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A B S T R AC T

This thesis is concerned with the statistical learning of probabilistic models for graph-structured
data. It addresses both the theoretical aspects of network modelling–like the learning of appropriate
representations for networks–and the practical difficulties in developing the algorithms to perform
inference for the proposed models.

The first part of the thesis addresses the problem of discrete-time dynamic network modeling.
The objective is to learn the common structure and the underlying interaction dynamics among
the entities involved in the observed temporal network. Two probabilistic modeling frameworks
are developed. First, a Bayesian nonparametric framework is proposed to capture the static latent
community structure and the evolving node-community memberships over time. More specifi-
cally, the hierarchical gamma process is utilized to capture the underlying intra-community and
inter-community interactions. The appropriate number of latent communities can be automatically
estimated via the inherent shrinkage mechanism of the hierarchical gamma process prior. The
gamma Markov process are constructed to capture the evolving node-community relations. As
the Bernoulli-Poisson link function is used to map the binary edges to the latent parameter space,
the proposed method scales with the number of non-zero edges. Hence, the proposed method is
particularly well-fitted to model large sparse networks. Moreover, a time-dependent hierarchical
gamma process dynamic network model is proposed to capture the birth and death dynamics of
the underlying communities. For performance evaluation, the proposed methods are compared
with state-of-the-art statistical network models on both synthetic and real-world data.

In the second part of the thesis, the main objective is to analyze continuous-time event-based
dynamic networks. A fundamental problem in modeling such continuously-generated temporal
interaction events data is to capture the reciprocal nature of the interactions among entities–the
actions performed by one individual toward another increase the probability that an action of the
same type to be returned. Hence, the mutually-exciting Hawkes process is utilized to capture the
reciprocity between each pair of individuals involved in the observed dynamic network. In par-
ticular, the base rate of the Hawkes process is built upon the latent parameters inferred using the
hierarchical gamma process edge partition model, to capture the underlying community structure.
Moreover, each interaction event between two individuals is augmented with a pair of latent vari-
ables, which will be referred to as latent patterns, to indicate which of their involved communities
lead to the occurring of that interaction. Accordingly, the proposed model allows the excitatory
effects of each interaction on its opposite direction are determined by its latent patterns. Efficient
Gibbs sampling and Expectation Maximization algorithms are developed to perform inference.
Finally, the evaluations performed on the real-world data demonstrate the interpretability and com-
petitive performance of the model compared with state-of-the-art methods.

In the third part of this thesis, the objective is to analyze the common structure of multiple re-
lated data sources under the generative framework. First, a Bayesian nonparametric group factor
analysis method is developed to factorize multiple related groups of data into the common latent
factor space. The hierarchical beta Bernoulli process is exploited to induce sparsity over the group-
specific factor loadings to strengthen the model interpretability. A collapsed variational inference
scheme is proposed to perform efficient inference for large-scale data analysis in real-world appli-
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cations. Moreover, a Poisson gamma memberships framework is investigated for joint modelling
of network and related node features.



Z U S A M M E N FA S S U N G

Die Dissertation beschäftigt sich mit dem statistischen Lernen von Wahrscheinlichkeitsmodellen
für graphisch strukturierte Daten. Es befasst sich sowohl mit den theoretischen Aspekten der Netz-
werkmodellierung - wie dem Erlernen geeigneter Darstellungen für Netzwerke - als auch mit den
praktischen Schwierigkeiten bei der Entwicklung der Algorithmen zur Durchführung von Inferen-
zen für die vorgeschlagenen Modelle.

Der erste Teil die Dissertation befasst sich mit dem Problem der zeitdiskreten dynamischen
Netzwerkmodellierung. Ziel ist es, die gemeinsame Struktur und die zugrunde liegende Dynamik
der am beobachteten zeitlichen Netzwerk beteiligten Entitäten zu lernen. Es werden zwei proba-
bilistische Modellierungsrahmen entwickelt. Zunächst wird ein Bayes’sches nichtparametrisches
Framework vorgeschlagen, um die statische latente Community-Struktur und die sich im Laufe der
Zeit entwickelnden Node-Community-Mitgliedschaften zu erfassen. Insbesondere wird der hierar-
chische Gamma-Prozess verwendet, um die zugrunde liegenden innergemeinschaftlichen und zwi-
schengemeinschaftlichen Interaktionen zu erfassen. Die geeignete Anzahl latenter Gemeinschaften
kann über den inhärenten Schrumpfungsmechanismus des hierarchischen Gamma-Prozesses vor
geschätzt werden. Der Gamma-Markov-Prozess ist so aufgebaut, dass er die sich entwickelnden
Knoten-Community-Beziehungen erfasst. Da die Bernoulli-Poisson-Beziehung verwendet wird,
um die binären Kanten in den latenten Parameterraum abzubilden, skaliert die vorgeschlagene
Methodik mit der Anzahl der Kanten. Daher ist die vorgeschlagene Methodik gut geeignet, um
große dünnbesetz Netzwerke zu modellieren. Darüber hinaus wird ein zeitabhängiges dynamisches
Netzwerkmodell für hierarchische Gamma-Prozesse vorgeschlagen, um die Geburts- und Todesdy-
namik der zugrunde liegenden Gemeinschaften zu erfassen. Zur Leistungsbewertung werden die
vorgeschlagenen Methoden mit den neuesten statistischen Netzwerkmodellen für synthetische und
reale Daten verglichen.

Im zweiten Teil die Dissertation geht es vor allem darum, zeitkontinuierliche ereignisbasierte dy-
namische Netzwerke zu analysieren. Ein grundlegendes Problem bei der Modellierung solcher kon-
tinuierlich erzeugten zeitlichen Interaktionsereignisse besteht darin, die reziproke Art der Wech-
selwirkung Interaktionen zwischen Entitäten zu erfassen. Der sich gegenseitig erregende Hawkes-
Prozess wird verwendet, um die Reziprozität zwischen jedem Paar von Personen in dem beobachte-
ten dynamischen Netzwerk zu erfassen. Insbesondere basiert der Hawkes-Prozess auf den latenten
Parametern, die unter Verwendung des hierarchischen Gamma-Prozess-Kantenpartitionsmodells
abgeleitet wurden, um die zugrunde liegende Community-Struktur zu erfassen.

Darüber hinaus wird jedes Ereignis zwischen zwei Individuen mit einem Paar aus latenten Va-
riablen versehen, welche als latente Muster zu verstehen sind. Das vorgeschlagene Modell ermög-
licht, dass die anregenden Effekte jedes Ereignisses durch seine latenten Muster bestimmt werden.
Effiziente Gibbs-Abtast- und Erwartungswert-Maximierungs-Algorithmen werden entwickelt, um
Inferenzen durchzuführen. Schließlich belegen die Auswertungen der realen Daten die hohe Wett-
bewerbsfähigkeit und eine Leistung auf dem neuesten Stand der Technik.

Der dritte Teil die Dissertation stellt sich das Ziel, die gemeinsame Struktur von multiplen
verwandtden Datenquellen unter einem generativen Rahmen zu analysieren. Zunächst wird ein
Bayes’sches Verfahren zur Analyse nichtparametrischer Gruppenfaktoren entwickelt, um mehrere
verwandte Datengruppen in den gemeinsamen Latenzfaktorraum zu zerlegen. Der hierarchische
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Beta-Bernoulli-Prozess wird ausgenutzt, um die Dünnbesetztheit gegenüber dem gruppenspezifi-
schen Faktor zu induzieren. Es wird ein reduziertes Variations-Inferenz-Schema vorgeschlagen,
um eine effiziente Inferenz für eine Datenanalyse in großem Maßstab in realen Anwendungen
durchzuführen. Darüber hinaus untersuchen wir ein Poisson-Gamma-Mitgliedschafts-Framework
für die gemeinsame Modellierung von Netzwerk- und verwandten Knotenmerkmalen.
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to Adrian Šošić and Nikita Kruk for their generous helping with my research projects, and to
Nurgazy Sulaimanov for his countless encouragement.

I would also like to thank all my friends, Shuanglai Fu, Xiaolan Ross, Prof. Hong-Yang Chao,
Prof. Mingyuan Zhou, Zhitang Chen, Prof. Nenggan Zheng, Yang Han, Yunhai Wu, Ruo Yi,
Junbo Lu.

Last, but by no means least, I would like to thank my family for their love and constant support.

vii





C O N T E N T S

1 I N T RO D U C T I O N 1
1.1 Thesis overview and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 B AC K G RO U N D A N D R E L AT E D W O R K 5
2.1 Fundamental definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Probability Distributions, Stochastic Processes and Temporal Point Processes . . . 5
2.3 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 D I S C R E T E T I M E DY N A M I C N E T W O R K M O D E L S 15
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The Dynamic Poisson Gamma Memberships Model . . . . . . . . . . . . . . . . . 16
3.3 The Dependent Relational Gamma Process Model . . . . . . . . . . . . . . . . . . 24
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 C O N T I N U O U S T I M E DY N A M I C N E T W O R K M O D E L S 47
4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Hawkes Processes with the Hierarchical Gamma Process Edge Partition Model . . 49
4.3 The Hawkes Edge Partition Model . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 S T O C H A S T I C G R A D I E N T M A R K OV C H A I N M O N T E C A R L O F O R D I S C R E T E

T I M E N E T W O R K M O D E L S 63
5.1 Stochastic Gradient Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . 63
5.2 The Dynamic Dirichlet Edge Paritition Model . . . . . . . . . . . . . . . . . . . . 64
5.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 N O N PA R A M E T R I C B AY E S I A N G RO U P F AC T O R A N A LY S I S 75
6.1 Nonparametric Bayesian Group Factor Analysis . . . . . . . . . . . . . . . . . . . 76
6.2 Collapsed Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 J O I N T M O D E L S F O R N E T W O R K E D G E S A N D N O D E F E AT U R E S 95
7.1 The Poisson Gamma Memberships Model for Network Edges and Node Features . 95
7.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 C O N C L U S I O N S A N D F U T U R E R E S E A R C H 101

AC RO N Y M S 103

ix



x C O N T E N T S

B I B L I O G R A P H Y 107

C U R R I C U L U M V I T Æ 115

E R K L Ä RU N G L AU T § 9 P RO M OT I O N S O R D N U N G 117



1
I N T RO D U C T I O N

There has been considerable interest in network analysis because many complicated physical, so-
cial and biological phenomena, such as protein-protein interactions and friendship relations among
individuals, can be represented as networks. A network is composed of nodes and edges between
them. To date, a large amount of work has been done on the analysis of static networks, which
either represent an aggregated view of networks for a time period, or a single network snapshot
observed at a time point. As internet and biological technologies advance, a rich collection of
graph-structured data has become available for modelling and understanding network formation
and evolving processes.

On the one aspect, instead of observing a single aggregated view, a time-varying network either
consists of a set of snapshots (discrete-time networks) collected at multiple time points, or rep-
resents a continuous-time evolving network, in which each edge is associated with a timestamp.
On the other aspect, auxiliary node features, such as user profiles in online social networks or
gene-expression data along with gene regulatory networks, are also available to be leveraged into
network modelling when the observed network is incomplete.

The main objectives of dynamic network models are to estimate the common structure, while at
the same time to capture the underlying dynamic interactions among nodes. In addition, real-world
networks are often extremely sparse (only a small fraction of network entries are non-zeros), and
typically exhibit high degree (number of edges per node) heterogeneity–some nodes have a large
number of connections, while most nodes have very few edges. Therefore, it is highly desirable
to develop methods that not only can capture the evolving node behaviour and interpret the edge
formation mechanisms, but also truly scale to large sparse networks.

For discrete-time networks, prior works include deterministic approaches, such as exponential
random graph models (Guo et al. 2007), matrix and tensor factorization based methods (Dunlavy
et al. 2011), and statistical models (Sarkar et al. 2006; Xing et al. 2010; J. R. Foulds et al. 2011;
Heaukulani et al. 2013). Among these methods, statistical network models received an amount
of attention because these models have great flexibility and show favorable interpretability by
providing uncertainty estimates for the discovered latent parameters. Moreover, these models
based upon generative mechanisms often perform well in predicting missing edges and forecast-
ing future unseen snapshots. The statistical models for discrete-time networks mainly include
class-based and feature-based models. The class-based models, such as the dynamic stochastic
block model (dSBM) (Xing et al. 2010), assign the nodes of a network into a finite number of
classes, and determine the edge between each pair of two nodes entirely by their assigned classes.
The dSBM captures evolving node-class assignments using state space models. The feature-based
models, such as the dynamic latent feature relational model (dLFRM) (Miller et al. 2009), repre-
sent each node with a binary vector, which naturally captures the underlying overlapping commu-
nity structure because each node can belong to multiple communities (features). In the dLFRM,
the node-community memberships independently evolve over time according to the factorial hid-
den Markov model (Zoubin Ghahramani et al. 1996). Despite having expressive representations,
the dynamic feature relational models map the binary edges to the latent space using the logistic
link function that scales quadratically with the number of nodes. Hence, it is unrealistic to ap-
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2 I N T RO D U C T I O N

ply dLFRMs in analysis of sparse networks with very large number of nodes. In addition, the
dLFRM can only characterize the binary node-community memberships, and thus fail to capture
the degrees of node-memberships to multiple communities. For instance, an individual is more
likely to connect to another individual if they both have high degrees in a community like “rock
music” but low degrees in a community like “classical music”, than an individual with low degree
in “rock music” but high degree in “classical music”. Therefore, the dLFRMs cannot capture such
differences in the degrees of node-community memberships because the three individuals have the
same binary feature representations. Furthermore, the node-community memberships are expected
to change smoothly when the corresponding nodes join or leave the communities. The dLFRMs
cannot capture such smooth evolving behaviour without modelling the degrees of node member-
ships appropriately. In addition, discrete-time network models aggregate timestamped relational
events to form network snapshots, which unavoidably discard a significant amount of information.
For example, if Bob emails Alice, then Alice is more likely to send an email to Bob in the near
future (reciprocity). To capture such reciprocating nature of temporal interactions, it makes more
sense to model a collection of temporal interaction events that implicitly form a continuous-time
network, rather than discrete snapshots collected at regular time intervals.

In this thesis, the main contribution is to develop statistical models, in which each entity is
endowed with an expressive node-community memberships vector. Consequently, the proposed
model not only captures the underlying overlapping community structure, but also measures the
degrees of each node’s memberships to the multiple communities. Accordingly, the proposed
model allows each node-community membership to evolve smoothly over time. In addition, the
proposed model can effectively leverage the sparsity manifested in large networks, and thus ad-
mits a simple-yet-efficient Gibbs sampling algorithm to perform inference. Moreover, this thesis
also presents models for continuous-time event-based networks. To this end, a temporal point
process-based model is proposed to capture the underlying community structure behind temporal
interactions. In the proposed model, each event between a pair of individuals is either driven by
their respective affiliated communities or triggered by the past opposite interactions between them.
Another challenging task in network modelling is to reconstruct incomplete network edges using
available node-specific side information, such as node features. For example, in computational
system biology, interacting proteins tend to be linked to similar phenotypes and participating in
similar functions. Hence, to predict protein-protein interaction (PPI) networks using available pro-
tein sequence data and structural information is a difficult problem that scientists strive to address.
In this thesis, a probabilistic generative model is developed to jointly model the network data with
node features.

1.1 T H E S I S OV E RV I E W A N D C O N T R I B U T I O N S

The goal of this thesis is to develop statistical models such that:

1. Development of discrete-time network models that capture the underlying community struc-
ture and the node evolving behaviours, and also characterize the edge formation.

2. Development of continuous-time network models that characterize the latent community
structure behind interactions among nodes, and capture the reciprocating interactions be-
tween each pair of nodes.

3. Development of models that jointly capture the generative process of a network and its
associated node-specific side information.
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4. Development of scalable inference schemes for the developed dynamic network models.

5. Development of models for joint modelling of multiple related groups of data.

This thesis will develop statistical network models that fulfil the above objectives. We start by
reviewing the related work. The developed statistical models are presented in Chapter 3 to 7. The
following subsections describe the chapters for each model in more detail.

1.1.1 Models for discrete-time networks (Chapter 3)

In this chapter, a statistical model for discrete-time networks is presented. The proposed model
represents each node by a nonnegative node-community memberships vector that enables us to
capture the underlying overlapping community structure and also measures the degrees of node
memberships. The proposed model characterizes both intra-community and inter-community in-
teractions using a positive weight matrix that builds upon the hierarchical gamma process. Hence,
this model allows any two nodes that have no common affiliated communities to connect through
the inter-community interactions. By the intrinsic shrinkage mechanism of the hierarchical gamma
process, the proposed model can automatically infer an appropriate number of latent communities
in a Bayesian nonparametric way. Using the Bernoulli-Poisson link (BPL) function, the model
maps the binary network edges to the latent relational space. As the inference only needs to be per-
formed for non-zero network entries, the BPL function makes the proposed model appealing for
modelling large sparse networks. The proposed model captures the smooth evolving behaviour of
each node-community membership using a gamma Markov process. Although the exact inference
for the proposed model is analytically intractable, a simple-yet-efficient Gibbs sampling scheme
with full local conjugacy using the data augmentation and marginalization strategies, is developed
to perform inference. Moreover, the proposed model can be readily generalized to count-valued
and to positive real-valued networks using the Poisson randomized gamma function.

1.1.2 Models for continuous-time networks (Chapter 4)

In this chapter, a temporal point process-based model is derived for continuous-time event-based
dynamic networks. In particular, this model captures the underlying community structure behind
temporal interactions among nodes by incorporating such structural information into the base in-
tensity of the temporal point process model. Then, this model captures the reciprocating interac-
tions between each pair of two nodes using a mutually-exciting Hawkes process. The proposed
model assumes that each event between two nodes is either driven by these two nodes’ affiliated
communities or triggered by the opposite past interactions of the same type. Therefore, the pro-
posed model can flexibly allow the interaction dynamics between two nodes to be modulated by
their affiliated communities. In addition, our model can also incorporate the available node fea-
tures or node-generated contents via the prior specification. Both efficient Gibbs sampling and
Expectation-Maximization inference schemes are developed to perform inference.

1.1.3 Stochastic gradient MCMC inference for dynamic network models (Chapter 5)

In this chapter, we extend the bilinear Poisson factorization model for dynamic networks by con-
structing node-community memberships via the Dirichlet Markov chain structure. Moreover, the
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hierarchical beta gamma prior is utilized to prevent the over estimation of the number of latent com-
munities. This novel framework enables us to derive fast stochastic gradient Markov chain Monte
Carlo algorithms using the expanded-mean and the reduced-mean reparameterization strategies.

1.1.4 Models for joint modelling of multiple related groups of data (Chapter 6)

In this chapter, a Bayesian nonparametric model for joint modelling of multiple related groups of
data is presented. The proposed model captures both the group-specific signals and the underlying
common structure of multiple related grouped data under the group factor analysis framework.
Using the hierarchical beta-Bernoulli process prior, this framework can automatically infer the
number of latent factors by data itself, and effectively induce the sparsity over the factor loadings to
improve the interpretability. For large-scale group factor analysis, a collapsed variational inference
scheme is developed to perform inference in the proposed framework.

1.1.5 Models for networks and node features (Chapter 7)

In this chapter, we extend the bilinear Poisson factorization model for static networks to jointly
model a static network and its associated node features, which are considered to be observed here.
In the proposed hierarchical Bayesian model, both the observed network and node features are
factorized in the common latent relational space by representing each node with a positive node-
community memberships vector. This model enables us to reconstruct missing edges in network
data using available node features. Moreover, the proposed model can be straightforwardly ex-
tended to model dynamic or multi-relational networks.

1.2 P U B L I C AT I O N S

The following articles have been written during the course of the author’s doctoral studies.

1. Sikun Yang and Heinz Koeppl (2018b). “A Poisson Gamma Probabilistic Model for La-
tent Node-Group Memberships in Dynamic Networks”. In: AAAI Conference on Artificial
Intelligence, pp. 4366–4373.

2. Sikun Yang and Heinz Koeppl (2018c). “Dependent Relational Gamma Process Models
for Longitudinal Networks”. In: International Conference on Machine Learning (ICML),
pp. 5551–5560.

3. S. Yang and H. Koeppl (2018a). “Collapsed Variational Inference for Nonparametric Bayesian
Group Factor Analysis”. In: IEEE International Conference on Data Mining (ICDM),
pp. 687–696.

4. Sikun Yang and Heinz Koeppl (2019b). “The Hawkes Edge Partition Model for Continuous-
time Event-based Temporal Networks”. In: Submitted.

5. Sikun Yang and Heinz Koeppl (2019a). “An Empirical Study of Stochastic Gradient MCMC
Algorithms for the Dynamic Edge Partition Models”. In: Submitted.



2
BAC K G RO U N D A N D R E L AT E D W O R K

In this chapter, we first introduce the fundamental definitions and terminology that will be used in
this thesis. Then, we survey previous work for modelling static networks, discrete-time networks,
continuous-time event-based networks and network models that incorporate node features.

2.1 F U N DA M E N TA L D E F I N I T I O N S

2.1.1 Static networks

Formally, a static network can be represented by a graph G ≡ (V , E) that is composed of a
set of nodes V and the edges E between these nodes. Here, V ≡ |V| denotes the number of
nodes, and E ≡ |E| the number of edges. A graph G can be represented by an adjacency matrix
A ∈ {0, 1}V×V , where Auv = 1 if an edge is observed between nodes u and v, and Auv = 0
otherwise. A graph is undirected if and only if Auv = Avu, and directed otherwise. For undirected
graphs, the degree of a node is defined by the number of nodes that connect with this given node.
In directed graphs, we define the in-degree of a node by the number of nodes that have edges
incoming to this given node, and the out-degree of a node by the number of nodes outgoing from
this given node. We use the term node, vertex and entity interchangeably. Similarly, we use link
and edge interchangeably, and also use group and community interchangeably.

2.1.2 Discrete-time networks

A discrete-time network is represented as a sequence of binary adjacency matrices {A(t)}T
t=1,

where A(t) ∈ {0, 1}V×V for each time point t = 1, . . . , T. The adjacency matrix A(t) has entries
A(t)

uv = 1 if an edge from nodes u to v is present at time t, and A(t)
uv = 0 otherwise.

2.1.3 Continuous-time event-based networks

A dynamic network evolving continuously over time, such as email communication networks and
exchange of messages on online social networks, can be observed through a sequence of inter-
action events between pairs of nodes at recorded timestamps. For instance, a set of temporal
interaction events can be represented as {(ti, si, di)}N

i=1, where N is the number of events, and
(ti, si, di) denotes an event directed from node si (sender) to node di (receiver) at timestamp ti.

2.2 P RO B A B I L I T Y D I S T R I B U T I O N S , S T O C H A S T I C P RO C E S S E S A N D T E M P O R A L P O I N T

P RO C E S S E S

In this section, we describe the distributions, the nonparmetric Bayesian priors, and the data aug-
mentation and marginalization strategies covered in this thesis. When expressing the full condi-

5
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tionals for Gibbs sampling we will use the shorthand “–” to denote all other variables. We use “·”
as a index summation shorthand, e.g., x·j = ∑i xij.

2.2.1 The Poisson Distribution

A discrete random variable X is said to have a Poisson distribution with parameter λ > 0, if for
k = 0, 1, 2, . . . , the probability mass function of X is defined by

fX(x | λ) =
λxe−λ

x!
, (2.2.1)

where x! is the factorial of x. The mean and variance of X are E[X] = λ, and Var[X] = λ,
respectively.

2.2.2 The Gamma Distribution

A random variable X drawn from a gamma distribution with shape parameter a and scale parameter
1/b is denoted as X ∼ Gamma(a, 1/b), and has a probability density function as

fX(x | a, 1/b) =
ba

Γ(a)
xa−1e−bx, (2.2.2)

where Γ(·) denotes the Gamma function. The mean and variance of X are E[X] = a/b and
Var[X] = a/b2, respectively.

2.2.3 The Dirichlet distribution

A K–dimensional random vector, π = (π1, . . . , πK), where πi > 0 and ∑K
i=1 πi = 1, is said

to take values in (K − 1)–dimensional–simplex. The Dirichlet distribution of dimension K is a
continuous probability distribution on (K− 1)–dimensional simplex, and has a probability density
function as

f (π | α1, . . . , αK) =
Γ(∑k αk)

∏k Γ(αk)
∏

k
π

αk−1
k . (2.2.3)

Let α0 = ∑k αk. The mean and variance of an element of π are E[πk] =
αk
α0

and Var[πk] =
αk(α0−αk)

α2
0(α0+1)

, respectively.

2.2.4 The Negative-Binomial distribution

A negative-binomial distributed random variable X ∼ NB(r, p) has a probability mass function
as

fX(x|r, p) =
Γ(x + r)
x!Γ(r)

px(1− p)r, (2.2.4)

where x ∈ Z≥0. The mean and variance of X are E[X] = rp/(1− p) and Var[X] = rp/(1− p)2,
respectively. A negative-binomial distributed random variable y ∼ NB(r, p) can be generated
from a gamma mixed Poisson distribution as, y ∼ Poisson(λ) and λ ∼ Gamma(r, p

1−p ) by
marginalizing over λ.
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2.2.5 The Sum-Logarithmic distribution

A discrete random variable X is said to have a logarithmic (Log) distribution if for k = 1, 2, . . . ,
the probability mass function of X is defined by

fX(x | p) =
−px

x ln(1− p)
. (2.2.5)

A random variable M is said to have a sum-logarithimic distribution m ∼ SumLog(l, p) when
m = ∑l

t=1 ut, ut ∼ Log(p).

2.2.6 The Poisson Randomized Gamma distribution

The Poisson ramdomized gamma (PRG) distributed random variable x has the probability mass
function as

fX(x | λ, β) = [exp (−λ)]δ(x=0)
[

exp (−λ− βx)
(λβ

x

)1/2
I−1

(
2(λβx)1/2

)δ(x>0)
]

,

(2.2.6)

where

I−1(α) = (
α

2
)−1

∞

∑
n=1

( α2

4 )n

n!Γ(n)
, α > 0 (2.2.7)

is the modified Bessel function of the first kind Iν(α) with ν fixed at −1. Using the laws of total
expectation and total variance, one may show that

E[X] = λ/β, (2.2.8)

Var[X] = 2λ/β2. (2.2.9)

A Poisson randomized gamma distributed variable x ∼ PRG(λ, β) can be generated from a Pois-
son mixed gamma distribution as

x ∼ Gamma(n, 1/β), (2.2.10)

n ∼ Poisson(λ).

2.2.7 Dirichlet processes and Chinese restaurant processes

A Dirichlet process defines a distribution on random probability measures. Let Θ be a measurable
space, and H a probability distribution on Θ, and α a positive scalar. A Dirichlet process is
parameterized by a base measure H and a concentration parameter α. Given a finite partition
S1, S2, . . . , SK of Θ, a random probability distribution G on Θ is a drawn from a Dirichlet process,
DP(α, H), if its measure on every finite partitions follows a Dirichlet distribution as

(G(S1), G(S2), . . . , G(SK)) ∼ Dirichlet(αH(S1), αH(S2), . . . , αH(SK)).
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Given a draw from a Dirichlet process G ∼ DP(α, H), we assume that the variables {θi}N
i=1

are independently sampled from G, and thus exchangeable. Marginalizing out G, the predictive
distribution of θN+1 conditioning on {θi}N

i=1 can be expressed as

θN+1 | {θi}N
i=1, α, H ∼

K

∑
k=1

mk
N + α

δψk +
α

N + α
H, (2.2.11)

where {ψk}K
k=1 are distinct values taken on by {θi}N

i=1, and mk = ∑N
i=1 1(θi = ψk) is the number

of variables that are equal to ψk. The stochastic process described in Eq. 2.2.11 is known as the
Pólya urn scheme (Blackwell and MacQueen 1973) and also the Chinese restaurant process (Pit-
man 2006; Teh et al. 2007).

Under the Chinese restaurant process, the number of distinct atoms L is a random variable
depending on the total number of samples n and the concentration parameter α. Let S(n, l) denote
unsigned Stirling numbers of the first kind, it is shown in (M. Zhou and L. Carin 2015a) that the
random count variable L has the probability mass function as

fL(l | n, α) =
Γ(α)

Γ(n + α)
|S(n, l)|αl , l = 0, 1, . . . , n, (2.2.12)

which we refer to as the Chinese restaurant distribution (CRT) in this thesis. A random variable
drawn from a CRT distribution l ∼ CRT(n, α) can be generated as

l =
m

∑
i=1

bi, bi ∼ Bernoulli(
α

i− 1 + α
). (2.2.13)

2.2.8 The Poisson-Logarithmic bivariate distribution

The Poisson-logarithmic bivariate distributed variable (m, l) has the probability mass function as

fM,L(m, l | r, p) =
S(m, l)rl

m!
(1− p)r pm,

where m ∈ Z>0 and l = 0, 1, . . . , m. Note that the Poisson-logarithmic bivariate distribution
can be equivalently expressed as the product of a negative-binomial and a Chinese restaurant table
(CRT) distributions, and also the product of a sum-logarithmic (SumLog) and a Poisson distribu-
tions as

PoisLog(m, l ; r, p) ≡ CRT(l ; m, r)NB(m ; r, p)

≡ SumLog(m ; l, p)Poisson(l ; −r ln(1− p)).

