Exercise is a uniquely effective and pluripotent medicine against several noncommunicable disease... more Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Consequently, HIT is being promoted as a more time-efficient and practical approach to optimize health thereby reducing the burden of disease associated with physical inactivity. However, no studies to date have examined the impact of HIT on the cerebrovasculature and corresponding implications for cognitive function. This review critiques the implications of HIT for cerebrovascular function, with a focus on the mechanisms and translational impact for patient health and well-being. It also introduc...
National Research Center on the Gifted and Talented, 2004
ED505476 - Evaluation, Placement, and Progression: Three Sites of Concern for Student Achievement... more ED505476 - Evaluation, Placement, and Progression: Three Sites of Concern for Student Achievement. Research Monograph Series. RM04192.
Loop gain is an engineering term that predicts the stability of a feedback control system, such a... more Loop gain is an engineering term that predicts the stability of a feedback control system, such as the control of breathing. Based on earlier studies at lower altitudes, it was hypothesized that acclimatization to high altitude would lead to a reduction in loop gain and thus central sleep apnoea (CSA) severity. This study used exposure to very high altitude to induce CSA in healthy subjects to investigate the effect of partial acclimatization on loop gain and CSA severity. Measurements were made on 12 subjects (age 30 ± 10 years, body mass index 22.8 ± 1.9, eight males, four females) at an altitude of 5050 m over a 2-week period upon initial arrival (days 2-4) and following partial acclimatization (days 12-14). Sleep was studied by full polysomnography, and resting arterial blood gases were measured. Loop gain was measured by the 'duty cycle' method (duration of hyperpnoea/cycle length). Partial acclimatization to high-altitude exposure was associated with both an increase in loop gain (duty cycle fell from 0.60 ± 0.05 to 0.55 ± 0.06 (P = 0.03)) and severity of CSA (apnoea-hypopnoea index increased from 76.8 ± 48.8 to 115.9 ± 20.2 (P = 0.01)), while partial arterial carbon dioxide concentration fell from 29 ± 3 to 26 ± 2 (P = 0.01). Contrary to the results at lower altitudes, at high-altitude loop gain and severity of CSA increased.
In this study, we examined the effect of 96-125 h of competitive exercise on cognitive and physic... more In this study, we examined the effect of 96-125 h of competitive exercise on cognitive and physical performance. Cognitive performance was assessed using the Stroop test (n = 9) before, during, and after the 2003 Southern Traverse adventure race. Strength (MVC) and strength endurance (time to failure at 70% current MVC) of the knee extensor and elbow flexor muscles were assessed before and after racing. Changes in vertical jump (n = 24) and 30-s Wingate performance (n = 27) were assessed in a different group of athletes. Complex response times were affected by the race (16% slower), although not significantly so (P = 0.18), and were dependent on exercise intensity (less so at 50% peak power output after racing). Reduction of strength (P < 0.05) of the legs (17%) and arms (11%) was equivalent (P = 0.17). Reductions in strength endurance were inconsistent (legs 18%, P = 0.09; arms 13%, P = 0.40), but were equivalent between limbs (P = 0.80). Similar reductions were observed in jump height (-8 +/- 9%, P < 0.01) and Wingate peak power (-7 +/- 15%, P = 0.04), mean power (-7 +/- 11%, P < 0.01), and end power (-10 +/- 11%, P < 0.01). We concluded that: moderate-intensity exercise may help complex decision making during sustained stress; functional performance was modestly impacted, and the upper and lower limbs were affected similarly despite being used disproportionately.
