proteins localized within their respective areas. The typical ligands for nuclear receptors are n... more proteins localized within their respective areas. The typical ligands for nuclear receptors are non-polar hormones like the steroid hormones testosterone and progesterone and derivatives of vitamins A and D. To initiate signal transduction, the ligand must pass through the plasma membrane by passive diffusion. On binding with the receptor, the ligands pass through the nuclear membrane into the nucleus, altering gene expression.
PHOTOSYNTHESIS Photosynthesis is a process used by plants and other organisms to convert light en... more PHOTOSYNTHESIS Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities (energy transformation). This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek φῶς, phōs, "light", and σύνθεσις, synthesis, "putting together". In most cases, oxygen is also released as a waste product. Most plants, most algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies all of the organic compounds and most of the energy necessary for life on Earth. Although photosynthesis is performed differently by different species, the process always begins when energy from light is absorbed by proteins called reaction centres that contain green chlorophyll pigments. In plants, these proteins are held inside organelles called chloroplasts, which are most abundant in leaf cells, while in bacteria they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip electrons from suitable substances, such as water, producing oxygen gas. The hydrogen freed by the splitting of water is used in the creation of two further compounds that serve as short-term stores of energy, enabling its transfer to drive other reactions: these compounds are reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP), the "energy currency" of cells. In plants, algae and cyanobacteria, long-term energy storage in the form of sugars is produced by a subsequent sequence of light-independent reactions called the Calvin cycle; some bacteria use different mechanisms, such as the reverse Krebs cycle, to achieve the same end. In the Calvin cycle, atmospheric carbon dioxide is incorporated into already existing organic carbon compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose.
PHOTORESPIRATION Photorespiration (also known as the oxidative photosynthetic carbon cycle, or C2... more PHOTORESPIRATION Photorespiration (also known as the oxidative photosynthetic carbon cycle, or C2 photosynthesis) refers to a process in plant metabolism where the enzyme RuBisCO oxygenates RuBP, causing some of the energy produced by photosynthesis to be wasted. The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin– Benson cycle, however approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle. This process reduces the efficiency of photosynthesis, potentially reducing photosynthetic output by 25% in C 3 plants. Photorespiration involves a complex network of enzyme reactions that exchange metabolites between chloroplasts, leaf peroxisomes and mitochondria. The oxygenation reaction of RuBisCO is a wasteful process because 3-phosphoglycerate is created at a reduced rate and higher metabolic cost compared with RuBP carboxylase activity. While photorespiratory carbon cycling results in the formation of G3P eventually, there is still a net loss of carbon (around 25% of carbon fixed by photosynthesis is re-released as CO 2) and nitrogen, as ammonia. Ammonia must be detoxified at a substantial cost to the cell. Photorespiration also incurs a direct cost of one ATP and one NAD(P)H. While it is common to refer to the entire process as photorespiration, technically the term refers only to the metabolic network which acts to rescue the products of the oxygenation reaction (phosphoglycolate).
This study presents clinical findings after inhalation of mo squito coil smoke (MCS) exposure, wh... more This study presents clinical findings after inhalation of mo squito coil smoke (MCS) exposure, which resulted in rapid pulmonary lung migration and parenchymal alveolar disease, noted on clinically relevant diagnostic methods. Further, the study investigated the efficacy of pomegranate peel extract (PPE) in the preventative medication of the lungs damage in male Wistar rats. Adult male Wistar rats were divided into four different groups. Group I served as control; group II rats were exposed with mosquito coil smoke 6 hrs a day, for 21 days, group III rats exposed to mosquito coil smoke for a period of 21 days and simultaneously administered of PPE (50 mg / kg BW for 21 days) orally. Group IV PPE alone. Our results showed that MCS exposure significantly (P < 0.05) increased in the levels of TBARS as the marker of lipid peroxidation, and significantly (P < 0.05) decreased in the levels of antioxidants enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-Stransferase, non-enzymic antioxidants GSH, vitamin C, and vitamin E. MCS exposure induced pulmonary protein damage was also evidenced by SDS PAGE and antioxidatent enzyme damage by NATIVE PAGE studies. Administration of PPE significantly reduced the TBARS levels and significant ly improves the antioxidant status. Results indicate that MCS exposure exerts significant harmful effects on biochemical, and alveolar pulmonary disorders and that administration of PPE reduced the detrimental effects of MCS exposure, which is also supported by histopathological examination of alvelor of lung tissue.
