert sowie Voraussetzungen herausgearbeitet, die die
Existenz oder Nichtexistenz bestimmter Formulierungen belegen.

Im letzten Abschnitt wird eine MIP-Formulierung fiir das Problem angegeben,
einen Graphen so zu partitionieren, dass alle bis auf eine Teilmenge isomorph
sind. Die Grofie dieser nichtisomorphen Teilmenge soll dabei minimiert werden.
Es wird dariiber hinaus ein Verfahren angegeben, welches mittels geschickten
Ausprobierens das Problem fiir die hier betrachteten Graphen in kurzer Zeit
optimal 10st. Anstatt einen Graphen in isomorphe Subgraphen zu partitionieren,
wird zum Schluss das Problem betrachtet, einen Graphen in dghnliche Teile zu
partitionieren. Hierfir wird ein Programmiergeriist vorgestellt, welches Proble-
me dieser Art 16sen kann und die verschiedenen implementierten Arten der
Ahnlichkeit werden vorgestellt.

Contents

Introduction

1.1 Manufacturing L L
1.2 OVerview o i it e e e e e e e e e
1.3 Notation e

Partitioning into Isomorphic Subgraphs

2.1 ComplexityResult
2.2 Polynomial Time Solvable Graph Classes
2.3 Combinatorics on the Path Graph

Connected Subgraphs and Partitioning into Connected Subgraphs
3.1 The Connected Subgraph Polytope
31.1 Facetso
3.1.2 Complete Descriptionof Cycles
3.1.3 Complete Description of Complete Bipartite Graphs
3.1.4 Adding One Nodeand OneEdge
3.2 The Connected Subpartition and Partition Polytopes
3.2.1 The Connected Subpartition Polytope
3.2.2 The Connected Partition Polytope
3.3 Solving Connected Max-K-Cut
3.3.1 Problem Definition,
3.3.2 Separation of the Connectedness Constraint
3.3.3 Propagation o oo
334 Cuts.o oo
3.3.5 Primal Heuristics
3.3.6 BranchingRules
3.3.7 Symmetry
3.3.8 Numerical Results.

12
13

17
17
24
28

8 CONTENTS
4 MIP Formulations 89
4.1 Introduction 89
4.2 Problem Formulation 91

5 Different Approaches for Handling the Retooling Process 99
5.1 Minimizing the Non-Isomorphic Remaining Part 100
5.1.1 MIP Formulation 100

5.1.2 Brute-Force Algorithm 103

5.2 Graph Similarity Measures 109
5.2.1 Problem Definition 109

5.2.2 General Solving Framework 110

5.2.3 Implemented Measures 113

6 Conclusion and Outlook 123
A Influence of Symmetry Handling for Connected Max-K-Cut 125
Bibliography 129

Chapter 1

Introduction

To motivate the problems appearing in this thesis we start with a short intro-
duction to a few topics considered in the Collaborative Research Centre 666:
“Integral Sheet Metal Design with Higher Order Bifurcations” (CRC 666). A
more detailed overview, especially about the engineering part, can be found for
example in [47].

1.1 Manufacturing

Usually, branched sheet metal is produced in differential style, that is, by welding,
gluing or similar procedures. These techniques have several disadvantages: the
resulting pieces are heavier, have lower thermal conductivity, corrode easier and
are more likely to break at for example the welding or gluing point. This is
why the CRC 666 studies processes, which allows for an integral production of
branched sheet metal, called linear flow splitting.

Linear flow splitting is a profile-rolling process applied to sheet metal at
room temperature and its basic principle is depicted in the upper left corner
of Figure 1.1. Flat sheet metal is directed by a tooling system consisting of two
supporting rolls and two splitting rolls. The Supporting rolls ensure the motion
of the sheet metal as well as a fixation. Splitting roles are used for creating
branches. Their distance is smaller than the width of the unprocessed material,
which leads to a material flow depicted in the upper right corner of Figure 1.1.
The material flows into the space between supporting and splitting roles thereby
creating a bifurcation, also called a flange in Figure 1.1.

Using many different tooling systems subsequently, each with a smaller
distance between their respective splitting roles than the previous tooling system,
leads to longer flanges and a decreased width of the sheet metal, which is depicted

9

10 INTRODUCTION

Splitting roll

]
<
3
3
2
2

B
&
3
°

4 —
Supporting roll roll
/'Splining rolls\

=) Feed motion

Figure 1.1: Linear flow splitting process, figure taken from [50]

in the lower part of Figure 1.1. In principle, the process can also be applied to
branched sheet metal thereby creating bifurcations of a higher order.

Linear flow splitting can be combined with a roll forming process to produce
for example the profile shown in Figure 1.2. Depicted is also the flower pattern
to show the intermediate steps which are needed for creating the final profile.

If we first apply a roll forming process to bend the sheet metal and then use
a process similar to linear flow splitting, we can create a bifurcation anywhere
on the sheet metal not only on its borders. This procedure is called linear bend
splitting and is depicted in Figure 1.3.

Combining these different techniques increases the number of producible
profiles and thus the applicability of the process. For further details on various
other techniques studied within the CRC 666 or applications of this process we
refer to [47].

In this thesis we assume that we are given a profile, which should be produced
using the mentioned procedures. In particular, we are not dealing with the
optimization of a profile given a load case scenario, which can for example be
found in [53, 55, 61]. The profile, which we want to produce may be given by
a cross-section similar to the one found in Figure 1.4 (left). We translate this
profile to a graph as depicted on the right-hand side of Figure 1.4. The graph
is created by introducing a node for every intersection or end point. Therefore,
the edges represent the material in the profile. This translation of a profile to a
graph was already used in [52], where also a weight function was added to the
edges, representing the thickness of the corresponding material.

An intersection in the profile can be the result of different production steps.

1.1. MANUFACTURING 11

Stand 16
Stand 13

Stand 10

HJ

3
.
=,

49
Stand §
Stand 5 L7>/

/\/:/)—
Stand 0 }—I—

Figure 1.2: Picture of a profile produced on the integrated production line and
its flower pattern, figure taken from [48]

Driven supporting rolls
Chain drive, support for
the process forces

\ /) J@mﬁledﬂange

Splitting roll Thickness reduced flange
W) Bent flange

Figure 1.3: Linear bend splitting process, figure taken from [49]

L]] &—© o—O

Figure 1.4: Sketch of the cross-section of an exemplary profile (left) and its
derived graph (right), figures taken from [47]

12 INTRODUCTION

Inspect for example an intersection of degree 3, meaning the meeting of three
line segments or a node of degree 3 in the corresponding graph. There are
ten different possibilities to produce this intersection: two joining operations,
splitting material on either side or bending one side and joining the third. For
a more detailed overview we refer to [52]. The different production steps also
lead to different mechanical behavior of the resulting intersection. A mechanical
analysis was applied to derive a rating of the different possibilities for creating
intersections [52, 101].

These evaluations are used in [52] to calculate an optimal unrolling for a
given profile, meaning an ordered list of steps for the production line, which
results in a profile as close to the given one as possible while also choosing
the best technologies for the intersections. Of course, the main restrictions are
derived from the fact, that the profile should be producible. If these restrictions
do not allow for the production of the profile using one piece of sheet metal, the
algorithm automatically increases the number of allowed pieces as long as it is
lower than a given upper bound. The whole optimization process is based on a
Steiner tree formulation with various additional constraints. The Steiner tree is
chosen in such a way that the tree representing the solution allows for reading
off the calculated unrolling. More details can be found in [52].

The production capabilities of the CRC 666 consisted of one single produc-
tion line, which implies that any profile containing more than one single piece
has to be produced in at least five steps: arrange the production line for the
production of the first piece, produce this piece, rearrange the production line for
the production of the second piece, produce it and finally combine the two pieces.
The rearranging of the production line, or retooling, is a very time consuming
process for two reasons. First of all, the involved machinery is very heavy so that
moving has to be done with cranes. Second, the fine-tuning takes a lot of time
since there are many different parameters to consider. If, for example, there is a
change in measurements for a tool used at the beginning of the production line,
all tools succeeding this have to be changed as well.

1.2 Overview

The complicated retooling process gave rise to the idea to ask for a partition of
the whole profile in order to ensure a minimization of the time needed for the
retooling process. The whole process can of course be circumvented if all the
different pieces are equal because then no retooling is needed at all. In Chapter 2
we therefore study the problem of partitioning a graph into a given number of
subsets such that the induced graphs are isomorphic. We show that this problem
is NP-complete and study graph classes for which this problem is solvable in
polynomial time.

1.3. NoTATION 13

Because we want to specify the number of single pieces, we also have to ensure
that the subgraphs are connected since every connected component corresponds
to a single piece. For example, if the produced profile should consist of three
pieces but each subgraph contains two connected components, the number of
single pieces is six instead of three. This is why Chapter 3 is focused on graph
connectivity. The first part is concerned with the connected subgraph polytope
defined by node sets of a graph, which induce connected subgraphs. We study
the polytope and show complete descriptions of this polytope for special graph
classes. Thereafter, we investigate the polytope resulting from an extension to
also include a partitioning of the nodes. Section 3.3 deals with the optimization
problem ConnecTED Max-K-Cut, which is to partition the graph into connected
components such that the induced cut is maximized, therefore extending on the
theoretical results of the previous sections.

The theoretical inspections from Chapter 3 lead to questions about MIP for-
mulations in general. In Chapter 4 we propose a definition of MIP formulation
including an objective function since this topic is sparse in the literature. Fur-
thermore, we discuss properties of the formulation and show results concerning
the existence or non-existence of such formulations illustrated by examples.

In Chapter 5 we return to the retooling process. Since it is not always possible
to find identical subgraphs in a given graph, we inspect the problem of partition-
ing a graph into isomorphic subgraphs such that there may exist one component,
which is not isomorphic to the others. Optimization is utilized because we want
this non-isomorphic part to be as small as possible. The idea is that in this case
only one retooling step has to be executed and furthermore the additional piece
is small such that it might be produced reasonably fast. Moreover, to minimize
the time needed for the retooling process, it might not be the best idea to inspect
equal pieces but similar pieces. In Section 5.2 we formally define what is meant by
this and present a framework for solving problems in this context. Furthermore,
we give a short overview of the functions we implemented for measuring the
similarity.

Chapter 6 contains a conclusion and an outlook.

1.3 Notation

In this section we give a short overview of notation which is used throughout
this thesis.

To shorten notation, we use [n] for an integer n to denote the set {1,...,n}
and [n], for [n] U{0}. The restriction of a vector a to a subset I of the indices is
denoted by a|;. The restriction of a set S to a subset induced by an index set I is
also denoted by S|;. For a set S, the set of all k-element subsets of S is denoted

14 INTRODUCTION

by (3)-

A partition of a set S is a family of non-empty subsets S;, i € [n] of S with
SinSj=@foralli,je[n]withi=jand S;U---US, =S. Note that we assume
partitions to be ordered, that is, we differentiate between the partitions (S, S5)
and (S;, S1). Furthermore, we use the term subpartition if the empty set is allowed
in a partition.

The unit vector is denoted by e, i.e., ¢; is 1 at index i and 0 otherwise. For
shortening the formulas we use the notation

x(I)= in

iel

for a vector or a function x and a subset of the indices I. If |I| = 1, we also write
x(i) instead of x({i}) for i € I. The incidence vector is denoted by x, that is, for
a subset of indices I it holds that x(I) =) ;c;e; =) iy X(I);. Furthermore, conv
denotes the convex hull.

We assume the reader to be familiar with basic graph theory. There are
numerous textbooks available, for an introduction see for example [32].

Let G = (V,E) be a graph. If V' C V, we write G[V’] for the subgraph induced
by the nodes V', that is, G[V’] = (V',E’) with E" := {{u,v} € V' x V' | {u, v} € E}.
Analogously, we write G[E’] for the graph induced by the edges E’, i.e., G[E'] =
(V,E'Ywith V' :={veV |veewithee E’}.

We denote the neighborhood of a node v by I'(v) and the degree of v by deg(v).
Note that in our case I'(v) does not contain v itself. The complete graph on n
nodes is denoted by K,, and we use the term empty graph for graphs without
edges, i.e., an empty graph G is defined by G = (V,@).

The term k-connectivity always refers to k-node-connectivity, that is, a graph
G = (V,E) is k-connected if G[V \ V’] is connected for every set V' C V with
|V’| < k, where || denotes both the cardinality and the absolute value.

One major problem which appears throughout the whole thesis is Graru
IsomorpHIsM which is defined as follows.

Definition 1.1. Two graphs G = (V,E) and H = (V’,E’) are isomorphic, written
as G = H, if there exists a bijection ¢ between the nodes of both graphs such
that edges are preserved, meaning ¢: V — V’ such that {u,v} € E if and only if

{p(u), ()} € E".

Problem 1.2 (Grapru IsomorpHisM). Given two graphs G and H. Does there exist
a graph isomorphism between G and H?

For recent research activity on the GrRapH IsoMorPHISM problem see for ex-
ample [8]. The complexity of this problem is unknown, the current belief is
that GrapH IsomorpHISM lies strictly between P and NP thereby defining the

1.3. NoTATION 15

complexity class Gl [102]. With this class Gl-complete problems can be defined
analogously to NP-complete problems. If P = NP, it has been shown that so-called
NP-intermediate problems have to exist [80].

Lastly, we define the treewidth of a graph.

Definition 1.3 (Tree decomposition). Let G = (V,E) be a graph. A tree decom-
position of G is a tree T with nodes Xj,...,X,,, also called bags, where each X; is a
subset of V, if the following properties hold

* Ui Xi=V,
* for all edges {v,w} € E there exists an i € [n] with v, w € X;, and

* for all v € V the subgraph of T induced by all X; with v € X; is a subtree of
T, that is, in particular, connected.

The width of a tree decomposition T is the size of its largest bag minus 1, i.e.,
maX;e[,) |Xi| - 1.

Definition 1.4 (Treewidth). The treewidth of a graph G is the minimum width
over all tree decompositions of G.

The treewidth is a graph parameter that often allows for faster algorithms if
it is known that the treewidth of G is fixed. For a survey on treewidth see for
example [16].

Chapter 2

Partitioning into Isomorphic
Subgraphs

In this chapter we inspect the problem of partitioning the nodes of a graph into
a given number of subsets such that the induced graphs on these node sets are
isomorphic. We show in Section 2.1 that the decision problem is NP-complete by
a reduction from a variant of the well-known 3-SAT problem. If the additional
constraint that all subgraphs have to be connected is added, the problem is also
NP-complete. For some particular graph classes though, we show in Section 2.2
that the problems are solvable in polynomial time. Furthermore, we give a
formula for the number of different possibilities to partition a path graph in
Section 2.3.

2.1 Complexity Result

We are interested in the following problem.

Problem 2.1 (PartiTION IsomorpHIsSM). Let G = (V,E) be a graph, K € IN. Does
there exist a partition V1,..., Vi of V such that all induced subgraphs are isomorphic,
that is, G[V;] = G[V] for all i, j € [K]?

Obviously, there can only exist a solution if K divides |V|, which we assume
in the following. Note that isomorphism in particular implies that V; = @ for all
ie[K].

As far as we know this problem has not been studied in the literature but
there are variants which appear, for example in [10]. Here, X = 2 and the aim
is not to partition V but to find two disjoint subsets of nodes which induce

17

18 PARTITIONING INTO ISOMORPHIC SUBGRAPHS

isomorphic graphs with a given lower bound on the number of contained edges.
There it is shown, that this problem is NP-complete. It becomes polynomially
solvable if G and the isomorphic subgraphs are both restricted leading to the
following problem.

Problem 2.2. Given a k-connected graph G with treewidth k and K € IN. Do there
exist V1, V, CV with V| NV, = @ such that G[V] = G[V,] and

* G[Vy] contains at least K edges and
* G[Vy] is k-connected?

In [19] it is shown that Problem 2.2 is solvable in polynomial time. However,
the variant with G[V;] restricted to be at most (k—1)-connected for a k-connected
graph G is again NP-complete [19].

In [110] the so-called k-isomorphism problem is inspected. Graphs G = (V,E)
and G’ = (V’,E’) are called k-isomorphic if there exist partitions E = E; U--- U Ej
and E’ = E{ U---UE, of the edges such that G[E;] = G’[E]] for all i € [k]. For k = 1
the problem is the same as Problem 1.2 (Graru IsomorpHIsM). For k = 2 it is
shown in [110] that the k-isomorphism problem is NP-complete.

The article [75] inspects the problem of partitioning a graph into a prescribed
set of isomorphic parts. For example, a perfect matching can be seen as a
partitioning of a graph G = (V,E) into |V|/2 many complete graphs on two
nodes K. This concept is generalized to more complex parts and the complexity
of the resulting problems is studied.

As Problem 2.1 can be seen as both a partition and an isomorphism problem,
there exist different approaches to this problem. For the former perspective, a
recent overview of the graph partitioning problem can be found in [20]. The
latter perspective leads to similar well-known problems, namely the SusGraPH
IsomorpHIsM and the MaxiMum CoMMON INDUCED SUBGRAPH problem.

Problem 2.3 (SuBGrarH IsomorpHIsSM). Given two graphs G and H. Does there
exist a subgraph G’ of G that is isomorphic to H, i.e., G’ = H?

For a comparison of recent algorithms for solving this problem see for example
[17]. The NP-completeness is shown easily, because if H is a clique or a cycle,
SuBGRAPH IsoMORPHISM is equivalent to either the CLiQUE or the HamiLTONIAN
CycLE problem, also see [27] and [44, Problem GT438].

Problem 2.4 (Maximum ComMmoN INDUCED SusGraPH). Let Gy = (Vy,E;) and
G, = (V,, E,) be two graphs. The task is to find a graph G = (V,E) such that there
exist subsets V] C Vi and V) C V, with G = G[V]] and G = G,[V,] with maximal
cardinality of V.

2.1. CoMPLEXITY RESULT 19

This problem is NP-complete since it includes SuBGraPH [sOMORPHISM, see
also [44, Problem GT49] where it is called LARGest CoMmMON SuBGraPH. This
problem is also discussed in Section 5.2.3. For applications and an algorithmic
overview see for example [37].

Even though both SusGrarH IsomorpPHISM and MaxiMum CoMMON INDUCED
SuBGRAPH seem to be obvious choices for proving NP-completeness of Prob-
lem 2.1, we were not able to find a suitable reduction. Instead, we used a variant
of the well-known 3-SAT problem, that needs the introduction of additional
notation.

Definition 2.5. A Boolean variable is a variable which only attains the two values
TRUE or FALSE. A negation of a Boolean variable x is written as —x. A Boolean
formula is a formula of Boolean variables concatenated by AND (A) or OR (V)
with brackets and negations allowed.

Problem 2.6 (SAT). Let C be a Boolean formula of the Boolean variables X =
{x1,...,x,}. The satisfiability problem SAT is the problem of deciding whether an
assignment to the variables x; exists such that the formula C is evaluated as TRUE.

The famous Cook-Levin theorem shows that SAT is NP-complete [27, 84].

Definition 2.7. A Boolean variable or its negation in a Boolean formula is also
called a literal. A clause is an expression formed by finitely many literals concate-
nated by a conjunction or disjunction (AND, OR, respectively). In our case, we
are interested only in disjunctive clauses, i.e., clauses connected by OR, which is
why we omit the term disjunctive in the following.

Problem 2.8 (3-SAT). Let C := ¢y Acy A-+-Acy, be a Boolean formula of the clauses c;
with |c;| = 3 for all i € [m] containing literals of the Boolean variables X = {x1,...,x,}.
The problem of deciding whether an assignment to the variables x; exists such that the
formula C is evaluated as TRUE is called 3-SAT.

3-SAT is also NP-complete as shown in [74]. Furthermore, the following
restriction of 3-SAT is NP-complete [100].

Problem 2.9 (1-1N-3-SAT). The problem 1-1N-3-SAT is the special case of 3-SAT
in which the task is to find an assignment for the variables such that every clause
contains exactly one TRUE-literal.

This allows us to finally state the SAT variant used for the NP-completeness
proof of Problem 2.1.

Problem 2.10 (2-1n-4-SAT). Let C := ¢y Acy A+ A ¢y, be a Boolean formula of
the clauses c; with |c;| = 4 for all i € [m] containing literals of the Boolean variables
X = {x1,...,x,}. Is there a truth-assignment to the variables x; such that every clause
c; is fulfilled with exactly two TRUE-values?

20 PARTITIONING INTO ISOMORPHIC SUBGRAPHS

Corollary 2.11 ([10]). 2-1N-4-SAT is NP-complete.

Proof. Reduction from 1-INn-3-SAT by adding a new TRUE-variable to every
clause. O

Note that —=C defined from C by negating every literal in every clause is also
a 2-1N-4-SAT instance. This fact is the central idea for the NP-completeness proof
of Problem 2.1.

The following lemma shows that even a restricted form of 2-1n-4-SAT is
NP-complete.

Lemma 2.12. The following restricted version of 2-1N-4-SAT is still NP-complete:
* No clause contains a variable both in negated and non-negated form.
* No clause contains a variable twice.

Proof. In the first case, a clause (x V —xV aV b) can be replaced by the two clauses
(xVyVvavb)and (xVxVyVy) after introducing another variable y ¢ X. The
second clause be can interpreted as x = —p.

In the second case, one can introduce three additional variables z;, z, and
z3 and replace the clause avaVvbVvcby z; VaVvbVcand add the following six
clauses:

—aV -z VzVzs,
—aVzV-azyVazs,
—aVzyVzV-azs,
avV -z V-azVzz,
aV -—zyVzyV-zs,

avVvziV-azyV-azs.

Basically, these formulas imply a = z; = 2z, = z3.
Note that both these constructions are in polynomial time and the size of the
resulting 2-1N-4-SAT instance is also polynomial. O

The first statement already appears in [10], where (x V —x V a V D) is replaced
by (xV-yVaVb)A(-xVyVaVhb).
With this we can finally state and prove the main theorem of this chapter.

Theorem 2.13. Problem 2.1 is NP-complete for K = 2.

Proof. The proof is done by a reduction from Problem 2.10 which uses multi-
graphs. Note that Graru IsomorpHISM on multigraphs is Gl-complete [111] and
therefore using multigraphs does not increase the complexity.

2.1. CoMPLEXITY RESULT 21

The multigraph G = (V, E) is defined from a given 2-I1n-4-SAT instance in the
following way (nomenclature used from Problem 2.10):

. 1 _ 1 4 _ 41 h '
Voi={c1, 21 Copy o} UK, x50, X7, - | X €cii=1,...,mb =1,2,3,4},

meaning there are two nodes for each clause, corresponding to the original clause
and to its negation, respectively. There are also two nodes for every variable
in every clause, meaning eight nodes per clause. Due to Lemma 2.12, we may
assume that the variable nodes are pairwise different.

The edges E are defined by joining a clause ¢; with 2i — 1 edges to all the
contained literals and 2i edges to the negation of every contained literal. Whereas,
for the complement clauses —c;, the role is reversed: Clause i is connected with
2i —1 edges to every negation of a literal and 2i edges to every contained literal.
Additionally, every variable xf-’ is connected to its negation —ocf-l by 2m +i edges.
If any variable appears in at least two clauses, it is connected to every negation
of it by 3m + i edges, see Figure 2.1 for an example, where a number displays the
cardinality of edges. More formally,

E:={(2i = 1){c;,a;},(2i = 1){=ci,aj} | ¢; = (ay Vay VazVag) €C,j=1,2,3,4}
U {2i{ci,—|aj}, Zi{—\Ci, —wlj} | c; = ([11 VayVazV Ll4) € C,] =1,2, 3,4}

Ul(2m+i){xt, x| xl e e, h=1,2,3,4)

U(3m+i)x",) |) = 2120 < oy, € (1,2,3,4)
where i{j, k} indicates that there are i edges between j and k. Furthermore,
we introduce two additional nodes even if the variable appears before, that is,
we have four variable-nodes in G even if x; is an element of both ¢; and c¢,.
Additionally, if the nodes x?l and x;'z both correspond to the same variable, we

write x?l = x™. Note that there are 10m nodes and O(m?) edges in G (since

n < 4m, which implies n € O(m)) such that G can be constructed in polynomial
time.

We first deduce a truth-assignment from a given solution to Problem 2.1. Let
there be a partition V;, V, of V such that G[V;] = G[V,] with isomorphism ¢. The
construction of G implies that nodes xf’ and —-xf’ cannot be in the same partition
since there is no other node pair in G connected by exactly 2m + i edges. The

. .o h h h .
same argument is used to show that if xi1 = sz, then xi1 cannot be in the same

partition as —oc;’z because those nodes are connected by 3m +i edges.
Remember that |c;| = 4 and because of Lemma 2.12 ¢; is therefore connected to

eight different nodes in G . If ¢; is in V7, it follows that c; is connected to exactly

four variable-nodes in V; and the remaining four neighbors of ¢; are in V,. The

22 PARTITIONING INTO ISOMORPHIC SUBGRAPHS

Figure 2.1: Graph created from the Boolean formula ¢ = x; V =X, V x3 V xy,
where the numbers on the edges represent the number of multiple edges and
the superscript h is removed since there is only one clause. Note that this way
there do not exist edges between a variable and a negation of one appearing in a
different clause.

number of edges to every node is unique, see Lemma 2.12, and the only other
node in G with the same number of edges is —c;. Therefore, ¢(c;) = —c;.

Let ¢; =(aV bV cVd)be aclause. The node ¢; has to be connected to exactly
two of the literals a,b,c or d in V; because otherwise it cannot be mapped to —c;
by the isomorphism: If ¢; is in the same partition as 4, b,c and —d, then —¢; is in
the same partition as —a, b, —c and d. But then c; has degree 3-(2i —1)+1- 2,
whereas —c; has degree 1-(2i — 1)+ 3-2i, which would be a contradiction to the
isomorphism. The cases that c; is connected to 0, 1 or 4 nodes of 4, b, c and d are
analogous.

That means for every clause c; = (aV bV cV d) € V] if we set both literals that
are in V; to TRUE and the other two to FALSE, the clause ¢; contains exactly two
TRUE and two FALSE literals. Therefore, if an isomorphism ¢ exists, there also
is an assignment for the variables such that the given 2-1n-4-SAT instance can be
evaluated as TRUE. The same result can be achieved by choosing all variables
that are in V, resulting in the negation of those in V;. Because it holds that for
every variable xf’ its negation —ocf’ is not in the same set, meaning xf’ € Vi implies
—ocf’ € Vy for k, £ € [2], k # ¢, this assignment is correct.

To show the reverse direction, that is, creating a solution to Problem 2.1 from
a solution to a given 2-1N-4-SAT instance C, assume there exists an assignment
such that C can be evaluated as TRUE. Let ¢; = (a;1 V 4;2 V a;3 V a;4) be a clause
where w.l.o.g. a;; and a;, are the two TRUE variables. Note that Lemma 2.12

2.1. CoMPLEXITY RESULT 23

implies a;; # a;,. Define V; as follows

V= UCI' Uaji UajrU—ajzU-djy,

1

that is, V; contains all clause nodes and all the nodes which are TRUE along the
two nodes which are FALSE. Notice that in particular for every variable x € V;,
its negation —x is not in V. Define V, as the complement, thatis, V, := V' \ V; as
well as ¢(c;) := —¢;. In the following we show that ¢ can be completed to be an
isomorphism (also containing the nodes corresponding to variables).

The node ¢; = (a;; Va;p VajzVajy) € Vq is connected to exactly two nodes
corresponding to TRUE, w.l.o.g. a;; and a;,. In particular, this implies that a;3,
a;4 € V,. Defining the isomorphism additionally by ¢(a;1) := a;3 all 2i — 1 edges
from ¢; to a;1 in G[V;] correspond to the 2i—1 edges between a;3 and —¢; in G[V,],
meaning for every edge (c;,4;1) in G[V;], the image (¢(c;), ¢(a;1)) = (=ci,a;3)
is an edge in G[V,]. Similar arguments hold for a;,. Since x; € V| implies
—-x; € V,, no edges exist between a variable and its negation in V;. The same
argument shows that the 2i edges (c;, —a;3) are also corresponding to the 2i edges
(d(c;), p(—ai3)) = (—c;, majp) in G[V;] as well as the case of (c;, —ajg).

Thus, we have shown that for all nodes u,v € V; the number of edges {u, v}
is the same as the number of edges in the image of ¢, i.e. {¢(u), p(v)}. This in
particular means that ¢ defines an isomorphism. O

As we have seen in the introduction, connectedness of the subgraphs is
essential for the retooling problem. This is why we study the extension of
Problem 2.1 by the additional constraint of connectedness.

Problem 2.14 (CoNNEcTED PARTITION IsomorPHISM). Let G = (V,E) be a graph,
KC € IN. Does there exist a partition V1,..., Vic of V such that all induced subgraphs
are connected and isomorphic, i.e., G[V;] = G[V;] for all i,j € [K]?

Corollary 2.15. Problem 2.14 is NP-complete even for IC = 2.

Proof. We can use the same proof as of Theorem 2.13 after adding the tautologies
x; V =x; V x; V —x; for all pairs i # j and applying Lemma 2.12. The tautologies
ensure that the resulting subgraphs are connected. O

Remark 2.16. For particular values of IC, Problems 2.1 and 2.14 are easy to solve,
namely K = 1,1/2,n. In the first case, there is only one set in the partition, which
therefore is the whole graph and in the last case every set of the partition contains
a single node. In the second case, every subgraph contains exactly two nodes.
Then either the nodes are connected or not. If they are connected, Problem 2.1
can be answered positively if G contains a perfect matching. This question can be
answered in polynomial time, for example with Edmond’s blossom algorithm [36].

24 PARTITIONING INTO ISOMORPHIC SUBGRAPHS

Furthermore, for simple graphs G = (V, E) without loops, let the complement G
of G be defined by G = (V,E) with E := {{u,v} € V x V | u = v, {u,v} € E}. Solving
Problem 2.1 in G with pairwise non-adjacent nodes is equivalent to finding a
perfect matching in G and is therefore also solvable in polynomial time.

Remark 2.17. It can be shown that in general the graphs appearing in the proof
of Theorem 2.13 are not planar. Let B:=(a; Vay VazVag)A(a; Va,VasVay)
be a Boolean formula. If we apply the construction of graph G from the proof
of Theorem 2.13, select only one of the parallel edges and contract the edges
between a;1, a;, and —a;1, —a;, for i = 1,2, 3,4, the resulting graph is isomorphic
to the complete bipartite graph K4 which in particular includes K3 3. Thus,
with Wagner’s theorem [106] the graph G is not planar. Therefore, the question
whether Problem 2.1 is NP-complete for planar graphs cannot be answered using
the construction from the proof of Theorem 2.13.

2.2 Polynomial Time Solvable Graph Classes

Even though we have shown that Problems 2.1 and 2.14 are NP-complete, there
are graphs classes where these problems are solvable in polynomial time for all
values of K. This is easy to see for complete or empty graphs. For the former,
every subset of size k := |V|/K induces a complete graph on k nodes, which
implies the isomorphism as well as the connectedness. The empty graph can of
course in general only solve Problem 2.1, where connectedness is not a constraint.
In this case, all induced graphs are also empty and hence isomorphic.

This section shows polynomial time solvability for trees, outerplanar and
Turan graphs.

The following proposition inspects the case of G being a tree. It is shown that
the restriction of subgraphs to the same size suffices for solving Problem 2.14
without the isomorphism constraint.

Proposition 2.18. Let G = (V,E) be a tree and let K € IN. Partitioning V into K
subsets V1,..., Vi of the same size such that G[V;] is connected for every i € [K] has a
unique solution if it exists. Furthermore, this solution can be found in linear time.

Proof. W.l.o.g. assume K > 2. For the sake of contradiction assume there exist
two different solutions Sy,...,S¢ and Tj,..., Tx. Let Gg be the graph resulting
from contracting all edges of G[S;] for every i € [K]. Note that Gg is a tree on the
nodes S; and define Gy as the contraction of edges in G[T;] accordingly. Let S, be
a leaf of Gg and let e € Gg be the edge connecting S, to a node from Gg. Note that
e has a corresponding edge in G since it was not contracted in the construction
of GS .

Assume that there exists a j € [K] with e € G[T;]. As a result of S| = |Tj], there
exists a node q € S¢ with q T;. Any path from q to a node in G\ S, contains the

2.2. PorynoMiaL TIME SOLVABLE GRAPH CLASSES 25

edge e since the path from one node to another is unique in a tree. This means
there cannot exist an index k with g € Ty, |Tx| = |S¢| such that T is connected,
which contradicts the assumption.

Therefore, there does not exist an i € [K] with e € G[T;]. This implies that
there has to exist a j € [K] such that Sy = T; because of the size restriction. This
shows that the subsets of nodes corresponding to leaves of Gg and Gt are equal.
After removing the leaves from both trees, the same argument can be used again
to show that the whole partitions are equal by iteratively removing leaves. This
contradicts the assumption and therefore proves the statement.

If at least two nodes have to be in one partition, it is clear that every leaf has
to be in the same partition as its neighbor. Contracting the corresponding edge
and proceeding iteratively results either in the unique solution or in the result
that no solution exists. This method thus finds the solution (if it exists) in linear
time. O

Corollary 2.19. Problem 2.14 can be solved in time O(nk) for trees.

Proof. If the components have to be isomorphic, they in particular have to have
the same size and hence Proposition 2.18 applies. Thus, Problem 2.14 can be
solved by first finding a partition via the above procedure and then checking the
resulting partitions for isomorphisms. Since GraprH IsomorPHIsM for trees can be
answered in linear time [1] and has to be called K times, Problem 2.14 can be
solved in time O(nk). O

Obviously, trees are graphs of treewidth 1. In fact, a graph with at least two
nodes has treewidth 1 if and only if it is a tree. For K = 2 we can show how to
solve Problem 2.14 on a special graph class, that has treewidth 2, the so-called
outerplanar graphs.

Definition 2.20 (Outerplanar graph). A graph G is outerplanar if G has a planar
drawing such that all nodes belong to the outer face.

Proposition 2.21. If G is an outerplanar graph and K = 2, Problem 2.14 can be
solved in time O(n?).

Proof. W.l.o.g. we may assume that all nodes lie on a fixed circle and all edges
lie inside this circle and do not intersect. Let the nodes be ordered consec-
utively on the circle vy, vy,...,v,_1. A set of nodes W is called consecutive if
W = {v;,vis1,...,Vjw+i-1}, where the indices are considered modulo n. The set
W is called maximal consecutive if there does not exist a consecutive set W’ with
W 2 Wand [W|+1=|W|.

Let V; UV, be a partition of V such that both V; and V, consist of at least
two different sets of maximal consecutive nodes. Because the edges of G lie only
inside the circle and do not intersect, G[V;] and G[V,] cannot be both connected.

