23rd International Conference on
Types for Proofs and Programs

TYPES 2017

Budapest, Hungary, 29 May - 1 June 2017

Abstracts

Department of Programming Languages and Compilers,
Faculty of Informatics, E6tvos Lorand University

Budapest, 2017

23rd International Conference on Types for Proofs and Programs,
TYPES 2017

Budapest, Hungary, 29 May - 1 June 2017

Abstracts

http://types2017.elte.hu

Edited by Ambrus Kaposi

Department of Programming Languages and Compilers
Faculty of Informatics

Eo6tvos Lorand University

Péazmény Péter sétany 1/C, 1117 Budapest, Hungary
http://www.inf.elte.hu

Cover design by Andrés Forizs

ISBN 978-963-284-883-9 (print)
ISBN 978-963-284-884-6 (pdf)

(© 2017 the editor and authors

Preface

This volume contains the abstracts of the talks presented at the 23rd International Conference
on Types for Proofs and Programs, TYPES 2017, to take place in Budapest, Hungary, 29 May
- 1 June 2017.

The TYPES meetings are a forum to present new and on-going work in all aspects of
type theory and its applications, especially in formalised and computer assisted reasoning and
computer programming. The meetings from 1990 to 2008 were annual workshops of a sequence
of five EU funded networking projects. Since 2009, TYPES has been run as an independent
conference series. Previous TYPES meetings were held in Antibes (1990), Edinburgh (1991),
Bastad (1992), Nijmegen (1993), Bastad (1994), Torino (1995), Aussois (1996), Kloster Irsee
(1998), Lokeberg (1999), Durham (2000), Berg en Dal near Nijmegen (2002), Torino (2003),
Jouy-en-Josas near Paris (2004), Nottingham (2006), Cividale del Friuli (2007), Torino (2008),
Aussois (2009), Warsaw (2010), Bergen (2011), Toulouse (2013), Paris (2014), Tallinn (2015),
Novi Sad (2016).

The TYPES areas of interest include, but are not limited to: foundations of type theory and
constructive mathematics; applications of type theory; dependently typed programming; indus-
trial uses of type theory technology; meta-theoretic studies of type systems; proof assistants
and proof technology; automation in computer-assisted reasoning; links between type theory
and functional programming; formalizing mathematics using type theory.

The TYPES conferences are of open and informal character. Selection of contributed talks is
based on short abstracts; reporting work in progress and work presented or published elsewhere
is welcome. A formal post-proceedings volume is prepared after the conference; papers submitted
to that must represent unpublished work and are subjected to a full review process.

The programme of TYPES 2017 includes three invited talks by Edwin Brady (University
of St Andrews), Sara Negri (Unviersity of Helsinki) and Jakob Rehof (TU Dortmund). The
contributed part of the programme consists of 50 talks.

Similarly to the 2011 and the 2013-2016 editions of the conference, the post-proceedings
of TYPES 2015 will appear in Dagstuhl’s Leibniz International Proceedings in Informatics
(LIPIcs) series.

We are grateful for the support of COST Action CA15123 EUTypes.

May 17, 2017 Ambrus Kaposi and Tamas Kozsik
Budapest

iii

Organisation

Program Committee

Andreas Abel

Thorsten Altenkirch

José Carlos Espirito Santo
Fredrik Forsberg

Silvia Ghilezan

Hugo Herbelin

Martin Hofmann

Ambrus Kaposi

Tamas Kozsik

Assia Mahboubi
Alexandre Miquel

Keiko Nakata

Andrew Polonsky

Simona Ronchi Della Rocca
Aleksy Schubert

Wouter Swierstra

Tarmo Uustalu

Organising committee

Gothenburg University

University of Nottingham
University of Minho

University of Strathclyde
University of Novi Sad

INRIA France

LMU Munich

E6tvos Lordnd University (co-chair)
E6tvos Lorand University (co-chair)
INRIA, France

University of the Republic, Uruguay
SAP Potsdam

University of Bergen

University of Torino

University of Warsaw

Utrecht University

Tallinn University of Technology

Ambrus Kaposi, Taméas Kozsik, Andras Kovécs and the Department of Programming Languages

and Compilers

Host

Faculty of Informatics at E6tvos Lorand University

Sponsor

COST Action CA15123 EUTypes

-~
-

iv

Table of Contents

Invited talks

An Architecture for Dependently Typed Applications in Idris......................... 1
Edwin Brady

Proof systems based on neighbourhood semantics 2
Sara Negri

Bounding Principles for Decision Problems with Intersection Types.................... 3

Jakob Rehof

Contributed talks

Normalization by Evaluation for Sized Dependent Types 4
Andreas Abel, Andrea Vezzosi and Théo Winterhalter

A Type Theory with Native Homotopy Universesc.cuiiiriininennon .. 6
Robin Adams and Andrew Polonsky

Monads from multi-sorted binding signatures i 8
Benedikt Ahrens, Ralph Matthes and Anders Mortberg

Typing with Leftovers: a Mechanisation of ILLo .. 10
Guillaume Allais

From setoid hell to homotopy heaven? 12
Thorsten Altenkirch

Type Theory with Weak J 14
Thorsten Altenkirch, Paolo Capriotti, Thierry Coquand, Nils Anders Danielsson, Si-
mon Huber and Nicolai Kraus

Domain Theory in Type Theory via QIITs 16
Thorsten Altenkirch, Paolo Capriotti and Bernhard Reus

Normalisation by Evaluation for a Type Theory with Large Elimination 18
Thorsten Altenkirch, Ambrus Kaposi and Andrds Kovdcs

Monadic containers and UNIVETSESttt 20
Thorsten Altenkirch and Gun Pinyo

A Probabilistic Approach of Behavioural Types, 22
Bogdan Aman and Gabriel Ciobanu

Bouncing threads for infinitary proof theory i, 24
David Baelde, Amina Doumane, Guilhem Jaber and Alexis Saurin

The Clocks Are Ticking: No More Delays! Reduction Semantics for Type Theory with
Guarded ReCUTISIONottt 26
Patrick Bahr, Hans Bugge Grathwohl and Rasmus Ejlers Mggelberg

Regularity for Freeo
Thibaut Balabonski, Marco Gaboardi, Chantal Kelller and Benoit Valiron

A modular formalization of type theory in Coqt ...
Andrej Bauer, Philipp G. Haselwarter and Théo Winterhalter

Presheaf semantics for guarded dependent type theory
Ale§ Bizjak and Rasmus Ejlers Mggelberg

An interpretation of system F through bar recursion..........
Valentin Blot

The Steenrod squares in homotopy type theory
Guillaume Brunerie

Verifying Functional Reactive Programs with Side Effects
Manuel Birenz and Sebastian Seufert

Notions of type formers
Paolo Capriotti

Automatically Constructing a Type System from the Small-Steps Semantics
Stefan Ciobaca and Viad Andrei Tudose

A Model of Type Theory in Stacks oot e
Thierry Coquand, Bassel Mannaa and Fabian Ruch

The Boolean Pythagorean Triples Problem in Coq
Luis Cruz-Filipe, Joao Marques-Silva and Peter Schneider-Kamp

Towards practical out-of-order unification
Nils Anders Danielsson and Victor Lépez Juan

Models and termination of proof reduction in the lambda Pi-calculus modulo theory.
Gilles Dowek

Untyped Confluence In Dependent Type Theories
Gilles Dowek, Jean-Pierre Jouannaud, Assaf Ali and Jiaxiang Liu

Lower End of the Linial-Post Spectrum
Andrej Dudenhefner and Jakob Rehof

Characterization of strong normalizability for a lambda-calculus with co-control
Jose Espirito Santo and Silvia Ghilezan

Inhabitation in Simply-Typed Lambda-Calculus through a Lambda-Calculus for Proof
SearCh . . .o
José Espirito Santo, Ralph Matthes and Luis Pinto

Dependent Type Theory with Contextual Types
Francisco Ferreira, David Thibodeau and Brigitte Pientka

Inductive-Recursive Definitions and Composition.o i n...
Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg and Stephan Spahn

vi

Verifiable certificates for predicate subtyping i 65
Frederic Gilbert

Strong Bisimilarity Implies Trace Semantics in CSP-Agda 67
Bashar Igried and Anton Setzer

Derivation of elimination principles from a context 69
Ambrus Kaposi, Andrds Kovdcs, Péter Dividnszky and Baldzs Kdémives

A Type-Theoretic Alternative to LISP 71
G. A. Kavvos

Quantitative Types for the Lambda-Mu Calculus with Explicit and Implicit Replacement 73
Delia Kesner and Pierre Vial

Theory and Demo of PML2: Proving Programs in ML 75
Rodolphe Lepigre

Intersection and Union Types from a Proof-functional Point of View................... 77
Luigi Liquori and Claude Stolze

Extensions by Definition in Type Theory...... i 79
Georgiana Elena Lungu and Zhaohui Luo

Adjective Clustering in the Mizar Type System 81
Adam Naumowicz

Parametric Quantifiers for Dependent Types i, 83
Andreas Nuyts, Andrea Vezzosi and Dominique Devriese

Axioms for Univalence oot 85
Ian Orton and Andrew Pitts

An Effectful Way to Eliminate Addiction to Dependence 87
Pierre-Marie Pédrot and Nicolas Tabareau

A Small Basis for Homotopy Type Theory 89
Feliz Rech and Steven Schdafer

A Curry-Howard Approach to Church’s Synthesis 91
Colin Riba and Pierre Pradic

Modelling Bitcoins in Agdaot 93
Anton Setzer

On Certain Group Structures in Type Theory 95
Sergei Soloviev

Cumulative inductive types in Coq oottt 97
Amin Timany, Matthieu Sozeau and Bart Jacobs

Partiality and container monads 99
Tarmo Uustalu and Niccolo Veltri

vii

Expressive and Strongly Type-Safe Code Generation
Thomas Winant, Jesper Cockx and Dominique Devriese

Parallelization of Software Verification Tool LAV
Branislava Zivkovié and Milena Vujosevic Janicic

viii

An Architecture for Dependently Typed Applications
in Idris
Edwin Brady

University of St Andrews
ecb10@st-andrews.ac.uk

A useful pattern in dependently typed programming is to define a state transition system,
for example the states and operations in a network protocol, as an indexed monad. We index
each operation by its input and output states, thus guaranteeing that operations satisfy pre-
and post-conditions, by typechecking. However, what if we want to write a program using
several systems at once? What if we want to define a high level state transition system, such
as a network application protocol, in terms of lower level states, such as network sockets and
mutable variables?

In this talk, I will present an architecture for dependently typed applications in the Idris
programming language, based on a hierarchy of state transition systems, and implemented in a
generic data type ST. This is based on a monad indexed by contexts of resources, allowing us to
reason about multiple state transition systems in the type of a function. Using ST, I will show:
how to implement a state transition system as a dependent type, with type level guarantees on
its operations; how to account for operations which could fail; how to combine state transition
systems into a larger system; and, how to implement larger systems as a hierarchy of state
transition systems. I will illustrate the system with a high level network application protocol,
implemented in terms of POSIX network sockets.

Proof systems based on neighbourhood semantics

Sara Negri

University of Helsinki
sara.negri@helsinki.fi

A method is presented for generating proof systems on the basis of neighbourhood semantics.
The method is a generalisation of the internalisation of possible worlds semantics into sequent
calculi. Its specific features will be illustrated through case studies from the treatment of
counterfactuals and conditional beliefs.

Bounding Principles for Decision Problems
with Intersection Types

Jakob Rehof

TU Dortmund
jakob.rehof@cs.tu-dortmund.de

The classical type-theoretic decision problems, inhabitation (given a type, is there a term
having the type?) and typability (given a term, does it have a type?), are undecidable for
intersection types. But one can consider bounding principles admitting of algorithmic solutions
while retaining interesting levels of expressive power. We overview the status of known bounding
principles, computational aspects of the associated decision problems, and some application
perspectives.

Normalization by Evaluation for Sized Dependent Types

Andreas Abel', Andrea Vezzosi!, and Théo Winterhalter?

! Department of Computer Science and Eng., Gothenburg University, Sweden
{abela,vezzosi}@chalmers.se
2 Ecole Normale Supérieure de Cachan, France
theo.winterhalter@ens-cachan.fr

Abstract

Sized types have been developed to make termination checking more perspicuous, more powerful,
and more modular by integrating termination into type checking. In dependently-typed proof assistants
where proofs by induction are just recursive functional programs, the termination checker is an integral
component of the trusted core, as validity of proofs depends on termination. However, a rigorous
integration of full-fledged sized types into dependent type theory is lacking so far. Such an integration
is non-trivial, as explicit sizes in proof terms might get in the way of equality checking, making terms
appear distinct that should have the same semantics. In this work, we integrate dependent types
and sized types with higher-rank size polymorphism, which is essential for generic programming and
abstraction. We introduce a size quantifier V which lets us ignore sizes in terms for equality checking,
alongside with a second quantifier II for abstracting over sizes that do affect the semantics of types and
terms. Judgmental equality is decided by an adaptation of normalization-by-evaluation.

Agda [5] features first-class size polymorphism [1] in contrast to theoretical accounts of sized
dependent types [6, 7, 10] who typically just have prenex (ML-style) size quantification. Conse-
quently, Agda’s internal language contains size expressions in terms wherever a size quantifier
is instantiated. However, these size expressions, which are not unique due to subtyping, can get
in the way of reasoning about sizeful programs. Consider the type of sized natural numbers.

data Nat : Size — Set where
zero : V ¢ — Nat (i + 1)
suc :V i— Nati— Nat (i 4+ 1)

We define subtraction =~y on natural numbers, sometimes called the monus function, which
computes max(0,z —y). It is defined by induction on the size j of the second argument y, while
the output is bounded by size 4 of the first argument x. (The input-output relation of monus is
needed for a natural implementation of Euclidean divison.)

monus : V ¢ — Nat ¢ — V j — Nat 7 — Nat i

monus % x (G+1)(zeroy) ==

monus .(i + 1) (zero i) .(j+ 1) (suc jy) = zero i

monus .(i + 1) (suc ¢ z) .(j+ 1) (sucjy) = monus iz jy

We wish to prove that subtracting = from itself yields 0, by induction on x. The case x = 0
should be trivial, as x — 0 = x by definition, hence, 0 —~ 0 = 0. A simple proof by reflexivity
should suffice. However, the goal shows a mismatch between size co and size ¢ coming from the
computation of monus (i + 1) (zeroi) (i + 1) (zeroi).

monus-diag : V 7 — (x: Nat i) — zero oo = monus i x i
monus-diag .(i + 1) (zero i) = {! zero co = zero i 1} -~ goal
monus-diag .(7 + 1) (suc ¢) = monus-diag i =

NbE for Sized Types Abel and Winterhalter

The proof could be completed by an application of reflexivity if Agda ignored sizes where
they act as type argument, i.e., in constructors and term-level function applications, but not in
types where they act as regular argument, e. g., in Nats.

The problem is solved by distinguishing relevant (IT) from irrelevant (V) size quantification.
The relevant quantifier is the usual dependent function space over sizes. In particular, the
congruence rule for size application requires matching size arguments:

FHt=t:1L.T I' Fa: Size
I'tta=ta:Tali]
Typically, the relevant quantifier is used in types of types, for instance, in its non-dependent
form, in Nat : Size — Set. In contrast, the irrelevant size quantifier is used in types of programs
and ignores sizes in size applications. The rules for application, while Church-style, de facto
implement Curry-style quantification:
PHt=t:Vi.T I'® Fa,a’,b: Size ~t:Vi.T I'® F a,b: Size
I'tFta=ta :Tb/i] I'kta:Tbh/i]

Further, the size arguments are scoped in the resurrected [9] context I'® and, thus, are allowed
to mention irrelevant size variables. Those are introduced by irrelevant size abstraction and
marked by the +-symbol in the context. In contrast, the quantified size variable may occur
relevantly in the type.
Ii+Size Ht:T I',i:Size T : Set
T'EX.t:Vi. T ' - Vi. T : Set

The lack of type unicity arising from the size application rule has prevented us from adopting
the usual incremental algorithm for equality checking [8, 3]. However, we have succeeded to
employ normalization by evaluation [2] for deciding judgmental equality [4].

References

[1] Andreas Abel. Type-based termination, inflationary fixed-points, and mixed inductive-coinductive
types. In FICS 2012, volume 77 of EPTCS, pages 1-11, 2012. Invited talk.

[2] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-Lof
Type Theory with typed equality judgements. In LICS 07, pages 3-12. IEEE CS Press, 2007.

[3] Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative type
theory. LMCS, 8(1:29):1-36, 2012. TYPES’10 special issue.

[4] Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. Normalization by evaluation for sized
dependent types. Accepted for presentation at ICFP, 2017.

[6] AgdaTeam. The Agda Wiki, 2017.

[6] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. CIC": Type-based termination of
recursive definitions in the Calculus of Inductive Constructions. In LPAR’06, volume 4246 of
LNCS, pages 257-271. Springer, 2006.

[7] Frédéric Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite
systems. In RTA’04, volume 3091 of LNCS, pages 24-39. Springer, 2004.

[8] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory.
ACM TOCL, 6(1):61-101, 2005.

[9] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In
LICS’01, pages 221-230. IEEE CS Press, 2001.

[10] Jorge Luis Sacchini. Type-based productivity of stream definitions in the calculus of constructions.
In LICS’13, pages 233-242. IEEE CS Press, 2013.

A Type Theory with Native Homotopy Universes

Robin Adams® and Andrew Polonsky?

! Universitetet i Bergen
2 University Paris Diderot

We present a type theory called A\~5 with an extensional equality relation. The universe of
types is closed under the logical relation defined by induction on the structure of types.
The type system has three universes:

e The trivial universe 1, which has one object .

e The universe Prop of propositions. An object of Prop is called a proposition, and the
objects of a proposition are called proofs.

e The universe Set of sets.
e The universe Groupoid of groupoids.

The system has been designed in such a way that it should be straightforward to extend the
system with three, four, ...dimensions.

For each universe U, we have an associated relation of equality between U-types ~, and
between objects of U-equal types ~. The associated rules of deduction are:

A:U B:U a:A e:A~B b:B
A~B:U ar~eb: U™

where U~ is the universe one dimension below U. Thus:

e Given two propositions ¢ and ¥, we have the proposition ¢ =~ 1 which denotes the
proposition ‘¢ if and only if ¢’. If § : ¢, e :¢p and x : ¢ ~ ¢, then 6 ~, e = 1. (Cf In
homotopy type theory, any two objects of a proposition are equal.)

e Given two sets A and B, we have the set A ~ B, which denotes the set of all bijections
between A and B. Givena: A, f: A~ B and b : B, we have the proposition a ~¢ b :
Prop, which denotes intuitively that a is mapped to b by the bijection f.

e Given two groupoids G and H, we have the groupoid G ~ H, which denotes the groupoid
of all groupoid equivalences between G and H. Given g : G, ¢ : G ~ H and h : H, we
have the set g ~4 h : Set, which can be thought of as the set of all paths between ¢(g)
and h in H.

The introduction and elimination rules for ~ ensure that A ~ B is the type of equivalences
between A and B.

A:U a: A e:A~B B

a:
1lg: A~ A Tg:G~1, Q et(a) : B

A e:A~B b:
e (b): A

I''z:A Fb:B
Ny:B Fa:A
a:A b:B e:A~B Dz:Ay:B Fe:(w~,a)~ (b y
e=(a,b) : (a ~1, e (b)) =~ (e*(a) ~1, b) I'Funiv([z: Alb, [y : Bla,[z: A,y:Ble) : A~ B

A Type Theory with Native Homotopy Universes R. Adams, A. Polonsky

Each universe is itself an object of the next universe; t(}iufls 1:Prop: Set: gxrf'oupoid. We
also have the following definitional equalities: ¢ ~1p,. ¥ = ¢~ ¢, A~y B= A~ B.
As well as the normal operation of substitution, we have an operation of path substitution:

Fz:AFb:B Thte:an~y, d
I'Fblz//e] : blx/a] ~Blz)/e blz/d]

The system A~ enjoys the following properties. Univalence holds definitionally; that is, an
equality between types A ~ B is exactly (definitionally) the type of equivalences between A
and B. Also, transport respects reflexivity and composition definitionally.

This type theory has been formalised in Agda, using the method of the system Kipling
from McBride [5]. The method ensures that, if s and ¢ are definitionally equal expressions in
A ~9, then [s] and [¢] are definitionally equal objects in Agda. We interpret each context with
a groupoid in Agda; that is, we define the following type of contexts and functions:

data Cx : Set;
[]C: Cx — Sety

EQC: VI - [T]C— [T]C — Set
EQCQ . V{F} {a1 a2 bl bgi [F]C}%
EQCF(IlGQ%EQCFble—)EQCF(Ilb1—>EQCPa2b2—>S€t

The formalisation is available online at https://github.com/radams78/Equality?2.

Related Work An earlier version of this system was presented in [2]. In this talk, we also
give semantics to this system in Agda’s type theory extended with a native type of groupoids,
and show how the syntax and semantics are formalised in Agda.

Our system is closely related to the system PHOML (Predicative Higher-Order Minimal
Logic) presented in [1]. The system A~ can be seen as an extension of PHOML with groupoids,
and with a univalent equality for both sets and groupoids.

Cubical type theory [3, 4] has a very similar motivation to this work, and also offers a
type theory with univalence and a computational interpretation. One difference with our sys-
tem is that in cubical type theory, transport respects reflexivity and composition only up to
propositional equality.

References

[1] Robin Adams, Marc Bezem, and Thierry Coquand. A normalizing computation rule for propo-
sitional extensionality in higher-order minimal logic. Submitted for publication in TYPES 2016.
https://arxiv.org/abs/1610.00026, 2017.

[2] Robin Adams and Andrew Polonsky. A type system with native homotopy universes. Talk given
at Workshop on Homotopy Type Theory / Univalent Foundations, Porto, Portugal, 2016. http:
//hott-uf .gforge.inria.fr/andrew.pdf.

[3] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical type theory: a
constructive interpretation of the univalence axiom. CoRR, abs/1611.02108, 2016.

[4] Simon Huber. Canonicity for cubical type theory. arXiv:1607.04156, 2016.

[6] Conor McBride. Outrageous but meaningful coincidences: Dependent type-safe syntax and eval-
uation. In Bruno C. d. S. Oliveira and Marcin Zalewksi, editors, Proceedings of the 6th ACM
SIGPLAN Workshop on Generic Programming (WGP 2010), pages 1-12. ACM, 2010.

https://github.com/radams78/Equality2
https://arxiv.org/abs/1610.00026
http://hott-uf.gforge.inria.fr/andrew.pdf
http://hott-uf.gforge.inria.fr/andrew.pdf

Monads from multi-sorted binding signatures

Benedikt Ahrens!, Ralph Matthes?, and Anders Mortberg?

! Inria Rennes Bretagne Atlantique, Nantes, France
2 Tnstitut de Recherche en Informatique de Toulouse (IRIT), CNRS and Université Paul Sabatier
3 Inria Sophia Antipolis — Méditerranée, Sophia Antipolis, France

We present a construction in UniMath of simply-typed term systems with variable binding.
Specifically, we start out with a very simple notion of ‘multi-sorted binding signature’. Such
a signature abstractly specifies a simply-typed language with variable binding. To any such
signature S we construct a monad, say, Tg that deserves to be called the ‘syntax generated by
the signature S’. This monad associates, to any context I', the well-typed terms Ts(I") in that
context. The monadic multiplication represents a well-behaved substitution operation on the
terms of Ts. We illustrate what this means in the examples below.

We are not the first to work on the topic of constructing (some notion of) syntax from
signatures; similar constructions have been carried out in [6, 3], for instance, both working in
the proof assistant Coq. The fundamental difference to those previous efforts is that we work
in a spartan core type theory—UniMath—that does not have general inductive types. Indeed,
one of the main challenges we have met is the construction of some class of inductive families
of sets from the type constructors available in UniMath. This construction is topos-theoretic
in spirit, akin to the constructions carried out in [7, 9].

For sake of simplicity, we illustrate first the simpler case of untyped syntax. In this case, a
binding signature is given by a family of lists of natural numbers. Each member of the family
specifies a constructor, and the associated list of natural numbers specifies, via its length, the
number of arguments of that constructor, and the number of variables bound in each argument.
For instance, the untyped lambda calculus LC is specified by the signature {abs := [1] , app:=
[0, 0]} specifying the constructors absy : LC(option(X)) — LC(X) and appy : LC(X)xLC(X) —
LC(X). The functor LC : Set — Set thus obtained is actually a monad on the category of sets,
and, more specifically, the ‘initial monad’ in a suitable category [8]. Note that the constructor
for variables is handled separately, and is not specified in the binding signature.

In previous work [2], we have constructed, in UniMath, the ‘term monad’ specified by any
binding signature. In the present work, we generalize the notion of signature to allow for the
specification of multi-sorted term systems, over a set of sorts, and generalize the construction
of the term monad to those multi-sorted binding signatures.

The multi-sorted binding signatures we consider are similar to those of [6, 3]. They specify
a set sort of sorts and typing and binding behaviour of the constructors. For instance, the
signature of the simply-typed lambda calculus requires a set of sorts equipped with a binary
function type constructor (=). The signature is then given by two families, both indexed
over two sorts s, ¢, with ‘arities” ([([],s = ¢),([], s)],¢) and {[([s],t)], s = t), corresponding to
application and A-abstraction, respectively. To such a multi-sorted binding signature over a set
sort of sorts we associate a monad on the slice category Set/sort.

We now outline the construction of a monad from a multi-sorted binding signature. The
construction proceeds in several steps, and uses results provided in previous work.

Signature with strength from a multi-sorted binding signature. A ‘signature with
strength’ is a more general, and more semantic notion of signature. It consists of an endofunctor
H on endofunctors (on a suitable base category) together with extra data 6 that specifies
information on ‘how to do substitution’ on H-algebras. The first step consists of associating a
suitable signature with strength (H,) on Set/sort to any binding signature S over sort.

Monads from multi-sorted binding signatures B. Ahrens, R. Matthes, A. Mortberg

Initial algebra for Hg. The next step consists in constructing an initial algebra for H, or,
more precisely, for Id + H, the sum of H with the functor constantly the identity on the base
category. The summand Id encodes ‘variables as terms’, whereas the functor H specifies the
constructors given via S. Due to the absence of general inductive types in UniMath, this step
requires the formalization of some category-theoretic machinery in UniMath, and it constitutes
the main technical contribution of the present work.

Substitution on the initial algebra. The initial algebra constructed in the previous step
consists, in particular, of an endofunctor T on Set/sort, and a natural transformation n : Id — T.
We complement the pair (T,7) to a monad by constructing a suitable ‘substitution’ operation.
This step can itself be divided into two steps: first, we construct a substitution system [10] from
(T, n), employing ‘Generalized Mendler Iteration’. This iteration scheme is explained in [5] and
formalized in [2]. In a second step, we apply a map from substitution systems to monads on the
substitution systems thus obtained. This map has been constructed in [10] and been extended
to a functor in [1].

An optional step consists in precomposing the obtained monad with a suitable functor from
‘finite contexts’ to ‘general contexts’, that is, with the inclusion from the comma category
J | sort (where J : Fin — Set is the inclusion of finite sets into sets) to the slice category
Set/sort. This would yield a monad relative to J : J | sort — Set/sort [4].

The construction of ‘term monads’ from multi-sorted binding signatures presented here is
one step in a larger project with Voevodsky, which aims to construct a C-system from the term
monad of a {ty, el}-sorted binding signature [11].

References

[1] Benedikt Ahrens and Ralph Matthes. Heterogeneous substitution systems revisited. To be pub-
lished in the Postproceedings of TYPES’15, LIPIcs vol. 69. http://arxiv.org/abs/1601.04299.

[2] Benedikt Ahrens, Ralph Matthes, and Anders Mortberg. From signatures to monads in UniMath.
2016. https://arxiv.org/abs/1612.00693.

[3] Benedikt Ahrens and Julianna Zsidé. Initial Semantics for higher—order typed syntax in Cogq.
Journal of Formalized Reasoning, 4(1):25-69, September 2011.

[4] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors.
Logical Methods in Computer Science, 11(1), 2015.

[5] Richard S. Bird and Ross Paterson. De Bruijn Notation as a Nested Datatype. J. Funct. Program.,
9(1):77-91, 1999.

[6] Venanzio Capretta and Amy Felty. Higher-order abstract syntax in type theory. In Logic Collo-
quium 2006, volume 32 of Lecture Notes in Logic, pages 65—90. Cambridge U. Press, 2009.

[7] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract Syntax and Variable Binding. In
Proceedings of the IEEE Symposium on Logic in Computer Science, pages 193—-202, 1999.

[8] André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Inf. Comput.,
208(5):545-564, 2010.

[9] Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical
Structures in Computer Science, 20(2):285-318, 2010.

[10] Ralph Matthes and Tarmo Uustalu. Substitution in non-wellfounded syntax with variable binding.

Theor. Comput. Sci., 327(1-2):155-174, 2004.

[11] Vladimir Voevodsky. C-system of a module over a J f-relative monad. 2016. https://arxiv.org/
abs/1602.00352.

http://arxiv.org/abs/1601.04299
https://arxiv.org/abs/1612.00693
https://arxiv.org/abs/1602.00352
https://arxiv.org/abs/1602.00352

Typing with Leftovers: a Mechanisation of ILL

Guillaume Allais!

Radboud University Nijmegen, The Netherlands gallais@cs.ru.nl

In a linear type system, all the resources available in the context have to be used exactly
once by the term being checked. In traditional presentations of intuitionistic linear logic this
is achieved by representing the context as a multiset which, in each rule, gets cut up and
distributed among the premises. This is epitomised by the right rule for tensor (cf. Figure 1).

However, multisets are an intrinsically extensional notion and therefore quite arduous to
work with in an intensional type theory. Various strategies can be applied to tackle this issue;
most of them rely on using linked lists to represent contexts together with either extra inference
rules to reorganise the context or a side condition to rules splitting the context so that it may
be re-arranged on the fly. In the following example, &~ stands for “bag-equivalence” of lists.

I'o AbT 'o AbT I''A=0©

NAFo®T i OFo®T @i

Figure 1: Introduction rules for ®. Left: usual presentation; Right: with reordering on the fly

All of these strategies are artefacts of the unfortunate mismatch between the ideal math-
ematical objects one wishes to model and their internal representation in the proof assistant.
Short of having proper quotient types, this will continue to be an issue when dealing with mul-
tisets. The solution we offer tries not to replicate a set-theoretic approach in intuitionistic type
theory but rather strives to find the type theoretical structures which can make the problem
more tractable. Given the right abstractions, the proofs follow directly by structural induction.

McBride’s recent work [2] on combining linear and dependent types highlights the distinction
one can make between referring to a resource and actually consuming it. In the same spirit,
rather than dispatching the available resources in the appropriate sub-derivations, we consider
that a term is checked in a given context (typically named) on top of which usage annotations
(typically named I', A, etc.) for each of its variables are super-imposed.

A derivation T' + 0 X A corresponds to a proof of o in the underlying context v with
input (resp. output) usage annotations I' (resp. A). Informally, the resources used to prove o
correspond to a subset of : they are precisely the ones which used to be marked free in the
input usage annotation and come out marked stale in the leftovers A.

Wherever we used to split the context between sub-derivations, we now thread the leftovers
from one to the next. Writing f, for a fresh resource of type ¢ and s, for a stale one, we can
give new introduction rules for the variable with de Bruijn index zero, tensor and the linear
implication, three examples of the treatment of context annotation, splitting and extension:

'FoXA AFTXO I f,FTRA: s,

T f,FoRD.s, 0 - TFo -orRA

Figure 2: Introduction rules for vary ® and — with leftovers

10

Typing with Leftovers Allais G.

This approach is particularly well-suited to use intuitionistic linear logic as a type system
for an untyped A-calculus where well-scopedness is statically enforced: in the untyped calculus,
it 4s the case that both branches of a pair live in the same scope. In our development, we
use an inductive family in the style of Altenkirch and Reus [1] and opt for a bidirectional
presentation [3] to minimise the amount of redundant information that needs to be stored.

Type Inference (resp. Type Checking) is then inferring (resp. checking) a term’s type but
also annotating the resources it consumed and returning the leftovers. These typing relations
can be described by two mutual definitions; e.g. the definitions in Figure 2 would become:

'Fo>aKA AFT735bXO I fobEFT3bKA- s,
' foFveoRTI: s, 'Fo®73 (a,b)XO 'Fo—o73 KA

Figure 3: Type Inference rule for varg and Type Checking rules for pairs and lambdas

For this mechanisation to be usable, it needs to be well-behaved with respect to the natural
operations on the underlying calculus (renaming and substitution) but also encompass all of ILL.
Our Agda formalisation (available at https://github.com/gallais/typing-with-leftovers)
states and proves the following results for a system handling types of the shape:

Lemma 1 (Framing). The usage annotation of resources left untouched by a typing derivation
can be altered freely. The change is unnoticeable from the underlying A-term’s point of view.

Lemma 2 (Weakening). The input and output contexts of a typing derivation can be expanded
with arbitrarily many new resources. This corresponds to a weakening on the underlying \-term.

Lemma 3 (Parallel Substitution). Given a term and a typing derivation corresponding to
each one of the fresh resources in its typing derivation’s context, one can build a new typing
derivation and a leftover environment. The corresponding action on the underlying \-term is
parallel substitution.

Lemma 4 (Functional Relation). The typing relation is functional: for given “inputs”, the
outputs are uniquely determined. It is also the case that the input context is uniquely determined
by the output one, the term and the type.

Lemma 5 (Typechecking). Type checking (resp. Type inference) is decidable.
Lemma 6 (Soundness). Typing derivations give rise to sequent proofs in ILL.

Lemma 7 (Completeness). From a sequent proofs in ILL, one can build a pair of an untyped
term together with the appropriate typing derivation.

References

[1] Thorsten Altenkirch and Bernhard Reus. Monadic Presentations of Lambda Terms Using Gener-
alized Inductive Types, pages 453—468. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[2] Conor McBride. I Got Plenty o’ Nuttin’, pages 207-233. Springer International Publishing, 2016.

[3] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang. Syst.,
22(1):1-44, January 2000.

11

https://github.com/gallais/typing-with-leftovers

From setoid hell to homotopy heaven?

Thorsten Altenkirch'*
School of Computer Science, University of Nottingham, UK

In my presentation I want to discuss the role of extensionality in Type Theory. Hence my
contribution is not of a technical but of a partially historic and partially philosophical nature.
It certainly expresses views which can and should be discussed.

To cope with the lack of extensional concepts in Intensional Type Theory, we used setoids:
a type with an equivalence relation. This way we can supply the intended equality for func-
tion types and for quotient constructions like the reals. However, setoids have a number of
disadvantages:

o Where exactly do we use setoids and where types?

e We have to introduce a lot of boilerplate, e.g. we define List as an operation on types but
now we have to lift this also to setoids.

e This gets even worse when we consider families of setoids, as for example in categories
where the objects have a non-trivial equality.

e We never actually hide the implementation, any user of a setoid may still depend on the
implementation details.

To some degree this disadvantages can be overcome by discipline and by using additional tools
but it seems to be more honest to built mechanisms into Type Theory itself.

While extensional principles are not provable in Intensional Type Theory on the other hand
we are unable to observe intensional aspects of our definitions. This is different to set theory
where we can ask intensional questions like 2 € 3?7 Or NN Bool = ()7 !

An alternative to Intensional Type Theory is Computational Type Theory ? (Constable
(2002)) which identifies judgemental equality and propositional equality. In Computational
Type Theory functional extensionality is provable and quotient types are definable. Computa-
tional Type Theory is based on a set theoretic realizability semantics and it mimics set theoretic
extensionality avoiding intensional questions.

Another option is to internalize the idea of setoids, if everything is a setoid what is the
corresponding type theory? This was carried out in Altenkirch (1999); Altenkirch et al. (2007)
leading to a system which we dubbed Observational Type Theory. This type theory is intensional
in the sense that we don’t have equality reflection but it supports extensional concepts like
functional extensionality and quotients.

By propositional extensionality we mean that two propositions (that is types with at most
one inhabitant) are equal if they are logically equivalent. This principle is true in set theory
and can be added to Computational Type Theory and Observational Type Theory. However,
why should we only stop at propositions? We can ask the question in general: when are two
types equal.

*Supported by EPSRC grant EP/M016951/1 and USAF grant FA9550-16-1-0029.

1If we want to talk about intensional objects in Type Theory we can. E.g. we can represents sets as trees
following Peterr Aczel and asks the above questions about those trees. However, in Type Theory we don’t have
to we can hide information which is not available in set theory.

2In the past this was called Extensional Type Theory

12

From setoid hell to homotopy heaven? Thorsten Altenkirch

The answer is given by the univalence principle of Homotopy Type Theory which has propo-
sitional extensionality as a special case. In a nutshell univalence says that equality of types is
equivalence which in the case of proposition boils down to logical equivalence and in the case
of sets (types whose equality is propositional) to isomorphism.

An important consequence of univalence is that equality cannot be propositional. This can
be easily seen because they are two isomporphisms of type Bool ~ Bool and identifying them
is clearly inconsistent. Indeed we can construct arbitrarily complex types using only univalence
and universes Kraus and Sattler (2015).

We cannot model this sort of equality in set theory and not in a system with equality
reflection because here equality is proof-irrelevant by design. Our setoid approach is insufficient
as well because we rely on equality being propositional to model Type Theory. However, it
is clear how where to go, we need proof-relevant version of setoids where the equality has the
same structure again, i.e. weak w-groupoids. Recent work Cohen et al. (2016) shows that we
can make this precise and not only model but also implement Type Theory using cubical sets.

Extensionality is essential if we want to construct towers of abstraction. We want to be
able to replace any object by another one which behaves the same without the whole tower
tumbling down. We need to reason upto extensional equality and not have to take into account
the choice of encoding. Information hiding is essential once we move to large scale formalisation
and for the time being Homotopy Type Theory is the only foundational theory which delivers
extensionality for equality of types.