Testosterone Testosterone is a steroid hormone from the androgen group and is found in humans and... more Testosterone Testosterone is a steroid hormone from the androgen group and is found in humans and other vertebrates. In humans and other mammals, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. Small amounts are also secreted by the adrenal glands. It is the principal male sex hormone and an anabolic steroid. In men, testosterone plays a key role in the development of male reproductive tissues such as the testis and prostate as well as promoting secondary sexual characteristics such as increased muscle, bone mass, and the growth of body hair. In addition, testosterone is essential for health and well-being as well as the prevention of osteoporosis.
Progesterone Progesterone is an endogenous steroid and progestogen sex hormone involved in the me... more Progesterone Progesterone is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens, and is the major progestogen in the body. Progesterone is also a crucial metabolic intermediate in the production of other endogenous steroids, including the sex hormones and the corticosteroids, and plays an important role in brain function as a neurosteroid. Source Animal Progesterone is produced in high amounts in the ovaries (by the corpus luteum) from the onset of puberty to menopause, and is also produced in smaller amounts by the adrenal glands after the onset of adrenarche in both males and females. To a lesser extent, progesterone is produced in nervous tissue, especially in the brain, and in adipose (fat) tissue, as well. During human pregnancy, progesterone is produced in increasingly high amounts by the ovaries and placenta. At first, the source is the corpus luteum that has been "rescued" by the presence of human chorionic gonadotropin (hCG) from the conceptus. However, after the 8th week, production of progesterone shifts to the placenta. The placenta utilizes maternal cholesterol as the initial substrate, and most of the produced progesterone enters the maternal circulation, but some is picked up by the fetal circulation and used as substrate for fetal corticosteroids. At term the placenta produces about 250 mg progesterone per day. An additional animal source of progesterone is milk products. After consumption of milk products the level of bioavailable progesterone goes up. Plants In at least one plant, Juglans regia, progesterone has been detected. In addition, progesterone-like steroids are found in Dioscorea mexicana. Dioscorea mexicana is a plant that is part of the yam family native to Mexico. It contains a steroid called diosgenin that is taken from the plant and is converted into progesterone. Diosgenin and progesterone are found in other Dioscorea species as well. Another plant that contains substances readily convertible to progesterone is Dioscorea pseudojaponica native to Taiwan. Research has shown that the Taiwanese yam contains saponins steroids that can be converted to diosgenin and thence to progesterone.
