Abstract Rationale: Animal models demonstrate that aberrant gene expression in utero can result i... more Abstract Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes. Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
ABSTRACT Although alveolar wall thinning has been attributed to apoptosis of interstitial lung li... more ABSTRACT Although alveolar wall thinning has been attributed to apoptosis of interstitial lung lipofibroblasts (LFs), the underlying molecular mechanism(s) remains unknown. Although the physiological vitamin D steroid hormone 1alpha,25(OH)(2)D(3) (1,25D) has been suggested as a local paracrine/autocrine effector of fetal lung maturation and is known to affect fibroblast apoptosis, its effects on LF apoptosis are unknown. We determined the role of 1,25D and its metabolite, C-3-epimer (3-epi-1,25D), on LF and alveolar type II (ATII) cell differentiation, proliferation, and apoptosis. Embryonic day 19 Sprague-Dawley fetal rat lung LFs and ATII cells were treated with 1,25D or 3-epi-1,25D (1 x 10(-10) to 1 x 10(-8) M) for 24 h, and cell proliferation, apoptosis, and differentiation were assessed. Both 1,25D and 3-epi-1,25D exhibited dose-dependent increases in expression of the key homeostatic epithelial-mesenchymal differentiation markers, increased LF and ATII cell proliferation, and decreased apoptosis. Furthermore, rat pups administered 1,25D from postnatal days 0 to 14 showed increased expressions of key LF and ATII cell differentiation markers, increased Bcl-2-to-Bax ratio as an index of decreased spontaneous alveolar LF and ATII cell apoptosis, increased alveolar count, and a paradoxical increase in septal thickness. We conclude that spatial- and temporal-specific actions of vitamin D play a critical role in perinatal lung maturation by stimulating key alveolar epithelial-mesenchymal interactions and by modulating LF proliferation/apoptosis. These data not only provide the biological rationale for the presence of an alveolar vitamin D paracrine system, but also provide the first integrated molecular mechanism for increased surfactant synthesis and alveolar septal thinning during perinatal lung maturation.
Functional maturation of pulmonary alveolar epithelial cells is crucial for extrauterine survival... more Functional maturation of pulmonary alveolar epithelial cells is crucial for extrauterine survival. Mechanical distension and mesenchymal-epithelial interactions play important roles in this process. We hypothesized that mechanical stretch simulating fetal breathing movements is an important regulator of pulmonary epithelial cell differentiation. Using a Flexercell Strain Unit, we analyzed effects of stretch on primary cultures of type II cells and cocultures of epithelial and mesenchymal cells isolated from fetal rat lungs during late development. Cyclic stretch of isolated type II cells increased surfactant protein (SP) C mRNA expression by 150 +/- 30% over controls (P < 0.02) on gestational day 18 and by 130 +/- 30% on day 19 (P < 0.03). Stretch of cocultures with fibroblasts increased SP-C expression on days 18 and 19 by 170 +/- 40 and 270 +/- 40%, respectively, compared with unstretched cocultures. On day 19, stretch of isolated type II cells increased SP-B mRNA expression by 50% (P < 0.003). Unlike SP-C, addition of fibroblasts did not produce significant additional effects on SP-B mRNA levels. Under these conditions, we observed only modest increases in cellular immunoreactive SP-B, but secreted saturated phosphatidylcholine rose by 40% (P < 0.002). These results indicate that cyclic stretch promotes developmentally timed differentiation of fetal type II cells, as a direct effect on epithelial cell function and via mesenchymal-epithelial interactions. Expression of the SP-C gene appears to be highly responsive to mechanical stimulation.
Abstract Rationale: Animal models demonstrate that aberrant gene expression in utero can result i... more Abstract Rationale: Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes. Objectives: We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma.
ABSTRACT Although alveolar wall thinning has been attributed to apoptosis of interstitial lung li... more ABSTRACT Although alveolar wall thinning has been attributed to apoptosis of interstitial lung lipofibroblasts (LFs), the underlying molecular mechanism(s) remains unknown. Although the physiological vitamin D steroid hormone 1alpha,25(OH)(2)D(3) (1,25D) has been suggested as a local paracrine/autocrine effector of fetal lung maturation and is known to affect fibroblast apoptosis, its effects on LF apoptosis are unknown. We determined the role of 1,25D and its metabolite, C-3-epimer (3-epi-1,25D), on LF and alveolar type II (ATII) cell differentiation, proliferation, and apoptosis. Embryonic day 19 Sprague-Dawley fetal rat lung LFs and ATII cells were treated with 1,25D or 3-epi-1,25D (1 x 10(-10) to 1 x 10(-8) M) for 24 h, and cell proliferation, apoptosis, and differentiation were assessed. Both 1,25D and 3-epi-1,25D exhibited dose-dependent increases in expression of the key homeostatic epithelial-mesenchymal differentiation markers, increased LF and ATII cell proliferation, and decreased apoptosis. Furthermore, rat pups administered 1,25D from postnatal days 0 to 14 showed increased expressions of key LF and ATII cell differentiation markers, increased Bcl-2-to-Bax ratio as an index of decreased spontaneous alveolar LF and ATII cell apoptosis, increased alveolar count, and a paradoxical increase in septal thickness. We conclude that spatial- and temporal-specific actions of vitamin D play a critical role in perinatal lung maturation by stimulating key alveolar epithelial-mesenchymal interactions and by modulating LF proliferation/apoptosis. These data not only provide the biological rationale for the presence of an alveolar vitamin D paracrine system, but also provide the first integrated molecular mechanism for increased surfactant synthesis and alveolar septal thinning during perinatal lung maturation.
Functional maturation of pulmonary alveolar epithelial cells is crucial for extrauterine survival... more Functional maturation of pulmonary alveolar epithelial cells is crucial for extrauterine survival. Mechanical distension and mesenchymal-epithelial interactions play important roles in this process. We hypothesized that mechanical stretch simulating fetal breathing movements is an important regulator of pulmonary epithelial cell differentiation. Using a Flexercell Strain Unit, we analyzed effects of stretch on primary cultures of type II cells and cocultures of epithelial and mesenchymal cells isolated from fetal rat lungs during late development. Cyclic stretch of isolated type II cells increased surfactant protein (SP) C mRNA expression by 150 +/- 30% over controls (P < 0.02) on gestational day 18 and by 130 +/- 30% on day 19 (P < 0.03). Stretch of cocultures with fibroblasts increased SP-C expression on days 18 and 19 by 170 +/- 40 and 270 +/- 40%, respectively, compared with unstretched cocultures. On day 19, stretch of isolated type II cells increased SP-B mRNA expression by 50% (P < 0.003). Unlike SP-C, addition of fibroblasts did not produce significant additional effects on SP-B mRNA levels. Under these conditions, we observed only modest increases in cellular immunoreactive SP-B, but secreted saturated phosphatidylcholine rose by 40% (P < 0.002). These results indicate that cyclic stretch promotes developmentally timed differentiation of fetal type II cells, as a direct effect on epithelial cell function and via mesenchymal-epithelial interactions. Expression of the SP-C gene appears to be highly responsive to mechanical stimulation.
Uploads
Papers by john torday