2.2.9 Gamma processes

The gamma process (GaP) is a completely random measure (CRM) (Kingman 1967) defined on
the product space Θ × R>0 as G ∼ GaP(G0, c), where c is a scale parameter, and G0 is a
finite and continuous base measure over a complete separable metric space Θ, such that G(Sk) ∼
Gamma(G0(Sk), c) are independent gamma random variables for disjoint subsets {Sk}∞

k=1 of
Θ. The positive Lévy measure of the gamma process can be expressed as ν(dr) = cr−1e−crdr.
As a completely random measure, the gamma process can be regarded as a Poisson process on
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Θ×R>0 with mean measure ν(dθ, dr). A sample from this Poisson process consists of countably
infinite atoms because

∫ ∫
Θ×R>0

ν(dθ, dr) = ∞. Thus, a sample from the gamma process can
be expressed as G = ∑∞

k=1 rkδθk ∼ GaP(G0, c). More detailed information about the gamma
process can be found in (Wolpert et al. 1998; Wolpert, Clyde, and Tu 2011).

2.2.10 The thinned completely random measures framework

Let Π = {(xk, θk, rk)}∞
k=1 be generated by a Poisson process on the augmented product space

X × Θ × R>0 with mean measure ν(dx, dθ, dr). Let G = ∑∞
k=1 rkδ(xk ,θk)

be a completely
random measure (CRM) on X ×Θ×R>0, and let T denote the time set as the coveriate. In order
to construct a family of random measures {G(t)}t∈T dependent on covariate values t ∈ T , a set of
binary random variables b(t)k is generated for each point (xk, rk, θk) ∈ Π such that p(b(t)k = 1) =
Pxk (t), where Px : T → [0, 1] denotes the thinning function which determines the probability that
atom k in the global measure G appears in the local measure G(t) at covariate value t. Then, the
set of covariate-dependent CRMs {G(t)}t∈T can be specified as

G(t) =
∞

∑
k=1

b(t)k rkδθk , t ∈ T .

The new CRMs are well-defined by the mapping theorem for the Poisson processes (Kingman
1993), that is proved in (Foti et al. 2013). As a concrete example, a thinned gamma process
(tGaP) can be constructed to model the global atoms and their activity/inactivity at multiple time
points originally developed for dynamic topic models. Let ν(dx, dθ, dr) = H(dx)G0(dθ)ν0(dr),
where ν0(dr) = cr−1e−crdr is the Lévy measure of the gamma process. We transform a Gaussian
basis kernel pointwise using a logistic function as the thinning function:

Pxk (t) = σ

{
ω0k +

T

∑
l=1

ωlk exp[−ϕk(t− l)2]

}
,

where σ(x) = 1/(1+ exp(−x)) denotes the logistic function. We fix the centres of these kernels
to the T discrete time points in covariate space T . We characterize each location xk ∈ X by a
set of T + 1 kernel weights ωlk ∈ R, and a (shared) kernel width ϕk uniformly drawn from a
fixed dictionary {ϕ∗1 , . . . , ϕ∗D} of size D. To encourage sparsity of the kernel weights, we place
a normal-inverse gamma prior over ωlk, i.e., ωlk ∼ NIG(ωlk; 0, 1, 1). Hence, the base measure
H(dx) can be expressed as H(dx) = NIG(ωlk; 0, 1, 1)Categorical(ϕk; {ϕ∗1 , . . . , ϕ∗D}). The
generative procedure can be expressed as

G =
∞

∑
k=1

rkδ(xk ,θk)
∼ CRM(ν(dx, dθ, dr)), (2.2.14)

ωlk ∼ NIG(0, 1, 1), ϕk ∼ Categorical(ϕ∗1 , . . . , ϕ∗D),

Pxk (t) = σ

{
ω0k +

T

∑
l=1

ωlk exp[−ϕk(t− l)2]

}
,

b(t)k ∼ Bernoulli
[

Pxk (t)
]
,

G(t) =
∞

∑
k=1

b(t)k rkδθk .
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2.2.11 The Negative-Binomial augmentation scheme

Let r· = ∑i ri, and x = {x1, . . . , xN} be a Dirichlet-multinomial distributed random vector:
{x1, . . . , xN} ∼ DirMult(x·, r1, . . . , rN) where x· ∼ NB(r·, p), we can equivalently sample
{xi}N

i=1 as xi ∼ NB(ri, p), for i = 1, . . . , N. Hence, given Dirichlet-Multinomial distributed
random variables {x1, . . . , xN} ∼ DirMult(x·, r1, . . . , rN) where ri ∼ Gamma(ai, bi), our aim
is to sample the parameter {ri}N

i=1. To this end, we can introduce an auxiliary variable p as
p ∼ Beta(x·, r·), and then we have xi ∼ NB(r·, p). We further augment xi with a CRT dis-
tributed random variable li ∼ CRT(xi, ri), and then according to the Poisson-Logarithmic bivari-
ate distribution, we obtain

xi ∼ SumLog(p),

li ∼ Poisson[−ri log(1− p)].

Then, the conditional distribution of ri can be easily obtained using the gamma-Poisson conjugacy.

2.2.12 Hawkes processes

Let N(t) be a counting process recording the number of events occurring at times {ti} with
ti < t. The probability of an event occurring in a small time interval [t, t + dt) is given by
Pr(dN(t) = 1 | H(t)) = λ(t)dt, where H(t) ≡ {ti | ti < t} denotes the history of events
up to but not including time t, dN(t) is the increment of the process, and λ(t) is the conditional
intensity function (intensity, for short) of N(t). A Hawkes process is a doubly-stochastic point
process (Daley et al. 2003) with the intensity function

λ(t) = µ +
∫ t

0
γ(t− s)dN(s) (2.2.15)

= µ + ∑
j:tj∈H(t)

γ(t− tj),

where µ ≥ 0 is the base rate capturing the exogenous activities, and γ(t) is the nonnegative trig-
gering kernel modelling the endogenous activities. Note that this intensity function characterizes
the self-excitation effects that past events have on the current event rate. Here, we consider an
exponential kernel γ(t − s) ≡ α exp[−(t − s)/δ] where α ≥ 0 determines the magnitude of
excitations, which exponentially decays with a constant rate δ ≥ 0. The stationary condition for
Hawkes processes requires αδ < 1. Recent work (Blundell, Beck, and Heller 2012; J. Yang et al.
2017; Miscouridou et al. 2018) has been proposed to capture the reciprocity in communications
between a pair of individuals using mutually-exciting Hawkes processes. Formally, for a pair of
nodes u, v ∈ V, we have the counting process Nuv(t), which defines the number of directed inter-
actions from node u to node v in the time interval [0, t). Let the history of interactions from nodes
u to v be denoted as Huv(t). Accordingly, Nuv(t) and Nvu(t) are mutually-exciting Hawkes
processes if their intensity functions take the forms

λuv = µuv + ∑
tj∈Hvu(t)

γ(t− tj),

λvu = µvu + ∑
ti∈Huv(t)

γ(t− ti), (2.2.16)
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respectively. Note that mutually-exciting Hawkes processes capture the reciprocating interactions
from node u to node v at time t as a response to the past interactions from v to u, and vice versa.

2.3 N E T W O R K M O D E L S

2.3.1 Static network models

A large amount of contributions have been dedicated to analyzing static networks. These static net-
work analysis methods include the modularity maximization method (Newman and Girvan 2004),
clique percolation (Palla et al. 2005), matrix and tensor factorization based methods (Dunlavy et
al. 2011), and various probabilistic methods (Airoldi et al. 2008; Miller et al. 2009; P. D. Hoff
et al. 2001). See (Goldenberg et al. 2010) for a comprehensive review. In this thesis, we focus on
the probabilistic methods as these methods not only can capture the global network properties via
appropriate prior specifications, but also can be applied to detect underlying community structure
and to predict missing edges. The statistical models for static networks can largely be classified as
class-based and feature-based models. Class-based statistical models for static networks, such as
stochastic block models (Holland et al. 1983; Nowicki and Snijders 2001), assume that a static net-
work can be decomposed into a finite number of latent communities that nodes can belong to, and
that these communities entirely determine the formation of network edges. Therefore, inference
in the class-based models reduces to assigning each node v ∈ V to one of the latent communities
k = 1, . . . , K, and estimating the community interaction matrix B of size K× K. For two nodes u
and v, their latent community assignments are denoted as zu and zv, respectively. Thus, the edge
probability between u and v take the form

Auv ∼ Bernoulli(Bzuzv). (2.3.1)

The stochastic block model (Holland et al. 1983; Nowicki and Snijders 2001) requires the number
of latent communities to be determined in advance. The infinite relational model (IRM) (Kemp
et al. 2006) extends the stochastic block model by generating the node-community memberships
from a Chinese restaurant process prior, and thus allows the number of communities to be inferred
in a Bayesian nonparametric way. Moreover, stochastic block models fail to capture the overlap-
ping community structure of networks. To tackle this issue, the mixed membership stochastic
block model (MMSBM) (Airoldi et al. 2008) is developed to allow each node to have mixed mem-
berships. More specifically, we endow each node u ∈ V with a latent mixed memberships vector
πu, which is drawn from the prior πu ∼ Dirichlet(α), where α denotes the hyperparameter. For
nodes u and v, node u draws one role zu→v ∼ Multinomial(πu) as a sender of the interaction
with node v, and node v draws one role zu←v ∼ Multinomial(πv) as a receiver of the interaction
from node u. Finally, the edge probability from u to v is

zu→v ∼ Multinomial(πu), (2.3.2)

zu←v ∼ Multinomial(πv),

Auv ∼ Bernoulli(zu→vBzu←v).

The mixed membership stochastic block model captures the node-community memberships using
a multinomial distributed representation. Thus, the MMSBM assumes that by increasing the de-
gree of a node’s membership to some group k, the same node’s degrees to the other groups k′ ̸= k
have to decrease as the same node’s memberships normalize to one. To circumvent this limitation,
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the latent feature relational model (LFRM) is developed to represent each node u ∈ V by a set of
binary features that govern the edge formation of node u with the other nodes of the network. In
particular, the LFRM utilizes the Indian buffet process as the prior for the node-memberships, and
captures the feature interactions using a real-valued weight matrix W ∈ RK×K. The probability
of an edge between node u and node v take the form

Pr(Auv = 1 | −) = σ(∑
k,k′

zukwkk′zvk′), (2.3.3)

where σ(x) ≡ 1
1+exp(−x) is the logistic link function. Despite showing expressiveness, the la-

tent feature relational model fails to capture the degrees of each node’s memberships to different
communities only using binary feature vectors.

2.3.2 Models for discrete-time networks

Real-world network data, such as friend relationships or interactions on online social networks,
is often dynamic because these observed relations among nodes may appear or disappear over
time. A dynamic network data can be composed by taking a series of snapshots at multiple time
points. Although a large amount of effort has been dedicated to studying dynamic networks, we re-
view some representative methods for discrete-time dynamic networks. Since the stochastic block
model is widely used in analysis of static networks, many previous work (Fu et al. 2009; Xing et al.
2010; Ho et al. 2011; K. S. Xu et al. 2014) extend the stochastic block model for dynamic context.
These dynamic stochastic block models generally assume that the latent community memberships
of each node evolve over time, and thus the edges of the same node to the other nodes change
accordingly. To capture such temporal dynamics, the dynamic stochastic block model utilizes
the hidden Markov model to evolve each node membership over time, and then generates each
network snapshot with a stochastic block model framework.

The main difference between the previous statistical dynamic network models lies in how to
capture the evolving behaviours of nodes over time. Among these methods, the dynamic latent
feature relational models (J. R. Foulds et al. 2011; Heaukulani et al. 2013; M. Kim et al. 2013)
employ the factorial hidden Markov model (Zoubin Ghahramani et al. 1996) to characterize the
temporal dynamics of the latent node-community memberships. Other representative models in-
clude the dynamic Euclidean latent space model (Sarkar et al. 2006) that describes each node with
a latent position in Euclidean latent space. To capture temporal dynamics of networks, the dynamic
Euclidean latent space model allows the latent position of each node to smoothly move over time.

2.3.3 Models for continuous-time networks

In many cases, temporal relational events among entities are continuously generated, and thus each
of these events is associated with a timestamp. Modelling timestamped relational events enable
us to not only discover the implicit social structure, but also to capture the causal relationships
between these events.

Some prior models (Blundell, Beck, and Heller 2012; Du et al. 2015b; H. Xu et al. 2016a;
J. Yang et al. 2017; Miscouridou et al. 2018) have been developed to combine a static network
model that characterizes the underlying community structure behind interactions, and the tempo-
ral point process (Hawkes 1971) that captures reciprocating interaction dynamics. For instance,
the Hawkes process infinite relational model (Hawkes-IRM) (Blundell, Beck, and Heller 2012)
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extends the infinite relational model into a continuous-time model by characterizing interactions
between each pair of two nodes using a mutually-exciting Hawkes process with the base inten-
sity determined by the respective unique communities of these two nodes. Moreover, the Hawkes
compound completely random measure model (Hawkes-CCRM) (Miscouridou et al. 2018) hybri-
dies the compound completely random measure model that captures the global sparsity and degree
heterogeneity of networks, with mutually-exciting Hawkes processes for modelling reciprocity in
interactions. Other models include Hawkes dual latent space model (J. Yang et al. 2017) that em-
beds the nodes of a network into Euclidean space, and that builds the interaction intensity between
two nodes on their latent positions. In addition, the work of (Tan et al. 2018) employs the nested
Chinese restaurant process (NCRP) (D. M. Blei et al. 2010) to induce an hierarchical structure
embedded with Hawkes processes for temporal interaction events.

2.3.4 Models for networks and nodes features

Many prior work (Rai 2017; D. I. Kim et al. 2012; P. K. Gopalan et al. 2014; Hu et al. 2016a)
have considered to incorporate node features into network models to predict missing edges. Some
of the work (D. I. Kim et al. 2012; P. K. Gopalan et al. 2014) leverage the given relational graph
and partially observed node labels to predict the labels for the other unlabeled nodes. These meth-
ods for joint modelling of a network and its associated node features include regression models
and generative models. The regression models (Rai 2017) generally treat node features as input
covariates and the observed network edges as predictors. Then, predicting missing edges can be
performed under the regression model using the available node features.

The generative models (D. I. Kim et al. 2012; P. K. Gopalan et al. 2014) typically capture
the joint distribution of node features and network edges by factorizing the adjacency matrix and
covariates in the common latent space.
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D I S C R E T E T I M E DY NA M I C N E T W O R K M O D E L S

The study of relational data arising from various networks including social, biological and physical
networks is becoming increasingly important due to the emergence of massive relational data
collected from these domains. Many efforts have been dedicated to developing statistical models in
terms of community detection and missing link prediction for static networks, where either a single
snapshot of the network of interest or an aggregated network over time is presented. However,
network data, such as friendships or interactions in a social network, is often dynamic since the
relations among the entities within the network may appear or disappear over time (Mucha et al.
2010). Hence, appropriate models are needed to enable a better understanding of the formation
and evolution of dynamic networks (Phan and Airoldi 2015).

In this chapter, a probabilistic framework is developed to model such dynamic networks as-
suming the network of interest is composed of a set of latent communities. Each node of the
observed network is hence associated with a time-dependent memberships vector that governs
its involvement in multiple communities and interactions with other nodes. The node-community
memberships are assumed to be gamma distributed, thus, naturally nonnegative real-valued. More-
over, to capture time-evolving interactions between groups of nodes, we also extend the developed
dynamic network model to capture the birth and death dynamics of individual communities explic-
itly via a dependent relational gamma process (dRGaP). The ideal number of latent communities
can be learned from data via the shrinkage mechanism of the dRGaP.

Explicitly modelling community birth/death dynamics can be useful in many applications. For
instance, latent communities in a network of military disputes between countries could mean al-
liances such as the North Atlantic Treaty Organization (NATO) coordinating collective defence to
attacks by external forces. These communities can be born and die afterwards. For example, the
Warsaw Pact was established during the Cold War and dissolved in later years. We demonstrate
that the proposed model can discover interpretable latent structure on a real network of military
interstate disputes (Ghosn et al. 2004) that agrees with our knowledge of international relations.
Furthermore, it is reasonable to model the time-evolving memberships of each individual node to
interpret its joining and withdrawing behavior to these communities. Hence, we capture the dynam-
ics of individual node-community memberships evolving over time via gamma Markov processes.
In contrast to dynamic network modelling using logistic or probit mapping functions (J. R. Foulds
et al. 2011; Heaukulani et al. 2013; Durante et al. 2014), we leverage the Bernoulli Poisson link
(BPL) function (Dunson et al. 2005; M. Zhou et al. 2015) to generate edges from the latent space
representation, which makes the computational cost of the proposed model to scale linearly with
the number of edges, rather than quadratically with the number of nodes. In addition, the BPL
function is also a more appropriate model for imbalanced binary data (Hu et al. 2015), which
makes the proposed model appealing for analyzing real-world relational data that are usually ex-
tremely sparse. To perform inference, we present an efficient Gibbs sampling algorithm exploiting
the Pólya-gamma data augmentation technique (Polson et al. 2013) and the data augmentation and
marginalization technique for discrete data (M. Zhou and L. Carin 2015b).

The rest of this chapter is organized as follows. In Section 3.1, some related work are discussed.
Section 3.2 presents the dynamic Poisson gamma membership model. In Section 3.3, we extend

15



16 D I S C R E T E T I M E DY N A M I C N E T W O R K M O D E L S

the dynamic Poisson gamma membership model to capture the birth and death dynamics of latent
communities using the thinned completely random measure framework. Section 3.4 presents the
experimental results of the two developed models compared with state-of-the-art methods on both
synthetic and real-world datasets. Section 3.5 summarizes this chapter.

3.1 R E L AT E D W O R K

Prior works on discrete-time dynamic networks modelling include the exponential random graph
model (ERGM) (Guo et al. 2007), matrix and tensor factorization based methods (Dunlavy et al.
2011) and statistical models (Sarkar et al. 2006; Ishiguro et al. 2010; Durante and Dunson 2014).
Statistical dynamic network models received considerable attention because these models have
favourable interpretability by providing uncertainty estimates for the uncovered latent representa-
tions (P. D. Hoff et al. 2001). Dynamic extensions of the mixed membership stochastic blockmodel
(MMSB) (Airoldi et al. 2008) have been developed (Fu et al. 2009; Xing et al. 2010; Ho et al. 2011)
using linear state space models to capture the evolution of real-valued node-community member-
ships. We note that a mixed memberships model can be recovered from our proposed model by
the normalization of the gamma distributed memberships to restrict probabilities normalized to
one because of the relationship between the Dirichlet and gamma distribution (Ferguson 1973).
Recently, an extended Kalman filter (EKF) based algorithm (K. S. Xu et al. 2014) was proposed
to infer dynamic stochastic blockmodels (SBM) with competitive performance. Dynamic exten-
sions of the latent feature relational model (LFRM) (Miller et al. 2009) using an infinite factorial
hidden Markov process to capture the evolution of binary node-community memberships include
the dynamic relational infinite feature model (DRIFT) (J. R. Foulds et al. 2011), the latent fea-
ture propagation model (LFP) (Heaukulani et al. 2013), and the dynamic multi-group membership
graph model (DMMG) (M. Kim et al. 2013).

The proposed framework is a form of bilinear Poisson factorization model (M. Zhou and L.
Carin 2015b; P. Gopalan et al. 2015), and can be considered as the dynamic extension of the hier-
archical gamma process edge partition model (HGP-EPM) (M. Zhou et al. 2015). The dependent
completely random measure (CRM) framework (Foti et al. 2013) has been exploited for dynamic
topic models and dependent latent feature models previously. To the best of our knowledge, this
is the first attempt to model activity and inactivity of latent communities using a thinned CRMs
framework in dynamic networks modelling. Our Markov chain construction, used to capture the
evolution of node-community memberships, is inspired by the data augmentation technique (M.
Zhou and L. Carin 2015b) that has been exploited for dynamic matrix factorization (Acharya et al.
2015a; Schein et al. 2016b) and deep gamma belief networks (M. Zhou et al. 2016). We note
that the dynamic gamma process Poisson factorization (D-GPPF) (Acharya et al. 2015b) has been
proposed using gamma Markov chains to model the evolution of latent communities while the
D-GPPF assumes node memberships are static over time. Notably, a gamma Markov chain can
alternatively be constructed conditioning the state at every time step on the state at previous time
step via gamma scale parameters (Ranganath et al. 2015).

3.2 T H E DY N A M I C P O I S S O N G A M M A M E M B E R S H I P S M O D E L

In the proposed model, each node u ∈ V is characterized by a time-dependent latent membership
variable ϕ

(t)
uk that determines its interactions or involvement in community k at the t-th snapshot of

the dynamic networks. This latent node-community membership is modeled by a gamma random
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variable and is, thus, naturally nonnegative real-valued. This is contrast to multi-group member-
ships models (or latent feature relational models) (J. R. Foulds et al. 2011; Heaukulani et al. 2013;
M. Kim et al. 2013) where each node-community membership is represented by a binary latent
feature indicator. The multi-group memberships models assume that each node either associates
to one community or not – simply by a binary feature indicator. The proposed model on the other
hand can characterize how strongly each node associates with multiple communities.

3.2.1 Dynamics of latent node-community memberships.

For dynamic networks, the latent node-community membership ϕ
(t)
uk can evolve over time to in-

terpret the interaction dynamics among the nodes. For example, latent community k could mean
“play soccer” and ϕ

(t)
uk could mean how frequently person u plays soccer or how strongly person

u likes playing soccer. The person’s degree of association to this community could be increasing
over time due to, for instance, increased interaction with professional soccer players, or decreasing
over time as a consequence of sickness. Hence, in order to model the temporal evolution of the
latent node-community memberships, we assume the individual memberships to form a gamma
Markov chain. More specifically, ϕ

(t)
uk is drawn from a gamma distribution, whose shape parame-

ter is the latent membership at the previous time

ϕ
(t)
uk ∼ Gamma(ϕ(t−1)

uk /τ, 1/τ), for t = 1, . . . , T

ϕ
(0)
uk ∼ Gamma(g0, 1/h0),

where the parameter τ controls the variance without affecting the mean, i.e.,
E[ϕ

(t)
uk | ϕ

(t−1)
uk , τ] = ϕ

(t−1)
uk .

3.2.2 Model of latent communities.

The interactions or correlations among latent communities are characterized by a matrix Ω of size
K×K, where Ωkk′ relates to the probability of there being a link between node u affiliated to com-
munity k and node v affiliated to community k′. Specifically, we assume the latent communities
to be generated by the following hierarchical process: we first generate a separate weight for each
community as

rk ∼ Gamma(γ0/K, 1/c0), (3.2.1)

and then generate the inter-community interaction weight Ωkk′ and intra-community weight Ωkk
as

Ωkk′ ∼
{

Gamma(ξrk, 1/β), if k = k′

Gamma(rkrk′ , 1/β), otherwise
(3.2.2)

where ξ ∈ R>0 and β ∈ R>0. The reasonable number of latent communities can be inferred
from dynamic relational data itself by the shrinkage mechanism of the proposed model. More
specifically, for fixed γ0, the redundant communities will effectively be shrunk as many of the
communities weights tend to be small for increasing K. Thus, the interaction weights Ωkk′ between
the redundant community k and all the other communities k′, and all the node-memberships to
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community k will be shrunk accordingly. In practice, the intra-community weight Ωkk would
tend to almost zero if Ωkk ∼ Gamma(r2

k , 1/β) for small rk, and the corresponding communities
will disappear inevitably. Hence, we use a separate variable ξ to avoid overly shrinking of small
communities with less interactions with other communities. As γ0 has a large effect on the number
of the latent communities, we do not treat it as a fixed parameter but place a gamma prior over it,
i.e., γ0 ∼ Gamma(1, 1). Given the latent node-community membership ϕ

(t)
uk and the interaction

weights Ωkk′ among communities, the probability of there being a link between node u and v is
given by

A(t)
uv ∼ Bernoulli

(
1− exp

{
−

K

∑
k=1

K

∑
k′=1

Ωkk′ϕ
(t)
uk ϕ

(t)
vk′

})
. (3.2.3)

Interestingly, we can also generate A(t)
uv by truncating a latent count random variable Ã(t)

uv at 1,
where Ã(t)

uv can be seen as the integer-valued weight for node u and v, and can be interpreted as
the number of times the two nodes interacted. More specifically, A(t)

uv can be drawn as

A(t)
uv = 1(Ã(t)

uv ≥ 1), (3.2.4)

Ã(t)
uv ∼ Poisson(

K

∑
k=1

K

∑
k′=1

Ωkk′ϕ
(t)
uk ϕ

(t)
vk′). (3.2.5)

We can obtain (3.2.3) by marginalizing out the latent count Ã(t)
uv from the above expression. The

conditional distribution of the latent count Ã(t)
uv can then be written as

(Ã(t)
uv | A(t)

uv , Φ, Ω) ∼ A(t)
uv Poisson+(

K

∑
k=1

K

∑
k′=1

Ωkk′ϕ
(t)
uk ϕ

(t)
vk′),

where x ∼ Poisson+(σ) is the zero-truncated Poisson distribution with probability mass func-
tion (PMF) fX(x|σ) = (1 − e−σ)−1σxe−σ/x!, x ∈ Z>0, and Φ denotes the set of all node-

community membership variables. The usefulness of this construction for A(t)
uv will become clear

in the inference section. We note that the latent count Ã(t)
uv only needs to be sampled for A(t)

uv = 1,
using rejection sampling detailed in (M. Zhou et al. 2015). The proposed hierarchical generative
model is as follows:

ϕ
(t)
uk ∼ Gamma(ϕ(t−1)

uk /τ, 1/τ), for t = 1, . . . , T

ϕ
(0)
uk ∼ Gamma(g0, 1/h0),

rk ∼ Gamma(γ0/K, 1/c0),

Ωkk′ ∼
{

Gamma(ξrk, 1/β), if k = k′

Gamma(rkrk′ , 1/β), otherwise

Ã(t)
uv ∼ Poisson(

K

∑
k=1

K

∑
k′=1

ϕ
(t)
uk Ωkk′ϕ

(t)
vk′),

A(t)
uv = 1(Ã(t)

uv ≥ 1).

For the model’s hyperparameters, we draw c0, ξ and β from Gamma(0.1, 0.1). The graphical
model is shown in Fig. 3.1.
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Ã(1)
uv Ã(2)

uv · · · Ã(t)
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A(1)
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uv A(t)
uv· · · · · ·
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uk ϕ

(2)
uk · · · ϕ

(t)
uk

· · ·ϕ
(0)
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Ω
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γ0c0e0f0

β

K

V

Figure 3.1: The graphical model of the dynamic Poisson gamma memberships model; auxillary
variables introduced for inference are not shown.

