The Internet of Things refers (IoT) to the billions of physical devices around the globe that are... more The Internet of Things refers (IoT) to the billions of physical devices around the globe that are connected to the Internet, collecting and sharing data. The overall Internet of Things market is projected to be worth more than 50.6 billion U.S. dollars in 2020. IoT devices possess low processing capabilities, limited memory, limited storage, and minimal network protocol support. With the help of cloud computing technology, we can overcome the limited resources of IoT devices. A lot of research has been conducted on IoT device virtualization to facilitate remote access and control. The concept of virtualization in IoT is to provide a virtual representation of physical devices in the form of virtual objects. IoT devices are more likely to be accessed and communicate through virtual objects in the near future. In this paper, we present the design and implementation of building a virtual IoT network for a smart home. The virtual network is based on virtual objects and IoT controller. We derived the concept from Software Defined Network (SDN) and separated the control plane and data plane in the virtual IoT network. This enhanced the rapid development of diverse applications on top of the virtualization layer by establishing a dynamic end-to-end connection between IoT devices. This article briefly explains the design and development of the virtual network. Results achieved during experiments and performance analysis show that IoT controller enhances the capabilities of a virtual network by dynamically controlling the traffic congestion, handling mapping requests, and routing mechanisms.
Internet of Things (IoT) is considered one of the future disruptive technologies and has attracte... more Internet of Things (IoT) is considered one of the future disruptive technologies and has attracted lots of research attention in the recent past. IoT devices are tiny sensing or actuating devices attached to daily life objects, capable of sending sensing data and receiving commands. Cloud computing technology provides tremendous computing and storage capacity over the Internet to overcome limited resources of IoT devices. Many studies are conducted on IoT device virtualization in the cloud environment to facilitate remote access and control. In the future, IoT devices will be accessed through its corresponding virtual objects. Just like the network of physical devices, there needs to be a network of virtual objects in the cyber world. In this paper, we present a concept of building a dynamic virtual network in the cloud environment among connected IoT devices. The key idea is to provide a mechanism for building a virtual network among connected IoT devices from different domains through their corresponding virtual objects in the cloud environment. This will facilitate the sharing of resources and the rapid development of diverse applications on top of the virtualization layer by establishing a dynamic end-to-end connection between IoT devices. In this study, we present a detailed design of the proposed system for building a virtual IoT network. We have also implemented three application layers protocols in OMNET++ for simulation of a virtual objects network to conduct performance analysis of the proposed IoT network virtualization.
Recently, the World Economic Forum (WEF) highlighted mission-critical Internet of Things (MC-IoT)... more Recently, the World Economic Forum (WEF) highlighted mission-critical Internet of Things (MC-IoT) applications as one of the six enablers of sustainable development of smart cities. MC-IoT refers to systems which exacerbate properties like availability, reliability, safety, and security in an application environment of heterogeneously connected physical things and virtual things whose failure could lead to severe consequences such as life loss. The sole characteristic of the mission-critical system is its compliance with real-time behavior. As a result of the critical nature of these systems, it is essential to design the system with sufficient clarity so that none of the requirements is misinterpreted. For this, the involvement of non-technical stakeholders and policymakers is crucial. Previous studies on mission-critical structures mainly focus on the communication overheads, and overlook the design and planning of them. Therefore, in this paper, we present an architecture which enables mission planning on a do-it-yourself plane. We present a task-object mapping and deployment model where different tasks are mapped onto virtual objects and deployed on physical hardware in a task-object pair. The system uses semantic knowledge for autonomous task mapping and suggestions to further aid the orchestration of the process. The tasks are autonomously mapped onto the devices based on the correlation index; this is computed based on the attribute similarities, thus making the system flexible. The performance of the proposed architecture is evaluated with different key performance indicators under different load conditions and the response time is found to be under a few seconds even at peak load conditions.
An internet of things (IoT) platform is a multi-layer technology that enables automation of conne... more An internet of things (IoT) platform is a multi-layer technology that enables automation of connected devices within IoT. IoT platforms serve as a middle-ware solution and act as supporting software that is able to connect different hardware devices, access points, and networks to other parts of the value chain. Virtual objects have become a vital component in every IoT platform. Virtual objects are the digital representation of a physical entity. In this paper, we design and implement a cloud-centric IoT platform that serves a purpose for registration and initialization of virtual objects so that technology tinkerers can consume them via the IoT marketplace and integrate them to build IoT applications. The proposed IoT platform differs from existing IoT platforms in the sense that they provide hardware and software services on the same platform that users can plug and play. The proposed IoT platform is separate from the IoT marketplace where users can consume virtual objects to build IoT applications. Experiments are conducted for IoT platform and interworking IoT marketplace based on virtual objects in CoT. The proposed IoT platform provides a user-friendly interface and is secure and reliable. An IoT testbed is developed and a case study is performed for a domestic environment to reuse virtual objects on the IoT marketplace. It also provides the discovery and sharing of virtual objects. IoT devices can be monitored and controlled via virtual objects. We have conducted a comparative analysis of the proposed IoT platform with FIWARE. Results conclude that the proposed system performs marginally better than FIWARE.