Nine men completed a 24-h exercise trial, with physiological testing sessions before (T1, ∼0630),... more Nine men completed a 24-h exercise trial, with physiological testing sessions before (T1, ∼0630), during (T2, ∼1640; T3, ∼0045; T4, ∼0630), and 48-h afterwards (T5, ∼0650). Participants cycled and ran/trekked continuously between test sessions. A 24-h sedentary control trial was undertaken in crossover order. Within testing sessions, participants lay supine and then stood for 6 min, while heart rate variability (spectral analysis of ECG), middle cerebral artery perfusion velocity (MCAv), mean arterial pressure (MAP; Finometer), and end-tidal Pco2 (PetCO2) were measured, and venous blood was sampled for cardiac troponin I. During the exercise trial: 1) two, six, and four participants were orthostatically intolerant at T2, T3, and T4, respectively; 2) changes in heart rate variability were only observed at T2; 3) supine MAP (baseline = 81 ± 6 mmHg) was lower ( P < 0.05) by 14% at T3 and 8% at T4, whereas standing MAP (75 ± 7 mmHg) was lower by 16% at T2, 37% at T3, and 15% at T4; 4...
The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex ... more The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. BRS was estimated with the modified Oxford method (nitroprusside-phenylephrine injections) and spontaneous low-frequency (0.04–0.15) α-index. Dynamic CA was quantified using the rate of regulation (RoR) and autoregulatory index (ARI) derived from the thigh-cuff release technique and transfer function analysis of spontaneous oscillations in blood pressure and mean cerebral blood flow velocity. Results show that RoR and ARI were inversely related to nitroprusside BRS [ R = −0.72, confidence inte...
The cerebrovasculature dilates or constricts in response to acute blood pressure changes to stabi... more The cerebrovasculature dilates or constricts in response to acute blood pressure changes to stabilize cerebral blood flow across a range of blood pressures. It is unclear, however, whether such dynamic cerebral autoregulation (dCA) is equally effective in responding to falling versus rising blood pressure. In this study we applied a pharmacological approach to evaluate dCA gain to transient hypotension and hypertension and compared this method with 2 established indices of dCA that do not explicitly differentiate between dCA efficacy and falling versus rising blood pressure. Middle cerebral arterial velocity and blood pressure recordings were made in 26 healthy volunteers randomized to 2 protocols. In 10 subjects, dCA gain to transient hypotension induced with intravenous nitroprusside was compared with dCA gain to transient hypertension induced with intravenous phenylephrine. In 16 subjects, dCA gain to transient hypotension induced with intravenous nitroprusside was compared with ...
There are several reports on syncope occurring following standing at high altitude (HA), yet desc... more There are several reports on syncope occurring following standing at high altitude (HA), yet description of the detailed physiological responses to standing at HA are lacking. We examined the hypothesis that appropriate physiological adjustments to upright posture would be compromised at HA (5050 m). Ten healthy volunteers stood up rapidly from supine rest, for 3 min, at sea level and at 5050 m. Beat-to-beat mean arterial blood pressure (MAP, Finometer), middle cerebral artery blood velocity (MCAv, Transcranial Doppler), end-tidal PCO(2) and PO(2), and heart rate (ECG) were recorded continuously. After 14 days at HA, baseline MAP and MCAv were not different to sea level, although HR was elevated. Neither the magnitude of initial (&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;15 s) responses to standing, nor the time course of initial recovery differed at HA compared with sea level (p &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; 0.05). By 3 min of standing, MAP was restored to supine values both at sea level (-3 +/- 12 mmHg) and HA (4 +/- 10 mmHg), although there was more complete recovery of HR at sea level (+13 +/- 10 b.min(-1), p = 0.02 vs. + 23 +/- 10 b.min(-1), p = 0.01). Reduced MCAv at 3 min was comparable at sea level and altitude (both -16%). These data indicate that initial cardiovascular and cerebrovascular responses to standing are unaltered when partially acclimatized to HA.