References

Thorsten Altenkirch. Extensional equality in intensional type theory. In 14th Symposium on
Logic in Computer Science, pages 412 — 420, 1999.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now!
In PLPV °07: Proceedings of the 2007 workshop on Programming languages meets pro-
gram verification, pages 57-68, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-677-6.
doi:http://doi.acm.org/10.1145/1292597.1292608.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical type theory: a
constructive interpretation of the univalence axiom. arXiv preprint arXiv:1611.02108, 2016.

Robert L Constable. Naive computational type theory. In Proof and System-Reliability, pages
213-259. Springer, 2002.

Nicolai Kraus and Christian Sattler. Higher homotopies in a hierarchy of univalent universes.
ACM Trans. Comput. Logic, 16(2):18:1-18:12, April 2015. ISSN 1529-3785. doi:10.1145/
2729979. URL http://doi.acm.org/10.1145/2729979.

13

http://doi.org/http://doi.acm.org/10.1145/1292597.1292608
http://doi.org/10.1145/2729979
http://doi.org/10.1145/2729979
http://doi.acm.org/10.1145/2729979

Type Theory with Weak J*

Thorsten Altenkirch!, Paolo Capriotti!, Thierry Coquand?,
Nils Anders Danielsson?, Simon Huber?, and Nicolai Kraus'

! University of Nottingham
2 University of Gothenburg

Judgmental equality is central to intensional type theory, and closely related to computation.
In typical formulations of intensional type theory two terms are judgmentally equal if they have
identical normal forms. Computation tends to make it easier to write type-correct programs,
because fewer explicit casts need to be inserted into the terms. Thus judgmental equalities can
make type theories more convenient to use. Our central question is whether they also change
the strength of the theories. What are the consequences of replacing some judgmental equalities
by propositional (internal) equalities? Do we get a weaker theory? Is the most basic form of
judgmental equality based on [-equality for functions more fundamental than stronger forms
that also include computation for the J rule, or various forms of 7-equality (for instance as
presented by Allais, McBride, and Boutillier [1])? In this talk we do not provide any answers,
but we record a few observations and a conjecture.

In extensional Martin-Lof type theory [6] any propositional equality can be turned into a
judgmental equality. Hofmann [3] has shown that one variant of extensional type theory is a
conservative extension of an intensional type theory, i.e. if a type in the intensional theory has
an inhabitant in the extensional one, then a corresponding inhabitant exists in the intensional
theory. A similar statement for the Calculus of (Inductive) Constructions is due to Oury [7]. In
these settings one could thus say that the additional judgmental equalities do not add additional
strength (except in so far as they allow the formation of new types).

We note that a very important assumption in both Hofmann’s and Oury’s setting is unique-
ness of identity proofs (UIP), a principle which is not always assumed, and which is even rejected
in homotopy type theory. UIP can be derived in extensional type theory, but is independent of
some forms of intensional type theory [4].

In the absence of UIP, an additional concept distinguishes judgmental and computational
equality: coherence. Judgmental equality is some sort of law, while propositional equality is
data, and data is not automatically well-behaved (for example, associativity in a bicategory is
given by 2-morphisms, i.e. data, and coherence follows from the pentagon law).

To make one of the questions that we are interested in precise, consider a suitable version
of Martin-Lof type theory with an equality type, written x = y, and without UIP. We assume
function extensionality. For a type A, let us write I4 for the type ¥, .42 = y. Disregarding
universe levels, we can write down the type of the eliminator J as

J:(A:U) (P:Ta—=U) (d: (x: A) = P(z,z,refl)) (¢: I4) = P(q). (1)

Usually the S-rule for J is assumed to hold judgmentally: JAP4(z,z, refl) = d(x). We ask
ourselves what happens if we replace this rule by a postulated term Jg:

Jg:(A:U) (P:1a—U) (d: (x: A) = Pz, z,refl) (x: A) — JVPd (2, 2 refl) = d(z). (2)

One reason why this might be interesting is that cubical type theory [2] has a type of paths
that satisfies all of the identity type’s axioms, except that the S-rule for J does not in general
hold judgmentally.

* Altenkirch and Capriotti are supported by USAF grant FA9550-16-1-0029, Altenkirch and Kraus by EPSRC
grant EP/M016951/1, and Danielsson by a grant from the Swedish Research Council (621-2013-4879).

14

Type Theory With Weak J Altenkirch, Capriotti, Coquand, Danielsson, Huber, Kraus

Here is an example, first discussed in 2011 [5], that was originally intended to illustrate
the lack of coherence that could arise. For simplicity we use subst (aka transport), a non-
dependent variant of J which is derivable from J. For a type A, a family P : A — U, and an
equality ¢ : 2 = y, we denote the term by subst®™? : P(z) — P(y). From Js and function

extensionality we can derive the equality substg’P . subst® el = iq p(z)- Consider the two

terms subst> 7" (subst P (p)) and subst® " (p). There are two obvious ways to prove that

the first term is equal to the second one: we can use substg’P to remove either the first or the

second occurrence of subst™ ™ in the first term. If J s was a judgmental equality, then substg

would just be (defined as) refl, and the two equalities between the terms would both be refl
and thus be equal. In the version where Jg (and thus substg) is only given as a propositional
equality, it is less clear whether the two equalities are equal. In fact, some of us believed for
some time that they are not, and that the propositional Jg thus made the type theory weaker.

However, it turns out that the two equalities are equal. To see this, note that the pair
(substA’P’reﬂ7subst§’P) is an element of the singleton type Xt.ppy—p)f = idpe), and equal
to the pair (idp(,),refl). With that replacement one can derive an equality between the two
equalities.!

While our initial thought was that (2) is a postulated inhabitant of a not necessarily propo-
sitional type (i.e. a type which can have more than one element), and thus potentially problem-
atic, we realised that we should consider (1) and (2) in combination—after all, J is a postulated
constant as well. It turns out that the X-type of pairs (J, Jg) is contractible, assuming that we
already have instances of (J,Jg) (for suitable universe levels).! Observe that, by exchange of
Y’s and II’s, the Y-type of pairs (J,Jg) is equivalent to

(A:U) (P:Ia—U) (d: (x:A) = Pz, z,refl)) —
g =P (x: A) = j(z,z,refl) = d(x)).

The function Az.(x,z,refl) is an equivalence between A and 1,4, and using this equivalence in
the second line of (3) one can see that this second line is equivalent to a singleton type. Thus
the whole type (3) is contractible.

Hence, if we replace the usual judgmental computation rule for J by the constant Jg, then
coherence issues do not seem to arise, and we conjecture that a conservativity result holds even
in the absence of UIP.

3)

References

[1] Guillaume Allais, Conor McBride, and Pierre Boutillier. New equations for neutral terms: A sound
and complete decision procedure, formalized. In DTP’18, 2013. doi:10.1145/2502409.2502411.

[2] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical type theory: a
constructive interpretation of the univalence axiom. Preprint arXiv:1611.02108v1 [cs.LO], 2016.

[3] Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis, U. Edinburgh, 1995.

[4] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Twenty-Five
Years of Constructive Type Theory. Oxford University Press, 1998.

[5] Nicolai Kraus. Homotopy type theory. Slides for a talk given at Nottingham’s Functional Program-
ming Lab Away Day, 2011. Available at www.cs.nott.ac.uk/~psznk/docs/talk_away.pdf.

[6] Per Martin-Lof. Constructive mathematics and computer programming. Studies in Logic and the
Foundations of Mathematics, 104:153-175, 1982. doi:10.1016/S0049-237X(09)70189-2.

[7] Nicolas Oury. Extensionality in the calculus of constructions. In TPHOLs 2005, 2005. doi:10.1007/
11541868_18.

LAt the time of writing an Agda formalisation of a very similar statement is available at http://www.cse.
chalmers.se/~nad/listings/equality/README.Weak-J.html.

15

https://doi.org/10.1145/2502409.2502411
https://arxiv.org/abs/1611.02108v1
www.cs.nott.ac.uk/~psznk/docs/talk_away.pdf
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1007/11541868_18
https://doi.org/10.1007/11541868_18
http://www.cse.chalmers.se/~nad/listings/equality/README.Weak-J.html
http://www.cse.chalmers.se/~nad/listings/equality/README.Weak-J.html

Domain Theory in Type Theory via QIITs

Thorsten Altenkirch!'*, Paolo Capriotti'f, and Bernhard Reus?

1 University of Nottingham
2 University of Sussex, Brighton

One way to express general recursive functions and non-terminating computations in type theory
is to define a relevant part of domain theory with fixpoint theorems and reasoning principles. This
has been attempted in various mechanised forms, e.g. Coq [4] or Lego [9]. While the latter works
in the axiomatic setting of Synthetic Domain theory and implements lifting via an axiomatization of
the Sierpinski space to define lifting as partial map classifier, the former follow Capretta’s idea [5] of
implementing lifting as an appropriate quotient of a coinductive definition of the delay monad. Benton
et al. then define pointed w-cpos as notion of domain and develop some domain theory and denotational
semantics. Similarly, in [6] profinite domains are formalised in Coq together with the usual results
regarding recursive domain equations. Dockins’ approach, however, is not based on Capretta’s delay
monad but implements effective algebraic domains relying on the “innate ‘effectiveness’ of functions
inside type theory” [6]. In all the above formalisations, fixpoints of mixed-variant domain equations
D = F(D, D), where F is a strict locally continuous bifunctor, are constructed as bilimits of D,, 11 =
F(D,,, D,,) and the minimal invariance property [7, 8] is used to derive a reasoning principle (fixpoint
induction) for the recursive domains obtained via those bilimits.

While the implementations of domain theory mentioned above demonstrate nicely how domains
(and reasoning principles) can be “constructed” in type theory on top of the lifting monad, the authors
of [4] argue that “some of the proofs and constructions are much more complex than they would be
classically”. Moreover, those formalisations of domain theory until now have been always carried out in
intensional type theory. We argue that it is more convenient to work in Homotopy Type Theory and use
the rather expressive concept of higher inductive types [10] that have been proposed based on homotopy-
theoretic ideas. Even more conveniently, we can assume a trivial higher-dimensional structure and just
work with the resulting types, called quotient inductive-inductive types (QIIT). Their semantics have
been recently defined and investigated in [1] and used e.g. to give an elegant implementation of the
syntax and semantics of basic dependent type theory [3]. QIITs allow us to introduce new constructors
and equalities at the same time and therefore to implement the lift monad in a straightforward inductive
fashion. In [2], this has been carried out for sets (flat cpos). The constructors for the cpo (A, C) are
1 :A,,n: A— A, sup, and constructors stating that C is reflexive, transitive, antisymmetric, that
1 C =, that sup is the least upper bound. In [2] it has already been shown that this QIIT is the usual
lifting monad on sets and that it is equivalent to the coinductive construction from [4]. According to [2],
this constitutes “a first step in the development of a form of constructive domain theory in type theory.
It remains to be seen whether it is possible to, for instance, replicate the work of Benton et al. ...”.

We prove this claim, i.e. that it is indeed possible (and appropriate) to define domain theory inside
type theory by analyzing [2]’s lifting monad on pointed w-cpos. The lifting monad can be factored
into two adjunctions: one between cpos and pointed cpos (using QIITs) and one between cpos and sets
(which just constructs the discrete cpo). The adjunction between pointed cpos and cpos also gives rise
to the lifting comonad on pointed cpos which can be used in the construction of domain equations.

As example we implement streams over a (flat) set of data A, i.e. S(A) = (Agas x S(A4)), !
by constructing S(A) as colimit of the diagram created by the functor F/(X) = (Afas X X)1. The
existence of positively defined recursive domains like this is demonstrated by constructing solutions as

*Supported by EPSRC grant EP/M016951/1 and USAF grant FA9550-16-1-0029.
TSupported by USAF grant FA9550-16-1-0029.
"Here (_)qat denotes the embedding of sets into w-cpos while the outermost (. ..) | is the lifting comonad.

16

Domain Theory in Type Theory Altenkirch, Capriotti, Reus

w-colimits in the usual way which are definable as a QIIT. On streams we can work out examples like
the filter function filter: IT4.set(A — 2) — S(A) — S(A) or the function that finds a specific element
in a stream: find : I 4.set(A — 2) — S(A) — A . Those functions can be defined inductively on the
argument stream. Other functions, like the sieve of Eratosthenes, can only be defined co-inductively.
All necessary induction and coinduction principles can be derived as usual (e.g. structural induction or
fixpoint induction).

In the formalisation, we use Martin-Lof (intensional) type theory with identity types, enriched by
the extensionality principle for functions and the existence of quotient inductive-inductive types.

Our development validates the usefulness of quotient inductive-inductive types in extensional type
theory. We summarise the similarities and differences with respect to “common” intensional construc-
tive formulations of w-cpos that use setoids as e.g. [4, 6]. One such aspect is, for instance, the smash
product, ®, that caused problems in [4], requires an impredicative universe to be encoded in [9], but
appears to be unproblematic in [6] which implements effective domains.

In the future, we would like to further extend the development to include mixed-variant functors,
making use of the limit-colimit coincidence for w-cpos, and to also investigate whether and how topo-
logical and synthetic domain theory, respectively, can be elegantly formalised in an extensional type the-
ory with quotient inductive-inductive types. The fact that the Sierpinski space can be easily expressed
as a higher inductive type [11] provides some hope in this direction.

The ultimate goal is to eventually produce a mechanisation of this constructive domain theory in
Agda using postulates for the QIITs. Such a mechanisation will help us identify needs for appropriate
tactics in proof construction. Our work thus generally acts as a sounding board for the development of
quotient inductive-inductive types and corresponding reasoning principles.

References

[1] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, and Fredrik Nordvall Forsberg. Quotient inductive-
inductive types. CoRR, abs/1612.02346, 2016.

[2] Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. Partiality, revisited: The partiality monad
as a quotient inductive-inductive type. In FOSSACS. Springer, 2017.

[3] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive types. In ACM
SIGPLAN Notices, volume 51, pages 18-29. ACM, 2016.

[4] Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory and denotational semantics in
Coq. In International Conference on Theorem Proving in Higher Order Logics, pages 115-130. Springer,
2009.

[5] Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer Science, 1(2),
2005.

[6] Robert Dockins. Formalized, effective domain theory in Coq. In International Conference on Interactive
Theorem Proving, pages 209-225. Springer, 2014.

[7] Peter J. Freyd. Remarks on algebraically compact categories, page 95106. London Mathematical Society
Lecture Note Series. Cambridge University Press, 1992.

[8] Andrew M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66-90, 1996.
[9] Bernhard Reus. Formalizing synthetic domain theory. Journal of Automated Reasoning, 23(3):411-444, 1999.

[10] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[11] Niccold Veltri. Partiality and non-termination in type theory. Slides for talk at EWSC’17, March 2017.

17

https://homotopytypetheory.org/book

Normalisation by Evaluation for a Type Theory with Large
Elimination

Thorsten Altenkirch! | Ambrus Kaposi?, and Andras Kovécs?

! University of Nottingham, Nottingham, United Kingdom
txa@cs.nott.ac.uk
2 E6tvos Lorand University, Budapest, Hungary
{akaposi|andraskovacs}@caesar.elte.hu

We use normalisation by evaluation (NbE) to prove normalisation for a dependent type
theory with a universe closed under dependent function space and booleans, where booleans
are equipped with large elimination. This is the continuation of our previous work [2]. There,
NbE is given for an intrinsically typed syntax with dependent function space and a base type.
The main technical addition in the current work is the inclusion of quote and unquote in the
model (similarly to the NbE proof for System F [1]). An Agda formalisation is work in progress.

The syntax

We define an intrinsically typed syntax for type theory, that is, it only contains well-typed
terms. Conversion rules are added as equality constructors, yielding a higher inductive inductive
type. Our metatheory has uniqueness of identity proofs, hence we call this definition quotient
inductive inductive. Our sorts are contexts, types, substitutions and terms.

Con : Set Ty : Con — Set Tms : Con — Con — Set Tm: (I': Con) — Ty’ — Set

The core calculus is given by the following constructors, omitting the equalities expressing that
Con and Tms form a category with terminal object -. In the rule o, « denotes transport.

: Con —[-]: TmAA— (c: Tms'A) - TmT Afo]
—,— :(I': Con) —» TyI" — Con mo :(o:TmsT' (A, A)) - TmT Alnq o]
—[-] :TyA—=TmsI'A - TyT [id :Ald=A
id :TmsT'T 0 :Alo]lv] = Alo o V]
—0o—:TmsOA - TmsI'O — TmsT' A mpB 7 (ot) =0
€ :TmsT- ™ :(mo,m0)=0
— = :(6: TmsT'A) - TmI Alo] = TmsT (A, A) ,0 :(J,t)oyz(on),(m]*t[y])
w1 :TmsD(A,A) —» TmsT A w8 1wy (0,t) =m1Py

We have a universe closed under IT and Bool, with small and large elimination for Bool. We
omit listing the substitution laws and three out of four 8 laws for Bool.

U Tyl Bool : TmT'U
El :TmI'U—TyI true, false : TmI" (El Bool)

I :(A:TmDU) = Tm([,EIA)U — TmT'U ifthenelse : (C': Tm (I, El Bool) U)(b : Tm T (El Bool))

lam : Tm (', EI A) (EI B) — Tm T (EI (IT A B)) — Tm I (EIC[id, true]) — TmT (EI C[id, false])

app: TmT (EI(ITA B)) — Tm (I, El A) (EI B) — Tm T (EIC[id, b])

I18 : app (lamt) = ¢ trues : ifthenelse C'truet f =t

IIn :lam (appt) =t Ifthenelse : TmI" (EIBool) - TmI'U — TmI'U — TmI'U

*Supported by EPSRC grant EP/M016951/1 and USAF grant FA9550-16-1-0029.

18

To define a function from the syntax, one needs to use the eliminator which requires a method
for each constructor, including the equality constructors. This ensures that the function respects
conversion (which is equality).

Normal forms

We define variables, neutral terms and normal forms as inductive predicates on terms.

isVar, isNe,isNf : (I" : Con)(A: Tyl') - TmI' A — Set

Variables are de Bruijn indices. Neutral terms are either variables, applications or {i[l}fthenelse
applied to a neutral boolean. Normal forms are either constructors (I, lam, Bool, true, false) or
neutral terms. We do not allow neutral terms of any type: the type has to be U, Bool or El A
where A is neutral. This is to preserve uniqueness of normal forms for functions. Similarly we
have isNes : (I'; A : Con) — TmsI' A — Set for neutral substitutions.

Presheaf logical predicate

NbE works by evaluating the syntax in a model, then quoting semantic values back to normal
forms. In our case, the model is a proof-relevant presheaf logical predicate. Contexts are
interpreted as predicates on substitutions into that context, together with an unquote function.
Types are mapped to predicates on their terms, bundled with quote and unquote functions.
The interpretation of substitutions and terms provide the fundamental lemmas. All of this is
stable under variable renamings (we call the category of renamings REN).

PA :V¥.(p: TmsWA) — (r:Set) x (u:isNesWAp —r)
Py :V0.(p: TmsWA) - PpWpr— (t: TmW Afp]) — (r: Set) x (q:r — isNf ¥ A[p]t)
x (u:isNeW Afp]t — r)
Py :VU.(p: TmsWT)(q:PpWpr)—= Py Wpql(tlp]).r
The interpretation of the universe contains a predicate over codes. This predicate for a code

A expresses that it is a normal form and that there is also a predicate on terms of type El A
together with quote and unquote, again.

Pl (p:TmsWT)(p: PpUp)(A: TmTU).r
= isNf WU A x VQ.(8: REN(Q,¥))(t : TmQ (EI A[B]))
— (r:Set) x (q:r— isNfQ(EIA[B])) x (u:isNeQ (EIA[B])t — r)

The predicate for Bool says for a term b : TmI' (El Bool) that (b = true)+(b = false)+isNeT" (El Bool) b
(we don’t have n for Bool).

Normalisation

Normalisation unquotes the interpretation of a term, also using the unquote of the identity
substitution: norm (¢ : TmT A) := P4idpt.q(P¢Tidpp) : isNfI' At where p := Ppidp.u(idneu :
isNesI'T"idp) : PpLidp.r.

References

[1] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisation for
system F'. 1997.

[2] Thorsten Altenkirch and Ambrus Kaposi. Normalisation by evaluation for dependent types. In st
International Conference on Formal Structures for Computation and Deduction, FSCD 2016, June
22-26, 2016, Porto, Portugal, pages 6:1-6:16, 2016.

19

Monadic containers and 2-universes

Thorsten Altenkirch!* and Gun Pinyo
School of Computer Science, University of Nottingham, UK

We present an observation which relates monadic containers and type theoretic universes
closed under ¥-types and unit types (which we call X-universes).

A container Abbott et al. (2003) or polynomial functor Gambino and Hyland (2003) is given
by a set of shapes S : Set and a family of positions P : S — Set denoted as S < P which gives
rise to an endofunctor on Set given by [S <P X = s : S.Ps — X on objects. Morphisms
between containers S <1 P and T <1 Q are given by a pair of a function on shapes f : S — T and
a dependent function on positions r : MNssQ (fs) — Ps (note the change of direction) which
gives rise to a natural transformation [f < r] (s, p) = (f's,g o rs), and [—] is a full and faithful
functor from the category of containers to the category of endofunctors on Set. A container is
a monad if its associated functor is a monad.

A universe is given by a set of codes U : Set and a family El : U — Set which associates
elements to names. We say that a universe has ¥ -types if there are ¢ : U and

o:MNa:U.(Ela—U)—=U
such that

Ele. =1 (1)
El(cab) = Xx:ElaEl(bx) (2)

We define the non-dependent product as a® b = o a (A — .b). We also require:

a®l = a (3)
1®b 4)
oga(Mx.o(bx)(cx)) = o(oab)(Ax.c(mx)(mx)) (5)

I
—

The equations (3) - (5) are justified because the corresponding isomorphisms under El are valid.
Borrowing categorical terminology we say that the universe is laz, if the equalities (1),(2) are
replaced by functions:

un: Ele —1 (6)
pro,: El(cab) — Xx: Ela.El(bx) (7)

Since the codomain of ¢ is 1, the 1st function exists anyway. We can restate equation (5) by
composing the projections with pr.

Our main result is that lax ¥-universes are exactly monadic containers, choosing U < EI.

*Supported by EPSRC grant EP/M016951/1 and USAF grant FA9550-16-1-0029.

20

Monadic containers and universes Thorsten Altenkirch and Gun Pinyo

An example is List which is given by the X-universe with U = N and El = Fin (the family of
finite sets where 0,, 1, ..., (n — 1), : Finn). Now we show that it is closed under X-types and
unit types; Here ¢ = 1 and o is defined as follows:

c0f = 0
o(l+n)f = f0,+0on(fo(l+,))

Intuitively, El¢ represents the unit type and El (o nf) represents the sum type of EI(f0,),
EI(f1,), ..., EI(f (n — 1),) respectively. The element of this sum type, in turn, can be sent to
function pr in order to retrieve the original element of the corresponded type. For example,
consider the case where n = 3 and f = A{03 — 2,13 — 4,23 — 3}. Clearlyonf =2+4+4+3 =09,
so By : El(o nf), therefore, pr, 59 = (1, 24).

Proper X-universes correspond precisely to cartesian monadic containers. Another obser-
vation is that if we replace ¥ by X we get exactly applicative functors. We hope that these
observations shed a new light on monads and help deriving new reasoning principles for them.
The free monad over a functor is given by the free ¥-universe over a given universe - this
reproves a result in Gambino and Kock (2013).

Our work is clearly dual to the results in Ahman et al. (2012) but we need to understand
the relationship better.

References

Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In
Foundations of Software Science and Computational Structures, 6th International Confer-
ence, FOSSACS 2003 Held as Part of the Joint European Conference on Theory and Prac-
tice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, pages 23-38,
2003. doi:10.1007/3-540-36576-1_2. URL http://dx.doi.org/10.1007/3-540-36576-1_2.

Danel Ahman, James Chapman, and Tarmo Uustalu. When is a container a comonad? In
Proceedings of the 15th International Conference on Foundations of Software Science and
Computational Structures, FOSSACS’12, pages 74-88, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-28728-2. d0i:10.1007/978-3-642-28729-9_5. URL http://dx.doi.
org/10.1007/978-3-642-28729-9_5.

N. Gambino and J. Kock. Polynomial functors and polynomial monads. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 154:153-192, January 2013. doi:10.1017/
S0305004112000394.

Nicola Gambino and Martin Hyland. Wellfounded trees and dependent polynomial functors. In
International Workshop on Types for Proofs and Programs, pages 210-225. Springer, 2003.

21

http://doi.org/10.1007/3-540-36576-1_2
http://dx.doi.org/10.1007/3-540-36576-1_2
http://doi.org/10.1007/978-3-642-28729-9_5
http://dx.doi.org/10.1007/978-3-642-28729-9_5
http://dx.doi.org/10.1007/978-3-642-28729-9_5
http://doi.org/10.1017/S0305004112000394
http://doi.org/10.1017/S0305004112000394

A Probabilistic Approach of Behavioural Types

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iagi, Romania
bogdan.aman@iit.academiaromana-is.ro, gabriel@info.uaic.ro

In sequential systems, data types offer an effective basis of assuring a correct evolution.
In distributed systems, the behavioural types were introduced to secure the compatibility of
interaction patterns among processes [6]. The behavioural type of a process specifies its expected
interactions by using a simple type language, and so determining a correct evolution.

Probabilities allows to describe the uncertainty in quantitative terms. Regarding the pos-
sible behaviours of a system, people working in artificial intelligence have used probability
distributions over a restricted set of events, each of them corresponding to a certain type of
situation. In such an approach, the probabilities assigned to behaviours are real numbers from
[0, 1] rather than the values 0 and 1. We adapt this idea to the framework of behavioural types.

An important feature of a probabilistic model is that it distinguishes between nondetermin-
istic and probabilistic choices [5]. The nondeterministic choices refer to the choices made by
an external process, while probabilistic choices are choices made internally by the process (not
under control of an external process). Intuitively, a probabilistic choice is given by a set of alter-
native transitions, where each transition has a certain probability of being selected; moreover,
for each choice the sum of all these probabilities is 1. Probabilistic extensions of various process
calculi have been considered for distributed systems (e.g., see [B]). There are two possibilities
of extending a model using probabilities: either to replace nondeterministic choices by prob-
abilistic choices, or to allow both probabilistic choices and nondeterministic choices. Here we
consider the second approach by allowing probabilistic choices made internally by the commu-
nicating processes (sending a value or a label), and also nondeterministic choices controlled by
an external process (receiving a value or a label). It should be noticed that in our operational
semantics we impose that for each received value/label, the continuation of a nondeterministic
choice is unique; thus, the corresponding execution turns out to be completely deterministic.

We use a probabilistic extension of the process calculus presented in [7] for which we define
and study a typing system which extends the behavioural multiparty session types by combining
both nondeterministic and probabilistic behaviours. In defining a type system for such a calculus
we get inspiration from the synchronous multiparty session types [I]. A natural way to define
such an extension consists of adding probabilistic information to some of the actions, and
adopting a mixture of the classical generative and reactive models [4].

This approach is novel among the existing models used to formalize communicating processes
in the framework of multiparty session types, and is different from the one used when defining
timed multiparty session types [2]. This is due to the fact that the time changes throughout
the evolution of the systems, and thus the types should check if time is between certain given
thresholds. Since in our approach the probabilities are static, the global types just should check
if the probabilities to execute certain actions are exactly the desired ones.

We introduce a typing system with the purpose of typing efficiently the probabilistic be-
haviours. This typing system uses a map from shared names to either their sorts (S, 5’,...) or
to a special sort (G) used to type the sessions. Since a type is inferred for each participating
process in a session, we use the notation 7'@q (called located type) to represent a local type T'
assigned to a participating process q. Using these, we define

D=0 |T,z:8 | Ta:(G) | I,X:8T Ax=0|A5:{TQq}er.

22

A sorting (T',IV,...) is a finite map from names to sorts, and from process variables to
sequences of sorts and types. Typings (A, A’,...) record linear usage of session channels by
assigning a family of located types to a vector of session channels. We use the judgement
I'F P> A saying that “under the environment I', process P has typing A”.

We get some results dealing with the type preservation under equivalence and reduction.
According to these results, if a well-typed process takes a reduction step of any kind, the
resulting process will be also well-typed. This is due to the fact that in our setting, for any
given well-formed process, at most one typing rule can be applied. This means that the shape
of the typing derivation tree is unique and fully determined by the shape of the process.

Theorem 1. ' P> A and P —,, P’ imply T'F P' > A', where A=A or A =, A’
Theorem 2. THP>A and P=P' imply THP >A.

If P—y, P —p, Po... =5, @, then the probability to reach @ from P by using the
path p = py * pa % ... % pi is denoted by (P,p, Q). We define prob(P, Q) = Zp(P,p, Q) as the
probability to reach @ from P by considering all the possible paths between them. The set
FReach(P) = {Q|P —* Q and @ +} indicates the final reachable processes starting from P.

Theorem 3. If P is a well-typed process s.t. F Reach(P) # 0, then Z prob(P,Q) = 1.
QEF Reach(P)

As in [7], an annotated process P is the result of annotating the bound names of P. For
instance, (va)P is annotated to become (va : (G))P. These annotations are natural in our
framework. Using them, we get an important result: given an annotated process P and a
sorting I', it is decidable if there exists a typing A such that I' = P > A. Moreover, if such a
typing A exists, then there exists an algorithm to construct it.

Theorem 4. Given an annotated process P and a sorting I, it is decidable if there exists a
typing A s.t. T P> A. If such a typing A ezists, there is an algorithm to construct one.

This approach preserves the classical type system, and additionally it satisfies the axioms of
a probability theory for computing the probability of each behaviour. As far as we know, there
is no other related work in behavioural types. Previously, a type system was added by one of
the authors to a distributed m-calculus with timeouts to describe safe access permissions [3].

References

[1] A. Bejleri, N. Yoshida. Synchronous Multiparty Session Types. Electronic Notes in Theoretical
Computer Science 241, 3-33 (2009).

[2] L. Bocchi, W. Yang, N. Yoshida. Timed Multiparty Session Types. Lecture Notes in Computer
Science 8704, 419-434 (2014).

[3] G. Ciobanu, M. Koutny. Timed Migration and Interaction with Access Permissions. Lecture Notes
in Computer Science 6664, 293-307 (2011).

[4] R.J. van Glabbeek, S.A. Smolka, B. Steffen. Reactive, Generative and Stratified Models of Prob-
abilistic Processes. Information and Computation 121, 59-80 (1995).

[5] M. Herescu, C. Palamidessi. Probabilistic Asynchronous 7-calculus. Lecture Notes in Computer
Science 1784, 146-160 (2000).

[6] K. Honda, V.T. Vasconcelos, M. Kubo. Language Primitives and Type Disciplines for Structured
Communication-based Programming. Lecture Notes in Computer Science 1381, 22-138 (1998).

[7] K. Honda, N. Yoshida, M. Carbone. Multiparty Asynchronous Session Types. Journal of the ACM
63(1): article 9 (2016).

23

Bouncing threads for infinitary proof theory

David Baelde!, Amina Doumane?, Guilhem Jaber?, and Alexis Saurin?
! LSV, ENS Cachan & Inria Paris, dbaelde@ens-cachan.fr,
2 IRIF, CNRS & Univ. Paris Diderot, {amina.doumane,alexis.saurin}@irif.fr,
3 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, guilhem. jaber@ens-1lyon.fr

Fixed point logics are widely studied for their expressiveness, both from a model-theoretic
and from a proof-theoretic viewpoint. Infinitary (and cyclic) proof systems have drawn in-
creasing attention in recent years both from a proof-search and from a Curry-Howard perspec-
tive [7, 4, 6, 2]. Indeed, cyclic proof systems have a more natural proof search than finitary
proof systems: one is free from the search of (co-)inductive invariants and cyclic proofs enjoy a
true cut-admissibility result.

From a Curry-Howard point of view, circular proofs may be interesting since not only can
they be more natural to write but they may also have richer computational behaviours. While
cut-admissibility was known, procedural cut-elimination was only solved recently, first for the
restricted additive fragment of LL only [6] and later for full uMALL®, an infinitary system
based on multiplicative-additive linear logic with least and greatest fixed points [1] [3].

Most previous frameworks for circular and infinitary proofs (as well as tableaux methods)
have very similar validity conditions. In the present abstract, we introduce a new validity
condition for pMALL™, motivated by the dynamics of cut-elimination in circular proofs.

1 Motivation for bouncing threads

In [3], a validity criterion for proofs of uMALL™ _ (ax)
is introduced, extending that of [6]. We recall it FpYY, vX.X (v)
briefly using the standard immediate descendent FvYY FuY Y, vX. X

relation that can be found, for instance, in [5], EoX X (cut)

denoted as C below. A pMALL® proof is valid

if any of its infinite branches is supported by a

valid thread defined as follows. A thread ¢ of an Iigure 1: Example of a circular pre-proof.

infinite branch v = (s;);cw formed by sequents

s, is a sequence (F;);e, of formula occurrences F; € s;, s.t. F; T Fi11. A wvalid thread

t additionally satisfies that its minimal element (w.r.t the sub-formula ordering) among

the set of formulas occurring infinitely often is a v-formula, i.e. a greatest fixed-point.
It is then proved that a valid proof has a pro-

ductive cut-elimination. However, there are proofs

having a productive ch—eliminat'ion, whose cut- FuY .Y, vX X (ax)
free normal forms are valid but which fall out of the — (V)
scope of this validity criterion. This is particularly FvY.Y FpYY v XX (cut)

the case of proofs coming from the translation of a FrX.X
presentation of uMALL® in natural deduction into
the sequent calculus presentation. Indeed, when Figure 2: Example of a bouncing thread.
translating natural deductions, one typically gets
the sequent calculus derivations of Figure 1.

The previous pre-proof is not valid since it has no infinite threads; its infinite branch cannot
be validated. This motivates the search for a validity condition with threads bouncing on
axioms and cuts as in Figure 2.

24

Bouncing threads for infinitary proof theory Baedle, Doumane, Jaber & Saurin

2 The purely multiplicative case

First, we restrict our attention to MLL in which the cut-elimination and sequent proofs are
well-known to enjoy better property (think, for instance, of the theory of proof nets).
Bouncing threads can be described as follows:

Definition 1. A pre-thread is an infinite sequence of triples (F;, d;, s;)icw (with dg =) such
that, for all i, we have F; € s;, direction d; € {1,1} and one of the following clauses holds:

o d; =d;y1 =T, Si+1 15 a premise of the rule of conclusion s;, and F; T Fy41;

o d; =d;y1 =, s; is a premise of the rule of conclusion s;11, and F; 11 C F;;

o d; =1, diy1 =\ and s; = s;41 = {F}, Fix1} is the conclusion of an aziom rule;

o d; =\, diy1 =T and s; and s;11 are the two premises of the same cut rule, and F; = Fzﬁl,
A thread is then a persistent pre-thread, in the sense of geometry of interaction/proof-nets,
inducing a notion of visible/invisible formulas (or well-bracketed).

We then say that a thread ¢ is valid if the set of its visible formulas occurring infinitely
often has a minimum (wrt. the subformula ordering) which is a v-formula. A proof is said to
be valid if all its infinite branches are supported by a valid thread. We can then prove that a
valid proof has a productive cut-elimination procedure. To do so, we first eliminate the cuts
forming the detours, so that we get a proof which is valid w.r.t. the criterion of [3].

3 Accommodating the additives

We shall not treat of the additive fragment here but simply point its complexity. With additive
inferences, existence of a valid (bouncing) thread is not sufficient as shown below:

Ax
FuYY oY, vX. X&X (A
(M)» (@1) (Ax)

FuYlY oY, v X.X&X FulY oY, v X.X&X

F LYY &Y, 0X XaX @& yyay
Cu
F X X&X. (Cu)

This is due to additive contraction: intuitively, the only infinite branch of the above proof is
duplicated infinitely many times and only some of these duplicates produce an infinite valid
branch, some others are not productive (due to the p inferences). To address this problem, we
work slice by slice: each infinite branch of each slice shall contain a valid bouncing thread.

References

[1] David Baelde. Least and greatest fixed points in linear logic. ACM Transactions on Computational
Logic (TOCL), 13(1):2, 2012.

[2] David Baelde, Amina Doumane, and Alexis Saurin. Least and greatest fixed points in ludics. In
24th EACSL Annual Conference on Computer Science Logic, 2015.

[3] David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In 25th FACSL Annual Conference on Computer Science Logic, 2016.

[4] James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent. Journal
of Logic and Computation, 21(6):1177-1216, December 2011.

[5] Samuel R Buss. An introduction to proof theory. Handbook of proof theory, 137:1-78, 1998.

[6] Jérome Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination. In
Computer Science Logic 2013, pages 248-262, 2013.

[7] Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In Foundations of
Software Science and Computation Structures, 2002.

25

The Clocks Are Ticking: No More Delays!
Reduction Semantics for Type Theory with Guarded Recursion

Patrick Bahr!, Hans Bugge Grathwohl?, and Rasmus Ejlers Mggelberg?

L IT University of Copenhagen
2 Aarhus University

Abstract

Guarded recursion in the sense of Nakano allows general recursive types and terms to
be added to type theory without breaking consistency. Recent work has demonstrated
applications of guarded recursion such as programming with codata, reasoning about coin-
ductive types, as well as constructing and reasoning about denotational models of general
recursive types. As a step towards an implementation of a type theory with guarded re-
cursion, we present Clocked Type Theory, a new type theory for guarded recursion that is
more suitable for reduction semantics than the existing ones. We prove confluence, strong
normalisation and canonicity for its reduction semantics, constructing the theoretical basis
for a future implementation.

1 Introduction

Guarded recursion [4] allows recursion to be added to type theory without breaking consistency
by introducing time steps in the form of a delay type modality > (pronounced ‘later’). Elements
of type >A are to be thought of as elements of type A only available one time step from now.
Recursion arises from a fixed point operator mapping each productive endofunction (i.e. a
function of type >A — A) to its unique fixed point.

