
BIT – A Browser for the Internet of Things

Christof Roduner

Institute for Pervasive Computing, ETH Zurich, 8092 Zurich, Switzerland
roduner@inf.ethz.ch

Abstract. Mobile phones are increasingly able to read auto-id labels,
such as barcodes or RFID tags. As virtually all consumer products sold
today are equipped with such a label, this opens the possibility for a
wide range of novel digital services building on physical products. In this
paper, we discuss the problems that arise when such novel applications
are deployed and present a Browser for the Internet of Things (BIT),
which facilitates the development of such consumer services on the mobile
phone platform.

1 Introduction

Personal mobile devices, such as mobile phones and PDAs, represent an impor-
tant building block in many of the systems discussed in the ubiquitous computing
community. Researchers have used them for prototypical implementations of a
vast array of applications ranging from attaching digital annotations to physi-
cal objects [1, 2] and controlling large public displays [3, 4] to interacting with
appliances of all sorts [5, 6].

Many of these applications leverage auto-id tags, such as visual markers
or labels based on radio frequency identification (RFID) technology, for the
identification of physical objects. With the advent of technologies that allow
mobile phones to read such auto-id tags, the two fields of personal mobile devices
and auto-id technology have moved closer together more recently. Most mobile
phones already feature an integrated camera that has been shown to be capable
of decoding the omnipresent EAN/UPC barcode symbols [7] that can be found
on virtually all consumer goods. On top of this, some mobile phones already ship
with a built-in Near Field Communication (NFC) module that is able to read
passive RFID tags.

From an economic perspective, the convergence of auto-id technology and
mobile phones opens many very attractive opportunities for businesses. While
the benefits of auto-id tags were earlier limited to internal business processes
(e.g., enhanced efficiency in supply chain management), it is now possible to
leverage this technology throughout a product’s life cycle. One of the most
promising prospects is for businesses to be able to establish a direct link to
consumers that can be followed by simply interacting with the physical product.
More specifically, these developments have a number of implications for product
manufacturers, third-party businesses, and customers alike:



2

For a manufacturer, it is now possible to deliver added value to customers
by enriching its physical products with digital services that can be accessed
in a straightforward and intuitive way. Unlike the physical product itself, such
digital services are not static and can be evolved over time, thereby ensuring
an ongoing appeal and repeated interaction with the product. If these services
are tailored to a consumer’s needs, this also allows for the personalization of an
item, which is not feasible with a physical product alone. They further allow
customers to easily get in touch with a product’s manufacturer, which can be
helpful in situations where support information or personal assistance is needed.
Overall, a manufacturer can leverage the combination of tagged products and
mobile devices to differentiate its offering and improve customer loyalty.

Opportunities for services based on tagged products are not limited to man-
ufacturers, but arise for third-party businesses as well. For a consumer advocacy
organization, for example, it is very attractive to “link” a review directly to a
physical product, thus making it easily accessible when a buying decision is made
in a brick and mortar store. Similar benefits can be reaped by many other busi-
nesses that currently offer product-related information on the internet. A price
comparison service, for example, can greatly benefit from the fact that users can
access its data directly at the point of sale and without manually typing the
product name into a search form.

For consumers, finally, the possibility of retrieving information and services
directly from a physical product is compelling due to the ease of interaction.
Information is accessible immediately and intuitively as it is delivered by the
physical object without the intermediate step of a manual search on the web. To
further enhance ease of interaction and offer the services that are most relevant
to a given situation, data that allows the user’s context to be inferred (e.g., GPS
coordinates) can be taken into account as well.

Typical usage scenarios that we have in mind include the following:

– Users with allergies can use their mobile phone to easily check whether a
product contains ingredients that should be avoided.

– A price comparison service can inform shoppers that a product at hand costs
less at a nearby store.

– In a store, consumers can look up product reviews before making their final
buying decision. Similarly, they can rate tagged products directly on their
phones.

– Consumer interest organizations can make users aware if a product that was
just scanned conflicts with their views or preferences (e.g., its production
possibly entailed child labor).

– Consumables (such as printer cartridges or coffee capsules) can be re-ordered
directly on the mobile phone by simply reading the auto-id tag of a product
(such as a printer or coffee maker).

– A movie trailer can be viewed on the phone by scanning the barcode printed
on a movie poster.

– Users can look up troubleshooting information for a faulty appliance, such
as a printer or a coffee maker, which provides a diagnostic code over an



3

integrated NFC interface. The phone picks up this diagnostic information
and receives instructions on how to resolve the problem. Alternatively, a list
of nearby repair centers can be displayed.

– For appliances (e.g., a coffee maker) equipped with an NFC interface, users
can change settings (e.g., the time the device switches on automatically).
The new settings are entered on the phone and then transmitted to the
appliance over NFC.1

2 Technical Limitations Today

While the scenarios outlined above are likely to be appealing to most end users,
developers of such services face a number of challenges due to the technology
available today.