Soluble CD40 ligand (sCD40L) is a powerful marker of cardiovascular risk. Exercise is known to de... more Soluble CD40 ligand (sCD40L) is a powerful marker of cardiovascular risk. Exercise is known to decrease cardiovascular risk, but the impact of ultra-endurance exercise on sCD40L responses is unknown. To examine the relationship between ultra-endurance exercise in trained athletes and levels of sCD40L and its natural ligand sCD40. Control-trial, crossover design, exercise intervention study of sCD40L and sCD40 levels. Outdoor exercise and laboratory testing, single centre study, School of Physical Education, University of Otago, New Zealand. Nine trained ultra-endurance athletes. Athletes exercised (cycled and jogged) for 17 of 24 h. Venous blood was sampled at baseline and serially throughout exercise and 24 and 48 h after exercise. The athletes completed a 24 h control trial on a separate occasion, in randomised order. Mean levels of sCD40L and sCD40 during exercise and rest with 95% CIs. sCD40L levels dropped steadily from baseline (median 4128 pg/ml) to a measured nadir at 24 h following exercise (median 1409 pg/ml) (p=0.01). The levels had started to rise again by 48 h after exercise. When measured as a group, sCD40L levels remained constant during a control rest period. sCD40 levels remained constant on both exercise and control days. Ultra-endurance exercise lowers the levels of the cardiovascular risk marker sCD40L in athletes. These results raise the possibility that exercise-induced changes in sCD40L may provide one of the mechanisms by which exercise lowers cardiovascular risk.
AJP: Regulatory, Integrative and Comparative Physiology, 2009
Indomethacin (INDO), a reversible cyclooxygenase inhibitor, is a useful tool for assessing the ro... more Indomethacin (INDO), a reversible cyclooxygenase inhibitor, is a useful tool for assessing the role of cerebrovascular reactivity on ventilatory control. Despite this, the effect of INDO on breathing stability during wakefulness has yet to be examined. Although the effect of reductions in cerebrovascular CO2 reactivity on ventilatory CO2 sensitivity is likely dependent upon the method used, no studies have compared the effect of INDO on steady-state and modified rebreathing estimates of ventilatory CO2 sensitivity. The latter method includes the influence of Pco2 gradients and cerebral perfusion, whereas the former does not. We examined the hypothesis that INDO-induced reduction in cerebrovascular CO2 reactivity would 1) cause unstable breathing in conscious humans and 2) increase ventilatory CO2 sensitivity during the steady-state method but not during rebreathing methods. We measured arterial blood gases, ventilation (V̇e), and middle cerebral artery velocity (MCAv) before and 90 ...
Exercise is a uniquely effective and pluripotent medicine against several noncommunicable disease... more Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Consequently, HIT is being promoted as a more time-efficient and practical approach to optimize health thereby reducing the burden of disease associated with physical inactivity. However, no studies to date have examined the impact of HIT on the cerebrovasculature and corresponding implications for cognitive function. This review critiques the implications of HIT for cerebrovascular function, with a focus on the mechanisms and translational impact for patient health and well-being. It also introduc...
National Research Center on the Gifted and Talented, 2004
ED505476 - Evaluation, Placement, and Progression: Three Sites of Concern for Student Achievement... more ED505476 - Evaluation, Placement, and Progression: Three Sites of Concern for Student Achievement. Research Monograph Series. RM04192.
Loop gain is an engineering term that predicts the stability of a feedback control system, such a... more Loop gain is an engineering term that predicts the stability of a feedback control system, such as the control of breathing. Based on earlier studies at lower altitudes, it was hypothesized that acclimatization to high altitude would lead to a reduction in loop gain and thus central sleep apnoea (CSA) severity. This study used exposure to very high altitude to induce CSA in healthy subjects to investigate the effect of partial acclimatization on loop gain and CSA severity. Measurements were made on 12 subjects (age 30 ± 10 years, body mass index 22.8 ± 1.9, eight males, four females) at an altitude of 5050 m over a 2-week period upon initial arrival (days 2-4) and following partial acclimatization (days 12-14). Sleep was studied by full polysomnography, and resting arterial blood gases were measured. Loop gain was measured by the &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;duty cycle&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; method (duration of hyperpnoea/cycle length). Partial acclimatization to high-altitude exposure was associated with both an increase in loop gain (duty cycle fell from 0.60 ± 0.05 to 0.55 ± 0.06 (P = 0.03)) and severity of CSA (apnoea-hypopnoea index increased from 76.8 ± 48.8 to 115.9 ± 20.2 (P = 0.01)), while partial arterial carbon dioxide concentration fell from 29 ± 3 to 26 ± 2 (P = 0.01). Contrary to the results at lower altitudes, at high-altitude loop gain and severity of CSA increased.