26 PARTITIONING INTO ISOMORPHIC SUBGRAPHS

This implies that in order to solve Problem 2.14 at least one of the sets V; and V,
has to be consecutive.

Assume w.l.o.g. that V; is consecutive. There exist n/2 possible solutions for
V1 because V; contains n/2 nodes implying the symmetry of V; and V, =V \ V;.
Since Gl can be solved in linear time for planar graphs [59], Problem 2.14 can be
solved in time O(n?) by checking every possible solution. O

Note that since trees are in particular outerplanar, the above idea can also
be applied to trees resulting in the same running time as in Proposition 2.18,
however, only for K = 2.

Since outerplanar graphs have treewidth at most 2, both results Corollary 2.19
and Proposition 2.21 are restricted to graphs with bounded treewidth (as are
empty graphs). Besides the already mentioned complete graphs, the so-called
Turan graphs do not share this restriction.

Definition 2.22 (Turan graph [105]). The Turdn graph T(n,r) is a complete
multipartite graph on n nodes. The r subsets are sized as equal as possible, that
is, T has n mod r subsets of size [n/r] and r —(n mod r) subsets of size | n/r]. Two
nodes are connected if and only if they belong to different subsets.

To show that Problems 2.1 and 2.14 are solvable in polynomial time for Turan
graphs, we construct one possible solution. In order to prove the correctness of
this solution, we first need the following technical lemma.

Lemma 2.23. Let a; be a sequence of length n with ordered values, that is, a; > a;,4
forall i € [n—1], such that consecutive entries differ in at most one position by exactly
one, i.e., a; = aj,1 +1 for at most one j € [n—1]. Let b; be a sequence with the same
properties. Furthermore, let the element-wise difference be c; := a; —b;,i € [n]. The
entries c; differ by at most one, that is, |c; —c;| < 1 for all i, j € [n].

Proof. Let a = max{a;}, b = max{b;}, a = min{a;}, and b = min{b;}. W.Lo.g. we
can assume @ # 4 and b = b because the statement is trivially fulfilled otherwise.
The only possibility for generating a difference of at least two is if two indices
k,¢ € [n] exist such that ¢, =a—b and ¢, = a— b. But this is not possible due to
the order of the sequences. O

Theorem 2.24. It is possible to partition the nodes of T(n,r) into KC subsets such that
the induced subgraphs are isomorphic. The induced subgraphs are always connected,
which implies the solvability of Problems 2.1 and 2.14.

Proof. Let n = Ku, i.e., there are u nodes in every subgraph. We assume an
ordering of the subsets of T(#,r) such that the subsets are ordered by size, that
is, the first p subsets are of size m + 1 and the last g subsets are of size m, where
p(m+1)+qm = n (see Definition 2.22). Any partition of the nodes can now be

2.2. PorynoMiaL TIME SOLVABLE GRAPH CLASSES 27

described as a vector v in INP*1 with the meaning of taking v; nodes of subset i.
This suffices because it does not matter, which nodes are chosen from a subset
since all nodes of a subset have exactly the same neighborhood.

Two induced subgraphs are isomorphic if they correspond to permutations
of the same vector because of the symmetry of T(#,r). Thus, it suffices to find K

vectors v/ with Zf;rf vf = u for all j € [K] that are permutations of each other and
add up to the vector s:= (m+1,...,m+1,m,...,m) e INP*4,
Let v! be the vector defined by

(UJ%HPMMJ)

where ceiling- and floor-functions are used such that the entries add up to u.
Note that this does not necessarily imply that the first p entries are rounded up
and the last q are rounded down.

By using Lemma 2.23 it is clear that s —v! contains only entries that differ by
at most one. Adding up the entries of s —v! results in a number that is divisible
by u since p(m+1)+gm =n=uk and Zf:lq v} = u. Since the entries of v! differ by
at most one, it is possible to find v? as a permutation of the entries of v! such that
s —v! —v? contains only entries that differ by at most one. To see this, s — v! may
be ordered and s can be replaced by s —v! to use Lemma 2.23 again. As before
s—v! —v? is still divisible by u. Let vi,i=3,...,K be defined accordingly. Then
s— Z;-C: L v/ = 0 because the properties of divisibility and of maximal difference of
one are maintained within the process.

When choosing at least two different subsets, the induced graphs are con-
nected because of the definition of Turan graphs. This means that induced
subgraphs are only disconnected if at least two nodes are chosen from the same
subset and none of the others. Since by the definition of v/ this does not happen,
all solutions are connected. For K = n the partitions contain exactly one node

and are therefore also connected. O

The above partition derived from vectors v/ can be found in linear time and
thus Problems 2.1 and 2.14 can be answered in constant time.

Note that the result from [19], which shows the polynomial time solvability of
Problem 2.2, does not only rely on bounded treewidth but also on a restriction of
the graphs that have to be isomorphic. In our case it is not known if Problems 2.1
and 2.14 can be solved in polynomial time if the treewidth is bounded. However,
as shown above an unbounded treewidth does not automatically lead to NP-
complete problems.

It is clear that the partition given in the proof of Theorem 2.24 is not the
only possible solution. For example T(6,4) can be partitioned into two T(3,3) or
into two T'(3,2) (the proof uses the first case). It is an interesting task to find the

28 PARTITIONING INTO ISOMORPHIC SUBGRAPHS

number of non-isomorphic partitions of T(n,r) into K parts. In the next section
we examine this problem on the much simpler path graph.

2.3 Combinatorics on the Path Graph

The previous section deals with a decision problem and thus we are only in-
terested in whether a solution exits or not. Even tough we have shown NP-
completeness, the problem is easier when restricted to special graph classes. If
for example G is the complete graph on n nodes, Problem 2.1 can be solved
directly. Because every induced subgraph is obviously connected, Problem 2.14
does not differ from Problem 2.1 for complete graphs.

Since the decision problem is easy to solve, one question that follows naturally
is how many different solutions there are. For complete graphs all subsets
of size n/K induce isomorphic graphs. This implies that the number of non-
isomorphic solutions is 1. Obviously, the above also holds for the empty graph if
connectedness is not an additional constraint.

In the following we inspect the case where G = (V,E) is a path on n nodes,
that is, if V ={1,...,n}, the edges are E = {{i,i+ 1} |i € {1,...,n—1}}. The formal
statement of the problem is then the following.

Problem 2.25. How many different solutions are there for Problem 2.1 for given
K € N if G is a path on n nodes?

This problem is answered by an explicit formula, which first needs one
additional notation.

Definition 2.26. Given an integer 7, let p denote a partition of r into a sum of
positive integers, for example 5=4+1 or 5 =2+ 2+ 1. Or more formally, p is
a sequence py,...,pg of positive integers such that) p; = r. We want to write
a partition in a form where every integer used in the partition is given once
and the number of occurrences in the partition is written in superscript, that
is, 5 = (41,11) and 5 = (22,11), respectively for the examples above. As usual
and for our purpose the order does not matter. This description is similar to the
frequency representation, see, e.g., [6].

If a given partition p = (u;"l,a;nz,. . .,a;nq) is written as a sum, the number of
different possibilities to arrange the numbers g; in this sum is

= . (2.1)

my+my -k mp\[my ot mg\ (mg\ (my+my e mg)!
mylmy!..mg!

mq my mq

Before the formula can be stated, one last theorem is needed.

2.3. COMBINATORICS ON THE PATH GRAPH 29

Theorem 2.27 ([38]). Given k classes of elements with s; identical objects in the i-th
class, the number of sequences of length s +--- + s; which consist of these elements
and in which no two objects from the same class are adjacent is given by

k-1 s;

i=1 j;=1
k-1
1 st—l)
x —°
I_I[]t!(]t—l

t=1

14+ o1 + 1), .
(]1 Sk]’”)(11+---+Jk_1)!-

With this we can finally state the result for answering Problem 2.25.

Lemma 2.28. Let A(n,K) denote the number of possibilities stated in Problem 2.25
ignoring possible interchanges of classes. Then,

oo]C
AmK)= Y ((m1+m2+ +mq)!) M(sp,50,050), (2.2)

my!lmy!.. omg!
p partition of & 12 q

where p = (aTl,a?z,...,a;nq) and sy =sy =+ =s = Z?:l m;. If n/KC ¢ IN, this sum is
empty, and in particular, A(n,KC) = 0.

Proof. Every subgraph of the path G is a path or the union of paths. The sub-
graph of G induced by a subset of the nodes can therefore be described by the
length of every connected component. This description also suffices for deciding
isomorphism. Hence, to describe the induced subgraphs, we can also use parti-
tions of integers, and two subgraphs are isomorphic if and only if they can be
represented as the same partition. Thus, there exist solutions for every integer
partition of n/KC, which explains the sum.

Letp = (a’lnl, ung, . a;nq) be a partition. Since in every solution to Problem 2.1
the K partitions have to be of equal size, the number of solutions to arrange
one partition has to be raised to the K-th power to account for all different
arrangements of all these partitions. As the number of these arrangements is
stated in (2.1), this results in the coefficient of M(sy,...,sx) in (2.2).

This only explains the number of possibilities to arrange the elements in one
partition ignoring the arrangements of elements of different partitions. This is
remedied by the factor M(sy,...,sx) from Theorem 2.27. Note that two different
elements from the same partition cannot be adjacent since that would change
their size. If for example two subgraphs of the same partition are adjacent, one
of length 2 and the other of length 3, they do not form two separate subgraphs,
but one of length 5. O

30 PARTITIONING INTO ISOMORPHIC SUBGRAPHS

Remark 2.29. Equation (2.2) does not count the number of different isomor-
phisms, but only the number of different partitions. Every connected component
consisting of one node can be mapped via one isomorphism to another com-
ponent with one node. For every component consisting of two or more nodes,
there are exactly two possible isomorphisms because the subgraphs are all paths.
Equation (2.2) can be modified accordingly.

Remark 2.30. Note that the solutions are symmetric as the partition classes
can be changed without changing the solution. Equation (2.2) can be changed
easily to remedy this fact by dividing M by K! since there are K! possibilities for
exchanging the partition classes.

Remark 2.31. There is no explicit formula for the number of integer partitions but
many different approximations or schemes for calculating the number explicitly
are known, see for example [63, Sequence A000041].

Chapter 3

Connected Subgraphs and
Partitioning into Connected
Subgraphs

The difference between Problem 2.1 (PartiTioN IsomorprHIsM) and Problem 2.14
(ConNNECTED ParTITION IsomoORrPHISM) from the previous chapter is the additional
constraint of graph connectivity, which is the main focus of this chapter. First, we
inspect the polytope that is defined by subsets of nodes that induce a connected
subgraph in Section 3.1. After a recollection of known results from the literature,
we introduce new facet-defining inequalities in Section 3.1.1. In the subsequent
sections we show complete descriptions of the connected subgraph polytope for
cycles, complete bipartite graphs and for the case that exactly one node and one
edge are added to a graph in Sections 3.1.2 to 3.1.4, respectively.

Section 3.2 deals with the problem of partitioning a graph into at most K
components such that induced subgraphs are connected for a given integer K. In
Section 3.2.1 we analyze the polytope that is defined by subpartitions, that is, only
a subset of the nodes is partitioned. In the succeeding section, we enforce every
node to belong to one partition and also examine the corresponding polytope.

The last part, Section 3.3, introduces the ConnectED Max-K-Cut problem,
which is defined by maximizing the weight of edges between the K different
partitions, which each induce connected subgraphs. We present our implementa-
tion for solving the problem based on the framework SCIP and show numerical
results.

31

32 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

3.1 The Connected Subgraph Polytope

In this section, we analyze the connected subgraph polytope associated with a
given graph G, which is defined as follows.

Definition 3.1. The connected subgraph polytope for a given graph G = (V,E) is
defined as

P(G) := conv({x(V’) €{0,1}V | V' C V, G[V'] is connected}).

Example 3.2. The connected subgraph polytope of the complete graph on n nodes
K,, is the n-dimensional hypercube. This can easily be seen as every subset of nodes
induces a connected subgraph.

Example 3.3. The connected subgraph polytope of the empty graph on n nodes is the
n-dimensional simplex because the only non-zero points in P(G) are the unit vectors.

The connected subgraph polytope has been studied amongst others in [3, 4,
108]. The authors of [78, Theorem 3.6 on p. 168] give a full description of P(G)
if Gis a tree (see also [108, Theorem 4]). To state this description, we need one
more definition.

Definition 3.4 ([78, p. 168]). Given an undirected graph G = (V,E), a vector
d € RV is said to be an indegree vector if for some orientation D = (V,A) of G,
the indegree of each node v is d,,. For each indegree vector d of G, there is a
corresponding indegree inequality:

Z(l—dv)xvs 1. (3.1)

veV
The validity of indegree-inequalities follows from [108, Lemma 11].

Theorem 3.5 ([78, Theorem 3.6 on p. 168]). If G = (V,E) is a tree, the following
holds:
P(G)={xeRY | x, > 0, x satisfies all indegree inequalities).

Furthermore, each indegree inequality induces a facet.
In [3, 4] the inspected polytope is studied for directed graphs, which may

be rooted. There, the focus lies on different MIP formulations for the MaxiMmum
WEeIGHT CONNECTED SUBGRAPH problem, which can be stated as follows.

Problem 3.6 (Maximum WEIGHT CONNECTED SUBGRAPH). Given an undirected
graph G = (V,E) and a weight function w: V — R on the nodes. Find a subset
V'’ C V with maximal weight such that G[V’] is connected.

3.1. THE CONNECTED SUBGRAPH POLYTOPE 33

Problem 3.6 is NP-hard even if the weights are restricted to +1,-1 and G is
planar with degree at most 3 [66]. In [34] it is shown, that for undirected graphs,
Problem 3.6 is equivalent to the PricE-COLLECTING STEINER TREE problem:

Problem 3.7 (Price-CorLLECTING STEINER TREE). Given a graph G = (V,E) with
edge and node weights, wg: E — R and wy: V — R, respectively. The node weights
are non-negative, and the edge weights are non-positive. Find a subtree T = (Vr,Er)
such that the sum of wg(Etr) and wy (Vr) is maximized.

This problem has been studied, especially computationally, for example in
(40, 85].

In [15] a related polytope has been studied, where the edges induce a con-
nected graph:

Pe(G) := conv({x(E’) € {0,1})F | E’ C E, G[E’] is connected}). (3.2)

The connection between the polytopes P(G) and Pg(G) is given through the line
graph.

Definition 3.8. Given a graph G = (V,E), the line graph L(G) = (E,E’) of G has
node set E and two nodes in L(G) are adjacent if the corresponding edges in G
have the same endpoint, that is, they are adjacent.

Thus, the results of [15] only hold for P(G) if G is the line graph of a graph.
It is known, that line graphs can be characterized by forbidden subgraphs [13].
This implies, that the results from [15] do not necessarily hold for these forbidden
subgraphs or supergraphs containing them. If the results from [15] apply in the
following, it is explicitly mentioned.

A concept that is used frequently in the context of connectedness, is the
following.

Definition 3.9 (Separator). Let G = (V,E) be an undirected graph. For two
distinct nodes u# and v in V with {u,v} € E, a subset N C V \ {u,v} is called an
u-v-node separator if and only if there is no path from u to v in G[V\N]. A
separator N is minimal if N \ {w} is not an u-v-node separator for every w € N.
Note that we leave out the term node if it is clear from context. Let ' (u,v) be the
set of all minimal u-v-separators.

Let G=(V,E) be an undirected graph and define the following inequalities:
x, >0, veV, (3.3)

x, <1, veV, (3.4)
X(N)=x,+x,-1, {u,v}e(‘zl), {u,v} 2 E, N € N(u,v). (3.5)

34 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

With this, it is obvious that the connected subgraph polytope P(G) can also be
defined by:
P(G) = conv({x € Z" | x fulfills (3.3) to (3.5)}),

see also [22]. Note that is sufficient to use the minimal separators, as these
inequalities dominate the inequalities which use normal separators.

Connectivity can also be modeled in different ways, e.g., by using extended
formulation based on flow formulations, for more details see Section 3.3. In [108]
one such possibility is presented using a multicommodity flow.

3.1.1 Facets

In this section, we introduce facet-defining inequalities for P(G) and some of
their general structure. Lemmata 3.10 to 3.12 and 3.14 are known from [108].
Nevertheless, we include them here for completeness and we give alternative
proofs for Lemmata 3.12 and 3.14. Furthermore, the ideas are used in the proof
of Lemma 3.16, which is a generalization of Lemma 3.14.

Basic Results
Lemma 3.10. The polytope P(G) is full-dimensional, e.g., dimP(G) = |V|.

Proof. Every solution containing only one node is in P(G): e, € P(G) forallv e V.
Also, the empty solution is in P(G): x(@) € P(G). O

Lemma 3.11. Inequality (3.3) is facet-defining for P(G

Proof. Consider v € V. Every vector e, with w € V' \ {v} fulfills] e,, = 0 and lies
in P(G) as does the empty solution x(2). O

Lemma 3.12. Inequality (3.4) is facet-defining for P(G) if and only if G is connected.

Proof. The case with |V| =1 is obvious, therefore we only prove the case with
|V|> 1. We start with the direction “<” and consider v € V. Since G is connected,
there exists a spanning tree T containing v. The incidence vector x(T) is in P(G)
and x(T), = 1.

As a tree on more than one node always contains at least two leafs, we can
find a leaf w in T with w # v. Let T, be the tree that is created by removing
w and its incident edge from T. Its incidence vector is also in P(G) and it is 1
at position v: x(T,,) € P(G) and x(T,), = 1. The process can be repeated until
there is only the node v left. These |V|—1 vectors x(T,) and x(T) are affinely
independent, which proves that (3.4) is facet-defining for P(G) if G is connected.

On the other hand, if G is not connected and w is a node that is in a different
connected component than v, the inequality x,, + x, < 1 is feasible for P(G).

3.1. THE CONNECTED SUBGRAPH POLYTOPE 35

Together with —x,, < 0 this inequality adds up to x,, < 1, which thus implies that
(3.4) cannot be facet-defining. O

To prove that minimal separator inequalities are also facet-defining, the
following property of minimal separators is needed. This lemma first appeared
in [45] as an exercise but since we did not find any proof in the literature, we
include it here for completeness.

Lemma 3.13. The set N C V is a minimal u-v-separator of a graph G = (V,E) if and
only if every path from u to v contains a member of N and for every w € N there exists
a path P from u to v with PN N = {w}.

Proof. We start with the direction “<”. If there is a path P from u to v with
PNN =@, then N cannot be a separator. Let w € N be a member of the separator.
If for every path P from u to v with w € P it holds that |[P N N| > 2, then N \ {w}
also is a u-v-separator contradicting the minimality of N.

For the other direction assume that there exists a path P, from u to v with
P, NN = {w} for every w € N. If N is not minimal, there exists an element
w € N such that N \ {w} is a separator. But then the path P, connects u and v
in G[V \ (N \ {w})] which is a contradiction to the assumption that N \ {w} is a
separator. O

To simplify the notation we introduce the following two definitions. If N
is a separator in G = (V,E), the set C, C V denotes the connected component
containing v in V \ N. Note that we leave out the separator N, meaning C, =
Cy(N). A set S is tight for an inequality a Tx < g if x(S) fulfills that inequality
with equality, that is, a7 x(S) = B.

Lemma 3.14. Inequality (3.5) is facet-defining for the polytope P(G) for a connected
graph G = (V,E) if and only if N is a minimal u-v-separator.

Proof. We first show that (3.5) is facet-defining for P(G) by constructing |V/|
affinely independent tight solutions for (3.5).

Let u,v € V be two different nodes with {u,v} ¢ E and N € N (u,v) be a
minimal u-v-separator. There exists a spanning tree T in C,, since C,, is connected.
As in the proof of Lemma 3.12 we can find spanning trees T; which contain u. The
|C,| vectors x(T) and x(T;) are affinely independent. The connected component
C, can be treated analogously.

For every node w € N there exists a path P, from u to v containing only nodes
from C,, C, and w since N is a minimal separator and hence Lemma 3.13 applies.
All the vectors x(P,) are affinely independent for different w € N.

Every spanning tree T of C;, b€ V\ (C,, UC, UN) is connected to a node w
in N. Let ¢ be a node in T that is adjacent to w. The vector x(P,)+ x(T) is in

36 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

P(G). As above, we can find trees T; that contain the connecting node c such that
X(P,)+ x(T;) lies in P(G). All these solutions are affinely independent.

Together, this amounts to |V| affinely independent feasible solutions which
are tight for (3.5), thus (3.5) is facet-defining.

On the other hand, if N is not a separator, there exists a path P from u to
v in G[V \ N] since G is connected. Thus, Inequality (3.5) is not valid since
X(P) is feasible, PNN =@ and x, +x, — 1 =1 > 0 = x(N) if we insert x(P) into
(3.5). Furthermore, if N is not minimal, there exists a node w € N such that
N’:= N\ {w} is a separator. Since x(N’) > x,, + x, — 1 is valid and together with
Xy > 0 adds up to (3.5), it cannot be facet-defining. O

Further Results

As a next step, we want to generalize Inequality (3.5). If (3.5) is written in
the form aTx < B, it holds that a contains exactly two positive entries. In
the following generalization a may contain a larger number of positive entries.
In order to describe this generalization, we first have to introduce additional
notation.

Definition 3.15. Let G =(V,E) be a graph and U be an independent set of nodes
in G. Define N; as an U-separator if the graph G’ = G[V \ Ny] is disconnected
and u and v are in different connected components for every pair u,v € U,u # v.
Note that if |U| = 2, this definition is equal to the u-v-separator defined in
Definition 3.9.

For every independent set U define the following inequality:
x(U)-1<(JU|-1)x(Ny). (3.6)

Note that in case of |U| = 1, Inequality (3.6) is equivalent to (3.4) and for |U| =2
it is equal to (3.5).

Lemma 3.16. If G is connected, Inequality (3.6) is facet-defining for P(G) if and only
if Ny is a minimal U-separator for all u,v € U, u #v.

Proof. We proceed as in the proof of Lemma 3.14 by constructing |V| affinely
independent tight solutions to (3.6).

Because of the comments above, we can assume w.l.o.g. that |U| > 2. Let
G’ =(V’,E’) = G[V \ Ny] be the subgraph of G induced by the nodes V \ Ny;. As
Ny is a separator, V' can be partitioned into connected components C;, that is,
V' =CyU---UCy. For every C; there exists a spanning tree T;. Note that x(T;) is
tight for (3.6)if T, N U = @. Let t € T; N U. As in the proof of Lemma 3.12 we can
remove leaves from T; which are not ¢ such that all these trees are tight for (3.6).

3.1. THE CONNECTED SUBGRAPH POLYTOPE 37

All of these solutions are affinely independent. This procedure can be repeated
for every connected component which contains an element of U.

Let C C V' be the set of nodes consisting of all the nodes from all connected
components of G’ which contain an element of U, in particular, CNU = U
and (V'\C)NU = @. For every node w € Ny there exists a spanning tree T,
in G[C U {w}] because Ny is by assumption a minimal u-v-separator for all
u,v € U,u #v. Since in particular T, N Ny = {w} and T,, N U = U, the solutions
x(T,) are tight for (3.6). Furthermore, these are affinely independent for all
we Nu.

If there exist a connected component C; in G” which does not contain an
element of U, one can proceed as in the proof of Lemma 3.14: Select a spanning
tree T of C; and choose the vector x(T) + x(T,) for the appropriate w € Ny and
the T,, defined as above (that is, G[T,,UT] is connected). Then the same argument
as in the proof of Lemma 3.14 allows for removing leaves from T leading to |Cj|
affinely independent solutions.

Together, this amounts to |V| affinely independent solutions which are tight
for (3.6), that is, (3.6) is facet-defining for P(G).

If Ny is not a separator for a pair of nodes u = v € U, the same arguments
from the proof of Lemma 3.14 can be applied to show that (3.6) cannot be facet-
defining. To show the minimality assume for the sake of contradiction that there
exist u # v € U such that Ny is not a minimal u-v-separator. Then there exists
w € Ny such that Ny \ {w} is still a u-v-separator. We want to show that the
inequality

x(U)=1<(|Ul=1)x(Ny) = xy (3.7)
is valid for P(G) because together with the valid inequality 0 < x,, Inequality (3.7)
adds up to (3.6) showing that (3.6) cannot be facet-defining.

To see this, we differentiate for U’ C U between the three cases |U’| < |U],
U’ =U withw e S and U’ = U with w ¢ S. In the first case we have seen that Ny;
is a separator for the nodes from U’ and S N Ny = @. This implies the following

x(SNU)=1=x(U')-1<|U|-1-1<(JUl-1)x(SNNy) - xy,

which holds since |U’| < |U]| (first inequality) and S N Ny = @ (last inequality).
In the second case, it follows that SN(Ny \{w}) # @, which implies |S N Ny| > 2.
Since Ny \ {w} is a separator and |U| > 2, it follows that

x(U)-1<2(U[-1)-1 < (JU]-1)x(S N Ny) = Xy

In the last case, it holds that U’ = U and w ¢ S. This implies [Ny \ {w} N S| > 1,
which also means |Ny;| > 2. It then follows

x(U)=1<2(U[-1) -1 < (JU]=1)x(Ny) = xu,

which concludes the proof. O

38 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

3 6
|
2—4—5
|
1 7

Figure 3.1: Graph used as an example to show that iteratively applying the idea
from the proof of Lemma 3.16 is not possible in general

Remark 3.17. The last part of the previous proof leads to an interesting idea.
Let U be an independent set and Ny be a U-separator with the corresponding
inequality

x(U)-1<(JU|-1)x(Ny). (3.8)

If there exists a pair u,v € U such that there is an element w € Ny with the
property that Ny \ {w} is an u-v-separator, decrease the coefficient of x,, in (3.8)
by 1. The question arises if repeatedly applying this idea leads to facet-defining
inequalities. Unfortunately, it is not obvious on how to repeat the process or
when to end it. For example, let G = (V,E) be the graph defined by V :={1,...,7}
and E := {{1,4},{2,4},{3,4},{4,5},{5,6},{5,7}} (see Figure 3.1). Let U :={1,2,3,6,7}
and Ny = {4,5}. In this case Inequality (3.8) is the following

X1+ Xy + X3+ X6 + X7 — 1 < 4(xq+ x5),

which is not facet-defining, see Theorem 3.5. Applying the idea multiple times
can lead to

X1 +Xp+ X3 +xg+ X7 —1 < 2(x4 +x5),
which is facet-defining: direct the edges from the lower number to the larger

number, instead of {5, 7} which is directed as (7,5) and apply Theorem 3.5. After
further applications of the idea, the resulting inequality is

X1 +Xy+X3+X6+x7—1 < x4+ X5,

which is not valid since {1,2,3,4} is a feasible solution cut off by the above
inequality.

As a final statement in this section we prove a result about the general struc-
ture of facet-defining inequalities. Let

) mixi<mg (3.9)

eV

3.1. THE CONNECTED SUBGRAPH POLYTOPE 39

be a non-trivial facet-defining inequality. We can order the elements 7t; by their

sign:
ZT(I'XZ' - Z T X; ST (3.10)

ieU ieNy

where 71; > 0 for all i € UUNy and 7; = 0 for all i € V' \ {U U Ny}. Obviously,
U and Ny can be defined by this inequality, but we will shortly show that U
is independent and Ny; defines a separator. In [108, Lemma 2] it is shown that
1o = 0 if and only if the inequality is a scalar multiple of a non-negativity bound
(3.3) (in Lemma 3.43 we show a generalization of this result). Moreover, 7ty < 0 is
not possible since x(@) € P(G). Therefore, we can assume 7ty > 0. Furthermore,
in [108, Lemma 6] it is shown that no pair of adjacent nodes can have positive
coefficients in a facet-defining inequality, meaning that in particular U is an
independent set in G.

We want to show that Ny is a separator for U by extending [108, Lemma 5],
which states that for two adjacent nodes a certain inequality holds.

Lemma 3.18. Given a facet-defining inequality (3.10), the nodes u € U are not
connected in G[V \ Ny, i.e., Ny is a separator for U.

Proof. Giventwonodes u,v € U, we prove that if there exists a path P in G[V\Ny]
from u to v, the following inequality holds:

(10, + 704)%,, + 0, + Z TlyXy < 1. (3.11)
weV\{u,v}

The proof of the lemma then is similar to [108, Lemma 6]: If (3.11) holds, then,
by exchanging u and v, so does

0x,, + (10, + 70,)%, + Z TlyXy < T0g. (3.12)
weV\{u,v}

Multiplying (3.11) by 7, /(rt,, + 7t,,) and (3.12) by 1 —1t,,/(7,, + 77,) and summation
of both resulting inequalities leads to Inequality (3.9), showing that (3.9) cannot
be facet-defining. Note that this is clear if 7, + 77, = 0.

We assume that (3.11) is not valid. Then there exists W C V such that G[W]
is connected but (1t,, + 70,) x (W), + 0x (W), + Zwev\{w} 10, X (W), > 1. Consider
two cases:

e Case [{u,v}NnW|=0or 2:

an)((w)w:(nu+ﬂv)X(W)u+0X(W)v+ Z an(W)w>7ZO'

weV weV\{u,v}

40 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

—— W

5
|
—7—4
|
6

Figure 3.2: Graph used as an example to show that in a facet-defining inequality
the separator for independent sets containing more than two elements does not
have to be minimal

e Case [{u,v}NW|=1. Then W = W UP is connected, and

Y X (W) = (i + 70X (W) + 0 (W) +) mryx (W,

weV weV\{u,v}
> (10, +)X (W) +0X(W)y +) 1ty x(W)y
weV\{u,v}
> Tip.

The first inequality holds because 7,71, > 0 and 7, > 0 for p € P since
PNNy=2.

Thus, in all cases, the inequality } .y 7,,%,, < 77(is not valid. O

In [108, Lemma 9] it is shown, that for |U| = 2, the resulting inequality has
to be of type (3.5), meaning that Ny, is a minimal u-v-separator. For |U| > 2, the
separator N; does not have to be minimal. For example consider the following
graph G=(V,E)with V :={1,...,7} and E = {{1,2},{2,3},{2,7},{4,7}, {4, 5}, {4, 6}}
(see Figure 3.2). One facet-defining inequality is given by

X1+X3+X5+x6—(X2+X4+X7)S1,

which can be verified by Theorem 3.5. The independent set is, thus, given by
U ={1, 3,5, 6} and the separator by Ny = {2,4,7}. Note, however, that Ny = {2,4}
would suffice as a separator. Thus, direct generalizations of Lemma 3.14 are
not possible and further restrictions are needed as for example the pairwise-
minimality, see Lemma 3.16.

3.1.2 Complete Description of Cycles

Theorem 3.20 shows a complete description of P(G) in the case that G is a cycle.
Cycles already have been treated in [15] and because the line graph of a cycle also

3.1. THE CONNECTED SUBGRAPH POLYTOPE 41

is a cycle of the same length, the result from [15] is equivalent to Theorem 3.20.
The result presented here was found independently from [15] and uses a different
technique.

The following lemma, which holds also for general graphs G and not only for
cycles, is used frequently throughout this thesis.

Lemma 3.19 ([78, p. 169]). Let a"x <1 be a facet-defining inequality of P(G). For
every pair of indices u and v there exists a tight solution containing exactly one of
them.

Proof. Assume that x,, = x,, holds for all vertices on the hyperplane aTx = 1. This
means, it must be the hyperplane x, — x,, = 0, which is impossible. O

Let C, =({0,...,n—1},{{0,1},...,{n—2,n—1},{n—1,0}}) be a cycle on n nodes.
In this section all indices are considered modulo 7.

Theorem 3.20. The following inequalities are facet-defining for P(C,,):

Zx,-j - Z X <1, (3.13)

jelq] el
j odd j even

inj— in]. <1, (314)

jelql jelql
j even jodd

where q > 4 and (iy,...,14) is an even-length subsequence of (1,...,n). Moreover, (3.3),
(3.4), (3.13) and (3.14) fully describe P(C,,).

Before we prove the theorem, we need some more notation.

Definition 3.21 (Unimodal path). Given a facet-defining inequality aTx < f of
P(C,), we say that a path P from u to v, u # v is unimodal if a,, > 0, @, > 0 and
a;<0forallieP\{u,v}

Note that from Lemma 3.18 it follows that for a unimodal path P there exists
at least one node w € P with «a,, < 0.

For proving the theorem, we need a number of lemmata. For these, we assume
that aTx <1 is a facet-defining inequality for P(C,) with at least two positive
entries in a.

Lemma 3.22. The positive and negative entries in « alternate, that means, they are
ordered as in (3.13) or (3.14).

Proof. Because of Lemma 3.18 there is no path between two nodes with positive
entries in a without using a node with a negative entry.

42 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Assume there exists a path P between two distinct nodes u and v with a,, <0
and a, < 0. Furthermore, we assume P to be a shortest path between u and
v, which means that «,, > 0 for all w € P\ {u,v}. If there exists a node w € P
between u and v with «a,, > 0, there is nothing to prove. Thus, w.l.o.g. @; =0
for all i € P\ {u,v}. There must exist a tight solution S that contains exactly one
element of {u, v} because of Lemma 3.19. Note that S is a path and assume w.l.o.g.
u €S and v ¢S. Wecan remove all end nodes j with a; = 0 from S without
changing the fact that it is tight and connected. Call the remaining set S’. Then
1 has to be an end node of S’. The set S”\ {u} is still connected and thus feasible
but it violates aTx < 1. O

Note that from Lemma 3.22 it follows that for any unimodal path P there
exists exactly one node w € P with a,, <0.

Lemma 3.23. The tight solutions S of a'x < 1 are paths in C, such that S =
PLUP,U P with a; =0 =aj foralli € Py and j € Py and a, > 0, a,, > O for the end
nodes u and v of P,. In particular, both P; and Py are possibly empty. Furthermore,
S=C,.

Proof. Note that the only connected sets in C,, are either the full cycle or paths.
Consider S to be the full cycle. Then, by Lemma 3.22, there has to exist at least
one node w with a,, < 0. Removing the node from S results in a connected set
which violates a Tx < 1.

Because P, and P; do not change the tightness of S, we can assume w.l.o.g.
that P, = P; = @. Assume P, ends at a node v with a, < 0. Removing v from P,
results in a connected set which violates a Tx < 1. O

Lemma 3.23 allows to assume that for every end node v of a tight solution S,
it holds «a, > 0 since otherwise S \ {v} is still tight and feasible. This assumption
is used in the following.

Lemma 3.24. Let P be a unimodal path from u tov. If a,, = v, = 1, then for every
node w € P with a,, <0 it holds that a,, <-1.