The most advanced type theory with guarded recursion to date is Guarded Dependent
Type Theory (GDTT) [2], an extensional type theory with a notion of clocks each of which has
a delay modality. Coinductive types can be encoded using guarded recursive types and universal
quantification over clocks [1], which allows productivity to be expressed in types. In addition,
GDTT has a notion of delayed substitutions allowing for coinductive, type theoretic reasoning
about coinductive data and functions manipulating coinductive data. Delayed substitutions
make it difficult to define a reduction semantics directly on GDTT. To solve this problem,
we introduce a new type theory called Clocked Type Theory (CloTT), which can be seen as a
refinement of GDTT.

2 Clocked Type Theory

Clocked Type Theory is an extension of dependent type theory with a special collection of sorts
called clocks, which are inhabited by ticks. An assumption of the form « : k states that « is
assumed to be a tick on clock k. In a context I, : k,I" I, tick variable « represents the
assumption that a tick of time occurs on clock k between the time when the values represented
by the variables in I" and those in I are received. The delay modality i is replaced by a form of
dependent function type over clocks: The type > (« : k).A is a type of suspended computations
requiring a tick « on the clock x to compute elements of type A. This can be understood as
a dependent function type, with introduction and elimination rules given by abstraction over
ticks, written A(« : k).t, and application to ticks, written ¢ [a]. A term ¢ can only be applied to

26

The Clocks Are Ticking: No More Delays! Bahr, Bugge Grathwohl and Mggelberg

a tick o' if all of the variables that ¢ depend on are available before o, which corresponds to
the intuition that ¢ computes to a value of type > (a : k).A before o/. We obtain the ordinary
delay type modality by writing > A for > (« : k). A if « is not free in A. The applicative functor
laws for >* follow from standard 8 and 7 rules for tick abstraction and application:

(A : k).t) [a] > t[a/d] Ma:g).(t[a]) >t if a¢fu(t)

A suspended computation represented by a closed term of type > (a : k).A can be forced
by applying it to the tick constant ¢. In general, this is unsafe for open terms, since it breaks
the productivity guarantees that the typing system should provide. For example, the term
Az : p"A).x [0] should not be typeable, because it is not productive. It is safe, however, to
force an open term if the clock x does not appear free in the context I'.

A term f : A — A is a productive function taking suspended computations of type A
and returning values of type A. The delayed fized point dfix" f of f is an element of type p¥A
which, when given a tick, applies f to itself. Crucially, dfix" f only unfolds in the reduction
semantics if applied to the tick constant, i.e. we have the reduction rule (dfix" t) [o] — ¢ (dfix" ¢).
In particular, any term (dfix") [« remains stuck if « is a tick variable.

3 Results

We argue that CloTT is at least as expressive as the fragment of GDTT without identity types,
by giving a translation of the latter into the former. The translation maps most of the equational
rules of GDTT to equalities that follow from the reduction semantics of CloTT. In particular,
most of the rules for delayed substitutions follow in fact from the 8 and 7 rules for tick abstrac-
tion and standard rules for substitutions. Some of the equational rules of GDTT do not follow
from the reduction semantics, but we argue that these are most naturally expressed in CloTT
as propositional equalities stating that ‘all ticks are equal’ and ‘all clocks are equal’. We argue
informally why these can be added to a future extension of CloTT with path types (in the sense
of Cubical Type Theory [3]) without breaking canonicity.

Our main results concern the reduction semantics of CloT T, which we show is confluent and
strongly normalising. As a consequence of this, equality of terms and types can be decided by
reducing these to their unique normal forms. This decision procedure is a major step towards
a type checking algorithm for CloTT. We also prove a canonicity theorem stating that every
closed term of type Nat reduces to a natural number. As a consequence of this we derive the
statement of productivity: Given a well typed closed term of stream type, its n’th element
can be computed in finite time. This is a formal statement of the fact that guarded recursion
captures productivity of coinductive definitions in types.

References

[1] R. Atkey and C. McBride. Productive coprogramming with guarded recursion. In Proceedings of
the 18th ACM SIGPLAN International Conference on Functional Programming, pages 197-208.
ACM, 2013.

[2] A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Mggelberg, and L. Birkedal. Guarded dependent
type theory with coinductive types. In FOSSACS, 2016.

[3] C. Cohen, T. Coquand, S. Huber, and A. Mortberg. Cubical type theory: a constructive interpre-
tation of the univalence axiom. CoRR, abs/1611.02108, 2016.

[4] Hiroshi Nakano. A modality for recursion. In LICS, pages 255-266, 2000.

27

Regularity for Free

Thibaut Balabonski!, Marco Gaboardi?, Chantal Keller!, and Benoit Valiron!

L LRI, CNRS, Univ. Paris-Sud, CentraleSupélec, Université Paris-Saclay, France
2 University at Buffalo, US

The goal of software testing is to guarantee that a program will behave according to a
specification by confronting on a well-chosen set of test data its behavior against the specified
one. In order to maximize the effectiveness of a given test data, special care must be taken to
ensure that it covers all, or most, of the possible behaviors of the program: this is known as
code coverage [5].

A recent line of work considers the question from a formal standpoint, in the context of
functional programming and inductive datatypes. In this work, one often assumes the regularity
hypothesis, that informally amounts to testing programs on inputs up to a certain size [1, 3].

As an example, to test that a program P taking a list as an input is equivalent to some
reference program (@), one often limits to bounded lists up to a certain length %k, and assumes
the following regularity hypothesis:

(Vi :"alisty, - P(I) = Q1)) = (V1 : "alist - P(I) = Q(1))

where ’a listy, is the type of polymorphic lists of length up to k. This means: if P and @) behave
similarly for all lists of size less or equal to k, then P and) behave the same on all lists.

This approach allows one to bridge a link between test and verification [1]. Indeed, a
(complete) proof that a program meets its specification is (1) a proof of the regularity hypothesis,
and (2) the fact that the program successfully passes the tests. Step (2) is only a matter of
computation: running the tests. Step (1) is more involved: it requires (a) to exhibit a bound
k rendering the regularity hypothesis valid, which is not decidable in general, and (b) to prove
the regularity hypothesis given the candidate bound k.

In this short note, we hint at one possible way to solve steps (a) and (b) in a unified manner:
the use of a dedicated type system. The technique we use is based on a line of work originated
from bounded linear logic [4].

A small language of natural numbers. As a first step, we consider a simply-typed lambda-
calculus with a base type N of natural numbers, constructors 7 for each natural numbers and
infix binary operators “4” and “«”. The language is formally defined as

M,N = z|XxM|MN|M+N|MxN|n
AB == N|A—>B

with the usual notion of typing context, judgement and the typing rules one would expect. The
operational semantics of the language is given through a straightforward beta-reduction; to each
closed term P of type N one can associate a single nnp to which it eventually reduces to. Under
this equivalence, a typing judgement x : N+ P : N corresponds to a function fp: N — N.

We now turn to the question of the kind of properties we want to test. In this simple
framework we consider two typing judgements z : N+ P : Nand z : NF @ : N, and we ask
whether fp and fg are pointwise the same function. We want a number k of tests guaranteeing
that whenever the two functions are equal on k distinct inputs, then they are equal everywhere.

We claim that in this case the question can be solved using a slightly more evolved type
system.

28

Regularity for Free Balabonski, Gaboardi, Keller and Valiron

Az:AFM:B AFM:A—oB UFN:A AFM:B z¢|A
z:WAF2: A A X M:A—-B A+VV+MN:B Ax:lgAFM: B

AFM:N UEN:N AFM:N UFEN:N
Fn:N max(A,¥)F M+ N : N A+VEFMxN:N

Table 1: Typing derivations

An indexed type system. Following the spirit of bounded linear logic, we define a new type
system with annotations of the form

A == N|A—B|l,A

where n ranges over natural numbers. The typing derivations are described in Table 1. In the
rules for application, sum and product, we assume that A and ¥ are respectively of the form

x1 Ay, s L Ay and @y 2 1 Ag, o 0 g Ay (if some variable y is missing on one
side, for the purpose of the computation we silently add it with a type y : l¢B). Then A + ¥
is w1 byys, Ay Tt ey s, An and max(A, W) is 21 nax(rr s AL Tt Imax(rn,s,) Ane

Note that any valid derivation in this indexed type system yields a valid derivation in the
simply-typed version. In particular, if A = M : N is valid, the function fj; can be defined
through this correspondance.

Theorem. Ifx;:!, N...z,:!, NF M :Nthen fy is a polynomial on the variables z,. ..,
Zy. The degree of the polynomial in each variable x; is ;. O

Now, ifz : NFP:Nand z: NF Q : N, to decide if fp = fg it is enough to

1. Index both P and Q). From the theorem fp and fg are polynomials in « and the indexation
gives us bounds dp and dg for the degree of each polynomial.

2. Test equality of P[r := v;] and Q[z := v;] for max(dp,dq) distinct values v;’s, using the
principal theorem of polynomial arithmetics.

For this toy language we are therefore able to reconciliate tests and proof: an algorithm gives
us a number of tests to perform, equivalent to the decidability of polynomial equality. This
approach extends straightforwardly to multivariate polynomials.

Perspectives. Of course the proposed language is very constrained, and we want to extend
it to more language constructs: tests, iterations. .. Unfortunately, most interesting extensions
breaks the main reason for which we are able to link test and proof: the principal theorem of
polynomial arithmetics. Extension of the language usually changes the semantics of programs
to more exotic form of functions, and the theorem is no longer valid, cutting the link to finish
the proof.

It is as of yet an active area of research to figure out whether we can backup this seemingly
simple procedure using an argument independant from polynomial arithmetic.

This project is the first step towards a deeper and more formal understanding of regularity
and code coverage. Code coverage is nowadays the standard used by industrials to decide on
a testing technique [7, 8]. Having a better, formal comprehension of design methods of tests
with good properties is therefore interesting not only from an academic perspective, but also
towards a more concrete usage.

29

Regularity for Free Balabonski, Gaboardi, Keller and Valiron

Bibliography.

1]

2]

30

A. D. Brucker and B. Wolff. On theorem prover-based testing. Formal Asp. Comp. 25(5): 683-721
(2013)

M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Archiv fiir
Mathematische Logik und Grundlagenforschung. 19:139156 (1978).

Marie-Claude Gaudel. Testing can be formal, too. TAPSOFT’95, LNCS vol 915, 82-96 (1995).
Jean-Yves Girard, Andre Scedrov and Philip J. Scott. Bounded linear logic. Th. Comp. S. 97(1):1-
66 (1992)

Joan C. Miller and Clifford J. Maloney. 1963. Systematic mistake analysis of digital computer
programs. Commun. ACM 6(2): 58-63 (1963).

Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: a calculus for
differential privacy. SIGPLAN Not. 45(9):157-168 (2010)

DO-178B, Software Considerations in Airborne Systems and Equipment Certification.

ISO 26262-6:2011 Road vehicles — Functional safety — Part 6: Product development at the software
level.

A modular formalization of type theory in Coq

Andrej Bauer!; Philipp G. Haselwarter?! and Théo Winterhalter®

! University of Ljubljana, Slovenia
Andrej.Bauer@andrej.com
2 University of Ljubljana, Slovenia
philipp@haselwarter.org
3 Tcole Normale Supérieure Paris-Saclay, France
theo.winterhalter@ens-cachan.fr

Abstract

We present a complete formalization of type theory in the Coq proof assistant. We use
the type class mechanism to break down the formalization into fragments that can then be
combined to several variants of type theory. We prove basic meta-theorems guaranteeing
that our formulation is complete and sensible, as well as theorems that facilitate applica-
tions. To test the library, we formalize a translation of type theory into type theory by
Boulier et al. which shows that function extensionality is not derivable.

Introduction. As anyone who has ever proved meta-theorems about dependent type theory
will attest, the excitement of discovering a new fact is dulled by the drudgery of checking large
boring proofs. In fact, just stating precisely and completely all the rules of type theory is
considered inhumane, and therefore omitted in practically all presentations of type theory. The
received wisdom says that such informal rigor causes no harm and that everything is known to
work out. This may well be the case—although how can we really know?—but we have learned
the hard way that incomplete formulations of meta-theorems with sloppy proofs lure us into a
morass of confusion and half-truths that hinders progress. In other words, we shall not trust
ourselves again to have stated a meta-theorem about dependent type theory, and much less
proved it, unless it is fully formalized. Our formalization of type theory is implemented in the
Coq proof assistant [3], and is freely available at [1].

The basic setup. For our purposes (which have not come to fruition yet), we needed a
formalization of several variants of type theory, which all shared common basic structure but
differed in the inclusion or exclusion of certain principles and constructors. We intended to
manipulate all parts of the syntax and the derivations, including substitutions and judgmental
equalities. We thus opted for a “deep” formalization of the syntax and the rules as straight-
forward inductive types, thereby having complete control over the object-level theory, albeit
at the price of having to perform manually various syntactic manipulations that a “shallower”
embedding would simply pass on to the ambient type theory of the proof assistant. After several
trials and make-overs we opted for a nameless representation of variables, explicit substitutions,
and terms fully annotated with types.

At present the formalization includes product and identity types, base types (the empty
type, the unit type, and booleans), simple products, a hierarchy of Tarski universes, and an
impredicative universe of propositions. The modular design ought to make it easy to add other
constructions.

*The author acknowledges the financial support from the Slovenian Research Agency (research core funding
No. P1-0294) at Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia.

T This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel
Command, USAF under Award No. FA9550-14-1-0096.

31

A modular formalization of type theory in Coq Bauer, Haselwarter and Winterhalter

Paranoid and economic inference rules. There is an amount of freedom in the formulation
of inference rules. For example, the introduction rule for the identity type can be stated

I" context T'F A type TFu: A T'Fu:A
s T reflau: Ida(u,u) A T reflau lda(u)

We call the left one paranoid and the right one economic. When proving facts about type theory,
it is generally preferable to have the paranoid version as an assumption and the economic one as
the goal. We formulated type theory so that the paranoid or the economic variant of the rules
can be chosen easily through a type class instance, and we proved meta-theorems showing that
they derive the same judgments. Thus, we can switch between them at ease and use whichever
is more convenient in a given situation.

Configurations and variants of type theory. The inductive types for the judgment forms
are parameterized by type classes that either enable or disable various features of the formal-
ization. By providing instances of the type classes, the user may combine the features to their
liking. It is also possible to leave a feature unconfigured, and thus have a development which
is agnostic with respect to it. At present we support configurability of the following features:
paranoid vs. economic rules, the 7n-rule for functions, equality reflection, identity types, sim-
ple products, base types, a hierarchy of Tarski universes, and an impredicative universe of
propositions.

Sanity theorems and other meta-theorems. In our experience it is easy to forget an
inference rule, or just formulate it badly. We proved several meta-theorems which instill some
trust in our formulation, and are generally useful to have:

e sanity theorems stating, e.g., that if ' wu : A then I' - A type and I' context,
e the paranoid and the economic variants derive the same judgments,
e uniqueness of typing: if '+wu: Aand I' - : B then A and B are judgmentally equal.

Another desirable theorem (which we intend to prove) is elimination of explicit substitutions:
every term is judgmentally equal to one without substitutions. A proof of this fact amounts to
computation of substitutions at the meta-level.

Conclusion. To test the viability of our development we used it to state a translation of
type theory into type theory which invalidates function extensionality, following the work of
S. Boulier, P.-M. Pédrot, and N. Tabareau [2]. Our original motivation was formalization of
elimination of equality reflection, but we leave that for future work.

There are several ways in which the library can be improved: we can provide better tactics
for constructing terms and derivations, improve the syntax and notations, and include more
features, such as inductive types and other type formers.

References

[1] Andrej Bauer, Philipp G. Haselwarter, and Théo Winterhalter. The ‘formal-type-theory’ repository.
Available at https://github.com/TheoWinterhalter/formal-type-theory/tree/types-2017.

[2] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700 syntactical models of
type theory. In Certified Programs and Proofs — CPP 2017, pages 182-194, January 2017.

[3] The Coq development team. The Coq proof assistant reference manual, 2017. Version 8.6, available
at http://coq.inria.fr.

32

https://github.com/TheoWinterhalter/formal-type-theory/tree/types-2017
http://coq.inria.fr

Presheaf semantics for guarded dependent type theory

Ales Bizjak! and Rasmus Ejlers Mggelberg?

! Aarhus University (abizjak@cs.au.dk)
2 IT University of Copenhagen (mogel@itu.dk)

Guarded recursion [10] is a form of recursion in which the circularities of recursive definitions
are broken using time-steps encoded by a type modality. Guarded Dependent Type Theory
(GDTT) [4] is a type theory with guarded recursive types and terms. This has e.g., been used [9]
to model the programming language FPC by modelling recursive types as guarded recursive
types, and to prove computational adequacy of this interpretation inside GDTT also using
guarded recursion. It is expected that also the many recent applications of guarded recursion
to logics for programming languages with advanced features such as general references, recursive
types, countable non-determinism, and concurrency [2, 3, 11] can be formalised in GDTT.

Following an idea of Atkey and McBride [1], guarded recursion can also be used for pro-
gramming with coinductive data using a notion of clocks and universal quantification over
these. For example, if A is a type, and k is a clock variable fresh for A, the recursive type
Stry(A) = A x »"Stry(A) exists in GDTT and can be thought of as a type of streams of A’s
whose head is immediately available, but whose tail takes a x-time step to compute. Using a
fixed point operator fixy : (" X — X) — X one can e.g. define a constant stream of a : A
as fixgtrg(A)()\xs. (a,xs)). The type Vr.Stry(A) is then a coinductive type of streams [1, 8], and
it is known [1] that a wide range of operations on coinductive types can be expressed in this
framework, encoding productivity in types using guarded recursion. In GDTT one can also do
coinductive reasoning using guarded recursion and prove e.g. bisimilarity of streams [4].

Denotational semantics

The single clock case of guarded recursion can be modelled in the topos of trees [2], i.e., by
modelling a type as a family of sets (X,,)nen indexed by natural numbers together with restric-
tion maps of type X,,11 — X,, for all n. In previous work [5] we have shown how to extend this
to define a family of presheaf categories GR (A) indexed over clock contexts (finite sets of clock
variables) A. This family essentially carries enough structure to model GDTT, but construct-
ing the model in practice is complicated by the fact that the morphisms GR(A) — GR(A’)
corresponding to substitutions in the clock context, only preserve structure up to isomorphism.

In this talk we present a different solution. We give a single presheaf category Psh(T°P) in
which one can construct a model of GDTT by extending existing techniques for modelling type
theory in presheaf categories. The underlying category T has as objects pairs (A,d), where
A is a clock context and ¢ : A — N is a map. A morphism from (A,d) to (A’,d’) is a map
o : A — A’ such that §c < § in the pointwise order. There is a presheaf of clocks C defined
as C(A,d) = A (which extends to morphisms because we consider covariant presheaves on T),
which can be used to interpret clock variable assumptions of the form x : clock in a context.
Universal quantification over clocks Vk.A is interpreted as if it were an ordinary dependent
product, i.e., as Ilx : clock.A.

Orthogonality

The GDTT axiom of clock irrelevance states essentially that if x is fresh for A then the map
A — Vk.A mapping z to Ak.z (where A is abstraction over clock variables) is an isomorphism.

33

abizjak@cs.au.dk
mogel@itu.dk

This axiom is crucial for the encoding of coinductive types: For Vn.Str;(A) to be a coinductive
type of streams of A’s in the model, we must at least have Vr.Strj(A) = A x Vr.Stry(A).
To construct this isomorphism we use the fact that Vk.»"” X = Vk.X in GDTT and clock
irrelevance to show

Vk.Stry(A) = Ve A x »" Stry(A)
= (Vk.A) x (Vk.»" Stry(A))
= A x Vk.Stry(A)

Since quantification over clocks is a dependent function type over C in our model, the axiom
of clock invariance simply states that the constant function map A — A€ is an isomorphism.
We say that a presheaf A is orthogonal to C if this holds, and it is an invariance of the model
construction that the interpretation of a type is orthogonal to C. For dependent types modelled
as maps A — B, the requirement becomes a unique lifting property wrt all projections of the
form I' x C — I as indicated in the diagram below

'xC ——— A

r— B
Since C is not orthogonal to itself, clock cannot be a type. This is similar to the situation in
cubical type theory [6], where the interval is not fibred, and so not a type.
If there is time, the talk will also cover universes. The standard Hofmann-Streicher uni-

verse [7] in Psh(T°P) is not orthogonal to C, and so not a type. Instead, GDTT has a family of
universes Ua indexed by clock contexts A.

References

[1] R. Atkey and C. McBride. Productive coprogramming with guarded recursion. In ICFP, pages
197-208. ACM, 2013.

[2] L. Birkedal, R. E. Mggelberg, J. Schwinghammer, and K. Stgvring. First steps in synthetic guarded
domain theory: step-indexing in the topos of trees. Logical Methods in Computer Science, 8(4),
2012.

[3] A. Bigjak, L. Birkedal, and M. Miculan. A model of countable nondeterminism in guarded type
theory. In RTA-TLCA, pages 108-123, 2014.

[4] A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Mggelberg, and L. Birkedal. Guarded dependent
type theory with coinductive types. In FOSSACS, pages 20-35, 2016.

[5] A. Bizjak and R. E. Mggelberg. A model of guarded recursion with clock synchronisation. FElectr.
Notes Theor. Comput. Sci., 319:83-101, 2015.

[6] C. Cohen, T. Coquand, S. Huber, and A. Mortberg. Cubical type theory: a constructive interpre-
tation of the univalence axiom. CoRR, abs/1611.02108, 2016.

[7] M. Hofmann and T. Streicher. Lifting Grothendieck universes. Unpublished, 1999.

[8] R. E. Mggelberg. A type theory for productive coprogramming via guarded recursion. In Proceed-
ings of CSL-LICS 2014, pages 71:1-71:10. ACM, 2014.

[9] R. E. Mggelberg and M. Paviotti. Denotational semantics of recursive types in synthetic guarded
domain theory. In LICS, pages 317-326, 2016.

[10] H. Nakano. A modality for recursion. In LICS, pages 255-266. IEEE, 2000.
[11] K. Svendsen and L. Birkedal. Impredicative concurrent abstract predicates. In ESOP, 2014.

34

An interpretation of system F through bar recursion®

Valentin Blot

Queen Mary University of London

Abstract

There are two possible computational interpretations of second-order arithmetic: Gi-
rard’s system F and Spector’s bar recursion. While the logic is the same, the programs
obtained from these two interpretations have a fundamentally different computational
behavior and their relationship is not well understood. We make a step towards a com-
parison by defining the first translation of system F into a simply-typed total language
with bar recursion. This translation relies on a realizability interpretation of second-order
arithmetic. Due to Gédel’s incompleteness theorem there is no proof of termination of
system F within second-order arithmetic. However, for each individual term of system F
there is a proof in second-order arithmetic that it terminates, with its realizability inter-
pretation providing a bound on the number of reduction steps to reach a normal form.
Using this bound, we compute the normal form through primitive recursion. Moreover,
since the normalization proof of system F proceeds by induction on typing derivations,
the translation is compositional. The flexibility of our method opens the possibility of
getting a more direct translation that will provide an alternative approach to the study
of polymorphism, namely through bar recursion.

Second-order A-calculus [Gir71, Rey74] is a poweful type system allowing us to type terms such as
Azx.z z. The language obtained is still strongly normalizing, but all the proofs of this fact so far have
been relying on the notion of reducibility candidates (RCs): sets of A-terms satisfying some axioms. In
these proofs, every type has an associated RC such that every term belongs to the RC associated to its
type. Then the normalization property follows as a consequence of the axioms of RCs. An important
aspect of these proofs is their impredicativity: the RC associated to a universally quantified type is
obtained as an intersection over all RCs. The translation presented here avoids direct reliance on the
notion of RC by reducing termination of system F to termination of bar recursion, that derives from
an instance of Zorn’s lemma.

In 1962, Spector used bar recursion [Spe62] to extend Godel’s Dialectica interpretation of arithmetic
into an interpretation of analysis, showing that bar recursion interprets the axiom scheme of compre-
hension. Variants of bar recursion have then been used to interpret the axioms of countable and
dependent choice in a classical setting through Kreisel’s modified realizability. Among these variants,
modified bar recursion [BO05] relies on the continuity of one of its arguments to ensure termination,
rather than on the explicit termination condition of original bar recursion. The variant that we use is
the BBC functional [BBC98], that builds the family of realizers in an order that depends on the order
of computation rather than on the usual order on natural numbers. While in [BBC98], the proof of
correctness of the BBC functional relies on syntactic arguments, we use an adaptation of the semantic
proof of [Ber] that relies on Zorn’s lemma. Using this we are then able to interpret the axiom scheme
of comprehension, which is the only ingredient required on top of first-order arithmetic in order to get
a computational interpretation of second-order arithmetic and therefore of normalization of system F.

For any single term of system F there exists a proof in second-order arithmetic that it terminates.
This mapping from terms of system F to proofs of second-order arithmetic is closely related to Reynolds’
abstraction theorem [Rey83] which, as explained in [Wad07], relies on an embedding of system F into
second-order arithmetic. We use our bar recursive interpretation of second-order arithmetic to extract
the normal form of the system F term from its termination proof. Our technique is similar to Berger’s
work in the simply-typed case [Ber93]. It is closely related to normalization by evaluation, extended
to system F in [AHS96, Abe08]. To avoid an encoding of A-terms as natural numbers, we define a
multi-sorted first-order logic with a sort for A-terms with de Bruijn indices. To formalize the notion of
reducibility candidates, our logic also has a sort for sets of A-terms. Since these are first-order elements

*Research supported by the UK EPSRC grant EP/P004172/1. 35

An interpretation of system F through bar recursion Valentin Blot

of the logic, the instantiation of a set variable with an arbitrary formula is not directly possible as
it would be in second-order arithmetic. We will however get back this possibility through our bar
recursive interpretation of the axiom scheme of comprehension.

In a second step we fix the target programming language of the translation. This language, that
we call system AT}, is purely functional with a type for A-terms, primitive recursion, and the BBC
functional. System AT, is in particular simply-typed and total. We also describe the sound and
computationally adequate semantics of this language in the category of complete partial orders.

The last step is the definition of a realizability semantics for our logic. To each formula we associate
a type of system ATy, and a set of realizers in the domain interpreting that type. Realizers are elements
of the model rather than syntactic programs because the correctness of the BBC functional requires
the existence of non-computable functions on discrete types which only exist in the model. Since we
encode existential quantifications using universal ones and negation, we are able to interpret classical
logic. On the other hand, the BBC functional interprets a variant of the axiom of countable choice,
and its combination with our interpretation of classical logic provides a realizer of the axiom scheme
of comprehension. Using this, we are then able to interpret the instantiation of set variables with
arbitrary formulas. Finally, we associate for each term of system F a program that interprets the proof

of its termination for weak head reduction and computes the normal form of the initial term of system
F.

References

[Abe08] Andreas Abel. Weak beta-eta-Normalization and Normalization by Evaluation for System F. In 15th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, pages
497-511. Springer, 2008.

[AHS96] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-Free Normalisation for a
Polymorphic System. In 11th IEEE Symposium on Logic in Computer Science, pages 98-106. IEEE
Computer Society, 1996.

[BBC98] Stefano Berardi, Marc Bezem, and Thierry Coquand. On the Computational Content of the Axiom
of Choice. Journal of Symbolic Logic, 63(2):600-622, 1998.

[Ber] Ulrich Berger. The Berardi-Bezem-Coquand-functional in a domain-theoretic setting. http://www-
compsci.swan.ac.uk/ csulrich/ftp/bbc.ps.gz.

[Ber93] Ulrich Berger. Program Extraction from Normalization Proofs. In Ist International Conference on
Typed Lambda Calculi and Applications, pages 91-106. Springer, 1993.

[BO05] Ulrich Berger and Paulo Oliva. Modified bar recursion and classical dependent choice. In Logic
Colloquium 01, volume 20 of Lecture Notes in Logic, pages 89—107. Springer-Verlag, 2005.

[Gir7l] Jean-Yves Girard. Une extension de linterprétation de Godel a 'analyse, et son application &
I’élimination des coupures dans I’analyse et la théorie des types. In 2nd Scandinavian Logic Sympo-
stum, pages 63-69. North-Holland, 1971.

[Rey74] John Reynolds. Towards a theory of type structure. In Programming Symposium, Paris, April 9-11,
1974, Lecture Notes in Computer Science, pages 408-423. Springer, 1974.

[Rey83] John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP Congress, pages
513-523, 1983.

[Spe62] Clifford Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an
extension of principles in current intuitionistic mathematics. In Recursive Function Theory: Pro-

ceedings of Symposia in Pure Mathematics, volume 5, pages 1-27. American Mathematical Society,
1962.

[Wad07] Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer Science,
375(1-3):201-226, 2007.

36

The Steenrod squares in homotopy type theory

Guillaume Brunerie

Institute for Advanced Study, Princeton, NJ

A few years ago, a strong connection between type theory and homotopy theory, known as
“homotopy type theory”, was discovered, and it has then been used to reason about homotopy
theory using type-theoretic intuition. Several examples of results of homotopy theory done in
this style are given in chapter 8 of the reference book [6], in my PhD thesis [1], and in the
articles [2, 3, 4, 5], among others.

The Steenrod squares are operations on cohomology with Z /27 coeflicients, related to the
commutativity “up-to-homotopy” of the cup product, and it is a very important tool in classical
homotopy theory. It turns out that the notion of commutativity up-to-homotopy has a very
natural type-theoretic formulation, which gives a definition of the Steenrod squares in homotopy
type theory. This is what we will present here.

Commutativity up to homotopy. Given a map f : A x A — B, one says that f is
commutative in the naive sense if for every x,y : A one has an equality py,, : f(z,y) = f(y, z)
(an element of the identity type). This is a good definition if B is a set in the sense of homotopy
type theory (i.e., if it satisfies uniqueness of identity proofs), but not if B is an arbitrary type.
Indeed, p, , and p;i are two elements of the identity type f(z,y) =p f(y,z), and they ought
to be related. Asking for p, , and p, L to be equal is enough when B is a 1-type, but it creates
a new coherence problem one dimension higher, and so on. It might look like the classical
problem of infinite coherences in homotopy type theory, but it turns out that this version has
a simple and very intuitive solution:

Definition 1. A commutativity structure on a map f: A x A — B is a family of maps
fx :AX =B

for every 2-element type X (i.e. for every X which is merely equivalent to Bool), and an
identification of fgeo With f, for the natural identification of AB°° with A x A.

In other words, a commutativity structure on f explains how to apply f to “any 2” elements
of A, where “any 2” means that the elements are parametrized by an arbitrary 2-element type.
In particular, it follows that f is commutative in the naive sense because by the univalence axiom
there is an equality Bool = Bool swapping the two elements of Bool, which gives a homotopy
between Az, y.f(x,y) and Az, y.f(y,x). Moreover, that equality is equal to its opposite, hence
we get the equality between p, , and p, ! mentioned above, and so on.

The connection with homotopy theory is contained in the following theorem, due to Egbert
Rijke and Ulrick Buchholtz ([7]):

Theorem 1. The type of all 2-element types is equivalent to the infinite projective space RP°.

In particular, given a map f : A x A — B with a commutativity structure, we obtain the
extended diagonal map

Ay :RP*® x A— B,
As(X,z) = fx(A\x)

which describes the structure obtained by swapping both z’s in f(z,), and all the higher
coherences associated to it.

37

The Steenrod squares in HoTT Guillaume Brunerie

The Steenrod squares. The cup product is an operation on the cohomology groups of a
type. It is characterized by a map

o Ky x Ky — K,

where the types K, := K(Z/2Z,n) are Eilenberg-MacLane spaces (as defined, for instance, in
[4]). The map - is defined by using the fact that || K, A Ky, ||ln+m is equivalent to Ky, 4, where
the smash product A A A’ is defined as the pushout

ANA = (Ax AyLuAY A"

(intuitively, the type A A A’ is the product of A and A’ where we contract to a point a copy of
A and a copy of A’). Taking n and m to be equal, we would like to construct a commutativity
structure on the cup product.

The main ingredient is that it is possible to construct a type A*X, for any two-element type
X, which corresponds intuitively to the smash product of A with itself, but where both copies
of A are indexed by X. The definition is as follows:

AN . (AX) LAxx)u¥e g

One can easily check that this type is equivalent to A A A when X is Bool, and swaps both
copies of A when we swap the two elements of Bool.

We can then prove that || K2 %||2, is equivalent to Ko, for any X, using the fact that we are
working modulo 2, and therefore we get a commutativity structure on the cup product whose
extended diagonal map is a map

AL :RP*® x K,, = Ko,
Finally, we can study the cohomology of RP*° and show that it gives rise to maps
Sq 1 Ky = Ko
and therefore to maps _
Sq" : H"(X,Z/2Z) — H""(X,Z/27)

(called the Steenrod squares), and then we can prove that they satisfy the same properties as
the Steenrod squares in classical homotopy theory.

References

[1] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type theory. PhD thesis,
Université de Nice Sophia Antipolis, 2016.

[2] Kuen-Bang Hou, Eric Finster, Daniel R. Licata, and Peter LeFanu Lumsdaine. A mechanization
of the Blakers-Massey connectivity theorem in homotopy type theory. LICS, 2016.

[3] Daniel R. Licata and Guillaume Brunerie. 7,(S™) in homotopy type theory. Invited paper, CPP,
2013.

[4] Daniel R. Licata and Eric Finster. Eilenberg-MacLane spaces in homotopy type theory. LICS,
2014.

[5] Daniel R. Licata and Michael Shulman. Calculating the fundamental group of the circle in homotopy
type theory. LICS, 2013.

[6] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. Institute for Advanced Study, Princeton, NJ, 2013.

[7] Egbert Rijke and Ulrik Buchholtz. The real projective spaces in HoTT, 2016. Slides available at
https://egbertrijke.files.wordpress.com/2016/09/1c2016.pdf.

38

https://egbertrijke.files.wordpress.com/2016/09/lc2016.pdf

Verifying Functional Reactive Programs with Side Effects

Manuel Bérenz! and Sebastian Seufert?

! University of Vienna, Austria
maths@manuelbaerenz.de
2 Otto-Friedrich-University of Bamberg, Germany
sebastian.seufert@stud.uni-bamberg.de

Temporal Logic and Verification of Functional Reactive Programming In general,
desirable properties of reactive programs are expressed in a suited temporal logic. Recently,
Alan Jeffrey has shown that Linear Temporal Logic (LTL) can be embedded into Martin-Lof
type theory, allowing to write functional reactive programs and expressing their properties as
LTL-formulas in a natural way [1].

What is lacking is an equally suitable embedded domain-specific language (EDSL) to ex-
press proofs of these properties, general enough to comply a broader range of cases while still
practicable to the programmer. When employing such an EDSL with support by interactive
assistants, ideally program, properties and proofs could then be provided together and thus
increase the modularity of the verified code.

Jeffrey’s approach covers pure signal processing without side effects. It is a practical pro-
gramming pattern to allow side effects in FRP, though. Knowledge of the environment time,
which distinguishes signal processing from stream processing, can be regarded as a side effect as
well. Consequently, stream processing with side effects as described in [2] is a viable approach
to hybrid FRP, combining discrete and continuous paradigms.

The work cited above describes a framework for effectful stream processing implemented in
Haskell. Side effects are encoded as monads there, but other functors are also conceivable. The
kind of side effect, represented by the choice of a particular functor, is then a parameter in the
type signature of the reactive program. This allows for reasoning about its behaviour to some
extent, similar as the EDSL provided by Alan Jeffrey.

However, in the context of verifying effectful FRP, there are propositions ® whose values
depend on the context of a side effect, such that LTL may not be sufficiently expressive:

Safety “After any possible side effect that can occur, ® becomes true.”
Liveness “There is a side effect such that if it occurs, ® becomes true.”

These two aspects match the ‘all paths’ (A) and ‘exists a path’ (E) modalities from Compu-
tational Tree Logic (CTL) excellently.

Container modalities With side effects encoded as completely positive functors, container
extensions provide the possibility to express these modalities. A container is a dependent pair
S > P of a type S, the “shapes”, and a type family P, the “positions”. Every container gives a
functor, its extension:

[s>P]X=X[seS] (Ps — X

A value of type [S > P] X is a side-effectful computation that produces a value of type
X. The shape s plays the role of a command that is sent to the environment, while the type of
positions P s encodes the possible response values that the environment can supply in order to
yield a definite value.

39

Verifying Functional Reactive Programs with Side Effects Bérenz, Seufert

Implementation Our library is formalised in Agda. There, containers are universe-polymorphic.

A value in Set encodes a proposition, thus a value in | S > P | Set is an effectful proposition,

i.e. a proposition with its validity depending on the environment. Consequently, container

modalities can be defined which encode the statements that the proposition holds for any re-

sponse (or position), or that there exists a response such that the proposition holds, respectively.
We implement effectful streams (FStreams) as a coinductive type:

FStream : Container — Set — Set
FStream (S>P) X =v Y . [S>P] X X Y)

Each time a value is retrieved from the stream, a side effect is executed.

Our library encompasses the usual utilities to work with streams, such as streams repeating
(temporally) constant effectful values, application of functions to streams, a syntax for defining
ultimately periodic streams from their prefixes, corecursion and bisimulation. All the elements
of the EDSL can also be used to reason about the stream. Values of type FStream (S > P) Set
then correspond to CTL formulas.

We provide all CTL modalities, i.e. combinations of A and E with the temporal modalities
G (“globally”), F (“future”), and others, such as “next” and “until”. We supply a closely matched
EDSL for constructing proofs for the CTL formulas, such that programs, properties and proofs
become succinct and readable in our library as test cases demonstrate.

Example Consider the following program:

trafficLight : FStream (Reader Bool) Bool
trafficlight = (return true » read) »---

This program encodes a traffic light which unconditionally outputs true (encoding “green”) in
the first tick, and asks for input from a Reader environment in the second tick and outputs it.
After that, the stream repeats. (The input could be supplied by another stream, or in theory
by a physical sensor.) In our DSL, » is a stream constructor and - - - stands for repetition.