Estrogen Estrogen or oestrogen (see spelling differences) is the primary female sex hormone and i... more Estrogen Estrogen or oestrogen (see spelling differences) is the primary female sex hormone and is responsible for development and regulation of the female reproductive system and secondary sex characteristics. Estrogen may also refer to any substance, natural or synthetic that mimics the effects of the natural hormone. The steroid 17β-estradiol is the most potent and prevalent endogenous estrogen, but several metabolites of estradiol also have estrogenic hormonal activity. Synthetic estrogens are used as part of some oral contraceptives, in estrogen replacement therapy for postmenopausal women, and in hormone replacement therapy for Tran's women. Like all steroid hormones, estrogens readily diffuse across the cell membrane. Once inside the cell, they bind to and activate estrogen receptors (ERs) which in turn modulate the expression of many genes. Additionally, estrogens bind to and activate rapid-signaling membrane estrogen receptors (mERs), such as GPER (GPR30). Estrogens are synthesized in all vertebrates as well as some insects. Their presence in both vertebrates and insects suggests that estrogenic sex hormones have an ancient evolutionary history. Quantitatively, estrogens circulate at lower levels than androgens in both men and women. Biosynthesis Estrogens, in females, are produced primarily by the ovaries, and during pregnancy, the placenta. Follicle-stimulating hormone (FSH) stimulates the ovarian production of estrogens by the granulosa cells of the ovarian follicles and corpora lutea. Some estrogens are also produced in smaller amounts by other tissues such as the liver, adrenal glands, and the breasts. These secondary sources of estrogens are especially important in postmenopausal women. Fat cells produce estrogen as well. In females, synthesis of estrogens starts in theca interna cells in the ovary, by the synthesis of androstenedione from cholesterol. Androstenedione is a substance of weak androgenic activity which serves predominantly as a precursor for more potent androgens such as testosterone as well as estrogen. This compound crosses the basal membrane into the surrounding granulosa cells, where it is converted either immediately into estrone, or into testosterone and then estradiol in an additional step. The conversion of androstenedione to testosterone is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD), whereas the conversion of androstenedione and testosterone into estrone and estradiol, respectively is catalyzed by aromatase, enzymes which are both expressed in granulosa cells. In contrast, granulosa cells lack 17α-hydroxylase and 17, 20-lyase, whereas theca cells express these enzymes and 17β-HSD but lack aromatase. Hence, both granulosa and theca cells are essential for the production of estrogen in the ovaries. Estrogen levels vary through the menstrual cycle, with levels highest near the end of the follicular phase just before ovulation.
Cortisol Cortisol is a steroid hormone, in the glucocorticoid class of hormones, and is produced ... more Cortisol Cortisol is a steroid hormone, in the glucocorticoid class of hormones, and is produced in humans by the zona fasciculata of the adrenal cortex within the adrenal gland. It is released in response to stress and low blood-glucose concentration. It functions to increase blood sugar through gluconeogenesis, to suppress the immune system, and to aid in the metabolism of fat, protein, and carbohydrate. It also decreases bone formation. Hydrocortisone (INN, USAN, BAN) is a name for cortisol when it is used as a medication. Hydrocortisone is used to treat people who lack adequate naturally generated cortisol. It is on the World Health Organization's List of Essential Medicines needed in a basic health system. Biosynthesis Cortisol is synthesized from cholesterol. Synthesis takes place in the zona fasciculata of the adrenal cortex. While the adrenal cortex also produces aldosterone (in the zona glomerulosa) and some sex hormones (in the zona reticularis), cortisol is its main secretion in humans and several other species. The medulla of the adrenal gland lies under the cortex, mainly secreting the catecholamines adrenaline (epinephrine) and noradrenaline (norepinephrine) under sympathetic stimulation. The synthesis of cortisol in the adrenal gland is stimulated by the anterior lobe of the pituitary gland with adrenocorticotropic hormone (ACTH); ACTH production is in turn stimulated by corticotropin-releasing hormone (CRH), which is released by the hypothalamus. ACTH increases the concentration of cholesterol in the inner mitochondrial membrane, via regulation of the STAR (steroidogenic acute regulatory) protein. It also stimulates the main rate-limiting step in cortisol synthesis, in which cholesterol is converted to pregnenolone and catalyzed by Cytochrome P450SCC (side-chain cleavage enzyme) Main functions in the body Metabolic response In the early fasting state, cortisol stimulates gluconeogenesis (the formation of glucose), and activates anti-stress and anti-inflammatory pathways. Cortisol also plays an important, but indirect, role in liver and muscle glycogenolysis, the breaking down of glycogen to glucose-1-phosphate and glucose. Additionally, cortisol facilitates the activation of glycogen phosphorylase, which is necessary for epinephrine to have an effect on glycogenolysis. In the late fasting state, the function of cortisol changes slightly and increases glycogenesis. This response allows the liver to take up glucose that is not being used by the
Aldosterone Aldosterone is a steroid hormone (mineralocorticoid family) produced by the outer sec... more Aldosterone Aldosterone is a steroid hormone (mineralocorticoid family) produced by the outer section (zona glomerulosa) of the adrenal cortex in the adrenal gland. It plays a central role in the regulation of blood pressure mainly by acting on the distal tubules and collecting ducts of the nephron, increasing reabsorption of ions and water in the kidney, to cause the conservation of sodium, secretion of potassium, increase in water retention, and increase in blood pressure and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and renal disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.