Application development for mobile phones is still a cumbersome process.
Toolchain and framework support is generally poor. At the same time, the ap-
plications that implement the services described above are often very small and
do not offer a lot of functionality. Acquiring deep skills in mobile application
development and going through the process of setting up a full-fledged develop-
ment environment is hardly justified. Moreover, many applications are provided
by product manufacturers with no expertise in software development. While ap-
plication development can certainly be outsourced, this is not the preferred way
as it makes solutions static and hard to adapt as the associated physical product
evolves. Manufacturers need a way to quickly deploy new services as they, e.g.,
launch new marketing campaigns. The same applies, of course, to traditional
websites accompanying a physical product. Unlike mobile application develop-
ment, however, the programming of an interactive website is a considerably
simpler task that requires skills that are much easier to acquire.

This is further complicated by the fact that today’s mobile phone market is
still fragmented into a number of different, incompatible platforms, such as Java
ME, Symbian, iPhone, Android, and Windows Mobile. Every mobile application
thus needs to be ported to all major platforms. As an obvious answer to this
dilemma, manufacturers may opt for web-based solutions. The problem with
this approach is that a mix of HTML, JavaScript, and server-side applications
does not enable developers to access phone-specific hardware, such as barcode
or RFID readers as well as GPS receivers. Another problem arises from the
relatively high latency in today’s mobile networks. Applications based on web
technology require frequent request-response cycles that are triggered by simple
user input. Given the latency commonly observed, this has a negative impact on
user experience. Finally, there are still some places without network coverage,
such as subway stations. Even without network coverage, a physical object may
offer information or services directly to the mobile phone through, e.g., NFC
technology or Bluetooth.

1 The value of mobile phones for carrying out such tasks was investigated in more
detail in [6].



4

From a usability perspective, another challenge stems from the necessity to
integrate the various services into a single interaction framework. While ser-
vices can easily be created and deployed independently, this results in the user’s
phone being littered with a large number of small applications. Worse yet, the
execution of these applications is not automatically coordinated. In order to use
a service, the user first needs to manually start the corresponding application
before a product can be scanned. Since many objects will not be associated with
a given service, scanning will not render a result in many instances, which will
discourage users from further interaction. A user’s need to simply see “every-
thing my favorite services offer for this product” cannot be addressed in current
architectures. A user would have to manually launch one application after an-
other to check whether it offers a service for a given product – an approach that
is simply not feasible. Finally, interaction with physical products often happens
spontaneously as users are on the go. Users will often discover that a product
offers a new service that was previously not known to them. In such a situation,
going through the process of installing an application that supports the new
service is not desirable. If new software is needed on the mobile phone, it should
be deployed on the fly and without disturbing the interaction flow between the
user and the physical object.

We believe that the majority of these challenges can be best addressed by a
Browser for the Internet of Things (BIT). Such a browser can offer a single run-
time environment that is home to all sorts of services as described above. From
a user’s point of view, this browser represents a one-stop shop for interaction
with auto-id tagged physical products.

Several other projects have explored frameworks to facilitate the creation
of services that allow users to interact with physical objects through mobile
phones. The Physical Mobile Interaction Framework (PMIF) [8] provides de-
velopers with a generic framework to write applications that support different
interaction techniques, such as touching, pointing, and scanning. It frees devel-
opers from the need of dealing with the specific technologies used to implement
these techniques. The PERCI (PERvasive ServiCe Interaction) project [9] also
aims at facilitating physical mobile interaction, however, the focus lies on the
automatic generation of user interfaces from service descriptions based on Se-
mantic Web Services. The REACHeS (Remotely Enabling and Controlling Het-
erogeneous Services) project [10], finally, proposes a system that implements
the universal remote control paradigm. NFC tags are used to enable users to
physically interact with their environment.

While all of these projects are related to our work, our focus is more on single,
low-value physical products than on smart environments. We aim at providing
a runtime environment in which services offered by a large number of interested
parties can be deployed and executed. In contrast to many other scenarios dis-
cussed in the community, the physical objects tend to be more inexpensive in
our examples, and both tagged products as well as interaction devices are highly
mobile. The emphasis of our research is thus on a lightweight approach that
allows for the fast and easy creation of new services in this specific domain.



5

3 Requirements

Based on the above considerations, we can derive a number of requirements that
BIT needs to fulfill in order to support the wide array of services that can be
implemented for tagged products:

Reader management. BIT must provide a single environment that man-
ages tag readers (i.e., barcode and RFID readers).

Discovery and presentation. When a tag is read, BIT must discover which
services are available and present this information to the user.