In this study, we examined the effect of 96-125 h of competitive exercise on cognitive and physic... more In this study, we examined the effect of 96-125 h of competitive exercise on cognitive and physical performance. Cognitive performance was assessed using the Stroop test (n = 9) before, during, and after the 2003 Southern Traverse adventure race. Strength (MVC) and strength endurance (time to failure at 70% current MVC) of the knee extensor and elbow flexor muscles were assessed before and after racing. Changes in vertical jump (n = 24) and 30-s Wingate performance (n = 27) were assessed in a different group of athletes. Complex response times were affected by the race (16% slower), although not significantly so (P = 0.18), and were dependent on exercise intensity (less so at 50% peak power output after racing). Reduction of strength (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) of the legs (17%) and arms (11%) was equivalent (P = 0.17). Reductions in strength endurance were inconsistent (legs 18%, P = 0.09; arms 13%, P = 0.40), but were equivalent between limbs (P = 0.80). Similar reductions were observed in jump height (-8 +/- 9%, P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.01) and Wingate peak power (-7 +/- 15%, P = 0.04), mean power (-7 +/- 11%, P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.01), and end power (-10 +/- 11%, P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.01). We concluded that: moderate-intensity exercise may help complex decision making during sustained stress; functional performance was modestly impacted, and the upper and lower limbs were affected similarly despite being used disproportionately.
Nine men completed a 24-h exercise trial, with physiological testing sessions before (T1, ∼0630),... more Nine men completed a 24-h exercise trial, with physiological testing sessions before (T1, ∼0630), during (T2, ∼1640; T3, ∼0045; T4, ∼0630), and 48-h afterwards (T5, ∼0650). Participants cycled and ran/trekked continuously between test sessions. A 24-h sedentary control trial was undertaken in crossover order. Within testing sessions, participants lay supine and then stood for 6 min, while heart rate variability (spectral analysis of ECG), middle cerebral artery perfusion velocity (MCAv), mean arterial pressure (MAP; Finometer), and end-tidal Pco2 (PetCO2) were measured, and venous blood was sampled for cardiac troponin I. During the exercise trial: 1) two, six, and four participants were orthostatically intolerant at T2, T3, and T4, respectively; 2) changes in heart rate variability were only observed at T2; 3) supine MAP (baseline = 81 ± 6 mmHg) was lower ( P < 0.05) by 14% at T3 and 8% at T4, whereas standing MAP (75 ± 7 mmHg) was lower by 16% at T2, 37% at T3, and 15% at T4; 4...
The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex ... more The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. BRS was estimated with the modified Oxford method (nitroprusside-phenylephrine injections) and spontaneous low-frequency (0.04–0.15) α-index. Dynamic CA was quantified using the rate of regulation (RoR) and autoregulatory index (ARI) derived from the thigh-cuff release technique and transfer function analysis of spontaneous oscillations in blood pressure and mean cerebral blood flow velocity. Results show that RoR and ARI were inversely related to nitroprusside BRS [ R = −0.72, confidence inte...
The cerebrovasculature dilates or constricts in response to acute blood pressure changes to stabi... more The cerebrovasculature dilates or constricts in response to acute blood pressure changes to stabilize cerebral blood flow across a range of blood pressures. It is unclear, however, whether such dynamic cerebral autoregulation (dCA) is equally effective in responding to falling versus rising blood pressure. In this study we applied a pharmacological approach to evaluate dCA gain to transient hypotension and hypertension and compared this method with 2 established indices of dCA that do not explicitly differentiate between dCA efficacy and falling versus rising blood pressure. Middle cerebral arterial velocity and blood pressure recordings were made in 26 healthy volunteers randomized to 2 protocols. In 10 subjects, dCA gain to transient hypotension induced with intravenous nitroprusside was compared with dCA gain to transient hypertension induced with intravenous phenylephrine. In 16 subjects, dCA gain to transient hypotension induced with intravenous nitroprusside was compared with ...