We will verify a responsivity property: At any moment, the traffic light could be green, given
the appropriate input.

responsivity : EG (map (true =_) trafficLight)
responsivity = mapEG (refl »EG refl)EG BEG---

Since we prove a “globally’-modality, the whole proof will be a stream of proofs for every tick,
and can be expressed in a DSL approximating the stream DSL. First, we commute map past
EG. We then prove the tautology true = true for the first tick. In the second tick, we prove
that the stream can indeed output true, and Agda automatically infers the appropriate input
that the user needs to make to validate the proof. Finally, the proof repeats.

With little more effort, one can implement a second traffic light and verify, for example, a
safety property (the two traffic lights are never green at the same time, under any side effect).

References

[1] Alan Jeffrey. LTL types FRP: Linear-time temporal logic propositions as types, proofs as functional
reactive programs. In Proceedings of the Sizth Workshop on Programming Languages Meets Program
Verification, pages 49-60. ACM, 2012.

[2] Ivan Perez, Manuel Bérenz, and Henrik Nilsson. Functional reactive programming, refactored. In
Geoffrey Mainland, editor, Proceedings of the 9th International Symposium on Haskell, pages 33—44.
ACM, 2016.

40

Notions of type formers*

Paolo Capriotti
University of Nottingham

Martin-Lof Type Theory (MLTT) exists in a variety of incarnations, with several slightly
different combinations of type formers, that are hard to express in a single definition, and study
uniformly. In particular, when dealing with MLTT from a semantic point of view, it is often not
clear how to establish a correct and sufficiently general notion of model of type theory equipped
with any choice of type formers. By “type formers” I mean here constructs such as Il-types,
Y-types, equality types, etc., which occur, in more or less the same form, in most presentations
of type theory, as well as more “specific” ones, of which there are multiple variations. Examples
of these specific type formers include inductive types (e.g. simple formulations like W-types, or
more involved ones like higher inductive [5] or inductive-inductive types [3]), coinductive types,
or universes.

Therefore, when studying type theory from a meta-theoretical point of view, one often
encounters the problem that one is forced to fix a particular incarnation of type theory upfront,
so that the corresponding notion of model is determined. However, most of the times, it is
the case that many meta-theoretical results that one might wish to prove are true in a wide
variety of setups, and for different variations of type formers. Unfortunately, expressing this
idea precisely is not immediately possible, since a general notion of “type former” on which
results could be parameterised does not actually exist in a formal sense. Among the difficulties
that one encounters when trying to give such a general definition is the issue of “coherence”, i.e.
the problem of finding a precise formulation for the stability properties of a type former under
substitution. The lack of a general notion of model has the unfortunate consequence of making
many proofs unnecessarily specific; it is often intuitively apparent that certain meta-theoretical
results do not depend, to a certain extent, on a particular choice of type formers, but making
this kind of statement precise is usually quite a challenge, for the reasons above.

To solve this problem, I propose a language for describing type formers based on the idea
of a “logical framework” [1, 4]. The basic idea is to use type theory itself, i.e. one specific
incarnation of MLTT, fixed once and for all, as the language in which type formers can be
expressed. The theory that I choose for this purpose contains the following type formers: II-
types, X-types, equality types, a unit type and a universe with no structure. By “universe
with no structure” I simply mean a distinguished type U, together with a family El over it.
All the other type formers are extensional, i.e. they admit strict S and 1 computation rules.
This implies, in particular, that equality has the reflection rule. Using this basic theory, which
I call RF (for rule framework), I can now give a definition of an arbitrary type former: it is
simply a context in RF, or, equivalently, a type in the empty context. The ¥-types of RF are
modelled, in a category with families (CwF) [2], by fibred left adjoints to reindexing functors
along display maps; similarly, II-types are given by fibred right adjoints to the same functors,
while existence of equality types is equivalent to that of a fibred left adjoint to substitution
functors along diagonal morphisms I''A — I'.A. A. It is therefore quite straightforward to define
a notion of model for the RF system, which I will call RF' category. R

Now let C be any (small) CwF. The corresponding category of presheaves C is an RF category.
In fact, it is well known that all the extensional type formers of RF can be interpreted in any
presheaf category, so all we need to specify is how to interpret the universe. The type U is

*This work is supported by USAF grant FA9550-16-1-0029.

41

Notions of type formers Paolo Capriotti

interpreted as the presheaf Ty of types in C, and El as the presheaf Tm of terms (regarded as a
presheaf over Ty). Therefore, it follows that one can interpret any type former ® as a presheaf
[®] in C. A ®-structure of C (i.e. an instance of the ® type former for C) is then defined to be
a global section of [P].

The power of this simple definition is that the specification of a type former in the language
of RF does not contain the usual boilerplate that is normally necessary in a traditional type-
theoretic presentation, i.e. the so called congruence rules, that specify coherence conditions for a
type former with respect to substitutions. In fact, the naturality condition of the corresponding
global section automatically enforces strict forms of such coherence conditions. For example,
let us consider a very simple type former, resembling a (trivial) modality operator, denoted O.
In a traditional presentation, we could express it with the following rules:

't A type 'ta:A r.(gA) - P T(a: A)Fd: P(n(a))
[+ OA type ko) : 0A [.(OA) F elim”(d) : P '

The first rule can be directly translated into the language of RF as the context corresponding
to the type U — U. The interpretation of Y — U in C is the presheaf exponential [Ty, Ty|, and
a global section of it is simply a natural transformation Ty — Ty, which can be unfolded as an
assignment A — OA, satisfying a condition of (strict) stability under substitution. The whole
type former can be expressed in RF as the following type:

(A :U),S(A" :U),S(n : EI[A] — EI[A]),
(I(P : EI[A"] — U),TI(d : TI(a : A), P(n(a))),(a" : A"), P(a’)),

where we factored out the premise A : U, which appears in each of the three rules above, into a
single outermost II-type. Note that the generic context I', appearing in every single judgement
of the rule-based presentation, is not explicitly mentioned in the corresponding RF type. The
dependency of the rules on a generic context is automatically reintroduced by the interpretation
of (1) in presheaves. Note that, when in a rule the context I" appears extended, this is expressed
in RF by using a U-valued function type, like for example for the type of 7 in (1). We could
also add a computation rule using the equality type of RF.

All the usually employed type formers can be encoded in a similar way, including arbitrarily
nested (but finite) systems of universes, and special cases of higher inductive types. For any
such type former encoded in the RF system, we therefore get a corresponding notion of model,
and using a technique based on the idea of logical relations, we can get an associated notion of
morphism. Unfortunately, at this level of generality it is not true that models of any given type
former form a category, since composition of morphisms cannot be shown to be associative. I
am currently exploring ways to refine the language of RF so that structures corresponding to
RF types always form a category, possibly monadic over the category of CwF's.

(1)

References

[1] Nicolaas Govert de Bruijn. The mathematical language AUTOMATH, its usage, and some of its
extensions. In Symposium on automatic demonstration, pages 29—61. Springer, 1970.

[2] Peter Dybjer. Internal type theory. In Types for Proofs and Programs, pages 120-134. Springer,
1995.

[3] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University, 2013.

[4] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM,
40(1):143-184, January 1993.

[5] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. homotopytypetheory.org/book, Institute for Advanced Study, 2013.

42

http://homotopytypetheory.org/book/

Automatically Constructing a Type System from the
Small-Step Semantics

Stefan Ciobaca and Vlad Andrei Tudose*

Faculty of Computer Science,
“Alexandru Ioan Cuza” University,
Iasi, Romania
stefan.ciobaca@info.uaic.ro

Abstract

We describe preliminary work suggesting that most typing rules for a programming
language can be obtained automatically from its operational semantics. Instead of going
the usual way, to first define the semantics and the type system, and then show progress
and preservation, we start from the semantics and construct a type system that satisfies
progress and preservation by construction. We have tested our approach on simple lambda
calculi and we have constructed a Haskell prototype that implements our algorithm.

1 Inferring Typing Rules

Usually, type soundness proofs for programming languages are quite straightforward. This is
not too surprising, since most typing rules are quite similar to the operational semantics rules,
when looking at them from a meta-syntactic point of view. We conjecture that most typing
rules for a language can be generated automatically from the operational semantics. Type
soundness should then follow immediately, by construction.

Imagine a programming language with the following syntax:

<t> ::= true | false | if <t> then <t> else <t> | 0 |
succ <t> | pred <t> | isZero <t>

<nv> ::= 0 | succ <av>

<bv> ::= true | false

<v> :1:= <nv> | <bv>

and the folllowing associated operational semantics:
if true then (t2) else (t3) — (t2) if false then (t2) else (t3) — (t3)

(t1) = (1) {t1) = (t1)
if (t;) then (t2) else (t3) — if (#]) then (t3) else (t3) succ (f1) = succ (t})

{t1) = (#1)

isZ 0 —t
pred (t;) — pred (t}) reaero rhe

pred 0 — 0 pred (succ (t1)) — (t1)

{t1) = (1)
isZero (t;) — isZero (t})

isZero (succ ({1)) — false

*The work reported in this paper was performed while the second author was a Master’s student at the
Faculty of Computer Science.

43

Automatically Constructing a Type System from the Small-Steps Semantics S. Ciobaca V. A. Tudose

What could be the typing rules for the language? Next, we will assume that all typing rules
have the following shape, for all operators op of the language:

(t1) : (T1) (ta) : (Tv) (tn) : (Th)
op (t1) (t2) ... (tn): (T)
Assume that we know the typing rules for true and 0 are:

true : Bool 0 : Nat
and suppose that our typing system has the preservation property. When we look at the rule
for isZero:

isZero 0 — true
it is immediate that isZero 0 must also be of type Bool (otherwise preservation would not
hold). Furthermore, by our assumption on the set of operators op of the language and since 0
: Nat, the isZero operator must satisfy the following typing rule:

(Name)

<t1> : Nat
isZero (t;):Bool

By reasoning similar to the above, we can infer the expected typing rules for all other
language operators, as presented in [1]. Any well-typed term in the resulting type system
does not get stuck. We have implemented and shown that our algorithm for transforming the
operational semantics into typing rules is sound, in the sense that the resulting typing system
has progress and preservation. Furthermore, we have extended our approach to handling more
complex typing rules, which have the following shape:

T'Fop (t1) (ta) ... {tn) : (T)

This allows us to infer the typing rules for simple lambda calculi presented in Curry style.

Our prototype implementation, written in Haskell, can be accessed at http://profs.info.
uaic.ro/~stefan.ciobaca/types2017. The program takes as input the files syntax.txt (de-
scribing the syntax of the language in a BNF-like format), eval rules.txt (describing the
small-step SOS of the language), type_syntax.txt (describing the syntax of the types of the
language) and typing.txt (describing the basic typing rules, such as 0 : Nat) and outputs the
rest of the typing rules.

(Name)

2 Discussion

This work could simplify type system design for programming languages, as there would be no
need to prove progress and preservation. Our approach cannot currently handle sub-typing,
polymorphism or exception handling and we leave these features for further work. The final goal
is to start from a formal semantics, for example reified from a Coq development, assume progress
and preservation, and automatically derive a mechanically proven sound-by-construction typing
system.

References

[1] B. C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.

44

http://profs.info.uaic.ro/~stefan.ciobaca/types2017
http://profs.info.uaic.ro/~stefan.ciobaca/types2017

A Model of Type Theory in Stacks*

Thierry Coquand!, Bassel Mannaa?, and Fabian Ruch?

! University of Gothenburg, Sweden thierry.coquand@cse.gu.se
2 IT University of Copenhagen, Denmark basm@itu.dk
3 University of Gothenburg, Sweden fabian.ruch@cse.gu.se

We give a model of dependent type theory with one univalent universe and propositional truncation
interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we
show that countable choice and Markov’s principle cannot be proved in dependent type theory with one
univalent universe and propositional truncation. We work in constructive metatheory.

For simple type theory such independence results can be obtained by using sheaf semantics, respec-
tively over Cantor space (for Markov’s principle) and open unit interval (0,1) (for countable choice).
There are however problems with extending sheaf semantics to universes [5, 6]. In order to address
these issues we use a suitable formulation of stack semantics, which, roughly speaking, replaces sets by
groupoids. The notion of stack was introduced in algebraic geometry [3] precisely in order to solve the
same problems that one encounters when trying to extend sheaf semantics to type-theoretic universes.
The compatibility condition for gluing local data is now formulated in terms of isomorphisms instead of
strict equalities. In this sense, our model can also be seen as an extension of the groupoid model of type
theory [4].

The argument should generalize to an oo-stack version of the cubical set model [1]. The coherence
condition on descent data will be infinitary in general, but it will become finitary when we restrict the
homotopy level (and empty in particular in the case of propositions).

Stacks over a topological space. Let X be a topological space, U an open set and (U;) a covering
of U. We denote by U;; the intersection of U; and U;, and by U, the intersection of U;, U; and Uy.

A prestack over X is a presheaf F of groupoids over X such that given u,u’ € F(U) and a compatible
family of paths w; : u|U; = u'|U; in F(U,), i.e. w;|U;; = @;|U;;, there is a unique path w : u = v in F(U)
with o|U; = w;.

A descent datum for F is given by a covering (U;) of U and a family of objects u; € F(U;) with paths
@i+ w;|U;; = u;|U;; satistying the cocycle condition

jo

Pii = 1u,- q’[leijk : (/’jk|Uijk = (piklUijk

A stack over X is a prestack equipped with a gluing operation glue mapping a descent datum (u;, @;;)
to an object u € F(U) and paths ¢@; : u|U; = u; satisfying

0i\U;; - 9 = @;1U;; glue(u;, @)IV = glue(; |V nU;, @IV nU;) =wlV,e|V NU,)

A prime example of a stack whose presheaf of objects is not a sheaf is the universe of sheaves: If
we define F(U) to be the collection of small sheaves over U then there is a natural restriction operation
FWU) - F(V) for V C U, and one can check that the gluing of a compatible family of elements is not
unique up to strict equality in general (but it is unique up to isomorphism).

Interpretation of type theory in stacks. Starting from the above notion of stack, it is possible to
design a model of dependent type theory which extends both the sheaf model of simple type theory and
the groupoid model [4].

As in the groupoid model, in this model we have a univalent universe U (corresponding to the stack
of small sheaves) and propositional truncation ||-||. We also have a notion of small discrete type and a
universal family EI X (X : U) of small discrete types over the universe, i.e. for every small discrete type
A there exists a unique section |A| : U such that El |A| = A.

*This abstract is based on the paper [2] accepted for LICS’17. 45

The unit interval and countable choice. We express countable choice in type theory by:
CC=II(A : N> U)II(n : N)||[EI(An)|]) — [|[TI(n : N)EI(An)||

We write U,V ,W,... for nonempty open rational intervals included in the open unit interval (0, 1).

We consider the interpretation of type theory in stacks over this space.

We let |N| be the constant sheaf where each |N|(V) is the set N of natural numbers and N = EI|N|.

Define A : N — U where An is a subsheaf of the (small) constant sheaf |Q|(V) = Q of rational
numbers.

AV = {re@’V(er) -l <)

Proposition 1. In this model
1. the type II(n : N) ||[EI(A n)|| is inhabited
2. the type II(n : N)EI(An), and hence also the type ||[II(n : N)EI(An)||, ts empty

Corollary 1. In this model, the principle of countable choice CC does not hold. Consequently, one
cannot show countable choice in type theory with one univalent universe and propositional truncation.

Cantor space and Markov’s principle. We express Markov’s principle in type theory by:
MP :=TI(A : N = Ny)(=~(Z(x : N)ElisZero (h x)) = Z(x : N)ElisZero (A x))

where isZero : N, — U is defined by isZero := Ay.rec, |[N;| |Ng| y and the type =A by A — Ny.

We assume that the basic opens are nonzero elements e, e, ... of a boolean algebra with decidable
equality. We consider only coverings of e given by a finite partition e;, i € I, of e, that is a finite set of
disjoint elements e; < e such that e =\/,, ;.

Take a countably infinite set of variables py, p;,.... Consider the free boolean algebra generated by
the atomic formulae p,. We write p, = 0 for -p, and p, = 1 for p,. An object e in this algebra represents
then a compact open in Cantor space {0, 1}V, where a conjunctive formula /i1 Pi = b; represents the set
of sequences in {0, 1}N having value b; at index i. A formula e in the algebra is then a finite disjunction
of these.

We consider the model of type theory in stacks over this algebra.

Proposition 2. In this model
1. ==(Z(x : N)ElisZero (f x)) is inhabited.
2. Z(x : N)ElisZero (f x) is not inhabited.

Corollary 2. In this model Markov’s principle does not hold. Consequently, one cannot show Markov’s
principle in type theory with one univalent universe.

References

[1] C. Cohen, T. Coquand, S. Huber, and A. Mortberg. Cubical type theory: a constructive interpretation of
the univalence axiom. CoRR, abs/1611.02108, 2016.

[2] T. Coquand, B. Mannaa, and F. Ruch. Stack semantics of type theory. CoRR, abs/1701.02571, 2017.

[3] A. Grothendieck and J. Dieudonné. Eléments de géométrie algébrique. I. Le langage des schémas. Institut
des Hautes Etudes Scientifiques. Publications Mathématiques, (4):228, 1960.

[4] M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In Twenty-five years of constructive
type theory (Venice, 1995), volume 36 of Ozford Logic Guides, pages 83-111. Oxford Univ. Press, New York,
1998.

[6] M. Hofmann and T. Streicher. Lifting Grothendieck universes. December 2014.
[6] C. Xu and M. Escard6. Universes in sheaf models. February 2016.

46

The Boolean Pythagorean Triples Problem in Coq *

Luis Cruz-Filipe!, Joao Marques-Silva?, and Peter Schneider-Kamp'

! Department of Mathematics and Computer Science, University of Southern Denmark
{1cf,petersk}@imada.sdu.dk
2 LaSIGE, Faculty of Science, University of Lisbon, Portugal
jpms@ciencias.ulisboa.pt

The Boolean Pythagorean Triples problem asks the following question: is it possible to
partition the natural numbers into two sets such that no set contains a Pythagorean triple
(three numbers a, b and ¢ with a? +b? = ¢?)? This question was answered in 2016, when Heule,
Kullmann and Marek [4] showed that it is already impossible to partition the set {1,...,7825}
into two sets such that none of them contains a Pythagorean triple. This proof was done by
means of an encoding of this finite version of the problem into propositional logic (already used
in [1]), which was then simplified and solved using the cube-and-conquer method [5].

The strategy of the proof is summarized in Figure 1. The propositional formula obtained by
encoding the problem was first simplified using blocked clause elimination and symmetry break-
ing. Afterwards, the problem was divided into one million cubes: a set of partial assignments
that cover the whole space of possible valuations. Then, it was shown that (1) the conjunction
of the simplified formula with any cube is unsatisfiable, and (2) the negation of the disjunction
of all the cubes is unsatisfiable. As a consequence, the simplified formula (and therefore also
the original formula) is unsatisfiable.

This proof was formally verified using Coq, as described in [2, 3]. In this extended abstract,
we summarize this process in a unified way.

2l
/[ER _l>cubey ————>0
BPT — — — = propositional _ _ _ 5 simplified - 5
\form—ula/ formula ~ _ /L]\
3] *cuben****jD***>E|
[3] 2]
-V, cube; > U
2]

Figure 1: The original proof and the different verification steps. The dashed arrows denote the
steps in the original proof [4]: a first propositional formula was generated by a C program, and
subsequently simplified, divided and solved by SAT solvers. The dotted arrows denote proofs of
unsatisfiability obtained by a SAT solver that were verified by a certified checker extracted from
a Coq formalization [2]. The solid arrows denote the contributions of [3]|: the generation, in
Coq, of propositional formulas that are proved to represent the original mathematical problem,
directly and after simplification; the formal specification of the simple reasoning behind cube-
and-conquer; and the generation of the formulas that are given as input to cube-and-conquer.

*This work was partially supported by the Danish Council for Independent Research, Natural Sciences, grant
DFF-1323-00247.

47

The Boolean Pythagorean Triples Problem in Coq L. Cruz-Filipe, J. Marques-Silva, P. Schneider-Kamp

The first step was to formalize the Boolean Pythagorean Triples problem in Coq and relate
it to the propositional encoding. This amounted to stating the mathematical problem in Coq
and defining a family of propositional formulas (parametrized on a natural number n) directly
corresponding to the formulas used in [4] as the starting point. We formally proved that
unsatisfiability of any of these formulas implies that the given mathematical problem does not
have a solution.

The second step was to formalize the simplification procedure. This is trivial, as the tech-
niques applied in [4] only remove clauses, trivially preserving satisfiability. However, the authors
of [4] make a stronger claim — namely, that their criterion for removing clauses also guarantees
preservation of unsatisfiability. The mathematical argument, which we formalized, is as follows:
let L be a list of triples and (a,b,¢) € L be a triple containing a number that does not occur
in any other triple in L. If there is a coloring C' of the natural numbers such that no triple in
L\ {(a,b,c)} is monochromatic and e.g. a does not occur in any other triple in L, then we can
extend C' by changing the color of a, if necessary.

The next step was to formalize soundess of cube-and-conquer [5]. The idea behind this
methodology is simple: instead of looking for a satisfying assignment for a particular formula,
consider its conjunctions with different sets of literals (the cubes) such that every possible
assignment satisfies one of the possible cubes. For example, if ¢ is a formula on two variables
x and y, the cubes could be {z}, {Z,y} and {Z, 7}, and instead of ¢ we consider the three
formulas p Az, p AZ Ay and ¢ AT Ay. Furthermore, to ensure that every assignment satisfies
one of the cubes, we need to check that the formula Z A (z V §) A (z V y) is unsatisfiable. We
formalized this argument for the general case, given a formula and a list of cubes.

The last step was to check unsatisfiability of all the formulas generated by cube-and-conquer.
This was done by developing a general-purpose verifier of unsatisfiability proofs based on reverse
unit propagation [2]. This verifier, also formalized in Coq, checks that a given formula entails
the empty clause by following a list of steps given as oracle. This list of steps is produced from
a trace of an untrusted SAT solver, and is essentially a list of pairs (¢,) where 1 is a clause
to be added and £ is a list of indices of already known clauses that entail ¢ by reverse unit
propagation. (For efficiency, we also include deletion of clauses that are no longer relevant.)

Due to the huge size of the traces involved (over 200 TB), it is infeasible to perform the
whole verification process inside Coq; thus, we use program extraction to obtain code that is
correct by construction, and we rely on metalevel reasoning to chain the different steps in the
process. However, we reduce this dependency to checking that the same arguments are provided
to different functions. In principle, given enough resources, the whole verification could have
been done inside Coq.

References

[1] J. Cooper and R. Overstreet. Coloring so that no pythagorean triple is monochromatic. CoRR,
abs/1505.02222, 2015.

[2] L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. Efficient certified resolution proof check-
ing. In TACAS, volume 10205 of LNCS, pages 118-135. Springer, 2017.

[3] L. Cruz-Filipe and P. Schneider-Kamp. Formally verifying the boolean pythagorean triples conjec-
ture. In LPAR 21. EasyChair, accepted for publication.

[4] M. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples
problem via cube-and-conquer. In SAT, volume 9710 of LNCS, pages 228-245. Springer, 2016.

[6] M. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube and conquer: Guiding CDCL SAT solvers
by lookaheads. In HVC 2011, volume 7261 of LNCS, pages 50-65. Springer, 2012.

48

Towards practical out-of-order unification

Nils Anders Danielsson* and Victor Lopez Juan

University of Gothenburg and Chalmers University of Technology

Some implementations of type theories have a mechanism for implicit arguments, that allows
users to omit some code from their programs and proofs. This kind of feature can be useful.
However, at least in the case of Agda [8] it can also be slow, and sometimes one might wish
that more implicit arguments could be instantiated. We are chipping away at these problems,
and this note describes some preliminary results.

We have constructed an example that is too demanding for the current implementation of
Agda. This example involves the definition of a dependently typed object language inside Agda,
and then a definition of “setoid” inside this language. The definition of the object language only
allows well-typed terms to be constructed, following McBride [6]. The definition of “setoid” in
this language involves a large number of implicit arguments that the type-checker has to infer.

Our prototype, a variant of Tog [5], improves upon Agda by managing to type-check the
example, and doing so in reasonable time and space.! The main techniques used to achieve this
result are heterogeneous unification in the style of Gundry and McBride [4, 3], and hash consing
inspired by Shao et al. [9] and Fillidtre and Conchon [2]. Note, however, that the prototype
excludes several features of Agda, including termination checking, and that this should be kept
in mind when benchmark data is analysed.

Homogeneous vs. heterogeneous unification Dependent type-checking can be reduced
to solving a set of general constraints of the form I' - ¢ : A » w: B [5]. Such a constraint is
well-formed if in context I' term ¢ has type A and term w has type B. Implicit arguments in
the program syntax are represented by typed metavariables in the constraint syntax. When a
metavariable « is instantiated by a term ¢ (which we require to be closed), any occurrence of «
becomes definitionally equal to ¢t. A constraint is solved by instantiating each metavariable in
such a way that the two sides of the constraint become definitionally equal.

In a homogeneous unification approach, the two sides of a constraint have the same type.
Mazzoli and Abel [5] split each general constraint I' - ¢ : A ~ u : B into two homogeneous
unifier constraints, C1 =TI A~ B:Set and Cy =T I t ~ u: A, where C5 is only meaningful
once C7 has been solved. If the user program is ill-typed and C5 is solved before C7, then one
can end up in a situation where the type-checker treats ill-typed terms as being well-typed [8].
Tog in homogeneous mode (and, to a lesser degree, Agda) will not tackle Cy until C; is solved.
This approach is too strict for our example, because it prevents unification under binders (A
and IT) until the types of the bound variables have been unified.

By contrast, in the heterogeneous approach due to Gundry and McBride [4], unifier con-
straints can have two different types: C; =TI A:Set »~ B:Set, Co =TI t: A~u: B.
The constraint C; can now be tackled before C. In the case where both sides of a constraint
are headed by a binder (e.g. I' I+ Ay.t : II(x : A1)By ~ Ay.u : (z : Ag)Bs), the constraint
is simplified by introducing a twin variable & of dual type A1}As, defined so that & : A; and
Z: As. The new constraint becomes I', & : A11As I+ ¢[£/y]: By » u[2/y] : Ba.

If a constraint reaches an irreducible form, say I' + auy ... u, : A t : B, and
the equation is in the pattern fragment [7, 1], then there will be a unique solution, here

Q

*Supported by a grant from the Swedish Research Council (621-2013-4879).
However, note that we have not proved that Tog is correctly implemented, so we give no guarantee that
programs that are accepted by Tog are actually well-typed.

49

Towards practical out-of-order unification N. A. Danielsson and V. Lépez Juan

«a = A\uj ... up.t. However, before instantiating «, the unifier must perform a compatibility
check: T'IF A : Set » B : Set must hold, and ditto for the two types of any twin variable & whose
two projections both occur in the constraint. Thus it may seem as if the heterogeneous ap-
proach is no more powerful than the homogeneous approach. However, as the unifier works on
(5, intermediate constraints may be generated which, when solved, lead to the instantiation of
metavariables. This additional information could be just what is needed to solve Cj.

Our implementation We have extended the prototype Tog [5] with a heterogeneous unifier
based on Gundry and McBride’s algorithm [4]. If a naive implementation of heterogeneous
unification is used, then there is a risk that a significant amount of redundant work is performed
when the types of left-hand and right-hand sides are similar. We use hash consing, and assign
a unique identifier to each term. We can then memoize term-traversing operations (including
normalization, substitution, computation of metavariables and free variables in terms, pruning
of redundant metavariable arguments, n-expansion, and twin variable removal).

Preliminary results We have compared our heterogeneous unifier, an updated version of
Tog’s homogeneous unifier, and Agda.? Tog with the heterogeneous unifier type-checks the se-
toid example mentioned above in 131s with hash consing and memoization (HC&M) disabled,
and in 22s with HC&M enabled. Tog with the homogeneous unifier deems the example unsolv-
able in 8s with HC&M enabled, and Agda runs out of memory after more than 5h. However,
in other cases Tog (with the heterogeneous unifier and HC&M enabled) runs slower than Agda.
It is an open question whether the use of HC&M can sometimes lead to excessive memory usage
due to large memo tables.

We note that this case study provides one data point in favour of Gundry’s belief that
heterogeneous unification with twin variables [4] “handles a sufficiently broad class of problems
to be useful for elaboration of a dependently typed language” [3, §4.3.4].

References

[1] Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for dependent types
and records. In TLCA 2011. Springer Berlin Heidelberg, 2011. doi:10.1007/978-3-642-21691-6_5.

[2] Jean-Christophe Fillidtre and Sylvain Conchon. Type safe modular hash-consing. In ML’06, 2006.
doi:10.1145/1159876.1159880.

[3] Adam Gundry. Type Inference, Haskell and Dependent Types. PhD thesis, University of Strathclyde,
2013.

[4] Adam Gundry and Conor McBride. A tutorial implementation of dynamic pattern unification.
Unpublished, 2012. URL http://adam.gundry.co.uk/pub/pattern-unify/.

[5] Francesco Mazzoli and Andreas Abel. Type checking through unification. Preprint arXiv:1609.
09709v1 [cs.PL], 2016.

[6] Conor McBride. Outrageous but meaningful coincidences: Dependent type-safe syntax and evalu-
ation. In WGP’10, 2010. doi:10.1145/1863495.1863497.

[7] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 1992. doi:10.
1016/0747-7171(92)90011-R.

[8] Ulf Norell and Catarina Coquand. Type checking in the presence of meta-variables. Unpublished,
2007. URL http://wuw.cse.chalmers.se/~ulfn/papers/meta-variables.html.

[9] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed intermediate languages.
In ICFP 798, 1998. doi:10.1145/289423.289460.

2Tog: https://lopezjuan.com/project/togt, commit 1c7c2ce. Agda: https://github.com/agda/agda,
tag v2.5.2. Environment: Fedora 25 x64, Intel 2630QM, 16 GB RAM, GHC 8.0.1, up to 2 GB runtime heap.

50

https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1145/1159876.1159880
http://adam.gundry.co.uk/pub/pattern-unify/
https://arxiv.org/abs/1609.09709v1
https://arxiv.org/abs/1609.09709v1
https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1016/0747-7171(92)90011-R
https://doi.org/10.1016/0747-7171(92)90011-R
http://www.cse.chalmers.se/~ulfn/papers/meta-variables.html
https://doi.org/10.1145/289423.289460
https://lopezjuan.com/project/togt
https://github.com/agda/agda

Models and termination of proof reduction in the
All-calculus modulo theory

Gilles Dowek

Inria and Ecole normale supérieure de Paris-Saclay
gilles.dowek@ens-paris-saclay.fr

Models and termination

In Predicate logic, a model is defined by a domain M, a set B of truth values, and an interpre-
tation function, parametrized by a valuation ¢, mapping each term ¢ to an element [t], of M,
and each proposition A to an element [A], of B.

Predicate logic can be extended to Deduction modulo theory, where a congruence on proposi-
tions is added. Proofs of a proposition A are then considered to also be proofs of any proposition
congruent to A. In Deduction modulo theory, like in Predicate logic, a model is defined by a
domain M, a set B of truth values, and an interpretation function.

Usually, the set B is the two-element set {0, 1}, but the notion of model can be extended to a
notion of many-valued model, where B is an arbitrary Boolean algebra, a Heyting algebra, a pre-
Boolean algebra, or a pre-Heyting algebra. Boolean algebras permit to introduce intermediate
truth values for propositions that are neither provable nor disprovable, Heyting algebras to
construct models of constructive logic, and pre-Boolean and pre-Heyting algebras, where the
order relation < is replaced by a pre-order relation, to distinguish a notion of weak equivalence:
[Als < [Ble and [B]s < [A]e, for all ¢, from a notion of strong equivalence: [A]y = [B]o,
for all ¢. In Deduction modulo theory, the first corresponds to the provability of A < B and
the second to the congruence.

In a model valued in a Boolean algebra, a Heyting algebra, a pre-Boolean algebra, or a
pre-Heyting algebra, a proposition A is said to be valid when it is weakly equivalent to the
proposition T, that is when, for all ¢, [A]s > T. A congruence = defined on propositions is
said to be valid when, for all A and B such that A = B, A and B are strongly equivalent, that
is, for all ¢, [A]s = [Bls-

Proof reduction terminates in Deduction modulo a theory defined by a congruence =, when
this theory has a model valued in the pre-Heyting algebra of reducibility candidates. As a
consequence, proof reduction terminates if the theory is super-consistent, that is if, for all pre-
Heyting algebras B, it has a model valued in B. This theorem separates the semantic and the
syntactic aspects that are often mixed in the usual proofs of termination of proof reduction. The
semantic aspect is in the proof of super-consistency of the considered theory and the syntactic
in the universal proof that super-consistency implies termination of proof reduction.

The All-calculus modulo theory

In Predicate logic and in Deduction modulo theory, terms, propositions, and proofs belong
to three distinct languages. But, it is more thrifty to consider a single language, such as the
Al-calculus modulo theory, and express terms, propositions, and proofs, in this language. Like
the All-calculus, the All-calculus modulo theory is a A-calculus with dependent types, but, like
in Deduction modulo theory, its conversion rule is extended to an arbitrary congruence.

51

Models and termination of proof reduction in the All-calculus modulo theory Gilles Dowek

From pre-Heyting algebras to Il-algebras

The first goal of this talk is to extend the notion of pre-Heyting algebra to a notion of II-algebra,
adapted to the All-calculus modulo theory. In Predicate logic and in Deduction modulo theory,
the propositions are built from atomic propositions with the connectors and quantifiers T, L,
A, V, =, V, and 3. Accordingly, the operations of a pre-Heyting algebra are T, 1, A, V, =,
V and 3. In the Ml-calculus and in the A-calculus modulo theory, the only connector is II.
Thus, a IT-algebra mainly has an operation II. As expected, its properties are a mixture of the
properties of the implication and of the universal quantifier of the pre-Heyting algebras.

Layered models

The second goal of this talk is to extend the usual notion of model to the All-calculus modulo
theory.

Extending the notion of model to many-sorted predicate logic requires to consider not just
one domain M, but a family of domains M indexed by the sorts. For instance, in a model
of Simple type theory, the family of domains is indexed by simple types. In the Al-calculus
modulo theory, the sorts also are just terms of the calculus. Thus, we shall define a model of the
Al-calculus modulo theory by a family of domains (My); indexed by the terms of the calculus
and a function [.] mapping each term t of type A and valuation ¢ to an element [t]4 of M 4.

The functions M and [.] are similar, in the sense that both their domains is the set of terms
of the calculus. The goal of the model construction is to define the function [.] and the function
M can be seen as a tool helping to define this function. For instance, if f is a constant of type
A — A, where A is a term of type Type, and we have the rule f(x) — x, we want to define
the interpretation [f] as the identity function over some set, but to state which, we must first
define the function M that maps the term A to a set M4, and then define [f] as the identity
function over the set M 4.

In Predicate logic and in Deduction modulo theory, terms may be typed with sorts, but
the sorts themselves have no type. In the All-calculus modulo theory, in contrast, terms have
types that have types... This explains that, in some cases, constructing the function M itself
requires to define first another function A/, that is used as a tool helping to define this function.
This can be iterated to a several layer model, where the function [.] is defined with the help
of a function M, that is defined with the help of a function A, that is defined with the help...
The number of layers depends on the model. Such layered constructions are common in proofs
of termination of proof reduction, for instance for Pure Type Systems where sorts are stacked:
Typeg : Typey : Types : T'ypes.

Note that, in this definition of the notion of model, when a term t has type A, we do not
require [t]4 to be an element of [A]s, but of M 4. This is consistent with the notion of model
of many-sorted predicate logic, where we require [t], to be an element of M, and where [s]
is often not even defined.

Super-consistency and proof reduction

The third goal of this talk is to use this notion of Il-algebra to define a notion of super-
consistency and to prove that proof reduction, that is S-reduction, terminates in the All-calculus
modulo any super-consistent theory. We prove this way the termination of proof reduction in
several theories expressed in the AI-calculus modulo theory, including Simple type theory and
the Calculus of constructions. Together with confluence, this termination of proof reduction is
a property required to define these theories in the system DEDUKTI.

52

Untyped Confluence In Dependent Type Theories

Ali Assaf!', Gilles Dowek?, Jean-Pierre Jouannaud?, and Jiaxiang Liu*

1 Google Inc.
2 Inria and ENS Paris-Saclay
3 Fcole polytechnique and Université Paris-Saclay
4 Tsinghua University

The two essential properties of a type theory, consistency and decidability of type checking,
follow from three simpler ones: type preservation, strong normalization and confluence. In
dependent type theories however, confluence and type preservation are needed to build strong
normalization models; confluence is needed to show preservation of product types by rewriting,
an essential ingredient of the type preservation proof; type preservation is needed to show
that derivations issued from well-typed expressions are well-typed, an essential ingredient of
the confluence proof. One can break this circularity in two ways: by proving all properties
together within a single induction; or by proving confluence on untyped terms first, and then
successively type preservation, confluence on typed terms, and strong normalization. The latter
way is developed here. Its difficulty is that termination cannot be used anymore when proving
confluence, hence forbidding the use of Newman’s Lemma.

The confluence problem is indeed crucial for type theories allowing for user-defined compu-
tations such as Dedukti and now Agda. Current techniques for showing confluence by using van
Oostrom theorem for higher-order rewrite systems are restricted to theories in which the rules
are left linear, have development closed critical pairs, and do not build associativity and commu-
tativity into pattern matching. But allowing for non-left-linear rules or for non-trivial critical
pairs, and computing over non-free data structures whether first-order like sets or higher-order
like abstract syntax, is out of scope of current techniques. Such computations are however
present in Dedukti’. A main ambition of Dedukti is to serve as a common language for rep-
resenting proof objects originating from different proof systems. Encoding these proof systems
makes heavy use of the rewriting capabilities of AIIMod, the formal system on which Dedukti
is based.