Proof. Assume otherwise that a,, > —1. Recall that u,v and w are the only nodes
in P with a non-zero entry in « because of Lemma 3.22. Then the path P
violates the inequality: a ™ x(P) > 1. This is a contradiction because P is a feasible
solution. O

Lemma 3.25. If a; = 1 for all positive entries in a, then a; = —1 for all negative
entries in «.

Proof. From Lemma 3.23 we know that all tight solutions S of aTx < 1 are
concatenations of unimodal paths and Lemma 3.24 implies that all negative

3.1. THE CONNECTED SUBGRAPH POLYTOPE 43

entries in a have to be less or equal to —1. The number of nodes with a negative
entry in a has to be exactly one less than the number of nodes with a positive
entry in a because of Lemma 3.22. Together with the tightness of S, this implies
that all negative entries have to be —1. O

Lemma 3.26. Let P be a unimodal path from u to v such that w € P is the node with
a, <0. Ifa, <1and a, <1, then |a,,| < min{a,, a,}.

Proof. Let P’ = P be a unimodal path with v as an end node. Because of
Lemma 3.22 there has to exist a node q € P’ with @, < 0. Note that g = w.
Every tight solution that contains g has also to contain v because of Lemma 3.23.
Together with Lemma 3.19 this implies that there exists a tight solution S that
contains v but not g. Because ¢, is less than 1 and S is tight, it follows that u € S.
This also implies that w € S because of Lemma 3.23. W.l.o.g., we can assume
that v is an end node of S. The set S” := (S \ P) U{u} is connected and therefore
aTx(S’) €1 has to hold. This leads to

aTX(S,) = aTX(S)_aw_av <1l= aTX(S)’

which implies —-a,, < a, or |a,| < a,. Interchanging u and v leads to |a,| <
ay,. O

Lemma 3.27. If a; € {0,—y, y} forall i, then y = 1.

Proof. Let S be a tight solution to a"x < 1. Then

aTx® = Z a; x(S)+ Z ajx(S)=1.

;>0 j:aj<0

From Lemma 3.23 we know that every tight solution is a concatenation of
unimodal paths (with a possible addition of nodes with a zero entry in a).
Lemma 3.22 implies that every unimodal path contains exactly one node with a
negative entry in «. Therefore, the first sum contains exactly one more summand
than the second sum. Thus,

1=) ax(S)+) axS)=Y y-) r=y 0

i:a;>0 jiaj<0 ira;>0 jiaj<0

Lemma 3.28. Let P be a path from u to v with a,, > 0 and a, > 0. If p ¢ P with
ap > 0is in a unimodal path D starting at an end node of P, the path P can be extended
to a feasible solution P’ 2 P such that p € P’. Furthermore, if w € P is the node with
ay, <0 and P is a tight solution, then it holds that |a,)| > a,,.

44 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Proof. Define P’ := PUD. If P is a tight solution, aT x(P) = 1 holds. Because of
the feasibility of P’ we have that a T x(P’) < 1. Therefore,

a'x(P)=12a"x(P')=ax(P)+ay +ap,

which implies —ay, > a,, or |ay,| >). O
Lemma 3.29. There has to exist at least one index i with a; = 1.

Proof. Assume that a; <1 for all i. Let P be a unimodal path from u to v with w
the node with «a,, < 0. There has to exist a tight solution S that does not contain
v, otherwise @ "x <1 would be contained in the trivial inequality x, < 1.

A visualization of this proof can be seen in Figure 3.3.

If u¢sS, let z be the end node of S such that there is a path P from z to u
with PN P = {u} and PN S = {z}. In particular, a, > 0. Let P C P be a unimodal
path from z to some node p € P and w’ € P the node with a,, < 0. Applying
Lemma 3.28 leads to the feasible solution S’ and |a,, | > a,,. From Lemma 3.26 it
follows that |a,,| < a, which then implies |a,,/| = a,. This also means that S is a
tight solution.

This process can be iterated to show that there exists a tight solution which
contains u but not v. By applying Lemma 3.28 once more, we can show that
lay| = a,. Interchanging u and v leads to a,, = |a,| = a,. Applying this procedure
to all end nodes u and v of all unimodal paths leads to the fact that the absolute
values of all non-zero entries of @ have to be equal, meaning «; € {0,,-y}. Using
Lemma 3.27 leads to a contradiction. O

Lemma 3.30. Let P be a unimodal path from u to v and denote by w € P the node
with a, < 0. If o, = 1 and a, <1, then |a,,| = a,.

Proof. Because {u} is tight and P is a feasible solution, aT x(P) < 1 implies |a,| >
ay:
a’x({u)=1>a"x(P)=ax({u}) + @, +a,

which implies —a,, > a,, or |ay,| > a,,.

Let P’ # P be a unimodal path starting in v and let w’ € P’ be the node with
a, < 0. Every tight solution that contains w’ also has to contain v because of
Lemma 3.23. Together with Lemma 3.19 this implies that there exists a tight
solution S that contains v but not w’. As before, we can assume w.l.0.g. that v is
an end node of S. Note that S also has to contain w because «, < 1 and u because
of Lemma 3.23. The set S’ := (S \ P) U {u} is connected and feasible. Therefore,
aTx(S8’) <1 leads to

a’x(§)=12a"x(8")=ax(S) - ay, - ay,

3.1. THE CONNECTED SUBGRAPH POLYTOPE 45

Figure 3.3: Visualization used for the proof of Lemma 3.29

which implies a, > —a,, or |a | < a,. Together with the above this shows |a,| =
a,. O

Lemma 3.31. Let P be a unimodal path from u to v with w € P the node with a,, < 0.
If0<a,<land 0O<a, <1, then a, = a;, = ||

Proof. Because of Lemma 3.29 there has to exist a node z with a, = +1. Let P’
be the path from u to z with v ¢ P’. W.l.o.g. assume that a; <1 for all i € P’\ {z}.
The set S := {z} is a tight solution. Let P C P’ be the unimodal path starting at z.
Because of Lemma 3.30 we know that S’ := S U P is also a tight solution. As seen
in the proof of Lemma 3.29 we can use Lemma 3.28 repeatedly to show that S’
can be extended to S until S = P’. With the same arguments as in the proof of
Lemma 3.29 we see that S = P’ also has to be tight (see Lemma 3.28).
The set § := PUS is feasible and hence a™ x($) < 1 has to hold. Therefore,

aTX(g) =1 ZOCTX(*@) :aTX(§)+aw+avr

which implies —a,, > a, or |ay,| > a,,. Because we can w.l.o.g. assume that a,, < a,,
Lemma 3.26 implies a,, = a, = |ay,|. O

Lemma 3.32. Let P be a unimodal path from u to v and let w € P be the node with
a, <0. Ifa, =a, =1, then a, = —1.

Proof. Lemma 3.24 shows that a,, < —1. Assume that a,, < —1. There has to exist
a tight solution S which contains w, otherwise a™x < 1 would be contained in
the trivial facet x,, = 0. From Lemma 3.23 we know that u,v € S.

46 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Because T x(P) < 1 holds, P ¢ S. Furthermore, there exists a unimodal path
P’ from a node s € S to another node ¢ € S with the property that |a,/| < a; or
|| < a4 for the unique node w’ € P’ with a,,» < 0 in order to fulfill the tightness
of S. Lemmata 3.30 and 3.31 show that this cannot happen. O

Additionally, we need one more theorem from the literature.

Theorem 3.33 ([108, Theorem 5]). The indegree inequality corresponding to an
orientation D = (V,A) of G induces a facet of P(G) if and only if for every u,v € V
there is at most one directed u —v walk in D.

With this, we can finally prove Theorem 3.20.

Proof of Theorem 3.20. First, we prove that (3.13) is facet-defining by stating an
orientation D such that the corresponding indegree inequality is facet-defining.
Let (3.13) be given by aTx < 1. Let P be a path from u to w such that a, = 1,
a, =-1and a; =0 for all i € P\ {u,w}. The direction D is given by letting all
edges in P be directed from u in the direction of w. Using this definition for every
possible P results in a fully directed graph D = (V, A). Inequality (3.13) implies
that this is a feasible orientation. For every node u with «a, =1 also d,, = 0 holds,
for every node w with a,, = —1 it holds that d,, = 2 and «,, = 0 implies d,, = 1 for
every node v. Therefore, the corresponding indegree inequality is the same as
(3.13). It is easy to see that for every pair of nodes s and ¢ there exists at most one
path from s to t. This means, that we can apply Theorem 3.33 to show that (3.13)
is facet-defining.

For (3.14) the proof is exactly the same.

Let aTx < B define a facet F of P(C,). First note that g > 0 because the
empty set is connected. Also, if and only if 8 = 0, the inequality is a multiple of
(3.3) [108, Lemma 2]. Therefore, we can assume that g = 1. If a contains exactly
one positive entry a;, then a; has to be 1 because P(C,) is full-dimensional
(Lemma 3.10). Moreover, there cannot exist an index j with a; <0 because this
would imply x; = 0. Then x; = 0 and x; = 1 has to hold for each point in F which
implies that F cannot be a facet. Hence, a; = 0 for all j # i and the inequality is
the same as Inequality (3.4).

Therefore, let a Tx < 1 be a facet-defining inequality and let & contain at least
two positive entries. From Lemma 3.22 we know that the positive and negative
entries in « alternate.

It remains to show that the entries in « are 0, +1 or —1. Obviously, the positive
entries can not be greater than 1 because every single node is connected.

Lemma 3.25 concludes the proof if the positive entries in a are +1 and
Lemma 3.29 shows that not all positive entries in « are strictly less than 1.
Because of Lemmata 3.30 to 3.32 the only remaining possibility is to have two
different positive values: +1 and 0 <y < 1.

3.1. THE CONNECTED SUBGRAPH POLYTOPE 47

By Lemma 3.31 we can assume that a; € {0,y,—y,+1,-1} for all i. If there
exists only one node w with a,, = 1, then there does not exist a tight solution with
X, = 0 because y < 1 and the positive and negative entries in « alternate. This is
a contradiction because the equality x,, = 1 is not feasible for P(C,,). Therefore,
there exist at least two nodes with an entry of +1 in «. Select two such nodes u
and v with connecting path P such that P contains at least one node j with a; = y.
If there does not exist such a path, we have nothing more to prove. W.l.o.g. we
can assume «; # 1 for all i € P\ {u, v}. This implies that all nodes in P\ {u, v} with
a positive entry in a have value y. From Lemmata 3.30 and 3.31 we know that
a; = —1 for all i € P. This implies that all nodes in P that have a negative entry in
a have value —y. Since there exists at least one node j € P with a; =y, it holds
that & x(P) > 1. This contradiction shows that a; € {0,+1} which concludes the
proof. O

3.1.3 Complete Description of Complete Bipartite Graphs

For n, m e N\ {0} let K,, ,,, = (AUB,{{a, b} |a€ A,b e B}) with ANB =@, |A| =n and
|B| = m be a complete bipartite graph.

Theorem 3.34. The following inequalities are facet-defining for P(K,, ,,):

Zxa—(lA’l—l)besl, ACA A 20, (3.15)
acA’ beB
Y x-(B1-1)) x<1, BCBB =0 (3.16)
beB’ acA

Moreover, (3.3), (3.15), and (3.16) fully describe P(K,, ;).

Note that (3.15) and (3.16) are indegree inequalities if A’ = A or B’ = B and
are otherwise of the type shown in (3.6). Before we can prove the theorem, we
need two lemmata.

Lemma 3.35. Let a"x <1 be a facet-defining inequality for P(K,,). If A" :={i e
Al a; > 0} = @, then the tight solutions S are one of the following types:

1. |SNB|=0. Then also |SNA*|=1and |S|=1.
2. |SNB|=1. Then also SNAT = A*.
Furthermore, it holds that a, > 0 for all a € A and ay, < 0 for all b € B. Also, if

|A*|> 1, then a, = ay < 0 for all b, b’ € B, otherwise, a"x < 1 is the trivial inequality
x, < 1.

48 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Proof. If S is feasible and |S N B| > 1, then also [SNA| > 1 has to hold: Let b,
b’e BNS,b=0b". If a; and «a; are both negative, the set S\ {b’} is also feasible but
violates aTx < 1. That means there exists at most one element b € B with a;, <0
in S. If a tight solution S’ does not contain any node from B, the only connected
sets are the single node solutions S’ = {i’} for i’ € A* and in particular a;, = 1.

For every tight solution S with b € S it has to hold that A" C S. Otherwise,
there would exist some a’ € A" which is not in S. Then, we can define S U {a’} to
get a feasible solution that violates aTx < 1.

Assume that there exists an element b € B with a;, > 0. Since every tight
solution S contains at least one element from A or B, the set S has to contain all
elements from A U B that have a positive entry in a. This can be seen as above,
because extending a tight solution that does not contain all elements from AU B
results in a violation of the inequality. Because there has to exist a tight solution,
that only contains either a € A* or b, there also has to be an element g€ AUB
with @, <0in S. Removing g from S is still feasible and violates the inequality.
Therefore, there cannot exist an element b € B with «; > 0.

Assume that there exists an 4 € A with a; < 0. Then in order to have a tight
solution S with d € S, one element from B has to be in S and also A" C S has to
hold as shown above. The set S \ {4} violates the inequality, showing that this is
not possible.

If there exists a b € B with a;, <0, every tight solution S containing b has to
contain all elements from A*. If there also exists an element b’ € B with a; > ay,
then S\ {b} U {b’} is feasible and violates @ Tx < 1. Of course, if @y < 0, the roles
of b and b’ can be reversed to show that a;, = a;. This implies that either aj, = 0
forallbe Bor a, = a <0 forall b, b’ € B.

If in the case that a;, = 0 for all b € B, it also holds that there exists an element
a’ #a,a,a € A", then for every tight solution S, it has to hold 4,4’ € S which is
a contradiction to the dimension, see Lemma 3.19. Therefore, if |[A*| > 1, then
ap <0forall beB. O

Lemma 3.36. Let a"x <1 be a facet-defining inequality for P(K,). Define V' =
supp(a) as the support of & and G’ = G[V’]. Let f be the projection from ZV to ZV'.
If the facet induced by a7 x < 1 is projected to P(G’), this projection is a facet of P(G’),
ie., f(a)Tx" <1 is a facet-defining inequality for P(G’).

Proof. If @ contains exactly one positive entry, Lemmata 3.12 and 3.35 show the
statement. So w.l.0.g. let a contain at least two positive entries with at least one
a € A such that a, > 0.

Lemma 3.35 shows that BC V is a subset of V’. This also means that G’ is a
complete bipartite graph K|/ g with A" := {i € A| a; > 0}.

3.1. THE CONNECTED SUBGRAPH POLYTOPE 49

If x(S) is a tight solution, then it holds that

l=a"x= Zaixi = Zaixi + Z a;x;. (3.17)

ieV ieV’ ieV\V’

Because the second sum is zero according to the definition of V’, the set f(S)is a
tight solution for P(G’).

Lemma 3.35 states the structure of every tight solution and both types are
connected in G’. Let W :=span{f(S)| S tight solution to aTx < 1 in P(G)} be the
projection of the span of all tight solutions. Because dim W = dim V", it follows
that f(a)Tx’ <1 is a facet-defining inequality for P(G’). O

With these we can finally prove Theorem 3.34.

Proof of Theorem 3.34. To prove that (3.15) is facet-defining, it suffices to con-
struct |A|+|B| affinely independent tight solutions because of Lemma 3.10. Given
a subset A’ C A and an inequality of the type (3.15), we see that ¢; for i € A’ is
a tight solution. Also } ;¢4 ey +¢; is a tight solution for every j € B. Finally,
Y e €i + €y + e, is a tight solution for some b € B and for every a € A\ A’. That
all these solutions are affinely independent is easy to see because every solution
introduces one new variable. The proof that (3.16) is facet-defining follows by
interchanging A and B.

To show that this gives a full description, let aTx < f be a facet-defining
inequality. As in the proof of Theorem 3.20 it suffices to assume that g = 1. If
there exists only one positive entry in «, Lemma 3.35 shows that the inequality is
trivial. So assume that a contains at least two positive entries. This in particular
means that |[A’| > 1 holds for A" :={i € A| a; > 0}.

Given g, a’ € A’, Lemma 3.19 guarantees that there has to exist a tight solution
S such that w.l.o.g.a€ S and 4’ ¢ S. From Lemma 3.35 we can see that this means
that S = {a}. Therefore, a, = 1. Repeating the argument for all pairs {i,i’},i,i’ € A’
and i # i’ shows that a;y = 1 for all i’ € A’ with only one possible exception i* € A”.

We have shown that there are |A’|—1 tight solutions which contain exactly one
node from A’ and there are |B| tight solutions containing exactly one node from
B. But there are also 2741 — 1 possible tight solutions for the nodes from A\ A’
because every subset of these nodes can be added to every solution containing at
least one node from B. We also have shown that these are the only possibilities for
tight solutions in Lemma 3.35. Hence, in the case of A’ = A there is one solution
missing for the inequality to be facet-defining which can only be remedied by
setting @+ = 1. Thus, the proof is concluded in the case of A" = A.

Let V' = supp(«a) be the support of @ and let f be the projection from V to
V’ and G’ = G[V’]. If there is some facet-defining inequality with a node i* with
0 < a;# <1, Lemma 3.36 shows that the f(a)Tx’ < 1 should also be a facet of

50 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

P(G’). Since we know a complete description of P(G’) by the first part of the
proof and there are no nodes with an entry of 0 in f(«), there cannot exist such
an i*. O

3.1.4 Adding One Node and One Edge

Let G = (V,E) be a graph and let G’ = (V’,E’) be a graph that is obtained by
adding one additional node g to V and one edge connecting q toanodewe V,
meaning V' := V U{q} and E’ := E U {g, w}. This implies in particular, dim P(G) =
dimP(G’) - 1.

Lemma 3.37. If a full description of P(G) is known, a full description of P(G’) can
be derived as follows: For every inequality a™x < p in the full description of P(G),
add the two inequalities

1. (@)Tx < Band
2. (a')Tx+pxg—Pxy, <

to P(G’), where a’ € RV with a’|y, = a and a], = 0. Furthermore, the non-negativity
constraint x; > 0 has to be added. The resulting description is also complete.

Proof. First, we show that the stated inequalities are facet-defining. For the
non-negativity constraint, see Lemma 3.11. Note that all solutions feasible in
G are also feasible in G’. Thus, in case of the first inequality, there exist a set X
containing |V| tight affinely independent points because a " x < g is facet-defining
for P(G). From these, we want to generate a set X’ of size |[V’| = |V|+1 points S’
feasible for P(G’), which are tight for (a’)Tx < .

For every S € X, we first define S’ € X’ by S§’|, = S and x(S), = 0 resulting
in |X’| = |X|. Furthermore, we can assume w.l.o.g. that there has to exist at least
one tight solution S € X with x(S),, =1 because otherwise x(S),, = 0 for all tight
solutions S, which implies that the inequality is trivial. Define an additional
solution §” € X’ for this S by §”|, = S and x(S”); = 1. Since x(S), = 1, the
solution x(S”) is feasible and also tight for P(G’). Moreover, x(S”) is affinely
independent from the above |X’|—1 points, meaning that X’ contains |V’| = |V|+1
affinely independent tight solutions.

For the second type of inequality the argument is analogous: There exist
|V| tight affinely independent solutions because aTx < f is facet-defining for
P(G). For each of these solutions S we set x(S), = 1 if x(S),, =1 and x(§'); =0
otherwise. It is clear, that the solutions for P(G’) are also tight for (a’) "x + fx, —
Bx, < B and affinely independent. Moreover, the solution e, is also tight and
affinely independent from the other solutions, meaning |V’| affinely independent
tight solutions in total.

3.2. THE CONNECTED SUBPARTITION AND PARTITION POLYTOPES 51

Second, to show completeness of the description let (a’)Tx < B be a facet-
defining inequality for P(G’). W.L.o.g. we can assume f > 0 because otherwise,
the inequality is a scalar multiple of a non-negativity constraint, [108, Lemma 2].

It has to be shown that (¢”)Tx < B is of one of the remaining two types defined
above. We distinguish the two cases a, = 0 and «a = 0. In the first case, any tight
solution S” € X’ for P(G’) gives rise to a tight solution S € X for P(G) if we define
S :=S’|y. Thus, for a set X’ of affinely independent tight solutions S’, the span
of X has exactly one dimension less then X’ since this process is a projection.
Consequently, the inequality (a’)Tx < f is of the first type.

For the second case with a; = 0 we first show that a; = B. Because ¢ is
feasible, we have a; < . If @y < 0, then removing g from a tight solution
containing g results in increasing the left-hand side to a value larger than §,
which is a contradiction. Therefore, 0 < aé < B. Because of affine independence,
there has to exist a tight solution S with x(S); # x(S),. If x(S), =1and x(5); =0
in S, then setting)((S)q =1 results in a feasible solution with left-hand side larger
than B, which is a contradiction. Thus, there has to exist a feasible solution S
with x(S), =1 and x(S),, = 0. Because of the construction of G’, the only feasible

solution is {g}, meaning that ¢, has to be a tight solution, which implies a; = B.

If we write (@) Tx < B as (a”)Tx + px, — px,, < p with a = a”|y, the inequality
a'x < B is facet-defining for P(G): As shown above, the only tight solution S
with x(S), # x(S)4 is €4, thus x(S), = x(S), holds for every other tight solution.
Therefore, all solutions unequal to eq are also tight for a Tx < 8, which means that
we can derive |V| affinely independent feasible tight solutions for P(G), showing
that aTx < f is facet-defining for P(G) which proves the statement. O

Note that the two inequalities above are indegree inequalities given in Defi-
nition 3.4 in the case of § = 1. Directing the new edge into g results in g having
indegree 1, meaning a coefficient of 0 and thus the first type of inequality from
Lemma 3.37. Directing the edge from g to w results in the second type. Since
trees can be completely described by adding exactly one node and one edge,
Lemma 3.37 applied repeatedly leads to the same result as Theorem 3.5.

3.2 The Connected Subpartition and Partition Poly-
topes

In this section we generalize the polytope P(G) by also allowing different con-
nected components. This directly corresponds to the topic of Chapter 2, where
both Problems 2.1 and 2.14 contained partitioning problems. First, in Sec-
tion 3.2.1, we allow a node to not belong to any partition, thereby directly

52 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

generalizing P(G). Second, in Section 3.2.2, we study the case of full partitions,
meaning that every node has to be in exactly one partition.

3.2.1 The Connected Subpartition Polytope

Because in this section only a subset of the nodes of an undirected graph G =
(V,E) needs to be partitioned, we use the term subpartition. The polytope which
is studied in this section can be defined as follows.

Definition 3.38. Let G = (V,E) be a graph and K € IN be an integer. Furthermore,
let Vyu Vi U---U Vi =V be a subpartition of V, thatis, Vo U V; U---U Vg is
a partition, where V; = @ is allowed for i € [K]y. The connected subpartition
polytope PE(G) is defined as

P,?(G) = conv({)((U (Vi x {i})) e {0, 1}VX[’C] ‘

i€[K]
VoU Vi U---U Vg =V is a subpartition of V,

G[V;] is connected for every i € [IC]})

Note that in particular there are no constraints on V. Moreover, this definition
implies that P*(G) and P(G) are isomorphic, see Definition 3.1.

Similar to the previous section, we can also define P,%(G) by using separator
inequalities with additional packing constraints:

xi >0, veV,ielK], (3.18)

Zx,i,sl, vev, (3.19)
i€[K]

fo, fol+xfu—l, {u,w}e(‘Z/),{u,w}EE,NEN(u,w),ie[IC], (3.20)
veN

where we use the superscript to denote the partition index. We also use this
notation for the unit vectors, that is, e/, is 1 for node v and partition i and 0
otherwise. Note that in slight abuse of notation the term vector is used instead of
matrix but the corresponding spaces are isomorphic. Inequality (3.19) ensures
that every node is in at most one partition and (3.20) is used for connectedness
as in the previous section. The connected subpartition polytope PE(G) can then
also be defined as follows (compare Section 3.1):

PE(G) = conv({x € Z" K1 | x fulfills (3.18) to (3.20)}).

3.2. THE CONNECTED SUBPARTITION AND PARTITION POLYTOPES 53

Note that, in contrast to Problem 2.14, we do not only omit the isomorphism
but also allow partitions consisting of less than X components. To enforce that
the K partitions are each non-empty, define the polytope 75,§(G) by adding the
following constraint to PE(G)

in >1, ielK] (3.21)

veV

Studying the polytope ﬁE(G), however, is more complicated than the subpartition
polytope P,?(G). This can be seen by the following example with K = 2. Let
Gy = ({1,2,3,4},{{1,2},{2,3},{3,4}}) be a path on four nodes and G, = K, be a
complete graph on four nodes. There exist 6 integer points in P (G) resulting in
a dimension of 3, whereas the 14 integer points in 7525(G2) lead to a dimension of
4. Note that although both G; and G, are connected, the dimensions of 75,§(G1)

and 75,§(G2) are not the same. This implies that in general the dimension of ﬁE(G)
depends on the structure of G more heavily than the other polytopes inspected
here. A detailed study is out of scope of this thesis and instead we focus on PE(G)
in this section.

Lemma 3.39. The polytope PE(G) is full dimensional.

Proof. Every unit vector e, is contained in PE(G) as well as the zero vector. Affine
independence is obvious. O

Lemma 3.40. Inequality (3.18) is facet-defining for PE(G).

Proof. Every unit vector e!, with w # v or i # k is contained in P,%(G) and tight for
(3.18). The same holds for the zero vector. Affine independence is obvious. [

To simplify the notation for this and the next section, we introduce a shifted
modulo calculation.

Definition 3.41. The k-modulo mody, for k € IN is defined via
amodyk := (a—1 mod k) + 1.

This notation ensures that the result of a calculation mody is in [k] instead of
[k —1]p, which is the case when using the normal modulo calculation.

The K-modulo is implicitly used in the following proofs and also in the next
section.

Lemma 3.42. Inequality (3.19) is facet-defining for PE(G) if > 1.

54 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Proof. For all i € [K] define the solutions ¢, and e, + ei*! for w = v. These are
|V|K many tight and feasible solutions to (3.19), which are obviously affinely
independent. O

Note that if £ = 1, Inequality (3.19) is facet-defining if and only if G is
connected, see Lemma 3.12.

As a next step, we want to show that (3.20) is facet-defining. This is done by
first generalizing [108, Lemma 2] to a broader class of polytopes. Although we
assume that this result is already known, we could not find any reference.

Lemma 3.43. Let P be an n-dimensional polytope in R} with 0 € P. Furthermore,
let there exist numbers q; > 0 such that q;e; € P for all i € [n]. If

aTx<p (3.22)

defines a facet of P, it holds that > 0 and B = 0 if and only if Inequality (3.22) is a
scalar multiple of a trivial inequality x; > 0.

Proof. Because x = 0 is feasible, § > 0.

Let g = 0. Since g;e; € P, it follows that a; < 0 for all i € [n]. Since x € R”, the
inequality @;x; <0 is valid. This implies that a Tx < f can be written as the sum
of multiples of non-negativity constraints —x; < 0 < x; > 0 and is in particular
not facet-defining.

If there are two entries k, £ with a; <0 and a, <0, then ayx, < 0 is valid and
also

is valid because a; < 0. As the sum of these two is (3.22), it cannot be facet-
defining. Hence, there is at most one coefficient k with a; < 0. This means that
(3.22) is a scalar multiple of the trivial inequality —x; <0 < x; > 0.

To show the other direction, x; > 0 obviously is of the form aTx < g with
g=0. O

Obviously, Lemma 3.43 can be applied to PE(G). To show that (3.20) is also
facet-defining, the following lemma shows a more general result. Basically, we
can obtain facets for PE(G) by lifting from P(G) with a specific i € [K]. The idea
is similar to the one found in [64].

Lemma 3.44. If
alx= Za,,xv <B (3.23)

veV

3.2. THE CONNECTED SUBPARTITION AND PARTITION POLYTOPES 55

defines a non-trivial facet of P(G), then the inequality
Y i <p (3.24)

veV
defines a facet of P (G) for all i € [K].
Proof. Lemma 3.43 implies > 0 since (3.23) has to define a non-trivial facet.
Because (3.23) defines a facet, there exists a set X of size |V| of affinely indepen-
dent feasible points that are tight for (3.23). For a point x € X and i € [K] define
£€Pg(G) by % =x, and £ = 0 for all £ € [K], € #i. Then # is tight for (3.24) and
because x is feasible for P(G), the point % is feasible for PE(G).

For each v € V there exists an x € X with x,, = 0: Otherwise, x, =1 forall x € X
and (3.23) would be contained in the trivial inequality x, < 1, which would be a
contradiction to the fact that (3.23) is non-trivial. For this v € V we define £ -1
points % + ¢!, for all £ # i, which are feasible for PE(G) and tight for (3.24). Since
this holds for all v € V, these are |V|(/ — 1) points. The feasibility follows from
the fact that sets containing a single node are connected by definition, compare
also to Section 3.1.1.

Together with the |X| = |V| points from above, these are |V|K points, which
are easily seen to be affinely independent. O

Corollary 3.45. Inequality (3.20) is facet-defining for PE(G).

Proof. Inequality (3.5) defines a non-trivial facet of P(G), see Lemma 3.14. Ap-

plying Lemma 3.44 shows that (3.20) is facet-defining for PE(G). O
Similar to this corollary, Lemma 3.44 can also be used to show other inequali-

ties to be facet-defining, for example derived from (3.6) or (3.1).

Corollary 3.46. If G is connected, the inequality

Zx;—lsqw—l)zx;’, ie[K]

ueV seNy
is facet-defining for PE(G) if and only if Nyy is a minimal U-separator for all u, v e U,
u=v.
Proof. Use Lemma 3.16 and Lemma 3.44. O

Corollary 3.47. The inequality
Zu —dy)xi <1, ielK]
veV

for an indegree vector d of an orientation D = (V,A) of G induces a facet ofPE(G) if
and only if for every u, v € V there is at most one directed u —v walk in D.

Proof. Apply Theorem 3.33 and Lemma 3.44. O

56 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

3.2.2 The Connected Partition Polytope

In this section we are interested in the connected partition polytope defined as
follows.

Definition 3.48. Given a graph G = (V,E) and an integer K € IN, the connected
partition polytope P (G) is defined as

Pe(G) = conv({x(U (V; x {i})) c {O,I}VXUC] ‘
i€[K]

Vi U---U Vg =V is a subpartition of V,

G[V;] is connected for every i € [IC]})

In particular, there is no V{) in contrast to PE(G).

The difference between P,%(G) and P (G) is that in the first polytope a node
does not have to belong to a partition, or in other words, only a subset of the
nodes is partitioned instead of the whole set of nodes. This implies that P(G)
is a face of PE(G) and can be defined by the IP formulation derived from the
following inequalities:

xi >0, veV,ie[K] (3.25)
Z X =1, vev, (3.26)

i€[K]

Zx;zx;+x;—1, {u,w}e(Z),{u,w}eE,NeN(u,w),ie[IC], (3.27)
veEN

where the only difference to PE(G) is the equality in (3.26), see Section 3.2.1.

There exist similar partition problems involving connectivity in the literature.
For example, the problem whether a given sequence ny,...,nx with) n; =|V|
is realizable for a graph G = (V,E) is studied. A sequence is realizable, if there
exists a partition Vi,..., Vi of V such that G[V;] is connected and |V;| = n; for all
i € [K]. The article [14] gives a recent overview of the complexity for this and
variations of this problem.

In [67] the so-called s-partition problem is studied. This is defined as follows:
For s € IN, an s-partition of G = (V,E) is a partition of E into E; U---U Eg, where
|E;]=sforie[K—-1]and 1 <|E| < s such that G[E;] is connected for each i € [K].

A more general concept can be found in [35], which studies the problem of
partitioning the nodes or edges of a graph into equal sized parts such that these

3.2. THE CONNECTED SUBPARTITION AND PARTITION POLYTOPES 57

induce a particular type of graph. In particular, connected graphs are one of
these types. The paper is mainly concerned with the computational complexity
of these problems.

Returning to P-(G), let ¢ be the number of connected components of G. If
K = ¢, the dimension of Pc(G) is (K - 1)? since it is isomorphic to the Birkhoff
polytope, which is the convex hull of all doubly stochastic K x K matrices (see
for example [113]). A square matrix A = (a;;) is doubly stochastic if its entries are
non-negative real numbers such that both the row and column sum is 1, that is,

Z[li]' =1= Z[li]'.
!]

If the entries are also integers, i.e., in {0, 1}, matrix A is called a permutation matrix.
These two polytopes are isomorphic since all nodes of a connected component
have to be in the same part and we can therefore assume w.l.o.g. that G is an
empty graph with |V| = c. As each node of G has to be in a different part to
correspond to a point in P-(G), the solutions directly correspond to permutation
matrices. Together with the Birkhoff-von Neumann theorem (see for example
[86]), which states that the vertices of the Birkhoff polytope are permutation
matrices, the isomorphism between the Birkhoff polytope and P-(G) follows.

If K < ¢, the polytope P (G) is empty because there does not exist a single
feasible point. Therefore, we assume ¢ < K in the following.

Note that every linear independent equality reduces the dimension by one
and since there are exactly |V| equalities in the description of P (G), its maximal
dimension is |V|K—|V|=|V[(KX—-1). In the following, we show that this is indeed
the dimension of P (G).

Remark 3.49. The K-partition polytope inspected in [24] is defined by addition-
ally using edge-variables and it is mentioned that its dimension is |V| (K — 1) + |E]|
referring to [25] for a proof.

For the next proofs, we introduce the concept of a cyclic shift, which is used
repeatedly in the following. This shift allows us to define K —2 additional feasible
points of P-(G) from one given feasible point and one part index. Remember
that the K-modulo from Definition 3.41 is used if it is applicable.

Definition 3.50. Let S be a subset of the nodes V and i € [K] be an index. Let
x € Pc(G) be a feasible point such that exactly the nodes from § are in part i,
i.e., x, =1forallves aswellasxl,=0forallwe V\S. One cyclic shift of x is

defined by the point X as a result of moving every node which is not in S to the
next part and every node in S is fixed to part i. Formally, define the shift £ of x as

o x), ifves,
=i
x, , ifveV\s,

58 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

where the part index j —1 is the maximal number less than j, that is not i and is
calculated mody. For example,if C=4,i=1and j=2,thenj-1=4orifi=K
and j =1, then j -1 =K - 1. Note that in particular, £ is a point in P (G).

Note that we can apply a cyclic shift also to the point X, meaning that we apply
two cyclic shifts to the point x. In particular, a cyclic shift can be applied K -2
times to a feasible point in P¢(G) to generate a set of K -1 affinely independent
points that are in P-(G). This idea is crucial for the following proofs.