Nowadays researchers and engineers are trying to build travel route recommendation systems to gui... more Nowadays researchers and engineers are trying to build travel route recommendation systems to guide tourists around the globe. The tourism industry is on the rise and it has attracted researchers to provide such systems for comfortable and convenient traveling. Mobile internet growth is increasing rapidly. Mobile data usage and traffic growth has increased interest in building mobile applications for tourists. This research paper aims to provide design and implementation of a travel route recommendation system based on user preference. Real-time big data is collected from Wi-Fi routers installed at more than 149 unique locations in Jeju Island, South Korea. This dataset includes tourist movement patterns collected from thousands of mobile tourists in the year 2016-2017. Data collection and analysis is necessary for a country to make public policies and development of the global travel and tourism industry. In this research paper we propose an optimal travel route recommendation system by performing statistical analysis of tourist movement patterns. Route recommendation is based on user preferences. User preference can vary over time and differ from one user to another. We have taken three main factors into consideration to the recommend optimal route i.e., time, distance, and popularity of location. Beside these factors, we have also considered weather and traffic condition using a third-party application program interfaces (APIs). We have classified regions into six major categories. Popularity of location can vary from season to season. We used a Naïve Bayes classifier to find the probability of tourists going to visit next location. Third-party APIs are used to find the longitude and latitude of the location. The Haversine formula is used to calculate the distance between unique locations. On the basis of these factors, we recommend the optimal route for tourists. The proposed system is highly responsive to mobile users. The results of this system show that the recommended route is convenient and allows tourists to visit maximum number of famous locations as compared to previous data.
The Internet of Things refers (IoT) to the billions of physical devices around the globe that are... more The Internet of Things refers (IoT) to the billions of physical devices around the globe that are connected to the Internet, collecting and sharing data. The overall Internet of Things market is projected to be worth more than 50.6 billion U.S. dollars in 2020. IoT devices possess low processing capabilities, limited memory, limited storage, and minimal network protocol support. With the help of cloud computing technology, we can overcome the limited resources of IoT devices. A lot of research has been conducted on IoT device virtualization to facilitate remote access and control. The concept of virtualization in IoT is to provide a virtual representation of physical devices in the form of virtual objects. IoT devices are more likely to be accessed and communicate through virtual objects in the near future. In this paper, we present the design and implementation of building a virtual IoT network for a smart home. The virtual network is based on virtual objects and IoT controller. We derived the concept from Software Defined Network (SDN) and separated the control plane and data plane in the virtual IoT network. This enhanced the rapid development of diverse applications on top of the virtualization layer by establishing a dynamic end-to-end connection between IoT devices. This article briefly explains the design and development of the virtual network. Results achieved during experiments and performance analysis show that IoT controller enhances the capabilities of a virtual network by dynamically controlling the traffic congestion, handling mapping requests, and routing mechanisms.
Internet of Things (IoT) is considered one of the future disruptive technologies and has attracte... more Internet of Things (IoT) is considered one of the future disruptive technologies and has attracted lots of research attention in the recent past. IoT devices are tiny sensing or actuating devices attached to daily life objects, capable of sending sensing data and receiving commands. Cloud computing technology provides tremendous computing and storage capacity over the Internet to overcome limited resources of IoT devices. Many studies are conducted on IoT device virtualization in the cloud environment to facilitate remote access and control. In the future, IoT devices will be accessed through its corresponding virtual objects. Just like the network of physical devices, there needs to be a network of virtual objects in the cyber world. In this paper, we present a concept of building a dynamic virtual network in the cloud environment among connected IoT devices. The key idea is to provide a mechanism for building a virtual network among connected IoT devices from different domains through their corresponding virtual objects in the cloud environment. This will facilitate the sharing of resources and the rapid development of diverse applications on top of the virtualization layer by establishing a dynamic end-to-end connection between IoT devices. In this study, we present a detailed design of the proposed system for building a virtual IoT network. We have also implemented three application layers protocols in OMNET++ for simulation of a virtual objects network to conduct performance analysis of the proposed IoT network virtualization.