3.2.3 Inference algorithm

A Gibbs sampling algorithm for the dynamic Poisson gamma memberships model is derived to
draw samples of the model parameters {ϕ(t)

uk , Ωkk′ , rk, ξ, γ0, β, c0} from their conditional posterior
distribution given the observed dynamic relational data and the hyper-parameters {e0, f0, g0, h0}.
In order to circumvent the technical challenging of drawing samples from the gamma Markov
chain which does not have a closed-form conditional posterior, we generalize the statistical ideas
of data augmentation and marginalization technique and the gamma-Poisson conjugacy to derive
a closed-form update.
Sampling latent count Ã(t)

uv . We sample a latent count for each time dependent observed edge
A(t)

uv as

(Ã(t)
uv |−) ∼ A(t)

uv Poisson+(
K

∑
k=1

K

∑
k′=1

Ωkk′ϕ
(t)
uk ϕ

(t)
vk′). (3.2.6)

Sampling Ã(t)
ukk′v. Using the Poisson additive property, we can augment the latent count

Ã(t)
uv ∼ Poisson(∑K

k=1 ∑K
k′=1 Ωkk′ϕ

(t)
uk ϕ

(t)
vk′) as Ã(t)

uv = ∑K
k,k′=1 Ã(t)

ukk′v,

where Ã(t)
ukk′v ∼ Poisson(Ωkk′ϕ

(t)
uk ϕ

(t)
vk′). Then, via the Poisson-multinomial equivalence, we

partition the latent count Ã(t)
uv as

(Ã(t)
ukk′v|−) ∼ Multinomial(Ã(t)

uv ;
Ωkk′ϕ

(t)
uk ϕ

(t)
vk′

∑K
k=1 ∑K

k′=1 Ωkk′ϕ
(t)
uk ϕ

(t)
vk′

). (3.2.7)

Sampling rk. Via the Poisson additive property, we have

(Ã(·)
·kk′ ·|−) ∼ Poisson(Ωkk′θkk′), (3.2.8)

where Ã(·)
·kk′ · = ∑t ∑u,v ̸=u Ã(t)

ukk′v and θkk′ = ∑t ∑v ∑u ̸=v ϕ
(t)
uk ϕ

(t)
vk′ .
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We can marginalize out Ωkk′ from (3.2.8) and (3.2.2) using the gamma-Poisson conjugacy, and
then have

(Ã(·)
·kk′ ·|−) ∼ NB(rkξ

δ(kk′)(rk′)
1−δ(kk′) , p̃kk′),

where p̃kk′ =
θkk′

θkk′+β and the delta function δ(kk′) = 1 if k = k′.
Exploiting the Poisson logarithmic bivariate distribution, we introduce the CRT distributed aux-

iliary variables as

lkk′ ∼ CRT(Ã(·)
·kk′ ·, rkξ

δ(kk′)(rk′)
1−δ(kk′)). (3.2.9)

We then re-express the bivariate distribution over Ã(·)
·kk′ · and lkk′ as

(Ã(·)
·kk′ ·|−) ∼ SumLog(lkk′ , rkξ

δ(kk′)(rk′)
1−δ(kk′)),

(lkk′ | −) ∼ Poisson(−rkξ
δ(kk′)(rk′)

1−δ(kk′) ln(1− p̃kk′)). (3.2.10)

Using (3.2.1) and (3.2.10), via the gamma-Poisson conjugacy, we obtain the conditional distri-
bution of rk as

(rk | −) ∼ Gamma
[γ0

K
+ ∑

k′
lkk′ ,

1

c0 −∑k′ ξ
δ(kk′)(rk′)

1−δ(kk′) ln(1− p̃kk′)

]
. (3.2.11)

Sampling ξ. We resample the auxiliary variables lkk using (3.2.9), and then exploit the gamma-
Poisson conjugacy to sample ξ as

(ξ | −) ∼ Gamma
[
e0 + ∑

k
lkk,

1
f0 −∑k rk ln(1− p̃kk)

]
. (3.2.12)

Sampling Ωkk′ . We sample Ωkk′ from its conditional distribution obtained using (3.2.2) and
(3.2.8) via the gamma-Poisson conjugacy as

(Ωkk′ |−) ∼ Gamma
[

Ã(·)
·kk′ · + rkξ

δ(kk′)(rk′)
1−δ(kk′) , 1/(β + θkk′)

]
. (3.2.13)

Sampling γ0. Using (3.2.10) and the Poisson additive property, we have lk· = ∑k′ lkk′ as

(lk·|−) ∼ Poisson(−rk ∑
k′

ξ
δ(k,k′)(rk′)

1−δ(k,k′) ln(1− p̃kk′)).

Marginalizing out rk using the gamma-Poisson conjugacy, we have

(lk·|−) ∼ NB(γ0/K, p̂k),

where p̂k =
∑k′ ξ

δ
(k,k′) (rk′ )

1−δ
(k,k′) ln(1− p̃kk′ )

c0−∑k′ ξ
δ
(k,k′) (rk′ )

1−δ
(k,k′) ln(1− p̃kk′ )

. We introduce the auxiliary variables

l̃k ∼ CRT(lk·, γ0/K), and re-express the bivariate distribution over lk· and l̃k as

(lk· | −) ∼ SumLog(l̃k, p̂k),

(l̃k | −) ∼ Poisson(−γ0

K
ln(1− p̂k)). (3.2.14)
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Then, via the gamma-Poisson conjugacy, we sample γ0 as

(γ0 | −) ∼ Gamma
[
1 + ∑

k
l̃k,

1
1− 1

K ∑k ln(1− p̂k)

]
. (3.2.15)

Sampling latent memberships ϕ
(t)
uk . Since the latent memberships ϕ

(t)
uk evolve over time accord-

ing to our Markovian construction, the backward and forward information need to be incorporated
into the updates of ϕ

(t)
uk . We start from time slice t = T,

Ã(T)
uk·· ∼ Poisson(ϕ(T)

uk ω
(T)
uk ),

ϕ
(T)
uk ∼ Gamma(ϕ(T−1)

uk /τ, 1/τ),

where

Ã(t)
uk·· ≡ ∑

v ̸=u,k′
Ã(t)

ukk′v,

ω
(t)
uk ≡ ∑

v ̸=u,k′
ϕ
(t)
vk′Ωkk′ .

Via the gamma-Poisson conjugacy, we have

(ϕ
(T)
uk | −) ∼ Gamma

[
ϕ
(T−1)
uk /τ + Ã(T)

uk··, 1/(τ + ω
(T)
uk )

]
. (3.2.16)

Marginalizing out ϕ
(T)
uk yields

Ã(T)
uk·· ∼ NB(ϕ(T−1)

uk /τ, ϱ
(T)
uk ), (3.2.17)

where ϱ
(T)
uk =

ω
(T)
uk

τ+ω
(T)
uk

.

Exploiting the Poisson logarithmic bivariate distribution, the NB distribution can be augmented
with a CRT distributed auxiliary variable as

Ã(T)
uk·· ∼ NB(ϕ(T−1)

uk /τ, ϱ
(T)
uk ),

m̂(T)
uk ∼ CRT(Ã(T)

uk··, ϕ
(T−1)
uk /τ).

Then, we re-express the bivariate distribution over Ã(T)
uk·· and m̂(T)

uk as

Ã(T)
uk·· ∼ SumLog(m̂(T)

uk , ϱ
(T)
uk ),

m̂(T)
uk ∼ Poisson

[
−

ϕ
(T−1)
uk

τ
ln(1− ϱ

(T)
uk )

]
. (3.2.18)

where

ϱ
(t)
uk =

ω
(t)
uk −

1
τ ln(1− ϱ

(t+1)
uk )

τ + ω
(t)
uk −

1
τ ln(1− ϱ

(t+1)
uk )

. (3.2.19)
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Given Ã(T−1)
uk·· ∼ Poisson(ϕ(T−1)

uk ω
(T−1)
uk ), via the Poisson additive property, we have

m̂(T)
uk + Ã(T−1)

uk·· ∼ Poisson
(

ϕ
(T−1)
uk

[
ω
(T−1)
uk − 1

τ
ln(1− ϱ

(T)
uk )

])
. (3.2.20)

Combining the likelihood in Eq. (3.2.20) with the gamma prior placed on ϕ
(T−1)
uk , we immediately

have the conditional distribution of ϕ
(T−1)
uk via the gamma-Poisson conjugacy as

(ϕ
(T−1)
uk |−) ∼ Gamma

[
ϕ
(T−2)
uk /τ + m̂(T)

uk + Ã(T−1)
uk·· , (3.2.21)

1

τ + ω
(T−1)
uk − 1

τ ln(1− ϱ
(T)
uk )

]
.

Here, m̂(T)
uk can be considered as the backward information passed from t = T to T − 1. Recur-

sively, we augment ϕ
(t)
uk at each time slice with an auxiliary variable m̂(t)

uk as

m̂(t+1)
uk + Ã(t)

uk·· ∼ NB(ϕ(t−1)
uk /τ, ϱ

(t)
uk ),

m̂(t)
uk ∼ CRT(Ã(t)

uk·· + m̂(t+1)
uk , ϕ

(t−1)
uk /τ), (3.2.22)

where the NB distribution over m̂(t+1)
uk + Ã(t)

uk·· is obtained via the Poisson additive property and

gamma-Poisson conjugacy with Ã(t)
uk·· ∼ Poisson(ϕ(t)

uk ω
(t)
uk ). Repeatedly exploiting the Poisson

logarithmic bivariate distribution, we have

m̂(t+1)
uk + Ã(t)

uk·· ∼ SumLog(m̂(t)
uk , ϱ

(t)
uk ),

m̂(t)
uk ∼ Poisson

[
−

ϕ
(t−1)
uk
τ

ln(1− ϱ
(t)
uk )
]
.

By repeatedly exploiting the Poisson additive property and gamma-Poisson conjugacy, we obtain

(ϕ
(t−1)
uk | −) ∼ Gamma

[
m̂(t)

uk + ϕ
(t−2)
uk /τ + Ã(t−1)

uk·· , (3.2.23)

1

τ + ω
(t−1)
uk − 1

τ ln(1− ϱ
(t)
uk )

]
.

We sample the auxiliary variables m̂(t)
uk and update ϱ

(t)
uk recursively from t = T to t = 1, which

can be considered as the backward filtering step. Then, in the forward pass we sample ϕ
(t)
uk from

t = 1 to t = T.
Sampling hyperparameters. Via the gamma-gamma conjugacy, we sample c0 and β as

(c0 | −) ∼ Gamma
[
0.1 + γ0, 1/(0.1 + ∑

k
rk)
]
, (3.2.24)

(β | −) ∼ Gamma
[
0.1 + ∑

k,k′
rkξδkk′ r1−δkk′

k′ ,
1

0.1 + ∑k,k′ Ωkk′

]
.

Algorithm 1 summarizes the full procedure.
Time complexity of parameter estimation: For the proposed DPGM, sampling {Ã(t)

uv}u,v,t

and {Ã(t)
ukk′v}u,v,k,k′ ,t takes O(NeK̄2) with Ne being the number of non-zero entries. Sampling

{ϕ(t)
uk }i,k,t takes O(VK̄T) and sampling {Ωkk′}k,k′ ,t takes O(K̄2). Overall, the computational

complexity of DPGM is O(NeK̄2 + VK̄T + K̄2).
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Algorithm 1 Gibbs sampling algorithm for the dynamic Poisson gamma memberships model
(DPGM)

Input: relational data {A(t)}T
t=1, iterations J .

Initialize the maximum number of communities K, hyperparameters γ0, β, c, τ.
for iter = 1 to J do

Sample {Ã(t)
uv}u,v,t for non-zero edges (Eq. 3.2.6)

Sample {Ã(t)
ukk′v}u,v,k,k′ ,t (Eq. 3.2.7) and update

Ã(·)
·kk′ · = ∑t ∑u,v ̸=u Ã(t)

ukk′v

Ã(t)
uk·· = ∑v ̸=u,k′ Ã(t)

ukk′ j
for t = T to 1 do

Sample {m̂(t)
uk }u,k (Eq. 3.2.22) and update {ϱ(t)uk }u,k (Eq. 3.2.19)

end for
for t = 1 to T do

Sample {ϕ(t)
uk }u,k (Eq. 3.2.23)

end for
Sample {lkk′}k,k′ (Eq. 3.2.9) and update

θkk′ = ∑t,u,v ̸=u ϕ
(t)
uk ϕ

(t)
vk′ , p̃kk′ =

ρkk′
ρkk′+β

Sample {Ωkk′}k,k′ (Eq. 3.2.13), {rk}k (Eq. 3.2.11), and ξ (Eq. 3.2.12)
end for
Output posterior means: {ϕ(1:T)

uk }u,k, {rk}k, ξ, {Ωkk′}k,k′ .

3.2.4 Online Gibbs Sampling

To accommodate the proposed model with large-scale dynamic relational data, we propose an on-
line Gibbs sampling algorithm based on the recent developed Bayesian conditional density filtering
(BCDF) (Guhaniyogi et al. 2014), which has been adapted for knowledge graph learning (Hu et al.
2016b) and Poisson tensor factorization (Hu et al. 2015) recently. The main idea of BCDF is to
partition the data into small mini-batches, and then to perform inference by updating the sufficient
statistics using each mini-batch in each iteration. Specifically, the sufficient statistics used in our
model are the latent count numbers. The main procedure of our online Gibbs sampler is: We use
Z and Zi to denote the indices of the entire data and the mini-batch in ith iteration respectively.
We define the quantities updated with the mini-batch in ith iteration as:

Ã(t)i
uk·· =

|Z|
|Zi| ∑

v ̸=u,
u,v∈Zt

∑
k′

Ã(t)
ukk′v,

Ãi
·kk′ · =

|Z|
|Zi|∑t

∑
u,v ̸=u,
u,v∈Zt

Ã(t)
ukk′v.
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Then, we update the sufficient statistics used to sample model parameters as

Ã(t)i
uk·· = (1− ρi)Ãi−1

uk·· + ρi |Z|
|Zi| ∑

v ̸=u,
u,v∈Zt

∑
k′

Ã(t)
ukk′v,

Ãi
·kk′ · = (1− ρi)Ãi

·kk′ · + ρi |Z|
|Zi|∑t

∑
u,v ̸=u,
u,v∈Zt

Ã(t)
ukk′v,

where ρi = (i + i0)−κ , where i0 > 0 and κ ∈ (1/2, 1], is the decaying factor. In the online Gibbs
sampling, we calculate the sufficient statistics with each mini-batch data and resample the model
parameters and hyperparameters using the procedure in batch Gibbs sampling algorithm.

3.3 T H E D E P E N D E N T R E L AT I O N A L G A M M A P RO C E S S M O D E L

In the previous section, we have introduced the Dynamic Poisson gamma memberships model
that only captures the evolving node behaviours but assumes the underlying latent communites
are static over time. Nevertheless, these latent communities composed of nodes can also form
and decay over time in real-world networks. Hence, we will exploit the time-dependent relational
gamma process to capture the birth and death dynamics of latent communities in this section.

3.3.1 Model of active communities.

Many previous works (M. Kim et al. 2013; K. Xu 2015) have shown that explicitly modelling the
dynamics of latent communities using a distance-dependent Indian buffet process (dd-IBP) (Ger-
shman et al. 2015) or a linear dynamical system discovers interpretable latent structure, and thus
achieves good predictive performance. Here we build the community interaction weight Ωkk′ on
the relational gamma process construction (M. Zhou et al. 2015). That is, we first generate a
community weight rk independently for each community k as rk ∼ Gamma(γ0/K, 1/c), where
γ0 denotes the concentration parameter, 1/c denotes the scale parameter, and K is the maximum
number of communities. Then, the inter-community interaction weight Ωkk′ and intra-community
interaction weight Ωkk can be generated as

Ωkk′ ∼
{

Gamma(ξrk, 1/β), if k = k′

Gamma(rkrk′ , 1/β), otherwise
(3.3.1)

where ξ ∼ Gamma(1, 1) and β ∈ R>0. For dynamic relational data, we exploit the thinned
completely random measures framework to capture the birth/death dynamics of latent communities
assuming that the status of community k can be either active or inactive at time t. More specifically,
we use a Bernoulli random variable b(t)k = 1 to indicate the presence of community k at time t,

and b(t)k = 0 otherwise. Accordingly, the interaction weight between community k and k′ is active

at time t only if the two communities are both active at that time: Ω(t)
kk′ = Ωkk′b

(t)
k b(t)k′ .
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Given the community interaction weight matrix Ω defined in Eq. (3.3.1), we generate the time-
dependent community interaction weights Ω(t)

kk′ using the thinning function introduced in Section
2.2.10 with the prior specification:

ω̃lk ∼ NIG(0, 1, 1), θ̃k ∼ Categorical(θ̃1, . . . , θ̃D),

Pxk (t) = σ

{
ω̃0k +

T

∑
l=1

ω̃lk exp[−θ̃k(t− l)2]

}
,

where we fix the centres of the covariate-dependent kernel functions to the T discrete time points
of the considered dynamic network. The probability of activity/inactivity of community k at time
t can be determined by the thinning function. A smooth thinning function can encourage the
snapshots of a dynamic network at nearby covariate values t to share a similar set of communities.

The full generative model for the observed dynamic network data {A(t)}t∈T along with the
latent variables, parameters, and hyperparameters, is given by

rk ∼ Gamma(γ0/K, 1/c), (3.3.2)

θuk ∼ Gamma(1, 1),

ξ ∼ Gamma(1, 1),

Ωkk′ ∼
{

Gamma(ξrk, 1/β), if k = k′

Gamma(rkrk′ , 1/β), otherwise

ω̃lk ∼ NIG(0, 1, 1),

θ̃k ∼ Categorical(θ̃1, . . . , θ̃D),

b(t)k ∼ Bernoulli

(
σ
{

ω̃0k +
T

∑
l=1

ω̃lk exp[−θ̃k(t− l)2]
})

,

ϕ
(t)
uk ∼ Gamma(ϕ(t−1)

uk /τ, 1/τ),

ϕ
(1)
uk ∼ Gamma(θuk/τ, 1/τ),

Ω(t)
kk′ = b(t)k Ωkk′b

(t)
k′ ,

Ã(t)
uv ∼ Poisson

(
K

∑
k,k′=1

ϕ
(t)
uk Ω(t)

kk′ϕ
(t)
vk′

)
,

A(t)
uv = 1(Ã(t)

uv ≥ 1).

Note that dynamic networks characterized by both homophily and stochastic equivalence (P. Hoff
2008) can be appropriately modelled via the proposed framework in Eq. (3.3.2) as discussed in (M.
Zhou et al. 2015).

3.3.2 Bayesian nonparametric interpretation.

As K → ∞, the community weights and their corresponding node membership parameters consti-
tute a draw from a gamma process as G = ∑∞

k=1 rkδθk , where θk = (θ1k, . . . , θuk) ∈ Θ is an atom
sampled from a N-dimensional base measure G0(dθk)/G0(Θ) = ∏N

u=1 Gamma(1, 1). Accord-
ingly, the intra- and inter-community interaction weights and their corresponding pair of scale pa-
rameters constitute a draw Ω | G = ∑∞

k=1 ∑∞
k′=1 Ωkk′δ(θk ,θk′ )

from a relational gamma process (M.
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Zhou et al. 2015). Via the thinned CRMs framework, Ω(t) | Ω = ∑∞
k=1 ∑∞

k′=1 b(t)k b(t)k′ Ωkk′δ(θk ,θk′ )
can be viewed as a draw from a covariate-dependent relational gamma process.

3.3.3 Inference algorithm

An efficient Gibbs sampling algorithm is derived for the inference of parameters and hyperpa-
rameters of interest in the proposed model. Let A(1:t) denotes the sequence A(1), . . . , A(t) and
similarly for Φ(1:t) and Ω(1:t). The model parameters that need to be sampled include: latent
node-community memberships {ϕ(t)

uk }, {θuk}, individual community weights {rk}, scale param-
eter ξ, communities interaction weights {Ωkk′}, kernel weights {ω̃lk}, kernel widths {θ̃k}, thin-
ning variables {b(t)k }, and latent counts {Ã(t)

uv}. Exploiting the Pólya-gamma data augmentation
technique (Polson et al. 2013) and the data augmentation and marginalization technique (M. Zhou
and L. Carin 2015b), a simple and efficient Gibbs sampling algorithm is developed to perform the
model inference.
Sampling latent count Ã(t)

uv : We sample the latent count Ã(t)
uv as

(Ã(t)
uv | −) ∼ A(t)

uv Poisson+

(
K

∑
k=1

K

∑
k′=1

Ω(t)
kk′ϕ

(t)
uk ϕ

(t)
vk′

)
. (3.3.3)

Sampling latent subcount Ã(t)
ukk′v: To update the node-community memberships {ϕ(t)

uk }u,k,t and

community-community interaction weights {Ω(t)
kk′}k,k′ ,t, we need to partition the count Ã(t)

uv into

the sub counts {Ã(t)
ukk′v}k,k′ , where Ã(t)

ukk′v measures the interaction strength between nodes u and
v due to their associations to communities k and k′, respectively. Via the Poisson-multinomial
equivalence, we sample the latent subcounts Ã(t)

ukk′v as

(Ã(t)
ukk′v | −) ∼ Multinomial

Ã(t)
uv ;

Ω(t)
kk′ϕ

(t)
uk ϕ

(t)
vk′

∑K
k=1 ∑K

k′=1 Ω(t)
kk′ϕ

(t)
uk ϕ

(t)
vk′

 . (3.3.4)

Sampling node-community memberships Φ(0:T): We can exploit the Poisson logarithmic bivari-
ate distribution to recursively sample the auxiliary variables m̂(t)

uk and update η
(t)
uk backwardly from

t = T to 1 as we did in deriving the Gibbs sampler for the dynamic Poisson gamma memberships
model:

m̂(t)
uk ∼ CRT(m̂(t+1)

uk + Ã(t)
uk··, ϕ

(t−1)
uk /τ), (3.3.5)

η
(t)
uk =

ψ
(t)
uk −

1
τ ln(1− η

(t+1)
uk )

τ + ψ
(t)
uk −

1
τ ln(1− η

(t+1)
uk )

, (3.3.6)

where we define ϕ
(0)
uk = θuk, m̂(T+1)

uk = 0, and η
(T+1)
uk = 0. We then sample the ϕ

(t)
uk forwardly

from t = 0 to T as

(θuk | −) ∼ Gamma
[
1 + m̂(1)

uk ,
1

1− 1
τ ln(1− η

(1)
uk )

]
, (3.3.7)

(ϕ
(t)
uk | −) ∼ Gamma

[
m̂(t+1)

uk + ϕ
(t−1)
uk + Ã(t)

uk··,
1

τ + ψ
(t)
uk −

1
τ ln(1− η

(t)
uk )

]
, for t ∈ T .

(3.3.8)
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Marginalization over Ω, r: We define the latent Poisson count as

Ã(·)
·kk′· ≡ 2−δkk′ ∑

t
∑
u

∑
v ̸=u

Ã(t)
ukk′v,

where δkk′ = 1 if k = k′, and δkk′ = 0 otherwise. Via the Poisson additive property, we have

Ã(·)
·kk′· ∼ Poisson(Ωkk′ρkk′),

where ρkk′ ≡ ∑t b(t)k b(t)k′ ∑u ∑v ̸=u ϕ
(t)
uk ϕ

(t)
vk′ .

As we have the prior specification Ωkk′ ∼ Gamma(rkξδkk′ r1−δkk′
k′ , 1/β), marginalizing over

Ωkk′ yields

Ã(·)
·kk′· ∼ NB(rkξδkk′ r1−δkk′

k′ , χkk′),

where χkk′ ≡
ρkk′

β+ρkk′
.

To marginalize over rk, we introduce an auxiliary variable:

lkk′ ∼ CRT(Ã(·)
·kk′·, rkξδkk′ r1−δkk′

k′ ), (3.3.9)

and then re-express the joint distribution over Ã(·)
·kk′· and lkk′ as

Ã(·)
·kk′· ∼ SumLog(lkk′ , χkk′), lkk′ ∼ Poisson[−rkξδkk′ r1−δkk′

k′ ln(1− χkk′)].

Via the Poisson additive property, we have

lk· ≡∑
k′

lkk′ ∼ Poisson[−rk ∑
k′

ξδkk′ r1−δkk′
k′ ln(1− χkk′)].

Sampling community interaction weights Ω: Via the gamma Poisson conjugacy, we sample
Ωkk′ from its conditional posterior as

(Ωkk′ | −) ∼ Gamma
[

Ã(·)
·kk′· + rkξδkk′ r1−δkk′

k′ ,
1

β + ρkk′

]
. (3.3.10)

Sampling community weight rk: Using the gamma-Poisson conjugacy, we sample rk as

(rk | −) ∼ Gamma
[γ0

K
+ ∑

k′
lkk′ ,

1

c−∑k′ ξ
δkk′ r1−δkk′

k′ ln(1− χkk′)

]
. (3.3.11)

Sampling ξ: Using the gamma-Poisson conjugacy, we sample

(ξ | −) ∼ Gamma
[
1 + ∑

k
lkk,

1
1−∑k rk ln(1− χkk)

]
. (3.3.12)

Sampling thinning variable b(t)k : If ∑u Ã(t)
uk·· > 0, we set b(t)k = 1, and if ∑u Ã(t)

uk·· = 0, we

sample b(t)k by the following process: we define fictitious latent counts ϖ
(t)
k ∼ Poisson(rkξρkk)

disregarding b(t)k to determine whether ∑u Ã(t)
uk·· = 0 because community k has been thinned or

because community k has not been observed at time t. We thus sample b(t)k when ∑u Ã(t)
uk·· = 0 as
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1. If ϖ
(t)
k = 0, we sample b(t)k as

p(b(t)k = 1 | ϖ
(t)
kk = 0) ∝ p(b(t)k = 1)Poisson(0; rkξρkk), (3.3.13)

p(b(t)k = 0 | ϖ
(t)
kk = 0) ∝ p(b(t)k = 0)Poisson(0; rkξρkk).

2. If ϖ
(t)
k > 0, we sample b(t)k as

p(b(t)k = 1 | ϖ
(t)
kk > 0) ∝ p(b(t)k = 1) [1− Poisson(0; rkξρkk)] . (3.3.14)

Sampling kernel weights ω̃: The normal-inverse-gamma prior placed over ω̃lk can be equiva-
lently generated from the following process by introducing auxiliary variables {ϑlk}:

ϑlk ∼ Gamma(1, 1), ω̃k ∼ N (0, Σϑ),

where ω̃k = (ω̃1k, . . . , ω̃Lk) and Σϑ = diag(ϑ0k, . . . , ϑLk).
Let Ktk = (1,K(t, t1, θ̃k), . . . ,K(t, tL, θ̃k))

T be the vector of the kernels evaluated at time t. We
sample {ω̃lk} exploiting the Pólya-gamma data augmentation technique (Polson et al. 2013) for
logistic regression by introducing auxiliary variables as

(b̃kt | −) ∼ PG(1,KT
tkω̃k),

where PG(a, b) denotes the Pólya-gamma distribution with a ∈ R and b > 0. Let Ω̃(b̃k)

denote the T × T diagonal matrix whose t-th diagonal element is b̃kt, and let µk = (b(1)k −
1/2, . . . , b(T)k − 1/2)T. The conditional distribution of ω̃k is

(ω̃k | −) ∼ N (µω̃k , Σω̃k ), (3.3.15)

where Σω̃k = (Σ−1
ϑ +KT

tkΩ̃(b̃k)Ktk)
−1 and µω̃k = Σω̃kKT

tkµk.
We sample ϑlk from its conditional posterior via the gamma normal conjugacy as

(ϑlk | −) ∼ Gamma
(3

2
,

1
1 + 1

2 ω̃2
lk

)
.

Sampling kernel width θ̃: We uniformly draw θ̃k from a fixed dictionary {θ̃∗1 , . . . , θ̃∗D} of size D,
and sample θ̃k as

p(θ̃k = θ̃∗d | −) ∝
1
D ∏

t∈T

(
Pθ̃∗d

(t)
)b(t)k

(
1− Pθ̃∗d

(t)
)1−b(t)k (3.3.16)

where the thinning function is denoted as a function of θ̃∗d since the values of all the other variables
are fixed as

Pθ̃∗d
(t) = σ

{
ω̃0k +

T

∑
l=1

ω̃lk exp[−θ̃k(t− l)2]
}

.

The full procedure of our Gibbs sampling algorithm is summarized in Algorithm 2.
Time complexity of parameter estimation: For the proposed DRGPM, sampling {Ã(t)

uv}u,v,t

and {Ã(t)
ukk′v}u,v,k,k′ ,t takes O(NeK̄2) with Ne being the number of non-zero entries. Sampling

{ϕ(t)
uk }i,k,t takes O(VK̄T) and sampling {Ω(t)

kk′}k,k′ ,t takes O(K̄2T). Overall, the computational
complexity of DRGPM is O(NeK̄2 + VK̄T + K̄2T). The computational complexity of D-GPPF
and DPGM is O(NeK̄ + VK̄ + K̄T) and O(NeK̄2 + VK̄T + K̄2), respectively.
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Algorithm 2 Gibbs sampling algorithm for DRGPM

Input: dynamic relational data {A(t)}T
t=1, iterations J .

Initialize the maximum number of communitys K, hyperparameters γ0, β, c.
for iter = 1 to J do

Sample {Ã(t)
uv}u,v for non-zero edges (Eq. 3.3.3)

Sample {Ã(t)
ukk′v}u,v,k,k′ (Eq. 3.3.4) and update

Ã(·)
·kk′ · = ∑t ∑u,v ̸=u Ã(t)

ukk′v

Ã(t)
uk·· = ∑v ̸=u,k′ Ã(t)

ukk′v
Sample {lkk′}k,k′ (Eq. 3.3.9) and update

ρkk′ = ∑t,u,v ̸=u b(t)k b(t)k′ ϕ
(t)
uk ϕ

(t)
vk′ , χkk′ =

ρkk′
ρkk′+β

Sample {rk}k (Eq. 3.3.11), ξ (Eq. 3.3.12), and {Ωkk′}k,k′ (Eq. 3.3.10)
for t = T to 1 do

Sample {m̂(t)
uk }u,k (Eq. 3.3.5) and update {η(t)

uk }u,k (Eq. 3.3.6)
end for
for t = 1 to T do

Sample {ϕ(t)
uk }u,k (Eq. 3.3.8)

end for
Sample {θuk}u,k (Eq. 3.3.7)
for t = 1 to T do

Sample {b(t)k }k (Eqs. 3.3.13; 3.3.14)
end for
Sample {ω̃k}k (Eq. 3.3.15) and θ̃ (Eq. 3.3.16)

end for
Output posterior means: {ϕ(0:T)

uk }u,k, {θuk}u,k, {rk}k, ξ, {Ωkk′}k,k′ , {b
(1:T)
k }k.
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3.4 E X P E R I M E N T S

In this section, we demonstrate the model capacity of the proposed dynamic Poisson gamma mem-
berships model and the dynamic relational gamma process model on synthetic data. Quantitative
evaluations compared with state-of-the-art methods are conducted on several real-world datasets
in terms of missing link prediction and future network forecasting. The qualitative results on
real-world military datasets demonstrate that the proposed dynamic network models discover the
interpretable latent structure. To evaluate the performance of the proposed dynamic network mod-
els, the following state-of-the-art models are selected as baseline methods in the experiments:

1. DRIFT: the dynamic relational infinite feature model for which we used the code provided
by (J. R. Foulds et al. 2011).1

2. D-GPPF: the dynamic gamma process Poisson factorization model, for which we set the
hyperparameters and initialized the model parameters with the values provided in (Acharya
et al. 2015b).