We describe a rewrite-based encoding in AN[IMod of the Calculus of Constructions with cu-
mulative Universes CCUZ | which uses Nipkow’s higher-order rewriting, non-left-linear rules,
and associativity, commutativity and identity. CCU is a generalization of the calculus of con-
structions with an infinite hierarchy of predicative universes above the impredicative universe
Prop. Together with inductive types, it forms the core of the Calculus of Inductive Construc-
tions as is implemented in the proof system Coq. The major difficulty when encoding CCUZ is
the treatment of universe cumulativity, which needs to be rendered explicit. Existing encodings
of universe cumulativity in A\[IMod have limitations which restrict their use to encode type
systems, like Matita, which do not include universe polymorphism. Our rewrite based encoding
is confluent on terms with variables, hence can support Coq’s universe polymorphism.

Our major contribution is a result reducing the Church-Rosser property of a A\IIMod theory
on untyped terms to critical pair computations. This result goes far beyond the most advanced
available technique based on van Oostrom’s development closed critical pairs, which cannot
handle our example. This result is applied to the previous encoding. It can be used more
generally to show confluence of dependent type theories like those definable in Dedukti. Further,
since the type system does not play any role in the confluence proof, the result applies as well
to many calculi, typed or untyped, other than AITMod.

1The system Dedukti is described at http://dedukti.gforge.inria.fr/

93

Untyped Confluence In Dependent Type Theories Assaf, Dowek, Jouannaud and Liu

The main technical tool we use is van Oostrom decreasing diagrams for labelled relations,
which permits to prove confluence of rewrite systems that verify a kind of local confluence
property called decreasing diagram: local peaks need to be joinable by rewrites whose labels
are smaller, in some well-founded sense, than those of the local peak. This method generalizes
Hindley-Rosen’s strong confluence lemma in the sense that a single rewrite step on each side
of the joinability proof, the so-called facing step, can reproduce the label of the local peak’s
rewrite step it faces. This technique provides a modular analysis of local peaks by reflecting
the various components of a rewrite system in the labels. In the case of A\IIMod, we classify the
rules and equations into three categories: the functional ones inherited from the A-calculus; a
set of user-defined first-order rules and equations forming a Church-Rosser, terminating, normal
rewrite system; and a set of user-defined higher-order rules whose left-hand sides are patterns.
Our definition of higher-order rewriting on untyped terms adapts Nipkow’s definition given
for typed terms by replacing B-normalization by Miller’s B%-normalization, which, unlike 3,
is terminating on untyped terms. Some (-steps that are implicit in Nipkow’s must therefore
become explicit in our setting.

Obtaining Church-Rosser calculi by putting together different confluent systems is known to
be difficult in presence of non-left-linear rules. Further, confluence of arbitrary non-left-linear
rules is never preserved in presence of a fixpoint combinator, which can itself be encoded in
the pure A-calculus. Variables having multiple occurrences in lefthand sides of user’s rules are
guaranteed to operate on homogeneous algebraic terms by a syntactic assumption, confinement:
by ensuring that no redexes other than first-order ones may occur below a non-linear variable
of a rule, confinement eliminates heterogeneous local peaks that would not have decreasing
diagrams otherwise, like those occurring in Klop’s fixpoint combinator example. This crucial
new concept is built directly in the syntax of (pure) expressions.

This work shows an application of van Oostrom’s decreasing diagrams method to a complex
example in type theory, the very first of that kind. In our example, universes are specified
as a confined type equipped with 0,1, addition, maximum and lifting. The associated first-
order rewriting system is dubbed normal in the literature because expressions must be kept
in normal form by eliminating the identity 0 in sums. Higher-order rules are used to describe
the encoding of product types as well as of the decoding function. Below is a flavour of these
various rules:

1: max(i,i+j) — i+
10: w(i,i+j+1,a, x:T@i+j+1,a).1(i+7, (bx)))
— Mi+j,7(i,i+j,a,b))
19: TG@E+5+1,m(i+j+1,j+1,a,b) —
Oz :T(GE+574+1,a)T(G+1, (b))

We can see here that the non-confined variable a in rule 10 is non-left-linear. This difficulty is
solved by abstracting the type T(i + j + 1,a) of x by a new variable Y, a transformation that
implies the confluence of the typed rules. Despite that many rules are higher-order, the critical
pairs of the system have been computed by using MAUDE’s confluence checker developed by
José Meseguer’s group at UIUC. Decreasing diagrams have then been obtained by hand.

54

Lower End of the Linial-Post Spectrum

Andrej Dudenhefner! and Jakob Rehof?

Technical University of Dortmund, Dortmund, Germany
{andrej.dudenhefner, jakob.rehof}@cs.tu-dortmund.de

In this work, we shed some light on the lower end of the Linial-Post spectrum (deciding
axiomatizations of propositional calculi) from the point of view of functional program synthe-
sis. For this purpose, we show that recognizing axiomatizations of the Hilbert-style calculus
containing only the axiom scheme o — [— « is undecidable. More importantly, the problem
remains undecidable considering only principal axiom schemes, i.e. axiom schemes that, when
seen as simple types, are principal for some A-terms in normal form.

This result is motivated by two questions, which distinguish it from existing work (for an
overview article see [7]). First, we want to explore the lower end of the Linial-Post spectrum.
Existing work focuses on classical logic [4, 6] or superintuitionistic calculi [3, 7], often having rich
type syntax, e.g. containing negation. In this work, we consider only implicational formulae and
stay below @ — 8 — « in terms of derivability. This is arguably “as low as you can get” because
recognizing axiomatizations of the Hilbert-style calculus with only the axiom scheme o — « is
trivial. Second, we are interested in synthesis of functional programs from given building blocks.
Following the same motivation as [1] and the line of work outlined in [5], we want to utilize
proof search to synthesize code. Specifically, provided simply typed lambda terms My, ..., M,
in normal form, we search for an applicative composition of the given terms that has some fixed
simple type o. This is equivalent to proof search in the Hilbert-style calculus having axiom
schemes o1, ...,0, where o; is the principal type of M; for i = 1...n. It is a typical synthesis
scenario, in which M, ..., M,, are library components exposing functionality specified by their
corresponding principal types. The synthesized composition of the given terms is a functional
program that uses the library to realize behavior specified by the type o.

Our second motivation forces us to deviate from standard constructions. In particular, for
axiom schemes such as @« — a — « (testing equality of two arguments), (o — 8) = (o« —)
(adding structure to « — «) or (e —) — [(encoding disjunction) there is no A-term in
Bn-normal form having the corresponding axiom scheme as its principal type. Therefore, such
logical formulae could be considered artificial and a pure logical peculiarity from the point
of view of program synthesis. We identify “non-artificial” axiom schemes as principal by the
following Definition 1.

Definition 1. We say an aziom scheme o is principal if there exists a A-term M in Sn-normal
form such that o is the principal type of M in the simply typed \-calculus.

Note that principality of a given axiom scheme is decidable [2]. In the following we always
assume that any principal axiom scheme is given together with the corresponding A-term.

Let us denote by {o1,...,0,} I o derivability of ¢ in the Hilbert-style calculus containing
exactly the axiom schemes o1, ...,0,. Our main result is the following Theorem 2.
Theorem 2. Given principal axiom schemes oy,...,0, such that {a = 8 — a} b o; for
i=1...n, it is undecidable whether {o1,...,0n}Fa— 8 = a.
Corollary 3. Given A-terms My, ..., M, in Bn-normal form having principal types o1,...,0n,
in the simply typed \-calculus such that {a — 8 — a} b oy fori = 1...n, it is undecidable
whether there is an applicative composition of My, ..., M, having the simple type « — 8 — «.

95

Lower End of the Linial-Post Spectrum Dudenhefner and Rehof

We prove Theorem 2 by reduction from (a slight variation of) the Post correspondence
problem. Specifically, given pairs (v1,w),..., (vg, wg) of words over the alphabet {a,b} such
that € # v; # w; # € for i = 1...k, it is undecidable whether there exists an index sequence
i1, .. .4y such that viv;, v, ... v, = wWiwi, Wi, ... w5, .

We encode a fixed Post correspondence problem instance as follows. For a word v € {a,b}*
we define its representation as [v] = a - v where - is defined as

c-e=o0 o-wa=(a—a)— (0-w) c-wb=(ad—=a—a)— (0-w)
We represent a pair of types o, T as
(o,y=(a—=a)s(c=>T—a)m(a—=o)=m(a=>T)Da—a—a
Finally, we define a set I" of k + 2 combinators typed by principal axiom schemes
D= {F: (o], [wn]) = a = B— 0, B: (8,8} U{C:: (B-viyy-wi) = (B,9) | 1< < k}

It appears to be difficult to pursue a constructive approach, i.e. start with (vi,w;), then
append pairs of corresponding words and finally check for equality. Therefore, we pursue a
“deconstructive” approach, i.e. start with an arbitrary pair of equal words (cf. F), then remove
corresponding suffixes (cf. C;) and finally compare with (vq,w) (cf. F'). Briefly, principality of
the above axiom schemes is achieved by providing several key elements in pair representation
(o, 7). First, « — o and o« — 7 provide constructors. Second, ¢ — 7 — « provides a verifier.
Third, ... - @« — a — « provides branching. The component o — « is used as a “barrier”.
Specifically, a key property of the encoding is that there is no combinatory term e’ such that
'k e : 0’ — o for some o’ and depth of e is smaller than the minimal depth of a combinatory
term e with I' - e : S({[v1], [w1])) for some substitution S. As a result, we are able to enforce
a linear shape on combinatory terms of small size which are typable in I' and associate this
shape with deconstructions of pairs of words. Lastly, the minimal inhabitant of @ — 8 — «
in fact requires as a first argument a functional program that solves and verifies its solution to
the given Post correspondence problem instance.

References

[1] Marcin Benke, Aleksy Schubert, and Daria Walukiewicz-Chrzaszcz. Synthesis of Functional Pro-
grams with Help of First-Order Intuitionistic Logic. In FSCD 2016, volume 52 of LIPIcs, pages
12:1-12:16, 2016.

[2] Sabine Broda and Lufs Damas. Counting a Type’s Principal Inhabitants. In TLCA 99, pages 6982,
1999.

[3] AV Kuznecov and E Mendelson. Undecidability of the general problems of completeness, decidability
and equivalence for propositional calculi. 1972.

[4] Samuel Linial and Emil L. Post. Recursive Unsolvability of the Deducibility, Tarski’s Complete-
ness and Independence of Axioms Problems of Propositional Calculus. Bulletin of the American
Mathematical Society, 55:50, 1949.

[5] Jakob Rehof. Towards Combinatory Logic Synthesis. In BEAT’13, 1st International Workshop on
Behavioural Types. ACM, January 22 2013.

[6] Mary Katherine Yntema. A detailed argument for the Post-Linial theorems. Notre Dame Journal
of Formal Logic, 5(1):37-50, 1964.

[7] Evgeny Zolin. Undecidability of the problem of recognizing axiomatizations of superintuitionistic
propositional calculi. Studia Logica, 102(5):1021-1039, 2014.

56

Characterization of strong normalizability for a
lambda-calculus with co-control

José Espirito Santo'*and Silvia Ghilezan?31

1 Centro de Matematica, Universidade do Minho, Portugal
2 University of Novi Sad, Serbia
3 Mathematical Institute SANU, Serbia

We study strong normalization in the system Afi, a lambda calculus of proof-expressions
with co-control for the intuitionistic sequent calculus [7]. In this sequent lambda calculus, the
management of formulas on the left hand side of typing judgements is “dual” to the management
of formulas on the right hand side of the typing judgements in Parigot’s Au-calculus [6] - that
is why our system has first-class “co-control”.

The abstract syntax of the untyped Afi is given by the following grammar:

(Terms) t,u,v == Ax.t|z'k|tk
(Generalized vectors) E o= [llgzv|u:k

One way of seeing this syntax is as a formal, generalized, relaxed, vector notation for A-terms -
while the original, informal, vector notation consists of the forms Az.M, N , and (Az.M)N N.
Another motivation for this syntax is through the type system for assigning simple types [7],
which derives judgements I' ¢ : A and T'|A - k : B. The constructions [|, u :: k, A\zx.t and tk
correspond to the logical principles axiom, left and right introduction of implication, and cut.
In addition, there is the fi-operator [2], together with a construction ="k, already found in the
A-calculus [4], to make antecedent formulas active or passive, respectively.

Among the reduction rules of Afi, the novelty lies in the rule for the fi-operator, which makes
use of a dual concept of structural substitution - that is, the structural substitution of a “co-
continuation” H for a proof variable x. In the ordinary A-calculus, and in Au, we may think of
the context []N7 - - - N,, as a continuation. In Afi, a co-continuation is a context with one of the
forms x"(uy i -+ it wm :x []) or #(ug -+ i wgy, i [f]). The operator w :: k is “right associative”,
so the hole [-] is again under a chain of arguments, but at the opposite end of the expression. The
crucial equation in the recursive definition of structural substitution is [H/z](z"k) = H[[H/z]k].
After this preparation, the reduction rule for i reads H|[iz.t] — [H/x]t.

In Afi, the rule for ji coexists with four other reduction rules. Together, these rules reduce
expressions of \ji to a form corresponding to the cut-free proofs of LJT [4] - hence, the reduction
rules express a combination of cut-elimination and focalization [5]. Both aspects are combined
already in the reduction rule for i, because the rule eliminates all occurrences of the fi-operator,
hence its normal forms are the \-terms.

Intersection types are a powerful tool for characterizing strong normalization in different
frameworks [1]. We employ them to obtain a characterization of strong normalizability in A\
as typability in the system given in Fig. 1. In this figure, A, B, C range over intersection types
and NA; = Ay N---NA,. We work with types modulo an equivalence relation, generated by
a standard preorder <. In particular, our intersection types are associative, commutative and
idempotent.

*This work was supported by FCT—Fundagao para a Ciéncia e a Tecnologia, within the project UID-MAT-
00013/2013, and by COST Action CA15123 - The European research network on types for programming and
verification (EUTypes) via STSM.

TThis work was partly supported by the grants ON174026 and 11144006 of the Ministry of Education and
Science, Serbia.

o7

Figure 1: The intersection type assignment system of A\ji
Jie{l,--- ,n}A=A;

Ax

TINA;F[]: A (Az)
I'z:A+t¢t: B PHt:A;, Vie{l, ---,n} T''BrEk:C
———F—— (—=r) =)
'Xxt:A— B NNA; > BkFt:k:C

'Ht:A;, Vie{l,---,n I''mA;Fk: B
; Vie) Tina Cut)
'tk:B
Fx:NA;|NAjFk:B Vj3ie{l,--- ,n}, Aj = A; I'z:Arv:B
‘ J { } J (Pass) _ (Act)

T,z:NA; Fz°k: B T|A¢ pzv: B

The system we propose for A\fi is obtained by adapting the system for assigning intersection
types used to characterize the strongly normalizing proof-terms of AGtz, in previous work by the
authors and colleagues [8, 9]. The AGtz-calculus [3] is another sequent lambda calculus, where
the treatment of the fi-operator follows the original and simpler one found in [2]: the fi-operator
is a term-substitution former, and its reduction principle triggers an ordinary term substitution.
The characterization of strong normalizability in Afi is proved, not by re-running the proof for
AGtz, but by “lifting” the characterization in AGtz. This requires a detailed comparison of the
two rewriting systems, which is of independent interest, as it highlights sensitive choice points
in the design of calculi of proof terms for the sequent calculus, particulary the treatment of
proof-term variables and the related substitution principles.

References

[1] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Cambridge
University Press, 2013.

[2] P.-L. Curien and H. Herbelin. The duality of computation. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, SIGPLAN Notices 35(9), pages 233—-243. ACM, 2000.

[3] José Espirito Santo. The A-calculus and the unity of structural proof theory. Theory of Computing
Systems, 45:963—994, 2009.

[4] H. Herbelin. A A-calculus structure isomorphic to a Gentzen-style sequent calculus structure. In
L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, volume 933 of Lecture Notes in Computer
Science, pages 61-75. Springer-Verlag, 1995.

[6] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logic.
Theoretical Computer Science, 410:4747-4768, 2009.

[6] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction.
In Logic Programming and Automated Reasoning,International Conference LPAR’92, St. Peters-
burg, Russia, July 15-20, 1992, Proceedings, pages 190-201, 1992.

[7] José Espirito Santo. Curry-Howard for sequent calculus at last! In Thorsten Altenkirch, editor,
18th International Conference on Typed Lambda Calculi and Applications, TLCA 2015, July 1-3,
2015, Warsaw, Poland, volume 38 of LIPIcs, pages 165-179. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

[8] José Espirito Santo, Silvia Ghilezan, and Jelena Ivetic. Characterising strongly normalising intu-
itionistic sequent terms. In Marino Miculan, Ivan Scagnetto, and Furio Honsell, editors, Types for
Proofs and Programs, International Conference, TYPES 2007, Cividale del Friuli, Italy, May 2-5,
2007, Revised Selected Papers, volume 4941 of Lecture Notes in Computer Science, pages 85—99.
Springer, 2008.

[9] José Espirito Santo, Jelena Ivetic, and Silvia Likavec. Characterising strongly normalising intu-
itionistic terms. Fundam. Inform., 121(1-4):83-120, 2012.

58

Inhabitation in Simply-Typed Lambda-Calculus
through a Lambda-Calculus for Proof Search

José Espirito Santo'* Ralph Matthes?! and Luis Pinto'

! Centro de Matemaética, Universidade do Minho, Portugal
2 Institut de Recherche en Informatique de Toulouse (IRIT), C.N.R.S. and Univ. of Toulouse, France

This work (of which details can be found on the arXiv [4]) is about an analysis of the
inhabitation problem in simply-typed A-calculus by way of a A-calculus notation for proof
search in minimal implicational logic, introduced by the authors [2] (see also the revised and
extended version [3]). By proofs in minimal implicational logic we understand n-long S-normal
A-terms that are well-typed according to the rules of simply-typed A-calculus. One has to treat
the general case of terms with open assumptions: a sequent o is of the form I' = A with a
finite set I' of declarations z; : A;, where the x; are variables of A-calculus. This fits with
the typing relation of A-calculus but, viewed from the logical side, presents the particularity of
named hypotheses. The total discharge convention that plays a role in the paper by Takahashi
et al [6] goes into the opposite direction and considers A-terms where there is only one term
variable per type. In the previous work of the present authors, cited above, no total discharge
convention is needed for obtaining a finitary description of the whole solution space S(o) for
a given sequent o. The solution space S(o) itself is a coinductive expression formed from
the grammar of S-normal forms of A-calculus and an operator for finite sums expressing proof
alternatives. Its potential infinity reflects the a priori unlimited depth of proof search and
serves the specification of proof search problems. For simply-typed A-calculus, the subformula
property allows to describe the solution spaces finitely. This may be seen as a coinductive
extension of work done already by Ben-Yelles [1] with a very concrete A-calculus approach and
by Takahashi et al [6] by using formal grammar theory (but the latter need the total discharge
convention for reaching finiteness). The announced A-calculus notation for proof search is thus
[2, 3]:

(terms) N == XA N|gfpX B+ ---+E,|X°
(elimination alternatives) E x(Ny...Ng)

where X is assumed to range over a countably infinite set of fizpoint variables, and the sequents
o are supposed to be atomic, i.e., with atomic conclusion. A fixpoint variable may occur with
different sequents in a term, but only well-bound terms are generated when building a finitary
representation of S(o), and only well-bound terms 7" are given a semantics [T as a coinductive
term. In essence, a term is well-bound if the fixed-point operator gfp with X only binds free
occurrences of X° where the o’ are inessential extensions of o in the sense that they have the
same conclusion and maybe more bindings, but only with types/formulas that already have a
binding in o. The main result is that there is a term F (o) without free fixpoint variables (called
closed term) whose semantics is S(o) (modulo a notion of bisimilarity that considers the sums
of alternatives as sets) [2].

In this work we show the applicability of our term representation F (o) to the analysis of
inhabitation problems. Consider a decision problem D and let A be a type. Our previous work

*The first and the third author were partially supported by FCT—'Fundacao para a Ciéncia e a Tecnologia’,
within the project UID-MAT-00013/2013.

TThis work was financed by the project Climt, ANR-11-BS02-016, of the French Agence Nationale de la
Recherche.

99

Inhabitation in Simply-Typed Lambda-Calculus

[2, 3] allowed us (i) to express D(A) as P(S4), where S4 is the coinductive description of the
search for inhabitants of A (specifically S(= A)), and P is some coinductive predicate, and then
(ii) to convert to the equivalent P’(F4), where F is the finitary description of S4 (specifically
F(= A)) and P’ is still a predicate defined by reference to coinductive structures. The form
P’(F4) does not yet profit from the finitary description. The first task of the present work is,
simultaneously, its main technical achievement: one obtains the equivalent P”(Fy), where P”
is inductive, actually directed by the syntax of the finitary description. The decidability of P
(whence of D) is an immediate bonus.

One of the problems to which we applied our methodology is the classical decision problem:
“does type A have an inhabitant?”. In order to do so, we defined complementary predicates
exfin (inductively) and nofin (coinductively) capturing the existence (resp. non-existence) of
finite solutions (i. e., proofs/inhabitants) in a solution space S(¢). Then, we defined inductively
the predicate EFp on the finitary expressions

P(o’) EFP(N) EFP(Ej) Vi, EFp(Nl)

EFp(X7) EFp(A\z?.N) EFp(gfp X7.>", E)) EFp(z(N;):)

s. t., for appropriately restricted finitary terms T', a (partly) coinductive reasoning shows EFp(T")
iff exfin([T7]), where P is a predicate on sequents s.t. P(o) implies exfin(S(o)). Instantiation of
P to the empty predicate allows then to decide the predicate exfin(S(o)) (given o), and hence
the classical inhabitation problem, through a simple procedure recursing over the structure of
the finitary term F(o).

We also applied our methodology to the decision problem: “does type A have finitely many
inhabitants?” (considered in [6]), and this works smoothly, along the lines described above for
the classical inhabitation problem. Crucially, in subsequent definitions of auxiliary predicates,
we reuse the above predicate, with P instantiated to exfin o S. Additionally, we used our tools
to study types A with finitely many inhabitants: Ben-Yelles’ algorithm [1, 5] can count them,
here we show how their number can be calculated from the finitary description F(= A) as a
rather simple recursive function.

We remark that a previous version of our results took the wrong decision for the instantiation
of predicate P in EFp, and there was an error in the proof (that did not work either for the
correct instantiation), and so we had to rework the proof method by introducing a simplified
semantics for the purpose of proof. As mentioned before, the details are available at arXiv [4].

References

[1] Choukri-Bey Ben-Yelles. Type assignment in the lambda-calculus: syntax & semantics. University
of College of Swansea, 1979.

[2] José Espirito Santo, Ralph Matthes, and Luis Pinto. A coinductive approach to proof search. In
David Baelde and Arnaud Carayol, editors, Proceedings of FICS 2013, volume 126 of EPTCS, pages
28-43, 2013. http://dx.doi.org/10.4204/EPTCS.126.3.

[3] José Espirito Santo, Ralph Matthes, and Luis Pinto. A coinductive approach to proof search through
typed lambda-calculi. http://arxiv.org/abs/1602.04382, July 2016.

[4] José Espirito Santo, Ralph Matthes, and Lufs Pinto. Inhabitation in simply-typed lambda-calculus
through a lambda-calculus for proof search. http://arxiv.org/abs/1604.02086v2, March 2017.

[5] J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1997.

[6] Masako Takahashi, Yohji Akama, and Sachio Hirokawa. Normal proofs and their grammar. Inf.
Comput., 125(2):144-153, 1996.

60

http://dx.doi.org/10.4204/EPTCS.126.3
http://arxiv.org/abs/1602.04382
http://arxiv.org/abs/1604.02086v2

Dependent Type Theory with Contextual Types

Francisco Ferreira, David Thibodeau, and Brigitte Pientka

McGill University, Montréal, Québec, Canada
fferre8@cs.mcgill.ca, david.thibodeau@mail.mcgill.ca, bpientka@cs.mcgill.ca

We present a type theory with support for Higher Order Abstract Syntax (HOAS) by ex-
tending Martin-Lof style type theory [4] with contextual types and a specification framework
based on the logical framework LF [3]. This system can be seen as the extension of the theory
of Beluga [6] into full dependent types. The resulting system supports the definition of abstract
syntax with binders and the use of substitutions. This simplifies proofs about systems with
binders by providing for free the substitution lemma and lemmas about the equational theory
of substitutions. As in Beluga, we mediate between specifications and computations via contex-
tual types. However, unlike Beluga, we can embed and use computations directly in contextual
objects and types, hence we allow the arbitrary mixing of specifications and computations fol-
lowing ideas from [2]. Moreover, dependent types allow for reasoning about proofs in addition
to reasoning about LF specifications.

The syntax of calculus is presented in a Pure Type Systems [1] with only one grammar as
computations and specifications are interleaved arbitrarily. For clarity, we use the following
naming convention for terms. We use E for expressions, S and T for types, ¥ and ® for
specification-level contexts, o and 3 for specification types, and ¢ and ¢ for substitutions.

Terms

E ST,9,®,0,a,08 u=set, | (z:S) =T | e.E|EE |x|c|[VF E] T.T. terms
| [TFa]lctx Cont. types
| x| (Z:a)—>p Spec. types
| \e.E|E'E'|E[o]|%|"id|0;Z:= E|0| ¥, Z: E Spec. terms

Contexts Puo=-|Da:T

Signature Yu=-|%X,c: T

We present a Martin-Lof style type theory with an infinite hierarchy of universes extended
with contextual types [¥ F a] which represent a specification type a in an open context .
Specification types are classified by a single universe %, together with an intensional function
space (T : @) — 8 and constants. Substitutions can be an empty substitution ** which weakens
closed terms, an identity substitution id, or a substitution extended with a term for a variable
0;7 := E. Contexts are either empty 0 or a context extended with a new assumption ¥, 7 : E.

Type theory terms and specification terms are typed with two different judgments I' - E : T
and'; W F E : 8, respectively. For instance, we type the type theory functions and specifications
functions in the following way:

Lz:SFE:T . v, z2:aFE:
F")\SE.E:(CE:S)%Tt o F;\Ill_/):x.E:(f:Oz)*»ﬁ

s-lam

The two function spaces differ by the contexts they act on. Type theory A-abstractions
introduce variables in the computational context I" while specification A-abstractions use the
specification context W. The (-rule for each A-abstraction uses its own substitution operation
for its corresponding class of variables denoted respectively {#}F and [o]E. This is in contrast

61

Dependent Type Theory with Contextual Types Ferreira, Thibodeau, Pientka

to Elo] for the closure that embeds a computation of boxed type into a specification and is
defined by the following introduction rule:
Ubko:® THE:[®F]
U F Elo] : [o]a

s-clo

In addition to the description of the term calculus we present a prototype implementation®
for our type theory which supplements the calculus with recursive functions and Agda-style
dependent pattern matching [5] extended to allow matching on specifications including on
substitutions and specification-level A-abstractions and thus abstracting over binders.

For example, we can write a type preserving translation on intrinsically typed terms where
we express the notion of type preservation using a computational function tran-tp translating
the types.

def tran-tp : (F s-tp) — (- t-tp) where ...

data rel: ctx — ctx — set where

| empty : rel () 0

| cons : (g : ctx) - (h : ctx) — (¢t : F s-tp) - rel gh
— rel (g, x: s=tm ’ t) (h, y: t-tm > (tran-tp t))

def tran : (g : ctx) = (b : ctx) - rel gh — (t : - s-tp)
— (g s-tm ’> t) - (h F t-tm > (tran-tp t)) where ...

We use the rel predicate to relate the source and target contexts. The translation then
moves from a term in the source language of type t to a term in the target language of translated
type tran-tp t.

In conclusion, we developed a theory that allows for embedding contextual LF specifications
into a fully dependently typed language that simplifies proofs about structures with syntactic
binders (such as programming languages and logics). Moreover, we have a prototype, the Orca
system, in which we implement some example proofs.

References

[1] Stefano Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of constructions
and the other systems in Barendregt’s cube. Technical report, Dept. of Computer Science, Carnegie-
Mellon University and Dipartimento Matematica, Universita di Torino, 1988.

[2] Francisco Ferreira and Brigitte Pientka. Programs using syntax with first-class binders. In Hongseok
Yang, editor, Programming Languages and Systems: 26th European Symposium on Programming,
ESOP 2017, Uppsala, Sweden, pages 504-529. Springer Berlin Heidelberg, 2017.

[3] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the
ACM, 40(1):143-184, January 1993.

[4] Per Martin-Lof. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory Lecture Notes.
Bibliopolis, Napoli, 1984.

[5] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers University of Technology, September 2007. Technical Report 33D.

[6] Brigitte Pientka and Andrew Cave. Inductive Beluga: Programming proofs. In Automated De-
duction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings, pages 272-281, 2015.

I Available at:http://github.com/orca-lang/orca

62

http://github.com/orca-lang/orca

Inductive-Recursive Definitions and Composition

Neil Ghani', Conor McBride!, Fredrik Nordvall Forsberg!, and Stephan Spahn?

1 University of Strathclyde, Glasgow, Scotland
{neil.ghani, conor.mcbride, fredrik.nordvall-forsberg}@strath.ac.uk
2 Middlesex University, London, England
stephanspahni@me.com

Inductive-recursive definitions. The idea behind inductive-recursive definitions is to make
an inductive definition of a data type U at the same time as defining a function T': U — D
which computes by recursion over that type; here, “at the same time” means that the function
can occur in the type of the constructors for the inductive type. Typically, induction-recursion
is used to construct an encoding (defined inductively) where some data depends on the meaning
of previous data (computed recursively), with the prototypical example being a universe a la
Tarski [Pal98].

Dybjer and Setzer wrote a series of papers [DS99, DS03, DS06] characterising inductive-
recursive definitions in Martin-Lof Type Theory. A pair (U,T) as above where U : Set and
T : U — D can be seen as an object in the category Fam(D) = (X1 : Set)(I — D). Inductive-
recursive definitions arise as initial algebras of certain functors [c¢] : Fam(D) — Fam(D) that are
given by codes ¢ in a coding schema IR(D) mimicking the constructors of an inductive-recursively
defined type. Let us call a functor F': Fam(D) — Fam(D) IR-definable if there is an IR code
¢ : IR(D) such that F(X) 2 [c](X) for every X : Fam(D).

Closure under composition. Given two IR-definable functors, is their composite also IR-
definable? A positive answer to this question would allow a certain modularity in data type
definitions, in that one can modify inductive occurrences in the constructors by composing
with another functor. From the point of view of inductive definitions as least solutions to type
equations F'(X) = X, this means that we would be able to solve more general equations of the
form F'(G(X)) = X for IR-definable functors F' and G. Besides, being closed under composition
is a natural property to require of a class of functors.

Unfortunately, we do not know whether IR-definable functors are closed under composition
or not. Altenkirch considered the problem already in 2011 [Alt11]. The main ingredients needed
seem to be a way to graft one IR code at the end of another, and to be able to form infinite powers
of IR codes representing A — [c](X). The collection IR(D) of IR codes is monadic [GH16], in
fact a free monad, and the bind of this monad gives a code grafting operation. However, it
seems hard to define powers of codes.

A subsystem of uniform IR codes. To shed light on this issue, we consider a variation of
inductive-recursive definitions originally due to Hancock. Here codes are given in a left-nested,
not right-nested fashion [Pol02], and as a result have a uniform appearance. We call this system
of codes Uniform IR codes and the functors they decode to Uniform IR functors. Uniform
codes can be translated to ordinary Dybjer-Setzer IR codes in a meaning-preserving way, but
it is not clear how to turn a non-uniform code into a uniform one in general. However, all
inductive-recursive definitions that we know of “in the wild” are already given by uniform codes.
The left-nestedness of uniform IR codes can be exploited to define a power operation (most
economically expressed combined with grafting) by induction over the codes, and using this, we
can define the composite of two codes:

63

mailto:neil.ghani@strath.ac.uk
mailto:conor.mcbride@strath.ac.uk
mailto:fredrik.nordvall-forsberg@strath.ac.uk
mailto:stephanspahn1@me.com

Inductive-Recursive Definitions and Composition Ghani, McBride, Nordvall Forsberg, and Spahn

Theorem 1. Uniform IR functors are closed under composition, i.e. for all uniform IR codes c
and d, there is a uniform IR code c e d such that [ce d](X) = [¢]([d](X)) for every X : Fam(D).

A supersystem of polynomial codes. Another option is to explicitly add a power operation
to the system of codes. Doing this naively results in a system of codes which is no longer monadic,
but the second author discovered a way to add powers (in fact dependent products) and still
retain monadicity. Because the resulting system is given by sums and (set-indexed) dependent
products, we call the codes polynomial codes and the corresponding functors polynomial IR
functors (warning: not to be confused with polynomial functors [GK13]!). This time, Dybjer-
Setzer codes embed into polynomial codes, but it does not seem possible to go the other way.
On the other hand, again we know of no non-contrived examples of polynomial IR functors that
we expect not to be Dybjer-Setzer IR-definable. Using powers and grafting, we have:

Theorem 2. Polynomial IR functors are closed under composition, i.e. for all polynomial codes
¢ and d, there is a polynomial code ced such that [ced](X) = [c]([d](X)) for every X : Fam(D).

Open questions. Are the inclusions
Uniform IR — Dybjer-Setzer IR — Polynomial IR

strict? Are Dybjer-Setzer IR-definable functors closed under composition? Are they closed
under powers? Most of these questions are in fact the same question.

Formalisation. A work-in-progress Agda formalisation of the various systems can be found
at http://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/variantsIR/.

Acknowledgements We thank Peter Hancock and Anton Setzer for discussions and comments.
This research was supported by EPSRC grants EP/K023837/1 and EP/M016951/1.

References

[Alt11] Thorsten Altenkirch. What is the problem with induction-recursion? Talk at Peter Hancock
60th Celebration, 2011. http://www.cs.nott.ac.uk/~psztxa/talks/HankFest11.pdf.

[DS99] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In
TLCA, pages 129-146. Springer Verlag, 1999.

[DS03] Peter Dybjer and Anton Setzer. Induction—recursion and initial algebras. Annals of Pure and
Applied Logic, 124(1-3):1-47, 2003.

[DS06] Peter Dybjer and Anton Setzer. Indexed induction—recursion. Journal of logic and algebraic
programming, 66(1):1-49, 2006.

[GH16] Neil Ghani and Peter Hancock. Containers, monads and induction recursion. Mathematical
Structures in Computer Science, 26(1):89-113, 2016.

[GK13] Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. Mathematical
Proceedings of the Cambridge Philosophical Society, 154:153-192, 2013.

[Pal98] Erik Palmgren. On universes in type theory. In Giovanni Sambin and Jan Smith, editors,
Twenty five years of constructive type theory, pages 191 — 204. Oxford University Press, 1998.

[Pol02] Robert Pollack. Dependently typed records in type theory. Formal Aspects of Computing,
13(3):386-402, 2002.

64

http://personal.cis.strath.ac.uk/fredrik.nordvall-forsberg/variantsIR/
http://www.cs.nott.ac.uk/~psztxa/talks/HankFest11.pdf

Verifiable certificates for predicate subtyping

Frédéric Gilbert

Ecole des Ponts ParisTech, Inria, CEA LIST
frederic.a.gilbert@inria.fr

The simple types of higher-order logic are sufficient to exclude from reasoning unexpected
expressions such as the application of a predicate to itself. Extending higher-order logic with
predicate subtyping allows to restrict the set of valid expression further, excluding for instance
any expression containing a division by zero; it is used at the core of the type system of the
proof assistant PVS [3]. The present work is focused on two type systems. The first one, re-
ferred to as PVS-Core, is a formalization of the extension of higher-order logic with predicate
subtyping. Type-checking undecidable in this system. The second, referred to as PVS-Cert, is
a type system with explicit proof terms, in which type-checking is decidable. The two systems
are tightly connected, and we show how to use the terms of PVS-Cert as verifiable certificates
for PVS-Core. We also show that both systems are conservative extensions of higher-order logic.

The extension of higher-order logic with predicate subtyping is based on the addition of a
new construction of types on top of the simple types of higher-order logic. This construction is
denoted {z : A | P}, where A is expected to be a type and P is expected to be a predicate on
A. For instance, in a context where a type for natural numbers Nat is defined, we can define
the type Nonzero = {x : Nat | x # 0} with predicate subtyping. In PVS-Core, there are no
constructors nor eliminators for predicate subtypes: a term ¢ admits the type {« : A | P} if it
admits the type A and P[t/z] is provable. In particular, {z : A | P} is a subtype of A.

Starting from a usual presentation of higher-order logic with a type of proposition Prop and
three kinds of judgments, I' - A : Type (well-formed types), I' -t : A (well-typed terms), and
I' - P (provable proposition), we define PVS-Core by adding the following rules:

' A: Type I‘,:E:A}—P:Props F'kt:{z:A|P}
PHA{x:A|P}: Type UBTYPE '+t A Bl
-t A '+ Plt/z] F}—{x:A|P}:TypeI I‘I—t:{x:A|P}E)
THt:{z:A|P} NTRO Pl /] LM

Moreover, the arrows are replaced by dependent products Iz : A.B. In higher-order logic,
the only undecidable kind of judgment is I' F P, while, in PVS-Core, all kinds of judgments
become undecidable because of the rules INTRO and SUBTYPE.

The second system, PVS-Cert, is an extension the PT'S AHOL. AHOL is itself a language of
certificates for higher-order logic, in the sense that provable propositions are inhabited by proof
terms of AHOL, which can be used as certificates as type-checking is decidable in this system.
AHOL admits three sorts Prop, Type, and Kind, two axioms Prop : Type and Type : Kind, and
three rules (Prop, Prop, Prop), (Type, Type, Type), and {Type, Prop, Prop). We extend AHOL
to PVS-Cert with the following rules:

' A: Type F,x:A}—P:PTOpS 'kt:{z:A|P}
T {z: 4| P}: Type UBTYPE A el

65

Proof certificates for predicate subtyping Frédéric Gilbert

F'Ft: A I'kp: Plt/z] PH{z:A|P}: Type PHit:{z:A|P}
TF (£,0) (wea1py (@ : A | P} NTROT R (1)« Plmi(1) /]

ELim2

We define the two rewrite rules (My, Ma)a —. M; and 71 (M) —, M, and replace the
original conversion =g, with the conversion =g, based on [-reduction extended with these
rules. Using the result of [2], — 3. is known to be confluent.