Recently, the World Economic Forum (WEF) highlighted mission-critical Internet of Things (MC-IoT)... more Recently, the World Economic Forum (WEF) highlighted mission-critical Internet of Things (MC-IoT) applications as one of the six enablers of sustainable development of smart cities. MC-IoT refers to systems which exacerbate properties like availability, reliability, safety, and security in an application environment of heterogeneously connected physical things and virtual things whose failure could lead to severe consequences such as life loss. The sole characteristic of the mission-critical system is its compliance with real-time behavior. As a result of the critical nature of these systems, it is essential to design the system with sufficient clarity so that none of the requirements is misinterpreted. For this, the involvement of non-technical stakeholders and policymakers is crucial. Previous studies on mission-critical structures mainly focus on the communication overheads, and overlook the design and planning of them. Therefore, in this paper, we present an architecture which enables mission planning on a do-it-yourself plane. We present a task-object mapping and deployment model where different tasks are mapped onto virtual objects and deployed on physical hardware in a task-object pair. The system uses semantic knowledge for autonomous task mapping and suggestions to further aid the orchestration of the process. The tasks are autonomously mapped onto the devices based on the correlation index; this is computed based on the attribute similarities, thus making the system flexible. The performance of the proposed architecture is evaluated with different key performance indicators under different load conditions and the response time is found to be under a few seconds even at peak load conditions.
An internet of things (IoT) platform is a multi-layer technology that enables automation of conne... more An internet of things (IoT) platform is a multi-layer technology that enables automation of connected devices within IoT. IoT platforms serve as a middle-ware solution and act as supporting software that is able to connect different hardware devices, access points, and networks to other parts of the value chain. Virtual objects have become a vital component in every IoT platform. Virtual objects are the digital representation of a physical entity. In this paper, we design and implement a cloud-centric IoT platform that serves a purpose for registration and initialization of virtual objects so that technology tinkerers can consume them via the IoT marketplace and integrate them to build IoT applications. The proposed IoT platform differs from existing IoT platforms in the sense that they provide hardware and software services on the same platform that users can plug and play. The proposed IoT platform is separate from the IoT marketplace where users can consume virtual objects to build IoT applications. Experiments are conducted for IoT platform and interworking IoT marketplace based on virtual objects in CoT. The proposed IoT platform provides a user-friendly interface and is secure and reliable. An IoT testbed is developed and a case study is performed for a domestic environment to reuse virtual objects on the IoT marketplace. It also provides the discovery and sharing of virtual objects. IoT devices can be monitored and controlled via virtual objects. We have conducted a comparative analysis of the proposed IoT platform with FIWARE. Results conclude that the proposed system performs marginally better than FIWARE.
Nowadays researchers and engineers are trying to build travel route recommendation systems to gui... more Nowadays researchers and engineers are trying to build travel route recommendation systems to guide tourists around the globe. The tourism industry is on the rise and it has attracted researchers to provide such systems for comfortable and convenient traveling. Mobile internet growth is increasing rapidly. Mobile data usage and traffic growth has increased interest in building mobile applications for tourists. This research paper aims to provide design and implementation of a travel route recommendation system based on user preference. Real-time big data is collected from Wi-Fi routers installed at more than 149 unique locations in Jeju Island, South Korea. This dataset includes tourist movement patterns collected from thousands of mobile tourists in the year 2016-2017. Data collection and analysis is necessary for a country to make public policies and development of the global travel and tourism industry. In this research paper we propose an optimal travel route recommendation system by performing statistical analysis of tourist movement patterns. Route recommendation is based on user preferences. User preference can vary over time and differ from one user to another. We have taken three main factors into consideration to the recommend optimal route i.e., time, distance, and popularity of location. Beside these factors, we have also considered weather and traffic condition using a third-party application program interfaces (APIs). We have classified regions into six major categories. Popularity of location can vary from season to season. We used a Naïve Bayes classifier to find the probability of tourists going to visit next location. Third-party APIs are used to find the longitude and latitude of the location. The Haversine formula is used to calculate the distance between unique locations. On the basis of these factors, we recommend the optimal route for tourists. The proposed system is highly responsive to mobile users. The results of this system show that the recommended route is convenient and allows tourists to visit maximum number of famous locations as compared to previous data.
Uploads
Papers by Faisal Mehmood