To determine the dimension of P-(G), we first inspect the special case that G
is connected in Lemma 3.51 and proceed with an empty graph in Lemma 3.52.
The ideas of both proofs are then combined to determine the dimension of P (G)
for general graphs in Lemma 3.53.

Lemma 3.51. The dimension of Pc(G) for connected graphs G = (V,E) is [V|(K - 1)
if K> 1.

Proof. W.l.o.g. we can assume that G is a spanning tree with root node r since
more edges only increase the number of feasible points and therefore the dimen-
sion cannot be decreased by adding edges. Because G is connected, all K points
x(V;) for i € [K], meaning all nodes V are in part i, are feasible. W.l.o.g. we can
also assume |V| > 1.

For every of the |V|-1 edges e € E, the graph G[E \ {e}] has exactly two
connected components. Let these components be called C, and C;, respectively.
W.Lo.g. we assume for the root node r that r € C,. Define the point x € P¢(G)
by the following partition of G: part 1 contains all nodes from C, and part 2
all nodes from C;, that is, V' \ C,. Define K — 2 additional feasible solutions by
cyclically shifting x while fixing the nodes from C, to part 1, meaning that only
the nodes from C; are shifted. Iterating this process for every edge results in
(KX —-1)(|V|-1) feasible points. Together with the K points from above this yields
[VI(K —1)+1 feasible points of P-(G). Let this set be called S.

We show affine independence of the points in S by iteratively removing
elements from S, which are the unique points having a 1 in some specific entry.
We can remove the K —1 points, where the root node r is in another part than the
first since r is in part i # 1 for exactly one point in S. Let the resulting subset be
S1¢S.

For every neighbor v € I'(r), the node v is only in parts 2,...,K if in the
above process the edge {v,r} is removed from G. That allows for the removal
of the corresponding points from S; leading to S, € S;. For every neighbor
w € I'(v) with w # r, there exists only one point in S, with w being in part i for
i €{2,...,K}, namely, when the edge {w, v} is removed. Thus, the argument above
can be iterated to remove all points from S until only the point remains, where
every node is in part 1. Thus, we have shown that S is affinely independent,
which concludes the proof. O

3.2. THE CONNECTED SUBPARTITION AND PARTITION POLYTOPES 59

Lemma 3.52. The dimension of P (G) for empty graphs G = (V,E) is [V|(K - 1) if
[V]=c< K.

Proof. Let the nodes be numbered from 1 to n. For each node v € [n], we create
K -1 different points that are in P-(G). Basically, one node is fixed to part 1 and
the others are sorted in the remaining parts, where a cyclic shift of these leads to
K -1 different solutions. More formally, the parts are defined by V; := {v} and
the remaining nodes (1,...,v—1,v+1,...,n) are in that order the only elements of
the parts V,,;, V3,j,..., V,,j for j € [K - 2]y, since we assume |V| < K. The index
{ + j of the parts is calculated by

(4o 0+, ifl+j<k+1,
TZV (€4 j)mod (K+1)+2, ifC+j>K+1,

with € € {2,...,n}. Together these are |V|(K - 1) points in P(G). Since K > |V],
there also exists a point in P(G) where part 1 is empty, for example the point
corresponding to V, :={1},...,V,,1 = {n}. Together these add up to |V|[(K-1)+1
points in P¢(G). Thus, it only remains to show affine independence.

Assume there exists a linear combination of the corresponding vectors that
adds up to the zero vector with the property that all coefficients also add up to 0.
To show affine independence, we have to prove that all coefficients have to be 0.
Let the coefficients be named ai,...,a’f‘l,aé,..., a1 and g corresponding to the
above created points in the same order.

Inspect the subset of points corresponding to solutions with a node in part 1.
Since the corresponding subset of the linear combination has to be 0 and g is the
only coefficient not in this particular subset, the coefficient g is 0.

It follows from the construction that if in one of the vectors x from above we
have xf, =1, then also x;frll =1 holds for v < |V|and 1 <i < K. From the linear
combination of the zero vector follows that the summation of all vectors with
x}, = 1 has to be 0 and so does the summation of all vectors with x'*} = 1. Note
that the difference between the corresponding sets of vectors only lies in those
two vectors, where either v or v + 1 is assigned to part 1, that is, in the first set
exists exactly one vector with xiﬂ =1 and in the second one with %} = 1. This
implies equality of the corresponding coefficients. This argument can be iterated
to show that all coefficients have to be equal since for every v exist i € [K] and
w € V\ {v} such that x/, = 1 and x} = 1. This implies that all coefficients have to

be 0 since their sum is 0. O

Combining both lemmata leads to the dimension of P (G) for all graphs after
we define the following construction. Let T be a tree with root node r. Assume
T to be directed “away from the root”, i.e., if the nodes are numbered after the
appearance in a BFS tree started at r, the arcs are directed from nodes with a

60 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

lower number to nodes with a larger number. The subtree T’ rooted at v is then
defined as the subtree containing node v and all nodes reachable from v in the
directed tree T.

Lemma 3.53. The dimension of P (G) for a graph G = (V,E) is [V[(K-1) if c <K.

Proof. Again, we construct |[V|(K - 1)+ 1 affinely independent feasible points
by combining the ideas from the proofs of Lemmata 3.51 and 3.52. Let the
connected components C; of G be numbered from 1 to c. For every C; let T; be a
spanning tree with root r;.

Let i € [c] and v; € T;. All nodes from C; defined by the subtree T,, rooted
at v; constitute part 1. All remaining nodes from C; constitute part i + 1. The
remaining parts are then defined by the other connected components C;, j =i
ordered by their respective label. Or, in other words, part 1 contains the nodes
from T, , part i + 1 contains the nodes from C; that are not in T,, and part 1 +j
contains the nodes from C;. The parts 2,...,c+1 are then cyclically shifted similar
to the proof of Lemma 3.51 fixing part 1. Applying this procedure for every node
v results in K — 1 feasible points in P-(G) generated from v, that is, [V[(K - 1) in
total.

One additional vector q is created by defining the parts Vj,..., V., by the
connected components 1,...,c, meaning that the nodes of every connected com-
ponent belong to the same part and part 1 is empty. Together, this results in
[V](K —1)+1 feasible points in Pc(G), which we call S.

As in the proof of Lemma 3.52 we again show the affine independence by
proving that the coefficients in a linear combination of the zero vector have to be
0. Since the sum over all vectors corresponding to solutions with nodes in part 1
have to be 0, the coefficient corresponding to g has to be 0 because g is the only
point with x(g)} = 0 for all v € V and the linear combination of all vectors adds
up to 0.

Let r; and r, be two roots of two connected components C,, and C,, with
C,,=C, +1. Leti€[K], 1 <i<K. Let S, CS be the subset of vectors £ with
Xil =1and S, C S be the subset of vectors £ with 92}2“ = 1. The subset of the
above linear combination containing the vectors in S, has to be zero as well
as the subset consisting of the vectors in S,,. This in particular means that the
corresponding sums are equal. The construction implies that for almost all
vectors it holds that, whenever x € Sn then also x € S,z, with the only exception
of the one vector y € §, with y,lz =1 (compare to the proof of Lemma 3.52). The
same argument implies that there exists one vector z € Sr2 with zil =0, namely

the one where z}l = 1. Combining both arguments implies that the coefficients
corresponding to y and z have to be equal. This argument can be iterated and
modified for all root nodes also for C,, = C, +j, j > 1 where only the part index
has to be adapted accordingly.

3.2. THE CONNECTED SUBPARTITION AND PARTITION POLYTOPES 61

To extend this idea to the children of root nodes, let v be a child of some
root node r. Furthermore, let S, be the subset of vectors for which v is in part 1
and let S, be the subset of vectors for which node r is in part 1. It holds that
S; € S, since whenever node r is in part 1, so is v. Since the sum over all
coefficients corresponding to vectors from S, or S, has to be 0, this also holds for
the coefficients corresponding to the vectors from S, \ S,. Then the argument
from above can be applied to show the equality of the corresponding coefficients.
Obviously, this argument can be applied iteratively to show that all coefficients
have to be equal. This concludes the proof since the coefficients add up to 0, in
which case equality implies that all have to be 0. O

Next, we want to show that Inequality (3.25) is facet-defining. Again, we
proceed as in the proof of the dimension, that is, we first show in Lemma 3.54 that
this holds true in the special case that G is connected. We proceed by showing
the special case that G is an empty graph in Lemma 3.55. Both ideas are then
combined to finally show this statement for general graphs G in Lemma 3.56.

Lemma 3.54. Inequality (3.25) is facet-defining for Pc(G) for connected graphs
G=(V,E)ifl=c< K.

Proof. We prove the statement by constructing |V|(X — 1) affinely independent
feasible tight solutions to (3.25). Let T be a spanning tree of G with root node v.

For every node w € V, w # v define part i by all the nodes of the subtree of
T rooted at w. The remaining nodes constitute part j, j = min{¢ € [K],{ # i}. By
cyclically shifting these remaining nodes and fixing part i, we construct K -1
feasible tight solutions to (3.25). Repeating this process for every w # v therefore
results in (|V|-1)(K —1) feasible tight solutions because v is the root node of T.

Additional K -1 solutions are generated by defining the parts V; := V for all
j € [K], j #i. Hence, the number of feasible tight solutions generated by these
ideas is |[V|(K-1).

To show the affine independence we assume a linear combination of the zero
vector as before. Let S; be the set of vectors with v in part j#i andlet g€ V be a
child of v in T. Define S, as the set of vectors corresponding to solutions with
q in part j. Then S, € S and |S; \ S;| = 1 with the solution corresponding to ¢
being assigned to part i. Since as before the summation over the corresponding
coefficients has to be 0, this implies that the coefficient corresponding to g is
0. This process can be iterated for all other children of v and its grandchildren,
showing that all coefficients corresponding to vectors with some node assigned
to part i are zero. The remaining K — 1 vectors, in which no node is assigned to
part i are easily seen to be affinely independent since every node is exactly once
in every part except part i. O

62 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Lemma 3.55. Inequality (3.25) is facet-defining for Pc(G) for empty graphs G =
(V,E)if|[V|=c< K.

Proof. We prove the statement by constructing |V|(K — 1) affinely independent
feasible tight solutions to (3.25). For every node w € V, w # v, fix w to part i and
cyclically shift the remaining nodes as explained in the proof of Lemma 3.52.
This results in (|V|—1)(K — 1) feasible tight solutions. The missing K — 1 vectors
are created by defining the parts V;, j € [K],j # i by the nodes 1,...,|V|, leaving
part i empty and cyclically shifting these solutions while fixing part i as in the
proofs above.

Assume a labeling of the nodes from 1 to |V| and assume that v has number

1. Let S, be the set of vectors x with x{, =1 for j #i. Furthermore, let w =v +1

and S, be the set of vectors x with x{;l =1. It holds that S, €S, and |S, \ S,,| = 1.
Let g € S, \ S,. Note that for g it holds that x(q)i, = 1, meaning in q the node
w is assigned to part i. Since the sum over all vectors from S, and S, has to be
0, respectively, the coefficient for g has to be 0. The same argument can also be
applied to other nodes from V, with the corresponding correct part number. By
iterating the above argument for all parts j # i and all nodes w # v this shows
that all coefficients corresponding to vectors in which a node is assigned to part i
have to be 0. That the remaining coefficients have to be 0 as well can be shown as
in the proof of Lemma 3.54. O

Lemma 3.56. Inequality (3.25) is facet-defining for P (G) for every graph G = (V,E)
if c < K.

Proof. We prove the statement by constructing |V|(K — 1) affinely independent
feasible tight solutions to (3.25) using a combination of the ideas from the proofs
of Lemmata 3.54 and 3.55. Let the connected components C, be numbered
1,...,c, with v being in the first component. Let T; be a spanning tree of C, with
root node ry and let 7 := v.

For every connected component C;, j € [c], j # 1 create the vectors as in the
proof of Lemma 3.53, that is, for every node w € C]- fix all nodes contained in the
corresponding subtree rooted at w to part i and cyclically shift the remaining
nodes. For component C; we do the same, except for node v. Therefore, this
process results in (|V|—-1)(K — 1) feasible tight solutions. Additional solutions are
created by partitioning the nodes such that all nodes belonging to a connected
component are in the same part and the components are sorted with respect
to their labeling skipping part i (compare to the proof of Lemma 3.55). These
solutions are again cyclically shifted fixing the empty part i to yield the missing
K -1 feasible tight solutions.

To prove the affine independence, we explain the idea for the root node r
of component 2, which then can easily be adapted to the other root nodes of

3.3. SorvinGg CoNNECTED Max-K-Cut 63

Figure 3.4: Graph used as a counterexample to show that Inequality (3.27) does
in general not define a facet for P(G)

the remaining components, then to their children and with that for all nodes of
other connected components than C;. The idea is the same as in the proof of
Lemma 3.55. Whenever v is in part j #i, j # i — 1, node r is in part j+ 1 with
the sole exception of the case that r is in part i. The corresponding coefficient
therefore has to be 0. Note that if j =i — 1, then instead of j + 1, the part i + 1 has
to be used.

For nodes from C;, we use the same argument as in the proof of Lemma 3.54
to show that the coefficients of vectors corresponding to solutions in which nodes
from C; are assigned to part i have to be 0.

As in both proofs of Lemmata 3.54 and 3.54 it can be shown that the coeffi-
cients corresponding to vectors which represent the solutions with no node being
assigned to part i have to be 0. This concludes the proof. O

Obviously, Equality (3.26) cannot define a facet. Moreover, for Inequal-
ity (3.27) we cannot use the technique for the subpartition polytope PE(G) from
Section 3.2.1 because if K =1 and all nodes have to belong to a partition, there
is only one solution if the graph is connected and none otherwise. This means,
there is no obvious choice for a polytope from which the inequalities could be
lifted. Furthermore, Inequality (3.27) does in general not define a facet. To see
this, let G = ({1,...,5},{{1,2},{1,3},{1,4},{2,5},{3,5},{4,5}}) (see Figure 3.4) and
IC = 2. Note that {2, 3,4} is a minimal 1-5-separator and inspect the inequality
x% + xé + x}L > xi + xé —1. The only two feasible tight solutions for this inequality
are derived from the parts V; = {1}, V, ={2,...,5} and V; = {5}, V, ={1,...,4} and
therefore there are not enough affinely independent solutions to allow for the
inequality to be facet-defining.

3.3 Solving Connected Max-K-Cut

This section deals with the definition and solution method for the CoONNECTED
Max-K-Cur problem. We present a MIP formulation of ConnecTep Max-K-Cut

64 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

and solve it with the framework SCIP [87]. After introducing the problem in
Section 3.3.1 we show how to enforce connectedness of the solutions in Sec-
tion 3.3.2. We extend the solution process by using our own propagation routine,
which is described in Section 3.3.3. Furthermore, we add additional cuts and
explain their separation routines in Section 3.3.4. The additional heuristics that
we implemented are introduced in Section 3.3.5, followed by branching rules in
Section 3.3.6. Since the solutions contain symmetries, we explain how we handle
them for solving CoNNECTED Max-/C-Cut in Section 3.3.7. Finally, in Section 3.3.8
we present our numerical results. This section is based on the joint work with
Hojny, Joormann and Schmidt [56].

3.3.1 Problem Definition

To state the ConNECTED Max-K-Cut problem, we first need one additional defini-
tion.

Definition 3.57. Let G =(V,E) be a graph and K € IN. For a partition V7,..., Vg
we define a cut o as 6(Vy,...,Vx) = {{v,w} € E | v € V,,w € V},i # j}, that is,
the edges between different partitions. In particular, for V' C V we define
o(V’)=6(V’,V\V’). If G is weighted with weight function w: E — R, we define
the weight of cut 6 as the sum over the weight of all edges in the cut, meaning

.....

With this we can define the main problem of this section.

Problem 3.58 (ConNECTED MaX-K-Cut). Let G = (V, E) be a weighted graph with
weight function w: E — R and let K € IN. Find a partition V,..., Vic with V; # @ and
G[V;] connected for every i € [K] such that the weight over all edges in the induced
cut o(Vy,..., Vi) is maximized.

ConNEecTeD Max-K-Cur is NP-complete for planar graphs and K = 2 [54]. If
we do not require the connectedness of each partition, the problem is called
Max-K-Cur and in the special case of K = 2 its name is Max-Cur. The literature
available for both these problems is huge and there also exist many variations.
For extensive surveys on Max-Curt see [30, 31, 95]. Polyhedral results can be
found for example in [23, 24]. A recent article on solving the Max-X-Cur using
semidefinite programming can be found in [7].

In terms of complexity, it suffices to inspect Problem 3.58 for connected
graphs since otherwise there exists a polynomial time reduction as the following
lemma shows. Note, that Lemma 3.59 is a result from the author of this thesis
and does not appear in [56].

Lemma 3.59. Let G = (V,E) be a disconnected graph. By solving a polynomial
number of instances of Problem 3.58 for connected graphs, Problem 3.58 can be solved
for G.

3.3. SorvinGg CoNNECTED Max-K-Cut 65

Proof. Let ¢ be the number of connected components of G. Any connected
component can contain at most ' —c+1 partitions in order to solve Problem 3.58.
For each connected component Cp of G, solve Problem 3.58 with £ =1,...,K—c+1
and call these solutions s, for £ € [c] and i € [~ c+ 1]. We create a weighted
directed acyclic graph D = (W, A) with w: A — R in which a special longest path
describes a solution to Problem 3.58 for G. Note that longest paths in acyclic
directed graphs can be determined in polynomial time, see, e.g., [103].

The nodes W are defined by all solutions sé and two additional nodes s and .
The arcs A are defined as

A={ss)liek-c+1]u |] {(shsh) li,j € [K—c+1JU{(sh, 1) | i € [K—c+1]),
le[c-1]

that is, s has arcs to every solution of the first component, whereas every solution
of component € has an arc to every solution of component £+ 1 and every solution
of the last component has an arc to t. We define the weight of every arc a as the
value of the solution 52 corresponding to the head of a and all arcs ending in ¢
are weighted with 0.

Moreover, we have to introduce a budget-function b: A — IN on the arcs. If
(d, s’g) is an arc, we define its budget to be i, that is, the budget for an arc is the
number of partitions used in component ¢ in the solution sé,. On every arc ending
in t we define the budget to be 0.

Every longest path P from s to t corresponds to a maximal cut in G. In
particular, every longest path P which satisfies the budget constraint b(P) = K is
an optimal solution to Problem 3.58 for G. Since the budget constraint is integer-
valued, finding P is possible in polynomial time, see, e.g., [89]. Additionally,
this can be seen by creating K copies of D, where choosing an arc with budget ¢
corresponds to going from copy j to copy j+¢ but further details are omitted. [

Because of Lemma 3.59 we assume G to be connected in the following.

Problem 3.58 can be modeled as a mixed-integer program as follows. First,
we define the binary variable x/, for every node v € V and i € [K]. These should
be 1 if node v is in partition i and 0 otherwise. The variable v,,, for v,w e V
models whether nodes v and w belong to different parts, i.e., y,,, = 1 means that
v and w are in different parts, whereas y,,, = 0 implies that v and w belong to the
same part. The objective function can then be written as

max Z 0({v, W)Yo (3.28)

{v,w}eE

The partition constraint, which models that every node is in exactly one partition,
can be stated as '
Z xi=1, wvevV, (3.29)

i€[K]

66 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

see also (3.26). If there exist i € [K] and an edge {v, w} € E such that the values x/,
and x!, differ, the variable y,,, has to be forced to 1 for modeling that the corre-
sponding edges connects two nodes from different parts. This can be achieved by
the following constraints

xh-xl, <P, {vw)eEie[K], (3.30)
X —x <y, vwleEielK]. (3.31)
Enforcing v,,, to 0 if x} and x/, are both equal to 1 for an edge {v,w} € E and one

i € [K] to model the reverse direction, leads to the following constraint
xax +y,<2, {v,w)eEielK] (3.32)

As we want to enforce to use all K parts, we use (3.21). Note that depending on
the edge weights, these constraints are not always necessary. For example, if all
edge weights are positive, any optimal solution uses the maximum of K parts
implying the validity (3.21).

We use two different approaches to model the connectedness. The first is by
using flow variables, whereas the second uses separators. In the first case we
need additional variables but only a polynomial number of constraints. In the
second case we do not need additional variables but the number of constraints
may be exponential. Here we show both possibilities and compare them in the
numerical results.

We start with the description of using flow variables. The idea is that every
node has to have an outflow of 1, except K distinguished nodes, which serve as
representative nodes modeling an “artificial sink”. Flow is only allowed on edges,
that are not in the cut. This implies that every node has to be connected to a
representative node in order for the outflow to vanish using only edges that are
not in the cut. This implies connectivity of the parts.

The binary variables) model if node v is the representative of part i, i.e.,
¢l =1 if v is the representative for part i and 0 otherwise. Since we want to
model exactly one representative for every part, we use the constraint

Yci=1, ielK] (3.33)

veV

Since a node can only be a representative of part i, if it is a member of part i, we
use the constraint . ’
b <X, ie[KLveV. (3.34)

For modeling the flow, we direct each edge in both possible directions by intro-
ducing the directed graph D = (V,A), where A = {(v,w), (w,v) | {v,w} € E}. We
introduce the variable f,,, € R, on all arcs A from D directly corresponding to

3.3. SorvinGg CoNNECTED Max-K-Cut 67

the edges in G. To allow only flow on edges that do not lie in the cut, we add the
following constraint

fowt fur SM(1-p,), {v,w}€E, (3.35)

where M is a sufficiently large constant, for example M = |V|-/K + 1. To model
that every node, which is not a representative, has to have an outflow of at least

1, we use
Z Jow = Z fuow21-M Z CV; veV (3.36)

(v,w)eA (w,v)eA i€[K]

with the same M as in (3.35). There also exist other possibilities for modeling
connectedness using flow variables, examples using multi-commodity flows can
be found, e.g., in [33, 46].

To model connectedness using only the x-variables, we use the separator
inequalities introduced in Section 3.1

fo, >l +xi -1, v,we V,ie[K],N some v-w-seperator. (3.37)
ueN
These inequalities are dominated by using minimal separators, that is,
Y xzx+x,-1, vweV,ie[KLNeN@w) (3.38)
ueN

also see Section 3.1.
Thus, the polytope over which we want to optimize (3.28) is given by
Sic(G) := conv({(x,v) € {0,1}V*IK x {0,1)V*V |
(x,p) fulfills (3.29) to (3.32),(3.38),(3.21)}).

Since in the branch-and-bound procedure we often generate solutions in the
polytope, where the integrality constraints are relaxed, we introduce the relaxed
polytope, in which the vertices are not necessarily integer valued:

S¢(G) = {(xp) € [0,1] 1 x [0,1]V |
(x,v) fulfills (3.29) to (3.32),(3.38),(3.21)}.
The polytope resulting from using the flow formulation from above is defined as

SHG) = conv({(x, 9, £,0) € {0, 1)< x {0, 1)V x RE P x (0, 1)V 4]
(x,v, f,C) fulfills (3.29) to (3.36),(3.21)}).

It can be shown that the projection of 8,2 to the space of the x- and y-variables is
Sk by using the max-flow min-cut theorem [39, 41] but the details are omitted.

68 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

v 4, oo = w
S LNT T
Uy Uy

Figure 3.5: Directed graph D derived from the undirected graph G =
({vluIIMZIW}I{{vlul}l{ulluz}l{uzlw}})

Remark 3.60. Note that the y-variables are only needed to formulate the objective
function and for the feasibility problem it suffices to inspect the polytope S,’é(G)
resulting from a projection of Si(G) to the space of the x-variables (see also
Section 4.2). Furthermore, Inequality (3.21) implies that, in general, S,@(G) #
P (G) (compare Sections 3.1 and 3.2). Within the solution process, we often
find elements in S;-(G) and since often the main interest are the x-variables, we
introduce §¢*(G) as the projection of Sy-(G) to the space of the x-variables.

3.3.2 Separation of the Connectedness Constraint

The constraint (3.38) can be separated in polynomial time by using maximum
flow calculations [40]. We include the description here for completeness. Let
% be a fractional solution for the x-variables. For each pair of distinct nodes v
and w with {v,w} ¢ E, &, + £, — 1 > 0 for i € [K] construct a digraph D = (W, A) as
follows. For each node we introduce two copies u” and u” forming the node set
W={u',u”|u e V\{v,w}}U{v,w}, whereas the arcs are given by

A= {(V{CV&),('I/;,V{) [{vi,v2} € E,v1,v; € {v, wh
U{(u”,v), (v,u') [{fu,v} € EYU{(u”, w), (w,u) [{u, w} € E}
U{(u,u”)lueV\{v,wl},

compare Figure 3.5 for a visualization. The capacity of arcs (u’,u”) with u € V
are set to be %, and all other capacities are set to co. The minimum cut between
v and w (which can for example be found by a maximum flow calculation) only
uses those arcs with a finite capacity. Since these arcs are the ones between the
two copies of nodes of G, the minimum cut directly translates to the set of nodes
which can be used for the violated connectivity constraint.

In [40] it is mentioned that computational experiments show that applying
the above procedure is very time-consuming because for every pair there may
be a maximum flow calculation. The authors proposed a linear time method for
finding infeasible integer points, which is also applied here.

3.3. SorvinGg CoNNECTED Max-K-Cut 69

To explain the method, the following property of minimal separators, which
first appears in [45] as an exercise, is crucial.

Lemma 3.61. Let G = (V,E) be a graph and N be a v-w-separator. Let C,, and C,, be
the connected components of G[V \ N| containing v and w, respectively. Then N is a
minimal v-w-separator if and only if every node in N is adjacent to at least one node
in C, and at least one node in C,,.

A proof relying on Lemma 3.13 can be found in [76].

Let % be an integer solution and denote by G% = (V, E) the graph induced by
X, meaning E; = {{v,w} € E | £, = %I, = 1} for some i € [K]. If % is infeasible, there
exist two connected components C, and C,, with v € C, and w € C, in G; Let
I'(C,) denote the neighboring nodes of the connected component C, in G, that is,
I[(Cy):={ueV\C,|3{u,k}€E, ueC,}. Obviously, I'(C,) is a v-w-separator but
not necessarily minimal w.r.t. cardinality. To derive a minimal separator, we use
Algorithm 1. The general idea to find a minimal v-w-separator is to start with
I'(C,) and remove all nodes p, which are not adjacent to C,,, when Lemma 3.61
implies the minimality.

Algorithm 1 : Finding a minimal separator
Input : Graph G =(V,E), i € [K], infeasible solution %, C,, C,, two
connected components of sz withveC,, weC,
Output : Minimal v-w-separator N
1 Find neighbors I'(C,) of C, in G;
2 Delete all edges in C, and I'(C,) from G;
3 Find the set R C V of nodes reachable from w in the modified graph G;
4 return N =RNTI(C,)

Note that Line 3 in Algorithm 1 can be performed in linear time by using a
BFS in G with the additional constraint that nodes from I'(C,) are never added to
the queue. A proof of correctness can be found in [40].

Our experiments have shown that the determination of a minimal separator
may not be the fastest way for solving ConNecTED Max-K-Cur. Instead, using
I'(C,) is faster most of the time. This was also observed in [5].

For calculating the neighborhoods I'(C,) of connected components we use
Algorithm 2. It is based on the disjoint-set data structure (first described in [42],
see for example [28]) using the library boost [18]. Note that we do not need to
calculate the neighborhood of nodes that do not belong to any part.

Given a fractional solution % € S¢*, the idea is to iterate once over the graph
G =(V,E) and find the connected components induced by nodes in the same part
while additionally creating the neighborhood for those components. We say that
node v belongs to part i if there exists i € [K] such that &, > 0.5 (see Line 4).

70 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Let F; C V be the subset of nodes which belong to part i and let G; := G[F;] be
the subgraph induced by F;. Algorithm 2 finds the connected components of all
G; and if v is a representative of connected component C,, then Algorithm 2 also
finds the neighborhood of C, in G, denoted by I'(v).

For each node which belongs to a part we create a set using the disjoint-set
data structure in Line 5. Then we iterate over all edges {v, w} of G and distinguish
the two cases whether v and w belong to the same part or not. If they do, we use
the disjoint-set data structure to select one representative and create the union of
the neighborhoods of v and w (see Lines 9 and 10).

Otherwise, if v and w do not belong to the same part, we differentiate further
whether v and w belong to a part or not. If v belongs to a part, we add w to its
neighborhood in Line 13 or we add v to the neighborhood of w if w belongs to a
part in Line 16.

Algorithm 2 : Finding connected components and their neighborhoods

Input : Graph G = (V,E), fractional solution &£

Output : Connected components of G; for i € [K] given by
representatives v and their neighborhoods I'(v) in G

1 foreach nodev € V do

2 | T(v):=0;

3 end

4 foreach node v with %, > 0.5 for an i € [K] do

5 ‘ MakeSet(v);

6 end

7 foreach edge {v,w} € E do

8

9

if v and w belong to the same part then
Union(v,w) and w.l.o.g. let v be its representative;
10 I(v)=T(v)UT(w);
11 else
12 if if v belongs to a part then
13 | T(v):=T(v)U{w};
14 end
15 if if w belongs to a part then
16 | T(w):=T(w)U{v};
17 end
18 end
19 end

The running time of Algorithm 2 is as follows. To decide for each node,
whether it belongs to a part or not, we need time O(K|V|). If theses parts are

3.3. SorvinGg CoNNECTED Max-K-Cut 71

saved, we only need to iterate over the edges of G once in time O(|E|). The
time complexity of the disjoint-set data structure is O(k - a(k,£)), where k is the
number of disjoint-set operations, € is the number of elements and a(k,¢) is the
inverse Ackermann function (see [18, 28]). In our case, k =|V|+|E| and € = |V|.
Together this results in O(K|V|+ |E|+ (V| + |E|)a(]V| + |E|,|V])). Since we can
assume a(k,€) < 4 for any practical purpose, the running time of Algorithm 2 is
linear.

In theory, it is enough to find one minimal separator and add the correspond-
ing inequality to the problem to cut off an infeasible point. But it might be a good
idea to add more separator inequalities if the computational overload can be han-
dled. Even for two connected components C, and C,, there are many different
possible separator inequalities. Since in general the neighborhoods are not equal,
the separator can either be I'(C,) or I'(C,,). Furthermore, instead of v and w other
nodes from C, or C,, can be chosen for defining a separator inequality (3.37).
If there exist three different connected components, the separator inequalities
could also be created for every pair of connected components or for example only
for ordered pairs.

In our case, Algorithm 2 needs to be called only once for calculating all
connected components and their respective neighborhoods. Thus, the overload
of creating additional separator inequalities is small. Our experiments have
shown that it is best to add all violated separator inequalities for all connected
components of all G;. Furthermore, our experiments have shown that it is best
to add the two described separator inequalities for every pair of connected
components.

3.3.3 Propagation

Within the branch-and-bound procedure, we may be at a node in the branch-and-
bound tree where some variables are fixed to a value and for others there may
exist upper and/or lower bounds. This is called a partial solution in the following.
A partial solution may be extended to a feasible solution for CONNECTED MAX-
KC-Cur or it may be infeasible. The propagation algorithms works on a partial
integer solution and can fix some entries of the solution to 0 and others to 1. The
basic idea is that nodes cannot belong to part i if they cannot be reached from
nodes that already belong to part i. Furthermore, if two nodes from part i can
only be connected by using node u € V, then node u has to be in part i as well.
To explain the last part we need the following definition.

Definition 3.62 (Articulation node). Let G = (V,E) be a graph. A nodev e V
is called an articulation node of G if G[V \ {v}] has more connected components
than G.

72 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

The propagation algorithm as shown in Algorithm 3 works as follows. First,
for each part the nodes that are already fixed to this part are saved as sets F;
(Line 2). Then for every part the auxiliary graph G’ is created by removing
all nodes (and incident edges) that are fixed to another part (Lines 5 and 6).
Afterwards, for a node g of F; a BFS tree starting in g is calculated (Line 8).
All nodes v in G that are not already fixed to a part that cannot be reached
from g cannot be in part i because any path would have to use nodes that are
already fixed to other parts (Line 10). Thus, x/, = 0 can be fixed. If node u ¢ F;
is an articulation node of G’ such that G’[V \ {u}] has at least two connected
components which both contain nodes from F; (Line 14), the node u has to
belong to part i because otherwise the solution cannot be connected (Line 15).
Note that after a fixing to i the values for the other parts can be set to 0, that is,
%k =0 for all k # i € [K], because of the partition equality (3.29).

The running time of Algorithm 3 is O(X|V||E|). This can be shown as follows.
The time is dominated by the for-loop for each part (Line 4). The auxiliary graph
G’ and the BFS tree can both be calculated in linear time O(|E|+ |V|). The same
holds for Line 10. All articulation nodes in Line 12 can be found in linear time
O(|E|+|V]) by one BFS call and additional linear time checking [60]. The for-loop
in Line 13 needs time O(|V|), whereas Line 14 can be implemented by BFS in
linear time O(|E| + |V|).

Remark 3.63. As a last step inside the main for-loop the creation of separator
inequalities (3.37) can be added. This can be achieved by first contracting all
edges of G’ if both endpoints are not yet fixed to some part, meaning all nodes
u € V\ Uje[x) Fj- Let G* be the resulting graph. In G* the articulation nodes can
be calculated (in linear time [60]) and one can proceed similar to Line 13: If an
articulation node which is not fixed to part i separates at least two nodes v, w
from part i, all the nodes corresponding to u before the contraction step define a
separator for v and w and the inequality (3.37) can be added to our model. In
theory this creates additional inequalities in linear time. In practice, however, the
propagation usually is not the phase, in which additional inequalities are added
and hence, this was not implemented. Furthermore, it is not clear, whether the
contraction leads to an increased running-time and if the found separators are
useful. For example the separator that is found may contain almost all variables,
whereas the corresponding minimal separator contains only a few vertices.

3.3.4 Cuts

This section describes six additional valid cuts for S (G). The first three are
derived from the connectivity constraint, whereas the last three are known from
the Max-K-Cur literature. For a recent overview of cuts for the Max-K-Cut
problem see, e.g., [7].

3.3. SorvinGg CoNNECTED Max-K-Cut 73

Algorithm 3 : Propagation

Input : Graph G = (V, E), solution X, number of parts K
1 foreach i € [K] do

2 ‘ Fi:={veV|x fixed to 1};
3 end
4 foreach i€ [K]do
5 VIZ V\Ujiie[}C]Fj;
6 G :=G[V];
7 g€ F;;
8 T = BFS tree of G’ starting in g;
9 foreach node u € V which is not in Uje(x) Fj and not in T do
10 ‘ 92; =0;
11 end
12 calculate all articulation nodes U; of G’;
13 foreach u € Uy and u ¢ F; do
14 if u separates two nodes in F; then
15 92,14 =1;
16 end
17 end
18 end
Bounded Edge Cuts

For bounding the objective value we use the following constraint
Y v <IEI-IVI+K.
{v,w}eE
Validity can be seen as follows
Y Ve <IEl=) (Vil-1)=El+K=) [Vil=|E[+K~|V].
{v,w)eE i€[K] i€[K]

The first estimate is due to the fact that every partition with |V;| nodes has to
contain at least |V;|— 1 edges to be connected and the last equality is due to the
fact that the V; are a partition of V.