3. DSBM: the dynamic stochastic blockmodel (DSBM) based on an extended Kalman filter
(EKF) augmented with a local search, for which we use the released code2 with the default
settings.

4. HGPEPM: the hierarchical gamma process edge partition model (HGPEPM) (M. Zhou et
al. 2015)3.

3.4.1 Dynamic Community Detection

First, we want to demonstrate how do the proposed dynamic network models detect time-evolving
overlapping community structure using the nonnegative node-community memberships. We adapt
the synthetic example used in Acharya et al. 2015b to generate a dynamic network of size 65 that
evolves over five time slices as shown in column (a) of Figs. 3.2 to 3.4. More specifically, we
generated three groups at t = 1, and split the second group at t = 2. From t = 3 to 4, the second
and third group merge into one group. In Fig. 3.2, the discovered latent groups over time by D-
GPPF are shown in column (b). D-GPPF captures the evolution of the discovered groups but has
difficulties to characterize the changes of node-group memberships over time. As shown in column
(b) of Fig. 3.3, the proposed model (DPGM) can detect the dynamic groups quite distinctively. We
also show the associations of the nodes to the inferred latent groups by D-GPPF in column (c) of
Fig. 3.2 and DPGM in column (c) of Fig. 3.3. In particular, we calculated the association weights
of each node to the latent groups as rtkϕuk for D-GPPF and ϕt

ukΩkk for DPGM. For both models,
most of the redundant groups can effectively be shrunk even though we initialized both algorithms
with K = 50. The node-group association weights estimated by DPGM vary smoothly over
time and capture the evolution of the node-group memberships, which is consistent to the ground
truth shown in column (a). In Fig. 3.4, column (b) and (c) show the inferred link probabilities
and the node-community memberships, respectively. We found that DRGPM not only captures
the evolving node-community structural changes but also effectively switches off most redundant
communities.

1 http://jfoulds.informationsystems.umbc.edu/code/DRIFT.tar.gz.
2 https://tinyurl.com/ydf29he9.
3 https://github.com/mingyuanzhou/EPM.

http://jfoulds.informationsystems.umbc.edu/code/DRIFT.tar.gz
https://tinyurl.com/ydf29he9
https://github.com/mingyuanzhou/EPM
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Figure 3.2: Dynamic community detection on synthetic data. We generated a dynamic network
with five time snapshots as shown in column (a) ordered from top to bottom. The link probabilities
estimated by D-GPPF are shown in column (b). The association weights of each node to the latent
groups can be calculated by rtkϕuk for D-GPPF as shown in column (c). The pixel values are
displayed on log10 scale.
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Figure 3.3: Dynamic community detection on synthetic data. The simulated dynamic network
with five time snapshots are shown in column (a) ordered from top to bottom. The link probabilities
estimated by DPGM are shown in column (b). The association weights of each node to the latent
groups can be calculated by ϕt

ukΩkk for DPGM as shown in column (c). The pixel values are
displayed on log10 scale.
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Figure 3.4: Dynamic community detection on synthetic data. The simulated dynamic network
with five time snapshots are shown in column (a) ordered from top to bottom. The link probabilities
estimated by DRGPM are shown in column (b). The association weights of each node to the latent
groups can be calculated by ϕt

ukΩt
kk for DRGPM as shown in column (c). The pixel values are

displayed on log10 scale.
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3.4.2 Modelling Community Dynamics

In the previous subsection, we have shown the dynamic overlapping community structure captured
by the dynamic Poisson gamma memberships model (DPGM) and the dependent relational gamma
process model (DRGPM). Next, we shall demonstrate how the dependent relational gamma pro-
cess model characterizes the birth and death dynamics of latent communities over time. Fol-
lowing the procedure suggested by (Durante and Dunson 2016), we generated synthetic data
to evaluate the proposed model in estimating the formation and evolution of the latent network
sturcture. We consider a dynamic network with N = 50 nodes monitored for T = 70 equally
spaced time snapshots. To generate a time-varying network, we first generated five regimes
defining the true edge probabilities, as shown in Fig. 3.5. We then simulated the network edges
A(t)

uv | Π(t)
uv ∼ Bernoulli(Π(t)

uv ) with each of the five regimes according to Fig. 3.6. To demon-
strate that DRGPM can infer interpretable latent structure while avoiding to overfit the data, we
compared DRGPM with D-GPPF and DPGM. We initialized all methods setting K = 30.

20 30 40 50 10

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

20 30 40 50 10

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

20 30 40 50 10

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

Regime 1 Regime 2 Regime 3

20 30 40 50 10

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

20 30 40 50 10

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

Regime 4 Regime 5

Figure 3.5: True edge probabilities for the five regimes in the simulation study.
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Figure 3.6: The graph showing which regime − i.e. true edge probabilities − for each snapshot
is used to simulate the data.

In Fig. 3.7, the inferred link probabilities by D-GPPF are depicted in column (b). We also
depicted the time-evolving node-community connections by computing the node-community as-
sociation weights r(t)k ϕuk for D-GPPF in column (c). We note that D-GPPF needs to generate
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Figure 3.7: We select five snapshots (t = 5, 15, 25, 35, 60) of the simulated network as shown
from top to bottom in column (a). The link probabilities inferred by D-GPPF are shown in column
(b). The association weights of each node (row variable) to the groups (column variable), as shown
in column (c), can be calculated as r(t)k ϕuk for D-GPPF. The pixel values are displayed on log10
scale.
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Figure 3.8: The selected snapshots of the simulated network are shown in column (a). The link
probabilities inferred by DPGM are shown in column (b). The association weights of each node
(row variable) to the groups (column variable) are shown in column (c), can be calculated as
ϕ
(t)
uk Ωkk for DPGM. The pixel values are displayed on log10 scale.
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Figure 3.9: The selected snapshots of the simulated network are shown in column (a). The link
probabilities inferred by DRGPM are shown in column (b). The association weights of each
node (row variable) to the groups (column variable), as shown in column (c), can be calculated as
ϕ
(t)
uk Ω(t)

kk for DRGPM. The pixel values are displayed on log10 scale.
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Figure 3.10: The thinning probabilities (the mean of b(t)k ) of the six active groups inferred by
DRGPM.

many redundant communities to capture the time-evolving behavior of each node because of its
unfavourable assumption that node memberships ϕuk are static while community weights r(t)k are
time-dependent. Without this restriction, DRGPM characterizes the evolving node-community
associations by explicitly modelling time-dependent node-community memberships, and hence
generates an appropriate number of communities as shown in columns (c) of Fig.3.9. In particular,
using the thinned CRM framework, DRGPM can effectively activate newly-formed communities
and switch off redundant communities over time, which strengthens the model interpretability for
longitudinal network analysis. In Fig. 3.10, we depict the thinning probabilities (the mean of b(t)k )
over time for the six inferred active communities by DRGPM. We notice that DRGPM infers three
communities (4, 11, 24) at t = 0, turns off Group 4 and turns on Groups 3 and 7 at t = 10. Group
28 is only active from t = 30 to 40. The inferred link probabilities and node-community asso-
ciations ϕ

(t)
uk Ωkk by DPGM are depicted in columns (c) and (d) of Figure 3.8, respectively. We

note that both DPGM and DRGPM infer fewer numbers of groups than D-GPPF because dynamic
node-group connections are explicitly modelled by time-evolving node memberships in the former
two methods. In particular, we notice that DPGM unavoidably generates some redundant groups
that lack interpretability. This is due to that DPGM assumes the inferred group weights to be static
throughout the whole time period.

3.4.3 Experimental setup

For the quantitative evaluation, we consider the following datasets:

1. Face-to-face dynamic contacts network (FFDC): This dataset (Mastrandrea et al. 2015)
records timestamped face-to-face contacts among 180 students for 7 school days. We gen-
erated a dynamic network considering each school day as a snapshot, and created an edge
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between each pair of students at time t if they have at least one contact recorded at that given
time.

2. DBLP: The DBLP co-authorship network data (Asur et al. 2009) contains the co-authorship
information among 958 authors over ten years (1997-2006) in 28 conferences which spans
three related research topics-database, data mining, and artificial intelligence. We focus on
a subset of 324 most connected authors over all time period.

3. Enron: The Enron data4 contains 517,431 emails among 151 users over 38 months (from
May 1999 to June 2002). We generated a dynamic network aggregating the data into
monthly snapshots, and created an edge between each pair of users at time t if they have
at least one email recorded at that given time.

The summary statistics are detailed in Table 3.1.

Dataset FFDC DBLP Enron
# Nodes 180 324 151
# Slices 7 10 38
# Edges 8,332 11,154 11,414

Table 3.1: Details of the datasets used in our experiments.

3.4.4 Predicting missing links

First, we performed missing link prediction on the real-world datasets, and show the proposed
model’s predictive performance compared to the baseline models. We randomly held out 20%
of the network entries (either links or non-links) for each snapshot as test data, and used the
remaining 80% to predict the held-out entries. DRIFT was infeasible to run on the Enron dataset
in a reasonable amount of time given our computational resource. For DSBM, we either set K
to the true number of classes provided by the dataset or initialized it by examining the singular
values of the first snapshot (K. S. Xu et al. 2014). We applied HGPEPM to each snapshot of
dynamic networks independently. For all probabilistic methods, we ran 2000 burn-in iterations,
and collected 1000 samples from the model posterior distribution. We estimated the posterior
mean of the edge probability for each held-out edge in the test data by averaging over the collected
Gibbs samples. We then used these edge probabilities to evaluate the predictive performance
of each model by calculating the area under the curve of the receiver operating characteristic
(AUROC) and of the precision-recall (PR). In Table 3.2, we report the average evaluation metrics
for each model over 10 runs.

Overall, we found that DRIFT performs slightly better than DRGPM, although DRGPM has a
significant advantage in terms of computational cost due to the Bernoulli-Poisson link. HGPEPM
performs better than the dynamic models on the DBLP dataset because co-authorship links change
dramatically from one year to the next one, and hence, the static model is better at fitting each snap-
shot independently. For the longitudinal Enron email network that is recorded monthly, DRGPM
performs better than the baseline methods.

4 https://www.cs.cmu.edu/~enron/.

https://www.cs.cmu.edu/~enron/
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Missing Link Prediction Future Network Forecasting
Model FFDC
HGPEPM 0.917± 0.006 0.354± 0.018 0.733± 0.025 0.164± 0.022
DSBM 0.878± 0.011 0.251± 0.017 0.825± 0.085 0.181± 0.039
D-GPPF 0.908± 0.005 0.313± 0.019 0.842± 0.028 0.203± 0.046
DRIFT 0.933± 0.006 0.416± 0.020 0.848± 0.056 0.224± 0.025
DPGM 0.921± 0.004 0.359± 0.020 0.846± 0.017 0.221± 0.036
DRGPM 0.924± 0.005 0.357± 0.018 0.852± 0.033 0.226± 0.040

Missing Link Prediction Future Network Forecasting
Model DBLP
HGPEPM 0.979± 0.004 0.791± 0.014 0.714± 0.035 0.106± 0.027
DSBM 0.913± 0.006 0.256± 0.009 0.704± 0.030 0.091± 0.009
D-GPPF 0.914± 0.005 0.308± 0.018 0.734± 0.080 0.109± 0.046
DRIFT 0.970± 0.019 0.491± 0.025 0.745± 0.060 0.121± 0.054
DPGM 0.960± 0.002 0.423± 0.032 0.744± 0.053 0.123± 0.064
DRGPM 0.963± 0.003 0.425± 0.023 0.753± 0.057 0.127± 0.053

Missing Link Prediction Future Network Forecasting
Model Enron
HGPEPM 0.972± 0.001 0.443± 0.016 0.828± 0.073 0.246± 0.140
DSBM 0.916± 0.007 0.225± 0.023 0.853± 0.059 0.325± 0.116
D-GPPF 0.977± 0.002 0.499± 0.022 0.878± 0.057 0.360± 0.121
DRIFT NA NA NA NA
DPGM 0.979± 0.002 0.565± 0.014 0.883± 0.051 0.361± 0.131
DRGPM 0.983± 0.002 0.597± 0.017 0.886± 0.067 0.363± 0.130

Table 3.2: Quantitive evalution. We highlight the performance of the best scoring model in bold.
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3.4.5 Forecasting future networks

Next, we consider the task of forecasting an unseen network snapshot A(t) given observed snap-
shots A(1:t−1). Following previous works (J. R. Foulds et al. 2011; Heaukulani et al. 2013; M.
Kim et al. 2013), we trained the models on the first (t− 1) snapshots of the considered network,
and then estimated the predictive distribution of the unseen snapshot A(t) by running MCMC sam-
pling one time step into the future. We applied HGPEPM to the most recent snapshot A(t−1), and
then to perform prediction on the unseen snapshot A(t). For DRGPM, we set Ω(t) = Ω(t−1), as-
suming the snapshots at nearby time points share a similar set of groups. We generated 10 samples
of Z(t) for each of the 1000 samples collected for Z(t−1). For DSBM, we used the method detailed
in (K. S. Xu et al. 2014) to perform future network forecasting. Table 3.2 shows the averaged per-
formance for each model over different network snapshots from 3 to T. Overall, DRGPM shows
competitive performance on all three datasets. This confirms that DRGPM can flexibly character-
ize temporally local links via time-evolving node memberships and switches off redundant groups
to avoid overfitting the data.

3.4.6 Running Time

The probilistic models achieve higher accuracy although these methods require more computation
time to collect MCMC samples. DSBM is much faster than the probabilistc models because its
inference is performed using the extended Kalman filter. Table 5.2 compares the per-iteration
computation time of the sampling-based models (all models are implemented in Matlab). The
computational cost of DRIFT scales in O(K̄2V2T), where K̄ is the expected number of groups.
The Bernoulli-Poisson link based models (D-GPPF, DPGM, DRGPM) are much faster than the
logistic link based method (DRIFT) because the former models scale linearly with the number of
non-zero entries in network data. The computational complexity of DRGPM, D-GPPF and DPGM
are O(NeK̄2 + VK̄T + K̄2T), O(NeK̄ + VK̄ + K̄T) and O(NeK̄2 + VK̄T + K̄2), respectively.
DRGPM is slightly faster than DPGM because DRGPM can effectively turn off redundant groups
and hence achieves a lower computational cost.

FFDC DBLP Enron
DRIFT 164.342 382.119 -
D-GPPF 0.145 0.242 0.292
DPGM 0.748 1.676 1.705
DRGPM 0.623 1.217 1.234

Table 3.3: Comparison of computation time (seconds per iteration).

3.4.7 Case Study: Military Interstate Disputes Dataset

We investigated the military interstate disputes (MID) dataset that contains disputes events between
138 countries from 1992 to 2001 (Ghosn et al. 2004) to explore the latent structure discovered by
DRGPM. A dynamic network was generated by aggregating the data into monthly snapshots and
a link was created between each pair of two countries if either country has disputes with the other
one at that given time. We applied DRGPM to this dynamic network initializing K = 30 groups.
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Most of the identified groups correspond to some regional relations or conflicts. In Figure 3.11,
we depict four interesting groups inferred by DRGPM and show the group activity by plotting the
mean of the thinning function b(t)k . We normalized the node memberships to [0, 1] by dividing
them by the sum of memberships within the same group. In Table 3.4, we report the top 20 nodes
associated to each of four groups with positive memberships. For instance, we found that Group 1
corresponds to the second Congo war (1998-2000). The first six nodes of the group are indeed the
belligerents of this war. Group 2 corresponds to the Bosnian War (1992-1995), and its associated
nodes are Yugoslavia and some NATO members that are indeed the belligerents of this war. Groups
3 and 4 are related to the regional disputes between some African countries.

3.5 C O N C L U S I O N S

We proposed the dynamic Poisson gamma memberships model for discrete-time dynamic net-
works. The evolution of the underlying structure is characterized by the Markov construction of
latent memberships. The new proposed framework can automatically infer an appropriate number
of latent communities from network data. We also proposed efficient batch and online Gibbs al-
gorithms that make use of the data augmentation and marginalization technique. To improve the
model flexibility, we also generalized the DPGM to characterize the group birth/death dynamics
using the thinned completely random measures (tCRMs), which enable us to investigate the evolu-
tion of the inferred latent structure. The inferred latent dynamic structure can be useful for various
qualitative analysis in practical applications. We experimentally demonstrated the competitive
predictive performance and scalability of our framework on three real-world datasets.
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Figure 3.11: The activity (mean of b(t)k ) of the selected groups (1− 7) inferred from the MID
network.
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Group Country
1 Namibia (0.22), Chad (0.21), Zimbabwe (0.21), Angola (0.20), Dem. Rep. Congo (0.10),

Sudan (0.05), Zambia (0.01)
2 Yugoslavia (0.60), Greece (0.13), Italy (0.04), UK (0.04), France (0.04), Belgium (0.03),

Albania (0.03), Turkey (0.03), USA (0.02), Spain (0.02), Netherlands (0.01), Germany (0.01)
3 Nigeria (0.45), Ghana (0.31), Guinea (0.24)
4 Liberia (0.98), Sierra Leone (0.02)
5 Taiwan (0.47), China (0.20), Thailand (0.13), Philippines (0.10), Cambodia (0.05),

Vietnam (0.03), Turkey (0.01) Togo (0.01)
6 Sierra Leone (0.90), Nigeria (0.04), Guinea (0.04), Ghana (0.02)
7 Norway (0.42), Canada (0.28), Portugal (0.14), Turkey (0.14), United States of America (0.02)
8 Uganda (0.57), Rwanda (0.41), Eritrea (0.01), Congo (0.01), Bahrain (0.01)
9 Yugoslavia (0.88), United States of America (0.03), Denmark (0.02), Russia (0.02),

Canada (0.02), Haiti (0.01) Bangladesh (0.01), Cuba (0.01)
10 Iraq (0.45), North Korea (0.22), Russia (0.17), Cyprus (0.10), Greece (0.06)
11 United States of America (0.34), Turkey (0.25), United Kingdom (0.21), South Korea (0.12),

Denmark (0.02) Trinidad and Tobago (0.02), Japan (0.02), Norway (0.01), Honduras (0.01)
12 Israel (0.98) , El Salvador (0.01) , United States of America (0.01)
13 Portugal (0.31), Turkey (0.17), United Kingdom (0.12), Denmark (0.11), Belgium (0.10),

Norway (0.10), Albania (0.08)
14 South Korea (0.30), United States of America (0.22), Vietnam (0.18), Afghanistan (0.11),

Norway (0.07), Mongolia (0.05), Denmark (0.04), Peru (0.03)
15 Turkey (0.47), United States of America (0.29), South Korea (0.09), Iran (0.08), Georgia (0.06)
16 Albania (0.25), Portugal (0.23), Canada (0.21), Denmark (0.18), Norway (0.13)

Table 3.4: The top 20 nodes associated with each of the selected groups as shown in Figs. 3.11
to 3.13 from the MID network. The highest node memberships to the corresponding selected
groups throughout the whole period are reported for each node in parentheses.
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Figure 3.12: The activity (mean of b(t)k ) of the selected groups (8− 14) inferred from the MID
network.
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Figure 3.13: The activity (mean of b(t)k ) of the selected groups (15− 16) inferred from the MID
network.



4
C O N T I N U O U S T I M E DY NA M I C N E T W O R K M O D E L S

There is an increasing interest in modeling and understanding the information diffusion pathways
and interaction dynamics among entities from continuously generated streams of data. These
streaming data include the timestamped interaction events among entities (e.g., question-answering
threads (Mavroforakis, Valera, and Gomez-Rodriguez 2017), email communications (J. Yang et al.
2017) and interaction events among nations (Schein et al. 2016a)), and the auxiliary contents cre-
ated by these interacting entities. Such temporal interaction data enable us not only to track the
topics underlying the human-generated contents, but also to understand the network formation and
evolving process among these interacting entities.

The Hawkes process-based models (Blundell, Beck, and Heller 2012; Du et al. 2015b; H. Xu
et al. 2016a; J. Yang et al. 2017; Miscouridou et al. 2018) received a lot of attention as Hawkes
processes (Hawkes 1971) are particularly well fitted to model the inherent self-excitatory (a sin-
gle point process) or mutual-excitatory nature revealed by many real-world temporal interactions.
Recent work (Blundell, Beck, and Heller 2012; DuBois et al. 2013; Linderman and Adams 2014;
Junuthula et al. 2017; J. Yang et al. 2017; Miscouridou et al. 2018) attempt to hybridize statisti-
cal models for static networks with Hawkes processes to model both implicit social structure and
reciprocity among entities from their temporal interactions. Among these methods, the Hawkes
infinite relational model (Hawkes-IRM) (Blundell, Beck, and Heller 2012) characterizes the in-
teraction dynamics between groups of individuals using mutually-exciting Hawkes processes. To
further capture the reciprocating interactions between individuals, (Miscouridou et al. 2018) pro-
poses to incorporate the underlying overlapping community structure into the base intensity of the
Hawkes processes, via the compound completely random measure (CCRM) prior (Todeschini et
al. 2017). Despite having many attractive properties, the Hawkes-CCRM is restrictive in that the
reciprocity in all interactions are captured via the same triggering kernel, and thus fails to interpret
the differences in interaction dynamics across individuals. For example, an employee may reply
back to the emails from his/her department more quickly than responding to non-urgent emails
from outside. A fundamental problem in modeling such temporal dynamics is to infer the latent
struture behind observed events (Du et al. 2015a; Mavroforakis, Valera, and Gomez-Rodriguez
2017; H. Xu and Zha 2017; Tan, Rao, and Neville 2018).

In this chapter, we attempt to develop a new framework, the Hawkes edge partition model
(Hawkes-EPM) , which hybridizes the recently advanced hierarchical gamma process edge parti-
tion model (HGP-EPM) (M. Zhou et al. 2015) with Hawkes processes. More specifically, the base
intensity of the Hawkes process is built upon the latent representations inferred by the HGP-EPM,
which enables us to capture the overlapping communities, degree heterogeneity and sparsity under-
lying the observed interactions. To accurately capture the interaction dynamics between two indi-
viduals, our model augments each specific interaction between them with a pair of latent variables,
to indicate which of their latent communities (features) leads to the occurring of that interaction.
Accordingly, the excitation effect of each interaction on its opposite direction is determined by its
latent variables. For instance, as shown in Figure 4.1, Bob and Helen have many common inter-
ests (features), and some of their interactions are due to their common interests in playing baseball.
Moreover, our model estimates the number of the underlying communities via the inherent shrink-
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Figure 4.1: An illustrative example. The top left figure plots the aggregated directed networks
from the temporal interactions among five nodes. The bottom left graph shows the underlying com-
munity structure. We see that both Bob and Helen have interest in “baseball” and “hiking”. The
top right graph plots the intensity functions of the interactions from Bob to Helen, and from Helen
to Bob, respectively. The bottom right graph plots the interaction events from Bob to Helen, and
from Helen to Bob, respectively. These interactions may represent the messages communicated
between the involved nodes. As in this example, some of their interactions are about “baseball”,
and others relate to “hiking”. We assume that behind each interaction, the latent patterns of the
involved nodes determines the excitation effects of that event on the opposite direction.

age mechanism of the hierarchical gamma process (M. Zhou and L. Carin 2015a). Furthermore,
our model construction can flexibly incorporate the auxiliary individuals’ attributes, or covariates
associated with interaction events.

The rest of this chapter is organized as follows. Section 4.1 discusses how the proposed model
relates to previous work. Section 4.2 presents the Hawkes-edge partition model (Hawkes-EPM)
model for continuous-time dynamic networks. In Section 4.3, we develop simple and efficient
Gibbs sampling and Expectation-Maximization inference algorithms for the proposed Hawkes-
EPM model. Section 4.4 presents the experimental results of the two developed models compared
with state-of-the-art methods on both synthetic and real-world datasets. Finally, Section 4.5 con-
cludes the chapter.

4.1 R E L AT E D W O R K

The proposed model closely relates to the Hawkes process-based interaction models and the
Bayesian nonparametric prior-based Hawkes process models.
Hawkes processes-based Interaction Models. (Blundell, Beck, and Heller 2012) developed the
Hawkes infinite relational model (Hawkes-IRM), in which the interaction dynamics between two
nodes are determined by their respective community intensities while Hawkes-IRM allows each
node to be affiliated with only one community (non-overlapping). Along this line of research,
(Tan, Rao, and Neville 2018) proposed an Indian Buffet Hawkes process model, which assumes
that each event can be simultaneously driven by multiple evolving factors shared by past events.
(Miscouridou et al. 2018) developed the Hawkes-compound completely random measure model
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(Hawkes-CCRM) by modelling the base rate of the Hawkes process via the CCRM model, which
allows the overlapping community structure, sparsity and degree heterogeneity to be captured.
Here, the proposed model not only models the interpretable latent structure underlying observed
interactions as in (Miscouridou et al. 2018), but also captures the latent pattern behind each event.
Bayesian Nonparametric Hawkes Processes (BNHPs). Recently, Bayesian nonparametric pri-
ors (BNPs) (Ferguson 1973) are introduced to capture the latent structure underlying the observed
event sequence. The Dirichlet-Hawkes process (DHP) (Du et al. 2015a) models the latent clus-
tering structure underlying the observed events using the Dirichlet process. The Indian buffet
Hawkes process (Tan, Rao, and Neville 2018) and the nested Chinese Restaurant process-Hawkes
process (NCRP-HP) (Tan et al. 2018) have been developed to capture the rich factor-structured
and hierarchically-structured temporal dynamics, respectively. (Mavroforakis, Valera, and Gomez-
Rodriguez 2017) points out that most previous BNHP models suffer from the vanishing prior prob-
lem as the instantiated patterns in these models are only captured via the endogenous intensity.
Hence, an already used pattern will vanish if its intensity tend to be zero. As a consequence, these
BNHP methods unavoidably generate many redundant patterns for the events widely separated in
time but share similar dynamics. (Mavroforakis, Valera, and Gomez-Rodriguez 2017) resolved
this issue using the hierarchical Dirichlet process (Teh et al. 2007) framework, where the top-layer
Dirichlet process defines the distribution over latent patterns, and the bottom-layer Hawkes pro-
cesses capture the temporal dynamics across multiple event sequences. Our proposed model infers
the appropriate number of communities (patterns) using the hierarchical gamma process prior (M.
Zhou and L. Carin 2015a). In the Hawkes-EPM, each latent pattern is modelled by a community-
specific intensity function, which is non-negligible over time, and thus effectively prevents from
the vanishing prior issue.

4.2 H AW K E S P RO C E S S E S W I T H T H E H I E R A R C H I C A L G A M M A P RO C E S S E D G E PA R -
T I T I O N M O D E L

Next we shall briefly review the hierarchical gamma process edge partition model (M. Zhou et al.
2015), and then introduce the Hawkes-EPM for temporal interaction events.

4.2.1 Hierarchical Gamma Process Edge Partition Models

The hierarchical gamma process edge partition (HGP-EPM) model (M. Zhou et al. 2015) was
recently proposed to detect overlapping community structure in static relational data. Formally, let
V denotes a set of nodes, and the (static) relationships among V ≡ |V| nodes be represented by a
binary adjacency matrix E ∈ {0, 1}V×V , where euv = 1 if there is an (directed) edge from nodes
u to v, and 0 otherwise. We ignore self-edges {euu}u∈V as a node never interacts with itself. The
(truncated) HGP-EPM is generated as

ϕu,k ∼ Gamma(au,
1
cu

), au ∼ Gamma(e0,
1
f0
), rk ∼ Gamma(

r0

K
,

1
c0
), (4.2.1)

Ωk,k′ ∼
{

Gamma(ξrk, χ), if k = k′

Gamma(rkrk′ , χ), otherwise
, eu,v ∼ Bernoulli

[
1−

K

∏
k,k′=1

exp(−ϕu,kΩk,k′ϕv,k′)

]
,

where each node u ∈ V is chacterized by a positive feature vector (ϕu,1, . . . , ϕu,K) with ϕu,k mea-
suring how strongly node u is affiliated to each community k = 1, . . . , K. au captures the sociabil-
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ity of node u, and thus node u exhibiting a large number of interactions will be characterized by a
large au. The prevalence of each community k is captured by a positive weight rk. The HGP-EPM
can infer an appropriate number of communities via its inherent shrinkage mechanism: many com-
munities’ weights {rk} tend to be small as K → ∞, and thus most redundant communities will be
shrunk effectively. The parameters Ωk,k, Ωk,k′ captures the intra-community and inter-community
interaction weights, respectively. The probability of there being an edge from node u to node v is
parameterized under the Bernoulli-Poisson link (BPL) function Pr(y = 1 | ζ) = 1− e−ζ , where
ζ defines the positive rate. We note that the HGP-EPM using the BPL function well fits large
sparse graphs (M. Zhou 2018a). Following (M. Zhou et al. 2015), we impose the Gamma(1, 1)
prior over the hyperparameters cu, c0, e0, f0, r0, ξ, χ. Interestingly, the probability of an edge euv
modeled by the BPL can be equivalently generated as

eu,v = 1(ẽu,v ≥ 1), ẽu,v ∼ Poisson

(
K

∑
k=1

K

∑
k′=1

ϕu,kΩk,k′ϕv,k′

)
,

where ϕu,kΩk,k′ϕv,k′ captures the connecting strength between nodes u and v due to their affilia-
tions to communities k, k′, respectively. Note that the HGP-EPM not only captures the overlapping
community structure, degree heterogeneity, but also characterizes both homophily and stochastic
equivalence exhibited in real-world interactions (M. Zhou 2018a).