The first important property of PVS-Cert is the stratification of terms: well-typed terms can
be classified in four classes of terms: {Type} and three other classes, which will be referred to
as types, elements, and proofs. Through stratification, PVS-Cert and PVS-Core are related in
a very simple way. Starting from a derivation in PVS-Cert, we obtain a derivation in PVS-Core
by normalizing every term under —, and erasing proof terms from the judgments. Conversely,
the derivations from PVS-Core can be translated into PVS-Cert. Hence, PVS-Cert can be used
as a system of proof certificates for PVS-Core as long as type-checking is decidable in it.

In order to prove the decidability of type-checking in PVS-Cert, we prove the strong nor-
malization of —g, and the existence of a type-preserving reduction allowing to transform any
well-typed term convertible with a dependent product into a dependent product. This reduc-
tion cannot be defined with — ., which is not type preserving. Instead, it is defined with —3,,
where m; (M1, Ma) 4 —» M; for all i € {1,2}.

In this setting, the decidability of type-checking in PVS-Cert follows from the preservation
of types of —g3,, the strong normalization — 3., and the strong normalization of —3,. The
preservation of types under — g, is established using the stratification property and the following
lemma: if My =g, M2 and M; is either a type or an element for all ¢ € {1, 2}, then M7 =g, Mo.

The two expected properties of strong normalization of —g, and — g, cannot be merged into
the strong normalization of —g,.. Indeed, we present some well-typed term on which — g4
doesn’t terminate. However, we prove both properties using a single definition of saturated
sets. This notion of saturated sets, inspired from [1], is adapted to apply both to —g, and
—g«. In order to handle both reductions more easily, these definitions are based on untyped
terms instead of using encodings to pure lambda calculus.

Using the type preservation and the strong normalization of — g, we also prove that PVS-
Cert is a conservative extension of higher-order logic. As a consequence, PVS-Core is a conser-
vative extension higher-order logic as well. A possible future work is to implement PVS-Cert
and to instrument the proof assistant PVS to export proof certificates in PVS-Cert.

References

[1] Herman Geuvers. A short and flexible proof of strong normalization for the calculus of constructions.
In International Workshop on Types for Proofs and Programs, pages 14-38. Springer, 1994.

[2] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combinatory reduction
systems: introduction and survey. Theoretical Computer Science, 121(1):279 — 308, 1993.

[3] Sam Owre, John M Rushby, and Natarajan Shankar. PVS: A prototype verification system. In
International Conference on Automated Deduction, pages 748-752. Springer, 1992.

[4] Matthieu Sozeau. Subset coercions in coq. In International Workshop on Types for Proofs and
Programs, pages 237-252. Springer, 2006.

[5] Benjamin Werner. On the strength of proof-irrelevant type theories. In International Joint
Conference on Automated Reasoning, pages 604—618. Springer, 2006.

66

Strong Bisimilarity Implies Trace Semantics in CSP-Agda

Bashar Igried and Anton Setzer

Swansea University, Swansea,Wales, UK
bashar.igried@yahoo.com , a.g.setzer@swansea.ac.uk

Abstract

In this talk we extend the library CSP-Agda with a semantics in order to prove prop-
erties of safety critical systems. In CSP-Agda the process algebra CSP is represented
coinductively in the interactive theorem prover Agda. We present trace semantics in the
theorem prover Agda, together with the corresponding refinement and equality relation.
In order to facilitate proofs of algebraic properties for this semantics we introduce strong
bisimilarity, and show that it implies trace equivalence. As an example we apply this
methodology to commutativity of interleaving.

1 Introduction

Process algebras are amongst the most important and successful frameworks for modelling
and specifying interactive systems. They have demonstrated to be convenient at the level of
requirement and design specification, as well as in proofs of refinement. There are many process
algebras available. One prominent process algebra is CSP which has been developed and widely
used in many areas. In [1, 2] we introduced a library called CSP-Agda for representing processes
in the dependently typed theorem prover and interactive programming language Agda. A
process in CSP-Agda can either terminate, returning a result. Or it can be a tree branching
over external and internal choices, where for each such choice a continuation process is given.
Instead of forming processes by using high level operators, as it is usually done in process
algebras, our processes are given by these atomic one step operations. The high level operators
are defined operations on these processes. Since processes can loop for ever, processes are
defined coinductively from this one step operation. The transitions, a process can make, are
labelled external choices, silent 7-transitions, and termination events v'. We add a return
value to termination events, and therefore extend CSP processes to monadic ones. There are
3 levels of processes in CSP-Agda, Processoco, Process, Process+, which are defined mutually
coinductively. Therefore predicates and functions on processes need to be defined for each of
these 3 levels. For sake of brevity, we give only definitions referring to Process+.

The purpose of this paper is to extend CSP-Agda by adding (finite) trace semantics of CSP.
and show how to prove selected (adjusted) algebraic laws of CSP in CSP-Agda.

2 Defining Trace Semantics for CSP-Agda

In CSP traces of a process are the sequences of actions or labels of external choices, a process
can perform. Since the process in CSP are non-deterministic, a process can follow different
traces during its execution. The corresponding definition for trace is as follows:

data Tr+ {c: Choice} : (I: List Label) — Maybe (ChoiceSet ¢) — (P : Process+ oo ¢)
— Set where

empty : {P : Process+ oo ¢} — Tr+ [| nothing P

extc : {P: Process+ oo ¢} — (I: List Label) — (tick : Maybe (ChoiceSet c))

67

easychair: Running title head is undefined. Bashar Igried,Anton Setzer

— («: ChoiceSet (E P)) — Troo [tick (PE P) — Tr+ (Lab P x :: I) tick P
intc : {P: Process+ oo ¢} — (I: List Label) — (tick : Maybe (ChoiceSet ¢))

— (2 : ChoiceSet (I P)) — Troo [tick (Pl P x) — Tr+ [tick P
terc : {P: Process+ oo ¢} — (z: ChoiceSet (T P)) — Tr+ [] (just (PT P z)) P

For instance the constructor extc is used for defining the trace corresponding to external
choice: if a process P has external choice z, then from every trace for the result of following
this choice, which consisting of a list of labels [and a possible result tick, we obtain a trace of
P consisting of the result of adding in front of [the label of that external choice, and of the
same possible result tick. The resulting proof will be denoted by (extc [tick x tr).

A process P refines a process @, written (P C @) if and only if any observable behaviour
of @ is an observable behaviour of P, i.e. if traces(Q) C traces(P). They are trace equivalent,
denoted by P = @, if they refine each other.

In CSP two process are strong bisimilar if they behave in the same way in the sense that
one process simulates the other and vice versa. We define strong bisimilarity in CSP-Agda as
follows:

record Bisims+ {4 : Size}{c : Choice} (P P’: Process+ oo c) : Set where

coinductive

field
bisim2E (e : ChoiceSet (E P)) — ChoiceSet (E P’
bisimELab : (e: ChoiceSet (E P)) — Lab P e = Lab P’ (bisim2E e)
bisimENext : (e : ChoiceSet (E P)) — Bisimsoo (PE P e) (PE P’ (bisim2E e))
bisim2I . (4 : ChoiceSet (I P)) — ChoiceSet (I P’)
bisimINext : (i : ChoiceSet (I P)) — Bisimsoo (Pl P i) (Pl P’ (bisim2l 7))
bisim2T (t: ChoiceSet (T P)) — ChoiceSet (T P
bisim2TEq : (t: ChoiceSet (T P)) — PT Pt = PT P’ (bisim2T ¢)

For sake of brevity we gave in the above definition only the fields expressing that P’ simulates
P. In the full definition one needs to add seven more fields expressing that P simulates P’.

We prove that if two processes are bisimilar than they are trace equivalent. We will then
show commutativity of interleaving w.r.t. bisimilarity. This implies the trace equivalence of
interleaving. It turns out that proofs of bisimilarity are much more straight forward than
proofs of trace equivalence. The reason is that we need to deal only with a process and the
processes obtained after following one external or internal choice. So we don’t have to deal with
a sequence of processes involved when following a trace. So by going via bisimilarity we obtain
much simpler proofs of trace equivalence.

References

[1] B. Igried and A. Setzer. Programming with monadic CSP-style processes in dependent type
theory. In Proceedings of the 1st International Workshop on Type-Driven Development,
TyDe 2016, pages 28-38, New York, NY, USA, 2016. ACM.

[2] B. Igried and A. Setzer. CSP-Agda. Agda library. Available at
https://github.com/csetzer/cspagdaPublic, 2017.

68

Derivation of elimination principles from a context

Ambrus Kaposi!, Andras Kovécs!, Baldzs Kémiives?, and Péter Dividnszky!

! E6tvés Lorand University, Budapest, Hungary
{akaposi|andraskovacs}@caesar.elte.hu, divipp@gmail.com
2 Falkstenen AB
bkomuves@gmail.com

We describe a syntactic method for deriving the specification of the dependent eliminator
(induction principle) from the type formation rules and constructors of an inductive type. We
observe that the work on parametricity for dependent types by Bernardy et al [1] can be used
for this purpose. Logical predicates give the motives and methods for the eliminator, while
logical relations provide the 8 computation rules. The method applies to indexed inductive
types, inductive inductive types, higher inductive types and the combinations of these as well.

The construction does not involve syntactic checks like strict positivity. It only derives the
the type of the eliminator and the computation rules as equalities but does not validate the
existence of such constants. We describe the algorithm through examples.

An inductive type as a context

The specification of an inductive type can be given as a context. The variable names are names
for the types and the constructors. For example, natural numbers can be given as the context

N:U, zero: N, suc: N — N.

We only look at closed inductive types (otherwise, the specification would be a telescope). The
higher inductive type of the interval is given as

I:U, left: I, right:I|, segment: left = right.
A fragment of the intrinsically typed syntax of type theory is given by the context

Con:U, Ty:Con— U, -:Con, >:(I': Con) = Ty’ = Con, ¢: (I": Con) — TyT,
II: (T': Con)(A:TyIl') > Ty(I'> A) — TyT.

Logical predicate interpretation

The type theory in which we write the above contexts has universes a la Russel, dependent
function space and identity type. We define the logical predicate interpretation for this theory
a la Bernardy |1]. That is, we define an operation —P from the syntax to the syntax which
maps a context to an extended context, a type to a predicate in the extended context and a
term to a witness of the predicate corresponding to its type. The following rules specify the
operation. The third rule is called parametricity or abstraction theorem.

I+ I'FA:U 'Ft: A
P+ PraP.au P P . APy

Contexts are doubled: the empty context stays the same, i.e. P.= .. For the extended context,

we add a copy of the original context and witnesses of the logical predicate for each variable:
T,z : A)P = FP, z:A 2y AP 2. The witnesses are denoted by the variable with an index .

69

Terms are interpreted as follows. We look up the witness for a variable from the extended
context. The universe is interpreted as predicate space, function type as the predicate which
says that the function preserves predicates. The predicate for equality is equality of witnesses
over the original equality. The interpretation of the eliminator J is omitted for sake of brevity
— it can be given by repeated usage of J itself.

xP = Tm ()\x.t)P = \z mM.tP
uP ‘= AA.A U (fa) = fPad”
((z: A) = B)P = Af.(x: A)(am : AT 2) — BP (fo) refl” = refl
(a=y a/)P := Aw.transport AP waP =Py '’

A binary version ~R can be defined in an analogous way. _R triples contexts, it produces two
copies of the original context and witnesses of logical relations pointwise.

Deriving the specification of the eliminator

Applying the operator ~P on a context extends it with the motives and methods for the elimi-
nator. For the first two examples above, we get the following additional elements:

Ny : N — U, zerom : Ny zero, sucy : (n: N)(nm : Nun) — Ny (sucn)

Iw i | = U, leftm : Iu left, right,, : lu right, segment,, : transport Iy segment lefty = right,,

The computation rules can be derived using the binary logical relation interpretation ~R For
example, the relation Ny will have type Ny — N; — U (instead of N — U) where Ny and Nj are
the two copies of N. If we substitute Ny for a graph of a function fy : Ny — Ny in the whole
extended context, we get the notion of a homomorphism between the natural number algebras
(Np, zerog, sucg) and (Nq,zeroq,sucy).

Ng:U, Ny : U, fy:Ng— Ny, zerog : Ng, zeroj : Ny, zerom : fyzerog = zeroq, sucg : Ng — Ng,
sucy : Ny — Ny, sucy : (no : No)(nl : Nl)(’I’LM : fN ng = nl) — fN (SUCO ’I’Lo) = (SUCl nl)

With a singleton contraction operation the type of sucy becomes (ng : Ng) — fi (sucgng) =
(sucy (fyno)) which is exactly the computation rule of the nondependent eliminator.

The computation rules for the dependent eliminator can be given by a “dependent” variant
of the binary logical relation interpretation. Here the relation for N has type (n : N) = Nyn — U.

Further steps

If we restrict the contexts to strictly positive ones (this can be achieved using an empty uni-
verse and a restricted function space), we can define an operation which gives the type of the
eliminator and the computation rules directly. We are currently working on the definition of
this operator. We are also planning to extend the approach to coinductive types and to define
a type theory with support for (higher) (co)inductive types using this approach.

References

[1] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free — parametricity for
dependent types. Journal of Functional Programming, 22(02):107-152, 2012.

70

A Type-Theoretic Alternative to LISP *

G. A. Kavvos!

Department of Computer Science, University of Oxford, United Kingdom
alex.kavvos@cs.ox.ac.uk

Abstract

To be intensional is to be finer than some predetermined extensional equality. This distinction is
nowhere more pertinent than in programming: we can consider functional programs up to the function
they compute, or up to their source code. A type-theoretic view of this distinction leads to a typed
lambda calculus for intensional computation, and a novel categorical semantics of intensionality.

1 Introduction

In the realm of functional computation, we can immediately distinguish two paradigms:

e The Extensional Paradigm. In a purely functional world, a higher-order program can
use a functional argument eztensionally, by evaluating it at a finite number of points (a
form of continuity).

e The Intensional Paradigm. A program can compute with the source code—or inten-
sion—of another program as an argument. It can edit, optimize, call, or simulate the
running of this code.

Whereas the first paradigm led to a successful research programme on the semantics of program-
ming languages, the second is often reduced to symbolic evaluation. But the question remains:
what can the intensional paradigm contribute to programming?

2 Coping with intensionality

Intensionality involves disregarding some form of extensional equality. As a result, intensional
constructions often lead to impossibility theorems or paradoxes. As an example, quoting is
impossible. But other intensional operations are not; e.g. there are A-terms gnum, app and E
such that

gnum FMT =3 FTMT—I , app FM—I FNT =3 TM N—I , E FM—I =3 M

So intensional operations are admissible; one can go from intension ("M ™) to extension M; but
extension must not flow into intension.

2.1 Enter types

Strangely, intensionality follows a modal typing discipline: we can read OA as ‘code of type A.’
Thus, if for each M : A, we have "M ™ : OA, then the above operations are typable:

gnum : JA — OO0OA app: 0(A—+B)—»0A—-0B , E:0A— A

)

These types correspond to the 4, K, and T axioms of modal logic. This observation is due to
Neil Jones, but the exact connection to S4 was drawn by Davies and Pfenning [3].

*This abstract summarises my doctoral work, which is supported by the EPSRC.

71

A type-theoretic alternative to LISP Kavvos

2.2 Intensional Recursion and Lob’s rule

There are two ways to define a function by recursion [4]. The Y combinator of PCF corresponds
to the First Recursion Theorem (FRT). But there is also the Second Recursion Theorem (SRT):
for all f € A there exists u € A such that w = f"u". The SRT affords additional programming
power: u has ‘access’ to its own source code.

Type-theoretically, the SRT proves that from OA — A we can infer OA. This is a variant
of Lob’s rule from provability logic [2].

2.3 Intensional PCF

To accommodate the above intuitions we introduce a new typed A-calculus, Intensional PCF,
by extending the dual-context S4 system of Davies and Pfenning with (a) intensional (non-
functional) operations at modal types, and (b) intensional recursion. There is a caveat: inten-
sional operations can only ‘reduce’ when the argument is closed. We have that [5]:

Theorem 1. Intensional PCF is confluent, hence consistent.

3 Categorical Semantics

All is well with the above, apart from the fact that the known categorical semantics for S4
[1] do not suit the new system. We do not want reductions box M — box N under a box (—)
construct, yet f = g implies F'f = Fg for an endofunctor F'. The solution is the following:

1. We replace categories with P-categories: the axioms of a category only hold up to a PER
~ 4,5 on each hom-set C(A, B). This allows the morphisms to be intensional, with the
PER ‘externally’ specifying the extensional equality.

2. We replace cartesian comonads with exposures. Exposures are almost functors: they are
maps on objects and morphisms that do not respect the PERs, but reflect them instead.
Otherwise, they preserve composition and identities.

This leads to a compelling theory for the semantics of intensionality [6]:

Theorem 2. There are natural examples of exposures, both from classical logic—corresponding
to Gédel numberings—and from realizability theory —where they expose the ‘implementation.’

References

[1] Gavin M. Bierman and Valeria de Paiva. On an Intuitionistic Modal Logic. Studia Logica, 65(3):383—
416, 2000.

[2] George S. Boolos. The Logic of Provability. Cambridge University Press, Cambridge, 1994.

[3] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the ACM,
48(3):555-604, 2001.

[4] G. A. Kavvos. Kleene’s Two Kinds of Recursion. CoRR, 2016.

[5] G. A. Kavvos. Intensionality, Intensional Recursion, and the Gédel-Lob axiom. In Proceedings of
7th Workshop on Intuitionistic Modal Logic and Applications (IMLA 2017), 2017.

[6] G. A. Kavvos. On the Semantics of Intensionality. In Javier Esparza and Andrzej S. Murawski,
editors, Proceedings of the 20th International Conference on Foundations of Software Science and

Computation Structures (FoSSaCS), volume 10203 of Lecture Notes in Computer Science, pages
550-566. Springer-Verlag Berlin Heidelberg, 2017.

72

Quantitative Types for the Lambda-Mu Calculus with
Implicit or Explicit Operations

Delia Kesner, Pierre Vial
IRIF (CNRS, and Université Paris-Diderot)

A few years after Griffin [1] observed that Feilleisen’s C operator can be typed with the
double-negation elimination, Parigot [2] made a major step in extending the Curry-Howard
from intuitionistic to classical logic by proposing the A,-calculus as a simple term notation
for classical natural deduction proofs. Other calculi were proposed since then, as for example
Curien-Herbelin’s Apfi-calculus [3] based on classical sequent calculus.

Simple types are known to be unable to type some normalizing term, for instance the
normal form A = Az.xx. Intersection types, pioneered by Coppo and Dezani [4, 5], extend
simple types by resorting to a new constructor N for types, allowing to assign a type of the
form ((o¢ — o)No) — o to the term A. The intuition behind a term ¢ of type 7 N7 is that ¢ has
both types 71 and 79. The intersection operator N is to be understood as idempotent (cNo = o),
commutative (cNT = TNo), and associative ((cNT)NJ = oN(7NJ)). Among other applications,
intersection types have been used as a behavioural tool to reason about several operational and
semantical properties of programming languages. For example, a A-term/program t is strongly
normalising /terminating if and only if ¢ can be assigned a type in an appropriate intersection
type assignment system.

This technology turns out to be a powerful tool to reason about qualitative properties of
programs, but not for quantitative ones. Indeed, we know that a term ¢ is typable if and
only if it is e.g. head normalizing, but we do not have any information about the number of
head-reduction steps needed to head-normalize ¢, because of idempotency. In constrast, after
the pioneering works of Gardner [6] and Kfoury [7], D. de Carvalho [8] established in his PhD
thesis a relation between the size of a typing derivation in a non-idempotent intersection type
system for the lambda-calculus and the head /weak-normalisation execution time of head /weak-
normalising lambda-terms, respectively. Non-idempotent types have recently received a lot of
attention in the domain of semantics of programming languages from a quantitative perspective
(see for example [9]).

The case of the),-calculus: Different qualitative and quantitative models for classical
calculi were proposed in [10, 11, 12, 13], where the characterization of operational properties
was studied w.r.t. head-normalization. Intersection and union types were also studied in the
framework of classical logic [14, 15, 16, 17], but no work adresses the problem from a quantitative
perspective. Type-theoretical characterization of strong-normalization for classical calculi were
provided both for A, [18] and Apjfi-calculus [17], but the (idempotent) typing systems do not
allow to construct decreasing measures for reduction, thus a resource aware semantics cannot
be extracted from those interpretations. Different small step semantics for classical calculi were
developed in the framework of neededness [19, 20], without resorting to any resource aware
semantical argument.

Our first contribution is the definition of a resource aware type system for the A,-calculus
based on non-idempotent intersection and union types. The non-idempotent approach provides
very simple combinatorial arguments, only based on a decreasing measure, to characterize
strongly normalizing terms by means of typability. In the well-known case of the A-calculus,
the measure sz (II) of a derivation II is simply given by the number of its nodes. This approach
cannot be straightforwardly adapted to A,, and we need now to take into account the structure
(multiplicity and size) of certain types appearing in the types derivations.

73

Quantitative Types for Lambda-Mu D. Kesner and P. Vial

The second contribution of our work is the definition of a new resource aware operational
semantics for \,, called A, inspired from the substitution at a distance paradigm [21], where
the reduction rules do not propagate the cuts w.r.t. the constructors of terms. The resulting
calculus is compatible with the non-idempotent typing system defined for A,. We then extend
the typing system for A,, so that the extended reduction system A, preserves and decreases
the size of typing derivations. We generalize the type-theoretical characterization of Strong
Normalization to this new resource aware classical calculus.

References

[1] T. Griffin. A formulae-as-types notion of control. In POPL, pp. 47-58. ACM Press, 1990.

[2] M. Parigot. Ap-calculus: an algorithmic interpretation of classical natural deduction. In LPAR,
LNCS 624, pp. 190-201. Springer, 1992.

[3] P. L. Curien and H. Herbelin. The duality of computation. In ICFP, pp. 233-243. ACM, 2000.

[4] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Archive for
Mathematical Logic, 19:139-156, 1978.

[5] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the
A-calculus. Notre Dame Journal of Formal Logic, 4:685—-693, 1980.

[6] P. Gardner. Discovering needed reductions using type theory. In TACS, LNCS 789, pp. 555-574.
Springer, 1994.

[7] A. Kfoury. A linearization of the lambda-calculus and consequences. Technical report, Boston
Universsity, 1996.

[8] D. de Carvalho. Sémantiques de la logique linéaire et temps de calcul. These de doctorat, Université
Aix-Marseille 11, 2007.
[9] A.Bernadet and S. Lengrand. Non-idempotent intersection types and strong normalisation. LM CS,
9(4), 2013.
[10] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-mu calculus.
MSCS, 11(2):207-260, 2001.
[11] S. van Bakel, F. Barbanera, and U. de’Liguoro. A filter model for the Ap-calculus - (extended
abstract). In TLCA, LNCS 6690, pp. 213-228. Springer, 2011.

[12] L. Vaux. Convolution lambda-bar-mu-calculus. In TLCA, LNCS 4583, pp. 381-395. Springer,
2007.

[13] S. Amini and T. Erhard. On Classical PCF, Linear Logic and the MIX Rule. In CSL, LIPIcs 41,
pp- 582-596. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[14] O. Laurent. On the denotational semantics of the untyped lambda-mu calculus, 2004. Unpublished.
[15] S. van Bakel. Sound and complete typing for lambda-mu. In ITRS, EPTCS 45, pp. 31-44, 2010.

[16] K. Kikuchi and T. Sakurai. A translation of intersection and union types for the Au-calculus. In
APLAS, LNCS 8858, pp. 120-139. Springer, 2014.

[17] D. J. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-
Herbelin symmetric lambda calculus: Extending the Coppo-Dezani heritage. TCS, 398(1-3):114—
128, 2008.

[18] S. van Bakel, F. Barbanera, and U. de’Liguoro. Characterisation of strongly normalising lambda-
mu-terms. In ITRS, 2012, EPTCS 121, pp. 1-17, 2013.

[19] Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and duality. In TLCA, LNCS
6690, pp. 27-44. Springer, 2011.

[20] P. Pédrot and A. Saurin. Classical by-need. In ESOP, LNCS 9632, pp. 616-643. Springer, 2016.

[21] B. Accattoli and D. Kesner. The structural lambda-calculus. In CSL, LNCS 6247, pp. 381-395.
Springer, 2010.

74

Theory and Demo of PMLy: Proving Programs in ML

Rodolphe Lepigre
LAMA, UMR 5127 - CNRS, Université Savoie Mont Blanc, France

In the last thirty years, significant progress has been made in the application of type theory
to computer languages. The Curry-Howard correspondence has been explored in two main
directions. On the one hand, proof assistants like Coq or Agda are based on very expressive
logics. To prove their consistency, the underlying programming languages need to be restricted
to contain only programs that can be proved terminating. As a result, they forbid the most
general forms of recursion. On the other hand, functional programming languages are well-
suited for programming, as they impose no restriction on recursion. However, they are based
on inconsistent logics (i.e. the empty type is inhabited).

The aim of PMLs is to provide a uniform environment in which programs can be designed,
specified and proved. The idea is to combine a full-fledged, ML-like programming language with
an enriched type-system allowing the specification of computational behaviours. This language
can thus be used as ML for programming, or as a proof assistant for proving properties of
ML programs. As there is no distinction between programs and proofs, programming and
proving constructs can be mixed. For instance, proofs can be composed with programs for
them to transport properties (e.g. addition carrying its commutativity proof). In programs,
proof mechanisms can be used to eliminate unreachable code.

Examples. To illustrate the proof mechanism, we will consider simple examples of proofs on
unary natural number. Their type is given bellow, together with the corresponding addition
function defined using recursion on its first argument.

type rec nat = [Zero ; Succ of nat]

val rec add : nat = nat = nat = fun n m — case n of
| Zero[_] — m
| Succl[k] — Succladd k m]

As a first example, we will show that add Zero n = n for all n.' To express this property we
can use the type Vn::t, add Zero n = n, where ¢ can be read as the set of all values. This
statement is proved below, but its symmetric does not hold.

val add_z_n : Vn::, add Zero n = n = {}
// val fails : Vn:¢, add n Zero = n = {}

The first proof is immediate since add Zero n reduces to n by definition of add. The second
proof fails as we can find n such that add n Zero is not equivalent to n. The value False
is a suitable counterexample since the computation of add False Zero produces a runtime
error. Indeed, False is not matched in the case analysis that is used in the definition of add.
We can however prove a weaker property using the type Vn€nat, add n Zero = n, which
corresponds to a (dependent) function taking as input a number n and returning a proof of
add n Zero = n. This property can be proved using induction and case analysis as follows.

val rec add_n_z : Vn€nat, add n Zero = n = fun n — case n of
| Zerol[_l] — {}
| Succl[k] — let ih = add_n_z k in {}

1The (=) relation can be thought of as a form of observational equivalence.

75

PML3 in Theory and in Practice R. Lepigre

If n is Zero, then we need to show add Zero Zero = Zero, which is immediate by definition
of add. In the case where n is Succ[k] we need to show add Succ[k] Zero = Succl[k].
By definition of add, this reduces to Succl[add k Zero] = Succ[k]. We can hence use the
induction hypothesis add_n_z k to learn add k Zero = k and conclude the proof. Thanks to
one more lemma we easily obtain the commutativity of the add function.

val rec add_n_s : Vn m€nat, add n Succ[m] = Succl[add n m] = fun n m —
case n of | Zero[_] — {}
| Succl[k] — let ind_hyp = add_n_s k m in {}

val rec add_comm : Vn m€énat, add nm = add mn = fun n m —
case n of | Zero[_] — let lem = add_n_z m in {}
| Succ[k] — let ih = add_comm k m in
let lem = add_n_s m k in {}

It is important to note that, in our system, a program that is considered as a proof needs
to go through a termination checker. It is however easy to see all the proofs given here are
terminating, and hence valid.

Many more examples of proofs (and programs) have been written using our implementation
of the system, which should be made publicly available in a few weeks. They include (but are
not limited to) proofs on unary natural numbers (involving addition and product), lists, vectors
of a given size (as a subtype of lists) and sorting algorithms.

Realisability model and semantics. The theoretical foundations of PMLy have been stud-
ied by the author in his PhD thesis [3]. Most of the ideas contained in this work are based
on the exploratory work of Christophe Raffalli on PML [5]. Although this first version of the
system was encouraging on the practical side, it did not stand on solid theoretical grounds.
The semantics of PML, is based on a call-by-value classical realisability model first presented
in [2]. This theoretical framework allows for a relaxation of value restriction, which is essential
for working with dependent function types in the presence of effects. Dependent functions are
an important component of the system, as they allows a form of typed quantification.

Another important part of the semantics of PMLs is a specific notion of subtyping introduced
in a joint work of Christophe Raffalli and the author [4]. This framework yields a type system
that can be directly implemented, using (mostly) syntax-directed typing and subtyping rules.
In particular, it provides a very general notion of infinite proofs, which well-foundedness must
be established using an external solver based on the size-change principle [1].

References.
[1] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for program
termination. In POPL, pages 81-92. ACM, 2001.

[2] Rodolphe Lepigre. A Classical Realizability Model for a Semantical Value Restriction. In ESOP,
volume 9632 of Lecture Notes in Computer Science, pages 476-502. Springer, 2016.

[3] Rodolphe Lepigre. Semantics and Implementation of an Extension of ML for Proving Programs.
PhD thesis, Université Grenoble Alpes, 2017.

[4] Rodolphe Lepigre and Christophe Raffalli. Practical Subtyping for System F with Sized (Co)-
Induction. Prototype implementation: http://lama.univ-savoie.fr/subml/, 2016.

[5] Christophe Raffalli. PML: a new proof assistant. Prototype implementation: http://lama.
univ-savoie.fr/~raffalli/pml, Talk at the Types workshop, 2007.

76

http://lama.univ-savoie.fr/subml/
http://lama.univ-savoie.fr/~raffalli/pml
http://lama.univ-savoie.fr/~raffalli/pml

Intersection and Union Types from
a Proof-functional point of View"

Luigi Liquori and Claude Stolze

Université Coéte d’Azur, Inria, France

This talk is a contribution to the study of types with intersection and union and the role of
such type systems in logical investigations. The talk inspects (i) the relationship between pure
(Curry-style) and typed (Church-style) lambda-calculi and their corresponding proof-functional
logics as dictated by the well-known Curry-Howard correspondence, (ii) the algorithmic issues
related with subtyping, and (iii) the possibility of including in theorem provers proof-functional
connectives like type intersection and union.

Proof-functional logical connectives allow reasoning about the structure of logical proofs,
in this way giving to the latter the status of first-class objects. This is in contrast to classical
truth-functional connectives where the meaning of a compound formula is dependent only on
the truth value of its subformulas.

Proof-functional connectives represent evidences as “polymorphic” constructions, that is, a
same evidence can be used as a proof for different sentences. Pottinger [14] firstly introduced a
conjunction, called strong conjunction N (as known as type intersection), requiring more than
the existence of constructions proving the left and the right hand side of the conjuncts.

According to Pottinger: “The intuitive meaning of N can be explained by saying that to assert
AN B is to assert that one has a reason for asserting A which is also a reason for asserting
B”. This interpretation makes inhabitants of A N B as polymorphic evidences for both A and
B. Later, Lopez-Escobar [11] presented the first proof-functional logic with strong conjunction
as a special case of ordinary conjunction. Mints [12] presented a logical interpretation of strong
conjunction using realizers: the logical predicate r4~p[M] is true if the pure lambda-term M
is a realizer for both the formula r4[M] and rp[M].

[10, 6] presented Church-style versions of the type assignment systems of Barendregt-Coppo-
Dezani [3] and Barbanera-Dezani-de’Liguoro [2], adding to type intersection another proof-
functional operator, the strong disjunction U (as known as type union). Paraphrasing Pot-
tinger’s point of view, we could say that the intuitive meaning of U can be explained by saying
that if we have a reason to assert A (or B), then the same reason will also assert AU B. This
interpretation makes inhabitants of (AU B) D C as polymorphic evidences for both A D C and
B D> C. In [5] we extended Mints’ logical interpretation of type intersection with type union.
Symmetrically to intersection, the logical predicate r 5[M] succeeds if the pure lambda-term
M is a realizer for either the formula r4[M] or rg[M].

Subtyping Algorithm. Roger Hindley gave first a subtyping algorithm for type intersection [9],
and there is a rich literature reducing the subsetting problem in presence of set intersection
and set union to set constraint-based problem: good references are [1, 4, 7]. We present a
decidable algorithm for subtyping A in presence of type intersection and union: the algorithm
is conceived to work for the minimal type theory = (ie. axioms 1 to 14, as presented in [2]).
The algorithm A is proved to be sound and complete.

*Work supported by the COST Action CA15123 EUTYPES “The European research network on types for
programming and verification”.

7

Intersection and Union Types from a Proof-functional point of View Liquori and Stolze

Dependent Types / Logical Frameworks. All of the work on understanding the logical aspects of
intersection, union, and subtyping took place in the Curry-style framework. This was natural
given the fact that type assignment was the most natural framework for type intersection and
union, because the typing rules are not syntax directed. But the fact that the Curry-Howard
correspondence requires explicitly-typed terms poses a compelling question: can a logical inves-
tigation of type intersection and union in presence of subtyping, take place in the context of an
explicitly-typed lambda-calculus? In the literature, Frank Pfenning work on Refinement Types
[13] pioneered an extension of Edinburgh Logical Framework (LF) [8] with subtyping and type
intersection. Our aim is to study extensions of LF featuring fully fledged proof-functional logi-
cal connectives like strong conjunction, strong disjunction in presence of subtyping and relevant
implication.

The motivation is that success here should point the way towards applications of type inter-
section and union in logical frameworks. Studying the behavior of proof-functional connectives
would be beneficial to existing interactive theorem provers such as Coq or Isabelle, and depen-
dently typed programming languages such as Agda, Beluga, Epigram, or Idris, just to mention
a few. The hope is that they can provide as much insight into logical systems as they have in
the computational arena.

Prototype Implementation. We are current implementing a small kernel for a logical framework
prototype featuring type union and intersection. The actual type system features an experi-
mental implementation of dependent-types a la LF, and of a primitive Read-Fval-Print-Loop
(REPL). We are currently trying to integrate our algorithm A to the type checker engine. The
actual state of the prototype can be retrieved at https://github.com/cstolze/Bull.

References

[1] A. Aiken. Introduction to set constraint-based program analysis. Sci. Comput. Program., 35(2):79-111, 1999.

[2] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. Intersection and union types: syntax and semantics.
Inf. Comput., 119(2):202—230, 1995.

[3] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A Filter Lambda Model and the Completeness of Type
Assignment. Journal of Symbolic Logic, 48(4):931-940, 1983.

[4] F. Damm. Subtyping with union types, intersection types and recursive types II. RR RR-2259, INRIA, 1994.

[5] D. J. Dougherty, U. de’Liguoro, L. Liquori, and C. Stolze. A realizability interpretation for intersection and union
types. In APLAS, volume 10017 of LNCS, pages 187-205, 2016.

[6] D. J. Dougherty and L. Liquori. Logic and computation in a lambda calculus with intersection and union types.
In LPAR, volume 6355 of LNCS, pages 173-191, 2010.

[7] J. Dunfield and F. Pfenning. Tridirectional typechecking. In POPL, pages 281-292, 2004.
[8] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM, 40(1):143-184, 1993.

[9] J. R. Hindley. The simple semantics for coppe-dezani-sallé types. In International Symposium on Programming,
pages 212-226, 1982.

[10] L. Liquori and S. Ronchi Della Rocca. Intersection typed system & la Church. Information and Computation,
9(205):1371-1386, 2007.

[11] E. G. K. Lopez-Escobar. Proof functional connectives. In Methods in Mathematical Logic, volume 1130 of LNCS,
pages 208-221, 1985.

[12] G. Mints. The completeness of provable realizability. Notre Dame Journal of Formal Logic, 30(3):420-441, 1989.
[13] F. Pfenning. Refinement types for logical frameworks. In TYPES, pages 285-299, 1993.

[14] G. Pottinger. A type assignment for the strongly normalizable A-terms. In To H.B. Curry: Essays on Combi-
natory Logic, Lambda Calculus and Formalism, pages 561-577. Academic Press, 1980.

78

https://github.com/cstolze/Bull

Definitional Extensions in Type Theory Revisited

Georgiana Elena Lungu! and Zhaohui Luo?

1 Royal Holloway, Univ of London
Georgiana.Lungu.2013@live.rhul.ac.uk
2 Royal Holloway, Univ of London
zhaohui.luo@hotmail.co.uk

The notion of definitionality or extension by definition was first formulated by Kleene [2]
for first order theories. In first order logic we consider an extension obtained by adding a new
symbol and an axiom that a formula involving the new symbol is equivalent to one in the base
system. For an extension, conservativity means that all the formulas that are syntactically in
the base system hold in the extension only if they hold in the base system. Definitionality, in
addition, means that, an encompassing formula holds if and only if the corresponding formula
holds if it is obtained by replacing the occurrences of the new formula with the equivalent ones
from the base system.

We are interested in a similar notion for type theories like Martin Lof’s type theory [6] or
UTT [4]. We consider two different notions of definitional extension and, in particular, refor-
mulate them in new ways, leading to a more generic notion of definitional extension that covers
both as special cases. In the following, we use LF to denote Martin-Lof’s logical framework
with labelled lambda-expressions (see Chapter 9 of [4]).