There are several reports on syncope occurring following standing at high altitude (HA), yet desc... more There are several reports on syncope occurring following standing at high altitude (HA), yet description of the detailed physiological responses to standing at HA are lacking. We examined the hypothesis that appropriate physiological adjustments to upright posture would be compromised at HA (5050 m). Ten healthy volunteers stood up rapidly from supine rest, for 3 min, at sea level and at 5050 m. Beat-to-beat mean arterial blood pressure (MAP, Finometer), middle cerebral artery blood velocity (MCAv, Transcranial Doppler), end-tidal PCO(2) and PO(2), and heart rate (ECG) were recorded continuously. After 14 days at HA, baseline MAP and MCAv were not different to sea level, although HR was elevated. Neither the magnitude of initial (&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;15 s) responses to standing, nor the time course of initial recovery differed at HA compared with sea level (p &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; 0.05). By 3 min of standing, MAP was restored to supine values both at sea level (-3 +/- 12 mmHg) and HA (4 +/- 10 mmHg), although there was more complete recovery of HR at sea level (+13 +/- 10 b.min(-1), p = 0.02 vs. + 23 +/- 10 b.min(-1), p = 0.01). Reduced MCAv at 3 min was comparable at sea level and altitude (both -16%). These data indicate that initial cardiovascular and cerebrovascular responses to standing are unaltered when partially acclimatized to HA.
Soluble CD40 ligand (sCD40L) is a powerful marker of cardiovascular risk. Exercise is known to de... more Soluble CD40 ligand (sCD40L) is a powerful marker of cardiovascular risk. Exercise is known to decrease cardiovascular risk, but the impact of ultra-endurance exercise on sCD40L responses is unknown. To examine the relationship between ultra-endurance exercise in trained athletes and levels of sCD40L and its natural ligand sCD40. Control-trial, crossover design, exercise intervention study of sCD40L and sCD40 levels. Outdoor exercise and laboratory testing, single centre study, School of Physical Education, University of Otago, New Zealand. Nine trained ultra-endurance athletes. Athletes exercised (cycled and jogged) for 17 of 24 h. Venous blood was sampled at baseline and serially throughout exercise and 24 and 48 h after exercise. The athletes completed a 24 h control trial on a separate occasion, in randomised order. Mean levels of sCD40L and sCD40 during exercise and rest with 95% CIs. sCD40L levels dropped steadily from baseline (median 4128 pg/ml) to a measured nadir at 24 h following exercise (median 1409 pg/ml) (p=0.01). The levels had started to rise again by 48 h after exercise. When measured as a group, sCD40L levels remained constant during a control rest period. sCD40 levels remained constant on both exercise and control days. Ultra-endurance exercise lowers the levels of the cardiovascular risk marker sCD40L in athletes. These results raise the possibility that exercise-induced changes in sCD40L may provide one of the mechanisms by which exercise lowers cardiovascular risk.
AJP: Regulatory, Integrative and Comparative Physiology, 2009
Indomethacin (INDO), a reversible cyclooxygenase inhibitor, is a useful tool for assessing the ro... more Indomethacin (INDO), a reversible cyclooxygenase inhibitor, is a useful tool for assessing the role of cerebrovascular reactivity on ventilatory control. Despite this, the effect of INDO on breathing stability during wakefulness has yet to be examined. Although the effect of reductions in cerebrovascular CO2 reactivity on ventilatory CO2 sensitivity is likely dependent upon the method used, no studies have compared the effect of INDO on steady-state and modified rebreathing estimates of ventilatory CO2 sensitivity. The latter method includes the influence of Pco2 gradients and cerebral perfusion, whereas the former does not. We examined the hypothesis that INDO-induced reduction in cerebrovascular CO2 reactivity would 1) cause unstable breathing in conscious humans and 2) increase ventilatory CO2 sensitivity during the steady-state method but not during rebreathing methods. We measured arterial blood gases, ventilation (V̇e), and middle cerebral artery velocity (MCAv) before and 90 ...
Uploads
Papers by Samuel Nicolas Rodriguez Lucas