4.3 T H E H AW K E S E D G E PA RT I T I O N M O D E L

Let {(ti, si, di)}N
i=1 be a sequence of temporal interaction events, where (ti, si, di) denotes a di-

rected interaction from node si (sender) to node di (receiver) at time ti. Following (Miscouridou
et al. 2018), we build the non-time dependent component µsi ,di

of the intensity function upon the
latent parameters inferred by the HGP-EPM. More specifically, for the reciprocating Hawkes pro-
cess from node u to node v, we let µu,v = ∑k,k′ ϕu,kΩk,k′ϕv,k′ , where ϕu,k captures the affiliation
of node u to community k, and Ωk,k′ the inter-community interaction strength between k and k′.
Hence, our base rate naturally models that two nodes sharing more features are more likely to in-
teract with each other. Different from the Hawkes-CCRM, we further assume that the interaction
dynamics between nodes si and di are also influenced by their respective affiliated communities.
To do so, for each interaction event, we introduce the latent variables zs

i and zd
i to represent the

latent patterns of the sender si and the receiver di in i-th event, respectively. Inferring the latent
patterns underlying each event is the key to accurately characterize the interaction dynamics be-
tween entities involved. More specifically, we define the intensity function for a pair of nodes u
and v as

λu,v(t) = µu,v + ∑
j:tj∈Hv,u(t)

γzd
j ,zs

j
(t− tj)

= ∑
k,k′

{
µu,k,k′ ,v + ∑

j:tj∈Hv,u(t)|zs
j=k′ ,zd

j =k

αkk′ exp[−(t− tj)/δ]

}
,

(4.3.2)

where we define the base rate µu,v ≡ ∑k,k′ µu,k,k′ ,v ≡ ∑k,k′ ϕu,kΩk,k′ϕv,k′ . Here µu,k,k′ ,v accounts
for the exogenous interactions from u to v due to their respective affiliations to k, k′, respectively.
γkk′(t) is a nonnegative kernel function that captures the decaying influence of past events un-
der the pattern (k′, k) on the current intensity. In this chapter, we assume that the current rate
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λu,k,k′ ,v(t) from u to v under the pattern (k, k′) is only influenced by the past opposite inter-
actions {(tj, sj, dj) | tj < t, sj = v, dj = u} under the pattern (k′, k), which we denote by
{tj ∈ Hv,u(t) | zs

j = k′, zd
j = k}. More specifically, αkk′ controls the excitatory effect under the

pattern (k′, k), and we impose a gamma prior over αkk′ , i.e., αkk′ ∼ Gamma(e0, 1/ f0). Figure 4.2
presents a simple illustrative example for the Hawkes-EPM.
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Figure 4.2: A simple example for the Hawkes-EPM model. The top left figure shows the inferred
matrix of node features Φ, and the community-community interaction strength Ω. Here, node u
connects to node v through the intra-community interaction (1, 1) and inter-community interaction
(2, 3). The top right figure plots the interaction events between u and v. Each event is denoted by
a bar, under which we use (a, b) to indicate the latent variables a, b of nodes u, v in that event, e.g.,
zu

1 = 1, zv
1 = 1 for 1-st event. The bottom left figure plots the intensities of the interactions from

u to v, and from v to u, respectively. Equivalently, λu,v(t) can be represented by the summation
of {λu,k,k′ ,v(t)}k,k′ , where λu,k,k′ ,v(t) denotes the interaction intensity from u to v via the inter-
community (k, k′).

If (ti, si, di) is an exogenous event induced by µsi ,di
, the latent patterns (zs

i , zd
i ) for (si, di) are

determined by their affiliated communities via (ϕsi , ϕdi
), respectively. In case that (ti, si, di) is

an endogenous event, (zs
i , zd

i ) are determined by the past opposite interactions from di to si. More
specifically, the latent patterns associated to i-th event can be generated as

Pr(zs
i = k, zd

i = k′ | ti, si = u, di = v)

=

(
µu,k,k′ ,v + ∑

j:tj∈Hv,u(t)|zs
j=k′ ,zd

j =k

αkk′ exp[−(ti − tj)/δ]

)
/λu,v(ti), for k, k′ ∈ 1,...,K.

(4.3.3)

In real temporal interactions, some additional information such as auxiliary node attributes,
explicitly declared relationships among entities, and communicating contents are also available
for accurately modelling temporal interaction dynamics when interaction events are incomplete
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(say, due to the privacy issues of individuals). Formally, let xu,v ≡ (x1
u,v, . . . , xD

u,v)
T denotes the

covariates of D dimensions associated with a pair of nodes u and v. For example, the covariates
xu,v may represent the common attributes shared by u and v, or the word embeddings inferred
from the communicating contents between u and v. We generalize the Hawkes-EPM model by
letting

µu,k,k′ ,v ∼ Gamma(µ̃u,k,k′ ,v, 1/(exp[−xT
u,vβkk′ ])), (4.3.4)

where µ̃u,k,k′ ,v ≡ ϕu,kΩk,k′ϕv,k′ , and βkk′ ≡ (β1
k,k′ , . . . , βD

k,k′)
T is the regression coefficient vector

of latent pattern (k, k′). The base intensity in (4.3.4) is drawn from a gamma prior where the
shape parameter incorporates the underlying community structure information via µ̃u,k,k′ ,v, and the
scale parameter is a function of the input auxiliary covariates. To our knowledge, the regression
component in (4.3.4) is investigated already in (M. Zhou 2018b; Rai et al. 2015; Q. Zhang and
M. Zhou 2018), but firstly applied in this context.
Remarks. Note that the proposed model allows an unbounded number of latent patterns to be
shared across all pairs of interacting nodes via the hierarchical gamma process (HGP) (M. Zhou
and L. Carin 2015a). As shown in (4.3.3), the base rate µu,k,k′ ,v of the latent pattern (k, k′) is
non-negligible over the whole time period, and thus our model allows the events widely separated
in time but with similar dynamics to be parameterized under the same pattern, to avoid vanishing
prior issue (Mavroforakis, Valera, and Gomez-Rodriguez 2017; Kapoor et al. 2018).

4.4 I N F E R E N C E

The proposed model admits efficient approximate inference as the posteriors of all the model pa-
rameters are available in closed-form using Pólya-Gamma data augmentation strategy. Let D
denotes the whole events data, E the binary adjacency matrix aggregated from D, i.e., euv = 1
for u, v ∈ V if there being at least one interaction observed in the time interval [0, T], Ξ the pa-
rameters of the HGP-EPM, and Θ the parameters of the Hawkes-EPM. We use the “x̂” to denote
the maximum a posterior (MAP) estimate of x. Following (Miscouridou et al. 2018), we present
a two-step inference procedure: (i) Approximate Pr(Ξ | D, E) by Pr(Ξ | E), and obtain a maxi-
mum a posterior estimate Ξ̂, and then (ii) Approximate Pr(Θ | Ξ,D) by Pr(Θ | Ξ̂,D). The full
posterior is approximated by Pr(Θ, Ξ) = Pr(Ξ | E)Pr(Θ | Ξ̂,D). The posterior inference for Ξ̂
is performed using the Gibbs sampling procedure described in (M. Zhou et al. 2015). The infer-
ence algorithm for the hierarchical gamma process edge partition model (HGP-EPM) is detailed
in (M. Zhou et al. 2015) with the released code1. Next we shall explain the Gibbs sampling and
Expectation-Maximization algorithms to infer the parameters of the Hawkes-EPM.

4.4.1 Gibbs Sampling

Sampling latent variables {zs
i , zd

i }N
i=1: For each event (ti, si, di), we utilize an auxiliary binary

variable bi to denote whether i-th event is triggered by the base rate (exogenous) or by opposite
past interactions (endogenous) as

(bi | −) ∼ Bernoulli(µsi ,di
/λsi ,di

(ti)). (4.4.1)

1 https://github.com/mingyuanzhou/EPM.

https://github.com/mingyuanzhou/EPM
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Then, we sample the latent patterns (zs
i , zd

i ) for each event as

(zs
i , zd

i | −) ∼


Categorical

( {µsi ,k,k′ ,di
}K

k,k′=1
λsi ,di

(ti)

)
, if bi = 1

Categorical
( {λendo

si ,k,k′ ,di
(ti)}K

k,k′=1

λsi ,di
(ti)

)
, otherwise

(4.4.2)

where we define
λendo

si ,k,k′ ,di
(ti) ≡ ∑

j:tj∈Hdi ,si
(t)|zs

j=k′ ,zd
j =k

αkk′ exp[−δ(ti − tj)]. (4.4.3)

Given the sampled latent variables, we update the sufficient statistics as

mexo
u,k,k′ ,v ≡∑

j
1(bj = 1, sj = u, dj = v, zs

j = k, zd
j = k′), (4.4.4)

mendo
u,k,k′ ,v ≡∑

j
1(bj = 0, sj = u, dj = v, zs

j = k, zd
j = k′).

The log-posterior of the observed temporal events D ≡ {(ti, si, di)}N
i=1 is

L(Θ) = ∑i log

{
µsi ,di

+ ∑k,k′∑j:tj∈Hdi ,si
(ti)|zs

j=k′ ,zd
j =kαkk′ exp

[
−(ti − tj)/δ

] }
(4.4.5)

−∑i

{
µsi ,di

T + ∑k,k′∑j:tj∈Hdi ,si
(ti)|zs

j=k′ ,zd
j =kαkk′δ(1− exp

[
−(ti − tj)/δ

]
)

}
+ log Pr(Θ).

Sampling the kernel parameters {αkk′}: As we place gamma priors over αkk′

as αkk′ ∼ Gamma(e0, 1/ f0), and thus we have

(αkk′ | −) ∼ Gamma

e0 + mendo
·k,k′ · , 1/

 f0 + ∑i ∑
j:tj∈Hdi ,si

(ti)

1
δ

(
1− exp

[
−
(T − tj)

δ

]) ,

(4.4.6)

where mendo
·k,k′ · ≡ ∑imendo

si ,k,k′ ,di
, and mendo

·k,k′ · denotes the total number of endogenous events associated
with the latent pattern (k, k′).
Sampling the base intensity {µu,k,k′ ,v}: As we have gamma prior over µu,k,k′ ,v
as µu,k,k′ ,v ∼ Gamma(µ̃u,k,k′ ,v, 1/(exp[−xT

u,vβkk′ ])), we have

(µu,k,k′ ,v | −) ∼ Gamma
(

µ̃u,k,k′ ,v + mexo
u,k,k′ ,v, 1/(T + exp[−xT

u,vβkk′ ])
)

, (4.4.7)

Marginalizing out µu,k,k′ ,v from the likelihood leads to

Pr(D | xu,v, βkk′) =
∫

Pr(D | µu,k,k′ ,v)Pr(µu,k,k′ ,v | xu,v, βkk′)dµu,k,k′ ,v

∝ NB(mexo
u,k,k′ ,v; µ̃u,k,k′ ,v, σ[xT

u,vβkk′ + log(T)]),
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where σ(x) = 1/(1 + exp(−x)) denotes the logistic function. Using the Pólya-Gamma data
augmentation strategy (M. Zhou et al. 2012; Polson et al. 2013), we first sample

(ωu,k,k′ ,v | −) ∼ PG(µu,k,k′ ,v + mexo
u,k,k′ ,v, ψu,k,k′ ,v), (4.4.8)

(ψu,k,k′ ,v | −) ∼ N (µψ, σψ),

where PG denotes a Pólya-Gamma draw, and where

ψu,k,k′ ,v ≡ xT
uvβkk′ + log(Tπuv), (4.4.9)

πuv ∼ logN (0, τ−1),

σψ = [ωu,k,k′ ,v + τ]−1,

µψ = σψ

[
(mexo

u,k,k′ ,v − µu,k,k′ ,v)/2 + τ(xT
uvβkk′ + log(T))

]
,

where logN (·) denotes the lognormal distribution.
Sampling the regression coefficients {βkk′}: Given {ψkk′ ≡ (ψ1kk′1, . . . , ψUkk′V)}, we sample
{βkk′} as

(βk,k′ | −) ∼ N (µβ, Σβ), (4.4.10)

where Σβ = (τXTX + A)−1, A ≡ diag[ν−1
1 , . . . , ν−1

D ], µβ = τΣβXT (ψkk′ − log(T)), and
X ≡ [x11, . . . , xUV ]

T.
The full procedure of our Gibbs sampler is summarized in Algorithm 3.

4.4.2 Expectation-Maximization

To scale up the inference procedure for the proposed model, we also develop an efficient Expectation-
Maximization (EM) algorithm to perform maximum a posterior (MAP) estimation following (Lewis
and Mohler 2011; K. Zhou, Zha, and Song 2013; H. Xu et al. 2016b). More specifically, let Θ(l)

denotes the current model parameters, we construct a tight upper-bound of log-posterior in (4.4.5)
via the Jensen’s inequality as

Q(Θ | Θ(l)) = −∑i

{
µsi ,di

T + ∑k,k′∑j:tj∈Hdi ,si
(ti)

γkk′(ti − tj)

}
+ ∑i∑k,k′ p

exo
ikk′ log

[
µsi ,k,k′ ,di

pexo
ikk′

]
+ ∑k,k′∑j:tj∈Hdi ,si

(ti)
pendo

ikk′

[
γkk′(ti − tj)

pendo
ikk′

]
+ log Pr(Θ),

where

pexo
ikk′ =

µ
(l)
si ,k,k′ ,di[

µ
(l)
si ,di

+ ∑k,k′∑j:tj∈Hdi ,si
(ti)

γ
(l)
kk′(ti − tj)

] , (4.4.11)

pendo
ikk′ =

[
∑j:tj∈Hdi ,si

(ti)
γ
(l)
kk′(ti − tj)

]
[
µ
(l)
si ,di

+ ∑k,k′∑j:tj∈Hdi ,si
(ti)

γ
(l)
kk′(ti − tj)

] .

The introduced variable pexo
ikk′ can be interpreted as the probability that i-th event is drawn from

the base rate under the latent pattern (k, k′). pendo
ikk′ is the probability that i-th event is triggered
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by the opposite interaction events under the pattern (k′, k). Accordingly, we update the sufficient
statistics as

mexo
u,k,k′ ,v ≡ ∑

i:si=u,di=v
pexo

ikk′ , (4.4.12)

mendo
u,k,k′ ,v ≡ ∑

i:si=u,di=v
pendo

ikk′ . (4.4.13)

Expectations of Pólya-Gamma random variables are available in closed-form (Scott and Sun
2013), and given by

E
[
ω
(l+1)
u,k,k′ ,v

]
=

 µ̃
(l)
u,k,k′ ,v + mexo

u,k,k′ ,v

2ψ
(l)
u,k,k′ ,v

 tanh

ψ
(l)
u,k,k′ ,v

2

 . (4.4.14)

Maximizing Q(Θ) with respect to each of the model parameters {µu,k,k′ ,v}, {αk,k′}, {βk,k′},
{ψk,k′} fixing the rest, leads to closed-form updates for each of these. We update the remaining
parameters as follows

µ
(l+1)
u,k,k′ ,v =

(µ̃u,k,k′ ,v + mexo
u,k,k′ ,v)

(T + exp[−xT
u,vβ

(l)
kk′ ])

, (4.4.15)

α
(l+1)
kk′ =

(e0 + ∑u,vmendo
u,k,k′ ,v)(

f0 + ∑i∑j:tj∈Hdi ,si
(ti)

δ
(

1− exp
[
− (T−tj)

δ

])) , (4.4.16)

ψ
(l+1)
k,k′ =

[
diag(E

[
ω

(l)
k,k′

]
) + τI

]−1
 m̃exo

k,k′ − µ
(l)
k,k′

2
+ τ(XTβ

(l)
k,k′ + log(T))

 , (4.4.17)

β
(l+1)
k,k′ = τ(τXTX + A)−1XT

(
ψ
(l)
kk′ − log(T)

)
, (4.4.18)

where ω
(l)
k,k′ ≡ (ω

(l)
1,k,k′ ,1, . . . , ω

(l)
U,k,k′ ,V), m̃exo

k,k′ ≡ (mexo
1,k,k′ ,1, . . . , mexo

U,k,k′ ,V)
T,

and A ≡ diag[ν−1
1 , . . . , ν−1

D ], µ
(l)
k,k′ ≡ (µ

(l)
1,k,k′ ,1, . . . , µ

(l)
U,k,k′ ,V)

T, and X ≡ [x11, . . . , xUV ]
T.

The full procedure of our EM algorithm is summarized in Algorithm 4.
Computational Cost. For the second inference step, computing the latent variables {zs

i , zd
i } and

updating the intensities for all the given events takes O(NK2) time, where K is the estimated
number of communities by HGP-EPM. Estimating {αkk′} and {µu,k,k′ ,v} requires O(K2) and
O(K2V2) time, respectively. Estimating {βkk′} and {ψu,k,k′ ,v} requires solving a linear system,
and takes O(K2D3) and O(K2N̄) time, where N̄ denotes the number of node pairs with at least
one interaction in [0, T]. To sample the Pólya-Gamma variables {ωu,k,k′ ,v}, we employed a fast
and accurate approximate sampler of Zhou (M. Zhou 2016), which matches the first two moments
of the original distribution. Using the EM algorithm, the Pólya-Gamma variables are updated in
closed-form (as a hyperbolic function) (Scott and Sun 2013).



56 C O N T I N U O U S T I M E DY N A M I C N E T W O R K M O D E L S

Algorithm 3 Gibbs Sampler for the Hawkes Edge Partition Model

Require: events data D = {(ti, si, di)}N
i=1, {Φ, Ω} inferred by the HGP-EPM, maximum itera-

tions J
Ensure: {µu,k,k′ ,v}, {αkk′}, {(zs

i , zd
i )}

1: for l = 1:J do
2: for n = 1:N do
3: Sample bi (Eq. 4.4.1)
4: Sample the latent variables (zs

i , zd
i ) (Eq. 4.4.2)

5: Update the intensity function λdi ,zd
i ,zs

i ,si
(ti) (Eq. 4.4.3)

6: end for
7: Update mexo

u,k,k′ ,v and mendo
u,k,k′ ,v (Eq. 4.4.4)

8: Sample the base intensities {µu,k,k′ ,v} (Eq. 4.4.7)
9: Sample the parameters {βkk′}, {ωu,k,k′ ,v}, {ψu,k,k′ ,v} (Eqs. 4.4.10; 4.4.8)

10: Sample the kernel parameters {αk,k′} (Eq. 4.4.6)
11: end for

Algorithm 4 Expectation-Maximization algorithm for the Hawkes Edge Partition Model

Require: events data D = {(ti, si, di)}N
i=1, {Φ, Ω} inferred by the HGP-EPM

Ensure: {µu,k,k′ ,v}, {αkk′}
1: repeat
2: for n = 1:N do
3: Update (pexo

ikk′ , pendo
ikk′ ) (Eq. 4.4.11)

4: Update the intensity function λdi ,si
(ti)

5: end for
6: Update mexo

u,k,k′ ,v and mendo
u,k,k′ ,v (Eq. 4.4.12)

7: Update the base intensities {µu,k,k′ ,v} (Eq. 4.4.15)
8: Update the parameters {βkk′}, {ωu,k,k′ ,v}, {ψu,k,k′ ,v} (Eqs. 4.4.18 4.4.14; 4.4.17)
9: Update the kernel parameters {αk,k′} (Eq. 4.4.16)

10: until convergence
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Figure 4.3: The predictive log-likelihood of each method in four benchmark datasets. The results
are averaged over ten runs.

4.5 E X P E R I M E N T S

We evaluate the proposed Hawkes-EPM model on four benchmark temporal interaction events
datasets, Kosovo, Bosnia, Gulf, EU-email: (i) Kosovo. This dataset2 consists of the interaction
events among 168 nations over 451 days (04/01/1998-31/03/1999). There are 1139 edges and
7224 interactions. We utilized the auxiliary events attributes (e.g., military force or support) ag-
gregated over the whole time interval between any two nodes as their covariate data. (ii) Bosnia.
This dataset consists of the interaction events among 159 nations over 1819 days (17/01/1991-
31/12/1995). There are 1918 edges, and 34014 interactions. (iii) Gulf. This dataset3 consists of
the 304401 interaction events among 202 nations over 7291 days (15/04/1979-31/03/1999). There
are 7184 edges. (iv) EU-email. This dataset4 consists of the 332334 email communications among
1005 individuals over 526 days. There are 24929 edges. We generated the covariate data between
each pair of nodes using their common attributes.

We compared our model to (i) a Poisson process (PPs) model, which independently models the
interaction dynamics between each pair of nodes by a constant event rate, (ii) a Hawkes process
(HPs) model, in which we assume the same base rate and kernel parameters for each pair of nodes.
Following (J. Yang et al. 2017), we utilized four basis kernels–three exponential kernels with
time decaying scale: one hour, one day, one week respectively: γ1(t) ≡ exp(−24t), γ2(t) ≡
exp(−t), γ3(t) ≡ exp(−t/7), and a periodic kernel γ4(t) ≡ exp(−t/7) sin2(πt/7), (iii) the
Hawkes Dual Latent Space (DLS) model (J. Yang et al. 2017)5, which captures the base event rate
with the Latent space model (P. D. Hoff et al. 2001), and models the reciprocating dynamics in
each particular interaction. Given the aggregated graph, we estimated the parameters {Φ, Λ} of
the HGP-EPM with the truncation level Kmax = 100. We ran the Gibbs sampler detailed in (M.
Zhou et al. 2015) for 10000 MCMC iterations, and used the maximum a posterior estimate {Φ̂, Λ̂}
in the second step. For the Hawkes-EPM, we found that estimating δ suffered from identifiability
issues as reported in (J. Yang et al. 2017; Tan, Rao, and Neville 2018; Tan et al. 2018), and choose
a kernel decay of δ = 1/10. In our experiments, both the Gibbs sampler and the EM algorithm
perform comparably, and we only report the results obtained with EM algorithm.

2 http://eventdata.parusanalytics.com/data.dir/pevehouse.html.
3 http://eventdata.parusanalytics.com/data.dir/gulf.html.
4 http://snap.stanford.edu/data/email-EuAll.html.
5 https://github.com/jiaseny/lspp.

http://eventdata.parusanalytics.com/data.dir/pevehouse.html
http://eventdata.parusanalytics.com/data.dir/gulf.html
http://snap.stanford.edu/data/email-EuAll.html
https://github.com/jiaseny/lspp
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Figure 4.4: AUC-ROC and PR scores for the temporal link prediction.

4.5.1 Predictive log-likelihood.

To evaluate the predictive performance, we sorted the interaction events according to the corre-
sponding timestamps, and made a train-test split so that the training dataset consists of 50%-90%
of the whole events. We trained all the methods on the training data, and calculated their predic-
tive log-likelihood over the test dataset. In Figure (4.3), we report the average log-likelihood of
each method applied to four benchmark datasets over ten runs. Overall, we found that the Hawkes
process based models (HPs, DLS, the Hawkes-EPM) significantly outperform the Poisson process
model, which confirms that most interactions arised as responses to the past events of their op-
posite directions (reciprocity). We also found that DLS performs slightly better than the Hawkes
process model although DLS accounts for heterogeneity both in the base rate for each pair of
nodes, and also in their each specific interaction. Overall, the Hawkes-EPM achieves the higher
predictive log-likelihood compared with DLS and the Hawkes process model. We conjecture that
this is because most entities have very few interactions. For most entities exhibiting few interac-
tions in training dataset, DLS fails to accurately capture their interaction dynamics by accounting
for each particular interaction. The Hawkes EPM allows the latent patterns to be shared among
entities with similar latent features, and thus captures the interaction dynamics of those entities
exhibiting few interactions more accurately.

4.5.2 Temporal link prediction.

We trained all the methods using the training datasets as we used in calculating predictive log-
likelihood. In this task, we let all the models to predict the probability that an edge appears (at least
one interaction occurrs) between each pair of nodes in the time interval [t, t + π̂) with t being the
end time of the training events. We also set π̂ to be 50 days for all the datasets. We calculated the
probability of there being at least one interaction in [t, t+ π̂) as 1− exp{−

∫ t+π̂
t λuv(s)dNvu(s)}.

Finally, we computed the average area under the curve (AUC) of both the receiver operating char-
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acteristic (ROC) and precision-recall (PR) to evaluate the predictive performance. As shown in
Figure 4.4, the Hawkes process based models (HPs, DLS, Hawkes-EPM) capture the reciprocating
dynamics of the interactions among nodes, and thus significantly outperform the Poisson process
model. We note that AUC-PR is more sensitive to the proportion of true edges in the top ranked
ones, and also noticed that most node pairs exhibit no edges in the time interval [t, t+ π̂). A closer
looking into the AUC-PR scores, we found that the Hawkes-EPM performs better than HPs and
DLS when the training ratio is low. This is because the Hawkes-EPM shares the kernel parameters
among node pairs, and thus performs well even if most node pairs exhibit few interactions.

4.5.3 Exploratory analysis.

We also used the Gulf dataset to explore the latent structure estimated by the Hawkes-EPM. We
found that K = 12 latent communities, and most of those communities correspond to international
military conflicts among nations. Figs. 4.5 to 4.7 show the inferred intensities of the interaction
among these nations. For instance, we found that the peaks of the intensities bewteen USA -
Iraq(IRQ) correspond to events surrounding the Gulf War (1990-1991), the Cruise missile attack
on Iraq in 1993 and 1996, the Bombing of Iraq in 1998. In addition, we also plot the intensities of
interaction events between Iran(IRN)-Iraq(IRQ). The intensities of the interaction events between
these two nodes are gradually increasing from 1980, and reach the peak at 1988. To interpret the
inferred interaction dynamics between these two nodes, we performed a web search, and found that
the Iran-Iraq War started on September, 1980 and ended on August, 1988. Most of the inferred
intensities between each pair of nations in the Gulf dataset confirm our knowledge of international
affairs.

4.6 C O N C L U S I O N S

We presented a probabilistic framework, the Hawkes edge partition model (Hawkes-EPM) for in-
ferring the implicit community structure and reciprocating dynamics among entities from their
event-based temporal interactions. The Hawkes-EPM not only models the inherent overlapping
communities, sparsity and degree heterogeneity behind the observed interactions, but also cap-
tures how the latent communities influence the interaction dynamics among their involved entities.
Experimental results demonstrate the interpretability and competitive predictive performance of
our model in several real-world datasets.
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Figure 4.5: The plots show the intensity of interaction events among nations inferred by the
Hawkes-EPM in the Gulf dataset.
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Figure 4.6: The plots show the intensity of interaction events among nations inferred by the
Hawkes-EPM in the Gulf dataset.
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Figure 4.7: The plots show the intensity of interaction events among nations inferred by the
Hawkes-EPM in the Gulf dataset.
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S T O C H A S T I C G R A D I E N T M A R K OV C H A I N M O N T E C A R L O F O R
D I S C R E T E T I M E N E T W O R K M O D E L S

In the earlier chapters, we have demonstrated the successful applications of the Poisson gamma
memberships models for overlapping community detection and missing edge prediction in dy-
namic networks. In this chapter, we propose a novel generative model that extends the Poisson
gamma memberships framework to model temporal assortative graphs by endowing each node
with a positive memberships vector, constructed using Dirichlet prior specification, which retains
the expressiveness and interpretability of the original gamma process edge partition model (GaP-
EPM). Specifically, the new model utilizes a Dirichlet Markov chain to capture the smooth evolu-
tion of the nodes’ memberships over time. In particular, the unique construction of the Dirichlet
Markov chain enables us to adopt the recently advanced SG-MCMC algorithms (Patterson et al.
2013; T. Chen et al. 2014; Ding et al. 2014; Ma et al. 2015; C. Chen et al. 2016) for scalable
and parallelizable inference in the proposed model. The remainder of the chapter is structured as
follows. We first review relevant background. Then, we present the novel dynamic edge partition
model, and describe its Gibbs sampler and stochastic gradient Markov chain Monte Carlo algo-
rithm. The accuracy and efficiency of our method are demonstrated on several real-world datasets.
Finally, we conclude the chapter.