The first notion of definitional extension is related to the notion of conservativity as studied
in [1, 3] where an embedding of a type theory into its extension is used and induces a particular
notion of definitional extension with new symbols. In the setting of LF', it can be formulated as
follows. (1) Let T and T” be type theories specified in LF and T” an extension of T by adding
new terms and rules. (2) Let f be a mapping from the terms of 7" to those of T such that (i)
flr = idp, and (ii) the new rules involving the new terms in 7" all become admissible under

f in T. Then T" is a definitional extension of T iff T' is a conservative extension of T' and
THk:K THf(k):K
TFh=7(k):K
consider X, a type theory with X-types, and X[x], the extension of ¥ with product types with
expected rules. A syntactic map can be defined to map product types A x B to the X-type

Y(A,[z:A]B) (and similarly for pairs and projections). Then, if in X[x] the definition rules

such as l;i—jz%piz(zif; :Z}yé’)e are admissible, then X[x] is a definitional extension of X. In this

the definition rules of the form are admissible in 7”.! For example, we may

setting, some meta-theoretic properties are carried over from T to its definitional extension 7".
For instance, if kind uniqueness holds for T', so does it for T".

The above notion of definitional extension relies on the existence of a syntactic mapping
and it does not cover some more general situations where, for example, the set of terms of the
extension is the same as that of the extended calculus. It also does not deal with situations
where new judgement forms are added. Coercive subtyping is such an example, with both of
these features. It has been discussed by Xue et al. [7, 5, 8]. Instead of considering mapping
between terms, they have described a definitional extension by mapping a derivation tree in the
extension into one in the original calculus such that their conclusions are definitionally equal.?

1 Another way to think of this is that 7" extends T' with new terms and new rules, including those definition
rules which correspond to the definition axiom in Kleene’s setting of first-order theories.

2Note that Xue in [7] does not consider situations with new forms of judgements. Rather, he considers the
calculus T'[Clox which has the same judgement forms with the whole calculus and is a conservative extension
of the original calculus.

79

Definitional Extensions Lungu and Luo

Here we propose a more general notion of definitional extension that has both notions above
as special cases. Let 7" be an extension of T with new terms, new rules and/or new forms
of judgements. We define a notion of replacement of a judgement .J' in 77 by a judgement
J in T based on a mapping m : Jpr» — Jr from T’-judgements to T-judgements so that
m is the identity when restricted to T-judgements (m|z, = idz,.) and, when restricted to
derivable judgements, respects definitional equality. Note that the mapping m is now based on
judgements, not on terms. This allows us to deal with the situation where the terms in 7" and
those in T are the same (as in coercive subtyping). For the first notion of definitional extension
given above based on a syntactic mapping f, we can simply take m to be the extension of f
to judgements. For the notion of definitional extension for coercive subtyping, as discussed in
[5, 8], m maps a judgement ' H A <. BtoT' F ¢: (A)B. It is important to note that the
mapping m is syntactic and does not preserve derivability and, because of this, the definition
of replacement is more complex and subtle in order to introduce and consider only derivable
judgements (and we omit the details in the current abstract).

For an extension to be definitional, we require that it be conservative, and that any judge-
ment in the extension have a replacement in the base calculus w.r.t. any of its derivation trees.
This definition is similar to the one given in [7], in first place because even though a replacement
is defined w.r.t. to a derivation, this definition refers to judgements as opposed to derivations,
and it can cover new forms of judgements.

Note that, in order to discuss definitionality, it is important to understand what to replace-
ment means, what a judgement can be replaced with, and how replacement should be done in
a more general setting where, for example, there are new forms of judgements. In the previous
settings, the answer to these questions was essentially covered by definition rules. Intuitively,
one simply replaces a judgement with a definitionally equal one in a derivation tree to obtain a
valid derivation tree (possibly with the addition to some more equality judgements). This can-
not be the case for new forms of judgements or even for those extensions which add new forms
of entries to the assumptions. These situation are all covered with our notion of definitional
extenstion.

References

[1] M. Hofmann. Extensional concepts in intensional type theory. PhD thesis, Univ of Edinburgh, 1995.
[2] S. Kleene. Introduction to Metamathematics. North Holland, 1952.

[3] P. LeFanu Lumsdaine. Higher Categories from Type Theories. PhD thesis, CMU, 2010.

[4] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.

(5]

5] Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: theory and implementation. Information and

Computation, 223:18-42, 2013.

[6] B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Léf’s Type Theory: An Intro-
duction. Oxford University Press, 1990.

[7] T. Xue. Definitional extension in type theory. In R. Matthes and A. Schubert, editors, LIPIcs
Proceedings 19th International Conference on Types for Proofs and Programs, 2013.

[8] T. Xue. Theory and Implementation of Coercive Subtyping. PhD thesis, Royal Holloway, 2013.

80

Adjective Clustering in the Mizar Type System

Adam Naumowicz *

Institute of Informatics, University of Bialystok, Poland

1 Introduction

The fundamental properties and basic terminology of the soft type system currently imple-
mented in the Mizar proof checking system [1, 4] was presented at TYPES 2016, see [8]. There
had been some notable attempts to translate the underlying concepts into other proof systems,
namely HOL Light [6] and more recently Isabelle [5]. A complete translation preserving the
notion of obviousness of the Mizar checker would require a thorough treatment of the type
system, including all its features.

A particular feature of the type system is the use of “adjectives” or “attributes” as con-
structors of flexible type hierarchies in the collection of interdependent Mizar articles forming
the Mizar Mathematical Library (MML). In principle, Mizar adjectives are semantically vari-
ants of (dependent) predicates. But their natural language based syntactic form, together with
the built-in type inference automation make them quite a powerful formalization mechanism
which seems indispensable for most non-trivial Mizar formalizations (cf. [9]). Our goal is to
present the adjective-based Mizar mechanisms in more detail to facilitate a wider understand-
ing of Mizar formalizations and experimenting with encoding the contents of MML in other
formalisms and/or frameworks.

2 Clustering

Let us briefly recall here that a “cluster of adjectives” in the Mizar jargon means a collection
of attributes (constructors of adjectives) with boolean values associated with them (negated or
not) and their arguments. The tree-like hierarchical structure of Mizar types is built by the
widening relation which uses such collections of adjectives to extend existing types [2]. Grouping
adjectives in clusters enables automation of some type inference rules. Such rules are encoded
in the form of so called registrations. Previously proved registrations can subsequently be used
to secure the non-emptiness of Mizar types (existential registrations), to allow formulating and
automating relationships between adjectives (conditional registrations) and to store adjectives
that are always true for instantiations of terms with certain arguments (functorial registrations),
cf. [3].

As originally implemented in Mizar, the role of adjective processing was mostly syntactic,
i.e. the Analyzer module automatically “rounded-up” the information from all available reg-
istrations to disambiguate used constructors and check their applicability. The semantic role
was restricted to processing only the type information for the terms explicitely stated in an
inference. Also, attributive statements as premises or conclusions were not “rounded-up”. The
available automation did not take into account the potential of applying registrations to every
element of a class of equal terms generated in the Equalizer module as a consequence of the
equality calculus.

An optimization algorithm was later implemented [7] to enable “rounding-up” the, so called,
“super clusters”, i.e. clusters of adjectives collected from various representations of terms that
happen to be aggregated in the same equality class as a consequence of equality processing. Now
let us look at a simple example with two typical functorial registrations for integers encoded in
the Mizar syntax:

*The author is supported by COST Action CA15123.

81

Adjective Clustering in the Mizar Type System A. Naumowicz

registration
let i be even Integer, j be Integer;
cluster i*xj -> even;

end ;

registration
let i be even Integer, j be odd Integer;
cluster i+j -> odd;

end ;

With these registrations imported, Mizar’s Checker module can, for example, infer auto-
matically the following statements as obvious for any i, e and o being integers:

e is even implies i*e is even;
e is even & o is odd implies e+o is odd;
e is even & o is odd implies (i*e)+o is odd;

In general, the equality classes may have numerous representatives, as well as multiple types,
which in turn have their arguments of the same form, and so on. As a class may have several
types and several term instances that may match the same registration, the result of matching
is a list of instantiations of classes for the loci used in a registration.

3 Final Remarks

Interestingly, the implementation of the above mechanism reused some of the data structures
previously developed for the Unifier module, where an algebra of substitutions is used to con-
tradict a given universal formula. The main difference is when joining instantiation lists - in the
Unifier the longer substitution is absorbed, while within the “super cluster” matching algorithm
the longer substitution remains.

It is also worth mentioning that in the above example all the attributes were absolute, i.e.
their only argument was the subject. But in general, the subject may be defined with a type that
has its own (explicit or implicit) arguments, and so the adjective has more implicit arguments.
Proper and efficient “rounding-up” clusters of adjectives with many arguments that can appear
in clusters several times (but possibly with different arguments) is another non-trivial issue.

References

[1] Bancerek, G. et al., Mizar: State-of-the-Art and Beyond. In M. Kerber et al. (Eds.), Intelligent
Computer Mathematics, CICM 2015, LNAT 9150, 261-279, 2015.

[2] Bancerek. G., On the Structure of Mizar Types. ENTCS 85(7), 6985, 2003.

[3] Grabowski, A., Kornitowicz, A., Naumowicz, A., Mizar in a nutshell, Journal of Formalized Rea-
soning 3 (2) (2010) 153-245. http://jfr.unibo.it/article/view/1980.

[4] Grabowski, A., Kornitowicz, A., Naumowicz, A., Four Decades of Mizar - Foreword. Journal of
Automated Reasoning 55(3), pp. 191-198, 2015.

[5] Kaliszyk, C., Pak, K., Urban, J., Towards a Mizar environment for Isabelle: foundations and
language. CPP 2016: 58-65.

[6] Kuncar, O., Reconstruction of the Mizar Type System in the HOL Light System. Proc. of WDS’10.

aumowicz, A., Enhanced Processing o jectives in Mizar. In A. Grabowski and A. Naumowicz

7l N icz, A., Enh d P i f Adjectives in Mi In A. Grabowski and A. N i
(Eds.), Computer Reconstruction of the Body of Mathematics, Studies in Logic, Grammar and
Rhetoric 18(31), 89-101, 2009.

[8] A. Naumowicz and J. Urban, A Guide to the Mizar Soft Type System, TYPES 2016 Book of
abstracts, http://www.types2016.uns.ac.rs/images/abstracts/naumowicz.pdf.

[9] Schwarzweller, C.: Mizar Attributes: A Technique to Encode Mathematical Knowledge into Type
Systems. Studies in Logic, Grammar and Rhetoric 10(23) (2007) 387-400.

82

http://jfr.unibo.it/article/view/1980
http://jfr.unibo.it/article/view/1980
http://www.types2016.uns.ac.rs/images/abstracts/naumowicz.pdf

Parametric Quantifiers for Dependent Types

Andreas Nuyts!, Andrea Vezzosi?, and Dominique Devriese!

! KU Leuven, Leuven, Belgium
2 Chalmers University of Technology, Gothenburg, Sweden

Many type systems and functional programming languages support functions that are paramet-
rized by a type. For example, we may create a tree flattening function flatten o : Tree @ — List «
that works for any type «. If the implementation of a parametrized function does not inspect
the particular type « that it is operating on, possibly because the type system prohibits this,
then the function is said to be parametric: it applies the same algorithm to all types. From
this knowledge, we obtain various useful ‘free theorems’ about the function. For example, if
we have a function f : A — B, then we know that listmap f o flatten A = flatten B o treemap f.
If parametricity is enforced by the type system, as is the case in System F but also in a
programming language like Haskell, then we can deduce such free theorems purely from a
function’s type signature, without knowledge of its implementation. This allows parts of a
function’s contract to be enforced by the type-checker; a powerful feature.

Existing work on parametricity in dependent type systems such as Martin-Lof Type Theory
(MLTT) has been able to show that the expected parametricity results hold for functions that
produce values of a small type [AGJ14, Tak01, KD]. Below, we illustrate that existing dependent
type systems insufficiently enforce parametricity in the sense that some parametricity theorems
do not hold where large types are involved. The central aim of this paper is to resolve this issue
by equipping dependent type theory with additional parametric quantifiers.

Encoding lists in System F In order to expose the problem that occurs in dependent type
theory, we will elaborate an example that shows the power of parametricity in System F, but
which does not carry over to dependent type theory: the standard Church encoding of lists.
Given a type B, we define the type of Church lists over B as ChList B = Va.aa — (B — a —
a) — «. Parametricity guarantees that elements of this type are in one-to-one correspondence
with lists of elements of B. Intuitively, this can be understood as follows: values of the type
ChList B have the form Aa.A(nil’ : @).\(cons’ : B — a — «).t, where the body t has type a.
The only ways to create terms of the unknown type « is by using the arguments nil’ and cons’,
so the syntactical term ¢ can be converted into a list by removing the primes.

Encoding lists in dependent type theory. Dependent type theory departs from System
F in that it erases the strict dichotomy between types and values. In particular, types can be
used as data, e.g. we can consider lists of types. The function type former — from System
F, is replaced with the dependent function type former II. If S is a type and T is a type
depending on a variable z : S, then the type II(z : S).T contains functions f that map any
value s : S to a value fs : T[s/x]. When T does not depend on z, we have recovered the
ordinary function type S — T from System F. If we disregard parametricity, we may also use
IT to recover the V type former from System F. If the domain S is a type of types U, also
called a universe, then the function type II(« : U).T corresponds to the polymorphic type
Va.T from System F. So we can translate our Church encoding of lists to dependent types:
ChList B=TI(X : U).X — (B — X — X) — X. But does this still encode the type of lists?
The answer is not in general positive, and an easy counterexample can be constructed if we
let B be the universe U itself. Then the following element exoticList = AX.nil’.Acons’.cons’ X nil" :
ChList/ is a blatant violation of how our encoding was intended to be used: given a type X and

83

Parametric Quantifiers for Dependent Types Nuyts, Vezzosi and Devriese

nil’ and cons’ operators on X, it returns the list of length one containing X. So the argument
X, a type purely provided for type-checking purposes, is used as a value in the list! As a result,
exoticList does not represent a fixed list, but a list whose content depends on what type X we
are eliminating to. This is definitely not something we want to allow. '

Contributions. We present a dependent type system ParamDTT in which dependencies
can be either parametric or continuous. Correspondingly, we obtain relationally parametric
quantifiers V and 3 alongside the usual (continuous) quantifiers II and .

We make parametricity theorems provable internally using a type former called Glue (first
used by [CCHM16] in their quest for computational univalence), and its (novel) dual which we
call Weld. These are an alternative for the operators by [BCM15]. Both Glue and Weld have
some dependencies that are not continuous and that we cannot prove further parametricity
theorems about. This is represented by a third pointwise modality.

We construct Church initial algebras and final co-algebras of indexed functors. We prove
their universal properties (up to universe level issues) internally, which to our knowledge has not
been done before in any type system. These internal proofs have some pointwise dependencies,
indicating that internal parametricity does not apply again to those dependencies.

Annotating (co-)recursive types with a size bound on their elements is a modular way to
enforce termination and productivity of programs. We construct initial algebras and final co-
algebras of a large class of indexed functors using induction on, and parametric quantification
over size bounds. We again prove their universal properties internally.

We implement an extension to the dependently typed language Agda, which type-checks
ParamDTT and thus shows that its computational behaviour is sufficiently well-behaved to
allow for automated type-checking. 2 We expect that ParamDTT minus its equality axioms,
which block computation of the J-rule, satisfies all desired computational properties.

We prove soundness by constructing a presheaf model in terms of iterated reflexive graphs
(more commonly called cubical sets), based on the reflexive graph model by [AGJ14] and
enhancements by [BCM15].

Acknowledgements Andreas Nuyts and Dominique Devriese hold a Ph.D. Fellowship and
a postdoctoral mandate (resp.) from the Research Foundation - Flanders (FWO).

References

[AGJ14] Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of depen-
dent type theory. In Principles of Programming Languages. ACM, 2014.

[BCM15] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of
parametric type theory. FElectr. Notes Theor. Comput. Sci., 319:67-82, 2015.

[CCHM16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical type theory:
a constructive interpretation of the univalence axiom. CoRR, abs/1611.02108, 2016.

[KD] Neelakantan R. Krishnaswami and Derek Dreyer. Internalizing relational parametricity in
the extensional calculus of constructions. In Computer Science Logic (CSL), 2013.

[Tak01] Izumi Takeuti. The theory of parametricity in lambda cube. 2001. Technical report, Kyoto
University.

1 When we make universe levels explicit, we have a type ChList; U; of lists over U; that eliminate to X : U;.
The reader may object that we either cannot write exoticList (¢ > j) or we cannot use that exoticList’s contents
(4 £ j), and hence there is no problem. Such theorem is conceivable, but does not withstand the general issue
that the ability to use type arguments as data, breaks parametricity theorems. E.g. in System F, all elements of
Va.T (where T is closed) are constant by parametricity, but II(X : U).T contains the identity function if T' = U.

2https://github.com/agda/agda/tree/parametric

84

https://github.com/agda/agda/tree/parametric

Axioms for univalence

Tan Orton and Andrew Pitts

Cambridge University
Ian.Orton@cl.cam.ac.uk
Andrew.Pitts@cl.cam.ac.uk

We show that, within Martin-Lof Type Theory, the univalence axiom [4] is equivalent to function
extensionality [4] and axioms (1) to (5) given in Table 1. When constructing a model satisfying
univalence, experience shows that verifying these axioms is often simpler than verifying the full
univalence axiom directly. We show that this is the case for cubical sets [1].

Axiom Premise(s) Equality
(1) unit : A = Y 4l
(2) ftip : DaadupCab = 35>, Cab
(3) contract : isContr A — A =1
(4) wnitp coerce unit a = (a,*)
(5) flipB : coerce flip (a,b,¢) = (b,a,c)

Table 1: (A,B:U,C:A—B—U,a:A, b:Bandc:Cab, for some universe i)

First recall some standard definitions/results in Homotopy Type Theory (HoTT). A type A is
said to be contractible if the type isContr(A) :=3_, 4 [l,.(a0 = a) is inhabited, where = is
propositional equality. It is a standard result that singletons are contractible: for every type
A and element a : A the type sing(a) :=) .. ,(a = x) is contractible. We say that a function
[+ A— Bis an equivalence if for every b : B the fiber fibs(b) :=)", 4(f a = b) is contractible.
Finally, we can define a function coerce : (A = B) — A — B which, given a proof that A = B,
will coerce values of type A into values of type B.

The axioms in Table 1 all follow from the univa-

lence axiom. The converse is also true. The cal- A= Z 1 by (1)
culation on the right shows how to construct an @A

equality between types A and B from an equiva- = Z Z fa=0b by (3)on sing(fa)
lence f : A — B. This proof, and many other a:A b:B

results described in this paper, have been for-
malised in the proof assistant Agda [3]. De-
tails can be found at http://www.cl.cam.ac.
uk/~rio22/agda/axi-univ.

> fa=b by (2)

a:A
1 by (3) on fibs(b)

|
S\

T
o]

The univalence axiom is not simply the ability to by (1)

convert an equivalence into an equality, but also

the fact that this operation itself forms one half of an equivalence. It can be shown (e.g. [2])
that this requirement is satisfied whenever coerce (ua(f,e)) = f for every (f,e) : Equiv A B,
where ua : Equiv A B — A = B is the process outlined above. In order to prove this we use
axioms unitS and flip3. Had we derived unit and flip from univalence, these properties would
both hold. Note that we need no assumption about contract since, in the presence of function
extensionality, all functions between contractible types are propositionally equal.

|
Sy

85

http://www.cl.cam.ac.uk/~rio22/agda/axi-univ
http://www.cl.cam.ac.uk/~rio22/agda/axi-univ

Axioms for Univalence Orton and Pitts

It is easily shown that coerce is compositional, and so we can track the result of coerce at each
stage to see that coercion along the composite equality ua(f,e) gives us the following:

a — (a,%) — (a, fa,refl) — (fa,a refl) — (fa, %) — fa

Experience shows that the first two axioms are simple to verify in many potential models
of univalent type theory. To understand why, it is useful to consider the interpretation of
Equiv A B in a model of intensional type theory. Propositional equality in the type theory is
not interpreted as equality in the model’s metatheory, but rather as a construction on types
e.g. path spaces in models of HoTT. Therefore, writing [X] for the interpretation of a type X,
an equivalence in the type theory will give rise to morphisms f : [A] — [B] and ¢ : [B] — [4]
which are not exact inverses, but rather are inverses modulo the interpretation of propositional
equality, e.g. the existence of a path connecting x and g(fz). However, in many models
the interpretations of A and) ., 1, and of }° , >, sC aband >, 5> . 4C a b will be
isomorphic, i.e. there will be morphisms going back and forth which are inverses up to equality
in the model’s metatheory. This means that we can satisfy unit and flip by proving that this
stronger notion of isomorphism gives rise to a propositional equality between types.

We also assume function extensionality. Every model of univalence must satisfy function ex-
tensionality [4, Section 4.9], but it is often easier to check function extensionality than the full
univalence axiom. This leaves the contract axiom, which captures the homotopical condition
that every contractible space is equivalent to a point. The hope is that the previous axioms
should come almost “for free”, leaving this as the only non-trivial condition to check.

As an example, consider the cubical sets model presented in [1]. In this setting function ex-
tensionality holds trivially [1, Section 3.2]. There is a simple way to construct paths between
strictly isomorphic types I' = A, B in the presheaf semantics by defining a new type P4 p:

Pap(p,i) = {g%g% ii; L 8 (where p € T(I),i € I(I) for I € C)
The action of P4 p on morphisms is inherited from A and B, using the isomorphism where
necessary. P4 p has a composition structure [1, Section 8.2] whenever A and B do, whose
associated coerce function is equal to the isomophism. This construction is related to the use of
a case split on pp = 1in [1, Definition 15]. Finally, given a type I' - A and using the terminology
from [1, Section 4.2], the contract axiom can be satisfied by taking I',i: 1+ contract A i to be
the type of partial elements of A of extent i = 0. The type contract A i has a composition
structure whenever A does. This construction is much simpler than the glueing construction
that is currently used to prove univalence, and perhaps makes it clearer why the closure of
cofibrant propositions under V is required [1, Section 4.1].

References

[1] C. Cohen, T. Coquand, S. Huber, and A. Mortberg. Cubical type theory: a constructive interpre-
tation of the univalence axiom. Preprint, December 2015.

[2] D. R. Licata. Weak univalence with “beta” implies full univalence, homotopy type theory mailing
list, 2016. http://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4DONFQAJ.

[3] U. Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technology, 2007.

[4] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations for Mathe-
matics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

86

http://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
http://homotopytypetheory.org/book

An Effectful Way to Eliminate Addiction to Dependence

P.-M. Pédrot! and N. Tabareau?

1 University of Ljubljana
2 Inria Rennes - Bretagne Atlantique

The gap between dependent type theories such as CIC and mainstream programming lan-
guages comes to a large extend from the absence of effects in type theories, because of its
complex interaction with dependency. For instance, it has already been noticed that inductive
types and dependent elimination do not scale well to CPS translations and classical logic [1, 3].
Furthermore, the traditional way to integrate effects from functional programming using mon-
ads does not scale to dependency because the monad leaks in the type during substitution,
preventing any straightforward adaptation.

To solve this conundrum, we propose Baclofen Type Theory (BTT), a stripped-down version
of CIC, together with a family of syntactic models of BTT that allows for a large range of
effects in dependent type theory, amongst which exceptions, non-termination, non-determinism
or writing operation. By syntactic models, we mean a model directly expressed in a type theory
through a program transformation, as advocated in a previous paper [2].

The key feature of BTT lies in the fact it has a restricted version of dependent elimination
to overcome the difficulty to marry effects and dependency. Essentially, the restriction appears
as a side-condition on the return predicates of dependent pattern-matching, which must be
linear, in the sense of Munch-Maccagnoni [7]. For instance, the elimination rule for booleans is
of the following shape.

'k Ny : P{b:=true}
'M:B ' Ny : P{b:= false} ro:BEP:0O P linear in b
' if M as b return P then N; else No: P{b:= M}

Linearity is a property of functions in an ambient call-by-name language. Intuitively, it captures
the fact that a function is semantically call-by-value, or alternatively, in a more categorical
parlance, that it is an algebra homomorphism. As showed by Levy in a recent paper [5], it is
possible to provide syntactic underapproximations for linearity, so that the above side-condition
can be understood as a guard condition similar to the one used for fixpoint productivity in
practical CIC implementations. This guard condition is totally oblivious of the ambient effect
and does not mention it at all. Furthermore, this restriction is a generalisation of the one we
required for the call-by-name forcing translation [4], which was based on storage operators.
It turns out that, at least in the non-recursive case, storage operators syntactically turn any
predicate into a linear one.

The syntactic models are given by the weaning translation of BTT into CIC, using a
variant of the traditional monadic translation. The need for this variant can be explained
by analyzing the call-by-push-value (CBPV) decomposition of call-by-value and call-by-name
reduction strategies. Indeed, the key observation is that the traditional monadic interpretation
dating back to Moggi [6] is call-by-value whereas type theories such as CIC are fundamentally
call-by-name because they feature an unrestricted conversion rule. Therefore, any effectful
model of CIC ought to factor through a call-by-name decomposition in CBPV.

In fact, the weaning translation is somehow dual to the forcing translation through this
decomposition, in the sense that they respectively trivialize the & and F functors which de-
compose the ambient monad T as an adjunction. Most notably, the weaning translation can

87

An Effectful Way to Eliminate Addiction to Dependence Pédrot and Tabareau

be thought of as a variant of the Eilenberg-Moore construction on steroids, where types are
translated as plain algebras (i.e. without coherence requirement), which can be easily expressed
by the dependent sum

[D]Z'ZZAZDZ'.TA—)A.

But in CIC, universes satisfy a kind of self-enrichment expressed as UJ; : ;1. Thus, to get a
correct interpretation of universes, the monad needs to satisfy the additional requirement that
the type of algebras needs to be itself an algebra of the monad. A monad satisfying this property
is said to be self-algebraic. We then show how very common monads satisfy this property and
thus give rise to effects that can be integrated to BTT. In particular, all free monads are also
self-algebraic.

The exception monad is in particular self-algebraic, which allows us to adapt Friedman’s
A-translation to CIC. We recover the following theorem, which shows that Markov’s rule is
admissible in CIC, a fact which was, to the best of our knowledge, not known.

Theorem 1. IftFcic t: ——A and A is a first-order type, then there exists Fcoic t* @ A.

As a matter of fact, in addition to weaning, BTT is also the source theory of our previ-
ous forcing translation, even though the two translations sit on two extreme points of CBPV
decompositions. This leads us to postulate the following thesis.

BTT models effectful type theories.

As it is the case for other syntactic models [4, 2], it is possible to implement the wean-
ing translation as a Coq plugin, thanks to the fact that it is a program translation preserv-
ing amongst other things conversion. The plugin is available at https://github.com/CoqHott/
cog-effects, and allows to give the impression to the user that she lives in an impure theory
while everything she writes is compiled on the fly to actual Coq terms.

References

[1] G. Barthe and T. Uustalu. Cps translating inductive and coinductive types. In Proceedings of
Partial Evaluation and Semantics-based Program Manipulation, pages 131-142. ACM, 2002.

[2] S. Boulier, P.-M. Pédrot, and N. Tabareau. The next 700 syntactical models of type theory. In
Proceedings of Certified Programs and Proofs, pages 182—194. ACM, 2017.

[3] H. Herbelin. On the degeneracy of sigma-types in presence of computational classical logic. In
P. Urzyczyn, editor, Seventh International Conference, TLCA ’05, Nara, Japan. April 2005, Pro-
ceedings, volume 3461 of Lecture Notes in Computer Science, pages 209-220. Springer, 2005.

[4] G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, and N. Tabareau. The definitional side of the
forcing. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, New York, NY, USA, July 5-8, 2016, pages 367-376, 2016.

[5] P. B. Levy. Contextual isomorphisms. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 400-414, New York, NY, USA, 2017. ACM.

[6] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92, July
1991.

[7] G. Munch-Maccagnoni. Models of a Non-Associative Composition. In A. Muscholl, editor, 17th
International Conference on Foundations of Software Science and Computation Structures, volume
8412, pages 396—-410, Grenoble, France, Apr. 2014. Springer.

88

https://github.com/CoqHott/coq-effects
https://github.com/CoqHott/coq-effects

A Small Basis for Homotopy Type Theory

Felix Rech! and Steven Schéfer!

Saarland University, Saarbriicken, Germany
{rech,schaefer}@ps.uni-saarland.de

Abbott et al. [1] show that nested strictly positive inductive and coinductive types can be
constructed in an extensional Martin-Lof type theory with W-types. We report on a work-
in-progress formalization and extension of these results to Homotopy Type Theory [4]. Our
eventual goal is to simplify the construction of models for type theory, by reducing the problem
of modeling all strictly positive types to the problem of modeling a small set of primitive types.

We work in a subset of the type theory from the HoTT book [4], which contains univalent
universes closed under II-, ¥-; and path-types together with a type of natural numbers and
propositional resizing rules [5]. This is similar to the type theory underlying the UniMath
project [6]. In particular, we do not assume the existence of W-types, but instead construct
them using an impredicative encoding.

Constructing Non-Recursive Types Binary products and function types are special cases
of X- and ITI-types. The construction of binary coproducts and finite types is straightforward.

0:=0=1 1:= Z():n 2:= Zn<2 A—i—B:EZifbthenAelseB.
(n:N) (n:N) (b:2)
We use 0 and 1 to define the less than relation on natural numbers by recursion and the
conditional is syntactic sugar for the recursor on 2. All computation rules hold judgmentally.

Constructing M- and W-Types The constructions of Abbott et al. [1] are based on the
notion of containers and container functors. A container (S > P) is a pair consisting of a type
of shapes S : U and a family of position types P : S — U. The extension of a container is the
functor [S> P]:=MX :U).> (s: S),P(s) = X.

Inductive types can be constructed from the well-founded tree types, or W-types, which are
the homotopy-initial algebras of containers [4]. Similarly, coinductive types can be constructed
from M-Types, the homotopy-final coalgebras of containers. We build on the construction
of M-types in HoTT by Ahrens et al. [2]. For a container (S > P), the construction of
Ahrens et al. yields a type M(,.5)P(s) together with a corecursor corec and destructors label, arg

corec : [[(C:U),(C = [S>P]C) = C — Ms)P(s)
label : M,.5)P(s) = S
arg H(m : Ms.5)P(5)), P(label(m)) — M ,.5)P(s)

with corresponding computation, uniqueness, and coherence laws. In general, we cannot expect
the uniqueness or coherence laws to hold judgmentally. Using propositional resizing, we can
however construct an equivalent type M (’S: S)P(s), the image of the corecursor, for which the

computation rules hold judgmentally®.

M./ P(s) := Z Z Z Z corec(C, s,¢) =m

(m:Ms.5)P(8)) ||[(C:U) (s:C—=[S>P] C) (c:C)

IWhere ||A|| := [](P : Prop), (A — P) — P is the propositional truncation of A.

89

A Small Basis for Homotopy Type Theory Rech and Schafer

We construct W-types as the subtype of well-founded trees of the corresponding M-type.

Wis:s)P(s) := Z isWf(m).
(m:M(s:S) P(S))

Writing M for M(.5)P(s), we define the mere predicate isWf by

iswWf(m) ==] 11 [I Prgm' b)) | = Pm) | = P(m).

(P:M—Prop) \ (m/:M) \ (b:B(label(m’)))

To prove initiality of W(,.s)P(s), we have to show that the type of [S > PJ-algebra ho-
momorphisms from W,.s)P(s) is contractible. We first consider the type of local recursors
LHom(m) for a fixed m : M(,.gyP(s), i.e., the type of [S > P]-algebra homomorphisms restricted
to subtrees of m. For well-founded m, the type LHom(m) is contractible. We then show
that the type of [S > PJ-algebra homomorphisms from W,.s)P(s) is a retract of the type
[I(w: Wis.5)P(s)), LHom(pr,(w)) and thus contractible.

Constructing strictly positive types. For the construction of strictly positive types we
follow Abbott et al. [1]: First, we generalize containers to containers with parameters and then
show that they are closed under constant functors, projections, binary products and coproducts,
exponentiation as well as initial algebras and final coalgebras. Most constructions are without
additional complications, except for the case of u- and v-containers, i.e., initial algebras and
final coalgebras. For u- and v-containers we have to show additional coherence laws, since we
do not have uniqueness of identity proofs.

Coq Development The current state of the formalization is available at https://www.ps.
uni-saarland.de/~rech/containers. We are using the HoTT Library for Coq [3].

Future Work In the future we want to formalize indexed containers and use them to construct
inductive and coinductive families. Furthermore, it might be interesting to consider extensions
of containers to capture at least some higher-inductive types.

References

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing Strictly Positive
Types. Theoretical Computer Science, 342(1):3-27, 2005.

[2] Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in Homotopy Type
Theory. arXiv preprint arXiv:1504.02949, 2015.

[3] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas
Spitters. The HoTT Library: A Formalization of Homotopy Type Theory in Coq. In Proceedings of
the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, pages 164—172.

[4] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[5] Vladimir Voevodsky. Resizing rules. Talk at TYPES2011.

[6] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath: Univalent Mathematics.
Available at https://github.com/UniMath.

90

https://www.ps.uni-saarland.de/~rech/containers
https://www.ps.uni-saarland.de/~rech/containers
https://homotopytypetheory.org/book
https://github.com/UniMath

A Curry-Howard Approach to Church’s Synthesis

Pierre Pradic!’? and Colin Riba!

1 ENS de Lyon, Université de Lyon, LIP*
2 University of Warsaw, Faculty of Mathematics, Informatics and Mechanics

Church’s synthesis consists in the automatic extraction of stream transducers (or finite-
state synchronous functions) from input-output specifications [4] (see also e.g. [8]). This
problem has been solved by Biichi & Landweber [3] and Rabin [5] for specifications writ-
ten in Monadic Second-Order Logic (MSO) on w-words. MSO on w-words is a decidable
theory by Biichi’s Theorem [2]. It subsumes non-trivial logics used in verification such
as LTL.

Given an input-output specifications presented as an MSO-formula of the form
VX3IY p(X;Y), where X = X1,...,X, and Y = Yi,...,Y, are second-order variables
ranging over P(N) ~ 2% the solutions of [3, 5] (see also e.g. [8]) in particular pro-
vide algorithms which decide if there exists a function F' : (2¢)? — (2“)? such that
©(A; F(A)) holds for all A € (2¢)P, and moreover such that F is implementable with a
finite-state stream transducer. (We call this the positive version of Church’s synthesis.)

Traditional approaches to synthesis (see e.g. [8]) suffer some drawbacks which make
them unsuitable to practical implementations, namely, prohibitively high computa-
tional costs and limited compositionality. High complexities seems unavoidable when
dealing with the full generality of MSO, or even LTL (see e.g. [1]). Having a fully com-
positional approach could help to mitigate this problem, in particular to help combining
automatic methods with human intervention.

In this work, we propose a Curry-Howard approach to Church’s synthesis. The
Curry-Howard correspondence asserts that, given a suitable proof system, any proof
therein can be interpreted as a program. Actually, via the Curry-Howard correspon-
dence, the soundness of many type/proof systems is proved by means of realizability,
which establishes how to read a formula from the logic as a specification for a program.

Our starting point is the fact that MSO on w-words can be completely axioma-
tized [6]. From the classical axiomatization of MSO, we derive an intuitionistic system
SMSO equipped with an extraction procedure which is sound and complete w.r.t. the
positive version of Church’s synthesis: proofs of existential statements can be translated
to finite state synchronous realizers, and such proofs exist for all solvable instances of
Church’s synthesis. More precisely, we show the following (where (—)V is a negative
translation).

*UMR 5668 CNRS ENS Lyon UCBL INRIA

91

REFERENCES

Theorem 1. Consider an MSO-formula ¢(X;Y).

(i) From a proof of 3Y ¥ (X;Y) in SMSO, one can extract a finite-state synchronous
realizer of p(X;Y).

(ii) SMSO = 3IY N (X;Y) if (X;Y) admits a (finite-state) synchronous realizer.

The key point in our approach is that on the one hand, finite-state realizers are con-
structively extracted from proofs in SMSO, while on the other hand, their correctness
involves the full power of MSO. So in particular, our adaptation of the usual Ade-
quacy Lemma of realizability does rely on the non-constructive proof of correctness of
deterministic automata obtained by McNaughton’s Theorem (see e.g. [7]), while these
automata do not have to be concretely built during the extraction procedure.

In the course of proving Thm. 1, we provide an alternative way of extracting algo-
rithmically realizers when they exist, thus completely revisiting the positive version of
Church’s synthesis problem. As it stands, we do not improve on the complexity of the
existing algorithms solving the synthesis problem, but we do provide a compositional
understanding of the problem by linking it to a notion of realizability.

In future work, we aim among other things at simplifying the complexity of our
building blocks and at providing counter-strategies witnessing the impossibility of real-
izing a formula. Our outlook is that linear refinements of SMSO, coming from extensions
of its realizability model, should be the suitable setting for these developments.

References

[1] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive (1)
designs. Journal of Computer and System Sciences, 78(3):911-938, 2012.

[2] J. R. Biichi. On a Decision Methond in Restricted Second-Order Arithmetic. In E. Nagel
et al., editor, Logic, Methodology and Philosophy of Science (Proc. 1960 Intern. Congr.),
pages 1-11. Stanford Univ. Press, 1962.

[3] J. R. Biichi and L. H. Landweber. Solving Sequential Conditions by Finite-State Strategies.
Transation of the American Mathematical Society, 138:367-378, 1969.

[4] A. Church. Applications of recursive arithmetic to the problem of circuit synthesis. In
Summaries of the Summer Institute of Symbolic Logic — Volume 1, pages 3-50. Cornell
Univ., Ithaca, N.Y., 1957.

[5] M. O. Rabin. Automata on infinite objects and Church’s Problem. Amer. Math. Soc., 1972.

[6] D. Siefkes. Decidable Theories I : Biichi’s Monadic Second Order Successor Arithmetic,
volume 120 of LNM. Springer, 1970.

[7] W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume II1, pages 389-455. Springer, 1997.

[8] W. Thomas. Solution of Church’s Problem: A Tutorial. New Perspectives on Games and
Interaction, 5:23, 2008.