Cells, whether prokaryotic or eukaryotic, eventually reproduce or die. For prokaryotes, the mecha... more Cells, whether prokaryotic or eukaryotic, eventually reproduce or die. For prokaryotes, the mechanism of reproduction is relatively simple, since there are no internal organ-elles. The process consists of three distinct but short phases: first, a growth phase in which the mass of the cell is increased, then the chromosomal replication phase, and finally the chromosomes are separated and the cells are physically split into two independent new cells. In bacteria, these are referred to as the B, C, and D periods, respectively. Initiation of the reproductive process appears to be primarily a function of cell size. The length of the overall cell cycle is determined by the B period, as the C and D periods have relatively fixed time constraints. The length of B is determined, in part, by environmental conditions and the gain in cell mass. Generation times for bacteria can vary from under half an hour to several days, although most bacterial cultures in laboratory settings and nutrient-rich media have generation times under a day. DNA replication has already been covered in detail in chapter 7. In bacteria, the process is initiated at the origin of replication by DnaA. However, in archaea, synchronous initiation of replication at multiple sites on the chromosome as well as recognition proteins homologous to eukaryotic ORC proteins suggests that there are similarities between archaebacterial and eukaryotic DNA replication to be explored. Once the DNA is replicated and moved to opposite sides of the cell, the midcell septum forms to split the cell. At least 9 gene products are involved in this process including FtsZ, the prokaryotic tubulin homologue that forms a circumferential ring, FtsI, a pepti-doglycan synthetase involved in septum formation, FtsL, whose function is unclear but is involved in ingrowth of the cell wall at the septum, and ZipA, which anchors the FtsZ ring. The ring contracts, pulling the membrane in with it. Eventually the membrane is pinched in enough to fuse and generate two completely separate cytoplasmic compartments. Other septation enzymes make cell wall components that fill in as the septum forms simultaneously with membrane/FtsZ contraction, and the cells separate. Cell Cycle : Life cycle of the cell and Gametogenesis Using this book: This book is designed to be used in both introductory and advanced cell biology courses. The primary text is generally on the left side of the vertical divider, and printed in black. Details that are usually left to an advanced course are printed in blue and found on the right side of the divider. Finally, additional biomedically relevant information can be found in red print on either side of the divider.
proteins localized within their respective areas. The typical ligands for nuclear receptors are n... more proteins localized within their respective areas. The typical ligands for nuclear receptors are non-polar hormones like the steroid hormones testosterone and progesterone and derivatives of vitamins A and D. To initiate signal transduction, the ligand must pass through the plasma membrane by passive diffusion. On binding with the receptor, the ligands pass through the nuclear membrane into the nucleus, altering gene expression.