5.1 S T O C H A S T I C G R A D I E N T M A R K OV C H A I N M O N T E C A R L O

Stochastic gradient Markov chain Monte Carlo (SG-MCMC) is an approximate MCMC algorithm
that subsamples the data, and uses the stochastic gradients to update the parameters of interest at
each step. Given a dataset X = {xi}N

i=1, we have a generative model p(X | θ) where θ ∈ Rd is
drawn from the prior p(θ). Our aim is to compute the posterior of θ, i.e., p(θ | X) ∝ exp(−H(θ))
with potential function H(θ) ≡ −∑xi∈X log p(xi | θ)− log p(θ). It has been shown (Ma et al.
2015) that ps(θ) ∝ exp(−H(θ)) is a stationary distribution of the dynamics of a stochastic
differential equation of the form as

dθ = f (θ)dt +
√

2D(θ)dW(t),

if f (θ) is restricted to the following form as

f (θ) = [D(θ) + Q(θ)]∇H(θ) + Γ(θ),

Γi(θ) =
d

∑
j=1

∂

∂θj

(
Dij(θ) + Qij(θ)

)
, (5.1.1)
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where f (θ) is the deterministic drift, W(t) is d–dimensional Wiener process, D(θ) is a positive
semi-definite diffusion matrix, and Q(θ) is skew-symmetric curl matrix. This leads to the follow-
ing update rule used in SG-MCMC algorithms as

θt+1 ← θt − ϵt[(D(θt) + Q(θt))∇H̃(θt) + Γ(θt)] (5.1.2)

+ N (0, ϵt(2D(θt)− ϵtB̂t)),

H̃(θ) = − log p(θ)− ρ ∑
xi∈X̃

log p(xi | θ),

where {ϵt} is a sequence of step sizes, X̃ is the mini-batch subsampled from the full data X,
ρ ≡ |X|/|X̃|, and B̂t is the estimate of stochastic gradient noise variance.

As shown in (Ma et al. 2015), setting D(θ) = G(θ)−1 where G(θ) is the Fisher information ma-
trix, and Q(θ) = 0 in Eq.(5.1.2), we obtain the update rule of the stochastic gradient Riemannian
Langevin dynamics (SGRLD) as

θt+1 ← θt − ϵt[(G(θt)
−1∇H̃(θt) + Γ(θt)] (5.1.3)

+ N
(
0, 2ϵtG(θt)

−1
)

.

5.2 T H E DY N A M I C D I R I C H L E T E D G E PA R I T I T I O N M O D E L

As we introduced in previous chapters, let {A(t)}T
t=1 be a sequence of networks or graphs, where

A(t) ∈ {0, 1}V×V is the network snapshot observed at time t with V being the number of nodes.
An edge is present between nodes u and v, i.e., A(t)

uv = 1 if they are connected at time t. Otherwise,
A(t)

uv = 0. We ignore self edges A(t)
uu. Generally, the considered temporal network can be decom-

posed into a set of K communities, where K is generally unknown a priori. In order to extract
an overlapping community structure from the given network, we represent each node u at time t
by a K–dimensional positive memberships vector {ϕ(t)

uk}
K
k=1, and thus each of the K memberships

can be considered as how actively it is involved in the corresponding community at that time. In
temporal networks, the observed edges among nodes change over time because the association
relationships of these nodes to the underlying communities are evolving (J. R. Foulds et al. 2011;
Heaukulani et al. 2013; M. Kim et al. 2013). Hence, learning an expressive and interpretable nodes
representations is the key to understanding the true dynamics of the underlying relations between
nodes. Unlike most existing methods (J. R. Foulds et al. 2011; Heaukulani et al. 2013; M. Kim et
al. 2013) utilizing a factorial hidden Markov model to capture the evolution of binary nodes’ mem-
berships, we use a Dirichlet Markov chain construction to allow node-community memberships
to vary smoothly over time. More specifically, for each active community k, we draw ϕ(t)

k from a
Dirichlet distribution, i.e., {ϕ(t)

uk}
V
u=1 ∼ Dirichlet(ηVϕ(t−1)

1k , . . . , ηVϕ(t−1)
Vk ), for t ∈ {2, . . . , T},

where ϕ(t)
uk corresponds to the membership of node u to community k at time t. In particular, we

draw ϕ(1)
k ∼ Dirichlet(η). The intuition behind this construction is that each community can be

thought of as a distribution over the V nodes (akin to a topic model). In temporal networks, these
communities are evolving over time because the memberships of their affiliated nodes are varying.
Moreover, for each community k, we draw an associated weight rk ∼ Gamma(gk, pk/(1− pk)),
where pk ∼ Beta(c0α, c0(1− α)), to modulate the interactions probability between any two nodes
affiliated to that community. Note that the hierarchical beta-gamma prior for rk allows inferring
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the appropriate number of latent communities by shrinking the redundant community weights to
zeros (M. Zhou and L. Carin 2015b). Finally, an edge between each pair of nodes is generated
using the Bernoulli-Poisson link function (Dunson et al. 2005; M. Zhou et al. 2015) as

A(t)
uv ∼ 1(Ã(t)

uv ≥ 1),

Ã(t)
uv ∼ Poisson

( K

∑
k=1

ϕ(t)
ukrkϕ(t)

vk

)
,

where ϕ(t)
ukrkϕ(t)

vk measures how strongly nodes u and v are connected at time t because they are
both affiliated to community k. Hence, naturally, the probability that a pair of nodes are connected
at time t, will be higher if the two nodes share more common communities at that time. Note that
sampling of {Ã(t)

uv}u,v,t only needs to be performed using rejection sampler (M. Zhou et al. 2015)
on nonzero entries in a given network as

(Ã(t)
uv | −) ∼

δ(0), if A(t)
uv = 0

Poisson+

(
∑K

k=1 ϕ(t)
ukrkϕ(t)

vk

)
, otherwise

(5.2.1)

where δ(0) is a point measure concentrated at 0, Poisson+ is the zero-truncated Poisson distri-
bution with support only on the positive integers, and “–” represents all other variables. Hence,
inference in this model scales linearly with the number of nonzero edges in the given network data.

The full generative construction of the proposed model is as follows:

rk ∼ Gamma(gk, pk/(1− pk)),

pk ∼ Beta(c0α, c0(1− α)),

{ϕ(t)
uk}

V
u=1 ∼ Dirichlet

(
ηV{ϕ(t−1)

uk }
V
u=1

)
, for t ∈ {2, . . . , T}

{ϕ(1)
uk}

V
u=1 ∼ Dirichlet(η1N),

η ∼ Gamma(a0, 1/b0),

Ã(t)
uv ∼ Poisson

( K

∑
k=1

ϕ(t)
ukrkϕ(t)

vk

)
,

A(t)
uv ∼ 1(Ã(t)

uv ≥ 1).

5.3 I N F E R E N C E

Despite the proposed model not being natively conjugate for exact inference, we leverage the
Negative-Binomial augmentation technique to derive a simple-to-implement Gibbs sampler with
closed-form update equations. For large temporal network data, we develop stochastic gradient
MCMC algorithms using both the expanded-mean and reduced-mean re-parameterization tricks.

5.3.1 Batch Gibbs Sampler

We now proceed to describe our batch Gibbs sampler for the proposed model. The parameters that
need to be inferred are {Ã(t)

uv}u,v,t, {Ã(t)
uvk}u,v,k,t, {ϕ(t)

uk}u,k,t, {rk}k, {pk}k and η.
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We present the inference update equations for each of the parameters below.
Sampling of {Ã(t)

uvk}u,v,t: Using the Poisson-multinomial equivalence (M. Zhou and L. Carin
2015b), the latent counts m(t)

uvk are sampled from a multinomial distribution as(
{Ã(t)

uvk}
K
k=1 | −

)
∼ Multinomial

(
Ã(t)

uv,
{ϕ(t)

ukrkϕ(t)
vk}

K
k=1

∑K
k=1 ϕ(t)

ukrkϕ(t)
vk

)
. (5.3.1)

Sampling of {ϕ(t)
uk}u,k,t: According to the additive property of the Poisson distribution, we have

the aggregated counts Ã(t)
u·k ≡ ∑v ̸=u m(t)

uvk and Ã··k ≡ 1
2 ∑u,v,t m(t)

uvk that can be expressed as

Ã(t)
u·k ∼ Poisson(rkϕ(t)

uk), (5.3.2)

Ã··k ∼ Poisson(rkT). (5.3.3)

Via the Poisson-multinomial equivalence, we can equivalently sample {Ã(t)
u·k}

V
u=1 as

{Ã(t)
u·k}

V
u=1 ∼ Multinomial

(
Ã(t)
··k, {ϕ(t)

uk}
V
u=1

)
. (5.3.4)

For t = T, we sample the Dirichlet distributed vector {ϕ(t)
uk}

V
u=1 using the Dirichlet-multinomial

conjugacy as

({ϕ(t)
uk}

V
u=1 | −) ∼ Dirichlet

(
ηV{ϕ(t−1)

uk + Ã(t−1)
u·k }

V
u=1

)
. (5.3.5)

For 2 ≤ t ≤ (T − 1), as we already have the multinomial likelihood and Dirichlet prior as

{Ã(t+1)
u·k }

V
u=1 ∼ Multinomial

(
Ã(t+1)
··k , {ϕ(t+1)

uk }
V
u=1

)
, (5.3.6)

{ϕ(t+1)
uk }

V
u=1 ∼ Dirichlet

(
ηV{ϕ(t)

uk}
V
u=1

)
. (5.3.7)

Marginalizing out {ϕ(t+1)
uk }

V
u=1 using the Dirichlet-multinomial conjugacy leads to

{Ã(t+1)
u·k }

V
u=1 ∼ DirMult

(
Ã(t+1)
··k , ηV{ϕ(t)

uk}
V
u=1

)
. (5.3.8)

Using the Negative-Binomial augmentation strategy, we introduce an auxiliary variable

ζ(t+1)
k ∼ Beta(Ã(t+1)

··k , ηV), (5.3.9)

and then the latent counts {Ã(t+1)
u·k }

V
u=1 can be equivalently sampled as

Ã(t+1)
u·k ∼ NB

(
ηVϕ(t)

uk, ζ(t+1)
k

)
.

We further augment Ã(t+1)
u·k with an auxiliary CRT distributed variable as

ξ(t+1)
uk ∼ CRT(Ã(t+1)

u·k , ηVϕ(t)
uk). (5.3.10)

According to the Poisson Logarithmic bivariate distribution, we can equivalently draw Ã(t+1)
u·k

and ξ(t+1)
uk as

Ã(t+1)
u·k ∼ SumLog

(
ξ(t+1)

uk , ζ(t+1)
k

)
,

ξ(t+1)
uk ∼ Poisson

[
−ηVϕ(t)

uk log
(

1− ζ(t+1)
k

)]
.
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Via the Poisson-multinomial equivalence, we can sample {ξ(t+1)
uk }

N
u=1 from a multinomial distribu-

tion as

{ξ(t+1)
uk }

V
u=1 ∼ Multinomial

(
ξ(t+1)
·k , {ϕ(t)

uk}
V
u=1

)
. (5.3.11)

Combining the prior placed over {ϕ(t)
uk}

V
u=1 and the multinomial likelihood function in Eqs.(5.3.4;5.3.11),

we sample {ϕ(t)
uk}

V
u=1 using the Dirichlet-multinomial conjugacy as

({ϕ(t)
uk}

V
u=1 | −) ∼ Dirichlet

(
{ηVϕ(t−1)

uk + ξ(t+1)
uk + Ã(t)

u·k}
V
u=1

)
, (5.3.12)

where ξ(t+1)
uk can be considered as the information passed back from time t + 1 to t.

Sampling of η: As we already have the Poisson likelihood ξ(t)
uk ∼ Poisson(−ηVϕ(t−1)

uk log(1−
ζ(t)

k )) and the gamma prior η ∼ Gamma(a0, 1/b0), we sample η using the gamma-Poisson con-
jugacy as

(η | −) ∼ Gamma

(
a0 + ∑

u,k,t
ξ(t)

uk,
1

b0 −V ∑k,t[log(1− ζ(t)
k )]

)
. (5.3.13)

Sampling of rk: Similaly, using the gamma-Poisson conjugacy, we obtain the conditional distri-
bution of rk as

(rk | −) ∼ Gamma
(

gk + Ã··k,
pk

1 + (T − 1)pk

)
. (5.3.14)

Sampling of pk: Marginalizing out rk from the likelihood in Eq.(5.3.3) and the prior
rk ∼ Gamma(gk, pk/(1 − pk)), we obtain Ã··k/T ∼ NB(gk, pk).Using the beta-negative-
binomial conjugacy, we sample pk as

(pk | −) ∼ Beta
(
c0α + Ã··k/T, c0(1− α) + gk

)
. (5.3.15)

The full inference procedure is presented in Algorithm 5.

5.3.2 Scalable Inference via Stochastic Gradient MCMC

While the proposed Gibbs sampler scales linearly with the number of nonzero entries in the given
temporal network data, Gibbs sampler tends to be slow to mix and converge in practice. In order
to mitigate this limitation, we resort to SG-MCMC algorithms for scalable inference in the pro-
posed model. Our SG-MCMC algorithm for the proposed model is mainly based on the stochastic
gradient Riemannian Langevin dynamics for the probability simplex because of the unique con-
struction of the Dirichlet Markov chain here. Naively applying SG-MCMC to perform inference
for the probability simplex may result in invalid values being proposed. Thus, various strategies
have been investigated to parameterize the probability simplex (Patterson et al. 2013).

First, we consider the expanded-mean that was shown to achieve overall best performance (Pat-
terson et al. 2013). In the proposed model, ϕ(t)

k is an V–dimensional probability simplex, and
our goal is to update ϕ(t)

k as the global parameter on a mini-batch data at each step. Using the
expanded-mean trick, we parameterize ϕ(t)

k as
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Algorithm 5 Batch Gibbs Sampler for the proposed Dynamic Dirichlet Edge Partition Model

Require: temporal graphs {A(t)}t, maximum iterations J
Ensure: posterior mean {ϕ(t)

k }k,t, {rk}k, {pk}k, η
1: for l = 1:J do
2: Sample {Ã(t)

uv}u,v,t and {Ã(t)
uvk}u,v,k,t (Eqs. 5.2.1; 5.3.1)

3: Update {Ã(t)
··k}k,t, {Ã(t)

··k}k,t, and {Ã··k}k
4: for t = T,. . . , 1 do
5: Sample {ξ(t)

k }k and {ζ(t)
k }k (Eqs. 5.3.10; 5.3.9)

6: end for
7: for t = 1,. . . , T do
8: Sample {ϕ(t)

k }k (Eqs. 5.3.5; 5.3.12)
9: end for

10: Sample {rk}k, {pk}k and η (Eqs. 5.3.14; 5.3.15; 5.3.13)
11: end for

{ϕ(t)
1k , . . . , ϕ(t)

Vk} = {ϕ̂
(t)
1k , . . . , ϕ̂(t)

Vk}/ϕ̂(t)
·k where ϕ̂(t)

uk ∼ Gamma(ηVϕ(t−1)
uk , 1) and

ϕ̂(t)
·k ≡ ∑i ϕ̂(t)

uk. Then, {ϕ̂(t)
1k , . . . , ϕ̂(t)

Vk}/ϕ̂(t)
·k will follow Dirichlet

(
ηV{ϕ(t−1)

uk }
V
u=1

)
distribution.

Given the log-posterior of ϕ̂(t)
k on the full data A as

log p({ϕ̂(t)
uk}

V
u=1 | −) ∝

V

∑
u=1

[
(m̃(t)

uk + ηVϕ(t−1)
uk − 1) log(ϕ̂(t)

uk) + m̃(t)
uk log(ϕ̂·k)− ϕ̂(t)

uk

]
where m̃(t)

uk ≡ ξ(t+1)
uk + Ã(t)

u·k, we take the gradient of the log-posterior with respect to ϕ̂(t)
k on a

mini-batch data Â, and then obtain

∇
ϕ̂
(t)
k
[−H̃(ϕ̂(t)

k )] =
{ρm̃(t)

uk + ηVϕ(t−1)
uk − 1

ϕ̂(t)
uk

−
ρm̃(t)

·k
ϕ̂(t)
·k
− 1
}N

u=1
, (5.3.16)

where ρ ≡ |A|/|Â|, and m̃(t)
·k ≡ ξ(t+1)

·k + Ã(t)
··k.

Given the gamma-Poisson construction used in expanded mean m̃(t)
uk ∼ Poisson(ϕ̂(t)

uk), the
Fisher information matrix is calculated as

G
(

ϕ̂(t)
k

)
= E

− ∂2

∂ϕ̂
(t)2

k

log

[
∏

i
Poisson

(
m̃(t)

uk ; ϕ̂(t)
uk

)] = diag
(

1/ϕ̂(t)
k

)
. (5.3.17)

Using Eq.(5.1.1), we obtain

Γi(ϕ̂
(t)
k ) = ∑

j

∂

∂ϕ̂(t)
kj

[
G
(

ϕ̂(t)
k

)−1
]

uv
= 1. (5.3.18)

Plugging Eqs.(5.3.16;5.3.17;5.3.18) into Eq.(5.1.3) yields the SGRLD update rule as1

1 In this paper, l is used to denote stepsize because t is used to denote time point in temporal network data.
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(
ϕ̂(t)

uk

)∗
=
∣∣∣ϕ̂(t)

uk + ϵl

[ (
ρm̃(t)

uk + ηVϕ(t−1)
uk

)
(5.3.19)

−
(

ρm̃(t)
·k + ϕ̂(t)

·k

)
ϕ(t)

uk

]
+N (0, 2ϵl ϕ̂

(t)
uk)
∣∣∣,

{ϕ(t)
1k , . . . , ϕ(t)

Vk} = {ϕ̂
(t)
1k , . . . , ϕ̂(t)

Vk}/ϕ̂(t)
·k ,

where the positiveness of {ϕ̂(t)
uk}

V
u=1 is ensured by the absolute value operation | · |. For t = 1, the

update equation is the same except that ηVϕ(t−1)
uk is replaced by η.

Let ψ(t)
k be a nonnegative vector constrained with ψ(t)

·k ≡ ∑V−1
u=1 ψ(t)

uk ≤ 1. As shown in (Patterson
et al. 2013), ϕ(t)

k can be alternatively parameterized via the reduced-mean trick as {ϕ(t)
1k , . . . , ϕ(t)

Vk} =
{ψ(t)

1k , . . . , ψ(t)
(N−1)k, 1− ψ(t)

·k }. Although being considered as a flawed solution because of its un-
stable gradients, it has been shown that this stability issue can be mitigated after preconditioning
the noisy gradients (Li et al. 2016). Here, in the proposed model, we utilize the inverse of Fisher
information matrix to precondition the noisy gradients, and derive an efficient update rule using
the recently advanced fast sampling algorithm (Cong et al. 2017).

Given the log-posterior of ψ(t)
k on the full data A as

log p({ψ(t)
uk}

V−1
u=1 | −) ∝

V−1

∑
u=1

(ηVϕ(t−1)
uk + m̃(t)

uk − 1) log(ψ(t)
uk)

+(ηVϕ(t−1)
Vk + m̃(t)

Vk − 1) log(1− ψ(t)
·k )

we take the gradient of the log-posterior with respect to ψk ∈ RV−1
≥0 on a mini-batch data scaled

by ρ ≡ |A|/Â|, and then we have

∇
ψ
(t)
k
[−H̃(ψ(t)

k )] =
{ρm̃(t)

uk + ηVϕ(t−1)
uk − 1

ψ(t)
uk

−
ρm̃(t)

Vk + ηVϕ(t−1)
Vk − 1

1− ψ(t)
·k

}V−1

u=1
. (5.3.20)

Note that the gradient in Eq.(5.3.20) becomes unstable if some of the components of ψ(t)
k ap-

proach zeros. Nevertheless, this issue can be mitigated after preconditioning the noisy gradient
with the inverse of Fisher information matrix.

Given the multinomial likelihood as

{m̃(t)
uk}

V
u=1 ∼ Multinomial

(
m̃(t)

·k , {ϕ(t)
uk}

V
u=1

)
, (5.3.21)

we calculate the Fisher information matrix of ψ(t)
k as

G
(

ψ(t)
k

)
= E

− ∂2

∂ψ(t)
k

2 log
[
Multinomial

(
{m̃(t)

uk}
V
u=1 ; m̃(t)

·k , {ϕ(t)
uk}

V
u=1

)]
= M(t)

k

{
diag

(
1

ψ(t)
k

)
+

11T

1− ψ(t)
·k

}
, (5.3.22)

where M(t)
k ≡ E[m̃(t)

·k ]. Using Eq.(5.1.1), we have

Γi(ψ
(t)
k ) = ∑

j

∂

∂ψ(t)
kj

[
G
(

ψ(t)
k

)−1
]

uv
= (1−Vψ(t)

uk)/M(t)
k . (5.3.23)
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Algorithm 6 Stochastic Gradient MCMC for the proposed Dynamic Dirichlet Edge Partition
Model
Require: temporal graphs {A(t)}t, maximum iterations J
Ensure: posterior mean {ϕ(t)

k }k,t, {rk}k, {pk}k, η
1: for l = 1:J do
2: Gibbs sampling on the l-th mini-batch for {Ã(t)

uv}u,v,t, {Ã(t)
uvk}u,v,k,t, {rk}k, {pk}k and η;

3: Update {Ã(t)
··k}k,t, {Ã(t)

··k}k,t, and {Ã··k}k
4: /* Update global parameters */
5: for t = 1,. . . , T do
6: Update {ϕ(t)

k }k (Eqs. 5.3.19; 5.3.25)
7: end for
8: end for

Substituting Eqs.(5.3.20;5.3.22;5.3.23) in Eq.(5.1.3), we obtain the following SGRLD update
rule as (

ψ(t)
k

)∗
=

{
ψ(t)

k +
ϵl

M(t)
k

[ (
ρm̃(t)

k + ηVϕ̃(t−1)
k

)
−
(

m̃(t)
·k + ηV

)
ψ(t)

k

]
+ N

(
0,

2ϵl

M(t)
k

[
diag(ψ(t)

k )−ψ(t)
k ψ(t)

k
T])}

∠

, (5.3.24)

where ϕ̃(t)
k ≡ [ϕ(t)

1k , . . . , ϕ(t)
(N−1)k], and {·}∠ denotes the constraint that ψ(t)

uk ≥ 0,

and ∑V−1
u=1 ψ(t)

uk ≤ 1.
It is computational expensive to simulate the multivariate normal distribution in Eq.(5.3.24)

using Cholesky decomposition. Therefore, we resort to a recently advanced fast sampling algo-
rithm (Cong et al. 2017). Instead of updating ψ(t)

k , we can equivalently update ϕ(t)
k that is drawn

from a related multivariate normal distribution with a diagonal covariance matrix as(
ϕ(t)

k

)∗
=

{
ϕ(t)

k +
ϵl

M(t)
k

[ (
ρm̃(t)

k + ηVϕ̃(t−1)
k

)
−
(

m̃(t)
·k + ηV

)
ϕ(t)

k

]
+ N

(
0,

2ϵl

M(t)
k

[
diag(ϕ(t)

k )
])}

∠

. (5.3.25)

For t = 1, we replace ηVϕ̃(t−1)
k by η in the update rule. Our SG-MCMC algorithm iteratively

updates the parameters {ϕ(t)
k }k,t and samples the remaining ones as in the proposed Gibbs sampler.

The main procedure is summarized in Algorithm 6.

5.4 E X P E R I M E N T S

We now present the experimental results on several real-world datasets to evaluate the accuracy
and efficiency of the proposed model. The proposed model is referred to as D2EPM (the Dirichlet
Dynamic Edge Partition Model) with Gibbs sampler, Expanded-Mean SGRLD and Reduced-
Mean SGRLD, as D2EPM-Gibbs, D2EPM-EM-SGRLD, D2EPM-RM-SGRLD, respectively. We
compare our model with two baselines: (1) the dynamic stochastic block model (DSBM) (K. S.
Xu et al. 2014). (2) the gamma process dynamic network model (GaP-DNM) that captures the evo-
lution of nodes’ memberships using a gamma Markov chain construction (S. Yang and H. Koeppl



5.4 E X P E R I M E N T S 71

Method Hypertext Facebook Like Facebook Message NIPS
DSBM 0.703 0.848 0.814 0.899
GaP-DNM 0.766 0.887 0.888 0.887
D2EPM-Gibbs 0.812 0.912 0.929 0.895
D2EPM-EM-SGRLD 0.808 0.871 0.926 0.902
D2EPM-RM-SGRLD 0.809 0.868 0.927 0.916

Table 5.1: Link prediction on temporal network data. We report the averaged area under the ROC
curve (AUROC) over five different training/test partitions, and highlight the best scores in bold.

2018b). We also compare the proposed SG-MCMC algorithms in terms of link prediction accuracy
vs wall-clock run time.

We chose the following datasets in our experiments:

1. Hypertext: This dataset (Mastrandrea et al. 2015) contains the interactions between 113
participants at the 2009 Hypertext conference. We generated a dynamic network assuming
each hour as a snapshot, and creating an edge between each pair of participants at time t if
they have at least one contact recorded during that snapshot.

2. Facebook Like2: This dataset contains 33,720 broadcast messages among 899 students over
7 months from a Facebook-like forum. We generated a dynamic network aggregating the
data into monthly snapshots, and creating an edge between each pair of nodes if the presence
of messages between them is recorded during that snapshot.

3. Facebook Message3: This dataset contains 59,835 private messages among 1,899 college
students over 7 months. We generated a dynamic network aggregating the data into monthly
snapshots, and creating an edge between each pair of nodes if the presence of messages
between them is recorded during that snapshot.

4. NIPS Co-authorship4: This dataset contains 4,798 publications by 5,722 authors in the
NIPS conference over 10 years. We generated a dynamic network aggregating the data into
yearly snapshots and creating an edge between two authors in a snapshot if they appear on
the same publication in that year.

First, we compared the accuracy of all the models in terms of link prediction. We trained
all the methods using 80% of randomly chosen entries (either links or non-links) in the given
network data, and used the remaining 20% as the held-out data to test the trained model. Each
experiment is conduced five times with different training/test partitions, and the averaged Area
Under the Receiver Operating Characteristi curve (AUROC) for all the data sets is reported in the
final results. The proposed method is implemented in MATLAB. Unless specified otherwise, we
initialized the GaP-DNM and the proposed D2EPM with K = 50 because both two models can
automatically determine the number of communities. We ran both GaP-DNM and D2EPM-Gibbs
for 3000 iterations with 2000 burn-in and 1000 collection iterations. We set the hyperparameters
as gk = 0.1, a0 = b0 = 0.01, c0 = 1 and α = 1/K. A sensitivity analysis revealed that we obtain
similar results when instead setting gk = 0.01 or 1. The SG-MCMC algorithms were also run for

2 https://tinyurl.com/ycdezko6.
3 https://snap.stanford.edu/data/CollegeMsg.html.
4 http://www.cs.huji.ac.il/~papushado/nips_collab_data.html.

https://tinyurl.com/ycdezko6
https://snap.stanford.edu/data/CollegeMsg.html
http://www.cs.huji.ac.il/~papushado/nips_collab_data.html
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Method Hypertext Facebook Like Facebook Message NIPS
GaP-DNM 0.751 0.953 2.436 12.759
D2EPM-Gibbs 0.745 0.755 1.597 9.383
D2EPM-EM-SGRLD 0.317 0.580 0.969 4.931
D2EPM-RM-SGRLD 0.395 0.485 1.032 4.351

Table 5.2: Comparison of computation time (seconds).

the same number of iterations, with mini-batch size equal to one-fourth of the number of nonzero
edges in the training data. We used the stepsize ϵl = (a(1 + l/b))−c and the optimal parameters
a, b, c as in (Patterson et al. 2013; Ma et al. 2015). All the experiments are conducted on a standard
computer with 24 GB RAM.

Table 5.1 shows the experimental results on the link prediction task. Overall, the D2EPM (both
Gibbs sampling and SG-MCMC algorithms) outperform the other baselines. Specifically, the sam-
pling based methods (GaP-DNM and D2EPM-Gibbs) achieve better accuracy than the DSBM
based on the extended Kalman filter on the relatively small datasets although the former two meth-
ods require a sufficiently large number of iterations to converge. For the medium-sized NIPS
dataset, the SG-MCMC algorithms perform better than the Gibbs sampling, suggesting the batch
Gibbs sampler mixes poorly. Using the extended Kalman filter to perform inference, DSBM is
much faster than the probabilistic models. We report per-iteration computation time of GaP-DNM,
D2EPM-Gibbs, D2EPM-EM-SGRLD and D2EPM-RM-SGRLD with Matlab/MEX/C implemen-
tation on all these datasets in Table. 5.2. In Figure 5.1, we compare the AUROC vs wall-clock run
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Figure 5.1: Running time comparison of D2EPM-Gibbs, D2EPM-EM-SGRLD, D2EPM-RM-
SGRLD on Facebook message (left) and NIPS Co-authorship datasets (right).

time for D2EPM-Gibbs, D2EPM-EM-SGRLD, D2EPM-RM-SGRLD on Facebook message and
NIPS datasets. For Facebook message dataset, we found that batch Gibbs sampler converges very
fast, and the SG-MCMC algorithms converge to the same level of accuracy in comparable time.
For the larger network (NIPS dataset), the SG-MCMC algorithms converge much faster than the
Gibbs sampler.