Articulation Cuts

Since any articulation node is in particular a separator, the articulation cuts are a
special case of separator inequalities. Let v be an articulation node and let u# and

74 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

w be two nodes from different connected components of G[V \ {v}]. Since v is a
minimal separator for u and w, the following inequality is valid

ol —xi <1, ie[K], (3.39)

compare to (3.37). We experimented with adding all articulation cuts to our
problem at the beginning of the algorithm. However, for many graphs from our
test set, there were simply too many. Therefore, we tested a special articulation
cut, which is explained in the next paragraph.

Leaf Cuts

In the special case, in which u is a leaf and u is adjacent to v, Inequality (3.39) is
valid for every w € V' \ {u, v} since we assume G to be connected. This is called
a leaf cut in the following. As with the articulation cuts above, we also tested
to add all possible leaf cuts at the beginning of the algorithm, but for many
graphs from our test set, there were still too many possible cuts. This is why we
tested separating these leaf cuts directly by initially calculating all leaves and
then checking for every leaf and every partition if one of the |V| -2 separator
inequalities is violated. This gives a OK|V|?) separation routine. Of course,
these inequalities are also separated by the calculation of minimal separators
given in Algorithm 1. But the idea was to simplify the calculation and derive
valid cuts in shorter time. See Section 3.3.8 for the numerical results.

Cycle Cuts

For the case KL = 2, we are in the special case of Max-Cur, for which many
additional cuts are known. Because any cycle crosses a cut an even number of
times, the so called odd cycle cuts are valid:

Z Yow — Z vaS|F|_1; FQC,|F| Odd,

{v,w}eF {v,w}eC\F

where C is a cycle in G [11]. These inequalities can be separated in polynomial
time by a shortest path calculation in a auxiliary graph G, see [11]. Let G’ =
(V’,E’) be derived from G = (V, E) by having two nodes v’ and v” for each v e V.
Every edge {v, w} € E gives rise to two edges {v/, w’} and {v”/,w”} in E’ with weights
Vyw and two edges {v’,w”} and {v”, w’} with weights 1 —y,,,,. For every nodeve V
we calculate a shortest path from v’ to v”. The minimum length of all these paths
gives rise to the required cycle. The running time of this separation procedure is
O(IV|(IV]log|V|+|E|)) by using Dijkstra’s algorithm (see for example [28]) from
the boost library [18], which needs O(|V|log|V|+ |E|) many calculations.

3.3. SorvinGg CoNNECTED Max-K-Cut 75

Triangle Cuts

For K = 2 no cut can contain exactly one edge from any triangle. Therefore, the
following triangle cuts are valid if the nodes u,v,w form a triangle, see [24]:

YVow ~ Ywu — Yuv <0,
“Vow T Ywu — Yuv <0,
—Yvw ~ Ywu +yuv <0.

We separate these cuts by first calculating all triangles in G and iterating over all
of them to check if one of them is violated.

Clique Cuts

In [24] the so-called clique cuts were introduced:

Z Vow < (’C; 1)— 1, V'CV,|V|=K+1,G[V'] clique.
v,weV’

vVEW
The feasibility can be seen as for any subset of K + 1 nodes, at least two nodes
have to be in the same part. This implies for a clique V' on K + 1 nodes that at
least one of the possible (Kgl) edges cannot be in the cut. We separate these cuts
for K = 2 by calculating all cliques on 3 nodes in the beginning and iterating over
all of them to check if one of them is violated.

3.3.5 Primal Heuristics

In this section we describe the three heuristics we implemented. Note that it
suffices to treat only the x-variables as mentioned in Remark 3.60. The first
heuristic is a starting heuristic, which finds a feasible solution leading to hope-
fully good bounds. The second one creates an integer solution x € S,}é from a
relaxed solution £ € S;*. Finally, the third heuristic tries to improve a given

feasible integer solution % € S;é.

Tree Heuristic

The main idea is to use a minimum spanning tree to ensure connectedness of
the parts. Each edge in the spanning tree defines a cut in G into exactly two
parts such that both resulting components are connected. This idea is applied
repeatedly on edges maximizing the weight of the cut (and thereby the objective
function). As the edges in the calculated tree tend to be inside parts and not in

76 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

the cut, we start with a minimum spanning tree with respect to w. In more detail
the heuristic can be seen in Algorithm 4.

The algorithm proceeds by assigning the root of the tree to the first part and
the leaves to other parts. If the number of leaves is too small (Line 6), meaning
that there are more different parts then leaves, the procedure generates parts
containing exactly one node. These single node parts are chosen such that they
are leaves in the minimum spanning tree with a maximal weight of the induced
cut. After a leaf is assigned to a part, it is removed from the tree and the leaves
are recalculated. This is carried out until the number of leaves is equal to the
number of partitions left.

The other parts are assigned to contain the single leaf after sorting them
decreasingly with respect to the weight of their induced cut. If there are leaves
left, which are not assigned to a part, these leaves with their complete paths to
the root node are assigned to the first part which contains the root node (Line 18).

The main loop starts in Line 21. For every part we inspect the path from
the leaf to the root node until one node is reached, which already belongs to a
part (at least the root node belongs to part 1). For every node along this path,
the weight of the corresponding induced cut is calculated and the part in then
chosen as the subpath, which maximizes the weight of the induced cut. As a last
step, all nodes that do not belong to a part are put in the first part (Line 33).

As we use the boost library [18], the minimum spanning tree in Line 2 is be
found in time O(|E|log|V|) by using Kruskal’s algorithm [79]. The weights in
Line 4 can be found in time O(|V||E|). The loop in Line 8 can be implemented
in time O(K|V|). The time used for sorting in Line 16 is O(|V|log|V]). The loop
in Line 18 runs in O(K|V]|). The time needed for the main loop in Line 21 is
O(K|V|?) because of the calculation of the weight in Line 27. Thus, the overall
time needed for the tree heuristic is O(K|V|? + |V||E]).

3.3. SorvinGg CoNNECTED Max-K-Cut

77

Algorithm 4 : Tree Heuristic

© 00 N S U R W N e

—_ e
- o

Input : Graph G = (V,E), number of parts £

Output : Integer solution £

X :=0;

compute a minimum spanning tree T of G w.r.t. @ with root node r;

let L be the set of leaves in T;

calculate w(o({v})) for every v € V;

k:=K;

if [L| <K -1 then

j=K

while j >|L| do
let £ be the largest leaf in L with respect to w(5({¢}));
Vi ={t);
remove ¢ and its incident edge from T; recompute leaves L of T;
setfé =landj=j-1;

end

k:=|LJ;

end

set Vi == {r} and sort {; € L decreasing w.r.t. w(5({¢;}));

fori=1,...,kdo V. :={{};

fori=k+1,...,|L| do

‘ let p be the path from r to ¢; in T and set V; := V] U V(p);

end
fori=2,...,kdo
wy = w(6(V;)), S1:=Vj;
let p be the path from V; to r (|V;| = 1) in T where p; denotes element j;
j=2p1=Vi);
while p; # {r} and p; does not already belong to any part do
S;=S8;1U{pjh
w;j = w(0(5;));
j=j+1
end
set j’ = argmax{w;} and V; := S;;;
foreach node v in V; do 9?,1, =1;
end
foreach v € V; or v not in any V;,i > 1 do JZ}, =1;

return x

78 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Rounding Heuristic

This heuristic originated from [46]. The main idea is to round a relaxed solu-
tion £ from S (G) to be integer valued in accordance to the entries in £. The
pseudocode can be seen in Algorithm 5.

In the following we assume that the relaxed solution £ is given in the form
of a vector. Because this vector is sorted (Line 2), we use the functions node(x)
and part(x) to denote the node and the part of the specified entry respectively.
For example if £}, is one entry of £ which is in position ¢ after sorting, then
node(¢) = u and part(¢) = i. The value ¢ can be seen as the probability that node
node(¢) belongs to part part(£).

We start by assigning the nodes with the highest probability to the corre-
sponding part (Line 6) until every part contains exactly one node. The set M
serves as the set of already assigned nodes and serves both as a stopping criterion
(Line 14) and for easier checks of assignment (Line 16). Then we iterate over the
sorted vector and assign nodes to parts if they do not violate the connectedness
constraint (Line 15). This process is repeated until all nodes are assigned to a
part (Line 14). This while-loop is needed because otherwise nodes may exist that
are not assigned to some part after the first iteration over the sorted vector x.

Note that the check for connectedness in Line 17 can be realized by checking if
node({) is in the neighborhood of Vj,,:(¢). The time complexity is thus O(|E|). As
sorting in Line 2 can be implemented in O(K|V|log(K|V])) = O(K|V|log(|V])), the
complexity is dominated by the while-loop in Line 14. Because of connectedness,
the overall complexity is therefore in O(K |VI?|E]).

3.3. SorvinGg CoNNECTED Max-K-Cut

Algorithm 5 : Rounding heuristic

Input : Graph G = (V,E), number of parts K, relaxation solution %
Output : Integer solution %
X:=0;
sort £ in descending order;
V=g forallie[K];
¢=1;
M = @;
while there exists i € [KC] with V; = @ do
if Vpart(f) = @ then
Vpart(Z) = {node({)};

O NS U s W N =

—
=]

11 end

12 C=0+1;

13 end

14 while M =V do

15 for¢=1,...,[K|V]] do

16 if {node(¢)} ¢ M then
17 if G[Vpar(e) U {node(£)}] is connected then
18 Vpart(t’) = Vpart(f) U {node(¢)};
19 M := M U{node(¢)};
spart(€) ..
20 xnode(f) =1
21 end
22 end
23 end
24 end

25 return X

80 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Improving Heuristic

The main idea of this heuristic is to locally improve a given integer solution by
moving a node from one part to another. This change of part is only performed
if both involved parts are connected. For example if node v is in part V; and
should be moved to part j, both parts V; \ {v} and V; U {v} have to be connected.
Node v is only moved if the objective function value increases. The details of this
heuristic can be found in Algorithm 6.

Algorithm 6 : Improving Heuristic

Input : Graph G = (V,E), number of parts K, feasible integer solution x’
Output : Integer solution X with at least the same objective value

1 X¥:=x;

2 foreachv eV do

3 let i € [K] be the part of v, that is, JZ,l, =1;
4 if 4j € [K],] # i such that both G[V; \ {v}] and G[V; U {v}] are connected,
and @ = V; \ {v} then
5 if objective value increases by moving v from V; to V; then
6 =0
7 JZ]v =1;
8 return x
9 end
10 end
11 end
12 return X

This heuristic runs in O(|V|K |E|?) since we have to check for each node first
if V; \ {v} is connected in time O(|E|). Then we have to check each other of the
K -1 parts j if V; U{v} is connected also in time O(|E|).

3.3.6 Branching Rules

Let x be a fractional solution and let F; denote the set of nodes that are fixed to
be in parti,ie., F;={ve V| xf, =1} as introduced in Section 3.3.3. Furthermore,
let F? denote the set of nodes v which are fixed to a value of 0 for part i, that is,
for every v € F) it holds that x}, = 0. Both may occur within the solution process
for example as a result of the propagation algorithm. Let G; := G[F;] be the graph
induced by the nodes fixed to part i and G? := G[V \ Uj=iejx) Fj] be the graph
induced on the nodes fixed to part i as well as those which are not yet fixed to
any part.

3.3. SorvinGg CoNNECTED Max-K-Cut 81

Articulation Branching

Let v be an articulation node of G = (V,E). By definition, G[V \ {v}] contains
connected components Cy,...,Cy with k > 1. If node v is defined to be in part
i and both u € C; and w € C, belong to the same part, they have to be in part
i. This also implies that parts other than i can contain nodes from at most one
connected component C,. Therefore, the number of possibilities for parting the
nodes drastically reduces once an articulation node is fixed to a part. The idea of
articulation branching therefore is to first branch on articulation nodes to a part
if possible.

All articulation nodes are calculated in the beginning (in linear time [60]) and
are stored. The branching rule also stores the last processed node and proceeds
with the next articulation node in order to allow for different fixings. For each
articulation node v it is checked if v is already fixed to some part, meaning v € F;
for some j € [K], in which case it is ignored. If v is not fixed to any part yet, the
children of the current branch are then generated by fixing the articulation node
v to every possible part j if v F]Q holds.

Note that the time needed for this branching rule is dominated by the calcu-
lation of the branching nodes, which is only needed once. Otherwise, O(|V|+ K)
calculations are needed.

Infeasibility Branching

The idea of the infeasibility branching rule is to create infeasible children. Since
infeasibility of integer solutions can be checked by fast algorithms (see, e.g.,
Section 3.3.3), hopefully infeasible decisions are detected early to rule out many
branching decisions that would otherwise occur later within the solution process.

To this end, let v be an unassigned node v ¢ F; for all i € [K] with the least
number of unassigned neighbors. If there is more than one such node v, we
let v be the node with the least number of possible part assignments, because
there may exists parts i € [K] such that v e FIQ. The idea is to create as few new
branches as possible since the hope is that they are infeasible. If there is still
more than one possible node v, we choose v to have the maximal degree with
the idea of increasing the likelihood of infeasible branches. The children for the
branch-and-bound tree are then generated by fixing v to every possible part.

Note that for every node v, we need time O(K) to find the number of unas-
signed parts. If these numbers are calculated once, the running time of the
branching rule is O(|V|A), where A denotes the maximal degree of a node in G.
This results in an overall running time of O(|V|(A + K)).

82 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Objective Branching

To incorporate the objective function into the branching decision, the idea of
objective branching is to find node v with the most assigned neighbors. Then
fixing v to one part may lead to many edges in the induced cut, thereby increasing
the objective function.

We decide for each node v if it is fixed or branched. Then, we choose v to
be the node with the most assigned neighbors and create the children for the
branch-and-bound tree by fixing v to every possible part. The running time of
this procedure is O(|V|(A + K)).

Note that this procedure may also create infeasible solutions, since fixing
a node to a part only a small amount of its neighbors are fixed to, is likely to
be infeasible. Then the arguments from the infeasibility branching rule can be
applied.

Path Branching

The idea of this branching rule is to enforce connectedness by finding paths
between different connected components. In contrast to the previous rules, we do
not fix a node to a part but rather create two child nodes by adding one additional
constraint.

First, we need to find a disconnected part. Therefore, let i € [K] such that
the graph G; induced by the nodes fixed to part i is disconnected. If no such
i exists, this branching rule is terminated and another one is called. If the
partial solution can be extended to a feasible solution, then there exists a path
P = (Vp,Ep) connecting two different connected components of G; such that P
contains only nodes from G?, which is the graph induced by nodes fixed to part i
as well as the nodes not yet fixed to any part. One child is generated by fixing all
nodes in Vp to part i adding the constraint

fo, > |Vp|

veVp

The other child is created by adding the constraint that at least one of the nodes
in P is not fixed to part i
Z x, <|vp|-1,

’
veVp

where V :={v e Vp|v € F;}.

Note that both, the connected components of G; and the path P, can be found
by (modified) BFS algorithms. This implies that the running time of the path
branching rule in O(K|E|).

3.3. SorvinGg CoNNECTED Max-K-Cut 83

3.3.7 Symmetry

For any solution of CoNnnecTED Max-K-CuT, exchanging part labels creates a
different solution with the same objective value. More formally, if o is a per-

mutation of [K], for any solution x the point % defined by %} = x,(,T(l) is also a
solution derived by a so-called partitioning symmetry. Furthermore, if there exists
a graph automorphism 6: V — V of G = (V,E), then % defined by % = xff(v) is
also feasible with the same objective value as x. This symmetry is called a graph

symmetry in the following.

As symmetric solutions often lead to an increased running-time of a branch-
and-bound algorithm due to the fact that similar branches have to be calculated,
there exist many procedures to handle such symmetries. An overview can be
found for example in [88]. A computational study comparing different techniques
for mixed-integer programs is [93]. Next, we want to describe how we handle the
above two types of symmetries by applying procedures from the literature.

Partitioning Symmetries

Every point x in S,Ié in particular is in {0,1}V*[X], meaning that it can be written
as a |V| x K matrix. The permutation ¢ acting on the part labels can thus be seen
as acting on the columns of x. For handling these column symmetries, [72] intro-
duced the concept of orbitopes. Since every permutation of the columns generates
a symmetric solution, only one of these permutations needs to be inspected in
the branch-and-bound procedure. Thus, the main idea of orbitopes is to chose
one solution, where the columns are sorted such that they are lexicographically
maximal in their symmetry class. The so-called full orbitope O, , is defined as the
convex hull of all binary m x n matrices, whose columns are sorted lexicographi-
cally non-increasing. This implies that inequalities derived from the orbitope can
be used for our mixed-integer formulation to decrease the number of possible
solutions.

Since due to the partitioning constraint (3.29), every solution x contains
exactly one 1-entry in every row, we can even restrict O, , to the partitioning
orbitope. The partitioning orbitope is defined as the convex hull of vertices of
O, with exactly one 1-entry in every row. In [72] the authors state a complete
description of the partitioning orbitope and prove that it can be separated in
time O(|V|K). Furthermore, in [71] it is shown that propagation can be achieved
also in time O(|V|K). To handle partitioning symmetries for the CONNECTED
Max-K-Cut problem we use these propagation and separation routines.

84 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

Graph Symmetries

The same idea of lexicographically maximal elements from above can be applied
in the case of graph automorphisms. The general idea can be formulated by the
so-called symresacks. For a permutation s of the symmetric group on n elements,
the symresack P; is defined as

P, := conv({x € {0,1)" | Z(z"-sm — 2")x; < 0)), (3.40)
i=1

see [58]. It can be shown that P, contains exactly the binary vectors which are
lexicographically not smaller than their permutation with respect to s. Thus,
inequalities derived from symresacks can also be applied in the case that s
is a graph automorphism. Note that a graph automorphism only acts on the
rows of solution matrices x/, and n therefore is not equal to |V|K. For brevity
of presentation the details are omitted. Due to the large coefficients in (3.40),
adding the corresponding inequalities may lead to numerical problems.

In [58] it is shown that symresacks can be described by an IP formulation with
left-hand side coefficients in {0,+1}, which can be separated in time O(na(n, n)),
where « is the inverse Ackermann function. This in particular means, that the
corresponding inequalities do not introduce the above mentioned numerical
instabilities. Moreover, [58] formulates a linear algorithm for solving the propa-
gation over P;. Both, separation and propagation, are implemented for solving
the ConnEcTED MaX-K-Cut problem.

To find graph automorphisms we use the program nauty [91].

3.3.8 Numerical Results

Each of the presented techniques was implemented as an extension to SCIP and
we compare in this section their influence on the solution process. We tested
various different settings on three different test sets.

The experiments on all test sets are using SCIP 4.0.1 [87] as branch-and-
bound framework and CPLEX 12.7.1[62] as LP-solver. The tests were run on
a Linux cluster with Intel Xeon E5 3.5 GHz quad core processors and 32 GB
memory; the code was run using one thread and running a single process at a
time. The time limit was set to 3600 s per instance.

Our test instances consist of three different sets: Color02, 1080 and Random.
The first contains a subset of the instances found in [26] which constitute a
benchmark for graph coloring problems. We removed the largest instances since
there was no hope to solve them within our time frame. The second set is a part
of the SteinLib library, called 1080 and can be found in [104]. These are a part of
a benchmark set for solving Steiner tree problems. The last set of instances were

3.3. SorvinGg CoNNECTED Max-K-Cut 85

Table 3.1: The three test sets and their properties: minimal, maximal and average
number of nodes and edges, as well as average value of density and number of
articulation nodes

Nodes Edges Density Art. Nodes
Name min. max. avg. min. max. avg. avg. avg.
Color02 11 2368 167.5 20 110871 4441.27 0.2255 0.235
1080 80 80 80.0 120 3160 884.40 0.2799 3.920
Random 50 100 84.0 107 1016 486.57 0.1402 0.647

randomly generated with the idea of creating sparse connected graphs. Sparse
instances are of particular interest to us since connectivity is in this case a very
restrictive constraint and the idea is that our techniques are especially beneficial
then. An overview of the three test sets with details of some properties can be
found in Table 3.1, where the density of a graph G = (V, E) is calculated by

2|E|
VIqvI-1)

Preliminary test have shown that out of the four presented branching rules
only the articulation branching may lead to a faster solution process, which is why
we do not include results of the others. Furthermore, we only include the clique
and bounded edge cuts in the following analysis since articulation, leaf and cycle
cuts did in most cases not result in an increased performance of the algorithm.
We tested both the flow formulation and the separator-based formulation on
the three test sets shown in Table 3.1. The results using different parameter
settings can be found in Table 3.2. In all cases we used both symmetry breaking
techniques explained in Section 3.3.7 since this decreased the running time in
most cases. For a comparison of the different symmetry handling techniques and
their influence see Appendix A.

The names of the tested settings in Table 3.2 are explained as follows. The
letter “f” indicates that the flow formulation is used and we optimize over the

polyhedron s/ , whereas “nf” indicates the separator-based formulation given by
Sk. In case of the flow-formulation “cut 0” means that no additional cuts are used,
in contrast to “cut 1”7, where clique cuts are applied and separator inequalities are
separated. In case of the separator formulation, “cut 1” indicates the additional
use of clique cuts over the setting “cut 0”. Furthermore, we always include the
bounded edge cuts independent of the setting. In both formulations “branch 0”
indicates that none of our branching rules is applied, whereas “branch 1” implies
the use of the articulation node branching rule. Lastly, “heur 0” means that none
of the presented heuristics are applied, while “heur 1” indicates the use of all
three heuristics: tree heuristic, rounding heuristic and improving heuristic.

86 CONNECTED SUBGRAPHS AND PARTITIONING INTO CONNECTED SUBGRAPHS

The columns of the table contain the name of the setting as explained above,
the number of applied separator cuts, the time needed for finding these separator
cuts, the number of domain reductions resulting from the propagation routine,
the time needed for the propagation, the number of optimally solved instances
and the time needed for the solution. With the exception of the number of
optimally solved instances, the numbers are all calculated using the shifted
geometric mean, which is defined as

(I1(a; +5))/" =5

for the n values ay,...,a, and the shift s. We use a shift of 10 for the times values
as well as the number of domain reductions and a shift of 1000 for the number
of separator cuts.

First, it can be seen that the time needed for the propagation routine is
negligible. While separating the separator inequalities is more time-consuming,
it uses only a small percentage of the total time. Second, using cuts is favorable
in all cases. The influence of the other techniques is not as notably. For the
Color02 test set heuristics are in general increasing the running time with the
sole exception of the flow formulation with additional cuts. For the other test
sets heuristics do not have a clear influence on the overall performance. In some
setting, it is preferable to use heuristics, in others it is the opposite and in some
case the influence of the heuristics is negligible.

Since the articulation branching rule depends on the number of articulation
nodes in the graph, this setting has virtually no influence on the Color02 test
set because there are only two instances, which contain an articulation node. In
case of the 1080 test set, the branching rule has more influence since the average
number of articulation nodes is much higher even though the graphs are on
average denser compared to the other two test sets (see Table 3.1). Still, there
is no clear indication on when it is best to use our special branching rule. Even
though the density for the Random test set is smaller than the average density
of the other test sets, the number of articulation nodes is less than the number
of articulation nodes in the I080 test set. That is one possible explanation on
why the branching rule may not have a big influence on the overall running time.
Only if additional cuts are applied in the separator-based formulation is it clearly
beneficial to use articulation branching.

A more detailed analysis is planned to appear in [56].

3.3. SorvinGg CoNNECTED Max-K-Cut

87

Table 3.2: Comparison of different parameter settings for solving the CoNNECTED

Max-K-Cut problem

Setting #SepaCuts SepaTime #DomRed PropTime #Opt Time
Color02:

f cut 0 branch 0 heur 0 0.0 0.0 0.0 0.00 7 2130.45
f cut 0 branch 0 heur 1 0.0 0.0 0.0 0.00 7 1939.66
f cut 0 branch 1 heur 0 0.0 0.0 0.0 0.00 7 2130.90
f cut 0 branch 1 heur 1 0.0 0.0 0.0 0.00 7 1940.32
f cut 1 branch 0 heur 0 10131.4 11.8 22.1 1.64 13 1267.08
f cut 1 branch 0 heur 1 8092.9 10.5 17.2 0.37 15 1094.92
f cut 1 branch 1 heur 0 9881.4 11.7 22.5 1.65 13 1243.33
fcut 1 branch 1 heur 1 8124.5 10.5 17.0 0.37 15 1100.98
nf cut 0 branch 0 heur 0 21296.3 23.0 21.1 1.58 19 820.60
nf cut 0 branch 0 heur 1 22459.7 21.9 21.9 0.52 20 845.86
nf cut 0 branch 1 heur 0 21191.8 229 21.4 1.57 19 812.90
nf cut 0 branch 1 heur 1 22751.3 21.7 22.1 0.53 20 837.61
nf cut 1 branch 0 heur 0 20100.2 15.9 22.0 1.47 20 751.17
nf cut 1 branch 0 heur 1 21771.0 16.8 21.0 0.65 20 800.75
nf cut 1 branch 1 heur 0 19802.8 15.8 21.2 1.46 20 741.76
nf cut 1 branch 1 heur 1 21417.3 16.9 20.2 0.64 20 799.23
1080:

f cut 0 branch 0 heur 0 0.0 0.0 0.0 0.00 24 1402.00
f cut 0 branch 0 heur 1 0.0 0.0 0.0 0.00 23 1510.28
f cut 0 branch 1 heur 0 0.0 0.0 0.0 0.00 25 1466.49
f cut 0 branch 1 heur 1 0.0 0.0 0.0 0.00 26 1379.09
f cut 1 branch 0 heur 0 7363.0 4.9 50.5 0.21 89 122.51
f cut 1 branch 0 heur 1 5505.8 3.7 43.8 0.13 95 99.82
f cut 1 branch 1 heur 0 5492.4 3.9 35.7 0.19 92 100.99
f cut 1 branch 1 heur 1 5468.1 3.9 39.5 0.15 92 99.10
nf cut 0 branch 0 heur 0 20577.4 11.5 57.4 0.35 75 290.66
nf cut 0 branch 0 heur 1 19025.7 12.6 55.0 0.37 71 293.39
nf cut 0 branch 1 heur 0 15592.9 9.8 51.7 0.39 71 231.35
nf cut 0 branch 1 heur 1 15968.8 9.6 51.5 0.28 75 238.62
nf cut 1 branch 0 heur 0 17292.1 7.0 66.7 0.64 92 88.46
nf cut 1 branch 0 heur 1 12994.2 45 61.7 0.34 92 66.64
nf cut 1 branch 1 heur 0 10429.4 4.1 47.5 0.41 93 61.35
nf cut 1 branch 1 heur 1 9960.4 3.7 48.2 0.30 93 56.27
Random:

f cut 0 branch 0 heur 0 0.0 0.0 0.0 0.00 13 3325.69
f cut 0 branch 0 heur 1 0.0 0.0 0.0 0.00 9 3363.59
f cut 0 branch 1 heur 0 0.0 0.0 0.0 0.00 13 3342.07
f cut 0 branch 1 heur 1 0.0 0.0 0.0 0.00 9 3441.01
f cut 1 branch 0 heur 0 2976.5 3.3 4.9 0.04 134 312.48
f cut 1 branch 0 heur 1 3001.5 3.4 5.4 0.01 132 319.86
f cut 1 branch 1 heur 0 3223.3 3.7 5.1 0.04 132 328.40
f cut 1 branch 1 heur 1 2859.2 3.2 5.0 0.01 134 305.63
nf cut 0 branch 0 heur 0 11451.7 21.9 7.1 0.06 62 1389.09
nf cut 0 branch 0 heur 1 12499.0 224 8.0 0.07 61 1424.69
nf cut 0 branch 1 heur 0 9447.7 19.6 5.5 0.05 63 1222.95
nf cut 0 branch 1 heur 1 10305.8 20.3 5.8 0.02 65 1246.45
nf cut 1 branch 0 heur 0 5165.3 3.9 6.8 0.06 141 157.51
nf cut 1 branch 0 heur 1 4912.0 4.1 7.2 0.07 139 154.00
nf cut 1 branch 1 heur 0 4344.8 2.9 5.2 0.05 144 138.05
nf cut 1 branch 1 heur 1 4669.6 3.4 6.1 0.03 143 145.83

Chapter 4

MIP Formulations

There exist integer programming formulations for problems where a subset of
the variables is only needed to formulate the objective function. To answer the
feasibility problem, it thus suffices to examine a lower-dimensional polytope.
The question then arises whether it is possible to find a formulation over the
lower-dimensional polytope such that there exists a linear objective function
which corresponds to the original objective. We examine the question whether an
optimization problem can be solved by solving a mixed-integer program and find
answers for specific cases. Furthermore, we propose a definition of mixed-integer
programming formulations including objective functions and discuss some of
their properties. Section 4.1 serves as an introduction, whereas Section 4.2
provides the main part. This chapter is based on a joint work with Hojny and
Pfetsch [57].

4.1 Introduction

A subproblem of Problem 2.1 is to partition the node set of a given graph
G = (V,E). This problem is known as the GRaAPH PARTITIONING problem where
the objective function is to maximize the weight of edges between different
partitions.

Problem 4.1. Given a graph G = (V,E) with weight function w: E — R and an
integer KC € IN, the GRAPH PARTITIONING problem is to partition the nodes V of G into
KC subsets such that the sum of the weights of edges between different partitions is
maximized.

Note that this is similar to Problem 3.58, where additional connectedness is
the task. On the other hand, this can be formulated analogously as minimizing

89

90 MIP FORMULATIONS

the edge weights that completely lie in one partition.
One way of formulating this problem as a mixed-integer program (MIP) is
the following (see, e.g., [24]):

max Z w({v,w})vpw (4.1a)
{v,wleE

s. t. Z xf, =1, veV, (4.1b)
i€[K]

xi—xi < Vowr {v,wleE, ie[K] (4.1¢)

X —xl, <y, {v,w}€E, iclK], (4.1d)

X x4y, <2, (v,w) €E, i €[K], (4.1e)

xi €{0,1}, veV,ielK] (4.1f)

Yow €1{0,1}, {v,w}€E. (4.1g)

In this case, the binary variable x!, encodes whether node v is in partition i and
the binary variable y,,, models whether the edge {v, w} connects two nodes from
different partitions (compare also to the formulation of ConnecTED Max-K-Cut
in Section 3.3.1).

Equation (4.1b) is the partitioning constraint already introduced in (3.29).
Inequalities (4.1c) and (4.1d) model that, if the two nodes v and w are in different
partitions, the variable y,,, has to be 1. Inequality (4.1e) models that, if the two
nodes v and w are in the same partition, the variable y,,, cannot be 1. Finally,
(4.1f) and (4.1g) ensure the binarity of the variables. Other formulations can for
example be found in [2], but the details are not of interest here.

Given the x-variables, it is easy to compute the y-variables. But if the roles
are reversed, calculating the x-variables is NP-hard.

Lemma 4.2. Given a graph G = (V,E) and a binary vector y € {0, 1\E. It is NP-hard
to find the minimum number K € IN such that y corresponds to the cut induced by a
partitioning of V into K components.

Proof. Let y,,, =1 for all {v,w} € E. Since this implies that each edge has to be in
the induced cut, the endpoints of every edge have to be in different components
of the partition. Thus, solving the problem of finding the minimum number of
partitions needed to ensure that all edges are in the cut, is equivalent to solving
the CErROMATIC NUMBER problem: find the minimum number of colors needed to
color the nodes of a graph such that no edge has two endpoints of the same color.
Curomatic NuMBER is NP-complete (see, e.g., [44, Problem GT4]). O

The following formulation models the GrapH ParTITIONING problem by only

4.2. ProBLEM FORMULATION 91

using the x-variables. Note that in this case the objective function is quadratic.

max Z a)({v,w})[l - Z x,i,xiu]

{v,w}eE i€[K]
s. t. Z xf, =1, veV, (4.2)
i€[K]
xi e{0,1), veV,ielK]

We refer to this problem as the QuabpraTtic GrRaPH PaRTITIONING problem. The
question that arises is how to reformulate this problem to use a linear objective
function. One possibility is linearization, which introduces additional variables
and results in Formulation (4.1). But is there any way to model the problem on
the x-variables alone with a linear objective function? This serves as a guiding
question for the next section. Compare also to Remark 3.60, where this question
is mentioned concerning the polytope Si(G).

4.2 Problem Formulation

In order to generalize the question of representing an optimization problem
as a MIP, let X C ZP x R7 be non-empty and hole-free, that is, X = conv(X) N
(ZP x R1). Note that hole-free is a necessary condition for finding a mixed-
integer formulation for X in the original space. Furthermore, let f: X — R be an
objective function with a finite maximal value. The question from the previous
section then generalizes to the following problem.

Problem 4.3. Given an optimization problem I of the following form
max{f(x)|x e X}, (4.3)
can IT be solved by a MIP?

To formalize Problem 4.3, some careful definitions are needed. First, it has to
be clarified what a MIP is. One common definition is the following.

Definition 4.4. A mixed-integer program (MIP) is an optimization problem
max/(g(x) | x € QN (ZP x RY)),

specified by a polyhedron Q € R” x R? and an affine function g: R? x R7 — R.
We use the tuple (Q, g) to denote a MIP. Furthermore, a MIP is called feasible if
QN (ZP xR1) = @.

92 MIP FORMULATIONS

Since the set X in Problem 4.3 is not specified other than being hole-free and
Definition 4.4 contains a polyhedron Q, we have to extend the above definition
to also include X.

Definition 4.5. A mixed-integer formulation of a set X C ZP xR is a pair (Q,)
with a polyhedron Q = {(y,2) € R xRY | Ay + Bz < b} and an affine function
m: RP xR7 — RP x RY such that

X =n(QN(ZF xRY)),

where A €]Rmxl", Be Rqu,, and b € R™. If 7 is the identity, the formulation is in
the original space, otherwise in an extended space (or an extended formulation for
short). Furthermore, if ¢’ = 0, we call the the formulation an integer formulation.

Since Definition 4.5 does not include the objective function, we propose the
following definition.

Definition 4.6. A mixed-integer programming formulation (MIP formulation) for
an instance I of ITis a triple (Q,g, 7) with a polyhedron Q C R?’ x R?, an affine
function g: R” xR?7 — R and a function 7: R” xRY — R” x R such that

1. (Q,g) is a feasible MIP with finite maximum value,
2. r(argmax{g(y) |y QN (ZP' xRI)}) C argmax({f (x) | x € X}.