PHOTOSYNTHESIS Photosynthesis is a process used by plants and other organisms to convert light en... more PHOTOSYNTHESIS Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities (energy transformation). This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek φῶς, phōs, "light", and σύνθεσις, synthesis, "putting together". In most cases, oxygen is also released as a waste product. Most plants, most algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies all of the organic compounds and most of the energy necessary for life on Earth. Although photosynthesis is performed differently by different species, the process always begins when energy from light is absorbed by proteins called reaction centres that contain green chlorophyll pigments. In plants, these proteins are held inside organelles called chloroplasts, which are most abundant in leaf cells, while in bacteria they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip electrons from suitable substances, such as water, producing oxygen gas. The hydrogen freed by the splitting of water is used in the creation of two further compounds that serve as short-term stores of energy, enabling its transfer to drive other reactions: these compounds are reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP), the "energy currency" of cells. In plants, algae and cyanobacteria, long-term energy storage in the form of sugars is produced by a subsequent sequence of light-independent reactions called the Calvin cycle; some bacteria use different mechanisms, such as the reverse Krebs cycle, to achieve the same end. In the Calvin cycle, atmospheric carbon dioxide is incorporated into already existing organic carbon compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose.
PHOTORESPIRATION Photorespiration (also known as the oxidative photosynthetic carbon cycle, or C2... more PHOTORESPIRATION Photorespiration (also known as the oxidative photosynthetic carbon cycle, or C2 photosynthesis) refers to a process in plant metabolism where the enzyme RuBisCO oxygenates RuBP, causing some of the energy produced by photosynthesis to be wasted. The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin– Benson cycle, however approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle. This process reduces the efficiency of photosynthesis, potentially reducing photosynthetic output by 25% in C 3 plants. Photorespiration involves a complex network of enzyme reactions that exchange metabolites between chloroplasts, leaf peroxisomes and mitochondria. The oxygenation reaction of RuBisCO is a wasteful process because 3-phosphoglycerate is created at a reduced rate and higher metabolic cost compared with RuBP carboxylase activity. While photorespiratory carbon cycling results in the formation of G3P eventually, there is still a net loss of carbon (around 25% of carbon fixed by photosynthesis is re-released as CO 2) and nitrogen, as ammonia. Ammonia must be detoxified at a substantial cost to the cell. Photorespiration also incurs a direct cost of one ATP and one NAD(P)H. While it is common to refer to the entire process as photorespiration, technically the term refers only to the metabolic network which acts to rescue the products of the oxygenation reaction (phosphoglycolate).
This study presents clinical findings after inhalation of mo squito coil smoke (MCS) exposure, wh... more This study presents clinical findings after inhalation of mo squito coil smoke (MCS) exposure, which resulted in rapid pulmonary lung migration and parenchymal alveolar disease, noted on clinically relevant diagnostic methods. Further, the study investigated the efficacy of pomegranate peel extract (PPE) in the preventative medication of the lungs damage in male Wistar rats. Adult male Wistar rats were divided into four different groups. Group I served as control; group II rats were exposed with mosquito coil smoke 6 hrs a day, for 21 days, group III rats exposed to mosquito coil smoke for a period of 21 days and simultaneously administered of PPE (50 mg / kg BW for 21 days) orally. Group IV PPE alone. Our results showed that MCS exposure significantly (P < 0.05) increased in the levels of TBARS as the marker of lipid peroxidation, and significantly (P < 0.05) decreased in the levels of antioxidants enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-Stransferase, non-enzymic antioxidants GSH, vitamin C, and vitamin E. MCS exposure induced pulmonary protein damage was also evidenced by SDS PAGE and antioxidatent enzyme damage by NATIVE PAGE studies. Administration of PPE significantly reduced the TBARS levels and significant ly improves the antioxidant status. Results indicate that MCS exposure exerts significant harmful effects on biochemical, and alveolar pulmonary disorders and that administration of PPE reduced the detrimental effects of MCS exposure, which is also supported by histopathological examination of alvelor of lung tissue.
Testosterone Testosterone is a steroid hormone from the androgen group and is found in humans and... more Testosterone Testosterone is a steroid hormone from the androgen group and is found in humans and other vertebrates. In humans and other mammals, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. Small amounts are also secreted by the adrenal glands. It is the principal male sex hormone and an anabolic steroid. In men, testosterone plays a key role in the development of male reproductive tissues such as the testis and prostate as well as promoting secondary sexual characteristics such as increased muscle, bone mass, and the growth of body hair. In addition, testosterone is essential for health and well-being as well as the prevention of osteoporosis.