Lifecycle management. As soon as users indicate they want to use one
of the discovered services, BIT needs to obtain and execute the code needed to
offer the service on the mobile phone. Since many services will be invoked several
times, their code needs to be cached on the phone, and BIT must regularly check
if updates are available.

Unified user experience. In order to ease interaction with the plethora of
services that may be provided, BIT must enforce some restrictions with regard
to user interface design. For example, the steps needed to stop to use a service
should always be the same no matter which manufacturer provides it.

Platform and device independence. As services should run on any plat-
form for which a BIT implementation is provided, device and platform pecu-
liarites must be abstracted. For example, device-specific APIs for the use of
RFID or barcode readers as well as location information should be wrapped.
Also, independence from available screen estate must be ensured.

Programming abstractions. BIT should offer programming abstractions
that free developers from dealing with, e.g., a particular tagging technology
(such as RFID or barcodes) or communication technology (such as Bluetooth
or GPRS). Instead, it should be possible for developers to simply process reads
of physical objects, irrespective of the tagging technology used. Similarly, devel-
opers must be able to, e.g., retrieve a physical appliance’s error status without
needing to worry whether this information is available through NFC, Bluetooth,
or IP.

Integration with backend infrastructure. In most cases, product-related
information and services that are presented by BIT are stored in a backend
infrastructure. In order to discover and retrieve this data, BIT must seamlessly
integrate with such a standardized infrastructure.

Storage. Certain services, such as an allergy checker, need to permanently
store data (e.g., the user’s food allergens). BIT must provide persistent storage
for such services.

Security and privacy. BIT must ensure that a service can only access those
resources for which it is authorized. For example, a service must be constrained
to access its own storage area only. As we envision BIT to be a single tool
that mediates all interaction between a user and every physical product’s digital
offerings, it would be easy to track nearly every move of a user. Privacy is
thus a major concern, and BIT must support users in revealing as little about
themselves as possible if they wish to do so.



6

Fig. 1. Results list.

4 Prototype Implementation

Based on the requirements outlined in the previous section, we have implemented
a first prototype of BIT to explore what is needed in such a system. We hope to
bundle these concepts in a more comprehensive and detailed architecture soon.

Our prototype of BIT is implemented in Python for S602 for a Nokia E61i
phone. It is capable of reading both EAN/UPC barcodes as they can be found
on virtually all consumer goods as well as UHF RFID tags based on EPCglobal’s
Class 1 Gen 2 standard3, which is today’s most commonly used RFID standard
in logistics. We used a Symbian C++ version of the BaToo toolkit4, which
offers robust barcode recognition from within Python. The E61i we use has been
modified by Nokia Research and features an integrated RFID reader that we
access via a proprietary UDP-based protocol.

In our prototype implementation of BIT, services are provided by applets. An
applet is a small application that is implemented in BITML, our custom markup
language for BIT. BITML allows for the definition of simple user interfaces.
Similar to PHP or JSP, developers can embed scripts within BITML code. As
a scripting language, we used Lua [11], which we ported to Nokia’s Symbian
S60 platform. For demonstration purposes, we built a number of applets that
provide the following services: (1) a configurable allergy checking service, (2) a
controller for a coffee maker (simulated on a Bluetooth-enabled laptop), (3) a
product review service, (4) a price comparison service, and (5) a carbon footprint
tracking service.

2 http://opensource.nokia.com/projects/pythonfors60/
3 www.epcglobalinc.org/standards/uhfc1g2
4 http://people.inf.ethz.ch/adelmanr/batoo/



7

Fig. 2. Detailed view of an applet that lets users control their coffee maker. The screen-
shot shows how the coffee maker’s water hardness settings can be adjusted.

When a user scans a physical product’s EAN/UPC barcode or RFID tag,
BIT decodes the product’s identifier, i.e., the EAN number or, in case of RFID,
the Electronic Product Code (EPC) as it is used in logistics today. BIT then
runs all applets that are installed and passes the detected identifier to all of
them. Every applet generates a terse output (e.g., “Caution: contains peanuts”)
that can be empty optionally. Based on all collected non-empty output returned
by the applets, BIT generates a list of results as shown in Figure 1. A user can
now browse this list and open applets in a more detailed view. Figures 2 and 3
show the detailed views of two example applets. While Figure 2 shows an applet
that lets the user change a coffee maker’s settings, Figure 3 illustrates an applet
that lets users keep track of the carbon emissions produced by the products they
buy.

BIT comes with a number of pre-installed applets. Users are, however, free to
install new applets and remove existing ones. In many instances, users will not
be aware of all services that a physical product offers. In order to give them a
means to discover new services, BIT integrates seamlessly with our open lookup
infrastructure [12]. Among other features, the open lookup infrastructure allows
both manufacturers as well as third parties to offer applets for download. It
also provides a context-aware lookup mechanism, which helps users to find those
services that are most relevant to their current situation. BIT leverages this
mechanism to suggest new applets, which are installed and executed on-the-fly
if the user selects a new service.