5.5 C O N C L U S I O N S

We presented a novel dynamic edge partition model for temporal relational learning by captur-
ing the evolution of nodes’ memberships over time using a Dirichlet Markov chain construction.
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The appropriate number of latent communities is automatically inferred via the hierarchical beta-
gamma prior. In particular, the new framework admits a simple-to-implement Gibbs sampling
scheme using the negative-binomial augmentation technique, and also enables us to develop a scal-
able inference algorithm based on the SG-MCMC framework. We demonstrate the accuracy and
efficiency of the novel methods on several real-world datasets. The proposed framework allows us
to incorporate available node-specific side information via the Pólya-Gamma augmentation tech-
nique (Polson et al. 2013), and also to infer a tree-structured latent communities hierarchy using
the gamma belief-net (M. Zhou et al. 2016).
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Factor analysis (FA) is a powerful tool widely used to infer low-dimensional structure in multi-
variate data. More specifically, FA models attempt to represent a data matrix X ∈ RN×D by the
product of two matrices plus residual noise as

X = FG + E,

where F ∈ RN×K denotes the factor score matrix, and G ∈ RK×D denotes the factor loading
matrix; E ∈ RN×D is the residual noise matrix. For high-dimensional data, FA models imposing
sparsity-inducing priors (West 2003; Rai and Daume III 2008; Paisley and L. Carin 2009; Knowles
and Z Ghahramani 2011) or regularizations (Zou, Hastie, and Tibshirani 2006; Witten, Hastie,
and Tibshirani 2009) over the inferred loading matrices are developed to improve interpretability
of the inferred low-dimensional structure. For example, in gene expression analysis, a factor
loading matrix characterizing the connections between transcription factors and regulated genes
are expected to be sparse (Carvalho et al. 2008).

In many real-world applications, we often deal with multiple related datasets – each compris-
ing a group of variables – that need to be factorized in a common subspace. For instance, latent
Dirichlet allocation (D. M. Blei et al. 2003) and Poisson factor analysis models (M. Zhou and L.
Carin 2015b) have been developed to learn the shared latent topics among multiple documents.
Recently, group factor analysis (GFA) models (Virtanen et al. 2012; Bunte et al. 2016) using the
automatic relevance determination (ARD) prior have been proposed for drug sensitivity prediction
and functional neuroimaging. However, the modeling flexibility achieved by these GFA models
comes at a price as their inference usually requires Markov chain Monte Carlo (MCMC) to perform
posterior computation, which makes them to scale poorly for large-scale GFA problems. Alterna-
tively, variational Bayesian inference has been shown to be efficient for large-scale data analysis
by making an independence assumption among latent variables and parameters (Wainwright and
Jordan 2008). However, this strong assumption may lead to very inaccurate results in practical
applications, especially for GFA problems where latent variables might be tightly coupled.

Motivated by this limitation, we propose a computationally efficient collapsed variational in-
ference algorithm for the nonparametric Bayesian group factor analysis (NGFA) model. The pro-
posed NGFA model is built upon the hierarchical beta process (HBP) (Thibaux et al. 2007). We
note that the HBP has been investigated in (B. Chen et al. 2011; Gupta et al. 2012a; Gupta et
al. 2012b) for joint modeling of multiple data matrices utilizing MCMC, but again showed poor
scalability and slow convergence. For nonparametric Bayesian models, such as the hierarchical
Dirichlet process (HDP) topic model (Teh et al. 2007) and the hierarchical Dirichlet process hid-
den Markov model (Fox et al. 2011), collapsed Gibbs sampling (CGS) algorithms are typically
employed to perform posterior computation because CGS rapidly convergences onto the true pos-
terior. However, it remains challenging to assess the convergence of CGS algorithms for practical
use. To address this issue, collapsed variational inference algorithms (Teh et al. 2006; Teh et al.
2008; J. Foulds et al. 2013) are developed for topic models by integrating out model parameters,
and then applying the mean field approximation to the latent variables. Recently, collapsed vari-
ational inference algorithms have been developed for hidden Markov models (Wang et al. 2013),

75
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nonparametric relational models (Ishiguro et al. 2017) and Markov jump processes (B. Zhang et al.
2017) with encouraging results.

In this chapter, we aim to develop a nonparametric Bayesian group factor analysis (NGFA)
model, and a collapsed variational inference algorithm to perform fast inference for the developed
NGFA. We make the following contributions:

• We tackle the group factor analysis problems using a Bayesian nonparametric method based
on the hierarchical beta Bernoulli process. The total number of factors is automatically
learned from data. Specifically, the NGFA model induces both group-wise and element-
wise structured sparsity effectively compared to state-of-the-art GFA methods.
• An efficient collapsed variational inference algorithm is proposed to infer the NGFA model.
• We apply the developed method to real world multiple related datasets, with encouraging

results.

This chapter is organized as follows. In Section 5.1, we describe the nonparametric Bayesian group
factor analysis model. The developed collapsed variational inference algorithm for the NGFA is
introduced in Section 5.2. Experimental results are presented in Section 5.3. Finally, conclusions
and possible directions for future research are discussed in Section 5.4.

6.1 N O N PA R A M E T R I C B AY E S I A N G RO U P F AC T O R A N A LY S I S

Given multiple related data matrices X(1), X(2), . . . , X(M), each with N samples, i.e., X(m) ∈ RN×Dm ,
our goal is to factorize each dataset X(m) into the product of a common factor matrix F = [f1, . . . , fK]
of size N × K, and a group-specific factor loading matrix G(m) of size K× Dm as

X(m) = FG(m) + E(m), (6.1.1)

where E(m) = [e(m)

1 , . . . , e(m)

Dm
] is assumed to be Gaussian noise for the m-th dataset or group.

We impose independent normal priors over e(m)

d ∈ RN , i.e., e(m)

d ∼ N (0, diag(τ(m)

1 , . . . , τ(m)

N )),
where τ(m)

n controls the variance of N-th sample in the m-th group. As commonly used in factor
analysis (Rai and Daume III 2008; Paisley and L. Carin 2009; Knowles and Z Ghahramani 2011),
we put a normal prior on each factor fk, i.e., fk ∼ N (0, IN), where IN is an identity matrix of
size N. To explicitly capture the sparsity, we model the factor loading matrix G(m) for each group
by the element-wise product of a binary matrix Z(m) and a real-valued weight matrix W(m), i.e.,
G(m) = Z(m) ⊙W(m). More specifically, we place a normal prior over each element of W(m), i.e.,
w(m)

kd ∼ N (0, (λ(m)

kd )
−1). To allow the number of factors K to be automatically inferred from data,

we model each row of Z(m) as a draw from a group-specific Bernoulli process.

As our goal is to factorize multiple related data matrices using a common set of factors, we
naturally consider the hierarchical beta process (Thibaux et al. 2007) that allows us to generate a
set of latent factors from a global beta process B, and then allow the generated factors to be shared
among all the groups. The usage of the generated factors in each group is determined by the group-
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specific beta process A(m). More specifically, the (truncated) hierarchical beta Bernoulli process
is

fk ∼ N (0, IN), (6.1.2)

βk ∼ Beta(κ0/K, κ0(K− 1)/K),

π(m)

k ∼ Beta(α(m)βk, α(m) β̄k),

B ≡
K

∑
k=1

βkδfk
,

A(m) ≡
K

∑
k=1

π(m)

k δfk
,

z(m)

kd ∼ Bernoulli(π(m)

k ),

where β̄k ≡ 1 − βk, and K is a truncation level that is set sufficiently large to ensure a good
approximation to the truly infinite model. The concentration parameters of the global beta process
and the local group-specific beta process are κ0 and α(m), respectively. The total number of factors
shared among all groups is determined by κ0, and the amount of variability of each A(m) around B is
determined by α(m). To improve the flexility of the model, we place gamma priors on λ(m)

kd , τ(m)
n and

α(m), respectively, as λ(m)

kd ∼ Gamma(g0, h0), τ(m)
n ∼ Gamma(e0, f0), α(m) ∼ Gamma(c0, d0).

The graphical representation of the NGFA model is shown in shown in Fig. 6.1 (top).

6.2 C O L L A P S E D VA R I AT I O N A L I N F E R E N C E

The main idea of collapsed variational inference is to marginalize out model parameters, and then
apply the mean field method to approximate the distribution over latent variables. We note that
marginalizing out the parameters induces dependencies among the latent variables. However, each
latent variable interacts with the remaining variables only through the sufficient statistics (i.e. the
field) in the collapsed space, and the influence of any single variable on the field is small. Hence,
the dependency between any two latent variables is weak, suggesting that the mean field assump-
tion is better justified in the collapsed space. In our case, we first marginalize out the group-specific
beta process parameters to obtain the marginal distribution over latent variables. We then employ
the variational posterior to approximate the distribution of latent variables and the remaining pa-
rameters.
Notation. When expressing the conditional distribution, we will use the shorthand “–” to denote
full conditionals, i.e., all other variables. For the sake of clarity, we use X to denote the set of matri-
ces
(
X(1), X(2), . . . , X(M)

)
. Similarly, let Z denote

(
Z(1), . . . , Z(M)

)
, and π denote

(
π(1), . . . , π(M)

)
.

We repeatedly exploit the following three results (Teh et al. 2008) to derive the collapsed varia-
tional inference algorithm for the NGFA.
Result 1. The geometric expectation of a non-negative random variable y is defined as G[y] ≡
exp(E[ln(y)]). If y is gamma distributed, i.e., fY(y | a, b) ∝ ya−1e−by, the geometric expectation
of y is G[y] = exp(Ψ(a))

b , where Ψ(y) = ∂ ln Γ(y)
∂y is the digamma function. For a beta distributed

random variable y, i.e., fY(y | a, b) ∝ ya−1(1− y)b−1, the geometric expectation of y is G[y] =
exp[Ψ(a)]

exp[Ψ(a+b)] . If y1, . . . , yK are mutually independent, we have, G
[

∏K
k=1 yk

]
= ∏K

k=1 G[yk].
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Figure 6.1: Top: The graphical representation of the proposed model. Bottom: Factor graph of
the model with auxiliary variables.
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Result 2. According to the central limit theorem, if y is the sum of N independent Bernoulli
random variables, i.e., y = ∑N

i=1 ui, where ui ∼ Bernoulli(ξi), then for large enough N, y is
well approximated by a Gaussian random variable with mean and variance as

E [y] =
N

∑
i=1

ξi, V [y] =
N

∑
i=1

ξi (1− ξi) ,

respectively. Moreover, the expectation of ln(y) can be approximated using the second-order
Taylor expansion (Hoef 2012) as

E [ln(y)] ≈ ln(E [y])− V [y]
2(E [y])2 .

Result 3. If l is the sum of independent Bernoulli random variables, i.e., l = ∑i ui, where
ui ∼ Bernoulli(ξi), we use p+(l) to denote the probability of l being positive, i.e.,

p+(l) ≡ p(l > 0) = 1−∏
i

p(ui = 0)

= 1− exp

[
∑

i
ln(1− ξi)

]
.

Accordingly, the expectation and variance conditional on l > 0 are defined as E+[l] ≡ E[l]
p+(l)

and

V+[l] ≡ V[l]
p+(l)

, respectively. If y is then a Chinese restaurant table (CRT) (Pitman 2006) distributed

random variable, i.e., fY(y | a, l) = Γ(a)
Γ(a+l) [

l
y]a

y, where y = 0, 1, . . . , l, and [n
m] denoting the

unsigned Stirling number of the first kind, then the expectation of y can be closely approximated
using the improved second-order Taylor expansion as

E[y] ≈ G[a]p+(l)
(

Ψ
(
G[a] + E+[l]

)
−Ψ(G[a]) +

V+[l]Ψ′(G[a] + E+[l])
2

)
,

where Ψ′(y) = ∂2 ln Γ(y)
∂y2 is the trigamma function.

6.2.1 Collapsed representation

First, we describe how to obtain the marginal distribution of latent variables. In the next subsection,
we will then describe how to derive the CVI algorithm in the collapsed space.

For the NGFA introduced in the previous section, integrating out π using the beta-Bernoulli
conjugacy yields the marginal distribution of Z as

p(Z | β, α) =
∫

p(Z | π)p(π | β, α)dπ = ∏
m,k

Γ(α(m))

Γ(α(m) + Dm)

Γ(α(m)βk + n̂mk)

Γ(α(m)βk)

Γ(α(m) β̄k + ñmk)

Γ(α(m) β̄k)

(6.2.1)

where we define n̂mk ≡ ∑d 1(z
(m)

kd = 1) and ñmk ≡ ∑d 1(z
(m)

kd = 0), and 1(·) is the standard
indicator function.
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As the ratios of gamma functions in Eq. 6.2.1 give rise to difficulties for updating hyperpa-
rameter posteriors, we augment the marginal distribution Z by introducing three sets of auxiliary
variables. More specifically, using the auxiliary variable method (Teh et al. 2007), the first ratio of
gamma function can be re-expressed as

Γ(α(m))

Γ(α(m) + Dm)
=

1
Γ(Dm)

∫ 1

0
ηα(m)

m (1− ηm)
Dm−1

(
1 +

Dm

α(m)

)
dηm. (6.2.2)

Via the relation between the gamma function and the Stirling numbers of the first kind (Teh et al.
2007), the second and third ratio of gamma functions can be re-expressed, respectively, as

Γ(α(m)βk + n̂mk)

Γ(α(m)βk)
=

n̂mk

∑
smk=0

[
n̂mk
smk

]
(α(m)βk)

smk , (6.2.3)

Γ(α(m) β̄k + ñmk)

Γ(α(m))
=

ñmk

∑
tmk=0

[
ñmk
tmk

](
α(m) β̄k

)tmk . (6.2.4)

Substituting (Eqs. 6.2.2; 6.2.3; 6.2.4) into Eq. 6.2.1, we immediately obtain the joint distribution
of the latent and auxiliary variables as

p(Z, s, t, η | β, α) ∝ ∏
m,k

ηα(m)−1
m (1− ηm)

Dm−1 (6.2.5)

×
[

n̂mk
smk

]
(α(m)βk)

smk

[
ñmk
tmk

](
α(m) β̄k

)tmk .

The factor graph of the expanded system with auxiliary variables is shown in Fig. 6.1 (bottom).
The conditional distribution of a single latent variable z(m)

kd can be derived using the marginal
distribution of Z and the likelihood function according to Eq. 6.1.1 as

p(z(m)

kd = 1 | −) ∝ exp
[
ln(α(m)βk + n̂¬d

km)
]

(6.2.6)

× exp

[
−1

2 ∑
n

τ(m)
n

((
w(m)

kd

)2
f 2
nk − 2w(m)

kd x̃(m)

nd
¬k
)]

,

where (x̃(m)

nd )
¬k ≡

(
x(m)

nd −∑j ̸=k z(m)

jd w(m)

jd fnj
)
, and n̂¬d

km ≡ ∑d′ ̸=d 1(z
(m)

kd′ = 1).

6.2.2 Variational approximation

Next, we shall introduce the variational approximation for our expanded system. For the sake of
simplicity, the remaining parameters (W, F, β, λ, τ, α) are denoted by θ. Formally, the variational
posterior over the augmented variables system is assumed to be of the form

q(Z, θ, s, t, η) = q(θ)q(s, t, η | Z)q(Z),
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where q(θ) ≡ q(W)q(F)q(β)q(λ)q(τ)q(α), and we define the variational posterior for each
parameter as

q(W) = ∏
m,d,k
N (w(m)

kd ; µ(m)
wkd , σ(m)

wkd),

q(F) = ∏
n,k
N ( fnk; µ fnk

, σfnk
),

q(β) = ∏
k

Beta(βk; ak, bk),

q(λ) = ∏
m,d,k

Gamma(λ(m)

kd ; e(m)

kd , f (m)

kd ),

q(τ) = ∏
m,n

Gamma(τ(m)
n ; g(m)

n , h(m)
n ),

q(α) = ∏
m

Gamma(α(m); c(m), d(m)),

q(Z) = ∏
m,d,k

Bernoulli(z(m)

kd ; ρ(m)

kd ),

q(s|Z) = ∏
m,k

[
n̂mk
smk

]
(G[α(m)βk])

smk ,

q(t|Z) = ∏
m,k

[
ñmk
tmk

]
(G[α(m)(1− βk)])

tmk ,

q(η|Z) = ∏
m

Beta(ηm;E
[
α(m)

]
, Dm).

Note that the true posterior p(s, t, η | Z) is used in our variational update subsequently.
Evidence Lower Bound (ELBO): The log marginal likelihood of data is lower bounded as

log p(X | κ0) ≥ E [p(X, Z, θ, s, t, η | κ0)]− E [q(Z, θ, s, t, η)]

= Eq(θ,Z)

[
Eq(s,t,η|Z)

[
log

p(X, Z, θ, s, t, η | κ0)

q(s, t, η | Z)

]
− log q(θ, Z)

]
= Eq(θ,Z) [log p(X, Z, θ | κ0)− q(θ, Z)] , (6.2.7)

where the second equality holds provided that q(s, t, η | Z) is set to its true posterior. To derive the
variational update for each parameter, we expand the ELBO for each term in Eq. 6.2.7 as

log p(X | κ0) ≥ E [log p(X|W, Z, F, τ)]

+ E [log p(W)]− E [log q(W)] + E [log p(Z)]− E [log q(Z)]
+ E [log p(F)]− E [log q(F)] + E [log p(λ)]− E [log q(λ)]
+ E [log p(τ)]− E [log q(τ)] + E [log p(α)]− E [log q(α)]
+ E [log p(β)]− E [log q(β)] . (6.2.8)

The variational updates for each parameter are obtained by taking the derivate of the ELBO in
Eq. 6.2.8 w.r.t. each parameter and setting it to zero.
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Updating q(Z): The variational update for each latent variable z(m)

kd is

q(z(m)

kd = 1) ∝ exp
(
E

q(Z,θ \ z(m)
kd )

[ln p(X, Z, θ | κ0)]

)
∝ exp

(
E

q(Z,θ \ z(m)
kd )

[
ln p(z(m)

kd = 1 | −)
])

, (6.2.9)

where (Z, θ \ z(m)

kd ) means all the variables and parameters excluding z(m)

kd .
Plugging Eq. 6.2.6 into Eq. 6.2.9, we obtain the variational update for q(z(m)

kd = 1) as

q(z(m)

kd = 1) (6.2.10)

∝ exp

{
E
[
ln
(

α(m)βk + n̂¬d
mk

)]
− 1

2 ∑
n
E
[
τ(m)

n
] (

E
[(

w(m)

kd
)2]

E
[

f 2
nk
]
− 2E

[
w(m)

kd
]
E
[

fnk
]

x̃(m)

nd
¬k
)}

.

The exact computation of the log count in Eq. 6.2.10 is too expensive in practice. According to
Result 2, we can approximate it as

E
[
ln
(

α(m)βk + n̂¬d
mk

)]
≈ ln

(
G[α(m)βk] + E

[
n̂¬d

mk

])
−

V
[
n̂¬d

mk

]
2
(
G[α(m)βk] + E

[
n̂¬d

mk
])2 ,

where the mean and variance of n̂¬d
mk are given by

E
[
n̂¬d

mk

]
= ∑

d′ ̸=d
q(z(m)

kd = 1),

V
[
n̂¬d

mk

]
= ∑

d′ ̸=d
q(z(m)

kd = 1)q(z(m)

kd = 0).

Updating auxiliary variables: Now we explain how to update the auxiliary variables efficiently
using Gaussian approximation techniques. The variational posteriors for the auxiliary variables η
is

q(η | Z) ∝ ∏
m

η
E[α(m) ]−1
m (1− ηm)

Dm−1.

As η is beta distributed, via the geometric expectation of Result 1, we have

E[ln(ηm)] = ln [G(ηm)] = Ψ(E[α(m)])−Ψ(E[α(m)] + Dm).

The variational posteriors for the auxiliary variables s is

q(s | Z) ∝ ∏
m,k

[
n̂mk
smk

]
(G[α(m)βk])

smk , (6.2.11)

where the expectation of s depends on Z through the count n̂mk that can take many values. Hence,
the exact computation of Eq. 6.2.11 is too expensive. According to Result 3, we use the improved
second-order Taylor expansion to approximate the expectation of smk as

E[smk] ≈ G[α(m)βk]p+(n̂mk)
(

Ψ
(
G[α(m)βk] + E+[n̂mk]

)
−Ψ(G[α(m)βk]) +

V+[n̂mk]Ψ′(G[α(m)βk] + E+[n̂mk])

2

)
.
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Likewise, we can derive the variational update for t in the same manner. Following the exponen-
tial family computation (Wainwright and Jordan 2008), the variational updates for the remaining
parameters are obtained via the conjugacy of our model specification.
Updates for the sufficient statistics: Using some algebraic manipulations, we can update the
sufficient statistics as

E [n̂mk] = ∑
d

ρ(m)

kd , (6.2.12)

E [ñmk] = ∑
d
(1− ρ(m)

kd ),

p+n̂mk) = 1− exp
(
∑
d

log[1− ρ(m)

kd ]
)
,

p+(ñmk) = 1− exp
(
∑
d

log[ρ(m)

kd ]
)
,

E+[n̂mk] =
E[n̂mk]

p+(n̂mk)
,

E+[ñmk] =
E[ñmk]

p+(ñmk)
,

V [n̂mk] = V [ñmk] = ∑
d
(1− ρ(m)

kd )ρ
(m)

kd ,

V+[n̂mk] =
V[n̂mk]

p+(n̂mk)
,

V+[ñmk] =
V[ñmk]

p+(ñmk)
.

Updates for σ(m)
wkd and µ(m)

wkd : Via the normal-normal conjugacy, we update the variational parame-
ters σ(m)

wkd and µ(m)
wkd as

σ(m)
wkd =

(
E
[
λ(m)

kd

]
+ E

[
z(m)

kd

]
∑n E

[
τ(m)

n

]
E
[

f 2
nk

])−1
, (6.2.13)

µ(m)
wkd = σ(m)

wkd

(
E
[
z(m)

kd

]
∑n E

[
τ(m)

n

]
E [ fnk] x̃(m)

nd
−k
)

. (6.2.14)

Updates for the auxiliary variables s, t: Exploiting Result 3, we update the auxiliary variables
s, t as

E[smk] ≈ G[α(m)βk]p+(n̂mk)
(
Ψ
(
G[α(m)βk] + E+[n̂mk]

)
−Ψ(G[α(m)βk]) +

V+[n̂mk]Ψ′(G[α(m)βk] + E+[n̂mk])

2
)
,

E[tmk] ≈ G[α(m) β̄k]p+(ñmk)
(
Ψ
(
G[α(m) β̄] + E+[ñmk]

)
−Ψ(G[α(m)βk]) +

V+[ñmk]Ψ′(G[α(m) β̄] + E+[ñmk])

2
)
. (6.2.15)
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Updates for σfnk
and µ fnk

: Using the normal-normal conjugacy, the variational parameters σfnk
and µ fnk

can be updated as

σfnk
=

(
∑m,d E

[
τ(m)

n

]
E
[
z(m)

kd

]
E

[(
w(m)

kd

)2
]
+ 1
)−1

, (6.2.16)

µ fnk
= σfnk

(
∑m,d E

[
τ(m)

n

]
E
[
z(m)

kd

]
E
[
w(m)

kd

]
x̃(m)

nd
−k
)

. (6.2.17)

Updates for ak and bk:

ak = κ0/K + E [s·k] , (6.2.18)

bk = κ0(1− 1/K) + E [t·k] .

Updates for e(m)

kd and f (m)

kd : Via the gamma-normal conjugacy, we have

e(m)

kd = e0 + 1/2, (6.2.19)

f (m)

kd = f0 +

(
E

[(
w(m)

kd

)2
])

/2.

Updates for g(m)
n and h(m)

n : The variational parameters g(m)
n and h(m)

n can be updated using the
gamma-normal conjugacy as

g(m)
n = g0 + (Dm)/2, (6.2.20)

h(m)
n = h0 +

(
E
[
∥x(m)

n −G(m)fn∥2
])

/2.

Updates for c(m) and d(m):

c(m) = c0 + E [sm·] + E [tm·] , d(m) = d0 − E [log ηm] . (6.2.21)

Updates for the auxiliary variables η: As ηm is beta distributed, we apply Result 1 and then
have

E[log ηm] = Ψ(E[α(m)])−Ψ(E[α(m)] + Dm). (6.2.22)

Altogether, our CVI algorithm for the NGFA is summarized in Algorithm 7.
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Algorithm 7 Collapsed variational inference for the NGFA

Input: data X, model log p(X, Z, θ, s, t, η), maximum iteraction J , variational approximation
q(Z, θ, s, t, η; Φ), and hyper-parameter κ0
Output: variational parameters Φ1

Initialize Φ randomly.
for iter = 1 : J do

for k = 1 to K+
2 do

Update ak, bk (Eq. 6.2.18)
for m = 1 to M do

Update the sufficient statistics in (Eq. 6.2.12)
Calculate E[smk], E[tmk] (Eq. 6.2.15)
for d = 1 to Dm do

Update ρ
(m)
kd (Eq. 6.2.10)

Update σ
(m)
wkd , µ

(m)
wkd (Eq. 6.2.13; 6.2.14)

Update e(m)
kd and f (m)

kd (Eq. 6.2.19)
end for

end for
for n = 1 to N do

Update σfkn
and µ fkn

(Eq. 6.2.16; 6.2.17)
end for

end for
for m = 1 to M do

Update c(m) and d(m) (Eq. 6.2.21)
Calculate E[log ηm] (Eq. 6.2.22)
for n = 1 to N do

Update g(m)
n and h(m)

n (Eq. 6.2.20)
end for

end for
end for

6.3 E X P E R I M E N T S

In this section, we compare the nonparametric Bayesian group factor analysis using our proposed
CVI algorithm with the state-of-the-art GFA models. We evaluate the proposed CVI algorithm
on both synthetic data and real-world applications. In all our experiments, we set κ0 = 1, c0 =
0.1, d0 = 0.1, g0 = 0.1, h0 = 0.1, e0 = 0.1, f0 = 0.1. Similar results are obtained when instead
setting κ0 = 0.1, κ0 = 10 in a sensitivity analysis.

2 For the sake of clarity, we use Φ to denote all the variational parameters.
2 We use K+ to denote the number of active factors as the hierarchical beta Bernoulli prior can shrink the coefficients of the

redundant factors to zeros.
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6.3.1 Simulated data

For our evaluations on synthetic data, we adopt the simulation study in (Zhao et al. 2016): we
performed two simulations (Simulation 1 and Simulation 2) which include four groups of data
with the dimensionality Dm = 100 for each group, respectively. The numbers of samples in the
four groups are set to N = {20, 40, 60, 100}, respectively. In Simulation 1, we set the number of
latent factors K = 6, and generated data only with sparse factor loadings. Specifically, the first
three factors are specific to X(1), X(2) and X(3), respectively, and the last three are shared among
all groups. In Simulation 2, we set K = 8 and generated data with both sparse and dense factor
loadings. The sparsity pattern is described in Table 6.1, and also shown in Fig. 6.3.

Simulation 1 Simulation 2
1 2 3 4 5 6 1 2 3 4 5 6 7 8

X(1) s - - s - - s - - - d - - -
X(2) - s - s s s - s - s - d - -
X(3) - - s - s s - - s s - - d -
X(4) - - - - - s - - s - - - - d

Table 6.1: Sparsity pattern of the factor loading matrices in Simulation 1 and 2. “s” represents a
sparse column vector; “d” represents a dense column vector; “-” represents no contribution to that
group from the factor.

The sparsity of the sparse factor loadings is handled by setting 90% of the entries in each loading
column to zero at random, and the nonzero entries in both the sparse and dense factor loadings are
generated from a Gaussian distribution N (0, 4). The latent factors are generated from a standard
Gaussian distribution (i.e., zero mean and unit variance). We generated the residual noise i.i.d.
from a Gaussian distribution N (0, 1).

We compare the following methods:

1. GFA: The Bayesian group factor analysis model (Virtanen et al. 2012) with column-wise
ARD priors to induce column-wise sparsity on the factor loading matrix. For the GFA model,
we used the GFA package with the default parameters setting as set in the code released
online. 3 The initial number of factors is set to the true values. The optimization method is
L-BFGS with the maximum iterations set to 105.

2. sGFA: The extension of the GFA with element-wise ARD priors inducing element-wise
sparsity (Bunte et al. 2016). For the sGFA model, the initial number of factors is set
to half of the minimum of the sample size and the total number of variables, i.e., K =
min(N, ∑m Dm). The total number of MCMC iterations is set to 105 with sampling steps
set to 103 and thinning steps set to 5.

3. ssGFA: The extension of the GFA with the spike-and-slab prior (Bunte et al. 2016), for
which we again use the GFA package with the spike-and-slab prior. We set the noise pa-
rameters by the informativeNoisePrior function to prevent overfitting. The initial
number of factors is set to half of the minimum of the sample size and the total number of
variables. The total number of MCMC iterations is set to 105 with sampling steps set to 103

and thinning steps set to 5.