Progesterone Progesterone is an endogenous steroid and progestogen sex hormone involved in the me... more Progesterone Progesterone is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens, and is the major progestogen in the body. Progesterone is also a crucial metabolic intermediate in the production of other endogenous steroids, including the sex hormones and the corticosteroids, and plays an important role in brain function as a neurosteroid. Source Animal Progesterone is produced in high amounts in the ovaries (by the corpus luteum) from the onset of puberty to menopause, and is also produced in smaller amounts by the adrenal glands after the onset of adrenarche in both males and females. To a lesser extent, progesterone is produced in nervous tissue, especially in the brain, and in adipose (fat) tissue, as well. During human pregnancy, progesterone is produced in increasingly high amounts by the ovaries and placenta. At first, the source is the corpus luteum that has been "rescued" by the presence of human chorionic gonadotropin (hCG) from the conceptus. However, after the 8th week, production of progesterone shifts to the placenta. The placenta utilizes maternal cholesterol as the initial substrate, and most of the produced progesterone enters the maternal circulation, but some is picked up by the fetal circulation and used as substrate for fetal corticosteroids. At term the placenta produces about 250 mg progesterone per day. An additional animal source of progesterone is milk products. After consumption of milk products the level of bioavailable progesterone goes up. Plants In at least one plant, Juglans regia, progesterone has been detected. In addition, progesterone-like steroids are found in Dioscorea mexicana. Dioscorea mexicana is a plant that is part of the yam family native to Mexico. It contains a steroid called diosgenin that is taken from the plant and is converted into progesterone. Diosgenin and progesterone are found in other Dioscorea species as well. Another plant that contains substances readily convertible to progesterone is Dioscorea pseudojaponica native to Taiwan. Research has shown that the Taiwanese yam contains saponins steroids that can be converted to diosgenin and thence to progesterone.
Estrogen Estrogen or oestrogen (see spelling differences) is the primary female sex hormone and i... more Estrogen Estrogen or oestrogen (see spelling differences) is the primary female sex hormone and is responsible for development and regulation of the female reproductive system and secondary sex characteristics. Estrogen may also refer to any substance, natural or synthetic that mimics the effects of the natural hormone. The steroid 17β-estradiol is the most potent and prevalent endogenous estrogen, but several metabolites of estradiol also have estrogenic hormonal activity. Synthetic estrogens are used as part of some oral contraceptives, in estrogen replacement therapy for postmenopausal women, and in hormone replacement therapy for Tran's women. Like all steroid hormones, estrogens readily diffuse across the cell membrane. Once inside the cell, they bind to and activate estrogen receptors (ERs) which in turn modulate the expression of many genes. Additionally, estrogens bind to and activate rapid-signaling membrane estrogen receptors (mERs), such as GPER (GPR30). Estrogens are synthesized in all vertebrates as well as some insects. Their presence in both vertebrates and insects suggests that estrogenic sex hormones have an ancient evolutionary history. Quantitatively, estrogens circulate at lower levels than androgens in both men and women. Biosynthesis Estrogens, in females, are produced primarily by the ovaries, and during pregnancy, the placenta. Follicle-stimulating hormone (FSH) stimulates the ovarian production of estrogens by the granulosa cells of the ovarian follicles and corpora lutea. Some estrogens are also produced in smaller amounts by other tissues such as the liver, adrenal glands, and the breasts. These secondary sources of estrogens are especially important in postmenopausal women. Fat cells produce estrogen as well. In females, synthesis of estrogens starts in theca interna cells in the ovary, by the synthesis of androstenedione from cholesterol. Androstenedione is a substance of weak androgenic activity which serves predominantly as a precursor for more potent androgens such as testosterone as well as estrogen. This compound crosses the basal membrane into the surrounding granulosa cells, where it is converted either immediately into estrone, or into testosterone and then estradiol in an additional step. The conversion of androstenedione to testosterone is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD), whereas the conversion of androstenedione and testosterone into estrone and estradiol, respectively is catalyzed by aromatase, enzymes which are both expressed in granulosa cells. In contrast, granulosa cells lack 17α-hydroxylase and 17, 20-lyase, whereas theca cells express these enzymes and 17β-HSD but lack aromatase. Hence, both granulosa and theca cells are essential for the production of estrogen in the ovaries. Estrogen levels vary through the menstrual cycle, with levels highest near the end of the follicular phase just before ovulation.