In order to facilitate applet development, developers can use the BIT API.
The BIT API is a collection of methods that allow applets to access lower-level
functions, such as sensors, networking, and storage in a platform-independent
way. All applets listed above could thus be implemented using a mix of BITML,



8

Fig. 3. Detailed view of an applet that lets consumers keep track of the carbon emis-
sions produced by the products they buy.

the BIT API, and the Lua language only and did not need to rely on system-level
features, such as sockets.

5 Summary and Outlook

We presented an overview of possible services that build upon tagged consumer
products and future mobile phones that are able to read auto-id labels. We then
discussed a number of obstacles that arise when such services are implemented
with tools available today. Since we believe that the idea of enriching physical
products with digital information and services will become increasingly popular,
we see the need for simpler ways to build such services. To address this need, we
presented the idea and a prototype implementation of a Browser for the Internet
of Things (BIT) that accommodates such services in the form of portable applets.
In future work, we will further detail the architecture of BIT, improve the current
implementation, and thoroughly test these concepts with more complex services.

6 Acknowledgements

We would like to thank Nokia Research for providing us with the modified E61i
phone and its integrated Gen2 RFID reader.

References

1. Carter, S., Churchill, E., Denoue, L., Helfman, J., Nelson, L.: Digital Graffiti: Pub-
lic Annotation of Multimedia Content. In: CHI ’04: CHI ’04 Extended Abstracts
on Human Factors in Computing Systems, Vienna, Austria (2004) 1207–1210



9

2. Rohs, M., Roduner, C.: Camera Phones with Pen Input as Annotation Devices.
In: Pervasive 2005 Workshop on Pervasive Mobile Interaction Devices (PERMID),
Munich, Germany (2005) 23–26

3. Myers, B.A., Stiel, H., Gargiulo, R.: Collaboration using multiple PDAs connected
to a PC. In: CSCW ’98: Proceedings of the 1998 ACM Conference on Computer
Supported Cooperative Work, Seattle, WA, USA (1998) 285–294

4. Ballagas, R., Rohs, M., Sheridan, J.G., Borchers, J.: BYOD: Bring Your Own
Device. In: UbiComp 2004 Workshop on Ubiquitous Display Environments, Not-
tingham, UK (2004)

5. Myers, B.A., Nichols, J., Wobbrock, J.O., Miller, R.C.: Taking Handheld Devices
to the Next Level. IEEE Computer 37(12) (2004) 36–43

6. Roduner, C., Langheinrich, M., Floerkemeier, C., Schwarzentrub, B.: Operating
Appliances with Mobile Phones – Strengths and Limits of a Universal Interaction
Device. In: Proceedings of the 5th International Conference on Pervasive Comput-
ing (Pervasive 2007). Volume 4480 of Lecture Notes in Computer Science, Toronto,
Canada, Springer (2007) 198–215

7. Adelmann, R., Langheinrich, M., Floerkemeier, C.: Toolkit for Bar Code Recogni-
tion and Resolving on Camera Phones – Jump Starting the Internet of Things.
In: Informatik 2006 Workshop on Mobile and Embedded Interactive Systems
(MEIS’06), Dresden, Germany (2006)

8. Rukzio, E., Broll, G., Wetzstein, S.: The Physical Mobile Interaction Frame-
work (PMIF). Technical Report LMU-MI-2008-2, Lugwig-Maximilians-Universität
München, Munich (2008)

9. Broll, G., Siorpaes, S., Rukzio, E., Paolucci, M., Hamard, J., Wagner, M., Schmidt,
A.: Supporting Mobile Service Usage through Physical Mobile Interaction. In: Pro-
ceedings of the 5th Annual IEEE International Conference on Pervasive Comput-
ing and Communications (Percom 2007), White Plains, NY, USA, IEEE Computer
Society (2007) 262–271

10. Riekki, J., Sanchez, I., Pyykkönen, M.: Universal Remote Control for the Smart
World. In: Proceedings of the 5th International Conference on Ubiquitous Intel-
ligence and Computing (UIC 2008). Volume 5061 of Lecture Notes in Computer
Science, Oslo, Norway, Springer (2008) 563–577

11. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: The Evolution of Lua. In:
Proceedings of the Third ACM SIGPLAN Conference on History of Programming
Languages (HOPL III), San Diego, CA, USA (2007) 2.1–2.26

12. Roduner, C., Langheinrich, M.: Publishing and Discovering Information and Ser-
vices for Tagged Products. In: Proceedings of the 19th International Conference
on Advanced Information Systems Engineering (CAiSE 2007). Volume 4495 of
Lecture Notes in Computer Science, Trondheim, Norway, Springer (2007) 501–515