3 https://cran.r-project.org/web/packages/GFA/index.html.
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4. BASS: The Bayesian group factor analysis with structured sparsity priors (BASS) (Zhao et
al. 2016), for which we use the code released in (Zhao et al. 2016). 4 The BASS is initialized
using 50 iterations of MCMC and followed by expectation maximization until convergence,
reached when both the number of nonzero loadings do not change for t iterations and the
log-likelihood change is less than 1× 10−5 within t iterations. The initial number of factors
is set to 10 in Simulation 1 and 15 in Simulation 2 as described in (Zhao et al. 2016).

We performed 20 runs for each method, in particular to evaluate the sensitivity of our inference
algorithm to initializations since CVI algorithms are only guaranteed to converge to a local opti-
mum. For all the experiments, we simply set the initial number of factors for our method to be the
minimum of the sample size and the dimensionality of each group, and ran the model with CVI
algorithm until convergence.

To evaluate the performance of the methods on the recovery of sparse and dense factor loadings,
we used the sparse and dense stability index defined in (Zhao et al. 2016) to quantify the distance
between the true and the inferred factor loading matrices. Given the absolute correlation matrix
C ∈ RK1×K2 of the columns of two sparse matrices, the sparse stability index (SSI) is calculated
as

SSI =
1

2K1

K1

∑
r=1

(
max(Cr:)−

∑l 1(Crl > Ĉr:)Crl

K2 − 1

)
+

1
2K2

K2

∑
l=1

(
max(C:l)−

∑r 1(Crl > Ĉ:l)Crl

K1 − 1

)
,

where Cr: and C:l denote the r-th row and l-th column of the matrix C, respectively; Ĉr: and Ĉ:l
denote the mean of the r-th row and l-th column of the matrix C, respectively. The SSI is invariant
to column-scaling and -permutation; larger values indicate better recovery.

The dense stability index (DSI) measures the distance between dense matrix columns. Given
two dense matrices M1 ∈ RK1×D and M2 ∈ RK2×D, the DSI is defined as

DSI =
1

D2 tr(M1MT
1 −M2MT

2 ).

The DSI is invariant to orthogonal matrix transformation, column-scaling and -permutation; the
lower values indicate better recovery.

Following the strategy in (Zhao et al. 2016), in Simulation 1 where all factor loadings are sparse,
we calculated the SSI between the true and recovered factor loading matrices. In Simulation 2, we
first thresholded the recovered factor loading matrix entries with a sparsity threshold set to 0.15.
Then, we categorized the columns of each recovered factor loading matrix into sparse columns and
dense columns by selecting the first 4 columns with most nonzero entries as dense columns, and
the remaining columns as sparse columns. We calculated SSI between the true and the recovered
sparse factor loading columns, and DSI between the true and the recovered dense columns. We
calculated the two stability indices for each group separately and averaged the result for all groups.

4 https://github.com/judyboon/BASS.
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Figure 6.2: The comparison of stability indices on the inferred matrix of factor loadings for our
synthetic data. For SSI, higher is better; for DSI, lower is better. The means and the standard
derivations of the stability indices are denoted by the marker and the bar respectively. The SSI
comparisons of all the methods in Simulation 1 are shown in upper rows; The SSI and DSI com-
parisons in Simulation 2 are shown in middle and bottom rows, respectively.
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Figure 6.3: The true and the inferred factor loadings by all the methods in Simulation 1. The
columns of the inferred factor loading matrices were reordered for easy comparison. The horizon-
tal lines separate the four groups.
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Figure 6.4: The true and the inferred factor loadings by all the methods in Simulation 2. The
columns of the inferred factor loading matrices were reordered for easy comparison. The horizon-
tal lines separate the four groups.
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The true and the inferred factor loading matrices by all methods in Simulation 1 and Simulation
2 are shown in Fig. 6.3. The ARD prior cannot induce sufficient sparsity by pushing irrelevant
factor loadings to small values. As a consequence, the GFA has difficulty in recovering sparse
factor loadings because of the columns-wise ARD priors (Fig. 6.3). Similarly, the sGFA cannot
induce sufficient element-wise sparsity within the loading columns by the independent ARD priors
(Fig. 6.3). The ssGFA overfitted to data by not sufficiently shutting off the redundant factors
(Fig. 6.3). Both the BASS and NGFA achieve element-wise sparsity effectively (Fig. 6.3). We
quantified the performance of the methods with stability indices, i.e., the means and the standard
derivations of the stability indices for each method over 20 runs are shown in Fig. 6.2. The NGFA
using our CVI algorithm achieves the best SSI and DSI scores almost for all sample sizes.

6.3.2 Cancer gene prioritization

Integrative analysis of multiple genomic datasets for understanding the genetic basis of com-
mon diseases has been challenging. For instance, DNA alterations that are frequent in cancers,
measured by copy number variation (CNV) data, are known to induce gene expression modifica-
tions. Hence, cancer-related genes can be discovered by searching for such interactions. Recently,
Bayesian GFA methods were applied to the task of cancer gene prioritization with encouraging
results (Klami, Virtanen, and Kaski 2013). To demonstrate the effectiveness of the NGFA using
our CVI algorithm, we choose the same datasets Hyman and Pollack from (Lahti et al. 2013)
that are based on gene expression (GE) and CNV data as described in Table 6.2.

Dataset # genes # samples # cancer genes
Hyman 7489 14 48
Pollack 4287 41 38

Table 6.2: The details of the cancer genomics datasets.

More specifically, we consider the patients as co-occurring samples and all the genes in the
whole genome as features. The GE and CNV data constitute the two groups. We then rank the
genes according to the quantity defined by sd = ∑K

k=1 |E(g(1)
kd )E(g(2)

kd )|, that is the correlation
between GE and CNV data captured by the shared factors. We repeated the data pre-processing
procedure in (Lahti et al. 2013), and evaluated the model performance by the area under the curve
of the receiver operating characteristic (AUROC) for retrieving known cancer-related genes. We
ran the NGFA 20 times with the initial K set to the minimum of the sample size and feature dimen-
sion. We compared the NGFA using CVI algorithm to the Bayesian inter-battery factor analysis
(BIBFA) model. We ran the BIBFA for 20 times according to the setting described in (Klami,
Virtanen, and Kaski 2013). The mean AUROC scores and the standard deviations are shown in
Fig. 6.5. The AUROC scores for all the other methods are cited from (Lahti et al. 2013) where the
standard deviations cannot be presented because those alternatives are deterministic methods. The
NGFA using our CVI algorithm outperforms all the alternative methods.

6.3.3 Decoding fMRI brain activity

Bayesian canonical correlation analysis (BCCA) was investigated to analyze fMRI responses to
visual stimuli in (Fujiwara, Miyawaki, and Kamitani 2009). We evaluated the NGFA using our
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Figure 6.5: Evaluation of cancer gene prioritization performance of the methods on two data
sets: Hyman (left) and Pollack (right). The result is quantified by the area under the ROC curve
(AUROC). The dashed line indicates the AUROC score for a random list (AUROC = 0.5). The
comparison shows that the NGFA achieves best performance.

CVI algorithm to the fMRI recordings of two subjects viewing visual images consisting of contrast-
defined 10× 10 patches (Miyawaki et al. 2008). The data is composed of two independent sessions:
one for “random image session” with spatially random patterns sequentially presented; the other
for “figure image session” with alphabet letters and geometric shapes sequentially presented. For
the NGFA, we first treated the random image session and corresponding fMRI recordings as two
groups, to extract the image bases and weight vector automatically from the input, with the initial
K set to min(D1, D2) = 100. Our task is to reconstruct the visual image from the new fMRI
recordings in the figure image session. The reconstruction performance is evaluated by the mean
squared error between the presented and reconstructed images. We ran both the BCCA and the
NGFA for 20 times. The mean squared prediction error over 20 runs for NGFA is 0.224 with the
standard deviation less than 1e-3, which is better than the result 0.251(0.002) of the BCCA. The
reconstructed geometric shapes and alphabet letters by the BCCA and the proposed NGFA are
shown in Fig. 6.6.

Presented

BCCA

NGFA

Figure 6.6: Presented images (first row) and the reconstructed visual images obtained from the
BCCA (second row) and the NGFA (third row).
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6.4 C O N C L U S I O N S

In this chapter, the group factor analysis problem is tackled via a Bayesian nonparametric method
that allows the total number of factors to be automatically inferred, and the underlying structured
sparsity to be effectively captured. In particular, we have presented an efficient collapsed varia-
tional inference algorithm for the nonparametric Bayesian group factor analysis model. By inte-
grating out the group-specific beta process parameters, the proposed collapsed variational infer-
ence algorithm achieves a better approximation because all latent variables are dependent through
the field while the weak dependences are very small in the collapsed space. Using the Gaussian
approximation technique, all the variational parameters can be efficiently updated through closed
form expressions. Experimental results on both synthetic data and real-world applications demon-
strate the superior performance of the proposed CVI algorithm for the nonparametric Bayesian
group factor analysis model when compared to state-of-the-art GFA methods.





7
J O I N T M O D E L S F O R N E T W O R K E D G E S A N D N O D E F E AT U R E S

Analysis of relational data is becoming an increasingly important problem in many domains such
as computational system biology (Hill et al. 2012; Oates et al. 2014) and social network analy-
sis (Hamilton et al. 2017). On the one hand, the scope and availability of relational data aris-
ing from these domains increases. For instance, high-throughput methods for screening protein-
protein interactions (PPIs) enable us to characterize large-scale protein interaction networks (Zitnik
et al. 2019). As the rapid growth of internet technology, networks arising from online platforms
like Facebook and Twitter are exponentially growing. On the other aspect, these collected net-
works are incomplete with edges and nodes missing. In recent years, there is a growing interest
in leveraging the available node features to reconstruct the missing edges with successful appli-
cations in recommending new friends in social networks or new items to users in recommender
systems.

Many previous network models (Chang and D. Blei 2009; M. Kim and Leskovec 2012; D. I.
Kim et al. 2012; Rai 2017) have been studied to either jointly model the network structure and
its associated node features, or leverage the node features into the prediction of missing edges
using a regression approach. For example, the relational topic models (RTMs) (Chang and D. Blei
2009) are developed to generalize the latent Dirichlet allocation (D. M. Blei et al. 2003) to model
both the underlying topics behind documents and the links among these documents simultaneously.
Extending relational topic models for discrete-count data, the nonparametric Metadata dependent
relational model (NMDR) (D. I. Kim et al. 2012) can model both discrete and continuous node-
specific metadata, and determines the number of latent communities in a Bayesian nonparametric
way. Another line of research is to treat the node features as covariates, and to predict the missing
edges using a regression-based approach. For instance, the inductive latent factor model (ILFM)
of (Rai 2017) generalizes the gamma process edge partition model (M. Zhou et al. 2015) to impute
missing edges using available node features. Instead of modeling the node features, the ILFM
incorporates the node features via the scale parameter of the gamma distributed node-community
memberships. Despite performing well in various network completion scenarios, the ILFM scales
poorly to the network data with large dimensional node features. In this chapter, we generalize
the single Poisson gamma memberships framework to jointly model the given network data and
its associated nonnegative real-valued node features.

7.1 T H E P O I S S O N G A M M A M E M B E R S H I P S M O D E L F O R N E T W O R K E D G E S A N D N O D E

F E AT U R E S

The proposed joint Poisson gamma memberships model generates the network structure and its
associated node features. Let A ∈ {0, 1}V×V be the adjacency matrix of V nodes, and each node
u ∈ V is associated with a nonnegative real-valued feature vector xu ∈ RD. In the proposed
model, each node u is endowed with two gamma distributed latent node memberships vectors ϕu

95



96 J O I N T M O D E L S F O R N E T W O R K E D G E S A N D N O D E F E AT U R E S

and ψu, which interpret the underlying structure in the observed network and the node features,
respectively. Formally, we draw the memberships ϕu and ψu as

ϕuk ∼ Gamma(ξu,
1
c
), (7.1.1)

ξd ∼ Gamma(e0,
1
f0
),

ψul ∼ Gamma(αu,
1
d
),

αu ∼ Gamma(e0,
1
f0
),

where the parameter ξu measures the overall popularity of node u irrespective of its memberships
to the multiple communities. Similarly, the parameter αu measures the degree of node u in the
observed features. The proposed model assumes that the observed network is composed of K
overlapping latent communities. We generate a nonnegative community weight rk for each latent
community as

rk ∼ Gamma(
γ0

K
,

1
f
). (7.1.2)

For fixed γ0, the redundant latent communities can be automatically shrunk as the number of
communities K increases to infinity, and then the weights of the redundant communities tend to be
zeros. On the other side, a Poisson latent factor model is employed to factorize the nonnegative
real-valued node features via the Poisson randomized gamma distribution as

xud ∼ PRG(
L

∑
l=1

ρlψul βdl ,
1
ed
), (7.1.3)

where we utilize L < D latent factors to represent the correlation structure in node features; the
variance-to-mean ratio of the PRG distribution is controlled by ed. Each latent factor βd is drawn
from a gamma distribution as

βdl ∼ Gamma(ηd,
1
h
). (7.1.4)

As we place a gamma prior over ρl as

ρl ∼ Gamma(
τ0

L
,

1
g
), (7.1.5)

where the number of latent factors can be automatically inferred as we did in determining the
number of latent communities K.

Finally, we generate the observed edge between a pair of nodes u and v as

Auv = 1(Ãuv ≥ 1), (7.1.6)

Ãuv ∼ Poisson(
K

∑
k=1

rkϕukϕvk +
L

∑
l=1

ρlψulψvl).

The intuition behind Eq. 7.1.6 is that the term ∑K
k=1 rkϕukϕvk +∑L

l=1 ρlψulψvl jointly captures the
edge probability between nodes u and v, and the correlation structure in their node features when
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Ãuv

Auv

xud

ψulϕuk βdlrk

γ0 f

ρl

τ0 g

K L

VV

D

Figure 7.1: The plate notation of the joint Poisson gamma memberships model for network edges
and node features (hyperparameters not shown for brevity).

an edge is present between nodes u and v. If the observation of an edge Auv is missing between
nodes u and v while these two nodes are highly correlated in feature data, the term ∑L

l=1 ρlψulψvl
will capture the probability of the missing edge.

The full generative model is as follows

ϕuk ∼ Gamma(ξu,
1
c
), (7.1.7)

ξd ∼ Gamma(e0,
1
f0
),

ψul ∼ Gamma(αu,
1
d
),

αu ∼ Gamma(e0,
1
f0
),

βdl ∼ Gamma(ηd,
1
h
),

rk ∼ Gamma(
γ0

K
,

1
f
),

ρl ∼ Gamma(
τ0

L
,

1
g
),

xud ∼ PRG(
L

∑
l=1

ρlψul βdl ,
1
ed
),

Ãuv ∼ Poisson(
K

∑
k=1

rkϕukϕvk +
L

∑
l=1

ρlψulψvl),

Auv = 1(Ãuv ≥ 1).

Fig. 7.1 presents the plate notation of the joint Poisson gamma memberships model.
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7.2 I N F E R E N C E

The proposed model admits a full local conjugate inference scheme using the data augmentation
and marginalization technique. The inference procedure requires the sampling of the model pa-
rameters including {Ãuv, ϕu, ψu, βd, ρl , rk, ξu, αu, γ0, τ0, ed}.
Sampling the latent count Ãuv: We sample the latent count Ãuv as

(Ãuv | −) ∼ AuvPoisson+

(
K

∑
k=1

rkϕukϕvk +
L

∑
l=1

ρlψulψvl

)
. (7.2.1)

Sampling the latent count x̃ud: We sample the latent count x̃ud as

(x̃ud | −) ∼ Bessel−1

2

√√√√edxud

L

∑
l=1

ρlψul βld

 . (7.2.2)

Then, we sample the latent sub counts x̃udl as

({x̃udl}l | −) ∼ Multinomial

(
x̃ud;

ρlψul βld

(∑L
l=1 ρlψul βld)

)
. (7.2.3)

Sampling the latent subcount Ãuvk and Âuvl: We sample the latent subcount Ãuvk and Âuvl as

({Ãuvk}k, {Âuvl}l | −) ∼ Multinomial

(
Ãuv;

{{rkϕukϕvk}k, {ρlψulψvl}l}
(∑K

k=1 rkϕukϕvk + ∑L
l=1 ρlψulψvl)

)
(7.2.4)

Sampling the community weights {rk}: Using the gamma-Poisson conjugacy, we sample rk as

(rk | −) ∼ Gamma
[γ0

K
+ Ã··k,

1
c + ∑u,v ̸=u ϕukϕvk

]
, (7.2.5)

where Ã··k ≡ ∑u,v ̸=u Ãuvk.
Sampling the node-community memberships Φ: We sample ϕuk via the gamma-Poisson conju-
gacy as

(ϕuk | −) ∼ Gamma
[
ξu + Ãuk,

1
c + ∑v ̸=u rkϕvk

]
. (7.2.6)

where Ãuk· ≡ ∑v ̸=u Ãukv.
Sampling the factor weights {ρl}: The factor weights {ρl}l can be sampled using the gamma-
Poisson conjugacy as

(ρl | −) ∼ Gamma
[τ0

L
+ Â··l + x̃··l ,

1
d + ∑u,v ̸=u ψulψvl + ∑u,d ψul βdl

]
, (7.2.7)

Sampling the factor loadings Ψ: We sample ψu via the gamma-Poisson conjugacy as

(ψul | −) ∼ Gamma
[
αu + Âul· + x̃ul·,

1
c + ∑v ̸=u ρlψvl + ∑d ρl βdl

]
. (7.2.8)
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where Âul· ≡ ∑v ̸=u Âulv.
Sampling the factors βd: We sample βd via the gamma-Poisson conjugacy as

(βdl | −) ∼ Gamma
[
ηd + x̃·dl ,

1
h + ∑u ρlψul

]
. (7.2.9)

where Âul· ≡ ∑v ̸=u Âulv.
We exploit the gamma-Poisson conjugacy to derive the posterior distribution of parameters

γ0, τ0, f , g.

7.3 E X P E R I M E N T S

In this section, we demonstrate the developed joint Poisson gamma memberships model for net-
work reconstruction on synthetic data. The synthetic data were generated as follows. We con-
sidered V = 65 nodes, K = 4 latent communities, and generated the intra-community edges
Auv ∼ Bernoulli(Πuv), where Πuv ∼ Beta(0.7, 0.7), and the inter-community edges Auv ∼
Bernoulli(Πuv), where Πuv ∼ Beta(0.2, 0.2). To generate the synthetic node features X ∈
RV×D, three datasets were generated with the number of samples D = 200, 500, 1000, respec-
tively. We assume that the nodes affiliated with the same communities are correlated in their
corresponding node features. Hence, we generated the node features using the same covariance
matrix for the nodes affiliated with the same communities. One of the simulated networks and its
associated node features of D = 200 samples are shown in Fig. 7.2. To evaluate the performance
of network reconstruction, we randomly held out a fraction ρ = 0.2, 0.4, 0.6, 0.8 of the network en-
tries (include both zeros and non-zeros) as test data, and used the remaining network entries as the
training data. We compared the joint Poisson gamma memberships model (joint-PGMM) to the
single Poisson gamma memberships (PGMM) model that only accounts for the network strucutre.

For the two models, we ran 2000 burn-in MCMC iterations, and collected last 1000 samples
from the model posterior distribution. The posterior mean of the edge probability is estimated for
each held-out edge in the test data by averaging over the collected Gibbs samples. These edge prob-
abilities were used to evaluate the predictive performance of each model by calculating the area
under the curve of the receiver operating characteristic (AUROC) and of the precision-recall (PR).
Fig. 7.3 presents the results. Overall, we found that the joint-Poisson gamma memberships model
performs better than single Poisson gamma memberships model in network reconstruction as the
joint-PGMM leverages the available node features, and thus better captures the missing edges.
As the number of the available samples is increasing, the joint-PGMM can effectively leverage
correlations in node features into estimating missing edges, thus achieves better performance.

7.4 C O N C L U S I O N S

In this chapter, we developed a joint Poisson gamma memberships (joint-PGMM) framework for
modelling the observed network and its associated node features. The joint-PGMM models the
adjacency matrix of the observed network with the basic bilinear Poisson factorization component,
and factorizes the positive real-valued node features using another Poisson latent factor model.
This framework can leverage the available node features into estimating the missing edges using
the shared node memberships vector. An efficient Gibbs sampling scheme is developed to perform
posterior simulation. The experimental results on a simulated dataset demonstrate that the model
capacity of the joint-PGMM, compared with a single Poisson gamma memberships model.
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Figure 7.2: One of the simulated network (a) and its associated node features (b).
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Figure 7.3: Network reconstruction on synthetic data. We considered the number of samples
D = 200, 500, 1000 as shown in column (a-c), respectively. We randomly held out a fraction
ρ = 0.2, 0.4, 0.6, 0.8 of the network entries (include both zeros and non-zeros) as test data.
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8.0.1 Summary of our contributions

This thesis has developed a family of probabilistic models and inference algorithms to achieve the
following objectives:

• To develop a Bayesian nonparametric model that captures the underlying overlapping com-
munity structure and characterizes the evolving node-community relationships in discrete-
time dynamic networks.

• To develop a probabilistic model that not only characterizes the reciprocating interactions
among nodes in continuous-time event-based networks, but also accounts for the latent struc-
ture underlying the observed interactions.

• To develop scalable inference algorithms for the proposed dynamic network framework.

• To develop a unified framework to jointly model the common structure and group-specific
signals in multiple related groups of data.

In this thesis, the dynamic Poisson gamma memberships model is proposed in Chapter 3 to
achieve the first objective. The proposed model represents each node using a gamma-distributed
memberships vector that effectively captures the underlying overlapping community structure. For
discrete-time networks, the dynamic node-community relationships are captured by evolving node
memberships via gamma Markov processes. Moreover, we utilize a community-community inter-
action matrix built upon the hierarchical gamma process to characterize both intra-community and
inter-community interactions between nodes. In particular, the number of latent communities can
be automatically determined by the shrinkage mechanism of the hierarchical gamma process in a
Bayesian nonparametric way. Using the Bernoulli Poisson link function that maps binary network
edges into latent space, the proposed models are suitable to fit sparse dynamic networks. Because
the inference only needs to be performed on non-zero edges, the proposed model is significantly
less computational demanding, compared with the probabilistic models using the probit/logistic
link function. Furthermore, we also exploit the time-dependent hierarchical gamma process to
capture the birth and death dynamics of latent communities, which enables us to analyze and
understand the formation and decaying processes of latent communities.

In Chapter 4, the Hawkes edge partition model (Hawkes-EPM) is developed to capture the
overlapping community structure underlying the timestamped interaction events among nodes. To
capture the reciprocating behaviour in continuous-time networks, the inferred community structure
is incorporated into the base intensity of the mutually-exciting Hawkes process for each pair of two
nodes to characterize the exogenous interaction events between these two nodes. The proposed
model augments each interaction event between a pair of two nodes with a pair of latent variables,
to indicate which of their latent communities (features) leads to the occurring of that interaction.
Moreover, this model allows the excitation effect of each interaction on its opposite direction is
determined by its latent variables. Both Gibbs sampling with closed-form update equations and
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Expectation-Maximization algorithms are derived to perform inference for the proposed Hawkes-
EPM.

Although the developed Gibbs sampling scheme for performing inference in the proposed mod-
els are simple yet efficient, we also exploit the recently advanced stochastic gradient Riemannian
Langevin dynamics algorithms to further scale up the derived inference procedures in Chapter 5.

Moreover, a Bayesian nonparametric group factor analysis model is investigated in Chapter 6
to estimate the common structure and group-specific signals from multiple-related groups of data.
The proposed model factorizes the multi-related matrices using a set of common factors shared
among the observed multi-groups, and then reconstructs each group with a group-specific matrix
of factor loadings. To improve the model flexibility, the hierarchical beta-Bernoulli process is
investigated to induce sparsity over the factor loading matrices. To adapt the proposed method
for modelling large-scale data, a collapsed variational Bayesian algorithm is developed to perform
inference. Compared with state-of-the-art group factor analysis methods, the proposed model
demonstrates improved predictive performance and highly interpretable parameters.

Finally, a probabilistic framework for joint modelling of the observed network structure and its
associated node features is investigated in Chapter 7. The simulated example shows the mecha-
nism of the proposed framework that can be utilized to reconstruct missing network edges using
available node features.

8.0.2 Future Work

First, the current statistical methods for network inference can discover the underlying properties
of entities, and predict missing edges using observed network entries and available node features,
which enable us to precisely profile individuals and to recommend new links on social networks.
As the scope and availability of social interaction data are increasing, concerns about the privacy of
these data have become an increasingly important issue. Hence, there is a growing need to develop
privacy-preserving network analysis methods. Recently, a privacy-preserving Bayesian inference
scheme has been developed for Poisson factorization methods (Schein et al. 2018). An interesting
direction of research is to extend the privacy-preserving inference methods for modelling dynamic
networks.

Another interesting direction of extension is to infer the time-evolving hierarchical community
structure revealed by dynamic network data. Most current network models factorize the observed
dynamic network into flat latent community structure, which may not be able to sufficiently in-
terpret the real-world complicated interaction data. For instance, the community of computer
scientists can be split into those working on various branches of computer science like algorithm
design and artificial intelligence, and each branch repeatedly split until reaching the particular re-
search topic of an individual scientist. For dynamic context, such tree-structured latent community
hierarchies are growing and evolving over time. Hence, it is necessary to develop models that can
represent hierarchically-organized entities with multi-layers of latent node-community member-
ships. Other extensions of current work include modelling and reasoning of dynamic knowledge
graphs (Nickel et al. 2016) via the bilinear Poisson factorization framework. Knowledge graphs
represent multi-relationships among entities. As the availability of large-scale temporal event data
where each edge is associated with a timestamp, it is necessary to build models that embeds entities
and timing edges among them with interpretable latent parameters.
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ARD Automatic Relevance Determination

AUROC Area Under the curve of the Receiver Operating Characteristic

BCS Bioinspired Communication Systems

BNP Bayesian Nonparametric Prior

BPL Bernoulli-Poisson Link

BNHP Bayesian Nonparametric Hawkes Process

BASS Bayesian group factor Analysis with Structured Sparsity

BCCA Bayesian Canonical Correlation Analysis

BCDF Bayesian Conditional Density Filtering

CRT Chinese Restaurant Table

CRM Completely Random Measure

CVI Collapsed Variational Inference

CTMC Continuous Time Markov Chain

CCRM Compound Completely Random Measure

CGS Collapsed Gibbs Sampling

CNV Copy Number Variation

tCRMs thinned Completely Random Measures

DRIFT Dynamic Relational Infinite Feature Model

DEPM Dynamic Edge Partition Model

DTMC Discrete Time Markov Chain

D-GPPF Dynamic Gamma Process Poisson Factorization

DMMG Dynamic Multi-group Membership Graph

DRGPM Dynamic Relational Gamma Process Model

DSBM Dynamic Stochastic Block Model

DPGM Dynamic Poisson Gamma Memberships

DP Dirichlet Process
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DHP Dirichlet Hawkes Process

DLS Dual Latent Space

DSI Dense Stability Index

dSBM dynamic Stochastic Block Model

dLFRM dynamic Latent Feature Relational Model

dRGaP dynamic Relational Gamma Process

dd-IBP distance dependent-Indian Buffet Process

EM Expectation Maximization

EKF Extended Kalman Filter

EPM Edge Partition Model

ER Erdös-Rényi

ERGM Exponential Random Graph Model

EU European Union

ELBO Evidence Lower BOund

FA Factor Analysis

FFDC Face-to-Face Dynamic Contact

GFA Group Factor Analysis

GE Gene Expression

GaP Gamma Process

HDP Hierarchical Dirichlet Process

HBP Hierarchical Beta Process

HGP Hierarchical Gamma Process

HGPEPM Hierarchical Gamma Process Edge Partition Model

HP Hawkes Process

IBP Indian Buffet Process

IRM Infinite Relational Model

LDA Latent Dirichlet Allocation

ILFM Inductive Latent Factor Model

LFRM Latent Feature Relational Model
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LFP Latent Feature Propagation

MCMC Markov Chain Monte Carlo

MMSBM Mixed Memberships Stochastic Block Model

MID Military Interstate Disputes

NB Negative-Binomial

NGFA Nonparametric Bayesian Group Factor Analysis

NATO North Atlantic Treaty Organization

NCRP Nested Chinese Restaurant Process

NMDR Nonparametric Metadata Dependent Relational model

NIG Normal Inverse Gamma

NIPS Neural Information Processing System

PP Poisson Process

PR Precision Recall

PRG Poisson Randomized Gamma

PPI Protein-Protein Interaction

PRG Poisson Randomized Gamma

PGMM Poisson Gamma Memberships Model

RTM Relational Topic Model

SBM Stochastic Block Model

SSI Sparse Stability Index

SG-MCMC Stochastic Gradient Markov Chain Monte Carlo

SGRLD Stochastic Gradient Riemannian Langevin Dynamics

sGFA sparse Group Factor Analysis

ssGFA spike-and-slab Group Factor Analysis

tGaP thinned Gamma Process
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