Cortisol Cortisol is a steroid hormone, in the glucocorticoid class of hormones, and is produced ... more Cortisol Cortisol is a steroid hormone, in the glucocorticoid class of hormones, and is produced in humans by the zona fasciculata of the adrenal cortex within the adrenal gland. It is released in response to stress and low blood-glucose concentration. It functions to increase blood sugar through gluconeogenesis, to suppress the immune system, and to aid in the metabolism of fat, protein, and carbohydrate. It also decreases bone formation. Hydrocortisone (INN, USAN, BAN) is a name for cortisol when it is used as a medication. Hydrocortisone is used to treat people who lack adequate naturally generated cortisol. It is on the World Health Organization's List of Essential Medicines needed in a basic health system. Biosynthesis Cortisol is synthesized from cholesterol. Synthesis takes place in the zona fasciculata of the adrenal cortex. While the adrenal cortex also produces aldosterone (in the zona glomerulosa) and some sex hormones (in the zona reticularis), cortisol is its main secretion in humans and several other species. The medulla of the adrenal gland lies under the cortex, mainly secreting the catecholamines adrenaline (epinephrine) and noradrenaline (norepinephrine) under sympathetic stimulation. The synthesis of cortisol in the adrenal gland is stimulated by the anterior lobe of the pituitary gland with adrenocorticotropic hormone (ACTH); ACTH production is in turn stimulated by corticotropin-releasing hormone (CRH), which is released by the hypothalamus. ACTH increases the concentration of cholesterol in the inner mitochondrial membrane, via regulation of the STAR (steroidogenic acute regulatory) protein. It also stimulates the main rate-limiting step in cortisol synthesis, in which cholesterol is converted to pregnenolone and catalyzed by Cytochrome P450SCC (side-chain cleavage enzyme) Main functions in the body Metabolic response In the early fasting state, cortisol stimulates gluconeogenesis (the formation of glucose), and activates anti-stress and anti-inflammatory pathways. Cortisol also plays an important, but indirect, role in liver and muscle glycogenolysis, the breaking down of glycogen to glucose-1-phosphate and glucose. Additionally, cortisol facilitates the activation of glycogen phosphorylase, which is necessary for epinephrine to have an effect on glycogenolysis. In the late fasting state, the function of cortisol changes slightly and increases glycogenesis. This response allows the liver to take up glucose that is not being used by the
Aldosterone Aldosterone is a steroid hormone (mineralocorticoid family) produced by the outer sec... more Aldosterone Aldosterone is a steroid hormone (mineralocorticoid family) produced by the outer section (zona glomerulosa) of the adrenal cortex in the adrenal gland. It plays a central role in the regulation of blood pressure mainly by acting on the distal tubules and collecting ducts of the nephron, increasing reabsorption of ions and water in the kidney, to cause the conservation of sodium, secretion of potassium, increase in water retention, and increase in blood pressure and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and renal disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.