Assume we are given an optimization problem IT as in (4.3). If there exists a
MIP formulation of an instance I, we can solve I by solving the maximization
problem of g over the mixed-integer set Q N (ZP x RY) obtaining a solution .
By applying the transformation 7 on y, we obtain a solution 7(y) € X, which by
Definition 4.6 Part 2 is an optimal solution of I. Therefore, if there exists a MIP
formulation of (4.3), the optimization problem IT can be solved by a MIP.

This allows us to refine Problem 4.3.

Problem 4.7. Given an optimization problem I1 of the form
max{f(x)|x e X}, (4.4)

does there exist a MIP formulation for I1?

The question whether a set X can be described as a mixed-integer set, that
is, whether this set can be represented as the projection of a polytope, has been
fully characterized in [65]. An equivalent algebraic description can also be found
in [12]. This means that Problem 4.7 reduces to the question whether there exists
a linear objective function for finding an optimum for f.

4.2. ProBLEM FORMULATION 93

Observe that we cannot expect to find a MIP formulation (Q,g,7) in the
original space for every problem II if 7 is the identity. For example, assume
that f has a unique integral maximizer x* in the relative interior of conv(X). If
(Q,g,id) was a MIP formulation of IT in the original space with QN X = X, there
would exist an optimal point on the boundary of conv(X), a contradiction to
Property 2 of Definition 4.6. If we have X C {0, 1}", however, this problem cannot
occur since binary sets do not have relative interior integer points.

Another problem of Definition 4.6 is that such a formulation always exists,
but might not be useful. It is clear that Q, g, and 7 can be chosen easily once
an optimal value of (4.3) is known. For example, let an optimum of (4.3) be
attained at x*. In this case, setting g to be constant and T mapping everything
to x*, Q can be any non-empty polyhedron, in particular it can be chosen as a
single point. Since solving (4.3) to obtain x* might be NP-hard, we cannot expect
that such a MIP formulation can be computed efficiently and the formulation
will in general depend on the given data, i.e., the set X. Thus, the definition of a
MIP formulation has to be refined.

Definition 4.8. Let I be an instance of an optimization problem with objective f.
A MIP formulation (Q, g, 7) of I is called efficient if

1. Q, g, and 7 can be generated in polynomial time in (I),

2. g(y) can be evaluated in polynomial time in (I) for all y € Q,

3. 7(y) can be evaluated in polynomial time in (I) forally e QN (ZP’ x R7),
where (-) denotes the encoding length (see for example [51]).

Formulation (4.1) is an example of an efficient MIP formulation. Note that
this formulation is given in an extended space if we consider the original space
to be given by the x-variables alone. Furthermore, note that in Definition 4.8
it is necessary to require g to be computable efficiently, since otherwise, once
an optimal solution is known, g can easily be chosen to be only optimal in that
particular solution.

In general, the following theorem shows that an efficient integer programming
formulation always exists if f is linear, X C {0,1}", and the membership problem
is in NP since the proof is constructive.

Theorem 4.9 ([73]). Consider a 0/1-problem that defines X' C {0,1}"1) for each
instance 1, and let the membership problem for X! be in NP. Then there exists a
polynomial p such that for each instance 1, there is a system Ax + By < b of at most
p(n(I)) linear inequalities and k(I) < p(n(I)) auxiliary variables with

X' ={x e{0,1}"" |3y € Z*) with Ax + By < b}.

If the membership problem is in P, the integrality condition on y can be dropped.

94 MIP FORMULATIONS

Formulation (4.1) and Theorem 4.9 only hold for extended spaces, but what
about the original space? Under some assumptions we can show that there does
not exist an efficient formulation.

Lemma 4.10. Let I be an instance of an NP-hard problem I1, and let (Q,g,) be a
MIP formulation of I (either in the original or an extended space) such that

max{g x|xe€ QN (Z" xR7)}

can be solved in polynomial time in (I). As long as P = NP, the MIP formula-
tion (Q, g, T) is not efficient.

Proof. The assumptions guarantee that the formulation can be derived in polyno-
mial time and that the computation of an optimal solution of I can be achieved
in polynomial time as well. O

The previous lemma can directly be used to show that, for the GrarH PArTI-
TIONING problem, no efficient formulation exists in the original x-space if P = NP.
To this end, for G = (V,E) and K € NN, let the set of feasible partitionings be
defined as A

X5 = {xefo, 1}V Z xi=1,veV)
i€[K]

Observe that optimization of a linear objective function over X§ is possible in
linear time. To see this, inspect the optimization problem max{g x| x € Xg}.
For each node v the entry i can be chosen such that g/, i € [K] is maximal. If
this is carried out for each node v, the maximum value is attained because of
the partitioning constraint. Thus, we only have to inspect the objective function
once.

Corollary 4.11. There does not exist an efficient MIP formulation for the GRAPH
PARTITIONING problem over X§

Proof. Since linear optimization over X§ is possible in linear time, the statement
follows from Lemma 4.10 because the GrarH ParTITIONING problem is NP-hard,
see Garey and Johnson [44, Problem ND14]. O

The idea of using that optimization over an integer set is possible in poly-
nomial time, whereas the corresponding optimization problem is NP-hard, to
show that no efficient formulation exists, can also be applied to other exam-
ples. We include here the TRAVELING SALEsSMAN ProBLEM or TSP for short, the
MULTIPROCESSOR SCHEDULING and the MaxmMum BicLiQUE problem.

The TSP on a weighted undirected graph G = (V,E) is to find a weight
minimal Hamiltonian cycle in G, that is, a cycle containing each node. One

4.2. ProBLEM FORMULATION 95

possible formulation is to give every node v € V a number from 1 to |V|, in which
case every permutation describes a possible Hamiltonian cycle in G. In particular,
this implies that the solutions are vertices of the permutahedron, which is the
polytope spanned by all permutations (see, e.g., [113]). Note that the well-known
Miller-Tucker-Zemlin formulation [92] extends on the permutahedron by also
using edge-variables.

Given a set of tasks V, a number of processors K and an integer length for
each task, the MULTIPROCESSOR SCHEDULING problem is to find a schedule for the
tasks with the earliest possible deadline such that at most K tasks are performed
at the same time. For an edge or node weighted bipartite graph G = (V,E),
the MaximuM BicLiQUE problem on G is to find an induced complete bipartite
subgraph of G whose (node or edge) weight is maximal.

Similar to Corollary 4.11 we can apply Lemma 4.10 to show that efficient
formulations cannot exist for these problems. To this end, let

X% :={xe€{0,1}V | x = x(V’), V' C V is the node set of biclique in G}.

Corollary 4.12. As long as P = NP there do not exist efficient formulations for the TSP
over the vertices of the permutahedron, the MULTIPROCESSOR SCHEDULING problem
over X§ as well as the edge version of the Maxmum BicLiQue problem over X©.

Proof. Since the permutahedron can be derived from a linear projection of the
Birkhoff polytope (see, e.g., [70]) over which one can optimize in polynomial time,
the statement for the TSP follows (for NP-hardness see, e.g., [44, Problem ND22]).
Moreover, solutions of the multiprocessor scheduling problem can be modeled
as vectors in X§ over which linear optimization is possible in linear time, but
MULTIPROCESSOR SCHEDULING is NP-hard, see [44, Problem SS8]. Finally, the
node version of the maximum biclique problem is solvable in polynomial time,
see [109, Theorem 4]. Thus, a linear objective over X6 can be maximized in
polynomial time. This proves the assertion, because the edge version of the
biclique problem is NP-hard, see [29]. In all cases, applying Lemma 4.10 leads to
the stated result. O

Remark 4.13. From a practical point of view, there are additional requirements
that seem useful for the general notion of a MIP formulation.

1. If a MIP formulation is known and f is changed, it would be preferable
that Q and 7 can be chosen as before and only g has to be changed, that is,
Q and 7 are independent of f.

2. Q should be tractable, meaning polynomial time separable.

3. Part 2 in Definition 4.6 could be changed to equality, i.e., all optimal
solutions can be generated.

96 MIP FORMULATIONS

The first part can be guaranteed in the case that f and 7 are affine, since if
f(x)=fTxand T(y) =1y, for f € RP*, v e RP*+1)X(P+9), we obtain:

T T
max f (x) =max f(x(@) = max fley = r;layx ly= s max 8,

where Y := Q N (ZP x R1). The first equality holds because of Definition 4.6

Condition 2 and the others because of linearity.

To expand on Part 3 of Remark 4.13, we return to the GRapPH PARTITIONING
problem. As we have seen, there indeed exists an efficient formulation in ex-
tended space given by (4.1) that furthermore fulfills Condition 2 of Definition 4.6
with equality. One natural question is whether this can also be achieved in the
original space. Because of the quadratic function, this intuitively should not be
the case. As shown in Lemma 4.15 this intuition is correct.

Note that the following lemmata are independent of P vs. NP and state the
non-existence of an objective function independent of the time of its calculation
in difference to Lemma 4.10. For these lemmata we use the following simple
observation and define P¢(G) := conv(X&).

Observation 4.14. Given a polytope P and a linear objective function w. If two
points x,y € P are both optimal with respect to w, they have to lie in a common face
of P.

Lemma 4.15. There does not exist a linear objective function w: RV*IXl 5 R for the
polytope P (G) such that the maximizers of w over Pi(G) are exactly the maximizers
of the QuaDRATIC GRAPH PARTITIONING problem if K > 2 and not all solutions of the
quadratic problem are optimal.

Proof. For the sake of contradiction, assume there is a non-trivial face F of Pc(G)
that contains exactly the maximizers of the Quabraric GRAPH PARTITIONING
problem. Let a”x < B be an inequality that induces F. Since exactly the points
in F maximize a'x < 8, we have a'x = 8 for all x € F, and a"x < B for all
x € Pc(G)\ F.

Observe that x € {0,1}V*X] is a vertex of P(G) if and only if for everyve V
there is exactly one i(v) € [K] with x;,(v) = 1. Hence, a vertex is contained in F if
and only if i(v) € A” := argmax{al, | i € [K]} for every v e V.

Let x be a vertex of P¢(G) that is contained in F. If there exists 7 € V such
that A” = [K], there exist an index j € A” and an index j€ [K]\.A”. By exchanging
the entries of x in columns j and j, we obtain another vertex % of Pc(G) that is
optimal for the QuabraTic GRAPH PARTITIONING problem, because changing the
labels of assigned partitions does not affect the objective value. But % cannot be
contained in F, because for every v € V \ {7}

igi 0 o _ i
E alxi < > ax! and azX; = ay <a; = > AyXy.

i€[K] i€[K] i€[K] i€[K]

4.2. ProBLEM FORMULATION 97

Consequently, a" X < aTx. For this reason, A” =[] for allve V.

But if AY = [K] for every v € V, then every vertex of P (G) maximizes a’x < f8
due to the partitioning constraint (4.2). This contradicts the assumption that not
all vertices of P¢(G) are optimal for the quadratic problem. O

Note that this lemma does not depend on the GRaPH PARTITIONING problem,
but only on assigning nodes to partitions with the requirement that interchanging
two partitions does not change the objective value. Thus, in the original space
of the x-variables there does not exist a linear objective function that allows for
finding all optimal solutions.

Observation 4.14 can also be used for the TSP by relying on the following
property of the permutahedron.

Remember that the permutahedron IT, ; C R" is defined as the convex hull
of all permutations of the coordinates in the vector (1,2,...,1) € R". In partic-
ular, the permutahedron is an (n — 1)-dimensional polytope embedded in an
n-dimensional space (see [113]). All the k-dimensional faces of I1,,_; are in one-
to-one correspondence to (ordered) partitions of [#] into n — k non-empty parts
(see [113]). For example, in the case of n = 4, one facet F (which has dimension
k =n—-2 = 2) can be described by the partition ({1, 3},{4,2}). The four vertices
of F derived from this partition are: (1,3,4,2), (1,3,2,4), (3,1,4,2) and (3,1,2,4),
that is, all points generated from all permutations of the coordinates in each set
of the partition while maintaining the order of the sets.

This description of faces of I, _; allows the following observation: there
does not exist a non-trivial face of I'l,,_; which contains both a point and any
non-trivial cyclic shift of that point. For example, a cyclic shift applied to the
vertex (1,3, 2,4) results in the vertex (4,1, 3,2). Since the faces can be described
by ordered partitions, both these points cannot be contained in a common face F
if F #I13. This observation allows for showing the non-existence of a formulation
of the TSP over the permutahedron (compare to Corollary 4.12).

Lemma 4.16. Provided that not every solution of a TSP is optimal, there does not
exist a linear objective function w over the permutahedron such that the maximizers
of w correspond exactly to the optimal solutions of the TSP.

Proof. Note that for any optimal solution, every cyclic shift of a vertex of the
permutahedron yields exactly the same solution of the TSP. Therefore, any face
which contains an optimal solution over the permutahedron also has to contain
every cyclic shift. The arguments above show that this cannot happen. O

Chapter 5

Different Approaches for
Handling the Retooling
Process

In this chapter we return to our starting problem: Given a profile, how should it
be produced in order to minimize the needed retooling steps (see Section 1.2)?
Since we cannot hope to produce all profiles by combining just one piece, we
start in Section 5.1 with the problem of partitioning a graph such that all except
one of the subgraphs are isomorphic. The size of that part, which does not have
to be isomorphic to the others, is minimized. The idea is to create the whole
profile nearly completely out of one piece and the missing piece should be as
small as possible to ensure a fast production. First, we show a MIP formulation
for this problem in Section 5.1.1 and then present in Section 5.1.2 an algorithm
that quickly solves this problem for our tested profiles.

In the second part of this chapter, we present a different approach. Instead of
looking for identical parts, we search for similar parts of a profile. We first formal-
ize the problem of partitioning a graph subject to a given similarity measure in
Section 5.2.1 and present a framework for solving this problem in Section 5.2.2.
The measures that we implemented can be found in Section 5.2.3. The first
measure we propose is called DEGREE SimILARITY, for which we also show a MIP
formulation. The other measures are GrRarPH IsomorPHISM, GRAPH EDIT DISTANCE
and MaximuMm CoMMmON INDUCED SUuBGRAPH, which are already known from the
literature.

99

100 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

5.1 Minimizing the Non-Isomorphic Remaining Part

In this section we are interested in the following problem.

Problem 5.1 (Min Non-IsomorpHIC ParT). Given a graph G = (V,E) and an inte-
ger K € N, the problem is to partition the nodes V of G into KC+ 1 subsets V,..., Vi
such that the following conditions hold:

1. G[V;]=G[V;]foralli,je[K],
2. G[V;]is connected for all i € [K]o,
3. |Vl is as small as possible.

In Section 5.1.1, we show how to model Problem 5.1 as a mixed-integer
program, whereas in Section 5.1.2, it is solved by a brute-force algorithm.

5.1.1 MIP Formulation

In the IP formulation of the CoNnEcTED Max-K-Curt problem in Section 3.3 we
are mainly interested in edges between different partitions because these are the
edges crucial for the objective function, whereas the edges with both endpoints
in the same partition are only used for modeling the connectivity. In this section,
however, the situation is different. Since we want to model isomorphisms of
induced graphs, the edges with both endpoints in the same partition are the
main focus, whereas edges between different partitions are of no interest at all.
This is why in this section the variables y,,, model whether the endpoints are in
the same partition, in other words, v,,, = 1 implies that v and w are in the same
partition in contrast to its meaning in Chapters 3 and 4.

To formulate Problem 5.1 as a MIP, we use a binary variable x}, to denote
if node v € V is in partition i € [K]y. The partitioning constraint can then be

written as '
Z x, =1, vev,
i€[K]o

which is the same as (3.29) from Section 3.3. Furthermore, the binary variable
Vyw models for every pair of nodes v, w € V with v # w if v and w belong to the
same partition. This can be realized by

Yow = Ywos v,weV,vzw,
and the coupling conditions
x4 xl —y <1, v,weV,vzw,ie[K]y (5.1)

xf,—xfu+vaﬁ 1, v,weV,vzw,iel[K]. (5.2)

5.1. MiNnmMi1zING THE NoON-IsoMORPHIC REMAINING PART 101

Inequality (5.1) models that if v and w are in the same partition, y,,, has to be 1,
whereas Inequality (5.2) models that if v and w are not in the same partition, v,
has to be 0 since there is an i such that x/, — x/, is equal to 1. Note that we define
Yy for all pairs of nodes with v # w even if there does not exist an edge {v, w}
because the variable is also used for the isomorphism as explained next.

To model an isomorphism, we use the binary variable z,,, to encode whether
node v € V is mapped to w € V by the isomorphism. Since an isomorphism is a
symmetric function, the following constraint has to hold

Zyw = Zyys v,weV.

Since the partition V| does not need to be isomorphic to any other partition V;,
i € [K], the variable z,,, is set to 0 if v belongs to partition Vj, that is,

Zpw<1-%, wvweV. (5.3)

Every partition V;, i € [K], other than V; has to be isomorphic to exactly K —1
other partitions. This means that the following equality has to hold

szw:IC—l—xS(IC—l), vev,

weV

which implies (5.3). This also means that we know an upper bound for the total
number of isomorphic mappings: Every partition contains a maximum number
of [%J nodes and each of these nodes is mapped to a maximum of X — 1 nodes.
Since the maximum number of isomorphic mappings is attained if Vj is empty,
the above argumentation has to hold for all of the K partitions. This results in

the inequality
14
E E Zyw < {%JK(K— 1).

veVweV

In our case, a node v cannot be mapped to another node w if they both belong to
the same partition. This can be formalized as

Xy + X0, + Zyy < 2, ie[Kl,vyweV.

Note that we do not have to add this restriction if a node belongs to partition 0,
because, in this case, the value of z,,, is set to zero by (5.3).

If two nodes u, v are in the same partition, the isomorphism cannot map
a third node w to both # and v, since the isomorphism has to map one node
to exactly one node of every other partition excluding the zero-partition. This
implies the inequality

Zyu + Zwy 2=V, u,v,weV.

102 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

Note that none of the stated inequalities ensures that z really corresponds to iso-
morphisms as we have not yet mentioned the property defining an isomorphism:
If and only if {v, w} is an edge of G, then {¢(v), p(w)} has to be an edge, too. We
formalize this by excluding the case that the endpoints of an edge are mapped to
two points which are not connected by an edge. This results in the inequality

Zys + Zyt + Zys + Zyr 9= 4y — 4V, {v,w}€E,{st} ¢E.

If both p,,, and y,; are 1, the nodes v, w as well as s, t are in the same partition.
Since there is an edge between v and w but not between s and ¢, at most one of
Zyss Zyts Zwss» Zwt €an be 1. If at least one of v, or v, is 0, the inequality becomes
redundant.

Obviously, this model contains many symmetries (compare to Section 3.3.7).
For example any permutation of the partitions 1,..., K results in a symmetric
solution. To remove at least some of these symmetries, we can add the inequality

Z xXi>1, vev, (5.4)
i€[Klo
1<V
where we assume the nodes to be numbered from 1 to |V|. The inequality implies
that the first node has to be either in partition 0 or 1, the second has to be in
partition 0, 1 or 2 and so forth.

The only remaining part is to model the connectivity, where we again use
flow variables as in Section 3.3. Note that in contrast to the “artificial sink”
in Section 3.3, we use an “artificial source” as a representative node in this
section, but the idea is the same. Every node has to receive an inflow of 1, except
K + 1 distinguished nodes, which serve as representatives. Flow is only allowed
on edges with both endpoints in the same partition. This implies that every
representative has to be connected to nodes of the same partition in order for
them to receive a flow value. This implies the connectivity of all partitions.

The binary variables), model whether node v is the representative in parti-
tion i. Since there can be at most one representative for every partition,

Y G=<1 ielKl
veV

has to hold. Furthermore, a node can only be a representative of partition i if it
is a member of partition i, which implies

f,Sx,i,, i€e[KlpveV.

For modeling the flow, we direct each edge in both possible directions by
introducing the directed graph D = (V,A), where A := {(v,w), (w,v) | {v,w} € E}.

5.1. MiNnmMi1zING THE NoON-IsoMORPHIC REMAINING PART 103

We introduce the variable f,,, € R, for all arcs from D directly corresponding to
the edges in G. To model that every node receives a flow value of at least 1 unless
it is the representative, we use

Z Suww = Z fow=1-|V] ZC,Z,, veV.
i€[K]g

(w,v)eA (v,w)eA

Note that the constant |V| cannot be reduced because, in the worst case of V; =V,
the representative needs to have an outflow of size |V|-1 in contrast to the model
shown in Section 3.3.

Finally, there can only be a flow over existing edges, meaning that their
endpoints are in the same partition and the corresponding y-variable is 1, i.e.,

fvw+fw1)§|v|val {v’w}EE'

Since we want to maximize the size of the partitions V;, i € [K], thereby
minimizing the nodes in Vj; and because the variable z,,, can only be 1 for nodes
not in V{, we can state the objective function as

maxg > Zyw-

veVweV

Of course, connectivity can also be modeled by using separator inequalities
as shown in Section 3.3. Our experiments, however, have shown that there exists
a faster method for solving Problem 5.1 as explained in the next section.

5.1.2 Brute-Force Algorithm

Apart from the MIP formulation presented in the previous section, we also
implemented a direct solution approach for Problem 5.1 (Min NoN-IsoMmorPHIC
Part), which is explained in this section. The general idea is to test every possible
solution while exploiting the structure of the underlying graph. Without a
reduction of the possible subsets, the number of possible partitions is huge. To
see this, let G = (V,E) be a graph on |V| = n nodes. The maximum number
of nodes in a partition i, i # 0 is [#n/K]. To simplify the notation, we assume
that n is divisible by K. Furthermore, we assume that there exists a solution
to Problem 5.1 with |Vj| = 0. The number of possible partitions of G into K
subgraphs is then given by

1 n \(n—-n/K n—(K-1)n/K
E'(n/IC)(n/K)(n/K)’ (5:5)

where the division by K! is due to the partition symmetry since every permutation
of partition labels results in a symmetric solution (compare Section 3.3.7). In

104 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

order for any of these subsets to be a solution to Problem 5.1, connectivity and
isomorphism have to be tested as well. Needless to say, this simple approach is
not practical.

Our approach exploits connectivity. The main idea is to start with small
subsets of nodes which induce isomorphic subgraphs and extend those subgraphs
step-by-step with additional nodes. Each node is only added to a subgraph
if connectivity is maintained. The outline of the algorithm can be found in
Algorithm 7 on page 108.

We start the algorithm in Line 1 with every possible subset T = {vy,..., v}
which contains exactly K nodes and define each of the partitions V; = {v;},
i € [K], to contain exactly one node. For this partition it obviously holds that
G[V;] = G[V;] for all i, € [K], and G[V;] is also connected for every i € [K]. With
this possible solution the Expand procedure is called with partition index 1 in
Line 2.

In order for a partition to be a solution to Problem 5.1, it has to be checked
whether G[V}] is connected, which is done in Line 12. This solution is saved if
it is the best solution found so far and returned if it is optimal. The optimality
for a feasible solution follows directly if each partition contains the maximum
number of | n/K| nodes (see Line 15).

After the Expand procedure enlarges V; by every possible node that ensures
connectedness (Line 18), the procedure is called again with the next partition
index and the enlarged V;. If the Expand procedure is called with an index
i € [K], i+ 1, every possibility to enlarge V; while ensuring the existence of an
isomorphism is tested. For each of these possibilities, the Expand procedure is
called with the next partition index in Line 26. If i = K + 1, the procedure is
called again with partition index 1 in Line 24.

Lemma 5.2. Algorithm 7 is correct, meaning all conditions of Problem 5.1 are fulfilled
and the obtained solution minimizes the size of Vj.

Proof. The above description shows that the conditions on the connectedness
and isomorphism are fulfilled since, otherwise, no solution is returned and the
properties are maintained within every step. Thus, it is only left to show that the
minimum value for |Vp| is attained.

We can assume w.l.o.g. K = 2 because larger values for X do not change the
argument. Let Q* be an optimal solution for Problem 5.1 and ¢: V; — V, be the
isomorphism between V; and V.

Select an arbitrary node v, € V}, and label the nodes by their appearance in a
BFS tree rooted in vy, i.e., v1,v,,.... Note that this tree is in V; and this ordering
of nodes also appears in Algorithm 7 as a possible solution for the set V;. W.l.o.g.
let w; = ¢(v;) for w; € V, and v; € Vi, and let the ordering of w; be induced by
the ordering of v;.

5.1. MiNnmMi1zING THE NoON-IsoMORPHIC REMAINING PART 105

The isomorphism between the graphs G[V;] and G[V;] implies that the sub-
graphs G[{vy,...,v;}] and G[{wy,..., w;}] are isomorphic for every i € [|V;]], be-
cause the isomorphism of G[V;] and G[V,] implies isomorphism of subsets
induced by ¢. This also means the ordering of V, is inspected by the algorithm
in Line 26.

This implies that the solution Q* is inspected in Algorithm 7 if there does
not exist an optimal solution that is inspected first. In this case, however, the
objective value is the same and a solution equivalent to Q* is returned. O

To show the improvement achieved by Algorithm 7 over the direct approach
stated in (5.5), we analyze its running time next.

Lemma 5.3. The running time of Algorithm 7 is O(n!n").

Proof. First note that Algorithm 7 starts in Line 1 with a loop over every subset

of V that contains K elements. Since there are (;*) such subsets Line 1 is called

O(n*) times.

As a next step, we analyze the Expand procedure. In the first call, it holds
that |Vy| = n— K. Since in every subsequent call of Expand one node is removed
from Vj,, the maximum depth of calls to Expand is n — /C, which is in the order
O(n). Lines 21 and 29 are called at most O(n) times. Furthermore, testing for
an isomorphism in Line 26 is possible in O(n) steps because it only needs to be
checked if adding a new node w leads to a feasible isomorphism. To see this in
more detail, let v be the node that was added to V;. Then verifying if V; and
V; U{w} are isomorphic is done by testing whether every edge containing v in
G[V1] also is an edge in G[V; U {w}] containing w.

To analyze the recursive structure of the Expand procedure, let M(n) be
its running time. The maximal depth is n, and, for every call of Expand, the
procedure calls itself with the value |V;| decreased by one. Moreover, in every
call an additional work of O(n) has to be done as explained above. Therefore, the
recursive formula for the running time is M(n) = nM(n — 1) + n with M(0) = 1.
Note that we disregard the big O notation in this formula for simplicity reasons.
Repeatedly applying the formula to itself leads to the following claim

ik
M(n=j)=n(n=1)-(n-jMn-j-1)+ > [Jm-0. (5.6)

k=0 ¢=0

We prove (5.6) by induction, where the base case j = 0 is obvious. The inductive

106 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

step j — j + 1 is shown by the following calculation

j
M(n—j)=n(n=1)-(mn-Mn-j-1+) [](n-0)

k
k=0 ¢=

(=]

j k
=n(n=1)-(n=j)[(n-j-D)Mn-j-2)+(n-j-1]+) [[n-0

k=0 ¢=0
ik
:n(n—1)---(n—j—1)M(n—j—2)+n(n—1)~~-(n—j—1)+Z]_[(n—€)
k=0 ¢=0
j+1 ik
=n(n—-1)(n—j-1)M(n-j-2)+ (n—€)+ZI_[(n—€)
=0 k=0 =0
j+1

k
=n(n—1)-(n—j-1)M(n-j-2)+]_[(n—é)
=M(n—(j+1)).

With M(0) =1 and j = n this leads to
ik
M(n)=n(n=1)--(n-jM(n-j-1)+) [|n-0)

k
=nl-M(0)+ r[(n-e)
=nl+O(n!).

Thus, the running time of the Expand procedure is O(n!). Together with the
previously mentioned running time of the main loop, the resulting running time
for Algorithm 7 is O(n!n"). O

Note that, for sparse graphs, the running time of Algorithm 7 may be much
smaller. We estimated in the proof of Lemma 5.3 that the number of calls for
Lines 18 and 26 is O(n). But if we analyze it more closely, we can see that the
number of calls is in the order of the maximal degree of a node, which can be
much smaller than O(n). Our practical examples, see Section 1.1, for instance,
are always planar. By using Euler’s formula, it can easily be shown that the
average degree of a node in a planar graph is strictly less than 6, see, e.g., [32,
Chapter 4]. This implies that Lines 18 and 26 are called a constant number of
times on average for planar graphs.

5.1. MiNnmMi1zING THE NoON-IsoMORPHIC REMAINING PART 107

If we therefore assume a constant degree of ¢, the recursive formula for the
running time of Expand is M(n) = cM(n—1) + ¢ since Expand calls itself ¢ times
and testing for isomorphism also needs time c. Proceeding similar to the proof
of Lemma 5.3 leads to

j+1
M(n-j)=cd* " M(n-j-1)+ ch,
k=1

which can be proven by induction as above. Solving with M(0) =1 results in
n
M(n)=c"-1+ ch,
k=1

which is in O(c"). Together with O(1") for the number of K-element subsets, the
total running time of Algorithm 7 is O(c"n").

108 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

Algorithm 7 : Brute-force algorithm for solving Problem 5.1
Input: Graph G=(V,E),KeN
Output : Solution to Problem 5.1, that is, a partition V,..., Vi of the
nodes, such that G[V;] = G[V;] for i,j € [K] and G[V;] is
connected for i € [K]y and |Vj] is as small as possible
foreach K-subset T :={vy,...,v} of V,V; :={v;},i € [K], Vi =V \ T do
‘ Expand(1, Vy,..., Vk);
end
if a solution was found then
‘ return best solution Vy,..., Vi found;
else
if G is connected then return V) = V;
else return o;
end

NC-RENC RN - T B O U S R

10 Procedure Expand (index of partition i, intermediate solution Vy,..., Vi)

11 if i =1 then

12 if |Vy| is smaller than best solution found so far and G[Vy] is connected
then

13 save solution V,..., Vi;

14 if |Vy| = [n/K] then

15 | return optimal solution Vy,..., Vi;

16 end

17 end

18 foreach node v € V; that is connected to V; do

19 Vi =V U{vh

20 Vo= Vo \ {v};

21 Expand(2, Vy,..., Vk);

22 end

23 elseif i =+ 1 then

24 ‘ Expand(1, Vy,..., Vk);

25 else

26 foreach node w € Vjy such that G[V;] = G[V; U{w}] do

27 V=V, u{w};

28 Vo= Vo \{w};

29 Expand(i+1, Vy,..., V)

30 end

31 end

32 end

5.2. GRAPH SIMILARITY MEASURES 109

5.2 Graph Similarity Measures

Instead of partitioning a graph into isomorphic subgraphs as done in Section 2.1
or the previous section, one can also consider the problem of partitioning a graph
into a given number of similar components, which are not necessarily equal.
We first define the corresponding problem in Section 5.2.1, and show a general
framework for solving these types of problems in Section 5.2.2. In Section 5.2.3
we give a short overview of the four similarity measures we implemented: DEGREE
SiMILARITY, GRAPH IsoMoORrRPHISM, GRAPH EDIT DistaANCE and MaxiMmum CoMMON
INDUucep SuBGrAPH. Note that the first is tailored for our specific retooling
problem introduced in Section 1.2, whereas the remaining measures are known
from the literature.

5.2.1 Problem Definition

We will first define how to formally measure the difference between two graphs.

Definition 5.4. Let G be the space of all graphs. A similarity measure between
two graphs is a function ¥: G x G — R* with W(G, G) = 0 for all graphs G. A
similarity measure W is symmetric if W(Gy, G,) = W(G,, G1) holds for all graphs
G1 and G2.

With this we can define the problem that we focus on in this section.

Problem 5.5. Given a graph G = (V,E), a similarity measure V and an integer
KC e NN, the task is to partition V into KC subsets V.= V3 UV, U---U Vi such that the
sum of all pairwise similarity measures is minimized, that is,

min Z W(G[V;], G[V;]). (5.7)

This allows us for example to reformulate Problem 2.1 in terms of a similarity
measure. To do so, we first need to define a measure derived from GrarH
IsoMoORPHISM.

Definition 5.6. Let G; and G, be two graphs and define the similarity measure
W) by
0, if Gl = Gz,

H1(G1, G2) = {1 G, 2G
’ 1 2-

Thus, Problem 2.1 (PartiTiON [soMORPHISM) can be formulated as the problem
of deciding whether the optimal value to Problem 5.5 is 0 for the measure ‘.

Similar to Problem 2.14 we can also extend Problem 5.5 by additionally
requiring the subgraphs to be connected.

110 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

Problem 5.7. Given a graph G = (V,E), a similarity measure \V and an integer
K € IN, the task is to partition V into K subsets V.=V, UV, U---U Vi such that all
subgraphs G[V;] are connected for every i € [K] and the sum of all pairwise similarity
measures is minimized, that is,

min X W(G[V;], G[V}]). (5.8)
i,je[K]

Thus, solving Problem 5.7 with ¥} as a similarity measure also answers
Problem 2.14.

If a similarity measure is symmetric, we do not have to calculate all terms of
(5.7) or (5.8) since they can be rewritten as

Z‘P(G[W],G[Vj])=2[Y WIGIViLGlV;]] D W(GLVi],GLVi])

i,je[K] i<j i€[K]
i,je[K]
Since W(G, G) = 0 holds for all measures, the objective functions (5.7) or (5.8) of
Problems 5.5 and 5.7, respectively, can be further simplified to

min) W(G[V],GIV}]). (5.9
i<j
i,j€[K]
Note that the assumption of a symmetric measure is fulfilled for the similarity
measures appearing in this section.

5.2.2 General Solving Framework

One possibility to solve Problems 5.5 and 5.7 is to create MIP formulation for
every similarity measure that we are interested in. The three measures appearing
in this section allow for such a formulation as is shown in Section 5.2.3. As the
construction of such a formulation might be difficult or even impossible, we
present an exact framework for solving Problems 5.5 and 5.7 that allows for
easier integration of different similarity measures.

When using a different measure one only has to specify the difference between
two graphs and the framework allows for calculating the optimal partition
such that the given measure is minimized. This means that we can use the
fastest algorithm for calculating the measure by relying on methods already
implemented, which may be faster than a MIP formulation. The framework is
modular, meaning that different parts can easily be interchanged or new ones can
be added. We also allow for the integration of lower bounds that may reduce the
number of times that a measure has to be calculated explicitly, since, for example,

5.2. GRAPH SIMILARITY MEASURES 111

solving GraPH EpiT D1sTaNcE or MaxiMum CoMMON INDUCED SUBGRAPH are itself
NP-hard (see Section 5.2.3). In the following, we give a more detailed description
of this framework mentioning also the downsides of the chosen procedure.