92

Modelling Bitcoins in Agda

Anton Setzer

Dept. of Computer Science, Swansea University, Swansea, UK
a.g.setzer@swan.ac.uk

Abstract

We present a model of a block chain in Agda. We deal with Cryptographic operations
and their correctness by postulating corresponding operations and their correctness. We
determine correctness of blockchain transactions and show how to translate the blockchain
back into a traditional ledger of a bank.

Since its introduction in November 2008, the market capitalisation of bitcoins has risen to over
18 Billion US-$. Other bitcoins such as Ethereum are following its lead. Cryptocurrencies have
been proposed for introducing smart contracts. In its simplest form the buyer reserves money
for the seller on the blockchain, and the seller only receives it once the seller has signed on
time that she has received the goods. Bitcoins can be considered as the true cloud: whereas in
normal cloud applications, data is stored on one server, and therefore everything relies on that
service, Cryptocurrencies allow to store data on a peer-to-peer network. The block chain can
then be used to certify which data is genuine, and determine the order and times when data
was added.

In this project we use Agda as a modelling language for modelling the block chain. The goal
is to obtain a deeper understanding of how the block chain operates and to prove correctness
of certain aspects of the block chain. This project is the result of a series of third year and
MSc projects supervised by the author at Swansea University. We follow the brown-bag talk
by Warner [1], in which he shows how to obtain the blockchain starting from simple ledger.

In order to avoid having to introduce and verify cryptographic functions in Agda, we axiomatise
those functions and their properties using Agda’s postulates:

postulate Message : Set

postulate PublicKey : Set

postulate checkKey : (m : Message) (p : PublicKey) — Bool
postulate Names : Set

postulate messageToNat : (m : Message) — N

postulate nameToPublicKey : (n : Names) — PublicKey

A message is here supposed to be a message with a signature and containing a value, namely the
amount of bitcoins being represented in this message. checkKey checks whether a message has
been signed by the private key corresponding to the public key of the name, and messageToNat
determines the number contained in a message.

A bitcoin transaction consists of sequence of messages, and public keys, together with a proof
that the messages have been signed by the private keys of the public keys:

data Input : Set where

input : (message : Message) (publicKey : PublicKey)
(cor : IsTrue (checkKey message publicKey)) — Input

93

Modelling Bitcoins in Agda Anton Setzer

similarly one can define outputs of a transaction. A transaction is now given by a list of inputs
and a list of outputs:

data Transaction : Set where
transaction : (input : List Input)(output : List Output) — Transaction

Time and amount of bitcoins are defined as natural numbers and the ledger is a function which
assigns for every time and name the amount amount of bitcoins attributed to that person:

Time =N
Amount = N
Ledger = (¢ : Time)(n : Names) — Amount

We can now express the correctness of a transaction w.r.t. the state of the ledger before it is
executed:

correctSingleTransaction : (oldLedger : Names — Amount)(trans : Transaction) — Set
correctSingleTransaction oldLedger (transaction inputlist outputlist)
= IsTrue (checkKeysInlnput inputlist)
A ((name : Names) —
IsTrue (oldLedger name > sumOflnputs inputlist (nameToPublicKey name)))
A IsTrue (sumOflnputsTotal inputlist > sumOfOutputsTotal outputlist)
A inputPublicKeysAreProper inputlist
A outputPublicKeysAreProper outputlist

We can compute now the ledger after one transaction:

updateSingleTransaction : (oldLedger : Names — Amount)(¢rans : Transaction)
(n : Names) — Amount
updateSingleTransaction oldLedger (transaction inputlist outputlist) n =
oldLedger n - sumOflnputs inputlist (nameToPublicKey n)
+ sumOfOutputs outputlist (nameToPublicKey n)

and can compute from this the complete ledger from a sequence of transactions:

transactionsTolLedger : (initialLedger : Names — Amount)(trans : Time — Transaction)
— Ledger

Modifications are needed in order to deal with mining and fees. We are currently working on

extending this model to adding smart contracts. Modelling simple smart contracts is straight-
forward, the challenge is to introduce a language for more generalised smart contracts.

References

[1] B. Warner. Bitcoin: A technical introdution. Available from
http://www.lothar.com/presentations/bitcoin-brownbag/, July 2011.

94

On Certain Group Structures in Type Theory

Sergei Soloviev

IRIT, University of Toulouse-3,
118, route de Narbonne, 31062, Toulouse, France,
soloviev@irit.fr

The “type theory” below means a system of typed A-calculus. The notion of isomorphism of
types is very abstract and may be defined in a uniform way for all systems under consideration.
One needs only a sort of partial categorical structure: for all types A, B the class of terms that
represent morphisms from A to B (usually one takes the terms ¢ : A — B); for each type A, a
term id 4 that represents identity (usually Az : A.x); a composition o (at least for terms A — B
and B — A); and an equivalence relation = on terms (usually the Sn-eqgivalence). The term ¢
from A to B is an isomorphism iff there exists ¢~ from B to A such that t~' ot = id4 and
tot™! =idp. The types A, B in this case are called isomorphic.

Isomorphisms of types in several largely known type theories such as simply typed A-calculus
ALBn, simply typed A-calculus with surjective pairing and terminal object A\!Anm*, second or-
der polymorphic A-calculus A\?3n and its extension with surjective pairing and terminal object
A2 Bnmx were studied in detail in [2]. Linear isomorphism of types was considered in [4]. Iso-
morphism in A!Bnm* extended with coproduct (disjunction) was considered in [3]. About
isomorphism in dependent type systems, see for example [1, 5].

For a type A in each type theory where a notion of isomorphism is defined as above, one
may define the groupoid Gr(A) whose objects are the types A’ ~ A (all types isomorphic to
A) and whose morphisms are the isomorphisms between such types, and the group Aut(A) of
automorphisms A — A. (The elements of this group are A-terms considered up to = and the
group operation is the composition of A-terms.)

It is, however, not the only group (groupoid) naturally associated with A. Let FV(A) =
{ai,...,a,} be the set of free variables! of the type A and S,, the group of permutations of the
set {1,...,n}. For 0 € S, let o(A) denote the result of substitution [ag(1)/a1, ..., d(n)/an]A.
We consider:

e the group of permutations X(A) C S,, such that Vo € X(A).(c(4) ~ A) (it is obvious
that 3(A) is a group w.r.t. the composition of permutations);

e the groupoid Grg(A) C Gr(A) whose objects are A’ ~ A such that Jo € ¥(A).(A" =
0(A)) and morphisms are the same isomorphisms as in Gr(A) (i.e., it is a full subcategory

of Gr(A);

e other groups that are obtained by combination of isomorphisms and permutations that
respect the isomorphism of types.

Example 1. Let A = (a3 — a2) — (a2 — a3) — (a3 — a1) — ay4. The permutation
(1,2,3)(4) (in cyclic notation) transforms A into o(A4) = (a2 — a3) — (a3 = a1) — (a1 —
az) — a4, where o(A) ~ A because it is at the same time the result of permutation of premises.
In fact, the group X(A) is generated by o. It is isomorphic to the cyclic group Cs. Other per-
mutations, for example o’ = (1,2)(3)(4), do not belong to X(A), that is ¢'(A) is not isomorphic
to A. The group Aut(A) is trivial. The groupoid Gr(A) has 6 objects obtained from A by all

1The difference between free and bound variables in types is relevant for higher order type theories.

95

Group Structures in Type Theory Soloviev

possible permutations of the premises (a1 — a3), (a2 — a3z) and (as — a1). As a consequence,
there exist A’ ~ A such that for any p € S,, A" # p(A).

We study the connections between these algebraic structures. In particular, we obtain the
following results for the simply typed lambda-calculus A'3n and for the second order system
A2pn (see [2]):

Theorem 1. For every finite group G there exists some type A in A8 such that the group
Y (A) is isomorphic to G. It is possible to construct A in such a way, that at the same time
Aut(A) = {idA}.

Theorem 2. Let A be some type in A3y and V.A its universal closure (the type in
the second order calculus A237n). Then the group of automorphisms Aut(V.A) (in A\23n) is
isomorphic to the cartesian product Aut(A) x X(A).

From these two theorems we derive the corollary that:

Corollary. For every finite group G there exists some type A in A'3n such that the group
Aut(V.A) (in A28n) is isomorphic to G.

The proofs use a representation of Cayley colored graphs (known in group theory) by types
in A'Bn and \2pn.

References

[1] Delahaye, D. (1999) Information Retrieval in a Coq Proof Library Using Type Isomorphisms. In
TYPES 1999, Lecture Notes in Computer Science, 1956, 131-147, Springer-Verlag.

[2] Di Cosmo, R. (1995) Isomorphisms of types: from lambda-calculus to information retrieval and
language design. Birkhauser.

[3] Fiore, M. Di Cosmo, R., and Balat, V.(2006) Remarks on isomorphisms in typed lambda calculi
with empty and sum types. Annals of Pure and Applied Logic, 141(1),35-50.

[4] Soloviev, S.V.(1993) A complete axiom system for isomorphism of types in closed categories. In A.
Voronkov, ed., LPAR’93, Lecture Notes in Artificial Intelligence, 698, 360-371, Springer-Verlag.

[5] Soloviev, S. (2015) On Isomorphism of Dependent Products in a Typed Logical Framework. Post-
proceedings of TYPES 2014, LIPICS, 39, 275-288, Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik.

96

Cumulative inductive types in Coq

Amin Timany!, Matthieu Sozeau?, and Bart Jacobs!

! imec-Distrinet, KU Leuven, Belgium, firstname.lastname@cs.kuleuven.be
2 Inria Paris & IRIF, France, matthieu.sozeau@inria.fr

In order to avoid well-know paradoxes associated with self-referential definitions, higher-
order dependent type theories stratify the theory using a countably infinite hierarchy of uni-
verses (also known as sorts), Set = Typeg : Type; : - --. Such type systems are called cumulative
if for any type 17" we have that T : Type; implies T : Type;+1. The predicative calculus of in-
ductive constructions (pCIC) [2, 3] at the basis of the Coq proof assistant, is one such system.

Earlier work [4] on universe-polymorphism in Coq allows constructions to be polymorphic
in universe levels. The quintessential universe-polymorphic construction is the polymorphic
definition of categories: Record Category; ; := {0bj : Types; Hom : Obj — Obj — Typej; ---}.

However, pCIC does not extend the subtyping relation (induced by cumulativity) to induc-
tive types. As aresult there is no subtyping relation between instances of a universe polymorphic
inductive type. That is, for a category C, having both C : Category:; and C: Categoryi j is
only possible if 1 = i’ and j = j’. In previous work Timany et al. [5] extend pCIC to pCulC
(predicative Calculus of Cumulative Inductive Constructions). This is essentially the system
pCIC with a single subtyping rule added to it:?

C-IND
I=(Ind(X : 117 : N. s){IIz7 : M. X mi, ..., 12, : M,. X My })
I'=(Ind(X : 17 : N'. s {7 Z\Z{ X n{’l,...,l—[x_;l : Z\Z;I X ml})
Vi. N <N’y Vi g (My); < (M!); length(i) = length(¥) Vi. X nt; ~ X m)
Im=<I'm

The two terms I and I’ are two inductive definitions (type constructors®) with indexes of types
N and N’ respectively. They are respectively in sorts (universes) s and s’. They each have n
constructors, the i*? constructor being of type Iz} : Mi. X m; and Ilz; :]\ZZ’ . X 17;; for I and
I’ respectively. With this out of the way, the reading of the rule C-Ind is now straightforward.
The type I m is a subtype of the type I’ m if the corresponding parameters of corresponding
constructors in I are sub types of those of I’. In other words, if the terms ¢ can be applied to the
it? constructor of I to construct a term of type I 7 then the same terms ¥ can be applied to the
corresponding constructor of I’ to construct a term of type I’ m. Using the rule C-Ind above
(in the presence of universe polymorphism) we can derive Category; ; =< Category,s ;; whenever
i<i’and j<j.

The category theory library by Timany et al. [6] represents (relative) smallness and large-
ness of categories through universe levels. Smallness and largeness side-conditions for con-
structions are inferred by the kernel of Coq. In loc. cit. the authors prove a well-known
theorem stating that any small and complete category is a preorder category. Coq infers that
this theorem can apply to a category C: Category;; if j < i and thus not to the category
Types@{i} : Category; i1 of types at level i (and functions between them) which is complete
but not small. In a system with the rule C-Ind we have Types@{i} : Categoryy: for i <k,
i+1<1 and 1<k. However, subtyping would not allow for the proof of completeness of

1Records in Coq are syntactic sugar for an inductive type with a single constructor.
2The rule C-Ind is slightly changed here so that it applies to template polymorphism explained below.
3Not to be confused with constructors of inductive types

97

Cumulative inductive types in Coq Timany, Sozeau, Jacobs

Types@{i} to be lifted as required. Intuitively, that would require the category to have limits of
all functors from possibly larger categories.

Template Polymorphism Before the addition of full universe polymorphism to Coq, the
system enjoyed a restricted form of polymorphism for inductive types, which was since coined
template polymorphism. The idea was to give more precise types to applications of inductive
types to their parameters, so that e.g. the inferred type of 1list nat is Typeg instead of Type;
for a global type level i.

- — —
Technically, consider an inductive type I of arity VP, A — s where P are the parameters

—
and A the indices. When the type of the n-th parameter is Type; for some level [and [occurs
in the sort s (and nowhere else), the inductive is made parametric on I. When we infer the type

of an application of I to parameters B, we compute its type as VZ — s[l'/1] where p,, : Typey,
using the actual inferred types of the parameters.

This extension allows to naturally identify list(nat : Set) and list(nat : Type;) by con-
vertibility, whereas with full universe polymorphism when comparing to 1ist@{Set} (nat : Set)
and list@{i} (nat : Type;) with Set < ¢ we would fail as equating ¢ and Set is forbidden. With
our new rule, this conversion will be validated as these two 1ist instances become convertible.
Indeed, convertibility on inductive applications will now be defined as cumulativity in both di-
rections and in this case 1ist@{i} cumulativity imposes no constraint on its universe variable.
This change will allow a complete compatibility with template polymorphism.

Consistency and Strong Normalization The model constructed for pCIC by Lee et al.
[3] is a set theoretic model that for inductive types considers the (fixpoints of the function
generated by) constructors applied to all applicable terms. Therefore, the model readily includes
all elements of the inductive types including those added by the rule C-Ind. Hence it is only
natural to expect (and it is our conjecture that) the same model proves consistency of Coq
when extended with the rule C-Ind. We are investigating using the abstract framework of B.
Barras [1] to prove Strong Normalization with this extension.

Implementation The rule C-Ind above can be implemented in Coq very efficiently. The idea
is that as soon as we define an inductive type, we compare two fresh instances of it (with two
different sets of universe variables) to compute the set of constraints necessary for the subtyping
relation to hold on different instances of that inductive type. Subsequent comparisons during
type checking/inference will use these constraints. It is our plan to implement the rule C-Ind for
the next release of Coq (Coq 8.7) and accordingly remove support for template polymorphism.

References

[1] Bruno Barras. Semantical Investigation in Intuitionistic Set Theory and Type Theoris with Inductive
Families. PhD thesis, University Paris Diderot — Paris 7, 2012. Habilitation thesis.

[2] Coq Development Team. Coq reference manual, 2016. Available at https://coq.inria.fr/doc/.

[3] Gyesik Lee and Benjamin Werner. Proof-irrelevant model of CC with predicative induction and
judgmental equality. Logical Methods in Computer Science, 7(4), 2011.

[4] Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in Coq. In Interactive Theorem
Proving - 5th International Conference, ITP 2014, Proceedings, pages 499-514, 2014.

[5] Amin Timany and Bart Jacobs. First steps towards cumulative inductive types in CIC. In Theo-
retical Aspects of Computing - ICTAC 2015, Proceedings, pages 608-617, 2015.

[6] Amin Timany and Bart Jacobs. Category theory in coq 8.5. In Conference on Formal Structures
for Computation and Deduction, FSCD 2016, Proceedings, pages 30:1-30:18, 2016.

98

https://coq.inria.fr/doc/

Partiality and container monads

Tarmo Uustalu and Niccolo Veltri

Dept. of Software Science, Tallinn University of Technology, Tallinn, Estonia
{tarmo,niccolo}@cs.ioc.ee

In this work, we investigate monads of partiality in Martin-Lof type theory, following Moggi’s
general monad-based method for modelling effectful computations [8]. These monads are often
called lifting monads and appear in category theory with different but related definitions. Here
we revise some of them. -

A classifying monad [7] on category C is a monad T with an operation (—), called restriction,
sending any map f: X — T'Y into f : X — T X, subject to the following conditions (where o
is composition in the Kleisli category of T'):

CM1 fof=F,
CM2 gof=fog,
CM3 gof=gof,
CM4 gof=fogof,
CM5 ny o f =1x,
CM6 idTX :Tnx.

CM1-4 stipulate that the Kleisli category of T is a restriction category; CM5 states that the
left adjoint of the Kleisli adjunction is a restriction functor. CM6 is more technical. Together
with CM5, the condition CM4 implies CM1.

A classifying monad is called effective [7], if, in addition, n is Cartesian, pullbacks along 7x
exist and are preserved by T. Effective classifying monads are the same thing as partial map
classifiers [1].

A strong monad on a category C with finite products, with strength ¢xy : X xTY —
T(X xY), is called commutative, if pxxy © szggj’y oYrxy = pux,y oL Yxy o 1/;§§7"Ty. It is
called an equational lifting monad [4], if, in addition, ¥rx x o Arx = T ((nx X idx) o Ax).
Every equational lifting monad is a classifying monad [7].

A container [I] is given by S : Set and P : S — Set. A container defines a set functor T
by TX =3%s:5 Ps— X. The functor T carries a monad structure iff it comes with certain
extra structure [2], namely

—e: S,

—e:Ils: S (Ps—S8)— S,

—qo:1ls: S Tlv: Ps— S.P(sev) — Ps,

—q1:Is: S Tlv: Ps— S.IIp: P(sew).P(v(gosvp))

subject to a number of equational conditions.

We are interested in the question of when a container monad is a monad of any of the above
types. We constrain the restriction to be f = T'fstoxy o (idx x f) o Ax.

A container monad is a classifying monad iff it is a equational lifting monad iff the following
three conditions hold:

A sel.s' =5 e).s,
B Ps— s=e,
C p=17p' (each P s is a proposition).

99

Partiality and container monads Uustalu and Veltri

In the category of sets, all pullbacks exist and any container functor preserves all of them.
The condition that n is Cartesian is equivalent to

D Pe.

So a container monad is an effective classifying monad iff, in addition to A+B+C, we have D.

Imposed simultaneously, the conditions A, B, C and D are very strong and constrain the
monad very much. But when some of them are dropped, more examples arise.

The terminal monad (T X =g4¢ 1) is given by S =g4¢ 1, P+ =g4¢ 0. These data trivially satisfy
A, B and C, but falsify D.

The maybe monad is given by S =q¢ {ok,err}, Pok =45 1, Perr=g¢ 0, e =4¢ ok, ok ® v =4 v x,
err _ =45 err. These data satisfy all of A, B, C and D.

The exception monad with two exceptions is given by S =g4¢ {ok,errg,erri}, Pok =4¢ 1,
Perr; =4t 0, e=q¢ ok, okev =g¢ v %, err; e _=g¢err;. These data satisfy B, C and D, but falsify A.

For Capretta’s delay monad [5], we have S =4 coN, Pn =g4¢ n}. We can define e =4¢ 0,
0 v =g v0% sucn e v =4¢ suc (n e \(suctp). vp). These data validate A, C and D, but not B.
To modify this example to validate B too, we can quotient S by weak bisimilarity ~ defined
by n ~ n’ =q¢ Pn <> Pn’ resulting in a version of the Sierpinski space [6]. The definitions
of P and e are easily adjusted to this change, but a weak choice principle is needed to adjust
the definition of . A different version of the Sierpinski space can be defined from scratch as a
higher inductive type (so it is by construction the free countably-complete join semilattice on
the unit type) without recourse to the choice principle. The latter is equivalent to the Sierpinski
space introduced by Altenkirch et al. using higher inductive-inductive types [3].

Acknowledgement We are thankful to Thorsten Altenkirch and Martin Escardé for discus-
sions and valuable hints. This research was supported by Estonian Ministry of Education and
Research institutional research grant IUT33-13.

References

[1] M. Abbott, T. Altenkirch, N. Ghani. Containers: Constructing strictly positive types. Theor. Com-
put. Sci., v. 342, n. 1, pp. 3-27, 2005.

[2] D. Ahman, J. Chapman, T. Uustalu. When is a container a comonad? Log. Methods in Comput.
Sci., v. 10, n. 3, article 14, 2014.

[3] T. Altenkirch, N. A. Danielsson, N. Kraus. Partiality, revisited: The partiality monad as a quotient
inductive-inductive type. In J. Esparza, A. Murawski, eds., Proc. of 20th Int. Conf. on Foundations
of Software Science and Computation Structures, FoSSaCS 2017, v. 10203 of Lect. Notes in Comput.
Sci., pp. 534-549. Springer, 2017.

[4] A. Bucalo, C. Fithrmann, A. Simpson. An equational notion of lifting monad. Theor. Comput. Sci.,
294(1-2), 31-60, 2003.

[6] V. Capretta. General recursion via coinductive types. Log. Meth. in Comput. Sci., v. 1, n. 2, article
1, 2005.

[6] J. Chapman, T. Uustalu, N. Veltri. Quotienting the delay monad by weak bisimilarity. In
M. Leucker, C. Rueda, F. D. Valencia, eds., Proc. of 12th Int. Coll. on Theoretical Aspects of
Computing, ICTAC 2015, v. 9399 of Lect. Notes in Comput. Sci., pp. 110-125. Springer, 2015.

[7] J. R. B Cockett, S. Lack. Restriction categories II: partial map classification. Theor. Comput. Sci.,
294(1-2), 61-102, 2003.

[8] E. Moggi. Notions of computation and monads. Inf. and Comput., 93(1), 55-92, 1991.

100

Expressive and Strongly Type-Safe Code Generation

Thomas Winant, Jesper Cockx, and Dominique Devriese

imec-DistriNet, KU Leuven
firstname.lastname@cs.kuleuven.be

Meta-programs are useful to avoid writing boilerplate code, for polytypic programming, etc.
However, when a meta-program passes the type checker, it does not necessarily mean that the
programs it generates will be free of type errors, only that generating object programs will
proceed without type errors. For instance, this well-typed Template Haskell [5] meta-program
generates the ill-typed object program not ’X’.

notX :: @ Fxp
notX = [| not *X’ |]

Fortunately, Template Haskell will type-check the generated program after generation, and
detect the type error. We call such meta-programming systems weakly type-safe. Even though
weakly type-safe meta-programming suffices for guaranteeing that the resulting program is
type-safe, it has important downsides. Type errors in the generated code are presented to the
application developer, who may simply be a user of the meta-program. If the meta-program
is part of a library, the developer has little recourse other than contacting the meta-program
authors about the bug in their code. Moreover, composing weakly type-safe meta-programs can
be brittle because the type of generated programs is not specified in a machine-checked way.

We are interested in what we call strongly type-safe meta-programming, which offers a
stronger guarantee: when a meta-program is strongly type-safe, all generated programs are
guaranteed to be type-safe too. As such, bugs in meta-programs are detected as early as
possible. In fact, all arguments in favour of static typing can be made.

Existing strongly type-safe meta-programming systems like MetaML [6], Typed Template
Haskell [3], and Scala’s reflection API [1] offer this guarantee by providing typed quotations,
i.e. quotations that are type-checked at meta-program compile-time. For example, when the
faulty meta-program is rewritten using a typed quotation, the bug is detected at meta-program
compile time.

notX :: Q (TEzp Bool)
notX = [|| not X’ ||]

Unfortunately, to offer this guarantee, these and other systems compromise on expressiveness [6,
2, 4]. In particular, while typed object expressions can be constructed using typed quotations,
their types and typing contexts cannot. These are severe restrictions that make it impossible to
develop strongly type-safe variants of many common weakly type-safe meta-programs.

A real world example that suffers from this restriction is the generation of lenses [7] for a
record data-type. Such a meta-program is not expressible using state-of-the-art strongly type-
safe meta-programming systems. To illustrate this restriction, consider a simplified sketch of
what the Typed Template Haskell variant of deriveLenses would look like:

deriveLenses adt = map (Afield — deriveLens adt field) (fields adt)

deriveLens :: ADT — Field — Q (TEzp (Lens 7 7))
deriveLens adt field = ...

The question marks should be replaced with the type of the record data type and the type of
the field. Clearly, the type of the generated lens depends on the types of the record data type’s

101

Expressive and Strongly Type-Safe Code Generation Winant, Cockx and Devriese

fields, which are only available at the value level in the meta-program. If Haskell had dependent
types, one could write this signature:

deriveLens :: (adt :: ADT) — (f :: Field adt) — Q (TEzp (LensType adt f))

Where LensType is a type-level function that calculates the type of the lens. Such a syntactic
construction of the type of an object program is fundamentally impossible in Typed Template
Haskell and other MetaML-like systems. Deeper inside the implementation of deriveLens, it
gets worse as the types of generated expressions depend in more complex ways on the values adt
and f, and they are also constructed in contexts that depend on them. The underlying reason
for this limited expressiveness is that the meta-level type system of these systems is not powerful
enough to express the naturally dependent types of many strongly type-safe meta-programs.

We propose a new design that delivers strong type-safety without compromising on expres-
siveness. Our first key design choice is to represent object programs by an inductive type family
in an off-the-shelf dependently-typed language (Agda). This type family is indexed by the type
of the program, and its type and variable contexts. Each of its constructors encodes one lan-
guage construct, including its corresponding typing rule. Using this encoding, meta-programs
construct object programs that are correct by construction. This approach is standard in de-
pendently typed languages, yet it isn’t commonly used by existing meta-programming systems.

Our second key design choice is to use a small explicitly-typed core language as the object
language (in our case GHC Core), instead of the full surface language (which would be Haskell).
This choice is based on the observation that surface languages are designed for programmers,
not meta-programs. Their complex syntax, typing rules, type inference, and tendency to change
make them ill-suited as object languages. In contrast, a core language such as GHC Core is
designed to be used by the compiler. As a consequence, it is typically well-studied, small,
explicitly typed, relatively stable, and has a full formal description, while remaining relatively
close to the surface language. Using a core language instead of the full surface language is not
an academic simplification, but a feature of our approach: it is a central design choice that we
believe is essential to make our approach realistic to implement and use.

Our approach to strongly type-safe metaprogramming is based on existing technology (an
off-the-shelf dependently-typed language and a standard encoding of the object language) but
applies it in a new way. We have implemented is as a proof of concept for Haskell. Using our
implementation, we developed strongly type-safe variants of existing real-world meta-programs:
deriving lenses and deriving the Eq type class. In a fair comparison with the original meta-
programs, our meta-programs count roughly the same number of SLOC. This shows that our
approach is practical as well as simple, expressive, and strongly type-safe.

References [4] Geoffrey Mainland. Explicitly heterogeneous
metaprogramming with MetaHaskell. In
[1] Eugene Burmako. Unification of Compile- ICFP. ACM, 2012.
Time and Runtime Metaprogramming in Scala.
PhD thesis, EPFL, 2017. [5] Tim Sheard and Simon Peyton Jones. Tem-
) o plate meta-programming for Haskell. SIG-
(2] Chiyan Chen and Hongwei Xi. Meta- PLAN Not., 37(12), December 2002.
programming through typeful code represen-
tation. In ICFP. ACM, 2003. [6] Walid Taha and Tim Sheard. Multi-stage
programming with explicit annotations. SIG-
[3] Geoffrey Mainland. Type-safe runtime code PLAN Not., 32(12), December 1997.
generation with (Typed) Template Haskell.
https://www.cs.drexel .edu/~mainland/ [7] Twan van Laarhoven. CPS based functional

2013/05/31/type-safe-runtime-code- references. http://twanvl.nl/blog/haskell/

generation-with-typed-template-haskell/. cps-functional-references, 2009.

102

https://www.cs.drexel.edu/~mainland/2013/05/31/type-safe-runtime-code-generation-with-typed-template-haskell/
https://www.cs.drexel.edu/~mainland/2013/05/31/type-safe-runtime-code-generation-with-typed-template-haskell/
https://www.cs.drexel.edu/~mainland/2013/05/31/type-safe-runtime-code-generation-with-typed-template-haskell/
http://twanvl.nl/blog/haskell/cps-functional-references
http://twanvl.nl/blog/haskell/cps-functional-references

Parallelization of Software Verification Tool LAV

Branislava Zivkovi¢ and Milena Vujosevi¢ Janici¢

Faculty of Mathematics, University of Belgrade, Serbia
{branislavaz | milena} @ matf.bg.ac.rs

Automated software verification, based on model checking is powerful, but typically very
time and memory consuming. The two most demanding steps are (i) constructing a formula
representing program executions and correctness conditions of these executions, and (ii) check-
ing validity of generated formula by an automated theorem prover. One way to speed this
process up is to use parallelization techniques which take advantage of the underlying hardware
architecture: computer systems nowadays have several cores. The dominating approach is to
parallelize the algorithm used by theorem prover, for example paralellization of SMT solving [2]
or parallelization of state exploration in model checking [8, 3]. However, for complex programs,
already constructing the formula representing correctness conditions may be very demanding.

We present our ongoing work on parallelization of software verification tool LAV [6]. LAV
is an open-source tool (implemented in C++ and publicly available!) for statically verifying
program assertions and detecting bugs such as buffer overflows, pointer errors and division
by zero. LAV uses the popular LLVM infrastructure and combines bounded model checking,
symbolic execution, and SAT encoding of program’s control-flow to construct correctness con-
ditions in form of first order logical formulae [5], which are then checked by an external SMT
solver. LAV was successfully applied on different benchmarks [6] and also used in automated
evaluation of students’ programs [7]. More about overall LAV architecture can be found in
literature [6, 5]. LAV can generate a separate correctness condition for each potentially un-
safe command or assertion. This makes LAV suitable for experimenting with different kinds of
parallelizations. So far, we implemented parallel verification of different functions and parallel
checking of correctness conditions within one block of code.

For testing scalability of these parallelizations, we constructed a custom corpus consisting
of five different sets with 2020 programs in total (in programming language C).? First four sets,
named as Sy, Sz, S3, and Sy, contain 500 of programs each, and neither one of them contains
bugs (so it is necessary to search over all feasible states). In each set, the programs have the
increasing number of functions and the increasing number of commands inside each function,
yielding levels of complexity denoted from 1 to 10. In each function there is one command that
should be checked for a division by zero bug. In sets S; and S5 there is one level of function
calls (the function main calls all these functions), while in sets S5 and Sy each function calls
another function (of a similar structure and complexity). In sets S; and S3 the division is
not depending on calculations performed in previous commands, while in sets So and Sy this
division depends on calculations performed in previous commands (making it more difficult to
reason about). The fifth set of programs contains 20 programs which all contain a division by
zero bug and differ by the number of commands.

We ran the experiments on a cluster computer with 48 cores and 94GiB of memory, running
Ubuntu 16.04. We used the LAV tool, and also the model checker CBMC [4] version 5.5.
The time out was set to 400 seconds. The experimental results for the described four sets are
shown in Figure 1. The results show that CBMC verification times-out in the third and the
fourth set when the programs reach the level of complexity 7. In these cases, CBMC timed-
out already at the level of constructing a formula (it did not get to calling the solver). LAV

Thttp://argo.matf.bg.ac.rs/?content=lav
2The corpus and the scripts used for the experiments are available from the LAV page.

103

http://argo.matf.bg.ac.rs/?content=lav

Parallelization of Software Verification Tool LAV Branislava Zivkovié¢, Milena Vujosevi¢ Janicié

lavl_par
lav10_par
—lavl_seq
lavé_seq
cbmel
---------------- cbme10

lav1_par
lav10_par

lavi_seq 100
A lavi0_seq
s cbmel o
01 / e COMEI0 50

R R I JE I SRCI N R I 20 I I S S

Number of functions Number of functions

Time in seconds

Time in seconds

lav1_par

lavl_par
lav10_par
lavl_seq
lavs_seq
cbmel

Time in seconds.
Time in seconds

YEAN D QDD R D DR YRAL R e R D DR

Number of functions. Number of functions.

Figure 1: Experimental results comparing CBMC and LAV on four different sets of programs
(set S1: left-top, set Sy: right-top, set Ss: left-bottom, set S4: right-bottom).

without parallelization times out at set So at the level 7 and at the set Sy at the level 6. On
the other hand, LAV with parallelization successfully handled all the programs. In the fifth
corpus, CBMC timed-out at the program with 28 commands, while parallelization within LAV
kept the time below one second even for programs that are double in size. Namely, the formula
was divided into different threads and in one of these threads solver easily finds the bug.

The presented experimental evaluation shows that parallelization may scale well in cases
where classical model checking times out, so there is a lot of room for making improvements
in this context. Our future work is to broaden the set of usable parallelizations, and to make
experiments on wider corpus, for example to evaluate it on SV-COMP benchmark [1]. We are
also planning to formally describe and analyze the parallelization techniques that we used.

Acknowledgements This work was partially supported by the Serbian Ministry of Science
grant 174021 and by COST action CA15123.

References

[1] Competition on Software Verification, 2017. on-line at: https://sv-comp.sosy-lab.org/2017/.
[2] M. Bankovié. Parallelizing simplex within smt solvers. Artificial Intellig. Review, pages 1-30, 2016.

[3] J. Barnat, L. Brim, and P. Rockai. Scalable Multi-core LTL Model-Checking, pages 187-203.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[4] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 168-176. Springer, 2004.

[5] M. Vujosevié¢ Jani¢ié¢. Modelling Program Behaviour within Software Verification Tool LAV. In
Type Theory Based Tools, 2017.

[6] M. Vujosevié¢ Janic¢i¢ and V. Kuncak. Development and Evaluation of LAV: An SMT-Based Error
Finding Platform. In VSTTE, LNCS, 2012.

[7] M. Vujosevié Janici¢, M. Nikoli¢, D. Tosi¢, and V. Kuncak. Software verification and graph similarity
for automated evaluation of students assignments. Information and Softw. Technology, 55(6), 2013.

[8] A. W. Laarman. Scalable multi-core model checking. PhD thesis, Centre for Telematics and Infor-
mation Technology, University of Twente, 2014.

104

https://sv-comp.sosy-lab.org/2017/

Author Index

A

Abel, Andreas 4
Adams, Robin 6
Ahrens, Benedikt 8
Ali, Assaf 53
Allais, Guillaume 10
Altenkirch, Thorsten 12, 14, 16, 18, 20
Aman, Bogdan 22
B

Baelde, David 24
Bahr, Patrick 26
Balabonski, Thibaut 28
Bauer, Andrej 31
Bizjak, Ales 33
Blot, Valentin 35
Brady, Edwin 1
Brunerie, Guillaume 37
Bugge Grathwohl, Hans 26
Béarenz, Manuel 39
C

Capriotti, Paolo 14, 16, 41
Ciobaca, Stefan 43
Ciobanu, Gabriel 22
Cockx, Jesper 101
Coquand, Thierry 14, 45
Cruz-Filipe, Luis 47
D

Danielsson, Nils Anders 14, 49
Devriese, Dominique 83, 101
Divianszky, Péter 69
Doumane, Amina 24
Dowek, Gilles 51, 53
Dudenhefner, Andrej 55
E

Espirito Santo, Jose 57
Espirito Santo, José 59
F

Ferreira, Francisco 61
G

Gaboardi, Marco 28
Ghani, Neil 63

Ghilezan, Silvia 57

Gilbert, Frederic

H

Haselwarter, Philipp G.
Huber, Simon

I

Igried, Bashar

J

Jaber, Guilhem
Jacobs, Bart
Jouannaud, Jean-Pierre
K

Kaposi, Ambrus
Kavvos, G. A.

Kelller, Chantal
Kesner, Delia

Kovécs, Andras

Kraus, Nicolai
Kémiives, Balazs

L

Lepigre, Rodolphe
Liquori, Luigi

Liu, Jiaxiang

Lungu, Georgiana Elena
Luo, Zhaohui

Lépez Juan, Victor

M

Mannaa, Bassel
Marques-Silva, Joao
Matthes, Ralph
McBride, Conor
Mortberg, Anders
Mggelberg, Rasmus Ejlers
N

Naumowicz, Adam
Negri, Sara

Nordvall Forsberg, Fredrik
Nuyts, Andreas

(0}

Orton, Ian

P

Pientka, Brigitte

Pinto, Luis

Pinyo, Gun

Pitts, Andrew
Polonsky, Andrew

18,

18,

26,

65

31
14

67

24
97
53

69
71
28
73
69
14
69

75
7
53
79
79
49

45
47
99
63

33

81

63
83

85

61
59
20
85

Pradic, Pierre
Pédrot, Pierre-Marie
R

Rech, Felix

Rehof, Jakob

Reus, Bernhard
Riba, Colin

Ruch, Fabian

S

Saurin, Alexis
Schneider-Kamp, Peter
Schafer, Steven
Setzer, Anton
Seufert, Sebastian
Soloviev, Sergei
Sozeau, Matthieu
Spahn, Stephan
Stolze, Claude

T

Tabareau, Nicolas
Thibodeau, David
Timany, Amin
Tudose, Vlad Andrei
U

Uustalu, Tarmo

v

Valiron, Benoit
Veltri, Niccolo
Vezzosi, Andrea
Vial, Pierre

Vujosevic Janicic, Milena

)%

Winant, Thomas
Winterhalter, Théo
Z

Zivkovié¢, Branislava

91
87

89

16
91
45

24
47
89
67, 93
39
95
97
63
77

87
61
97
43

99

28
99
4, 83
73
103

101
4, 31

103

	Motivation for bouncing threads
	The purely multiplicative case
	Accommodating the additives
	Introduction
	Clocked Type Theory
	Results
	Inferring Typing Rules
	Discussion
	Introduction
	Defining Trace Semantics for CSP-Agda
	Introduction
	Coping with intensionality
	Enter types
	Intensional Recursion and Löb's rule
	Intensional PCF

	Categorical Semantics
	Introduction
	Clustering
	Final Remarks