Cells, whether prokaryotic or eukaryotic, eventually reproduce or die. For prokaryotes, the mecha... more Cells, whether prokaryotic or eukaryotic, eventually reproduce or die. For prokaryotes, the mechanism of reproduction is relatively simple, since there are no internal organ-elles. The process consists of three distinct but short phases: first, a growth phase in which the mass of the cell is increased, then the chromosomal replication phase, and finally the chromosomes are separated and the cells are physically split into two independent new cells. In bacteria, these are referred to as the B, C, and D periods, respectively. Initiation of the reproductive process appears to be primarily a function of cell size. The length of the overall cell cycle is determined by the B period, as the C and D periods have relatively fixed time constraints. The length of B is determined, in part, by environmental conditions and the gain in cell mass. Generation times for bacteria can vary from under half an hour to several days, although most bacterial cultures in laboratory settings and nutrient-rich media have generation times under a day. DNA replication has already been covered in detail in chapter 7. In bacteria, the process is initiated at the origin of replication by DnaA. However, in archaea, synchronous initiation of replication at multiple sites on the chromosome as well as recognition proteins homologous to eukaryotic ORC proteins suggests that there are similarities between archaebacterial and eukaryotic DNA replication to be explored. Once the DNA is replicated and moved to opposite sides of the cell, the midcell septum forms to split the cell. At least 9 gene products are involved in this process including FtsZ, the prokaryotic tubulin homologue that forms a circumferential ring, FtsI, a pepti-doglycan synthetase involved in septum formation, FtsL, whose function is unclear but is involved in ingrowth of the cell wall at the septum, and ZipA, which anchors the FtsZ ring. The ring contracts, pulling the membrane in with it. Eventually the membrane is pinched in enough to fuse and generate two completely separate cytoplasmic compartments. Other septation enzymes make cell wall components that fill in as the septum forms simultaneously with membrane/FtsZ contraction, and the cells separate. Cell Cycle : Life cycle of the cell and Gametogenesis Using this book: This book is designed to be used in both introductory and advanced cell biology courses. The primary text is generally on the left side of the vertical divider, and printed in black. Details that are usually left to an advanced course are printed in blue and found on the right side of the divider. Finally, additional biomedically relevant information can be found in red print on either side of the divider.
The MAPK/ERK pathway (also known as the Ras-Raf-MEK-ERK pathway) is a chain of proteins in the ce... more The MAPK/ERK pathway (also known as the Ras-Raf-MEK-ERK pathway) is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell. The signal starts when a signaling molecule binds to the receptor on the cell surface and ends when the DNA in the nucleus expresses a protein and produces some change in the cell, such as cell division. The pathway includes many proteins, including MAPK (mitogen-activated protein kinases, originally called ERK, extracellular signal-regulated kinases), which communicate by adding phosphate groups to a neighboring protein (phosphorylating it), which acts as an "on" or "off" switch. When one of the proteins in the pathway is mutated, it can become stuck in the "on" or "off" position, which is a necessary step in the development of many cancers. Components of the MAPK/ERK pathway were discovered when they were found in cancer cells. Drugs that reverse the "on" or "off" switch are being investigated as cancer treatments. Ras activation Receptor-linked tyrosine kinases such as the epidermal growth factor receptor (EGFR) are activated by extracellular ligands, such as epidermal growth factor (EGF). Binding of EGF to the EGFR activates the tyrosine kinase activity of the cytoplasmic domain of the receptor. The EGFR becomes phosphorylated on tyrosine residues. Docking proteins such as GRB2 contain an SH2 domain that binds to the phosphotyrosine residues of the activated receptor. GRB2 binds to the guanine nucleotide exchange factor SOS by way of the two SH3 domains of GRB2. When the GRB2-SOS complex docks to phosphorylated EGFR, SOS becomes activated. Activated SOS then promotes the removal of GDP from a member of the Ras subfamily (most notably H-Ras or K-Ras). Ras can then bind GTP and become active. Apart from EGFR, other cell surface receptors that can activate this pathway via GRB2 include Trk A/B, Fibroblast growth factor receptor (FGFR) and PDGFR.
Uploads
Papers by vinoth kalaiselvan