The framework is written in the programming language Java, and there
exist two classes for implementing the two main operations: partitioning and
similarity. The first class is used for creating the partitions on which the similarity
measures are calculated. The general idea is to call the next partition given by a
partitioner subclass and calculate its similarity measure given by a subclass of
the partitioner superclass. This procedure is repeated until either an optimum
is found or the partitioner ends with the result that all partitions have already
been returned. In particular, the general idea is to use brute-force for testing
every possible partition of the graph and calculating the similarity measure. As
mentioned in Section 5.1.2, this approach might be faster for sparse graphs, when
for example connectivity is a very restrictive constraint.

Partitioner

For symmetric similarity measures, many of the possible partitions can be ex-
cluded since we know that the objective function is independent of the ordering
(compare to (5.9)). First of all, we can therefore assume that the first node al-
ways is in the first partition. Furthermore, we can restrict the order of different
partitions (compare to (5.4)). To explain the idea, let G = (V,E) be a graph. We
represent a possible partition by an integer vector of length |V| containing values
in [K], thus denoting the partition index for every node. Let p = (py,...,pv|)
be such a partition vector. To reduce the above-mentioned symmetries, we can
restrict the vector p to fulfill the constraint

pesr smax{pj|je[f]}+1

for every € € [|[V|—1]. Note that this restriction is stronger than the one described
by (5.4).

Furthermore, the number of possible partitions can be reduced by additional
constraints. For example, in order to solve Problem 5.7, the subgraphs have to
be connected. In this case, we can restrict the partition vector to those which
induce connected subgraphs. We implemented testing for connectivity by using
a linear time depth-first search algorithm, which is generally much faster
than calculating a similarity value. Note that this idea can be extended to include
other constraints if variations of Problem 5.7 are to be solved.

Depending on the similarity measure, there may be further partitions which
can be excluded. For example, in the case of GRAPH IsoMORPHISM, wWe can restrict
the partitions to those corresponding to subgraphs which contain the same
number of nodes since this is a necessary constraint for graphs to be isomorphic.

112 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

In our implementation, this is achieved by calculating permutations of a
starting array that is lexicographically sorted. For example, on a graph with four
nodes and two different partitions, we start with the array [1, 1, 2, 2]. We calculate
all permutations of this array by creating the next partition as the next array in
the lexicographic ordering. This can be seen in Algorithm 8, which is repeatedly
called until it returns —1. Algorithm 8 is taken from [77].

Algorithm 8 : Generate the next permutation in lexicographic order

Input : Array of numbers a of length n

Output : Array of numbers b such that b is lexicographically larger than a
and is the lexicographically smallest array with this property or
—1 if a is lexicographically maximal

1 ¢:=max{i € [n]|ali]<ali+1]};

2 if no such € exists then

3 | return-1

4 end

5 m = max{i € [n]|a[i] > a[f],i > {};

6 swap values a[¢] and a[m];

7 reverse the subarray [a[¢ +1],...,a[n]];
8 return a

Note that the idea of using specialized partitioners can be adapted for other
similarity measures as well.

Calculating the Similarity Value

The superclass for calculating the similarity measure basically contains two
functions. The first one returns a similarity value for two given graphs, and
the second one returns a lower bound. This last method may be useful when
the calculation of the similarity value in itself is complicated, since returning a
bound may lead to fewer calculations of the correct similarity value. For example,
in the case of GrarH IsoMorPHISM, the function W as defined in Definition 5.6
can return a value of 1 (implying that the given graphs are not isomorphic) in
any of the following cases:

* the number of nodes in both given graphs is not equal, or
* the number of edges in both given graphs is not equal, or
* the degree-vectors are not the same.

Of course, there exist many other necessary conditions for two graphs to be
isomorphic, but those mentioned above can be verified very easily. Note that

5.2. GRAPH SIMILARITY MEASURES 113

these prerequisites can be examined in linear time, whereas the best known

algorithm for Grapu IsoMorpHISM requires time O(29(V"1°8™)) [9]_ If the returned
lower bound is already larger than the best known solution to the problem, we
know that calculating the correct similarity value is not needed.

5.2.3 Implemented Measures

In this section we give a short overview of the four similarity measures we
implemented: GrRaPH IsomOrRPHISM, DEGREE SiMIiLARITY, GRAPH EDIT DISTANCE
and Maximum CoMMON INDUCED SUBGRAPH. For DEGREE SiMILARITY also a MIP
formulation is given since the other measures are already known from literature.

Degree Similarity

As mentioned in Section 1.2, the graphs model profiles and the degree of a node
therefore models the complexity of the corresponding junction. This leads to
the idea of defining a measure based on the degrees of nodes in the graphs.
One possibility is to generate the sorted degree sequence for each graph, that
is, a sequence with the degree of every node sorted in decreasing order. By
comparing these two sequences, a similarity measure for graphs is created from
a similarity measure for two sequences. This idea of defining a graph measure
from a measure between sequences has also been used before, see for example
GrarH Epit Distancg, which is explained next.

What we do in this section is calculating the number of nodes with a specified
degree and use the sum of absolute values of differences of these values to
define a similarity measure. More formally, let z;l denote the number of nodes
with degree d in G;, and let zﬁ be defined accordingly for G,. If A denotes
the maximum degree in both G; and G, that is, A := max{deg(v) | v € V; U V>},
DEeGREE SiMILARITY is defined by the measure

A
Wp(G1,Ga) =) |z - 23l (5.10)
d=0

Note that, in particular, this definition implies that W, is symmetric. Also note
that Wp(Gy, G,) = 0 does not automatically imply G; = G, as is the case with the
other three measures defined in this section.

Problem 5.7 with similarity measure Wp can also be modeled by an IP. In
order to do so, we use the binary variables xf, to model whether node v is in
partition i and the binary variable v,,, to model if nodes v and w are in the same
partition. Since this is equivalent to the model shown in Section 5.1.1, we do not
repeat the details here.

114 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

The binary variable z,; models if node v has degree d, which is enforced by
the two constraints

Z zg=1, vev, (5.11)
de[Alo
Z d-z,q= Zva, veV. (5.12)
de[A]y weV

Equality (5.11) implies that, for each node v exactly one, z,,; is 1 for exactly one
d, and (5.12) models that, for this d, the degree of v is equal to the number of
edges from v to another node w in the same partition as v.

Since we need the degree sequence of every partition, we introduce the binary
variable zf}d to denote if node v has degree d and is in partition i. This can be
modeled by the inequalities

Zyg +x, -2, <1, veV,de[A]yiclK], (5.13)
;',d < Zu veV,de[A]yiclK] (5.14)
7/d_x veV,de[A]yic[K], (5.15)

Inequality (5.13) models that, if node v is in partition i and has degree d, the
variable zid has to be 1. Inequality (5.14) models that, if Zf/d is 1, node v has to
have degree d. Lastly, Inequality (5.15) models that if zf}d is 1, node v has to be
in partition i.

The last variable we introduce counts the difference of nodes of the same
degree in different partitions and therefore is integer-valued. For given partitions

i and j, the variable z;] denotes the absolute value of the difference of nodes in i
and j with degree d by the inequalities

Z< Zyd ~]d)<zd]’ i,j€[K], de[A]y (5.16)
veV
Z(Zid—zid)ész; i,j €[K], de[Al. (5.17)
veV

To model the absolute value, the inequalities (5.16) and (5.17) only differ in the
sign of the left-hand-side.

If instead of solving Problem 5.5, one wants to solve Problem 5.7, additional
connectivity-enforcing constraints have to be added. We refer to Section 3.3.1 for
more details.

Note that G; = G, implies Wp(G1,G,) = 0, which in particular implies
W5h(G,G) = 0. Together with the above-mentioned fact that DEGREE SIMILAR-
ITY is symmetric, this implies that we can use the simplifications shown in (5.9)

5.2. GRAPH SIMILARITY MEASURES 115

to model the objective function as

. ij
min Y Y4

de[A] i<j

Results on Degree Similarity

To show the solutions we use the line graphs of nine different profiles, which
already served as examples in [52, 55]. For these examples we always choose
K =2 with red and blue representing the respective subgraphs.

Note that points with four edges adjacent need additional effort for practical
use since it cannot be manufactured this way (see the fifth example below).

116 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

— HE

Graph Isomorphism

GraPH IsomoRrPHISM is implemented twice: first as a brute-force method checking
for every permutation of nodes if the adjacency-matrices are equal and second by
using bliss [68]. We do not include more details here since they can be found in
Section 5.2.2, where GrRaPH ISOMORPHISM serves as an example.

Results on Graph Isomorphism

Similar to the solutions on DEGREE SIMILARITY (see page 115) we include the
results on GrapH IsomorpHIsM here. This results are solutions to Problem 5.1
(Min Non-IsomorpHIC PART) by using Algorithm 7. The remaining part is denoted
by green edges. Note that the similarity measure given in Definition 5.6 derived
from Grapru IsomorpHIsM is implied by these solutions since the absence of
green edges implies isomorphic subgraphs and if there exists a green edge, no
isomorphic partitioning is possible. Additionally, see that the solutions also may
not be used in practice as the last example shows that metal intersection has to
be forbidden.

5.2. GRAPH SIMILARITY MEASURES 117

{

|
[]

Graph Edit Distance

GrarH Epit DisTANCE is based on distances for strings [82, 107]. For graphs,
the first formalization can be found in [99]. There is a vast amount of avail-
able literature, which cannot be mentioned in detail here, see for example the
book [97]. A recent survey article of the history of Graru Epitr Distance and
different approaches for its calculation is [43].

The basic idea is as follows: Given two graphs G; and G,, how can G; be
transformed to result in G,? This transformation can use a specified set of
operations, where each is assigned a cost. Of all possible sequences of operations,
the one with the minimal cost value is defined to be the Graru Epit DistaNcE.
Here we refrain from defining the general setting, which allows, for example,
labeled graphs, additional transformations and general cost functions and restrict
attention to the cases that are relevant in this context.

Definition 5.8. We consider the following operations:
A. Relabel a node.

B. Add a node.

118 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

C. Remove a node and all its adjacent edges.
D. Insert an edge between two existing nodes.

E. Remove an edge.

The cost of Operation A is 0, Operations B, D and E are defined to cost 1, whereas
the cost of Operation C is 1 plus the number of removed adjacent edges.

A finite sequence of these operations p is called an edit path and the cost ¢(p)
of p is defined as the sum of the costs of all operations in the path. An edit path
is called complete if its set of operations transforms graph G; into G,. The set of
complete edit paths from G; to G, is denoted by QQ(Gy, G,,).

Definition 5.9. The Graru EpiT DisTancE between two graphs G; and G, is
defined as

min c¢(p). 5.18
pecmin (p) (5.18)

Let Wr denote the similarity measure defined by (5.18).

The definition of the costs for the different operations imply that in our case
the measure is symmetric. Moreover, it holds that W is a generalization of
graph isomorphism, meaning that Wg(Gy, G,) = 0 if and only if G; = G,. This
also means that if we solve Problem 5.5 or Problem 5.7 with W as a similarity
measure, we can also answer Problem 2.1 or Problem 2.14.

In general, calculating the GrarH Epit Distance is NP-complete, see [112]
but there are various approaches for calculating Wg. The first IP formulation
can be found in [69] and a recent formulation and a computational study can be
found in [81]. Note that the LP relaxation of the IP formulation may also serve as
a lower bound to be implemented in the framework presented in Section 5.2.2.
The time needed for the calculation is O(n”) by using an interior point algorithm
(which runs in time O(n%°) and is used on n? variables for the edges), see [69]. In
our case, however, we rely on the graph matching toolkit [98] for the calculation
of the Graru EpiT DisTaNCE.

Results on Graph Edit Distance

See here the results on the profiles mentioned on page 115. Note that intersection
is still allowed here, as can be seen in the fifth and ninth example, compare to
GraPH IsomorPHISM in the previous section.

5.2. GRAPH SIMILARITY MEASURES 119

” ||

i
T N

sl

Maximum Common Induced Subgraph

The MaxiMum CoMMON INDUCED SuBGRAPH problem (see Problem 2.4) can be
used in different ways for creating a similarity measure. The one that was used
in our experiments is the following.

Definition 5.10. Let G; = (V4,E) and G, = (V,,E,) be two graphs and let G =
(V,E) be their Maximum ComMmoN INDUCED SuBGraPH. The similarity measure Ws

120 DIrFrerReENT APPROACHES FOR HANDLING THE RETOOLING PROCESS

between G; and G, is defined by

0, if [V[=[Vi]=|Val,

\Ijs (Gl, GZ) = {ﬁ otherwise
uk '

(5.19)

Note that this is a direct generalization of GrRapH IsomorPHISM (Definition 5.6)
since Wp(Gq,G,) = 0 holds if and only if G; = G, holds, that is, ¥;(Gy, G,) = 0.
This also has the same implications as in the case of the Graru EpiT DisTANCE:
Solving Problem 5.5 or Problem 5.7 with Wp, as a similarity measure also solves
Problem 2.1 or Problem 2.14.

Note that Maximmum ComMMON INDUCED SUBGRAPH can also be modeled as
an IP, see [94]. Furthermore, there exists a cost function for the GrapH EpiT
Distance such that solving the MaxiMum CoMMON INDUCED SUBGRAPH problem
is equivalent to calculating the GrarH EpiT Distance with this particular cost
function [21].

For the implementation in our framework presented in Section 5.2.2, we
calculated the Maximum ComMoN INDUCED SuBGRAPH by the computation of a
maximum clique in the so-called compatibility graph [83] defined as follows.

Definition 5.11. Let G; = (Vy,Eq) and G, = (V,, E,) be two graphs. The compati-
bility graph G1VG, = (V,E) is defined by the nodes V := V| x V,, and there exists
an edge {(u;,v}), (ux, v¢)} € E if and only if u; # uy and v; = v, as well as

* {u;,ux} € Ey and {vj,ve} € E; or
* {u;,ux} € Ey and {vj,ve} € Es.

The compatibility graph is also known as association graph or weak modular
product.

Let there exist an edge in G VG, between the nodes (u;,v;) and (u,v¢). The
definition of G VG, implies that ¢(u;) = v; and ¢p(ux) = vy is a valid mapping
for an isomorphism ¢ since either an edge is mapped to an edge or a pair of
non-adjacent nodes is mapped to a pair of nodes that also is non-adjacent. Thus,
a maximum clique in G; VG, maximizes the pairwise compatible nodes, that is,
nodes for which edges or non-edges are preserved by the corresponding mapping.
A proof that a maximum clique in the compatibility graph corresponds to a
Maxmmum CoMMON INDUCED SUBGRAPH can for example be found in [83].

To find a maximum clique in a graph, we use the algorithm presented in [96].
Note that various other methods exist for this problem, which, depending on
the graphs, may be faster than using the compatibility graph. One example is
Constrained Programming, see for example [90] for a comparison between these
two methods.

5.2. GRAPH SIMILARITY MEASURES 121

Results on Maximum Common Induced Subgraph

Finally, the examples used before, see page 115. Note that the fifth and ninth
example show that the idea might not be used in practice without additional
constraints (compare to GRAPH Epit DisTANCE or GRAPH ISOMORPHISM).

|
— B

T
8

Chapter 6

Conclusion and Outlook

We dealt with different topics in this thesis and in each of them are many in-
teresting directions for further research. First of all, Section 2.1 proves NP-
completeness of Problem 2.1 (ParTiTiON IsoMORPHISM). Moreover, we showed
that the problem is solvable in polynomial time for outerplanar graphs in the
case of £ = 2. Remark 2.17 furthermore mentions that the NP-completeness
proof cannot be applied to the case of planar graphs. But especially this graph
class is of interest since the graphs derived from profiles are in particular planar.
Unfortunately, we were not able to show either NP-completeness or the existence
of a polynomial algorithm despite all efforts. Other graph classes might also be
of interest.

The combinatorial question inspected in Section 2.3 relies on the very simple
path graph. Extending this result to more complex graph classes is also a possible
direction for future research.

The connected subgraph polytope inspected in Section 3.1 can be fully de-
scribed in the cases of G being a tree or a cycle. This begs the question of a full
description for cactus graphs, which are defined by the property that each edge
is contained in at most one cycle. Basically, cactus graphs are a combination of
trees and cycles. Furthermore, there are open questions raised in Section 3.1.1
concerning the general structure of facet-defining inequalities for all graphs.

For both the connected subpartition and partition polytopes studied in Sec-
tions 3.2.1 and 3.2.2, respectively, the facet-defining inequalities are either trivial
or derived from the connected subgraph polytope. Are there others? A simi-
lar question regards the ConNECTED Max-K-Cut problem. The cuts from Sec-
tion 3.3.4 either hold because of connectivity or because of the cut-property. But
are there cuts which combine these two properties? Furthermore, in Section 3.2.1
we mention problems which arise when the inequality (3.21), implying that the

123

124 ConNcLusioN AND OUTLOOK

K partitions are each non-empty, is added. The corresponding polytope has not
been studied here.

Chapter 4 proposes a definition of a MIP formulation concerning the ob-
jective function. There are open problems already mentioned in Remark 4.13,
where additional properties of MIP formulations are presented. Under which
assumptions can these additional properties be guaranteed? In particular, what
is a guarantee for fulfilling Condition 2 of Definition 4.6 with equality?

The minimization of the time needed for the retooling process is revisited
in Chapter 5, where we present other solution methods and a general solution
framework. One possibility for further research is to develop a similarity measure,
which directly corresponds to the production process. For example, in our
model, two graphs are isomorphic independent from the measurements of their
corresponding profiles. As it is straight-forward to also include weight functions
on the edges or nodes, it is much more complicated to also include other aspects
into the similarity measure. For instance, in the introduction, it is mentioned
that changing a tool in the beginning of the production line leads to a change
of all succeeding tools. This time aspect is not taken into account in any of the
presented measures.

Appendix A

Influence of Symmetry
Handling for Connected
Max-K-Cut

This section contains more detailed tables also showing the influence of symmetry
handling techniques when solving Problem 3.58 (CoNNECTED Max-K-Curt). A
detailed description can be found in Section 3.3.8. The additional information
is given by the “sym” setting. The numbers indicate, which symmetry handling
technique is used (see Section 3.3.7). The text “sym 0” means that no technique
is used, whereas “sym 1” indicates the handling of partitioning symmetries and
“sym 2” represents the handling of both, partitioning and graph symmetry. The
tables can be found in Tables A.1 to A.3.

The randomly generated instances do not contain many graph symmetries,
which implies that their handling is not beneficial. Otherwise, even when it
is faster not to handle symmetries, the additional time for symmetry handling
is minor. The test set 1080 always profited from using the setting “sym 2”. In
the Color0Q2 test set there only exist a few settings using the flow formulation
with no additional cuts, where “sym 1” was superior to “sym 2”. That is why in
Section 3.3.8 we chose to always handle both types of symmetry.

125

126 INFLUENCE OF SYMMETRY HANDLING FOR CONNECTED Max-K-Cut

Table A.1: Comparison of different parameter settings for solving the CoNNECTED

Max-K-Cur problem for the test set Color02

Setting #SepaCuts SepaTime #DomRed PropTime #Opt Time
f cut 0 branch 0 sym 0 heur 0 0.0 0.0 0.0 0.00 7 2090.24
f cut 0 branch 0 sym 0 heur 1 0.0 0.0 0.0 0.00 6 2232.15
f cut 0 branch 0 sym 1 heur 0 0.0 0.0 0.0 0.00 7 1998.94
f cut 0 branch 0 sym 1 heur 1 0.0 0.0 0.0 0.00 6 2119.19
f cut 0 branch 0 sym 2 heur 0 0.0 0.0 0.0 0.00 7 2130.45
f cut 0 branch 0 sym 2 heur 1 0.0 0.0 0.0 0.00 7 1939.66
f cut 0 branch 1 sym 0 heur 0 0.0 0.0 0.0 0.00 7 2091.52
f cut 0 branch 1 sym 0 heur 1 0.0 0.0 0.0 0.00 6 2232.42
f cut 0 branch 1 sym 1 heur 0 0.0 0.0 0.0 0.00 7 1999.50
f cut 0 branch 1 sym 1 heur 1 0.0 0.0 0.0 0.00 6 2119.33
f cut 0 branch 1 sym 2 heur 0 0.0 0.0 0.0 0.00 7 2130.90
f cut 0 branch 1 sym 2 heur 1 0.0 0.0 0.0 0.00 7 1940.32
f cut 1 branch 0 sym 0 heur 0 11856.8 13.0 23.2 1.53 12 1498.28
f cut 1 branch 0 sym 0 heur 1 10561.5 11.4 20.2 0.46 14 1367.26
f cut 1 branch 0 sym 1 heur 0 9769.4 11.2 18.4 1.46 13 1283.92
f cut 1 branch 0 sym 1 heur 1 9143.1 11.2 18.0 0.35 14 1242.55
f cut 1 branch 0 sym 2 heur 0 10131.4 11.8 22.1 1.64 13 1267.08
f cut 1 branch 0 sym 2 heur 1 8092.9 10.5 17.2 0.37 15 1094.92
f cut 1 branch 1 sym 0 heur 0 11404.6 12.7 21.4 1.50 12 1449.95
f cut 1 branch 1 sym 0 heur 1 10639.7 11.5 21.3 0.45 14 1372.39
f cut 1 branch 1 sym 1 heur 0 9711.4 11.1 19.3 1.49 13 1277.79
f cut 1 branch 1 sym 1 heur 1 8898.9 11.1 16.8 0.34 14 1208.92
f cut 1 branch 1 sym 2 heur 0 9881.4 11.7 22.5 1.65 13 1243.33
f cut 1 branch 1 sym 2 heur 1 8124.5 10.5 17.0 0.37 15 1100.98
nf cut 0 branch 0 sym 0 heur 0 28032.0 28.0 25.7 1.64 19 1080.17
nf cut 0 branch 0 sym 0 heur 1 29897.3 27.4 25.1 0.80 17 1135.86
nf cut 0 branch 0 sym 1 heur 0 20584.2 21.4 21.2 1.40 20 892.07
nf cut 0 branch 0 sym 1 heur 1 24530.8 23.2 19.1 0.38 20 911.60
nf cut 0 branch 0 sym 2 heur 0 21296.3 23.0 21.1 1.58 19 820.60
nf cut 0 branch 0 sym 2 heur 1 22459.7 21.9 21.9 0.52 20 845.86
nf cut 0 branch 1 sym 0 heur 0 27830.3 27.8 25.4 1.61 19 1074.70
nf cut 0 branch 1 sym 0 heur 1 30355.3 27.3 25.0 0.80 17 1133.55
nf cut 0 branch 1 sym 1 heur 0 20434.6 21.2 20.9 1.41 20 885.81
nf cut 0 branch 1 sym 1 heur 1 24550.8 23.1 19.6 0.37 20 906.54
nf cut 0 branch 1 sym 2 heur 0 21191.8 22.9 21.4 1.57 19 812.90
nf cut 0 branch 1 sym 2 heur 1 22751.3 21.7 22.1 0.53 20 837.61
nf cut 1 branch 0 sym 0 heur 0 26727.0 18.4 22.9 1.65 20 958.53
nf cut 1 branch 0 sym 0 heur 1 29682.2 19.4 27.9 0.86 19 1024.24
nf cut 1 branch 0 sym 1 heur 0 20575.2 15.5 19.9 1.32 20 759.64
nf cut 1 branch 0 sym 1 heur 1 22281.2 16.8 19.6 0.36 20 807.49
nf cut 1 branch 0 sym 2 heur 0 20100.2 15.9 22.0 1.47 20 751.17
nf cut 1 branch 0 sym 2 heur 1 21771.0 16.8 21.0 0.65 20 800.75
nf cut 1 branch 1 sym 0 heur 0 27160.2 18.5 22.9 1.65 20 952.20
nf cut 1 branch 1 sym 0 heur 1 29990.9 19.5 26.3 0.83 19 1023.73
nf cut 1 branch 1 sym 1 heur 0 20611.9 15.4 19.6 1.31 20 756.60
nf cut 1 branch 1 sym 1 heur 1 21683.9 16.6 20.2 0.36 20 794.67
nf cut 1 branch 1 sym 2 heur 0 19802.8 15.8 21.2 1.46 20 741.76
nf cut 1 branch 1 sym 2 heur 1 21417.3 16.9 20.2 0.64 20 799.23

127

Table A.2: Comparison of different parameter settings for solving the CoNNECTED
Max-K-Cur problem for the test set 1080

Setting #SepaCuts SepaTime #DomRed PropTime #Opt Time
f cut 0 branch 0 sym 0 heur 0 0.0 0.0 0.0 0.00 5 3099.69
f cut 0 branch 0 sym 0 heur 1 0.0 0.0 0.0 0.00 10 2639.37
f cut 0 branch 0 sym 1 heur 0 0.0 0.0 0.0 0.00 5 3104.14
f cut 0 branch 0 sym 1 heur 1 0.0 0.0 0.0 0.00 5 3342.92
f cut 0 branch 0 sym 2 heur 0 0.0 0.0 0.0 0.00 24 1402.00
f cut 0 branch 0 sym 2 heur 1 0.0 0.0 0.0 0.00 23 1510.28
f cut 0 branch 1 sym 0 heur 0 0.0 0.0 0.0 0.00 3 3349.15
f cut 0 branch 1 sym 0 heur 1 0.0 0.0 0.0 0.00 4 3074.86
f cut 0 branch 1 sym 1 heur 0 0.0 0.0 0.0 0.00 8 3167.08
f cut 0 branch 1 sym 1 heur 1 0.0 0.0 0.0 0.00 4 3383.18
f cut 0 branch 1 sym 2 heur 0 0.0 0.0 0.0 0.00 25 1466.49
f cut 0 branch 1 sym 2 heur 1 0.0 0.0 0.0 0.00 26 1379.09
f cut 1 branch 0 sym 0 heur 0 6398.0 6.5 46.3 0.18 73 331.17
f cut 1 branch 0 sym 0 heur 1 5533.3 6.9 38.6 0.11 75 308.20
f cut 1 branch 0 sym 1 heur 0 7514.8 7.2 48.1 0.21 67 315.69
f cut 1 branch 0 sym 1 heur 1 4102.3 43 36.1 0.09 76 204.46
f cut 1 branch 0 sym 2 heur 0 7363.0 4.9 50.5 0.21 89 122,51
f cut 1 branch 0 sym 2 heur 1 5505.8 3.7 43.8 0.13 95 99.82
f cut 1 branch 1 sym 0 heur 0 5806.4 5.9 38.6 0.17 75 298.70
f cut 1 branch 1 sym 0 heur 1 5924.9 7.0 38.4 0.12 73 304.66
f cut 1 branch 1 sym 1 heur 0 5639.7 5.3 39.3 0.19 73 247.41
f cut 1 branch 1 sym 1 heur 1 5449.5 5.7 39.9 0.11 73 242.71
f cut 1 branch 1 sym 2 heur 0 5492.4 3.9 35.7 0.19 92 100.99
f cut 1 branch 1 sym 2 heur 1 5468.1 3.9 39.5 0.15 92 99.10
nf cut 0 branch 0 sym 0 heur 0 23669.3 17.2 64.3 0.55 48 834.40
nf cut 0 branch 0 sym 0 heur 1 21950.7 15.5 62.3 0.44 52 846.77
nf cut 0 branch 0 sym 1 heur 0 18727.8 15.5 56.6 0.39 54 710.55
nf cut 0 branch 0 sym 1 heur 1 20497.5 17.5 59.6 0.47 49 791.81
nf cut 0 branch 0 sym 2 heur 0 20577.4 11.5 57.4 0.35 75 290.66
nf cut 0 branch 0 sym 2 heur 1 19025.7 12.6 55.0 0.37 71 293.39
nf cut 0 branch 1 sym 0 heur 0 17478.3 15.0 53.5 0.35 53 674.75
nf cut 0 branch 1 sym 0 heur 1 13414.1 11.2 46.3 0.29 54 581.97
nf cut 0 branch 1 sym 1 heur 0 15595.1 13.3 51.2 0.34 52 588.56
nf cut 0 branch 1 sym 1 heur 1 13560.3 13.1 42.8 0.27 54 589.95
nf cut 0 branch 1 sym 2 heur 0 15592.9 9.8 51.7 0.39 71 231.35
nf cut 0 branch 1 sym 2 heur 1 15968.8 9.6 51.5 0.28 75 238.62
nf cut 1 branch 0 sym 0 heur 0 11462.5 6.7 52.3 0.43 75 183.83
nf cut 1 branch 0 sym 0 heur 1 8217.4 7.1 42.1 0.30 73 156.19
nf cut 1 branch 0 sym 1 heur 0 12434.2 9.2 54.4 0.48 72 175.30
nf cut 1 branch 0 sym 1 heur 1 11346.2 8.0 56.2 0.39 71 160.05
nf cut 1 branch 0 sym 2 heur 0 17292.1 7.0 66.7 0.64 92 88.46
nf cut 1 branch 0 sym 2 heur 1 12994.2 4.5 61.7 0.34 92 66.64
nf cut 1 branch 1 sym 0 heur 0 11115.8 7.0 46.5 0.33 74 186.05
nf cut 1 branch 1 sym 0 heur 1 12023.8 8.9 47.1 0.30 74 209.06
nf cut 1 branch 1 sym 1 heur 0 9635.4 7.5 44.1 0.33 74 153.82
nf cut 1 branch 1 sym 1 heur 1 8868.7 8.0 42.0 0.30 74 152.56
nf cut 1 branch 1 sym 2 heur 0 10429.4 4.1 47.5 0.41 93 61.35
nf cut 1 branch 1 sym 2 heur 1 9960.4 3.7 48.2 0.30 93 56.27

128 INFLUENCE OF SYMMETRY HANDLING FOR CONNECTED Max-K-Cut

Table A.3: Comparison of different parameter settings for solving the CoNNECTED

Max-K-Cur problem for the test set Random

Setting #SepaCuts SepaTime #DomRed PropTime #Opt Time
f cut 0 branch 0 sym 0 heur 0 0.0 0.0 0.0 0.00 14 3270.96
f cut 0 branch 0 sym 0 heur 1 0.0 0.0 0.0 0.00 15 3354.46
f cut 0 branch 0 sym 1 heur 0 0.0 0.0 0.0 0.00 13 3325.47
f cut 0 branch 0 sym 1 heur 1 0.0 0.0 0.0 0.00 9 3364.03
f cut 0 branch 0 sym 2 heur 0 0.0 0.0 0.0 0.00 13 3325.69
f cut 0 branch 0 sym 2 heur 1 0.0 0.0 0.0 0.00 9 3363.59
f cut 0 branch 1 sym 0 heur 0 0.0 0.0 0.0 0.00 14 3305.25
f cut 0 branch 1 sym 0 heur 1 0.0 0.0 0.0 0.00 13 3447.63
f cut 0 branch 1 sym 1 heur 0 0.0 0.0 0.0 0.00 13 3340.76
f cut 0 branch 1 sym 1 heur 1 0.0 0.0 0.0 0.00 9 3441.05
f cut 0 branch 1 sym 2 heur 0 0.0 0.0 0.0 0.00 13 3342.07
f cut 0 branch 1 sym 2 heur 1 0.0 0.0 0.0 0.00 9 3441.01
f cut 1 branch 0 sym 0 heur 0 3753.3 4.7 5.5 0.04 122 439.52
f cut 1 branch 0 sym 0 heur 1 3506.5 4.6 5.2 0.01 126 417.57
f cut 1 branch 0 sym 1 heur 0 2896.2 3.2 4.8 0.04 134 305.79
f cut 1 branch 0 sym 1 heur 1 2875.7 3.4 5.1 0.01 132 312.33
f cut 1 branch 0 sym 2 heur 0 2976.5 3.3 4.9 0.04 134 312.48
f cut 1 branch 0 sym 2 heur 1 3001.5 3.4 5.4 0.01 132 319.86
f cut 1 branch 1 sym 0 heur 0 2950.8 3.8 4.0 0.04 126 378.72
f cut 1 branch 1 sym 0 heur 1 2895.2 3.7 4.1 0.01 128 372.99
f cut 1 branch 1 sym 1 heur 0 3375.8 3.9 5.4 0.04 131 338.37
f cut 1 branch 1 sym 1 heur 1 2879.0 3.2 4.9 0.01 134 306.66
f cut 1 branch 1 sym 2 heur 0 3223.3 3.7 5.1 0.04 132 328.40
f cut 1 branch 1 sym 2 heur 1 2859.2 3.2 5.0 0.01 134 305.63
nf cut 0 branch 0 sym 0 heur 0 13308.1 25.0 7.6 0.09 51 1692.06
nf cut 0 branch 0 sym 0 heur 1 10740.5 20.6 6.7 0.04 58 1468.02
nf cut 0 branch 0 sym 1 heur 0 11485.0 224 7.1 0.06 61 1401.37
nf cut 0 branch 0 sym 1 heur 1 12400.7 22.1 7.9 0.06 62 1409.36
nf cut 0 branch 0 sym 2 heur 0 11451.7 21.9 7.1 0.06 62 1389.09
nf cut 0 branch 0 sym 2 heur 1 12499.0 22.4 8.0 0.07 61 1424.69
nf cut 0 branch 1 sym 0 heur 0 11177.1 21.7 6.6 0.06 59 1492.26
nf cut 0 branch 1 sym 0 heur 1 10817.0 20.7 6.3 0.05 57 1457.31
nf cut 0 branch 1 sym 1 heur 0 9572.9 19.7 5.7 0.05 62 1234.78
nf cut 0 branch 1 sym 1 heur 1 10291.5 20.3 5.9 0.03 64 1247.61
nf cut 0 branch 1 sym 2 heur 0 9447.7 19.6 5.5 0.05 63 1222.95
nf cut 0 branch 1 sym 2 heur 1 10305.8 20.3 5.8 0.02 65 1246.45
nf cut 1 branch 0 sym 0 heur 0 4921.1 4.0 5.5 0.05 135 195.93
nf cut 1 branch 0 sym 0 heur 1 4716.8 4.0 5.9 0.03 135 191.52
nf cut 1 branch 0 sym 1 heur 0 5102.7 3.7 6.8 0.06 142 155.46
nf cut 1 branch 0 sym 1 heur 1 5145.1 43 7.6 0.08 139 159.77
nf cut 1 branch 0 sym 2 heur 0 5165.3 3.9 6.8 0.06 141 157.51
nf cut 1 branch 0 sym 2 heur 1 4912.0 4.1 7.2 0.07 139 154.00
nf cut 1 branch 1 sym 0 heur 0 5067.9 3.8 5.9 0.06 134 198.69
nf cut 1 branch 1 sym 0 heur 1 4664.0 3.9 5.0 0.02 134 193.32
nf cut 1 branch 1 sym 1 heur 0 4367.8 2.9 5.0 0.05 144 138.57
nf cut 1 branch 1 sym 1 heur 1 4532.8 3.2 6.0 0.03 144 140.99
nf cut 1 branch 1 sym 2 heur 0 4344.8 2.9 5.2 0.05 144 138.05
nf cut 1 branch 1 sym 2 heur 1 4669.6 3.4 6.1 0.03 143 145.83

Bibliography

1]
2]

[3]

[7]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of
computer algorithms. 1974 (cit. on p. 25).

Z. Ales and A. Knippel. “An extended edge-representative formulation for
the K-partitioning problem”. In: Electronic Notes in Discrete Mathematics
52.Supplement C (2016). INOC 2015 - 7th International Network Opti-
mization Conference, pp. 333-342. por: 10.1016/ j.endm.2016.03.044
(cit. on p. 90).

E. Alvarez-Miranda, 1. Ljubi¢, and P. Mutzel. “The Maximum Weight
Connected Subgraph Problem”. In: Facets of Combinatorial Optimization:
Festschrift for Martin Grotschel. Ed. by M. Jiinger and G. Reinelt. Springer
Berlin Heidelberg, 2013, pp. 245-270. por: 10.1007/978-3-642-38189-
8_11 (cit. on p. 32).

E. Alvarez-Miranda, 1. Ljubi¢, and P. Mutzel. “The Rooted Maximum
Node-Weight Connected Subgraph Problem”. In: Integration of Al and
OR Techniques in Constraint Programming for Combinatorial Optimization
Problems: 10th International Conference, CPAIOR 2013, Yorktown Heights,
NY, USA, May 18-22, 2013. Proceedings. Ed. by C. Gomes and M. Sellmann.
Springer Berlin Heidelberg, 2013, pp. 300-315. por: 10. 1007 /978-3-
642-38171-3_20 (cit. on p. 32).

E. Alvarez-Miranda and M. Sinnl. “A Relax-and-Cut framework for large-
scale maximum weight connected subgraph problems”. In: Computers &
Operations Research 87 (2017), pp. 63—-82. por: 10.1016/j.cor.2017.05.
015 (cit. on p. 69).

G. E. Andrews. The Theory of Partitions. Cambridge Mathematical Library.
Cambridge University Press, 1998 (cit. on p. 28).

M. E. Anjos, B. Ghaddar, L. Hupp, E Liers, and A. Wiegele. “Solving k-Way
Graph Partitioning Problems to Optimality: The Impact of Semidefinite
Relaxations and the Bundle Method”. In: Facets of Combinatorial Opti-

129

https://doi.org/10.1016/j.endm.2016.03.044
https://doi.org/10.1007/978-3-642-38189-8_11
https://doi.org/10.1007/978-3-642-38189-8_11
https://doi.org/10.1007/978-3-642-38171-3_20
https://doi.org/10.1007/978-3-642-38171-3_20
https://doi.org/10.1016/j.cor.2017.05.015
https://doi.org/10.1016/j.cor.2017.05.015

130

BiBLIOGRAPHY

mization: Festschrift for Martin Grotschel. Ed. by M. Junger and G. Reinelt.
Springer Berlin Heidelberg, 2013, pp. 355-386. por: 10. 1007 /978- 3 -
642-38189-8_15 (cit. on pp. 64, 72).

L. Babai, A. Dawar, P. Schweitzer, and J. Toran. “The Graph Isomorphism
Problem (Dagstuhl Seminar 15511)”. In: Dagstuhl Reports 5.12 (2016).
Ed. by L. Babai, A. Dawar, P. Schweitzer, and]. Toran, pp. 1-17. por:
10.4230/DagRep.5.12.1 (cit. on p. 14).

L. Babai and E. M. Luks. “Canonical Labeling of Graphs”. In: Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing. STOC ’83.
ACM, 1983, pp. 171-183. por: 10.1145/800061.808746 (cit. on p. 113).

S. Bachl. “Isomorphe Subgraphen und deren Anwendung beim Zeichnen
von Graphen”. ger. PhD thesis. Universitat Passau, 2001 (cit. on pp. 17,
20).

F. Barahona and A. R. Mahjoub. “On the cut polytope”. In: Mathematical
Programming 36.2 (1986), pp. 157-173. por: 10. 1007 /BF02592023 (cit. on
p- 74).

A. Basu, K. Martin, C. T. Ryan, and G. Wang. “Mixed-Integer Linear
Representability, Disjunctions, and Variable Elimination”. In: Integer Pro-
gramming and Combinatorial Optimization: 19th International Conference,
IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings. Ed. by F.
Eisenbrand and J. Koenemann. Springer International Publishing, 2017,
pp. 75-85. por: 10.1007/978-3-319-59250-3_7 (cit. on p. 92).

L. W. Beineke. “Characterizations of derived graphs”. In: Journal of Com-
binatorial Theory 9.2 (1970), pp. 129-135. por: 10.1016/s0021-9800(70)
80019-9 (cit. on p. 33).

J. Bensmail. “On the complexity of partitioning a graph into a few con-
nected subgraphs”. In: Journal of Combinatorial Optimization 30.1 (2015),
pp. 174-187. por: 10.1007/510878-013-9642-8 (cit. on p. 56).

M. D. Biha, H. L. Kerivin, and P. H. Ng. “Polyhedral study of the connected
subgraph problem”. In: Discrete Mathematics 338.1 (2015), pp. 80-92. por:
10.1016/j.disc.2014.08.026 (cit. on pp. 33, 40, 41).

H. L. Bodlaender. “Treewidth: Structure and Algorithms”. In: Structural
Information and Communication Complexity: 14th International Colloquium,
SIROCCO 2007, Castiglioncello, Italy, June 5-8, 2007. Proceedings. Ed. by
G. Prencipe and S. Zaks. Springer Berlin Heidelberg, 2007, pp. 11-25.
por: 10.1007/978-3-540-72951-8_3 (cit. on p. 15).

https://doi.org/10.1007/978-3-642-38189-8_15
https://doi.org/10.1007/978-3-642-38189-8_15
https://doi.org/10.4230/DagRep.5.12.1
https://doi.org/10.1145/800061.808746
https://doi.org/10.1007/BF02592023
https://doi.org/10.1007/978-3-319-59250-3_7
https://doi.org/10.1016/s0021-9800(70)80019-9
https://doi.org/10.1016/s0021-9800(70)80019-9
https://doi.org/10.1007/s10878-013-9642-8
https://doi.org/10.1016/j.disc.2014.08.026
https://doi.org/10.1007/978-3-540-72951-8_3

BiBLIOGRAPHY 131

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. “A subgraph
isomorphism algorithm and its application to biochemical data”. In: BMC
Bioinformatics 14.Suppl 7 (2013), S13. por: 10.1186/1471-2105-14-s7-
s13 (cit. on p. 18).

Boost C++ Libraries. urL: http://www.boost.org/ (cit. on pp. 69, 71, 74,
76).

F. Brandenburg. “Pattern matching problems in graphs”. Manuscript.
2000 (cit. on pp. 18, 27).

A. Bulug, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. “Recent Ad-
vances in Graph Partitioning”. In: Algorithm Engineering: Selected Results
and Surveys. Ed. by L. Kliemann and P. Sanders. Springer International
Publishing, 2016, pp. 117-158. por: 10. 1007 /978-3-319-49487-6_4
(cit. on p. 18).

H. Bunke. “On a relation between graph edit distance and maximum
common subgraph”. In: Pattern Recognition Letters 18.8 (1997), pp. 689—
694. por: 10.1016/50167-8655(97)00060-3 (cit. on p. 120).

R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub.
“Imposing Connectivity Constraints in Forest Planning Models”. In: Oper-
ations Research 61.4 (2013), pp. 824-836. por: 10. 1287 /opre.2013.1183
(cit. on p. 34).

S. Chopra and M. R. Rao. “Facets of the k-partition polytope”. In: Dis-
crete Applied Mathematics 61.1 (1995), pp. 27-48. por: 10.1016/0166 -
218x(93)e0175-x (cit. on p. 64).

S. Chopra and M. R. Rao. “The partition problem”. In: Mathematical
Programming 59.1 (1993), pp. 87-115. por: 10. 1007/BF01581239 (cit. on
pp. 57, 64,75, 90).

S. Chopra and M. R. Rao. The Partition Problem I: Formulations, dimensions
and basic facets. Working Paper 89-27. Stern School of Business, New York
University, 1989 (cit. on p. 57).

Color02 - computational symposium: Graph coloring and its generalizations.
Available at. http://mat.gsia.cmu.edu/COLOR02. 2002 (cit. on p. 84).

S. Cook. “The Complexity of Theorem Proving Procedures”. In: Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing. 1971,
pp- 151-158 (cit. on pp. 18, 19).

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. 3rd. The MIT Press, 2009 (cit. on pp. 69, 71, 74).

https://doi.org/10.1186/1471-2105-14-s7-s13
https://doi.org/10.1186/1471-2105-14-s7-s13
http://www.boost.org/
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1016/S0167-8655(97)00060-3
https://doi.org/10.1287/opre.2013.1183
https://doi.org/10.1016/0166-218x(93)e0175-x
https://doi.org/10.1016/0166-218x(93)e0175-x
https://doi.org/10.1007/BF01581239
http://mat.gsia.cmu.edu/COLOR02

132

BiBLIOGRAPHY

[29]

[31]

[32]

33]

M. Dawande, P. Keskinocak, and S. Tayur. On the biclique problem in
bipartite graphs. Tech. rep. GSIA Working Paper 1996-04. Carnegie Mellon
University, 1996 (cit. on p. 95).

M. Deza and M. Laurent. “Applications of cut polyhedra I”. In: Journal
of Computational and Applied Mathematics 55.2 (1994), pp. 191-216. por:
10.1016/0377-0427(94)90020-5 (cit. on p. 64).

M. Deza and M. Laurent. “Applications of cut polyhedra II”. In: Journal
of Computational and Applied Mathematics 55.2 (1994), pp. 217-247. por:
10.1016/0377-0427(94)90021-3 (cit. on p. 64).

R. Diestel. Graph Theory. 4th ed. Vol. 173. Graduate texts in mathematics.
Springer, 2012 (cit. on pp. 14, 106).

B. Dilkina and C. P. Gomes. “Solving Connected Subgraph Problems
in Wildlife Conservation”. In: Integration of Al and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems: 7th In-
ternational Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010.
Proceedings. Ed. by A. Lodi, M. Milano, and P. Toth. Springer Berlin Hei-
delberg, 2010, pp. 102-116. por: 10. 1007 /978 -3-642- 13520-0_14
(cit. on p. 67).

M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Muller.
“Identifying functional modules in protein-protein interaction networks:
an integrated exact approach”. In: Bioinformatics 24.13 (2008), pp. i223—
i231. por: 10.1093/bioinformatics/btn161 (cit. on p. 33).

M. E. Dyer and A. M. Frieze. “On the complexity of partitioning graphs
into connected subgraphs”. In: Discrete Applied Mathematics 10.2 (1985),
pp. 139-153. por: 10.1016/0166-218X(85)90008-3 (cit. on p. 56).

J. Edmonds. “Paths, Trees, and Flowers”. In: Canadian Journal of Mathe-
matics (1965), pp. 449-467 (cit. on p. 23).

H.-C. Ehrlich and M. Rarey. “Maximum common subgraph isomorphism
algorithms and their applications in molecular science: a review”. In:
Wiley Interdisciplinary Reviews: Computational Molecular Science 1.1 (2011),
pp- 68-79. por: 10.1002/wcms .5 (cit. on p. 19).

L. Q. Eifler, K. B. Reid Jr, and D. P. Roselle. “Sequences with adjacent
elements unequal”. English. In: Aequationes Mathematicae 6.2-3 (1971),
pp- 256-262. por: 10.1007/BF01819761 (cit. on p. 29).

P. Elias, A. Feinstein, and C. E. Shannon. “A note on the maximum flow
through a network”. In: IRE Trans. Information Theory 2.4 (1956), pp. 117-
119. por: 10.1109/TIT.1956. 1056816 (cit. on p. 67).

https://doi.org/10.1016/0377-0427(94)90020-5
https://doi.org/10.1016/0377-0427(94)90021-3
https://doi.org/10.1007/978-3-642-13520-0_14
https://doi.org/10.1093/bioinformatics/btn161
https://doi.org/10.1016/0166-218X(85)90008-3
https://doi.org/10.1002/wcms.5
https://doi.org/10.1007/BF01819761
https://doi.org/10.1109/TIT.1956.1056816

BiBLIOGRAPHY 133

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

M. Fischetti et al. “Thinning out Steiner trees: a node-based model for uni-
form edge costs”. In: Mathematical Programming Computation 9.2 (2017),
pp. 203-229. por: 10.1007/512532-016-0111-0 (cit. on pp. 33, 68, 69).

L. R. Ford and D. R. Fulkerson. “Maximal flow through a network”. In:
Journal canadien de mathématiques 8.0 (1956), pp. 399-404. por: 10.4153/
cjm-1956-045-5 (cit. on p. 67).

B. A. Galler and M. J. Fisher. “An Improved Equivalence Algorithm”.
In: Communications of the ACM 7.5 (1964), pp. 301-303. por: 10. 1145/
364099.364331 (cit. on p. 69).

X. Gao, B. Xiao, D. Tao, and X. Li. “A survey of graph edit distance”. In:
Pattern Analysis and Applications 13.1 (2010), pp. 113-129. por: 10. 1007/
510044-008-0141-y (cit. on p. 117).

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 1979 (cit. on pp. 18,
19, 90, 94, 95).

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Vol. 57.
Annals of Discrete Mathematics. North-Holland Publishing Co., 2004
(cit. on pp. 35, 69).

V. Grimm, T. Kleinert, F. Liers, M. Schmidt, and G. Z6ttl. “Optimal price
zones of electricity markets: a mixed-integer multilevel model and global
solution approaches”. In: Optimization Methods and Software 0.0 (2017),
pp. 1-31. por: 10.1080/10556788.2017. 1401069 (cit. on pp. 67, 78).

P. Groche, E. Bruder, and S. Gramlich, eds. Manufacturing Integrated
Design. Springer International Publishing, 2017. por: 10.1007/978-3-
319-52377-4 (cit. on pp. 9-11).

P. Groche, C. Ludwig, W. Schmitt, and D. Vucic. “Herstellung multifunk-
tionaler Blechprofile”. In: Werkstatttechnik online: wt, Springer VDI Verlag,
Diisseldorf 99.10 (2009), pp. 712-720 (cit. on p. 11).

P. Groche, J. Ringler, and T. A. Schreehah. “Bending-Rolling combinations
for strips with optimized cross section geometries”. In: CIRP Annals -
Manufacturing Technology, Elsevier, Manchester 58/1 (2009), pp. 263-266
(cit. on p. 11).

P. Groche et al. “Future trends in cold rolled profile process technology”.
In: Confederation of British Metalforming: cbm 19 (2010), pp. 16-19 (cit. on
p- 10).

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Com-

binatorial Optimization. English. Vol. 2. Algorithms and Combinatorics.
Springer, 1988 (cit. on p. 93).

https://doi.org/10.1007/s12532-016-0111-0
https://doi.org/10.4153/cjm-1956-045-5
https://doi.org/10.4153/cjm-1956-045-5
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/364099.364331
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1080/10556788.2017.1401069
https://doi.org/10.1007/978-3-319-52377-4
https://doi.org/10.1007/978-3-319-52377-4

134

BiBLIOGRAPHY

[52]

U. Gunther. “Integral Sheet Metal Design by Discrete Optimization”.
PhD thesis. Technische Universitdt Darmstadt, 2010 (cit. on pp. 10, 12,
115).

U. Giinther, W. Hess, B. M. Horn, and H. Liithen. “A holistic topology
and shape optimization approach with an application to steel profiles”.
In: Structural and Multidisciplinary Optimization (2017). por: 10. 1007/
s00158-017-1809-y (cit. on p. 10).

D. J. Haglin and S. M. Venkatesan. “Approximation and intractability
results for the maximum cut problem and its variants”. In: IEEE Trans-
actions on Computers 40.1 (1991), pp. 110-113. por: 10.1109/12.67327
(cit. on p. 64).

W. Hess. “Geometry Optimization with PDE Constraints and Applica-
tions to the Design of Branched Sheet Metal Products”. PhD thesis. Tech-
nische Universitat Darmstadt, 2010 (cit. on pp. 10, 115).

C. Hojny, I. Joormann, H. Liithen, and M. Schmidt. Mixed-Integer Program-
ming Techniques for the Connected Max-k-Cut Problem. to appear. 2018
(cit. on pp. 64, 86).

C. Hojny, H. Lithen, and M. E. Pfetsch. On the Size of Integer Programs
with Bounded Coefficients or Sparse Constraints. 2018. eprint: http: /[/
www.optimization-online.org/DB_HTML/2017/06/6056.html (cit. on
p. 89).

C. Hojny and M. E. Pfetsch. “Polytopes associated with symmetry han-
dling”. In: Mathematical Programming (2018). por: 10.1007/s10107-018-
1239-7 (cit. on p. 84).

J. E. Hopcroft and J. K. Wong. “Linear Time Algorithm for Isomorphism of
Planar Graphs (Preliminary Report)”. In: Proceedings of the Sixth Annual
ACM Symposium on Theory of Computing. STOC *74. ACM, 1974, pp. 172-
184. por: 10.1145/800119.803896 (cit. on p. 26).

J. Hopcroft and R. Tarjan. “Algorithm 447: Efficient Algorithms for Graph
Manipulation”. In: Communications of the ACM 16.6 (1973), pp. 372-378.
por: 10.1145/362248.362272 (cit. on pp. 72, 81).

B. M. Horn, H. Liithen, M. E. Pfetsch, and S. Ulbrich. “Geometry and
Topology optimization of Sheet Metal Profiles by Using a Branch-And-
Bound Framework”. In: Materials Science & Engineering Technology 48 (1
2017), pp. 27-40 (cit. on p. 10).

IBM ILOG CPLEX Optimization Studio. urL: http: //www-03.1ibm.com/
software/products/de/ibmilogcpleoptistud/ (cit. on p. 84).

https://doi.org/10.1007/s00158-017-1809-y
https://doi.org/10.1007/s00158-017-1809-y
https://doi.org/10.1109/12.67327
http://www.optimization-online.org/DB_HTML/2017/06/6056.html
http://www.optimization-online.org/DB_HTML/2017/06/6056.html
https://doi.org/10.1007/s10107-018-1239-7
https://doi.org/10.1007/s10107-018-1239-7
https://doi.org/10.1145/800119.803896
https://doi.org/10.1145/362248.362272
http://www-03.ibm.com/software/products/de/ibmilogcpleoptistud/
http://www-03.ibm.com/software/products/de/ibmilogcpleoptistud/

BiBLIOGRAPHY 135

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

O. F. Inc. The On-Line Encyclopedia of Integer Sequences. 2017. UrL: http:
/loeis.org (cit. on p. 30).

T. Januschowski and M. E. Pfetsch. “The maximum k-colorable subgraph
problem and orbitopes”. In: Discrete Optimization 8.3 (2011), pp. 478-494.
por: 10.1016/j.disopt.2011.04.002 (cit. on p. 54).

R. G. Jeroslow and]J. K. Lowe. “Modelling with integer variables”. In:
Mathematical Programming Studies 22 (1984), pp. 167-184 (cit. on p. 92).

D.S.Johnson. “The NP-completeness column: An ongoing guide”. In: Jour-
nal of Algorithms 6.1 (1985), pp. 145-159. por: 10.1016/0196-6774(85)
90025-2 (cit. on p. 33).

M. Jinger, G. Reinelt, and W. R. Pulleyblank. “On partitioning the edges
of graphs into connected subgraphs”. In: Journal of Graph Theory 9.4
(1985), pp. 539-549. por: 10. 1002/ jgt.3190090416 (cit. on p. 56).

T. Junttila and P. Kaski. “Engineering an efficient canonical labeling
tool for large and sparse graphs”. In: Proceedings of the Ninth Workshop
on Algorithm Engineering and Experiments and the Fourth Workshop on
Analytic Algorithms and Combinatorics. Ed. by D. Applegate, G. S. Brodal,
D. Panario, and R. Sedgewick. SIAM, 2007, pp. 135-149 (cit. on p. 116).

D. Justice and A. Hero. “A binary linear programming formulation of the
graph edit distance”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 28.8 (2006), pp. 1200-1214. por: 10.1109/TPAMI . 2006. 152
(cit. on p. 118).

V. Kaibel. Extended Formulations in Combinatorial Optimization. Optima
85. 2011 (cit. on p. 95).

V. Kaibel, M. Peinhardt, and M. E. Pfetsch. “Orbitopal fixing”. In: Discrete
Optimization 8.4 (2011), pp. 595-610. por: 10.1016/j.disopt.2011.07.
001 (cit. on p. 83).

V. Kaibel and M. E. Pfetsch. “Packing and partitioning orbitopes”. In:
Mathematical Programming 114.1 (2008), pp. 1-36. por: 10.1007/s10107-
006-0081-5 (cit. on p. 83).

V. Kaibel and S. Weltge. “Lower Bounds on the Sizes of Integer Programs
without Additional Variables”. In: Mathematical Programming (2014). por:
10.1007/510107-014-0855-0 (cit. on p. 93).

R. M. Karp. “Reducibility Among Combinatorial Problems”. In: Com-
plexity of Computer Computations. Ed. by R. E. Miller and J. W. Thatcher.
Plenum Press, 1972, pp. 85-103 (cit. on p. 19).

http://oeis.org
http://oeis.org
https://doi.org/10.1016/j.disopt.2011.04.002
https://doi.org/10.1016/0196-6774(85)90025-2
https://doi.org/10.1016/0196-6774(85)90025-2
https://doi.org/10.1002/jgt.3190090416
https://doi.org/10.1109/TPAMI.2006.152
https://doi.org/10.1016/j.disopt.2011.07.001
https://doi.org/10.1016/j.disopt.2011.07.001
https://doi.org/10.1007/s10107-006-0081-5
https://doi.org/10.1007/s10107-006-0081-5
https://doi.org/10.1007/s10107-014-0855-0

136

BiBLIOGRAPHY

[75]

[76]

D. G. Kirkpatrick and P. Hell. “On the Completeness of a Generalized
Matching Problem”. In: Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing. STOC °78. ACM, 1978, pp. 240-245. por: 10.
1145/800133.804353 (cit. on p. 18).

T. Kloks and D. Kratsch. “Finding all minimal separators of a graph”.
In: STACS 94: 11th Annual Symposium on Theoretical Aspects of Computer
Science Caen, France, February 24-26, 1994 Proceedings. Ed. by P. Enjalbert,
E. W. Mayr, and K. W. Wagner. Springer Berlin Heidelberg, 1994, pp. 759-
768. por: 10.1007/3-540-57785-8_188 (cit. on p. 69).

D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 2:
Generating All Tuples and Permutations. Addison-Wesley Professional,
2005 (cit. on p. 112).

B. H. Korte, L. Lovasz, and R. Schrader. Greedoids. Algorithms and Com-
binatorics 4. Springer-Verlag, 1991 (cit. on pp. 32, 41).

J. B. Kruskal. “On the shortest spanning subtree of a graph and the
traveling salesman problem”. In: Proceedings of the American Mathematical
Society 7.1 (1956), pp. 48-48. por: 10.1090/s0002-9939-1956-0078686-
7 (cit. on p. 76).

R. E. Ladner. “On the Structure of Polynomial Time Reducibility”. In:
Journal of the ACM 22.1 (1975), pp. 155-171. por: 10. 1145/321864 .
321877 (cit. on p. 15).

J. Lerouge, Z. Abu-Aisheh, R. Raveaux, P. Héroux, and S. Adam. “Exact
Graph Edit Distance Computation Using a Binary Linear Program”. In:
Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR Interna-
tional Workshop, S+SSPR 2016, Mérida, Mexico, November 29 - December 2,
2016, Proceedings. Ed. by A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano,
and R. Wilson. Springer International Publishing, 2016, pp. 485-495. por:
10.1007/978-3-319-49055-7_43 (cit. on p. 118).

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Tech. rep. 8. 1966, pp. 707-710 (cit. on p. 117).

G. Levi. “A note on the derivation of maximal common subgraphs of
two directed or undirected graphs”. In: CALCOLO 9.4 (1973), p. 341. por:
10.1007/BF02575586 (cit. on p. 120).

L. A. Levin. “Universal sorting problems”. In: Problems of Information
Transmission 9 (1973), pp. 265-266 (cit. on p. 19).

I. Ljubi¢ et al. “An Algorithmic Framework for the Exact Solution of the
Prize-Collecting Steiner Tree Problem”. In: Mathematical Programming
105.2 (2006), pp. 427-449. por: 10.1007/s10107-005-0660-x (cit. on
p- 33).

https://doi.org/10.1145/800133.804353
https://doi.org/10.1145/800133.804353
https://doi.org/10.1007/3-540-57785-8_188
https://doi.org/10.1090/s0002-9939-1956-0078686-7
https://doi.org/10.1090/s0002-9939-1956-0078686-7
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/321864.321877
https://doi.org/10.1007/978-3-319-49055-7_43
https://doi.org/10.1007/BF02575586
https://doi.org/10.1007/s10107-005-0660-x

BiBLIOGRAPHY 137

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

L. Lovasz and M. D. Plummer. Matching Theory. Vol. 29. Annals of Dis-
crete Mathematics 121. North-Holland, Amsterdam and Akadémiai Ki-
ado, Budapest, 1986 (cit. on p. 57).

S.J. Maher et al. The SCIP Optimization Suite 4.0. eng. Tech. rep. 17-12.
ZIB, 2017 (cit. on pp. 64, 84).

F. Margot. “Symmetry in Integer Linear Programming”. In: 50 Years of
Integer Programming 1958-2008: From the Early Years to the State-of-the-
Art. Ed. by M. Junger et al. Springer Berlin Heidelberg, 2010. Chap. 17,
pp. 647-686. por: 10.1007/978-3-540-68279-0_17 (cit. on p. 83).

E. Q. V. Martins. “On a multicriteria shortest path problem”. In: European
Journal of Operational Research 16.2 (1984), pp. 236-245. por: 10.1016/
0377-2217(84)90077-8 (cit. on p. 65).

C. McCreesh, S. N. Ndiaye, P. Prosser, and C. Solnon. “Clique and Con-
straint Models for Maximum Common (Connected) Subgraph Problems”.
In: Principles and Practice of Constraint Programming: 22nd International
Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings.
Ed. by M. Rueher. Springer International Publishing, 2016, pp. 350-368.
por: 10.1007/978-3-319-44953-1_23 (cit. on p. 120).

B. D. McKay and A. Piperno. “Practical graph isomorphism, II”. In: Jour-
nal of Symbolic Computation 60 (2014), pp. 94-112. por: 10.1016/j. jsc.
2013.09.003 (cit. on p. 84).

C. E. Miller, A. W. Tucker, and R. A. Zemlin. “Integer programming
formulations and traveling salesman problems”. In: Journal of Association
for Computing Machinery 7 (1960), pp. 326-329 (cit. on p. 95).

M. E. Pfetsch and T. Rehn. A Computational Comparison of Symmetry
Handling Methods for Mixed Integer Programs. 2015. eprint: http: /[/www.
optimization-online.org/DB_HTML/2015/11/5209 . html (cit. on
p. 83).

B. Piva and C. C. de Souza. “Polyhedral study of the maximum com-
mon induced subgraph problem”. In: Annals of Operations Research 199.1
(2012), pp. 77-102. por: 10.1007/510479-011-1019-8 (cit. on p. 120).

S. Poljak and Z. Tuza. “Maximum cuts and largest bipartite subgraphs”.
In: Combinatorial Optimization. Vol. 20. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. DIMACS/AMS, 1993, pp. 181-
244 (cit. on p. 64).

P. Prosser. Exact Algorithms for Maximum Clique: a computational study.
2012. eprint: https://arxiv.org/abs/1207.4616 (cit. on p. 120).

https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1016/0377-2217(84)90077-8
https://doi.org/10.1016/0377-2217(84)90077-8
https://doi.org/10.1007/978-3-319-44953-1_23
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
http://www.optimization-online.org/DB_HTML/2015/11/5209.html
http://www.optimization-online.org/DB_HTML/2015/11/5209.html
https://doi.org/10.1007/s10479-011-1019-8
https://arxiv.org/abs/1207.4616

138

BiBLIOGRAPHY

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

K. Riesen. Structural Pattern Recognition with Graph Edit Distance. Ad-
vances in Computer Vision and Pattern Recognition. Springer Interna-
tional Publishing, 2015. por: 10. 1007 /978 - 3-319-27252 - 8 (cit. on
p. 117).

K. Riesen, S. Emmenegger, and H. Bunke. “A Novel Software Toolkit for
Graph Edit Distance Computation”. In: Graph-Based Representations in
Pattern Recognition: 9th IAPR-TC-15 International Workshop, GbRPR 2013,
Vienna, Austria, May 15-17, 2013. Proceedings. Ed. by W. G. Kropatsch,
N. M. Artner, Y. Haxhimusa, and X. Jiang. Springer Berlin Heidelberg,
2013, pp. 142-151. por: 10. 1007 /978 - 3-642-38221-5_15 (cit. on
p.118).

A. Sanfeliu and K.-S. Fu. “A distance measure between attributed rela-
tional graphs for pattern recognition”. In: IEEE Transactions on Systems,
Man, and Cybernetics SMC-13.3 (1983), pp. 353-362. por: 10.1109/TSMC.
1983.6313167 (cit. on p. 117).

T.]J. Schaefer. “The Complexity of Satisfiability Problems”. In: Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing. STOC '78.
ACM, 1978, pp. 216-226. por: 10.1145/800133.804350 (cit. on p. 19).

W. Schmitt. Laserschweifen von Mehrkammerprofilen aus spaltprofilierten
Halbzeugen. Diplomarbeit, Technische Universitat Darmstadt. 2008 (cit.
on p. 12).

U. Schoning. “Graph Isomorphism is in the Low Hierarchy”. In: Pro-
ceedings of the 4th Annual Symposium on Theoretical Aspects of Computer
Science. STACS ’87. Springer-Verlag, 1987, pp. 114-124 (cit. on p. 15).

R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2011 (cit. on
p. 65).

SteinLib Testsets. URL: http://steinlib.zib.de/showset.php?I1080
(cit. on p. 84).

P. Turan. “Egy grafelméleti szélsGértékfeladatrdl (On an extremal problem
in graph theory)”. In: Matematikai és Fizikai Lapok 48 (1941), pp. 436-452
(cit. on p. 26).

K. Wagner. “Uber eine Eigenschaft der ebenen Komplexe”. In: Mathe-

matische Annalen 114.1 (1937), pp. 570-590. por: 10. 1007 /BF01594196
(cit. on p. 24).

R. A. Wagner and M.]J. Fischer. “The String-to-String Correction Prob-
lem”. In: J. ACM 21.1 (1974), pp. 168-173. por: 10.1145/321796.321811
(cit. on p. 117).

https://doi.org/10.1007/978-3-319-27252-8
https://doi.org/10.1007/978-3-642-38221-5_15
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1145/800133.804350
http://steinlib.zib.de/showset.php?I080
https://doi.org/10.1007/BF01594196
https://doi.org/10.1145/321796.321811

BiBLIOGRAPHY 139

[108]

[109]

[110]

[111]

[112]

[113]

Y. Wang, A. Buchanan, and S. Butenko. “On imposing connectivity con-
straints in integer programs”. In: Mathematical Programming (2017), pp. 1-
31.por: 10.1007/s10107-017-1117-8 (cit. on pp. 32, 34, 39, 40, 46, 51,
54).

M. Yannakakis. “Node-Deletion Problems on Bipartite Graphs”. In: SIAM
Journal on Computing 10.2 (1981), pp. 310-327. por: 10.1137/0210022
(cit. on p. 95).

F. E. C. Yao. “Graph 2-isomorphism is NP-complete”. In: Information

Processing Letters 9.2 (1979), pp. 68-72. por: 10.1016/0020-0190(79)
90130-3 (cit. on p. 18).

V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. “Graph
isomorphism problem”. In: Journal of Mathematical Sciences 29.4 (1985),
pp- 1426-1481. por: 10. 1007 /b£02104746 (cit. on p. 20).

Z.Zeng, A. K. H. Tung,]. Wang, J. Feng, and L. Zhou. “Comparing Stars:
On Approximating Graph Edit Distance”. In: PVLDB 2.1 (2009), pp. 25—
36 (cit. on p. 118).

G. M. Ziegler. Lectures on Polytopes. 1st ed. Vol. 152. Graduate Texts in
Mathematics. Springer-Verlag, 1995. por: 10.1007/978-1-4613-8431-1
(cit. on pp. 57, 95, 97).

https://doi.org/10.1007/s10107-017-1117-8
https://doi.org/10.1137/0210022
https://doi.org/10.1016/0020-0190(79)90130-3
https://doi.org/10.1016/0020-0190(79)90130-3
https://doi.org/10.1007/bf02104746
https://doi.org/10.1007/978-1-4613-8431-1

Wissenschaftlicher
Werdegang

11/2012-03/2017

10/2012

04/2007 -10/2012

10/2006 — 03/2007

06/2006

Wissenschaftlicher Mitarbeiter am Fachbereich Mathe-
matik der Technischen Universitat Darmstadt, Arbeits-
gruppe Diskrete Optimierung

Abschluss Master of Science in Mathematik

Studium der Mathematik an der Technischen Universitat
Berlin

Studium der Elektrotechnik an der Technischen Univer-
sitat Berlin

Abitur an der Humboldt-Oberschule Berlin

141

	Introduction
	Manufacturing
	Overview
	Notation

	Partitioning into Isomorphic Subgraphs
	Complexity Result
	Polynomial Time Solvable Graph Classes
	Combinatorics on the Path Graph

	Connected Subgraphs and Partitioning into Connected Subgraphs
	The Connected Subgraph Polytope
	Facets
	Complete Description of Cycles
	Complete Description of Complete Bipartite Graphs
	Adding One Node and One Edge

	The Connected Subpartition and Partition Polytopes
	The Connected Subpartition Polytope
	The Connected Partition Polytope

	Solving Connected Max-K-Cut
	Problem Definition
	Separation of the Connectedness Constraint
	Propagation
	Cuts
	Primal Heuristics
	Branching Rules
	Symmetry
	Numerical Results

	MIP Formulations
	Introduction
	Problem Formulation

	Different Approaches for Handling the Retooling Process
	Minimizing the Non-Isomorphic Remaining Part
	MIP Formulation
	Brute-Force Algorithm

	Graph Similarity Measures
	Problem Definition
	General Solving Framework
	Implemented Measures

	Conclusion and Outlook
	Influence of Symmetry Handling for Connected Max-K-Cut
	Bibliography

